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Abstract—TIt is particularly challenging for evolutionary algo-
rithms to quickly converge to the Pareto front in large-scale
multi-objective optimization. To tackle this problem, this paper
proposes a large-scale multi-objective evolutionary algorithm
assisted by some selected individuals generated by directed
sampling. At each generation, a set of individuals closer to
the ideal point are chosen for performing a directed sampling
in the decision space, and those non-dominated ones of the
sampled solutions are used to assist the reproduction to improve
the convergence in evolutionary large-scale multi-objective opti-
mization. In addition, elitist non-dominated sorting is adopted
complementarily for environmental selection with a reference
vector based method in order to maintain diversity of the
population. Our experimental results show that the proposed
algorithm is highly competitive on large-scale multi-objective
optimization test problems with up to 5000 decision variables
compared to five state-of-the-art multi-objective evolutionary
algorithms.

Index Terms—Evolutionary multi-objective optimization,
large-scale multi-objective problems, directed sampling, non-
dominated sorting, reference vectors.

I. INTRODUCTION

Large number of multi-objective evolutionary algorithms
A (MOEAs) [1]-[8] have been proposed in the past decades
for solving multi-objective optimization problems (MOPs).
They can roughly be divided into four classes [9], [10]: Pareto
dominance based MOEAs [11]-[22], decomposition based
MOEAs [23]-[28], performance indicator based MOEAs [29]-
[38], and finally those MOEAs that do not fall in the previous
three categories [39]-[42]. In recent years, most research on
MOEAs [7], [17]-[21], [28], [36], [39], [40], [43]-[47] has
focused on the scalability of the performance to the increase
in the number of objectives, and little attention has been
paid to the scalability of the performance in the decision
space. However, many real-world multi-objective optimization
problems may have hundreds or even thousands of decision
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variables, which are known as large-scale optimization prob-
lems [48]. For example, a flight safety system has over 1500
parameters [49], and in the search of optimal structure of
deep neural networks, the number of weight and structure
parameters dramatically increase as the number of hidden
nodes and the number of hidden layers increase [50], [51].

The performance of classic metaheuristic algorithms of-
ten deteriorates as the dimension of the decision space in-
creases [52], which is called curse of dimensionality [53].
Although large-scale single-objective optimization has been
a popular research topic for many years [54]-[58], research
on large-scale multi-objective optimization is still in its early
stage [52], [59]-[68]. Generally, existing approaches to large-
scale multi-objective problems (LSMOPs) can be roughly
classified into four categories:

1) Cooperative coevolution (CC) framework based

MOEAs. Antonio and Coello Coello applied a
differential evolution algorithm (GDE3) in the
cooperative  coevolution framework for solving

large-scale many-objective problems [59], and then
they further proposed to combine MOEA/D with
coevolutionary techniques for decomposition in both
objective and decision spaces [61]. Li et al. [64] also
proposed a cooperative coevolutionary algorithm, in
which a fast interdependency identification grouping
method was utilized, for large-scale multi-objective
problems.

2) Decision variable clustering based MOEAs. Ma et
al. [62] divided the decision variables into three groups
according to their properties related to convergence
and diversity, and proposed a multi-objective evolu-
tionary algorithm based on decision variable analyses
(MOEA/DVA). Zhang et al. [52] extended the idea
of MOEA/DVA [62] and proposed an evolutionary
algorithm for large-scale many-objective optimization
(LMEA) by dividing the decision variables more pre-
cisely and introducing different search and selection
strategies for different groups. Liu et al. [69] proposed to
group large-scale decision variables into two categories,
i.e., convergence-related and diversity-related variables.
Then principal components analysis (PCA) is performed
to reduce the dimension of the convergence-related vari-
ables, which will further be decomposed into a number
of sub-problems based on interdependence analysis for
optimization. Chen et al. also separated the variables
into convergence-related and diversity-related clusters,
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and proposed to optimize sub-problems in parallel [63]
and sequentially [70], respectively. Note, however, that
such algorithms often require a large number of fitness
evaluations to achieve adequately precise clustering of
the decision variables.

3) Problem transformation based MOEAs. Zille et al. [65]
proposed a framework for large-scale multi-objective
optimization (WOF) using a problem transformation
technique to reduce the search space, which can serve
as a genetic method for any population-based meta-
heuristic algorithms. Following that, He et al. [66] im-
plemented a dimension reduction method by optimizing
a set of weight variables along different directions in
the decision space. Most recently, He et al. [71] fur-
ther proposed an adaptive offspring generation method
for large-scale optimization problems. Liu et al. [72]
proposed to use a random dynamic grouping instead
of ordered grouping to improve the performance of the
WOF framework [65].

4) New learning strategies based MOEAs. Not so many
methods falling in this category have been proposed.
Tian et al. [67] proposed a modified competitive
swarm optimizer for large-scale multi-objective prob-
lems, called LMOCSO, by generating promising off-
spring to accelerate the search of the global optimum.
Zhang et al. [73] utilized the information of the previous
positions of the population, and built an information
feedback model (IFM) to generate an offspring popu-
lation.

Although existing large-scale optimization algorithms have
showed promising performances, each category of the algo-
rithms has its own drawback. For example, some cooperative
coevolution and clustering techniques based MOEAs need to
classify the decision variables into a set of groups, which will
cost a great number of objective evaluations in order to detect
interactive decision variables. Furthermore, the performance
of the CC framework based MOEAs will seriously deteriorate
on inappropriate groupings. In addition, the assumption of
separability between groups of decision variables does not
always hold. Therefore, the grouping strategies, such as linear
grouping, random grouping, or ordered grouping, which do not
cost additional objective evaluations to detect interactive deci-
sion variables, are not applicable for solving large-scale multi-
objective optimization problems with interactions between all
decision variables. The new learning strategy based MOEAs
also need to cost a large number of evaluations to obtain better
solutions, for example, 15000 x D evaluations are required in
LMOCSO [67] to obtain better solutions. The problem trans-
formation based MOEAs are very competitive in enhancing the
convergence capability for large-scale optimization, however,
they are susceptible to local optima, as pointed out in [65], [66]
and [67]. Moreover, the grouping scheme severely restricts the
flexibility of the method given in [65].

Based on the above discussions, we can see that it is vital for
an MOEA to be able to search in the right direction to achieve
a set of good solutions with a limited computational budget for
large-scale optimization problems. For this purpose, this work

proposes a large-scale evolutionary multi-objective algorithm
assisted by directed sampling, termed LMOEA-DS for short.
The main idea is to estimate the promising search directions
in the decision space, which is similar to the idea presented in
[66]. Different to the method in [66] that uses non-dominated
solutions of the current parent population to generate search
directions in the decision space, in this work, by contrast,
we use solutions closest to the ideal point in subpopulations
divided based on a set of reference vectors. Furthermore,
promising solutions are generated by random sampling along
the estimated search directions, instead of performing an
optimization as done in [66]. The non-dominated solutions
of the sampled solutions are then used for reproduction.
This above process of identifying promising solutions using
directed sampling is repeated in each generation. In [66], by
contrast, the promising solutions are used to seed the initial
population and then an arbitrary existing MOEA can be used
to search for a set of non-dominated solutions. The main
contributions of this work are summarized as follows.

1) At each generation of the evolutionary search, a directed
sampling strategy is adopted for generating promising
solutions to guide the search. For this purpose, a set of
reference vectors are adopted to group the population
into a number of clusters. Then the individual having
the minimum distance to the ideal point in each cluster
will be used to generate two promising search directions
in the decision space. A certain number of solutions are
then randomly sampled along the two search directions.
After that, the sampled solutions are combined and the
non-dominated solutions among them are chosen for
reproduction. These non-dominated solutions are called
guiding solutions.

2) To strike a balance between convergence and diversity,
two reproduction processes, each of which is followed
by the proposed environmental selection, are introduced.
In the first reproduction process, the guiding solutions
are used to perform crossover with the current parent in-
dividuals, followed by the second reproduction, in which
no guiding solutions will take part in the generation of
offspring individuals.

3) Reference vectors and elitist non-dominated sorting are
complementarily used in the environmental selection. By
default, a set of reference vectors is used to decompose
the MOP and both the Euclidean distance and angle-
based metric are employed for selection for each sub-
problem. However, in case the population diversity is
lost, i.e., when a large number of reference vectors are
empty, the elitist non-dominated sorting strategy [12]
will replace the reference based selection, aiming to
promote the diversity of the population.

Section II describes the main framework and details of
the proposed LMOEA-DS algorithm. In Section III, the test
problems used in our experiments, the performance indicator
for measuring the performance of the obtained non-dominated
solution sets are presented, followed by a description of the
experimental settings and the comparative results. Finally, con-
clusions are drawn and future work is outlined in Section IV.
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Fig. 1. A diagram of the overall framework of the proposed LMOEA-DS,
which consists of three main components, namely generation of the guiding
solutions, double reproduction, and complementary environmental selection.

II. THE PROPOSED ALGORITHM

Without loss of generality, a multi-objective minimization
problem can be formulated as follows:

F(X) = (fl(x)’ f2(x)’ s '7fm(x))
x € RP (L

man
s.t.

where m is the number of objectives and x = (21, 22,...,Zp)
is the decision vector, where D is the dimension of the
decision space. In this work, we consider bi- and three-
objective problems with a large number of decision variables,
which may range from hundreds to thousands [66].

The search space exponentially increases when the number
of decision variables increases, dramatically worsening the
search performance, in particular the convergence capability
of optimization algorithms. In order to address this issue, we
propose a directed sampling strategy in combination with a
double-reproduction strategy to accelerate the convergence,
together with a new environmental selection method to pro-
mote population diversity. Fig. 1 depicts the flowchart of
the overall framework of the proposed LMOEA-DS, which
is composed of three main components: identification of
the guiding solutions, guided double reproduction, and com-
plementary environmental selection. Note that two comple-
mentary environmental selection strategies are provided to
accelerate convergence while maintaining the diversity of the
population. From Fig. 1, we can see that guiding solutions
are embedded in the reproduction process in each generation,
which is substantially different from [66], where the promising
solutions found are used only for population initialization.
In addition, the method for identifying the promising search
directions is also different. In the following, we will detail the
three main components of LMOEA-DS.

A. Initialization

The population is randomly initialized, like in most
MOEAs. In addition, two sets of reference vectors W and W'

are created, which partition the objective space into sub-spaces
for environmental selection and for generation of the search
directions, respectively. Note that the number of reference
vectors for generating the search directions should usually
be considerably smaller than that for environmental selection
to reduce additional computational costs introduced by the
directed sampling. Suppose that N,/ solutions will be selected
for generating the search directions, we simply group W
reference vectors for environmental selection into N,/ —m
clusters using k-means [74] and then add the m boundary
reference vectors in W.

B. Directed Sampling and Generation of Guiding Solutions

Guiding solutions are meant to assist the MOEA to find the
right search direction to accelerate the convergence. Here, we
hypothesize that solutions that are closest to the ideal point in
the current population are able to provide information about
the desired search directions. However, it may be harmful
to the diversity if only the closest solution for the whole
population is used to guide the search. Therefore, we divide
the overall search space into a number of subspaces using
the reference vector set W’. The method for determining
the search directions and guiding solutions will be elaborated
below.

1) Identification of Search Directions: Recall that the
search is performed in the decision space and consequently,
we aim to identify promising search directions in the decision
space. To this end, we identify the solutions closest to the
ideal point of the objective space at first and then define the
promising search directions by setting out a line from the
lower or upper bound points to these solutions in the decision
space. Note that the objective of using two directions is to
increase the chance for the direction vectors to intersect with
the Pareto set in the decision space. The experimental results of
the methods that only use the direction setting out from L and
that only use the direction setting out from U, respectively,
are given and analyzed in Section A of the Supplementary
material. As previously mentioned, we firstly group the current
parent population into N,,» subpopulations by assigning each
solution to its closest reference vector of W'. Then, for
each reference vector w;, where ¢ = 1,2, ..., Ny, to which
at least one solution is assigned, the solution that has the
minimum projected distance to the ideal point is chosen to
define two search directions. To illustrate how the search
directions are defined, an example is given in Fig. 2(a), where
the current population has six solutions denoted by black dots,
X1,X2,...,X¢ and W' has four reference vectors. The blue
dotted ellipse in Fig. 2(a) shows that the solutions in each
ellipse are assigned to the same reference vector. The green
dotted line indicates the distance of a solution to the origin
along the related reference vector in the objective space. Note
that reference vector w, has no solutions assigned to it in
this example. To address this issue, the solution, which is
closest to the reference vector wé among all individuals that
have not been chosen to define the search directions, will be
assigned to Wé so that each reference vector has at least one
solution assigned to. For example, in Fig. 2(a), vector wé has
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no solutions assigned to and x4 is the closest solution to it
among X3, x4 and x5, which are not the closest solutions in
their own clusters. In this case, solution x4, will be chosen to
define the search directions for vector wi.

As a result, 2 x N, search directions, namely
vhl ywt o oybi ywi o ybNer v Ne o are  defined,
where vb' i = 1,2,... Ny and v¥*' i = 1,2,..., Ny

represent the search directions setting out from the lower
and upper bound points L and U, respectively. Note that the
search direction is always a line setting out from the lower or
upper boundary point through the chosen solutions regardless
the dimension of the search space, which can be defined as
follows:

vhi = x; — L
vt = x; —U 2)
In Eq. (2), x; represents the solution that has the minimum
distance to the ideal point along the reference vector w; for
the i-th vector. For example in Fig. 2(b), v/*! and v*! are two
promising search directions defined by solution x; in a three-
dimensional decision space. The blue surface is the true PS
and two red solid triangles are the interaction points between
the two direction vectors and the PS in a three-dimensional
decision space.

Algorithm 1 presents the pseudocode of the method for
defining the search directions. The angles between each indi-
vidual 4,4 = 1,2,...,|P| of the current parent population and
all reference vectors in W~ will be calculated, and individual
1 will be assigned to its closest reference vector that has the
minimal angle (lines 2-5). Then for each reference vector w’;
that has been assigned at least one individual, the solution
having the minimum projected distance to the ideal point in
the objective space will be stored in set S (lines 6-11). For
a reference vector without any individual being assigned to,
its closest individual assigned to another reference vector but
is not included in S, will be assigned to this reference vector
and then is stored in S (lines 12-17). As a result, a total of
N, solutions will be chosen and stored in S, each of which
will be used for defining two search directions.

2) Directed solution sampling : Given a set of search di-
rections V = {vbl vl ybiywi o ybNe g Ne
we are now going to generate a set of solutions along each of
the search directions to identify solutions that can accelerate
convergence. Each search direction is a line setting out from
the lower or upper boundary point, and consequently there
will be three different situations for the positional relationship
between the line and the Pareto set, i.e., no intersection, one
intersection, or more than one intersection. Fig. 3 gives an
example of a two-dimensional problem to show three cases.
Theoretically, we can use an optimization algorithm to find
the most promising solution along each search direction. For
example, in Figs. 3(a) and 3(b), we can utilize an optimization
method to find a solution that is closest to the Pareto set
on each search direction so that it can be used to guide
offspring generation in LMOEA-DS. However, when there is
more than one solution on a search direction, such as the
case in Fig. 3(c), a search algorithm may fail to find the

Algorithm 1: Identification of promising search direc-
tions.
Input:
W': a set of reference vectors for identifying search
directions;
P,: the current parent population of LMOEA-DS;
N, : the number of solutions provided by
LMOEA-DS;
Output:
V: a set of search directions;
1S =0
2 for i =1:|P] do
3 Calculate the angle between individual ¢ and each
reference vector of Wl;
4 Assign individual ¢ to its closest reference vector
that has the minimum angle between this

individual and all reference vectors;
5 end for

6 fori=1: N, do

7 if the reference vector w; has been assigned at
least one individual then

8 Calculate the distance of each individual
assigned this reference vector to the ideal
point along its reference vector;

9 Select the individual that has the minimum

distance and saved to the set S;
10 end if

11 end for

12 fori=1: N, do

13 if the reference vector W; has not been assigned
any individual then

14 Sort the individuals of the population except
those in S in an ascending order according to
the angles to the reference vector w;;

15 Select the first individual to be saved to S;
16 end if
17 end for

18 Define two search directions according to Eq. (2) for
each individual in the set .S;
19 Output the search directions;

most promising guiding solutions it can easily end up with
one solution that is closet to initial search point. Therefore, in
this work, we decide to randomly sample multiple solutions
along the search directions and then find the non-dominated
solutions from all sampled solutions. The benefit of directed
sampling over optimization is that directed sampling is able to
maintain a higher degree of diversity of the guiding solutions
for speeding up the convergence of LMOEA-DS.

Assume solutions xé.” and x,”" are generated along the
search directions v** and v%?, respectively, which can be

formulated as follows:
L
Lyi

Li _
x; =L+s; -||Vl’i|

vu,i

U, u,t

3)
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Fig. 2. (a) Solution selection of a solution for each reference vector that has the minimum projected distance to the ideal point in the objective space, and (b)
define two promising search directions based on the selected solution as well as the lower and upper bound solutions in the decision space. (¢) An illustration
of repairing randomly sampled infeasible solutions, in which any decision variables that exceed the upper or lower bound are projected back to the feasible

solutions.
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(b) One solution.

(c) More than one solutions.

Fig. 3. Three cases of the intersection between a search direction vb1 and the PS. (a) No solution on the search direction is in the Pareto set; (b) One and
only one solution on the search direction is in the Pareto set; and (c) More than one solutions on the search direction are in the Pareto set.

1 i . . .
“and s;" are non-negative coefficients that determine

where s/

which solutions along the directions v!»* and v, respectively,
will be generated, j and k represent the j- and k-th sampling
on vl and v, respectively. Note that all solutions generated
along these two directions are bounded by ||U —L||, where ||-||
is the Euclidean distance. In order to ensure the diversity of
the generated solutions, the value of s;’l and s, are random
numbers uniformly distributed in the interval [0, ||[U — L||].
The influence of the upper bound of the coefficient on the
performance of the proposed algorithm is analyzed in Section
B of the Supplementary material.

Note however, that some solutions generated by the sampled
coefficients will be outside the upper and lower bounds using
the ||U—L|| defined above. To tackle this problem, all decision
variables whose values are outside the lower or upper bound
are projected back to the feasible region. Fig. 2(c) gives
an illustrative example showing how two solutions generated
outside the lower and upper bounds, respectively, are projected
back to the feasible region. In Fig. 2(c), sé’l and sZ’l are
two coefficients randomly sampled between [0, ||U — L],
resulting two solutions that are outside the feasible region.
More specifically, solution Xé-’l exceeds the upper bound of x;
and solution x}j’l exceeds the lower bound of z5. Therefore,
as shown in Fig. 2(c), solutions xéz and xZ’l will be projected

to points x;» and x}c, respectively, in the following way:
’ SRR
z; 4 = min{z};, Ua}
“4)

where 7 indicates the ¢-th reference vector, j and %k represent
the j- and k-th individuals sampled on the search directions
vh? and v*?, respectively, and d = 1,2, ..., D is d-th decision
variable.

3) Generation of guiding solutions: As described above, a
number of solutions will be generated along the two search
directions for each reference vector by randomly generating a
number of coefficients uniformly distributed between 0 and
lU — L. Assume N, solutions will be sampled for each
search direction of each vector, then altogether 2 X Ng X N,
solutions will be sampled in total. These solutions are put
together and non-dominated sorting is performed to find out
the non-dominated solutions. These non-dominated solutions
stored in archive S will be eventually used as the guiding
solutions in the reproduction of the LMOEA-DS for speeding
up the convergence.

x;€7d = max{x}::fj, L4}

C. Double Reproduction and Complementary Environmental
Selection

In the proposed method, the guiding solutions are used in
the reproduction of LMOEA-DS so as to speed up the conver-
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gence. However, it is often important in an MOEA to maintain
a good balance between convergence and diversity. For this
reason, a double reproduction process and a complementary
environmental selection strategy are introduced in LMOEA-
DS, the details of which are described in the following.

In the first reproduction, each individual in the parent
population P, will be selected to do a crossover with a
randomly selected guiding solution, thereby generating |P|
candidate solutions, where |P;| is the population size. A
mutation operator will further be performed on these solu-
tions to get intermediate offspring population O;. P; is then
combined with O} and the guiding solution set S¢ to form a
combined population C; = P; U O; U Sg, on which the first
environmental selection is applied, resulting in an intermediate
parent population P/. The environmental selection applied
here is a complementary selection strategy, which is to be
detailed later on. Once the first environmental selection is
conducted, a second reproduction operation is implemented
by performing crossover on the intermediate parent population
P/ and mutation sequentially to produce the offspring O;, and
finally the parent population P, ; for the next generation will
be obtained by performing the same environmental selection
on the combined population C; = P/ U O;.

The pseudocode of the environmental selection adopted in
this work is given in Algorithm 2. From Algorithm 2, we can
see that the environmental selection strategy complementarily
uses the decomposition based method (lines 4-7) and the
dominance based method (lines 10-12). The objective values
of each individual in the combined population C; will be
normalized at first and assigned to their closest reference
vector for decomposition based selection. The decomposition
based environmental selection will be utilized if the number
of reference vectors that have been assigned at least one
solution to is not less than a threshold N.. Otherwise the
elitist non-dominated sorting proposed in NSGA-II [12] will
be employed for environmental selection. The complementary
selection strategy ensures that the number of selected offspring
will not be too small, and therefore a certain degree of
population diversity can be maintained.

The decomposition based selection strategy is performed
according to the performance measure described in Eq. (5):

cosb; ;
w; = 050 5
i a ®)
where cost; ; = % represents the cosine value of

the angle 0; ; between individual ¢ and its associated reference
vector w;, and d; is the Euclidean distance between individual
1 and the ideal point of the objective space. The dominance
based selection method is the same as the one presented in
[12]. Non-dominated sorting is performed on the combined
population so that a front number is assigned to each solution.
Then a crowding distance is calculated for all solutions having
the same front number. All solutions are ranked according to
their front number in an ascending order and solutions having
the same front number are ranked according to their crowding
distance in a descending order. A truncation selection is then
performed to select /N best solutions. The reader is referred
to [12] for more details.

Algorithm 2: Complementary Environmental Selec-
tion
Input:
C} in the first selection and C} in the second
selection;
‘W: a set of reference vectors;
N the size of initial population for LMOEA-DS;
N¢: the threshold to determine which method is
used in the environmental selection;
Output:
P, 11: a parent population for the next generation
1 Normalization of the objective values of the combined
population;
2 Assign each individual in the combined population to
its closest reference vectors in W;
3 if the number of reference vectors that have been
assigned to at least one individual is not less than N,
then

4 for each reference vector w; do

5 Calculate the performance ¥ using Eq. (5) for
each individual assigned to w;

6 Select the individual with the best performance

among all individuals assigned to w; as one

individual in the next parent population P;
7 end for

end if

9 else

10 Non-dominated sorting is performed on the
combined population;

1 Select individuals layer by layer until reaching the
L-th layer that the total number of selected
individuals will exceed NV if all individuals at this
layer is added;

12 Calculate the crowding degree of each individual at
L-th layer and select individuals in an descending
order on the crowding degree until the total

number of individuals reaches NV;
13 end if

*®

III. EXPERIMENTAL STUDIES

To investigate the performance of the proposed method, a set
of empirical studies are conducted on nine large-scale multi-
objective benchmark problems, namely LSMOP1-9 [75], with
500, 1000, 2000 and 5000 decision variables, respectively. The
characteristics of the nine test problems are given in Table I.
A commonly used performance indicator, i.e., the inverted
generational distance (IGD) [76], is adopted to assess the
quality of the solution sets obtained by the algorithms, since
IGD is able to account for both accuracy and diversity of a
solution set in approximating the true Pareto front [77]. Given
a set of solutions P, the IGD value is calculated as follows:

Zx*ep* d(x*,P)
L
where P* is a set of uniformly distributed reference points,

d(x*,P) is the minimum Euclidean distance between a ref-
erence solution x* in P* and all solutions in P. |P*| is the

IGD(P,P*) =

(6)
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Fig. 4. The parameter analysis of the clustering number N/

TABLE I

CHARACTERISTICS OF LSMOP [75] TEST PROBLEMS

Problem ' Characteristics _
Modality Shape Separability

LSMOP1 Unimodal Linear Fully Separable
LSMOP2 Mixed Linear Partially Separable
LSMOP3 | Multi-modal Linear Mixed
LSMOP4 Mixed Linear Mixed
LSMOP5 Unimodal Convex Fully Separable
LSMOP6 Mixed Convex Partially Separable
LSMOP7 | Multi-modal Convex Mixed
LSMOP8 Mixed Convex Mixed
LSMOP9 Mixed Disconnected Fully Separable

size of P*. Note that the lower the IGD value is, the better
the quality of the obtained optimal solutions.

In the remainder of this section, we will first describe the
settings used in the experiments. Then some empirical analysis
on the contributions of different components in LMOEA-DS
are given. Finally, the method is compared to five state-of-
the-art algorithms on nine bi- and three-dimensional LSMOPs
with up to 5000 decision variables.

A. Experimental settings

Each algorithm under comparison is independently run 20
times on each test instance, and the terminal condition, i.e., the
allowed maximum number of objective evaluations (denoted
as F'Emax), is set to 80000. To calculate the IGD value of
the solution set obtained by each algorithm, 10000 uniformly
distributed reference points are sampled on the Pareto front of
each test problem [39], which is the same as given in [78].
The Wilcoxon rank-sum test [79] with Bonferroni correction
is applied at a significance level of 0.05 to assess whether
the performance of a solution set obtained by one of the two
compared algorithms is statistically different to another [44],
[80]. Symbols ‘+’, &’ and ‘—’ indicate that the results
obtained by the proposed LMOEA-DS is statistically better
than, comparable to, or worse than the compared algorithm,
respectively.

In our method, a real-coded genetic algorithm (GA) is
adopted to optimize the large-scale multi-objective problem.
The initial population size of the GA is set to N = 153. The
simulated binary crossover (SBX) [1] and polynomial mutation
(PM) [1], [81] are used as the reproduction operators. For the
SBX, the distribution index 7). and the crossover probability

pe are set to 20 and 0.9, respectively. The distribution index
Nm and mutation probability p,, for the PM are set to 20
and 1/D, respectively, where D is the number of decision
variables. The number of solutions to be randomly generated
along each search direction is set to 30. The threshold N, is
set to 2N/3 to determine which selection strategy is used in
the environmental selection.

Note that the number of clusters used to cluster the reference
vectors W plays an important role in the proposed method.
The larger the cluster number is, the more search directions
will be defined and consequently, a larger number of objective
evaluations will be consumed. Therefore, we conduct some
pilot studies with different settings for the number of clusters
in order to find out a proper setting of this parameter. Fig. 4
gives the mean IGD values of the solution sets obtained by
LMOEA-DS on 20 independently runs using different cluster
numbers on LSMOP1, LSMOP4 and LSMOP7 with up to
5000 decision variables. From Fig. 4, we can see that LMOEA-
DS can obtain better results when the number of clusters is not
more than M + 15, and there is no clear differences when the
cluster number is between M + 5 and M + 15. Thus, M + 10
is adopted in all experiments in the subsequent comparative
studies.

The parameter settings used in all compared algorithms are
the same to those given in their papers except that for WOF-
NSGA-II [65], the number of evaluations are set to 800 and
400, respectively, for the optimization of the original problem
and of each transformed problem to meet the maximum
number of objective evaluations.

B. Analysis of the effects of the individual components

In this section, we conduct a set of experiments on nine
LSMOP test problems given in Table I with 500, 1000, 2000,
5000 dimensions to show the efficiency and effectiveness of
different components designed for LMOEA-DS.

1) The effects of the directed sampling method: In our
method, a number of solutions will be randomly generated
along two defined search directions for each reference vector.
The non-dominated solutions in the set of the randomly
solutions will be used as the guiding solutions to accelerate
the convergence to the Pareto front. In order to examine the
effectiveness of the directed sampling strategy, we compare
the directed sampling (DS) method with one of its variants,
called DS-inbound, and the method proposed in LSMOF [66],



JOURNAL OF KX CLASS FILES, VOL. XX, NO. XX, MARCH 2021

called hypervolume optimization (HO), respectively, on three-
objective LSMOP test problems with 500, 1000, 2000 and
5000 decision variables. The main difference between DS
and DS-inbound lies in their repairing strategy for handling
infeasible solutions generated by the directed sampling. In
DS-inbound, we first determine the bound along the given
search direction, and then uniformly sample solutions within
the bound. Different to random sampling along the search
direction, HO formulates a single-objective optimization prob-
lem to obtain a set of guiding solutions. The optimization
problem aims to optimize the coefficients for all defined
search directions to maximize the hypervolume (HV) of the
solutions set generated by the optimized coefficients. In order
to make a fair comparison, the population is set to 10 and
the optimization is conducted for two generations so that the
total number of fitness evaluations consumed by HO, DS and
DS-inbound is same at each generation.

Tables II and III present the statistical results on nine
LSMOP test problems with up to 5000 dimensions ob-
tained by the proposed LMOEA-DS, LMOEA-DS-inbound
and LMOEA-HO, respectively. From Table II, we can see
that compared to LMOEA-DS-inbound, in which all solutions
are limited within the bound along the search direction, the
proposed method can obtain better or comparable results on
all 36 problems except LSMOP9 of dimension 5000. The
results show that the method adopted in LMOEA-DS to repair
infeasible solutions is more effective. Compared to LMOEA-
HO, we can see that LMOEA-DS is worse only on LSMOP7
with 2000 and 5000 decision variables. Based on the results
in both Tables II and III, we can conclude that the proposed
DS is effective for finding guiding solutions.

2) The effectiveness of double regeneration: In order to
evaluate the performance of the double reproduction strategy,
we compare it with a variant with the first reproduction opera-
tion only, which is denoted as LMOEA-DS-one. Table IV lists
the statistical results obtained by LMOEA-DS and LMOEA-
DS-one on LSMOP1, LSMOP4 and LSMOP7 with up to
5000 dimensions, which are unimodal, mixed, and multi-
model problems, respectively. From Table IV, we can see
that LMOEA-DS wins on 7/12 problems and loses only on
2/12 problems compared to the LMOEA-DS-one, indicating
that that the second reproduction is helpful in improving the
quality of the obtained solution set. Furthermore, the IGD
results obtained by LMOEA-DS-one and LMOEA-DS on all
three-objective LSMOPI1-9 test problems are given in Table
IIT of the Supplementary material.

3) The effects of complementary environmental selection:
The complementary environmental selection strategy adopted
in our work aims to ensure that a sufficient number of individ-
uals will be kept in the parent population so that a high degree
of diversity of the next parent population will be maintained.
In order to verify the effectiveness of the complementary
environmental selection, we compare it with two LMOEA-DS
variants, one utilizing the decomposition based selection only
and the other using the non-dominated sorting based selec-
tion only, which are denoted as LMOEA-DS-decomposition,
LMOEA-DS-domination, respectively. The statistical results
of LMOEA-DS-decomposition, LMOEA-DS-domination and

TABLE I

THE STATISTICAL RESULTS (MEDIAN AND MEDIAN ABSOLUTE
DEVIATION) OBTAINED BY LMOEA-DS AND LMOEA-DS-INBOUND ON
THREE-OBJECTIVE LSMOP TEST PROBLEMS WITH 500, 1000, 2000 AND

5000 DIMENSIONS. THE BEST MEDIAN RESULT IN EACH ROW IS

HIGHLIGHTED.

Problem D

LMOEA-DS-inbound

LMOEA-DS

500

6.4115e-01(1.99e-02) [+]

4.5498e-01(2.41e-02)

1000

6.8246e-01(4.13e-02) [+]

4.7643e-01(4.11e-02)

LSMOP! 5009

7.3085e-01(5.18e-02) [+]

4.7684e-01(8.15e-02)

5000

7.4239e-01(2.10e-02) [+]

5.5356e-01(8.04e-02)

500

6.8072e-02(8.28e-03) [+]

4.4929e-02(8.38e-04)

1000

4.5114e-02(7.68e-03) [+]

3.8613e-02(7.89¢-04)

3.6419e-02(1.58e-03) [+]

3.4450e-02(8.04¢e-04)

5000

3.4356e-02(6.10e-04) [+]

3.3239e-02(9.80e-04)

500

8.6056e-01(4.53e-05) [+]

8.6048e-01(3.62e-03)

1000

8.6059e-01(8.34e-01) [+]

8.6049e-01(1.21e-03)

LSMOP3 5009

8.6062e-01(2.51e-03) [~]

8.6057e-01(3.11e-04)

5000

8.6088e-01(1.71e-03) [+]

8.6064e-01(1.45¢-03)

500

1.4157e-01(3.21e-03) [+]

1.0818e-01(1.78e-03)

1000

9.3838e-02(3.94e-03) [+]

6.8001e-02(8.82e-04)

LSMOP4 5000

6.5975e-02(6.85e-03) [+]

4.8670e-02(9.49e-04)

5000

3.8798e-02(2.61e-03) [+]

3.7368e-02(1.04e-03)

500

9.7699¢-01(1.80e+00) [+]

5.3450e-01(1.73e-02)

1000

8.5876e-01(1.18e+00) [+]

5.3833e-01(1.24e-02)

9.0060e-01(1.20e+00) [+]

5.3963e-01(1.66e-03)

5000

1.6300e+00(7.42e-01) [+]

5.3883e-01(1.61e-02)

500

1.1803e+00(6.02e+03) [+]

7.6982e-01(2.93e-02)

1000

1.5130e+00(4.13e+03) [+]

7.6694¢-01(2.70e-02)

1.4335e+00(1.65e+03) [+]

7.6152e-01(2.72¢-02)

5000

1.6980e+00(7.28e+02) [+]

7.4373e-01(2.71e-02)

500

1.0084e+00(1.07e+04) [+]

8.8589e-01(4.07e-03)

1000

9.2927e-01(6.15e+03) [+]

8.5813e-01(1.55e-03)

LSMOP7 1000

9.3152e-01(1.05e+04) [+]

8.4561e-01(5.58¢-04)

5000

9.1965e-01(1.65e+03) [+]

8.3922e-01(1.76e-03)

500

9.6354e-01(3.98e+02) [+]

2.9319e-01(4.09e-02)

1000

1.4595e+00(2.28e+00) [+]

2.1473e-01(2.97e-02)

LSMOP8 5009

1.4905e+00(5.28e-01) [+]

2.2651e-01(1.29e-02)

5000

1.7374e+00(4.62e-01) [+]

2.1994e-01(1.67e-02)

500

5.8796e-01(8.04e-03) [~7]

5.8575e-01(1.18e-03)

1000

5.8680e-01(6.59e-03) [+]

5.8175e-01(1.28e-03)

5.8292e-01(1.24e-02) [~]

5.8036e-01(1.57e-03)

5000

5.5922e-01(1.22e-02) [-]

5.7991e-01(1.84e-03)

32/3/1
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TABLE III

THE STATISTICAL RESULTS (MEDIAN AND MEDIAN ABSOLUTE
DEVIATION) OBTAINED BY LMOEA-DS AND LMOEA-HO oN

THREE-OBJECTIVE LSMOP TEST PROBLEMS WITH 500, 1000, 2000 AND

5000 DIMENSIONS. THE BEST MEDIAN RESULT IN EACH ROW IS

TABLE IV

THE STATISTICAL RESULTS (MEDIAN AND MEDIAN ABSOLUTE
DEVIATION) OBTAINED BY LMOEA-DS AND LMOEA-DS-ONE ON
THREE-OBJECTIVE LSMOP1, LSMOP4 AND LSMOP7 wiTH 500, 1000,

2000 AND 5000 DIMENSIONS. THE BEST MEDIAN RESULT IN EACH ROW IS

HIGHLIGHTED.

HIGHLIGHTED.
Problem D LMOEA-HO LMOEA-DS
500 4.5505e-01(4.45e-02) [~]  4.5498e-01(2.41e-02)
1000 4.8421e-01(4.95¢-02) [~]  4.7643e-01(4.11e-02)
LSMOPL = 2000  5.2131e-01(7.53e-02) [=]  4.7684e-01(8.15¢-02)
5000  5.7129e-01(7.95e-02) [~]  5.5356e-01(8.04e-02)
500 4.6390e-02(1.04e-03) [+] | 4:4929¢-02(8.38e-04)
1000 3.8432¢-02(7.05¢-04) [~]  3.8613¢-02(7.89¢-04)
LSMOP2 5000  3.4713e-02(4.43e-04) [~]  3.4450e-02(8.04e-04)
5000 3.3212e-02(7.88e-04) [2]  3.3239¢-02(9.80e-04)
500  8.6061e-01(4.96e-04) [+] | 8.6048¢-01(3.62¢-03)
1000 8.6055¢-01(3.57e-03) [~]  8.6049¢-01(1.21e-03)
LSMOP3 2000  8.6056e-01(1.20e-03) [&]  8.6057e-01(3.11e-04)
5000  8.6060e-01(1.04e-04) [~]  8.6064e-01(1.45¢-03)
500 1.1235¢-01(1.43¢-03) [+] | 1.0818¢-01(1.78¢-03)
1000 6.8730e-02(1.12¢-03) [+] | 6.8001e-02(8.82¢-04)
LSMOP4 2000  4.9041e-02(7.68¢-04) [x]  4.8670e-02(9.49¢-04)
5000  3.7602e-02(7.66e-04) [~]  3.7368e-02(1.04e-03)
500  5.3985e-01(1.19e-02) [~]  5.3450e-01(1.73e-02)
1000 5.4045¢-01(1.03e-02) [+] | 5.3833e-01(1.24¢-02)
LSMOPS 2000  5.4059e-01(1.02¢-02) [+] | 5.3963e-01(1.66¢-03)
5000  5.4057¢-01(9.99e-03) [+] | 5.3883e-01(1.61e-02)
500 7.7099e-01(2.07e-02) [7]  7.6982e-01(2.93e-02)
1000 7.8703e-01(2.74e-02) [~]  7.6694e-01(2.70e-02)
LSMOP6 2000  7.8589e-01(2.52¢-02) [~]  7.6152e-01(2.72¢-02)
5000  7.9285e-01(2.47e-02) [+] | 7.4373e-01(2.71e-02)
500 8.8412e-01(3.12e-03) [x]  8.8589¢-01(4.07e-03)
1000 | 8.5616e-01(2.52¢-03) [-] ~ 8.5813e-01(1.55¢-03)
LSMOP7 = 2000  8.4546e-01(2.78¢-03) [~]  8.4561e-01(5.58e-04)
5000 | 8.3901e-01(2.83e-04) [[]  8.3922e-01(1.76e-03)
500 2.9837e-01(2.58e-02) [~]  2.9319e-01(4.09e-02)
1000 3.0210e-01(3.54¢-02) [+] | 2.1473¢-01(2.97¢-02)
LSMOP8 2000  2.5855¢-01(3.55¢-02) [+] | 2.2651e-01(1.29¢-02)
5000  2.3600e-01(1.31e-02) [+] | 2.1994e-01(1.67e-02)
500 5.8698¢-01(8.50e-04) [+] | 5.8575e-01(1.18e-03)
1000 5.8525¢-01(1.31e-03) [+] | 5.8175¢-01(1.28¢-03)
LSMOP9 2000  5.8256e-01(1.64¢-03) [+] | 5.8036e-01(1.57¢-03)
5000  5.8212e-01(1.67e-03) [+] | 5.7991e-01(1.84e-03)
+al- 15/19/2

Problem D LMOEA-DS-one LMOEA-DS
500 6.0554e-01(6.26e-02) [+] | 4.5498e-01(2.41e-02)
1000 6.2847¢-01(5.74¢-02) [+] | 4.7643¢-01(4.11¢-02)
LSMOPL = 2000  6.6456e-01(6.13¢-02) [+] | 4.7684e-01(8.15¢-02)
5000  6.4850e-01(5.56e-02) [+] | 5.5356e-01(8.04¢-02)
500 1.0783e-01(1.43e-03) [~2]  1.0818e-01(1.78e-03)
1000 6.7159¢-02(8.59¢-04) [~]  6.8001e-02(8.82¢-04)
LSMOP4 2000 | 4.6646e-02(8.88¢-04) [-]  4.8670e-02(9.49¢-04)
5000 | 3.5242¢-02(4.97e-04) [[] | 3.7368¢-02(1.04¢-03)
500  8.8812¢-01(4.87¢-03) [~]  8.8589¢-01(4.07¢-03)
1000 8.5982¢-01(2.42¢-03) [+] | 8.5813e-01(1.55¢-03)
LSMOP7 2000  8.4934e-01(1.49¢-03) [+] | 8.4561e-01(5.58¢-04)
5000  8.4245¢-01(1.29¢-03) [+] | 8.3922e-01(1.76¢-03)
+/~/- /312 -

LMOEA-DS on LSMOPI1, LSMOP4 and LSMOP7 with 500,
1000, 2000 and 5000 dimensions are given in Table V. The
IGD results on the three-objective LSMOP1-9 problems with
500, 1000, 2000 and 5000 decision variables are also given
in Table IV of the Supplementary material. From Table V,
we can see that LMOEA-DS obtains eight competitive and
four better results compared to LMOEA-DS-decomposition
on 12 problems with up to 5000 dimensions, indicating that
LMOEA-DS with decomposition based selection only cannot
ensure a sufficient degree of population diversity for many
problems. Furthermore, we can see from Table V that the
complementary selection strategy in LMOEA-DS can make
good use of the decomposition based selection and non-
dominated sorting based selection, and therefore, achieve a
good balance between maintaining population diversity and
accelerating convergence.

C. Comparisons with

objective methods

state-of-the-art large-scale multi-

In order to rigorously evaluate the performance of LMOEA-
DS, we compare LMOEA-DS with several recently proposed
large-scale optimization algorithms, namely LSMOF [66],
WOF-NSGA-II [65], LMOCSO [67], and MOEA/DVA [62],
on LSMOP test problems. Furthermore, an orthogonal
crossover algorithm with learning automata (OLEA), proposed
in [82], is also used for comparison. In OLEA, the deci-
sion variables are divided into groups, aiming to generate
fewer promising offspring solutions to reduce the number of
objective evaluations. The method was proposed for lower-
dimensional multi-objective optimization problems. However,
it is also efficient for large-scale multi-objective problems
because in OLEA, a set of solutions, which are located close
to the Pareto optimal solutions, are chosen for the quantization
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TABLE V
THE STATISTICAL RESULTS (MEDIAN AND MEDIAN ABSOLUTE DEVIATION) OBTAINED BY LMOEA-DS-DECOMPOSITION, LMOEA-DS-DOMINATION
AND LMOEA-DS ON THREE-OBJECTIVE LSMOP1, LSMOP4 AND LSMOP7 WITH 500, 1000, 2000 AND 5000 DECISION VARIABLES. THE BEST
MEDIAN RESULT IN EACH ROW IS HIGHLIGHTED.

Problem D LMOEA-DS-decomposition LMOEA-DS-domination LMOEA-DS
500 | 4.4066e-01(2.59¢-02) [~]  5.5297e-01(2.29¢-02) [+] | 4.5498¢-01(2.41¢-02)
1000 | 4.6985¢-01(2.94¢-02) [~]  6.0421e-01(2.30e-02) [+] | 4.7643e-01(4.11e-02)
LSMOPL 2000 | 4.8324e-01(3.62¢-02) [&]  6.5004e-01(2.28¢-02) [+] | 4.7684e-01(8.15¢-02)
5000 | 4.9964e-01(4.11e-02) [~]  6.6624e-01(2.45e-02) [+] | 5.5356e-01(8.04e-02)
500 | 1.0766e-01(1.37e-03) [~] = 1.3539e-01(2.28¢-03) [+]  1.0818e-01(1.78¢-03)
1000 | 6.8479¢-02(8.16e-04) [~] = 9.2675¢-02(2.15¢-03) [+] | 6.8001e-02(8.82¢-04)
LSMOP4 5000 | 4.8911e-02(8.58¢-04) [&]  6.7097¢-02(1.45¢-03) [+] | 4.8670e-02(9.49¢-04)
5000 | 3.7381e-02(6.88¢-04) [~]  5.2832e-02(1.85¢-03) [+] | 3.7368e-02(1.04¢-03)
500  1.3250e+00(1.81e-02) [+] | 8.8454e-01(4.68¢-03) [~]  8.8589e-01(4.07¢-03)
1000 1.3366e+00(2.68¢-02) [+] | 8.5835¢-01(1.58¢-03) [~]  8.5813¢-01(1.55¢-03)
LSMOP7 2000  1.3406e+00(3.01¢-02) [+] = 8.4522¢-01(7.08¢-04) [~]  8.4561¢-01(5.58¢-04)
5000  1.3441e+00(4.02¢-02) [+] | 8.3902¢-01(4.72e-04) [~]  8.3922¢-01(1.76e-03)
- 4/3/0 8/4/0

orthogonal crossover with learning automata to guide the
search for large-scale optimization.

Tables VI and VII give the statistical results obtained by
the compared algorithms on bi- and three-objective LSMOP1-
9 problems with up to 5000 decision variables, respec-
tively. From Tables VI and VII, we can see that compared
to MOEA/DVA using the decision variable clustering tech-
nique and LMOCSO that uses the new learning strategy,
our proposed LMOEA-DS has achieved better results on 36
and 34, respectively, out of 36 bi-objective problems. Both
MOEA/DVA and LMOCSO have obtained better results on
one problem only out of all three-objective LSMOP test
problems. LMOEA-DS has outperformed WOF-NSGA-II on
25 out of 36 bi-objective LSMOP problems. Furthermore,
WOF-NSGA-II was not able to obtain a better result on
any of the three-objective LSMOP problems. The LSMOF
method utilizes a problem transformation technique to guide
the search for large-scale multi-objective optimization. From
Tables VI and VII, we can see that our LMOEA-DS has
obtained better results on 27 and 29 out of 36 bi-objective and
36 three-objective problems, respectively. Especially, as can
be observed from Table VII, LMOEA-DS can achieve better
or competitive performance on all three-objective LSMOP
benchmark problems when the number of decision variables
is larger than 500. Compared to OLEA, which does not fall
in any of the four categories of large-scale multi-objective
optimization, we can see that LMOEA-DS is underperformed
on five bi-objective LSMOP test problems and 11 three-
objective LSMOP test problems, respectively, with up to 5000
dimensions. However, LMOEA-DS has outperfomed OLEA
on 26 and 22 out of 36 bi- and three-objective problems. The
statistical results of the HV values obtained by the compared
algorithms on bi- and three-objective LSMOP1-9 problems
with up to 5000 decision variables are given in Tables VII
and VIII, respectively, of the Supplementary material. From

these results, we can conclude that the proposed LMOEA-DS
can obtain better results than MOEA/DVA, LSMOF, WOF-
NSGA-II, LMOCSO, and OLEA.

The boxplots of the IGD values obtained by LSMOF,
LMOCSO, MOEA/DVA, OLEA, and the proposed LMOEA-
DS on three-objective LSMOPI1-9 test problems with 5000
dimensions are presented in Fig. 5. Note that the boxplot of
MOEA/DVA is not included in order to display the results
of the other algorithms more clearly. The median values of
each algorithm have been summarized in Table VII, from
which, and from Fig. 5, we can observe that LMOEA-DS
can obtain the best median results among the five algo-
rithms under comparison on LSMOP1, LSMOP3, LSMOPS,
LSMOP6, LSMOP7, LSMOPS, and LSMOP9 with 5000 de-
cision variables. Furthermore, we can see from Fig. 5 that the
interquartile ranges of the IGD values obtained by LMOEA-
DS are relatively small, meaning that it performs robustly on
all the nine 5000-dimensional LSMOPs.

Table VIII summarizes the comparative results on all 72
benchmark problems. From Table VIII, we can see that the
proposed method has obtained better results on 72, 56, 57, 69
and 48 out of 72 LSMOP test problems than MOEA/DVA,
LSMOF, WOF-NSGA-II, LMOCSO and OLEA, respectively,
which shows the promising performance of our proposed
method.

IV. CONCLUSION

To enhance the convergence performance of evolutionary
algorithm in solving large-scale multi-objective problems, this
paper proposed a method for generating guiding solutions
along search directions defined by a few chosen individuals in
the current parent population. The guiding solutions are then
utilized in a double reproduction process in combination with
a complementary selection strategy in an effort to generate
well converged and diverse solutions. The experimental results
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3-objective LSMOP1 with 5000 decision variables
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Fig. 5. The boxplots of LMOEA-DS and other four algorithms on three-objective LSMOP1-9 with 5000 decision variables.

confirm that our proposed method is highly competitive in
comparson with five state-of-the-art algorithms on bi- and
three-objective large-scale multi-objective problems with up
to 5000 dimensions. Notably, the proposed algorithm scales
particularly well to the increase in the number of decision
variables.

The proposed algorithm also suffers from one common
weakness of decomposition based algorithms is that their per-
formance heavily depends on the degree of match between the
distribution of the reference vectors and the shape of the Pareto
fronts of the problem to be solved. In the future, we will make
efforts to develop strategies for adapting the reference vectors
to achieve more powerful environmental selection during the
optimization. In addition, since maintaining a sufficient degree
of population diversity is extremely important for large-scale
multi-objective optimization problems, we will design new
regeneration strategies to enhance the population diversity
to further improve the search performance of the proposed
algorithm on large-scale multi-objective problems.
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TABLE VII

THE STATISTICAL RESULTS (MEDIAN AND MEDIAN ABSOLUTE DEVIATION) OBTAINED BY LMOEA-DS AND FIVE COMPARED ALGORITHMS ON 500-,

1000-, 2000- AND 5000-D 3-0BJECTIVE LSMOP1-9 PROBLEMS. THE BEST MEDIAN RESULT IN EACH ROW IS HIGHLIGHTED.
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1000 1.2616e+02(2.86e+02) [+]  8.6064e-01(6.54e-05) [+]  8.6072e-01(7.26e-02 ) [+]  1.3054e+01(1.29e+00) [+]  3.4660e+00(1.02e+00) [+] = 8.6049¢-01(1.21e-03)
LSMOP3 3 9909 2.3955e+02(1.49¢+02) [+]  8.6069e-01(6.31e-05) [+]  8.6072e-01(1.35¢-01 ) [+]  1.3251e+01(1.39e+00) [+]  3.6046e+00(8.66e-01) [+] ~ 8.6057e-01(3.11e-04)
5000  4.4864e+02(2.65¢+02) [+] = 8.6072e-01(6.30e-05) [~]  4.7664e+00(1.94e+00 ) [+]  1.3893e+01(1.93e+00) [+]  2.7917e+00(8.99¢-01) [+] = 8.6064e-01(1.45¢-03)
500 1.9972e-01(2.38e-03) [+]  2.0397e-01(3.32e-03) [+]  2.0556e-01(3.67e-03 ) [+] 1.4828e-01(8.24e-04) [+] 1.0086e-01(2.00e-03) [-] 1.0818e-01(1.78e-03)
1000 1.2439e-01(1.36e-03) [+] 1.3318e-01(3.08e-03) [+] 1.3437e-01(2.62e-03 ) [+] 9.1873e-02(3.97e-04) [+] 6.1469e-02(1.00e-03) [[] ~ 6.8001e-02(8.82e-04)
LSMOP4 3 9909 7.9424e-02(1.97e-03) [+]  8.6416e-02(2.65e-03) [+]  8.5148e-02(1.78e-03 ) [+] 5.8623e-02(1.64e-04) [+] 4.2840e-02(3.09¢-04) [-]  4.8670e-02(9.49¢-04)
5000 5.3296e-02(1.74e-03) [+]  5.9626e-02(2.5%¢-03) [+]  5.6995¢-02(3.03e-03 ) [+] 3.9503e-02(1.10e-04) [+] 3.3681e-02(7.83¢-05) [[] ~ 3.7368e-02(1.04e-03)
500 1.5973e+01(6.48e-01) [+]  5.4027e-01(4.23e-02) [=]  5.3951e-01(1.74e-02 ) [=]  3.0430e+00(1.54e-01) [+] 3.7158e-01(1.87e-02) [-] 5.3450e-01(1.73e-02)
1000 1.8618e+01(4.23e-01) [+]  6.5452e-01(7.02¢-02) [+]  5.3927e-01(2.98e-03 ) [+]  3.5928e+00(1.99e-01) [+] 4.5737e-01(3.27e-02) [-] ~ 5.3833e-01(1.24e-02)
LSMOP5 3 2009 1.9689¢+01(3.00e-01) [+]  5.8513e-01(6.93e-02) [+]  5.4088e-01(2.87e-03 ) [+]  3.9550e+00(2.62e-01) [+]  5.4197e-01(2.17e-03) [+] = 5.3963e-01(1.66e-03)
5000  2.0607e+01(2.35¢-01) [+] ~ 5.4498e-01(5.76e-02) [+]  5.4039e-01(7.35e-02 ) [~=]  3.9418e+00(2.41e-01) [+]  5.4295e-01(1.21e-03) [+] = 5.3883e-01(1.61e-02)
500 2.6519e+04(3.33e+03) [+] = 7.3246e-01(1.02e-02) [-] 1.2904e+00(3.94e-02 ) [+]  1.4435e+02(1.06e+02) [+]  1.3383e+00(8.44e-02) [+]  7.6982e-01(2.93e-02)
1000 3.2665e+04(2.78e+03) [+] = 7.5434e-01(1.33e-02) [R]  1.3898e+00(8.37e-02 ) [+]  4.9111e+02(1.63e+02) [+]  1.4357e+00(6.18e-02) [+] = 7.6694e-01(2.70e-02)
LSMOP6 3 2000  3.5515e+04(4.29¢+03) [+] | 7.5886¢-01(1.39¢-02) [~] = 1.4068¢+00(1.22e-01 ) [+]  8.1687e+02(4.26¢+02) [+]  14381e+00(2.36¢-02) [+] | 7.6152e-01(2.72¢-02)
5000  3.7730e+04(4.50e+03) [+] = 7.5805e-01(1.49e-02) [] 2.5774e+00(3.51e+00 ) [+]  1.1276e+03(3.27e+02) [+]  1.4375e+00(8.38¢-02) [+] = 7.4373e-01(2.71e-02)
500 3.4148e+02(8.14e+02) [+]  8.9275e-01(1.09e-02) [+] = 8.7809e-01(2.83e-02 ) [~] 9.4821e-01(8.75e-02) [+] 1.0456e+00(4.17e-02) [+] = 8.8589e-01(4.07e-03)
1000 7.1323e+02(5.59¢+02) [+]  8.6558e-01(2.91e-02) [+]  9.0019e-01(3.00e-02 ) [~] 1.0254e+00(4.99¢-02) [+] 1.0074e+00(1.13e-02) [+] = 8.5813e-01(1.55¢-03)
LSMOPT 3 2000  1.3412e403(9.33¢+02) [+] ~ 8.4927¢-01(1.81e-02) [+]  9.2012e-01(3.27e-02 ) [+]  9.8468¢-01(1.86e-02) [+]  9.7898e-01(1.63e-02) [+] | 8.4561e-01(5.58¢-04)
5000  1.4717e+03(8.82e+02) [+]  8.4160e-01(1.55e-02) [+]  9.5660e-01(2.90e-02 ) [+] 9.6594e-01(3.55¢-02) [+] 9.5983e-01(3.09¢-02) [+] = 8.3922e-01(1.76e-03)
500 6.7181e-01(2.89¢-02) [+] 3.6024e-01(6.10e-02) [+] 3.2020e-01(2.74e-02 ) [+] 5.4967e-01(5.46e-03) [+] 2.3505e-01(2.63e-03) [-] 2.9319¢-01(4.09¢-02)
1000 6.4024e-01(4.86e-02) [+] 4.0204e-01(5.59-02) [+] 2.9967e-01(3.91e-02 ) [+] 5.3382e-01(3.85¢-03) [+] 2.2887e-01(3.76e-03) [~]  2.1473e-01(2.97¢-02)
LSMOP8 3 2000  6.5943e-01(3.93¢-02) [+]  3.4037e-01(4.47¢-02) [+]  2.9675¢-01(3.86e-02 ) [+]  5.3069e-01(6.01e-03) [+] | 2:2557e-01(2.19e-03) [~]  2:2651e-01(1.29¢-02)
5000  6.3529e-01(4.36e-02) [+]  3.6954e-01(4.90e-02) [+]  3.3795e-01(2.72e-02 ) [+] 5.2626e-01(5.09¢-03) [+] = 2.2167e-01(2.93e-03) [~]  2.1994e-01(1.67e-02)
500 1.1061e+02(4.37e+00) [+]  1.5379e+00(7.08e-02) [+]  1.1450e+00(2.07e-04 ) [+] 9.3374e-01(1.04e-01) [+] 2.6282e+00(5.61e-01) [+] = 5.8575e-01(1.18e-03)
1000 1.3103e+02(3.29¢+00) [+]  1.5379e+00(1.83e-01) [+]  1.1447e+00(2.37e-04 ) [+] 1.0165e+00(1.80e-01) [+]  5.4831e+00(3.80e-01) [+] = 5.8175e-01(1.28e-03)
LSMOP9 3 5000 1.4292e+02(2.31e+00) [+]  1.1446e+00(1.65e-01) [+]  1.1446e+00(7.16e-02 ) [+]  2.1782e+00(1.44e+00) [+]  9.5920e+00(3.81e-01) [+] = 5.8036e-01(1.57e-03)
5000  1.5146e+02(1.08¢+00) [+]  1.1499e+00(1.67e-01) [+]  1.1459e+00(2.53e-02 ) [+]  1.7971e+01(7.17e+00) [+]  1.9637e+01(1.12e+00) [+] = 5.7991e-01(1.84e-03)
+/=l- 36/0/0 29/6/1 32/4/0 35/1/0 22/3/11 -
TABLE VIII Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 16-37,
A SUMMARY OF THE RESULTS ON LSMOP1-LSMOP9 TEST PROBLEMS, 2016.
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