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The optimized green-grey infrastructures are promising solutions to combat the urban flood and water quality
problemswhich have been severe owe to the increasing urbanization and climate change. However, the focusses
in existing researcheshavebeen either onfinding the best strategy by scenario analysismethod or optimal design
of LID practices under the hypothesis of unchanged grey infrastructures. Little is known regarding the synergistic
effect of synchronous optimization design of both green and grey infrastructures. In the study, we conduct
green-grey infrastructures synchronous optimization by modifying the decision variables of traditional
simulation-optimization frameworks and investigate how external uncertainties will affect their performance.
The methodology was applied to a case study in Suzhou, China. The results showed that although the cost of
green-grey synchronous optimized scenarios is lower than that of green optimized only scenarios by 1.69–
4.19 thousand USD per km2, the runoff/pollutants reductions of green-grey synchronous optimized scenarios
are 0.11%–5.24% higher than that of green optimized only scenarios. In the green-grey synchronous optimized
scenarios, green infrastructures can contribute to runoff/pollutants control by 50%–63%/62%–70%, while grey in-
frastructures can contribute to the remaining part by 37%–50%/30%–38%.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
B.V. This is an open access article
1. Introduction

Studies have identified that rapid urbanization and climate change
are the two most influential factors that lead to uncertainties of urban
water systems management (Luan et al., 2019; Manocha and Babovic,
2018). Meanwhile, they resulted in severe issues, including urban
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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flooding, water pollution, groundwater depletion, etc. (Jenkins et al.,
2017; Wang et al., 2016).

Traditional stormwatermanagement solutions are based on the effi-
cient collection and fast conveyance of runoff and pollutants through
grey infrastructures (we mainly consider pipe networks as grey infra-
structures) (Hood et al., 2007). However, the fixed capacity of grey in-
frastructures has limited their abilities to cope with upcoming
challenges in a changing environment (Lucas and Sample, 2015). The
implementation of sustainable stormwater management, including
Low Impact Development (LID) practices, Sustainable urban Drainage
Systems (SuDS), and Sponge Cities has been regarded as a promising
strategy (Dong et al., 2017). They emphasized the use of green infra-
structures which adopt a range of environmental engineering tech-
niques to promote the drainage, storage, and evaporation of natural
rainwater so that it can recover the natural circulation of urban water
systems (Autixier et al., 2014; Tzoulas et al., 2007).

Despite their benefits, green infrastructures cannot fully replace grey
infrastructures due to the limited capacity during large storm events
(Xu et al., 2019a). A new tendency suggested that green infrastructures
should be coupled with grey infrastructures in conjunction with the re-
liability and acceptability of grey infrastructures as well as multi-
functionality, sustainability, and adaptability of green infrastructures
(Alves et al., 2018; Damodaram and Zechman, 2013). However, how
to achieve the optimized green-grey infrastructures are the main
concerns.

To date, a few simulation-optimization frameworks that couple the
hydrological models and multi-objective optimization algorithms have
been developed for decision-making of green infrastructures
implementations. Liu et al. (2019) coupled a physically-based model,
the Markov chain, with the multi-objective shuffled frog leaping algo-
rithm (MOSFLA) to provide the optimal design of LID practices. Eckart
et al. (2018) developed a coupled model by linking the Stormwater
Management Model (SWMM) to the Borg multi-objective evolutionary
algorithm (Borg MOEA) to evaluate LID strategies. Macro et al. (2018)
developed an open-source multi-objective SWMM optimization tool
by connecting SWMM with the Optimization Software Toolkit for
Research Involving Computational Heuristics (OSTRICH). Researchers
have made efforts to either improving the algorithm (Chen et al.,
2015; Torres et al., 2019; Xu et al., 2018) or developing surrogate
models to reduce the complexity of the hydrological model (Beh et al.,
2017; Latifi et al., 2019). However, most of the work focused on the op-
timal design of LID practices under the hypothesis of unchanged grey
infrastructures.

Many studies have demonstrated that the green-grey infrastructures
are more cost-effective than the grey-only option (Alves et al., 2016,
Bakhshipour et al., 2019, Sun et al. 2020). Nevertheless, the focus in
existing researches has always been to find the best strategy through
the scenario analysis method (Alves et al. 2019, Gong et al. 2019).
Although a few researchers have attempted to present multi-objective
optimization frameworks to implement different green-grey infrastruc-
tures, only storage tanks were comprised as grey infrastructures to
couple with green infrastructures (Alves et al., 2016; Damodaram and
Zechman, 2013). Little is known regarding the synergistic effect of syn-
chronous optimization design of green infrastructures and pipe net-
works. Nonetheless, the respective contribution of green and grey
infrastructures to the environment is still unknown. Additionally, opti-
mizations are always operated on a stable basis to achieve required tar-
gets, while the long-term performance of green-grey infrastructures
solutions should be evaluated to test its resilience to climate change
and urbanization (Casal-Campos et al. 2015, Wang et al., 2016).

Accordingly, the novelty of this study is: (1) to conduct green-grey
infrastructures synchronous optimization by modifying the decision
variables of the traditional simulation-optimization framework (adding
pipe diameter as decision variables of grey infrastructures); (2) to
explore the respective contributions of green and grey infrastructures
to water quantity control and water quality improvement under
2

synchronous optimization; (3) to understand the green-grey infrastruc-
tures optimization response to future interference by analyzing the dif-
ferences among optimization solutions under different future scenarios.

To achieve the above goals, most-commonly used SWMM and
Non-dominated Sorting Genetic Algorithm II (NSGA-II) were coupled
to obtain the cost-effectiveness curves in green-grey infrastructures
synchronous optimization. Future climate scenarios are predicted
using the Global Climate Models (GCMs), downscaled by a change fac-
tor methodology. Then, a case study was designed in Suzhou, China.

2. Materials and methods

2.1. Description of optimization framework

The framework for determining the optimal layout of green-grey in-
frastructures under future scenarios is described in the flowchart shown
in Fig. 1. The SWMMmodel is established to quantify the performance
of various green-grey infrastructures solutions (Section 2.3). The
NSGA-II algorithm is integrated with SWMM so that it can (a) perturb
SWMM parameters, (b) run the SWMM executable, and (c) compute
the objective function using SWMMoutputs (Section 2.4). Furthermore,
future scenarios are developed based on predicted land use and rainfall
data (Section 2.5).

2.2. Study site description

The study site is in the north of Suzhou city, China with an area of
120 ha (Fig. 2). This site has a subtropical monsoon climate and the
rainy season lasting from April to September with an annual average
rainfall of 1100 mm, which has increased by 18% in the last three de-
cades due to climate change (Xu et al., 2019b). The land uses in the re-
gion in 2017/2030 are presented in Fig. 2(c). Land use in 2017 was
obtained from the analysis of the Institute of Urban Environment,
Chinese Academy of Sciences using satellite images. Land use in 2030
was based on the Regulatory Detailed Planning of Suzhou Central Dis-
trict (2030). In the following years, the study area has experienced a
certain level of land use change due to regional socio-economic devel-
opment. Surfacewater pollution has been anon-going concern in recent
years with most of the water samples not meeting the Class III standard
for surface water quality (GB3838-2002). Therefore, the region is se-
lected as the case study to demonstrate how the proposed framework
supports local stormwater management.

2.3. SWMM model development

2.3.1. Model setup
According to ground elevation and land use, the study area was di-

vided into 48 sub-catchments (Fig. 2(d)). The infiltration of water into
the soil was calculated using Horton's equation (Osman Akan, 1992).
In the water quality module, the exponential function was selected for
both the build-upmodel andwash-off model of COD (Chemical Oxygen
Demand), TN (Total Nitrogen), TP (Total Phosphorus) pollutants. Pollut-
ants' build-up and wash-off processes vary according to different land
use, so the pollutant-generating land use was further divided into
three types: roof, road, and green space. Detailed information of
model setup is provided in Supplementary Material (Section 1).

2.3.2. Calibration and validation
Since there is no rainfall runoff data monitored in the study area,

monitored data for model calibration and validation has been obtained
from Shantang street outfall in Suzhou urban district, which is the
nearest monitoring point to the study area (see Fig. 2(b)). They are
both located in the Suzhou area which means the climate, soil condi-
tions and underlying surface features are similar. So, there is little effect
on the site identification of uncertain parameters. In this study, the rain-
fall event on the 8th May 2015 was used for model calibration while



Fig. 1. Optimization framework for green-grey infrastructures layout.
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rainfall events on the 28th May 2015/15th June 2015/23rd July 2015
were used for model validation. The Nash–Sutcliffe efficiency (NSE)
was chosen to evaluate the simulation results for model calibration
Fig. 2. (a) Location of Suzhou in China; (b) location of study area and monitored point of runo
resentation of sub-catchments of the study area in SWMM.

3

and validation (Nash and Sutcliffe, 1970). According to the current as-
sessment standard for sponge city effects, the NSE of the model calibra-
tion and validation should not be less than 0.5 (MHURD, 2019). TheNSE
ff and pollutants; (c) the associate land use of study area (2017/2030); (d) schematic rep-
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values were ranged from 0.52 to 0.93, which indicates an acceptable
prediction accuracy. Detailed information of model calibration and val-
idation is provided in Supplementary Material (Section 2).

2.3.3. Grey-green infrastructures solutions
In the optimization process, many solutions representing

different combinations of the green and grey infrastructures will
be generated. Considering the requirements of regulation in the
study area, bio-retention and permeable pavement are adopted
as green infrastructure options. As the efficiency of green infra-
structures would be more obvious when multiple green infrastruc-
tures are combined, a linked pattern as depicted in Fig. 3(b) for
each sub-catchment was designed. The design parameters of LID
practices are set according to their construction drawing. To esti-
mate the life cycle cost for the green-grey infrastructures, the de-
tailed price information is provided in Supplementary Material
(Section 3).

2.4. Optimization tool

2.4.1. Mathematical definition of a multi-objective problem (MOP)

2.4.1.1. Decision variables. The scale of infrastructure is typically the
most important parameter affecting the cost and performance of
green and grey infrastructures (Di Matteo et al., 2017). More pre-
cisely, the decision variables for green infrastructures are the area
ratios of LID practice in certain types of land surface covers, includ-
ing the permeable pavement area ratios in road area (y1) and the
bio-retention area ratios in green space (y2) (see Fig. 3(b)). The de-
cision variables for grey infrastructures are the percentage enlarge
or decrease of a certain class of pipe diameter. According to the Na-
tional Guidance for Design of Outdoor Wastewater Engineering
(GB50014-2006), the enlarging or decreasing of pipe diameter is
generally using 100 mm or 50 mm as one level. Therefore, the
pipe diameter specification is discrete. Meanwhile, the existing
pipeline design basically meets the local drainage requirements,
and the adjacent pipe diameters are selected for upgrading or
downgrading options of a certain class pipe. For pipe k (k repre-
sents the index of pipe class, and the pipes are arranged in ascend-
ing order from class 1 to class 7 in diameter), xk3 of Lk becomes pipe
k+1, xk1 of Lk becomes pipe k-1, and xk2 of Lk remains unchanged
(Lk is the actual total length of pipe k in the study area; xki repre-
sent the changed percentage of pipe k) (see Fig. 3(a)). As there
are seven classes of pipe and two kinds of LID facilities, there are
23 decision variables in the optimization problem.
Fig. 3. Schematic of decision variables for green and grey infrastructures: (a) decision variable
area of roof in a sub-catchment; A2 is the area of road in a sub-catchment; A3 is the area of green
area ratio of bio-retention in green space.
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2.4.1.2. Objective functions. In order to measure environmental benefits,
the reductions of runoff volume and pollutant loads are the most intui-
tive indicators. Furthermore, life cycle cost (LCC)was used to determine
the economic costs of green-grey infrastructures which considers the
construction cost, and the operation & maintenance (O&M) cost (ISO,
2008). It is usually calculated by the discounted cash flow model
which is a discounted sum of expected future cost and has been used
as an economic indicator by many researchers (Bakhshipour et al.,
2019; Xu et al., 2019a).

In this study, we consider optimally place green-grey infrastructures
by applying three objective functions: (1) maximizing the reduction of
runoff volume (Eq. (1)); (2) maximizing the reduction of pollutant
loads which considered the geometric average of COD, TN, TP loads
(Eq. (2)); (3) minimizing the LCC of green-grey infrastructures
(Eqs. (3)–(7)).
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The objective functions are subject to the following constraints:

Radij , yj, xk1, xk2, xk3∈ 0, 1½ � ð8Þ
s for grey infrastructures; (b) decision variables for green infrastructures. Where, A1 is the
space in a sub-catchment; y1 is the area ratio of permeable pavement in the road; y2 is the
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∑
q

k¼1
lengthk ¼ lengthtotal ð9Þ

xk1 þ xk2 þ xk3 ¼ 1 ð10Þ

where, Runoff′ and Runoff are the runoff volume before and after placing
green-grey infrastructures, respectively. pollutant′ and pollutant are pol-
lutant loads before and after placing green-grey infrastructures, respec-
tively. Constructiongreen and Constructiongrey are the construction cost of
green and grey infrastructures; i is the index of a sub-catchment; j is the
index of a LID practice; ASCi is the area of sub-catchment i; Radij

is the
maximum area ratio of LID j in sub-catchment i; yj is the area ratio of
LID j; cgreenj

is the construction cost per unit of the LID j (USD/m2); dk
is the diameter of pipe class k；lengthk is the total length of pipe class
k；xk2 is the percentage of unchanged pipe k; xk1 is the percentage of
decreased pipe k; xk3 is the percentage of enlarged pipe k; cgreyk is the
construction cost per unit of the pipe k (USD/m); PVO&M is the present
value of green or grey infrastructures O&M cost; cO&M_greenj

is the O&M
cost per unit of the LID j (USD/m2); cO&M_greyk is the O&M cost per unit
of the pipe k (USD/m); r is the discount rate; Tgreenj

is the lifetime consid-
ered for the LID j; Tgreyk is the lifetime considered for the pipe class k.

2.4.2. Optimization algorithm
NSGA-II was selected as the optimization engine in this study for its

wide use in green infrastructures optimal design and efficiency when
dealing with complex, high nonlinearity, discrete optimization prob-
lems (Oraei Zare et al., 2012). Based on the principles of “natural selec-
tion” and “survival of the fittest”, the population quality is improved
through evolution until the convergence reaches a near-global opti-
mum, which also includes, escaping local optimum traps through the
preservation of diversity in the offspring population via iterative muta-
tion and crossover. Compared with the early genetic algorithm, NSGA-II
utilises fast non-dominated sorting and ranking selectionwith the elitist
crowded comparison operator to speed up the optimization process and
improve the solution quality. The entire optimization procedurewas au-
tomatically set up and run in the integrated platform of SWMM and
Python.

2.5. Future scenarios setup

Considering the joint pressure from both climate change and urban-
ization, eight combined scenarios (U0C0, U0C20, U0C25, U0C30, U30C0,
U30C20, U30C25, U30C30) were designed.

The urbanization scenarios include baseline scenario in (U0) 2017
and future scenario (U30) in 2030. Further details of land use changes
in each time period are summarized in Supplementary Material
(Table S6). The urbanization trend in the study area increases the
paved surface, street & transportation by 13.7% and 19.39% while de-
creasing the green space by 46.35% from 2017 to 2030.

The climate change scenarios including baseline scenario (C0), fu-
ture scenario 1 (C20), future scenario 2 (C25), future scenario 3 (C30)
in 2015, 2020, 2025, 2030, respectively. They were developed based
on the change factormethodology (CFM) andGCMs' precipitation prod-
ucts. GCMs is a weather generator for future climate estimation by
downscaling results from 17 GCMs (Jones and Thornton, 2013) for the
four Representative Concentration Pathway (RCP) scenarios (i.e., RCP
2.6, RCP 4.5, RCP 6.0, and RCP 8.5) (IPCC, 2007). Given specific longitude
and latitude coordinates, it can establish a random series of local daily
precipitation in the future. 17 GCMs were applied to obtain the ensem-
ble average, and RCP 6.0was used because it is an intermediate scenario
with the greatest possibility of happening (Liu et al., 2016a, 2016b). CFM
incorporates the future climate change predicted by GCMs model to
provide future rainfall data at local scale. The development process of
future rainfall events is described as follows:
5

(1) The present-day 2-hr rainfall eventwith return period (1-yr)was
designed based on the Chicago approach and the intensity-
duration-frequency curve in Suzhou, as follows:

q ¼ 3306:63 1þ 0:8201lgPð Þ
t þ 18:99ð Þ0:7735

ð11Þ

where q is rainfall intensity (L/s·ha); P is return period (year); t is rain-
fall duration (min); return period was set according to Suzhou's rainfall
and drainage system design guidelines.

(2) Daily precipitations (including 2015, 2020, 2025, 2030)were ob-
tained by GCMs weather generator.

(3) Change factors were calculated based on the ratios of the histor-
ical and future daily precipitations of GCMs projections
(Eq. (12)).

(4) 2-hr future rainfall events with 5-minute intervals were deter-
mined using multiplicative relationships to scale the present-
day 2-hr design rainfall with change factors (Eq. (13)).

CFi ¼ PFut
i =PHis

i ð12Þ

LPFut
i ¼ CFi � LPBasi ð13Þ

where CFi is the change factor for future climate scenario (i);
Pi
Fut and Pi

His are the future and baseline values of annual average precip-
itation for scenario (i); LPiFut and LPi

Bas are local-scaled future value and
corresponding baseline value of rainfall events. The change factors were
1.15, 1.17, 1.23 in 2020, 2025 and 2030, respectively.

3. Results and discussion

In this section, we firstly explore the climate change and urbaniza-
tion impact on hydrology and water quality in the study site without
considering green-grey infrastructures implementation (Section 3.1).
Then, we analyze the cost-effectiveness curves of multi-objective opti-
mization under different future scenarios (Section 3.2.1) and detailed
solutions which maintain the water quantity/quality of the U0C0 in fu-
ture scenarios (U0C20-U30C30) (Section 3.2.2). To explore the syner-
gistic benefits of green-grey infrastructures synchronous optimization,
runoff optimized solutions are further discussed (Section 3.3). At last,
the contributions of green and grey infrastructures to the runoff and
pollutants control are analyzed based on the optimized solutions with
maximum runoff/pollutants reductions (Section 3.4).

3.1. Impact of external uncertainties: climate change and urbanization

The results of climate change and urbanization impacts on runoff
volume and pollutant loads are summarized in SupplementaryMaterial
(Table S7). For all climate scenarios (C0/C20/C25/C30), runoff volume
and COD, TN, TP pollutant loads under U30 increase by 3.07%–5.87%,
2.27%–4.15%, 3.17%–3.72%, 2.50%–3.12%, respectively, compared to
those of U0. The increasing urban construction area in 2030, compared
to 2017, will result in more impervious areas and have a negative im-
pact on runoff quantity and quality, where similar findings were con-
cluded in previous research (Liu et al., 2016a, 2016b; Wang et al.,
2014). When we compare the results of different climate scenarios
under the same urbanization scenario, we can also find increasing run-
off volume and pollutant loads with higher rainfall. The finding is con-
sistent with other related studies (Pruski and Nearing, 2002, Wang
and Kalin, 2017).

Regarding the joint consequence of climate change and urbaniza-
tion, the impact on runoff and pollutants would be aggravated under
U30C30 which leads to the biggest challenge in achieving management
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plan goals. The results present the nonlinear response of the relations
among climate change, urbanization, and hydrology/water quality
performance.

Climate change tends to induce more dramatic changes in runoff/
pollutants than urbanization. The impact on runoff volume and pollut-
ant loads is more sensitive to the changes of rainfall intensity than
that of impervious surfaces. This finding is consistent with previous
studies on stormwater management (Fan and Shibata, 2015, Liu et al.,
2017). In the meantime, the average runoff growth rate in future sce-
narios is lower than that of pollutant loads, indicating that the external
uncertainties lead to greater impacts on water quality than hydrology.
This could be attributed to the increase of both runoff volume and pol-
lutant concentration resulting in the increase of pollutant loads, which
has been justified by other studies (Liu et al., 2016a, 2016b; Wang
et al., 2016).

3.2. Optimization results

3.2.1. Analysis of cost-effectiveness curves
The cost-effectiveness curves (i.e., runoff volume reduction versus

cost, pollutant loads reduction versus cost) under U0C0-U0C30 are
shown in Fig. 4. Each point represents a compromise solution between
the selected objectives. Decision-makers could choose oneoptimal solu-
tion from a range of potential solutions as well as include their prefer-
ences in the design process. Additionally, the Pareto front provides a
better understanding of all the objectives and visualizes the effective-
ness of each investment level.

By observing the trade-off curves, we find a convex trend that the
curve slopes transform from steeper to flatter. An obvious improvement
in runoff/pollutants reduction is observed in the beginning with an in-
creased cost. However, when the cost further increases after the turning
point, no considerable change in runoff/pollutants reduction occurs,
which can be explained by the limitation treatment capabilities of
green-grey infrastructure. The finding is similar to other studies on the
optimal placement of green infrastructures (Jia et al., 2012; Lee et al.,
2012; Xuet al., 2018). The trade-off curves provide valuable information
for decision-makers when identifying where investment in green-grey
infrastructures will begin to offer diminishing returns.

The results indicate that optimized green-grey infrastructures
solutions could result in potential reductions of 57.2%–71.3% and
65.7%–80.5% in runoff volume and pollutant loads, respectively, and
the corresponding cost is 1.84–3.81 million USD per km2. The results
elucidate that optimal solutions are sensitive to future scenarios. The
maximum runoff volume/pollutant load reduction decreases with the
increase of rainfall intensity and impervious area. For the same amount
of runoff volume and pollutant loads reduction, more expenditures will
be spent on green-grey infrastructures in future scenarios. Additionally,
urbanization has a greater influence on optimization results.
Fig. 4.Water quantity-cost trade-off and water qual
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It should be noted that in all future scenarios, runoff volume reduc-
tion is less than pollutant load reductions for the same cost. One reason
is that pollutants reduction contributed from green-grey infrastructures
is dependent on both runoff volume reduction and pollutant concentra-
tion reduction (Liu et al., 2016a, 2016b). Another reason is that runoff
volume reduction is severely limited by the poor hydraulic conditions
of soils.

3.2.2. Detailed optimization solutions considering environmental goals
Table 1 shows the results of maintaining the water quantity/quality

of U0C0 in future scenarios (U0C20-U30C30). If the reduction of the
pareto set is equal to the corresponding reduction in Table 1, it means
that the green-grey infrastructures solution can offset the effect of
climate change and urbanization in the future. It implies that investing
45.03–102.69/17.97–78.73 thousand USD per km2 can help the site
maintain the current hydrological/water quality conditions under
U0C20-U30C30. Such investment can be termed as “opportunity cost”
of robustness.

To maintain runoff volume/pollutant loads at the U0C0 level, fur-
ther reductions need to be attained with the increase of rainfall in-
tensity and impervious area. Thus, the corresponding costs are
higher due to additional green-grey infrastructures being needed.
The reductions needed to be attained under U0C20 are lower than
that under U30C0, which can be concluded that the challenge of rain-
fall intensity increases 15% is bigger than the land-use change from
2017 to 2030 on water quantity/quality. This result reflects the
need to consider the influence of external uncertainties on optimiza-
tion progress.

Under the same future scenario, an optimization solution that can
both achieve runoff volume and pollutant loads levels of U0C0 and
save the cost does not exist. For instance, to attain the runoff volume
and pollutant loads of U0C0 under U30C30, the pollutant loads opti-
mized solution cost less compared to runoff optimized solution. How-
ever, when applying pollutant loads optimized solution to the study
area, runoff volume is reduced by 9.06%, where 12.01% reduction is
needed. This is due to the reduction of pollutants needed to attain
U0C0 level being lower than that of runoff volume. However, this is dif-
ferent from the results in Liu et al. (2017), which found that runoff
volume optimized solutions can also reduce all pollutants to baseline
scenario level. This is mainly because the external uncertainties
affecting optimization varies from the land-use and climate conditions
in different sites. This result demonstrates that the consideration of
individual runoff and pollutant goals during operating the multi-
objective optimization is important in order to obtain optimized
solutions for each goal.

The changes in the composition of optimized solutions when the
pursued environmental goal is switched are analyzed. The optimal
area ratios of green infrastructures to attain runoff volumeand pollutant
ity-cost trade-off curves under future scenarios.



Table 1
Results of maintaining water quantity/quality of U0C0 in U0C20-U30C30.

Concerns Reductions needed to attain U0C0 level (%) Corresponding cost (based on optimization results) thousand USD per km2

U0C20 U0C25 U0C30 U30C0 U30C20 U30C25 U30C30 U0C20 U0C25 U0C30 U30C0 U30C20 U30C25 U30C30

Runoff volume 1.94% 4.92% 5.80% 3.07% 5.44% 10.05% 12.01% 45.03 57.31 70.52 53.25 59.83 83.14 102.69
Pollutant loads 1.68% 2.45% 3.18% 2.29% 4.54% 6.04% 7.46% 17.97 19.73 23.58 38.72 46.94 57.31 78.73
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loads of U0C0 in U0C20-U30C30 are shown in Fig. 5. The optimal solu-
tions for runoff/pollutants reductions can be achieved before the signif-
icant point of diminishing returns is reached. Permeable pavement is
implemented the most for all runoff optimized solutions because it is
the most cost-effective alternative to reduce runoff volume compared
to other alternatives. Besides, bio-retention is implemented the most
for pollutants optimized solutions because it is the most cost-effective
alternative to reduce pollutant loads. These results are compatible
with other recent studies, which found that permeable pavement is
the most cost-effective practice for runoff reduction, followed by bio-
retention (Chui et al., 2016). The area ratios of selected infrastructures
in each optimized solution are higher with increasing rainfall intensity
and impervious area due to the larger reductions of runoff volume and
pollutant loads that need to be attained.
Fig. 5. The green infrastructures area ratios of runoff and pollutants optimized solutions under U
axis represents green infrastructures considered; Y-axis represents percentages of green infras
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The explanation of the ranking difference of most implemented
infrastructures in different optimized solutions can be found in the dif-
ferent cost-effectiveness of alternatives regarding the different environ-
mental goals. As a result, optimization operated individually for each
environmental goal is preferable. Liu et al. (2016a, 2016b) found similar
results that the optimal application of green infrastructures varied with
different environmental goals. Inmulti-objective optimization progress,
optimization operators will identify the most cost-effective alternative
as the first option for implementation. Meanwhile, its area ratio con-
tinues to increase until it reaches a maximum. Then, the most cost-
effective solution among the residual alternatives becomes favourable
until its maximum area ratio is reached.

Obviously, these area ratiosmay be ideal valueswhichmeans the fa-
cilities can completely eliminate the negative effects of climate change
0C20-U30C30. (BR represents bio-retention; PP represents permeable pavement.) The X-
tructures implemented.



L. Leng, H. Jia, A.S. Chen et al. Science of the Total Environment 775 (2021) 145831
and urbanization when reaching the ratios. However, in actual urban
planning, we also need to consider other factors, such as human activity
or traffic. The actual implementation rate of facilities often deviates
from the ideal values, which is acceptable as we do not expect the run-
off/pollutant control rate of green infrastructures to reach 100%.

The original and optimized length of different pipe sizes for attaining
runoff volume and pollutant loads of U0C0 in U0C20-U30C30 are sum-
marized in Supplementary Material (Table S8). The optimal design of
green-grey infrastructures needs to increase the length of pipe DN300,
DN400, DN450, DN500 and DN600 and reduce the length of DN700
and DN800 compared to the original pipe, suggesting that the original
pipe size is too large to be cost-effective. DN500 is preferred for short-
duration rainfall. As a result, the weighted average pipe diameters will
decrease in future scenarios. Improper size of drainage systems for
their treatment volume is a general issue in rainfall runoff management
(USEPA, 2004).

The increase in rainfall intensity and impervious areawill not lead to
the decrease of weighted average pipe diameters. It can be concluded
that, to some extent, modifying pipe size and implementing additional
cost-effective green infrastructures are the “icing on the cake” solutions
for rainfall runoff management. However, the non-cost-effective grey
infrastructures tend to be necessarywith the increase of external uncer-
tainties. It reflects the reliability of grey infrastructures in response to
the external uncertainties. Furthermore, urban development tends to
result in less reduction of weighted average pipe diameter compared
with climate change which elucidates that the resilience of grey infra-
structures is more significant to cope with urbanization. Even though
it is hard achieved to change the design parameters of the existing
pipe networks, the results offer significant rational information for plan-
ners when planning green-grey infrastructures in the future.

3.3. Synergistic benefits of green-grey infrastructures synchronous
optimization

The simulation results under the baseline scenario, green
infrastructures only optimized scenario, grey infrastructures only opti-
mized scenario, and green-grey synchronous optimized scenario
under U0C20- U30C30 are summarized in Supplementary Material
(Table S9).

Grey optimized scenarios will increase runoff volume and COD, TN,
TP pollutant loads by 1.60%–4.02%, 3.50%–5.37%, 1.35%–2.58%, 1.64%–
4.29%, respectively, compared with baseline scenarios; While they can
reduce total cost by 3.78%–9.67%. The smaller size of grey infrastruc-
tures does bring higher runoff and pollutants, but its cost-effectiveness
is not lower than the baseline scenarios. The appropriate reduction of
pipe size provides more cost-effective solutions for rainfall runoff
management as the original grey infrastructures are large and not
cost-effective. The importance of grey infrastructures gradually be-
comes apparent in response to the external uncertainties. As in extreme
future scenarios, the maximum conveyance capacity of grey infrastruc-
tures is insufficient for rainfall runoff management if the pipe size is re-
duced too much. In this case, even if slightly higher cost-effectiveness is
obtainedwhen pipe size is reduced, the decrease in resilience seems not
worth it.

Although the cost of green-grey synchronous optimized scenarios is
lower than that of green optimized only scenarios by 1.69–
4.19 thousand USD per km2, the runoff/pollutants reductions of green-
grey synchronous optimized scenarios are 0.11%–5.24% higher than
that of green optimized only scenarios. This can be explained as the
reductions in pipe size nullified the increase in cost because of the im-
plementation of green infrastructures. The limited capacity of green in-
frastructures to improve water quantity/quality may also explain the
low effectiveness compared to green-grey infrastructures. The perfor-
mance and technical feasibility of green infrastructures vary under dif-
ferent conditions. Moreover, green infrastructures are more suitable
for small, frequent rainfall events and have low effectiveness under
8

heavy rainfall. Green-grey synchronous optimization has proved to
have advantages in minimizing runoff volume, pollutant loads, and
cost. It reveals the synergistic benefits between green and grey infra-
structures for rainfall runoff control. Retrofitting grey infrastructures
and green infrastructures optimally is more cost-effective than
retrofitting green infrastructure alone.

3.4. The contributions of green and grey infrastructures to water quantity
control and water quality improvement

Due to different physical mechanisms, the different parts of runoff
are treated separately by green and grey infrastructures. Grey infra-
structures capture runoff formed by precipitation but not drainage
which can be estimated as the contribution of grey infrastructures to
runoff control. When green infrastructures are implemented, they can
deal with runoff at the source which can be estimated as the contribu-
tion of green infrastructure to runoff control. Regarding pollutant
loads, grey infrastructure control the pollutants built up in the initial
but not drainage which can be estimated as the contribution of grey in-
frastructures to pollutants control. When green infrastructures are im-
plemented, they can result in fewer pollutant loads which can be
estimated as the contribution of green infrastructures to pollutants con-
trol. As shown in Fig. 6, detailed results are calculated by Eqs. (14)–(17).

Runoff control contributiongrey %ð Þ ¼ precipitation−runoff 0

precipitation−runoff
� 100% ð14Þ

Runoff control contributiongreen %ð Þ ¼ runoff 0−runoff
precipitation−runoff

� 100% ð15Þ

Pollutants control contributiongrey %ð Þ ¼ initial pollutants−pollutants0

initial pollutants−pollutant
� 100%

ð16Þ

Pollutants control contributiongreen %ð Þ ¼ pollutants0−pollutants
initial pollutants−pollutants

� 100%

ð17Þ

where, Runoff′ and Runoff are the runoff volume before and after
implementing green-grey infrastructures, respectively. pollutant′ and
pollutant are pollutant loads before and after implementing green-
grey infrastructure, respectively.

Green infrastructures can contribute to runoff/pollutants control by
50%–63%/62%–70%, while grey infrastructures can contribute to the re-
maining by 37%–50%/30%–38%. The contribution of green infrastruc-
tures to runoff and pollutants control is relatively higher than that of
grey infrastructures, which can be explained by the sustainability and
adaptability of green infrastructures. Grey infrastructures are expected
to have high efficiency in dealing with runoff than pollutants. Green
and grey infrastructures should be conducted together to achieve pro-
cess control and source control.

To handle increasing external uncertainties, however, it is more ef-
fective to the increase the contributions of grey infrastructures to runoff
and pollutants control. For instance, compared to U0C0 and U0C20, the
contributions of grey infrastructures to runoff and pollutants control in-
crease from 37% and 30% to 45% and 31%, respectively, when rainfall in-
tensity is increased by 15%. It demonstrates that the ability to cope with
the extreme situation of grey infrastructures gradually appear with the
enhancement of external uncertainties.

4. Conclusions

In this study, a framework was proposed to synchronously optimize
green-grey infrastructures under future climate change and urbaniza-
tion scenarios. The main conclusions are as follows:



Fig. 6. Runoff and pollutants control contributions of green and grey infrastructures under different urbanization and climate change scenarios.
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(1) It is more effective to optimize green-grey infrastructures syn-
chronously than to optimize green infrastructure optimal only.

(2) The external uncertainty will worsen the cost-effectiveness of
green-grey infrastructures optimization.

(3) The contributions of green infrastructures to runoff and pollut-
ants control are relatively higher than that of grey infrastruc-
tures. The ability to cope with extreme situations of grey
infrastructures becomes more and more important in response
to external uncertainties.

This research can serve as a guide for the planning of green-grey in-
frastructures in practical sponge cities projects. For future studies, more
types of green infrastructures (e.g., rain garden, green roof) and grey in-
frastructures (e.g., storage tank) should be considered. Besides, more
optimization objectives except for environmental goals and cost, such
as social and ecological benefit require future exploration to provide
comprehensive information.
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