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Abstract 10 
Reducing transport emissions, in particular CO2 emissions from passenger vehicles, is a key 11 
element in mitigating the risk of climate change. Conventional welfare economics recommends 12 
the use of comprehensive pricing of carbon emissions, which may not necessarily be the most 13 
effective approach in transport systems. This paper uses an evolutionary technology diffusion 14 
model to simulate the impact of climate policies on passenger car emissions in the US, UK, 15 
Japan, China and India up to 2050, seeking to understand policy interaction. We analyse six 16 
commonly seen policy instruments and explore systematically the impact of combining each 17 
of these policies by developing 63 scenarios for the US, UK, China, Japan, and India. We assess 18 
both the policies’ effectiveness in achieving emissions reductions and their cost-effectiveness 19 
in doing so. We show how the diffusion dynamics of the system can lead to interaction of 20 
policy levers, generating synergies in some cases (combined effectiveness more than the sum 21 
of its parts), and mutual impediment effects in others (combined effectiveness less than the 22 
sum of its parts). The paper identifies particular combinations of regulatory, procurement and 23 
fiscal policies that are particularly effective at generating rapid change without needing the use 24 
of very high fuel taxes or carbon pricing. Notably, combining electric vehicle mandates with 25 
taxes and regulations on combustion vehicles is highly effective, as it simultaneously improves 26 
the availability of low-carbon options while penalising high carbon options. Simple principles 27 
for policymaking can be inferred. 28 
 29 
 30 
1.  Introduction 31 
 32 
The transport sector is the third greatest contributing sector to global carbon emissions [1] and 33 
was responsible for over 24% of energy-related carbon dioxide (CO2) emissions in 2016. In 34 
particular, the passenger light-duty vehicle (PLDV) fleet is projected to expand from 900 35 
million in 2012 to 1.7 billion in 2035 [2]. The rapid diffusion of electric vehicles (EVs) and 36 
improvements in the cost-effectiveness of non-electric car fleets is important in limiting energy 37 
demand growth by curbing oil use and limiting greenhouse (GHG) emissions [3,4]. 38 

Understanding a suitable stringency and the structure of public policies is necessary to 39 
influence the adoption of new car technologies. Human-technology systems (or socio-technical 40 
regimes) possess inertia and display resistance to change, which makes them durable for 41 
multiple social, economic and technical reasons [5]. The transition to low emissions vehicle 42 

 
1 Department of Economics, Faculty of Social Sciences, University of Macao, E21, Taipa, Macau, China 

    e-mail: meimeilam@um.edu.mo 
2 Cambridge Centre for Environment, Energy and Natural Resource Governance (C-EENRG), University of 
Cambridge, Cambridge, UK 

3 Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK 

    e-mail: J.Mercure@exeter.ac.uk 

4 Cambridge Econometrics Ltd, Cambridge, UK 



  
 
 
 

 2 

fleets may require diverse policy instruments that allow existing technologies in niches to 1 
diffuse into the market. The design, level, and structure of the instruments determine the 2 
effectiveness of the policies in achieving long-term emissions targets. In policy practice, 3 
diverse types of policies are almost always introduced simultaneously, aiming to control 4 
different types of externalities (e.g. fuel use, road use, emissions). These incentives likely 5 
interact in ways not always fully understood, providing price and regulatory signals for 6 
purchase decisions and use behaviours, thereby compounding their effect on the transition to 7 
low-emission vehicles.   8 

The impacts of the policies are typically heterogeneous across countries and time, and can be 9 
non-linear, partly due to the inherent high heterogeneity of markets [6]. Some consumer 10 
markets are less likely to adopt low-emission technology until a certain critical mass is reached. 11 
Particular combinations of policies could be more effective in overcoming technological lock-12 
ins and decarbonising private transport than others. This must be understood when designing 13 
new frameworks aiming at rapid decarbonisation.  14 

Many studies consider one policy in isolation (e.g. [7,8]). Of the studies exploring policy 15 
packages, most have looked at the integrated impact of policy mixes in achieving deep CO2 16 
emissions reductions [9–11]. Although a few studies have examined the interaction of policies 17 
[12–14], these studies predominantly have investigated the impact of policy interactions in the 18 
US and Canada. 19 

However, no studies have comparatively explored interaction effects between policies across 20 
multiple countries. Similarly, none have examined whether the same insights hold between 21 
developed nations (e.g. the US, the UK, Japan) and large, emerging economies (e.g. China, 22 
India) with high-demand growth. Thus, insights offered by recent research have remained tied 23 
to national contexts, and are difficult to translate. 24 

In the transport literature, significant consideration has been given to the synergies and trade-25 
offs between policies [15]. There are trade-off (or reinforcement) effects between two policies 26 
if the presence of two policies offers a smaller (or larger) CO2 mitigation benefit than the sum 27 
of the effectiveness of either policy alone. This study aims to quantify the trade-offs and 28 
synergies that exist between policies for mitigating CO2 emissions from passenger cars in the 29 
five major economies: the US, the UK, China, India and Japan. These countries have been 30 
chosen for this study because their vehicle markets possess very different characteristics, which 31 
are the results of different histories of policies and regulations, and they also constitute a major 32 
component of the global car fleet [6]. This comparative study enables us to examine how the 33 
structures of different car markets influence the levels of policy stringencies necessary to 34 
induce transitions in current passenger car systems. In this paper, the higher the policy 35 
stringency, the higher the cost of the policy for the consumers (taxes) and the government (EV 36 
subsidy). In the same manner, the more stringent the EV mandate, the more ambitious the EV 37 
target sales. We discuss possible options available to policymakers to minimize trade-off 38 
effects and maximize synergies in policy design. In pursuit of these objectives, this paper 39 
addresses the following questions: 40 

1) Can an evolutionary model of vehicle fleets predict and explain trade-off or reinforcement 41 
effects between any existing types of policy instruments on the diffusion of PLDVs in each of 42 
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the five countries? How significant are the trade-off and reinforcement effects on overall 1 
incentives? 2 

2) How do the trade-off and reinforcement effects between policy instruments affect the costs 3 
and efficiencies of the policy combinations, and can this be used to guide policy design?  4 

To answer these questions, we performed scenario analysis using the FTT:Transport model, an 5 
evolutionary technology diffusion model for road transport technology, as a submodule of the 6 
Integrated Assessment Model (IAM) named E3ME-FTT-GENIE (see [9]). The Future 7 
Technology Transformations (FTT) family of models consists of FTT:Power [16], 8 
FTT:Transport [9], FTT:Heat  [17] and FTT:Steel [18]. The purpose of the design of the FTT 9 
models is to simulate the evolution of fleets through technology diffusion dynamics that follow 10 
standard theory on the diffusion of innovations [19]. The model makes use of coupled S-shaped 11 
curve (non-equilibrium) dynamics, driven by agent decisions, following preferences, decision 12 
rules and perceived incentives, calibrated to reproduce observed technology trajectories. The 13 
FTT models use a modified evolutionary version of discrete choice theory in which social 14 
influence is integrated [20]. Its strong path-dependence and high policy resolution allow 15 
explicit assessment of policy interactions, with a modelling horizon of 2050. The paper is 16 
structured in comparative form, and aims to unearth general principles for low-carbon 17 
policymaking that are context-independent in path-dependent transport systems. 18 

The algorithm used is based on a simulation of dynamical systems, as opposed to the systems 19 
optimization frequently used in technology models. The FTT models enable modelling of 20 
technological diversity, heterogeneous consumer decision-making and the complex evolving 21 
interactions between policies. The FTT:Transport model offers a highly detailed set of policy 22 
packages, and allows the modelling of different transition pathways that then lead to different 23 
future technology scenarios [9].  24 

The remaining paper is structured in the following manner: Section 2 provides a literature 25 
review of previous research on the analysis of policies. Section 3 discusses existing policies 26 
for encouraging low emission vehicles in the five major economies. Section 4 describes the 27 
model and methodology used to perform the scenario analysis. Section 5 details the variables 28 
and data sources used in this study. Section 6 provides the assumptions for the scenario analysis. 29 
Section 7 presents the results of this scenario analysis and discusses their policy implications. 30 
Section 8 offers insights for policymakers, and finally, section 9 provides a conclusion. 31 

2. Literature review 32 

The scenarios most often assessed by the IPCC have primarily focused on harmonised carbon 33 
pricing/taxing as a policy strategy [21]. Focusing on transport, other studies have analysed the 34 
mid- to long-term impacts of various individual policy instruments on the CO2 emissions from 35 
the PLDV sector using quantitative models [8,13,23–29]. Most studies have only examined the 36 
impacts of various taxes on long term CO2 emissions. For instance, Kloess et al. [24] 37 
investigated the effect of various tax incentives and technological progress on the Austrian 38 
passenger car fleet. Using the UK Transport model, Brand et al. [30] assessed the long-term 39 
scenario of several low-carbon fiscal policies, such as vehicle purchase taxes, road taxes and 40 
scrappage programs, as well as their effects on CO2 emissions from the PLDVs. 41 
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The zero-emission vehicle (ZEV) mandates have existed only in the US and some regions of 1 
Canada. Sykes and Axsen [13] examined the impact of the ZEV mandate on the long term sales 2 
in North America using CIMS-ZEV. Karplus et al. [8] studied the cost and effectiveness of 3 
fuel economy standards, alone and in conjunction with economy-wide policies constraining 4 
GHG emissions. Small [31] assessed the cost and effectiveness of fuel tax, vehicle efficiency 5 
standards, and financial subsidies on CO2 emissions reduction from passenger light-duty 6 
vehicles in the US with the National Energy Modelling System (NEMS). Morrow et al. [23] 7 
analysed fuel taxes, continued increases in fuel economy standards, and purchased tax credits 8 
for new vehicle purchases, as well as the impact of combining these policies to reduce GHG 9 
emissions and oil consumption in the US transportation sector. Outside North America, studies 10 
have only analysed the impacts of various financial incentives on developed countries.  11 

Thus, as discussed above, many studies on policy instrument analysis have focused on studying 12 
the impact of one instrument on a particular country [25,32,33]. However, individual policy 13 
instruments have limited effectiveness or must be unrealistically stringent, whereas the 14 
combination of instruments can be more effective. In fact, a more integrated policy mix of 15 
strong policies is required for deep GHG emissions [34]. Even when studies consider the 16 
impact of several policy instruments, they tend to focus on the collective impact of the policy 17 
instruments on CO2 emissions [10,23,29], while ignoring the interactions among the policy 18 
instruments on the emissions of PLDVs. Despite the prevalence of policy mixes in many 19 
nations and regions [35], very little transportation research has studied policy interactions, 20 
particularly for policy mixes for light-duty vehicles [15]. While it is important to examine the 21 
overall impact of a group of policies, the interactions among the policy instruments are central 22 
to any policy mix because of their collective influence on the effectiveness and cost-23 
effectiveness of instruments in the mix, and thus the design of the policy strategy [19,36,37].  24 

When systems are path-dependent, and various policies are combined, they can be either 25 
mutually reinforcing or work against one another, depending on how they are designed and 26 
implemented [38]. For example, policies focusing on improving vehicle choice availability 27 
(technology push) can reinforce the impact of policies influencing pricing (technology pull) 28 
[39]. In other words, there can be synergies or interference effects between instruments, and it 29 
is thus important to understand the effects of policy interactions. The design of an effective 30 
policy package requires an understanding of policy interactions [34]. Several studies have 31 
discussed the possible impacts of policy synergies and policy mixes on the effectiveness and 32 
the impacts of policies regarding emissions reductions in the energy sector [13,34,36,37]. 33 
However, few studies go beyond qualitative statements. An exception is a study by Viguié and 34 
Hallegatte [42], which provides a multicriteria analysis on the trade-off and synergies of 35 
various urban climate policies, such as zoning and public transport subsidies. Elsewhere, 36 
Fischer and Fox [43] carried out scenario analysis on carbon taxes and rebates for mitigating 37 
carbon leakage. More specific to light-duty vehicles, Axsen and Wolinetz [44] simulated the 38 
impact of incentives and mandate-based strategy on plug-in EV sales in Canada. Jenn et al. [12] 39 
examined the individual and combined effect of light-duty vehicle GHG emission standards 40 
and the Zero Emissions Vehicle policy in the US.  41 

Thus, we identify two main gaps in existing studies for the analysis of policy instruments on 42 
long-term CO2 emissions. First, existing studies, as we have illustrated, have focused on 43 
studying policies for only one country or region. Although this approach is useful in 44 
understanding the impact of policies on a certain country, it does not allow for the inference of 45 
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impact for other countries, or explain why or under what conditions the policies would be 1 
effective and be cost-efficient. Second, many existing studies have been ex-post policy 2 
evaluation studies. None of these studies examine the interactions between multiple policies 3 
within the PLDV sector using a dynamic model. A comparative study of policy interactions 4 
across several countries with different characteristics is required to provide insights into policy 5 
actions in passenger road transport. 6 

3. Current policy contexts and needs 7 

The levels and designs of incentives vary greatly across our case study countries. This section 8 
summarises the main policy objectives and policies that have been implemented in the UK, the 9 
US, Japan, China, and India to encourage the diffusion of low-emission vehicles.  10 

3.1 UK 11 

The UK has adopted a target of net-zero emissions for 2050, which includes transport [45]. 12 
The EU first established a law requiring new cars registered in the EU to emit no more than an 13 
average of 130 grams of CO2 per kilometre (gCO2/km) by 2015. By 2021, the average fleet 14 
target for new cars is 95 grams of CO2 per kilometre.  From 2021 onwards, assuming some 15 
minimum degree of regulatory alignment with the EU for transport, the average emissions 16 
of all newly registered cars of a manufacturer must be below that target [46].  17 
 18 
Vehicle Excise Duty (VED), also commonly known as vehicle road tax, is an annual tax levied 19 
on vehicles using public roads. Typically, it is levied on the basis of vehicle characteristics, 20 
such as engine size, weight, or power. More recently, the CO2-graded VED was recalibrated 21 
with higher band resolution and slightly higher duties [30]. In addition to the exemption from 22 
the VED, in the UK, the electric car (plug-in car) grant is intended to incentivise electric car 23 
purchases by offering 4,500 GBP toward the purchase of an electric car (plug-in car) on a zero-24 
emission range of at least 70 miles [45]. 25 

3.2 US 26 

The transport sector has surpassed the power sector as the single largest US emitter of GHGs 27 
for the first time since 2016. Following the US withdrawal from the Paris Agreement, 24 states 28 
formed the US Climate Alliance and will uphold the original US commitment, reducing 29 
emissions 26% to 28% below 2005 levels by 2025 [47]. This could change again if the US re-30 
joins the Paris Agreement. 31 

Since 2011, the federal government has offered an income tax credit to owners of fuel-efficient 32 
vehicles, ranging from $2,500 to $7,500 per vehicle, based on each vehicle’s traction, battery 33 
capacity and gross vehicle weight rating [48].  34 

The Energy Tax Act of 1978 requires car companies to pay a ‘Gas Guzzler’ tax on the sale of 35 
cars (excluding light trucks and SUVs) with exceptionally low fuel economy. Under the Obama 36 
Administration’s standards, the auto industry was required to double the fuel economy of 37 
vehicles to an average of approximately 54 miles per gallon by 2050. However, more recently, 38 
under the Trump administration, the EPA has been considering freezing the fuel-efficiency 39 
targets at 2020 levels [49].  40 
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Many states and local governments offer a wide variety of incentives beyond what the federal 1 
government requires. These incentives take many forms, including rebates, income tax credits, 2 
sales tax exemptions, and fee exemptions. Among all the non-fiscal policies that have an 3 
obvious bias towards NEVs, the zero-emission vehicle (ZEV) credit mandate in California is 4 
the most representative incentive. It sets minimum sale percentages of ZEVs and credits to be 5 
given to the manufacturers based on vehicle type and all-electric range [50,51]. 6 

3.3 Japan 7 

Japan has pledged a 26% emissions reduction in GHG below 2013 levels by 2030, including 8 
the transport sector [52]. In 1998, Japan initiated the Top Runner Approach, which has set 9 
mandatory efficiency standards for automobiles based on the most efficient products. By 2015, 10 
the Ministry of Economy, Trade and Industry (METI) announced that the new standard to be 11 
achieved by passenger cars was 12.7-23.5 km/L. If these numerical targets in the new standards 12 
are successfully achieved, fuel efficiency in the target fiscal year (FY) of 2022 will improve 13 
by 26.1% from the actual level in FY2012 [53]. 14 

There are nine different taxes for owning cars in Japan, including acquisition tax, consumption 15 
tax, tonnage tax, automobile tax, gasoline tax, diesel tax, LPG tax, and in-use consumption tax 16 
[54]Zero-emissions vehicles are exempt from both the acquisition and the tonnage tax. The 17 
owners of cars that are compliant with the 2015 FES enjoy up to an 80% reduction in 18 
acquisition tax, and a 75% reduction in automobile tonnage tax [54].  19 

3.4 China 20 
 21 
Under the Paris Agreement, China committed itself to reach peak carbon emissions around 22 
2030. More recently, President Xi announced a net-zero emissions target for 2060, thus current 23 
policy regimes are likely to change. Meanwhile, the transport sector has become one of China’s 24 
fastest-growing economic sectors [55]. At the national level, to reduce its dependency on 25 
foreign oil and to encourage more fuel-efficient vehicle technologies, the passenger vehicle 26 
market has been subject to fuel economy standards since 2004. The Chinese government also 27 
provides direct subsidies for the purchase of EVs at both central and local levels. According to 28 
the driving mileage of vehicles, the EV purchaser can receive up to RMB 55,000 (USD 8,000) 29 
in subsidies from the central government. However, in 2019, China’s Ministry of Finance 30 
announced its plan to reduce by half subsidies for EVs sold in the country with driving ranges 31 
of 400 or more kilometres to RMB 250,000 (USD 3,600) [56]. Beyond this, many local 32 
governments provide additional subsidies. For example, in Shenzhen, Guangzhou and Beijing, 33 
owners of certain EVs (with ranges above 250km) can receive subsidies of up to RMB 110,000 34 
(USD 17,000). EVs are also exempt from various taxes and regulations, such as purchase tax, 35 
license lottery (in Beijing and Guangzhou), and toll charges [57].  36 
 37 
The New-Energy Vehicle Credit Program was finalized in September 2017 and was 38 
implemented in 2018. Under the NEV credit program, car manufacturers with over 30,000 39 
annual vehicle sales in the country are required to produce 10% NEVs in 2019 and 12% in 40 
2020 [58]. Companies that do not reach their quotas will face fines, but they could buy credits 41 
from manufacturers having a surplus. 42 

3.5 India 43 
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India’s NDC sets a target for reducing emissions by 33% to 35% between 2005 and 2030. The 1 
transport sector is a key area for meeting this goal [59]. To promote eco-friendly vehicles, in 2 
2015, the Indian government launched the FAME (Faster Adoption and Manufacturing of 3 
Hybrid and Electric vehicles) measure to incentivise HEV and EV purchases. Under FAME 4 
India, the Indian government will provide incentives from Rs. 138,000 (USD 2,000) for every 5 
electric car sold [60].  6 
 7 
In addition to subsidies for new energy technologies, excise duties are levied depending on the 8 
sizes, engine types, and whether the vehicles are new energy technology vehicles. For EVs, 9 
India has reduced the excise duty from 8% for conventional cars, to 4% for EVs [61]. In 10 
addition, individual states have their own incentives for energy-efficient vehicles.  11 
 12 
The Government of India set the first fuel economy standards for the nation in 2014. This 13 
standard set a fleet target of 130gCO2/km, which came into effect in 2017. It proposed that the 14 
standard could tighten to 113gCO2/km by 2022 [62].  15 
 16 
4. Methodology 17 

4.1 Model overview – the FTT:Transport model 18 

The Future Technology Transformation (FTT) model is a loose framework method that models 19 
technological diffusion dynamically, based on technological competition in markets. The 20 
FTT:Transport model assumes the presence of an adaptive, evolving, path-dependent market 21 
with heterogeneous agents. We assume revealed preferences, in that the observed cost 22 
distribution for recent vehicle sales corresponds to the heterogeneity of consumer preferences 23 
and choices (see [6,9] for details). 24 

The FTT framework models technological diffusion by a set of logistic differential equations 25 
of the Lotka-Volterra family, which represent gradual technological substitution processes [16]. 26 
Under the FTT framework, consumers are more likely to choose a technology that has a higher 27 
market share as a result of availability, visibility, social influence and network effects,  all of 28 
which we represent combined simply as adoptions proportional to current market shares (see 29 
Equation 1). It is well established that these bandwagon effects substantially influence the 30 
profiles of diffusion of vehicle models [63,64]. As shown in Appendix B.6, if one adds 31 
bandwagon effects such as social influence in a discrete choice model, one obtains a Lotka-32 
Volterra (replicator dynamics) evolutionary system that generates S-shaped curves [20]. 33 
Following evolving choices and preferences, a flow of market shares exists from arbitrary 34 
technology category ! towards category ", denoted as follows: 35 

																																																				∆%!→# ∝
%! 	%#
'
(!#	)∆*!#+∆,.																																												 36 

A reverse flow also exists from technology " to technology !, as shown here: 37 
 38 

																																																				∆%#→! ∝
%# 	%!
'
(#!	)∆*#!+∆,.																																												 39 

                                                                                                                                     40 

(2) 

(1) 

(1) 
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∆%!→# denotes the flow of shares from car technology ! to ", ' is the turnover rate for cars and 1 
∆, is an arbitrary time span. (#!)∆*#!+ represents the fraction of agents that prefer technology 2 
" over ! based on the difference in mean generalized cost of technology " and !. The shape of 3 
(#!)∆*#!+ is derived from the cost-distribution curves that correspond to the heterogeneity of 4 
consumer choices (see Appendix B.5.2). The FTT:Transport model assumes the presence of a 5 
diverse market with heterogeneous agents. This is accomplished by using a probabilistic 6 
treatment of consumer decision-making and by using a distribution of cost values. We obtained 7 
the price data of every single model type sold in each country and matched the price data (e.g. 8 
car price, fuel cost) to the sales of that car model (see Appendix B.5.1, Fig. B3), unlike 9 
traditional models that take ‘representative car model(s)’. We assume that the cost distribution 10 
corresponds to the heterogeneity of consumer choices as a result of revealed preferences 11 
obtained in this rich dataset (see Appendix B.5.2). 12 
 13 
The rate of diffusion for one car technology is influenced by the width of the cost distribution 14 
for each segment of car technology and the market share of the technology (Equation 1). Hence, 15 
a policy (e.g. EV subsidy) does not lead to an instant diffusion of the target vehicles (e.g. EVs). 16 
Consumers do not respond to the incentives simultaneously (see Appendix B.5.2). Based on 17 
technological path dependence, the higher the current market share, the faster the rate of 18 
diffusion will be for those target vehicles. Hence, the effectiveness of a policy may be different 19 
across different markets, depending on market shares, and the heterogeneity of the market.  20 
 21 
Capital costs (car prices) are influenced by learning curves, typically stronger for new 22 
technologies, reinforcing diffusion [9]. Hence, the capital costs for vehicle technologies (/#(,)) 23 
fall by a certain percentage (learning rate 2#) every time the total quantity manufactured 3#(,) 24 
doubles: 25 
 26 

																																																				/#(,) = /%,# 5
3#(,)

3%,#
6
'(!
																																													 27 

 28 
Purchase decisions are affected by four components: consumer preference, government 29 
policies, market environment and each car model’s availability. Each of these components 30 
leads to a dynamic change of market share using the Future Technology Transformation (FTT) 31 
framework. Notably, a substantial source of path-dependence in the model originates from the 32 
fact that the availability of vehicles endogenously evolves in the model: the more a car model 33 
is available, the more it is purchased. The more it is purchased, the more it is noticed and 34 
demanded, and the more it is made available. The diffusion of innovations always follows this 35 
basic mechanism [19,20]. 36 
 37 
CO2 emissions from passenger vehicles are defined as follows: 38 
 39 

							7),* = 8),* ∗ *:+),*					                                               40 
 41 
In which 8),*  is the demand for transport service for technology ;, determined by market 42 
shares of technology ; (discussed above) and the total demand for passenger car transport (see 43 
Appendix B.1). 7),*	is the amount of fleet emissions in Gt/yr, and *:+),*	is the emissions factor.  44 
 45 
4.2 Policy simulations in the FTT:Transport model 46 

(4) 

(3) 
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Financial incentives such as EV subsidies, road tax and fuel tax have been adopted by all of 1 
the countries in this study (i.e. the UK, the US, Japan, China and India). Besides financial 2 
incentives, fuel economy standards require automakers to design more efficient vehicles or to 3 
shift sales toward more efficient models. To boost the population of zero emissions vehicles, a 4 
cap-and-trade EV mandate has been introduced in some states in the US (e.g. California) and 5 
China, and this has the potential to rapidly scale EV manufacturing and adoption [51,65]. For 6 
that reason, all of these policy types must be represented in all of the countries in the model. In 7 
this paper, policy formulations take six possible forms: vehicle tax, annual registration tax, EV 8 
subsidy, fuel tax, EV mandate, and fuel economy standards.  9 

4.2.1 Pecuniary incentives 10 

In the FTT:Transport model, the cost of operating a vehicle is calculated using what we 11 
termed the Levelised Cost of Transportation (LCOT) [12]:  12 

																																					<*:=# = ∑
(#!$%&'!)

)*!
,∑

+,!(-)
)*!

./*!(-).*,!(-)0∗2*%!(-)∗3!4--5.6+!(-)
(7.8)--

∑ 7
(7.8)--

*                                  13 

In which /# , (#  and ?@#  are the mean capital costs (in USD), fuel cost (in USD/litre) and 14 
maintenance cost (in USD/km), respectively. 7A%#  represents EV subsidies, paid to car 15 
purchasers (and therefore, negative cost) at the purchase time. (=# is the fuel tax, in USD/litre. 16 
The fuel cost depends on fuel consumption ((7#) and the distance travelled each year (B"C,*). 17 
@=#(,)  is the annual registration tax, which is vehicle/class-specific, paid by car owners 18 
(,)once per year. *(#  is the capacity factor, km/y. This represents the breakeven cost of 19 
transportation per unit of distance, which is comparable across choices when buying a vehicle. 20 
All pecuniary policies influence this quantity in the model; however, due to consumer 21 
discounting, different types of taxes are not exactly equivalent, according to how they arise 22 
through time. 23 

4.2.2 Intangibles 24 

The intangibles include the components that are valued by consumers to satisfy personal 25 
needs (e.g. comfort, speed). An intangible cost is calculated by minimising the difference in 26 
slopes between the projected market shares and the historical market shares. The values of 27 
the intangibles are empirical parameters that we obtained from making the FTT diffusion 28 
trajectory match the trajectory observed in our historical data at the year of the beginning of 29 
the simulation (see Appendix B.5.4 for more information). The derivations for the 30 
‘intangibles’ and the uncertainty analysis are presented in Appendix B.5.4.2. 31 

4.2.3 Fuel economy regulation and EV mandates  32 

Fuel economy regulation is modelled by influencing the flow of share values in the technology 33 
category. In the presence of a fuel economy regulation, we assume that there are no new market 34 
shares gained in the categories being phased out. In the FTT:Transport model, the flow of 35 
market shares from technology j to technology " is as follows: 36 

∆%!→# ∝ %#%!(#!Δ,										 37 

(5) 

(6) 
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In a hypothetical case where conventional petrol cars are phased out, we assume that (#! is 0 1 
so that there can no longer be any gain in market shares for conventional petrol cars.  2 

For EV mandates, it is assumed that the policies exogenously change the shares of vehicle 3 
types at a specific point in time.5 We assume that market shares flow from conventional cars ! 4 
to EVs " by assigning exogenous shares to ∆%7!→#. For example, assuming that E% of the new 5 
car sales have to be EVs; then  6 

																																																												∆%7!→# = E% ∗
./0123/4

53//*
	                                                    (7) 7 

This approach models mandates with targets that require specific percentages of EV sales. Our 8 
approach is not exactly the same as some of the real-world EV mandates, for which the 9 
government sets an EV production quota (e.g. the China New Energy Vehicle [NEV] mandate 10 
and the California ZEV mandate program) or assigns a NEV credit. However, this approach 11 
resembles the impact of EV mandates for which the government intends to foster the diffusion 12 
of EVs by increasing the shares of EVs sold. Here we interpret the EV mandate much like if it 13 
were a public purchasing program forcing an exogenous diffusion of the technology. 14 

4.3. Two policy interactions 15 

4.3.1. Definition of policy effectiveness 16 

By definition, the effectiveness of public policies is defined as the extent to which policy goals 17 
are achieved. In the present context, the effectiveness of a given policy on CO2 emissions is 18 
defined as the amount of abatement achieved by a given policy:  19 

																																												7GGHI,"JHKHCC = 	∑ ∫ )7*,#,4 − 7*,#,%+N,
+%6%

+%78#                                    (8) 20 

where 7*,#,4  is the emissions sum over all technologies "	between the years 2016 and 2050 under 21 
scenario s, when policies are imposed. 7*,#,% is the emissions sum over all technologies between 22 
the years 2016 and 2050, without any policies in the counterfactual baseline scenario. The 23 
effectiveness index captures the potential effects of a policy across technologies and the 24 
cumulative emissions reduction achieved by a particular policy.  25 

4.3.2 Policy interactions 26 

In the FTT model, each layer of policy plays a specific role in the decarbonisation of the 27 
transport sector. When the policies are simultaneously simulated in the model, they influence 28 
the each other’s effectiveness.  For example, taxing high-emission vehicles with a vehicle tax 29 
will encourage consumers to purchase low-emission vehicles. In a consumer market with 30 
limited EV models available, a consumer will be more likely to choose a lower-emission petrol 31 
car, due to the path-dependent nature of the model (Equation 1).  However, in the presence of 32 
the EV mandate, manufacturers are encouraged to produce more EVs and to offer more options 33 
to consumers. The higher EV shares in the FTT model lead to a higher rate of diffusion for EV, 34 

 
5 This could also be, for example, a public procurement policy in which large numbers of 
vehicles are purchased to force an increase in availability and infrastructure. 
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considering the S-shaped technological diffusion curve (Equation 1). Hence, policy 1 
interactions emerge endogenously in the FTT:Transport model. With different current market 2 
shares and cost distributions (see Appendix B.5.1, Fig. B3) for different countries, consumers 3 
respond to policies differently across different markets.  4 
 5 
To study the interactions between policies, we simultaneously implement the policies in the 6 
model. We define the interactions between policies in terms of the total effectiveness minus 7 
the effectiveness of individual policies to measure whether certain combinations achieve more 8 
or less than their individual components:  9 

/K,(E1, E2) = 7GG(E1, E2) − 7GG(E1) − 7GG(E2) 10 

where /K,(E1, E2)  is the interaction between two policies, 7GG(E1, E2) 11 
is the total effectiveness of two policies, 7GG(E1)  and 7GG(E2)  are the effectiveness of 12 
policies E1 and E2, respectively, when two policies are both present and used simultaneously. 13 
We cannot isolate the impacts of either policy in a scenario where they are both present and 14 
interacting simultaneously. /K,(E1, E2) is positive if there is a reinforcement effect between 15 
two policies and /K,(E1, E2) is negative if there is a trade-off effect between two policies. In 16 
this paper, the sizes of the reinforcement effect and the trade-off effect are determined by the 17 
magnitude of /K,(E1, E2).	Hence, the larger the reinforcement effect is, the larger the 18 
‘additional effectiveness’ will be in reducing CO2 emissions for combining two policies in a 19 
package (see Equation 8 for the definition of policy effectiveness). If policies do not 20 
interact,	/K,(E1, E2) =0 and 7GG(E1, E2)=	7GG(E1)+	7GG(E2). Note that this calculation 21 
requires three FTT simulations, and since they are path-dependent, this implies the comparison 22 
of three independent storylines, which could differ across several dimensions. 23 

4.3.3 Policy cost-effectiveness 24 

We consider the cost of a policy in three dimensions: the cost to consumers (ConsumerCost), 25 
the cost to the Exchequer (e.g. EV subsidies) (ExchequerCost), and the cost to manufacturers 26 
(MCost) (e.g. for fuel economy standards and EV mandates). For clarity, we assume that the 27 
costs are positive for individual parties/groups. For example, we assume that the annual 28 
registration tax is a positive cost to car owners and not a negative cost to the government. This 29 
approach captures how the costs of policies vary as a result of the different levels of policies. 30 
Hence, we have: 31 
 32 
																													=Q,*QC, = *QKCRSHT*QC, + 7EIℎHWRHT*QC, + ?*QC,                         (10) 33 
 34 
The cost-effectiveness of a policy is equal to the change in the cumulative emissions as a result 35 
of the policy (7GGHI,"JHKHCC) divided by the total cost of the policy (=Q,*QC,). Notably, we 36 
do not include any discounting in the cost calculation. Hence, we have the following: 37 

																																																		*QC,	HGGHI,"JHKHCC =
9::/;*#</=/44

>?*@?4*
                                                       (11) 38 

The methodology for calculating the cost for each policy is documented in Appendix D.  39 

5. Data collection 40 

(9) 
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For the present study, an extensive original database detailing the technological profile of cars 1 
and populations was built. The 2016 data for new registration per vehicle model type were 2 
obtained from MarkLines [66] and matched to recent prices and car specifications, extracted 3 
from the official websites of the manufacturers. Data gathering for FTT:Transport is described 4 
in detail in [9].  5 

The data sources and key parameters for the FTT:Transport model are presented in Appendix 6 
A.1 (Table A1) and Appendix A.2 (Table A3-A7), respectively.  7 

6. Policy scenarios and assumptions 8 

In this study, policies are first tested individually, and then we combine the policies to assess 9 
the interactions between policies. The scenarios are modelled to demonstrate the impact of 10 
individual policies and combinations of policies on CO2 emissions until 2050. The analysis 11 
consists of 63 scenarios, including all possible policy combinations of six commonly seen 12 
policies for five countries. Table 1 provides an overview of these scenarios.   13 

  14 
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Table 1 1 
An overview of the scenarios. 2 
1 policy  
scenario 

2 policies 
scenario 

3 policies scenario 4 policies scenario 5 policies scenario  6 policies 
scenario 

1. RT 1. RT+FE 1. FE+FT+EVS 1. KS+FT+VT+EVS 1. KS+FT+VT+EVS+FE 1. KS+FT+VT 
+EVS+FE+RT 

2. FT 2. RT+FT 2. FE+FT+RT 2. KS+FE+VT+EVS 2. KS+VT+EVS+FE+RT  
3. EVS 3. EVS+RT 3. EVM+FT+RT 3. KS+FT+FE+VT 3. KS+FT+VT+EVS+RT  
4. VT 4. FT+FE 4. EVM+RT+FT 4. KS+RT+VT+EVS 4. KS+FT+EVS+FE+RT  
5. FE 5. EVS+FT 5. FE+EVM+FT 5. KS+RT+FE+VT 5. KS+FT+VT+FE+RT  
6. EVM 6. EVS+FE 6. EVS+FE+EVM 6. KS+RT+FT+VT 6. FT+VT+EVS+FE+RT  
 7. VT+RT 7. EVS+FE+RT 7. KS+FT+FE+EVS   
 8. VT+FT 8. EVS+RT+EVM 8. KS+FE+EVS+RT   
 9. VT+FE 9. EVS+RT+FT 9. KS+RT+FT+EVS   
 10. VT+EVS 10.VT+RT+FT 10. KS+RT+FT+FE   
 11. FT+EVM 11.EVS+FT+VT 11. RT+FE+VT+EVS   
 12. RT+EVS 12.RT+VT+FE 12. FT+FE+VT+EVS   
 13. FE+EVM 13.FT+VT+FE 13. FT+VT+EVS+RT   
 14. EVS+EVM 14.VT+EVM+RT 14. RT+FT+VT+FE   
 15. VT+EVM 15.FT+VT+EVM 15. RT+FT+FE+EVS   
  16.EVS+VT+EVM    
  17.FE+EVM+VT    
  18.EV+VT+RT    
  19.FE+FT+EVM    
  20.EVM+FT+EVS    

Note: RT = “Registration Tax”; FT= “Fuel Tax”; EVS = “EV Subsidy”; VT= “Vehicle Tax”; FE= “Fuel Economy 3 
Standard”; EVM = “EV Mandate” 4 

Policy assumptions for the scenarios are presented in Table 2. Under individual policy 5 
scenarios, policy measures that have already been implemented will continue to be used in the 6 
future with the same dynamics, but with increased stringency. In this paper, policy stringency 7 
is defined as a higher price of CO2 mitigation. For taxes, a higher price per unit of CO2 implies 8 
higher stringency. A higher subsidy is interpreted as more stringent than a lower subsidy. 9 
Larger improvements in fuel efficiency for new cars imply more stringent fuel economy 10 
regulations. In addition, an EV mandate is more stringent when the government sets a higher 11 
EV sales target.      12 

Assuming that policies will become more stringent in the future, financial incentives will be 13 
50% higher than those of the current policies in individual countries. 6  We assume that 14 
passenger car owners/operators would pay a registration fee/vehicle tax based on engine size 15 
or their emissions, consistent with existing policies around the world. Zero emission vehicles 16 
such as EVs will be exempt from paying car acquisition taxes (VT) until 2050. The amount of 17 
EV subsidies depends on battery size and EV ranges. We assume that EV subsidies would be 18 
phased out by 2040.  19 

Following the proposals by the EU and US, in the ‘fuel economy regulation scenario’, we 20 
assume that current inefficient petrol cars and diesel cars would be phased out in 2025, replaced 21 
by more advanced models featuring additional innovations designed to reduce energy use and 22 
emissions. Beyond this, we assume that the fuel economy for the advanced petrol and diesel 23 

 
6 The figure 50% was chosen for the sake of a uniform analaysis across policy instruments only for identifying synergies and 
interference effects and not for any normative purpose. 



  
 
 
 

 14 

cars is 30% higher than that of the current petrol cars in the UK, and 20% higher than that in 1 
the US. Since the long-term fuel economy standards (up to 2030) for Japan, China and India 2 
have not yet been recorded/published, we used adopted fuel economy standards in our analysis. 3 
Hence, in the ‘fuel economy regulation scenario’, we assume that current petrol and diesel cars 4 
in China, India, and Japan would be phased out by 2030. Instead, they would be replaced by 5 
advanced petrol and diesel cars that will be 35% more efficient than the current petrol cars in 6 
China, and 20% more efficient than those in Japan and India, as shown in Table 2.  7 

Since the EV mandate is absent in the UK, India and Japan, we assume that these would be 8 
introduced and that their stringencies would be the same for other countries such as China, for 9 
scenario analysis purposes. Under the EV mandate scenario, we assume that 10% of new car 10 
sales are EV, consistent with the level China proposed beginning in the year 2019. For the 11 
purpose of scenario analysis, we assume that the level of EV mandates would remain constant 12 
until 2050. We acknowledge that EV mandates could become more stringent over time. Thus, 13 
a more stringent scenario is tested and demonstrated in Appendix G. Notably, in the 14 
FTT:Transport model, the initial diffusion of EVs will lead to further EV diffusion. This 15 
implies that EV mandates can be removed after a certain sales threshold is reached.  16 

Table 2 17 
Policy assumptions in the scenario analysis from 2020 to 2050. 18 

UK  2020  2025 2030 2035 2040 2045 2050 
Registration tax $120-$1200 $120-$1200 $120-$1200 $120-$1200 $120-$1200 $120-$1200 $120-$1200 
Fuel tax $0.9 $0.9 $0.9 $0.9 $0.9 $0.9 $0.9 
EV subsidy $3000-$5250 $3000-$5250 $3000-$5250 $3000-$5250 $3000-$5250 -- -- 
Vehicle Tax1 $30-$450 $30-$450 $30-$450 $30-$450 $30-$450 $30-$450 $30-$450 
Fuel economy 
regulation  

-- 30% 30% 30% 30% 30% 30% 

EV mandate 10% 10% 10% 10% 10% 10% 10% 
 19 

US 2020 2025 2030 2035 2040 2045 2050 
Registration tax $290-$600 $290-$600 $290-$600 $290-$600 $290-$600 $290-$600 $290-$600 
Fuel tax $0.075 $0.075 $0.075 $0.075 $0.075 $0.075 $0.075 
EV subsidy $7000-$14250 $7000-$14250 $7000-$14250 $7000-$14250 $7000-$14250 -- -- 
Vehicle tax1 $1880-$3100 $1880-$3100 $1880-$3100 $1880-$3100 $1880-$3100 $1880-$3100 $1880-$3100 
Fuel economy 
regulation  

-- 20% 20% 20% 20% 20% 20% 

EV mandate 10% 10% 10% 10% 10% 10% 10% 
 20 

Japan 2020 2025 2030 2035 2040 2045 2050 
Registration tax $320-$480 $320-$480 $320-$480 $320-$480 $320-$480 $320-$480 $320-$480 
Fuel tax $0.75 $0.75 $0.75 $0.75 $0.75 $0.75 $0.75 
EV subsidy $7500-$14000 $7500-$14000 $7500-$14000 $7500-$14000 $7500-$14000 -- -- 
Vehicle Tax1 $580-$1260 $580-$1260 $580-$1260 $580-$1260 $580-$1260 $580-$1260 $580-$1260 
Fuel economy 
regulation  

-- -- 20% 20% 20% 20% 20% 

EV mandate 10% 10% 10% 10% 10% 10% 10% 
 21 

China 2020 2025 2030 2035 2040 2045 2050 
Registration tax $80-$380 $80-$380 $80-$380 $80-$380 $80-$380 $80-$380 $80-$380 
Fuel tax $0.9 $0.9 $0.9 $0.9 $0.9 $0.9 $0.9 
EV subsidy $8000-$14000 $8000-$14000 $8000-$14000 $8000-$14000 $8000-$14000 -- -- 
Vehicle Tax1 $1000-$4600 $1000-$4600 $1000-$4600 $1000-$4600 $1000-$4600 $1000-$4600 $1000-$4600 
Fuel economy 
regulation  

-- -- 35% 35% 35% 35% 35% 

EV mandate 10% 10% 10% 10% 10% 10% 10% 
 22 

India 2020 2025 2030 2035 2040 2045 2050 
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Registration tax $440-$1500 $440-$1500 $440-$1500 $440-$1500 $440-$1500 $440-$1500 $440-$1500 
Fuel Tax $0.75 $0.75 $0.75 $0.75 $0.75 $0.75 $0.75 
EV subsidy $1000-$3000 $1000-

$3000 
$1000-$3000 $1000-$3000 $1000-$3000 -- -- 

Vehicle Tax1 $130-$450 $130-$450 $130-$450 $130-$450 $130-$450 $130-$450 $130-$450 
Fuel economy 
regulation  

-- -- 20% 20% 20% 20% 20% 

EV mandate 10% 10% 10% 10% 10% 10% 10% 

1Zero emissions vehicles such as EVs are exempt from paying vehicle tax until 2050. 1 

7. Results 2 

7.1 Baseline scenario  3 

Fig. 1 presents the results from our model for the policy scenarios when there are no policies 4 
in place. The baseline scenarios are used as benchmarks for other scenarios with incentives. As 5 
shown in Fig. 1, in the absence of new policies, India, the US, and the UK are projected to be 6 
dominated by petrol cars. Hybrid cars in Japan generate around 0.4 Tpkm/year (Tera person-7 
kilometres per year), and electric cars will generate around 1.3 Tpkm/year in China by 2050.  8 

 9 

 10 

Fig. 1. Baseline scenario results. Passenger car transport demand in Tpkm/year for the UK, 11 
US, Japan, China, and India. 12 

7.2 Scenarios with individual policies  13 

This section analyses the effectiveness of individual policies when these incentives are 14 
introduced independently (without interactions) for different countries. Tables 3 and 4 show 15 
the effectiveness and cost-effectiveness of individual policies.  16 
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Among financial incentives, the annual registration tax is the most effective in all the countries. 1 
This is because the total cost of the annual registration tax is among the highest of all policies. 2 
For example, in the US, the annual registration tax is USD 600 per year under the high 3 
registration tax scenario. For buyers that hold on to their cars for 10 years, this amounts to USD 4 
6,000 over the lifetime of a car.  5 

Comparatively, the effectiveness of financial incentives is the lowest in India. This is because 6 
the shares for EVs and hybrid cars are still minimal in India. When the shares for new energy 7 
technologies are small, the rate of diffusion is low because many people do not have access to 8 
EVs or an EV infrastructure and perhaps do not trust EVs (e.g. range anxiety). In such a 9 
situation, financial incentives affect only a very small subset of all vehicle owners.  10 

Among the five countries studied, the EV subsidy is the most effective in China, leading to 420 11 
MtCO2 cumulative emissions reductions. In contrast, the diffusion of EVs as a result of EV 12 
subsidies has a minimal effect on the total emissions in the PLDV sector in India and Japan. In 13 
India, this is because the shares for EVs are very small (less than 0.1%) despite the presence 14 
of EV subsidies, which is the lowest among all of the countries. Similarly, while the shares for 15 
EVs are higher in Japan than India, the shares for EVs (in the car fleet) in Japan were still 16 
below 0.3% in 2018, and 1% in 2019 in China. The lower the market shares are for the 17 
technologies, the larger the lock-in effect is in the FTT model, and the lower the rate of 18 
technological diffusion is.  19 

Table 3  20 
Cumulative emissions reduction from PLDVs (MtCO2 emissions) as a result of vehicle tax (VT), 21 
annual registration tax (RT), fuel tax (FT), EV subsidy (EVS), fuel economy standards (FE), EV 22 
mandate (EVM).  23 

Emissions 
reduction (MtCO2)  
 Policy                UK                                 US Japan China India 
VT 2.7 118.2 5.0 157.1 2.6 
RT 77.5 2185.4 34.0 764.7 169.0 
FT 18.8 35.8 17.2 249.0 13.6 
EVS 88.1 115.9 1.8 423.0 5.1 
FE 194.7 2743.1 69.1 1313.2 1350.3 
EVM 160.6 1666.1 52.3 1844.7 1247.2 

 24 
Table 4  25 
The cost-effectiveness of individual policies (2016 USD/tCO2).  26 
Note: the values are the average costs per tCO2 avoided.  27 

Cost of policy ($/ton CO2)       
Policy         UK         US        Japan       China        India 
VT 512.1 5207.9 8664.7 1678.9 8038.3 
RT 1833.3 479.2 5025.9 151.2 3459.9 
FT 2247.9 439.0 1574.8 865.9 2098.5 
EVS 88.5 100.8 955.1 365.1 136.1 
FE 29.7 16.7 12.7 14.7 10.6 
EVM 3.4 2.8 11.7 1.2 3.4 

 28 
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Therefore, when the shares for the new energy technologies are small, we find that EV 1 
mandates are more effective than financial incentives. As shown in Table 3, cumulative 2 
emissions are reduced by more than 1000 MtCO2 in India. Since there are more first-time car 3 
buyers in India, we assume that there are proportionally more new cars in India than elsewhere, 4 
and that the India’s effective turnover rate (or buying rate) would therefore be higher than in 5 
developed countries. In fact, we find that the EV mandate is the most cost-effective policy in 6 
reducing emissions and encouraging the diffusion of EVs in all countries. This finding 7 
contradicts the economic theory that taxes (or technology-neutral policies) are more cost-8 
effective than technology-specific strategies [67], such as the EV mandate. We argue that in 9 
the presence of market and infrastructure failure within the transport sector, without 10 
technologically specific policies, consumer choices could not be incentivised collectively by 11 
an externality price. 12 

Our results differ from the findings of Fox et al. [68] that tax scenario is more cost-effective 13 
than technology-specific standards such as EV mandates. These differences stem from the 14 
strong path-dependence structure in the FTT:Transport model. In the present study, we assume 15 
that the EV mandate has a plateau, instead of becoming more stringent over time (as assumed 16 
by Fox et al. [68]). In the FTT:Transport model, once the EV reaches a certain market share, 17 
the technology will take off without more stringent EV mandates.   18 

Under the ‘fuel economy scenario assumptions’, advanced petrol and advanced diesel cars 19 
penetrate the market, replacing conventional petrol cars and diesel cars. Among the US, Japan, 20 
and India, we find that the fuel economy regulation is more effective in the US. This is because 21 
there are a large number of luxury petrol cars (i.e. engine size 2000cc and above, such as SUVs) 22 
in the baseline scenario in the US. Thus, we find that as a result of the ‘fuel economy scenario 23 
assumptions’, cumulative emissions fall by more than 2000 MtCO2 in the US.  24 

7.3 Effectiveness and cost-effectiveness of two policy combinations – scenarios with 25 
interactions 26 

In this section, we study how the effectiveness of policies changes when two policies are 27 
combined. Overall, we find that the sum of the effectiveness of two policies is generally not 28 
equal to the sum of the effectiveness of policies applied individually, but it could be either 29 
smaller (trade-off effect) or larger (reinforcement effect) than two policies implemented on 30 
their own, depending on the structure and levels of policies (Fig. 2). The cost of each policy 31 
combination (Table 6) and the average cost for each policy combination (average efficiencies) 32 
are shown in Fig. 3. Thus, we conclude two main observations from the scenario analysis.  33 

First, we generally find a trade-off effect between the various types of financial incentives 34 
under this analysis (as shown in the red bars of Fig. 2), whereas the degree of the trade-off 35 
effect depends on the stringency of individual policies in each country. This is because 36 
financial incentives are charged based on the fuel economy (e.g. fuel tax) or engine size (e.g. 37 
annual registration tax). If consumers are incentivised to buy more energy-efficient PLDVs 38 
because of one of the incentives, the ‘additional effectiveness’ of adding more financial 39 
incentives will be lower because the costs (of pairing incentives) for consumers of more 40 
efficient cars will be less than those for consumers with less efficient cars. For instance, when 41 
a car buyer chooses a more efficient vehicle as a result of the annual registration tax, the 42 
effectiveness of a fuel tax falls as the fuel economy improves. Hence, we find that in all 43 
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countries, there is a trade-off effect between annual registration tax, vehicle tax, fuel tax and 1 
EV subsidy.  2 

Fig. 3 shows that, in general, the costs of two financial policies in combination are higher than 3 
the average cost of two policies. This finding, to some degree, confirms the principle of welfare 4 
economics that only one tax should be used at a time to maximise cost-effectiveness.  Overall, 5 
when the combination of policies is not sufficiently effective, these policies could result in very 6 
high costs per ton CO2 emission reduction. For instance, in the case of Japan, the average cost 7 
and combination cost of vehicle tax and EV subsidy are both over 6000 USD/ton CO2 emission 8 
reduction (Table 5).    9 

Table 5  10 
The interaction effect between two policies. When the interaction effect is positive, there is a 11 
reinforcement effect between the two policies. When the interaction effect is negative, there 12 
is a trade-off effect between two policies.  13 

The interaction effect of two policies 
(MtCO2)     
Scenario UK US Japan China India 
1.RT+FE -27.1 -501.8 -25.5 -322.3 -320.9 
2.RT+FT -18.7 -34.6 -16.7 -243.2 -24.2 
3.EVS+RT -0.84 -98.7 -1.8 -401.6 -16.3 
4. FT+FE -6.5 -0.93 -10.1 -66.5 -14.8 
5. EVS+FT  -0.38 -29.4 -0.49 -99.3 -1.3 
6.EVS+FE -0.21 -1.2 -0.02 -269.5 -1.0 
7. VT+RT -17.1 -129.2 -5.1 -190.5 -3.0 
8. VT+FT -0.02 -0.48 -1.3 -3.3 -0.07 
9. VT+FE -14.7 -4.1 -2.5 -109.6 -0.09 
10. VT+EVS -0.16 -36.3 -0.14 -10.8 -1.2 
11. FT+EVM 8.1 20.3 9.0 200.7 19.0 
12. RT+ EVM 62.3 2324.1 16.1 536.9 676.8 
13. FE+ EVM 46.4 715.2 23.3 790.1 492.2 
14. EVS+ EVM 6.9 150.0 3.5 274.8 21.5 
15. VT+ EVM 12.9 145.6 0.69 10.8 0.63 

 14 
  15 
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Table 6 1 
The cost-effectiveness of two policy combinations (2016 USD/tCO2). 2 

Cost of two policy combinations 
($/ton CO2)       
Scenario UK US Japan China India 
1.RT+FE 925.5 274.4 3998.4 87.1 1655.0 
2.RT+FT 2151.2 471.6 3034.9 574.3 2709.2 
3.EVS+RT 1833.7 483.6 5093.9 418.4 3606.1 
4. FT+FE 928.7 81.2 1668.8 339.2 1395.1 
5. EVS+FT  2448.4 447.1 1755.1 1057.4 2406.9 
6.EVS+FE 38.5 28.2 212.4 115.1 55.2 
7. VT+RT 2288.8 734.4 5709.5 491.5 3726.6 
8. VT+FT 1730.6 1575.6 2176.5 1288.9 2418.9 
9. VT+FE 66.0 204.8 1082.0 200.5 115.1 
10. VT+EVS 489.4 2646.8 6641.8 774.0 3683.7 
11. FT+ EVM 569.2 73.5 805.2 196.2 229.6 
12. RT+ EVM 203.6 178.1 1301.4 32.4 95.1 
13. FE+ EVM 17.9 7.6 60.4 5.6 7.4 
14. EVS+EVM 37.9 40.9 315.4 185.3 7.0 
15. VT+EVM 44.7 269.0 706.5 128.4 16.0 

 3 
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 1 

Fig. 2. Policy effectiveness (in absolute values) and interactions between policies. Policy 2 
effectiveness is defined as cumulative emissions reductions (between 2016 and 2050) achieved 3 
by a given policy or set of policies. The bar diagram shows the effectiveness of policies in 4 
absolute terms (i.e. CO2 emissions reductions achieved by the policies). The grey bars show 5 
the total effectiveness of two policies of the corresponding scenarios. The green bar shows the 6 
reinforcement effect between the policies in the corresponding scenarios. The red bars show 7 
the trade-off effect between two policies in the corresponding scenarios.  8 

Second, there is a reinforcement effect between EV mandates and other policies, as shown in 9 
the green bars in Fig. 2. Hence, the costs of combining EV mandates and their pairing policies 10 
(except for the EV subsidy) are lower than the average costs of two policies, the extent of which 11 
depends on the reinforcement effects between the two policies (Fig. 3). Thus, one could see 12 
the EV mandate as an ‘enabling’ policy, enhancing the effects of other policies. The size of the 13 
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reinforcement effect depends on specific countries and the magnitude of the policies. In 1 
particular, the interaction effects are among  2 

 3 

Fig. 3. Left axis: the red bars show the trade-off effects between two policies in the 4 
corresponding scenarios. The green bars show the reinforcement effect between the policies in 5 
the corresponding scenarios. Right axis: the green error bars show average efficiencies of 6 
corresponding scenarios. The black error bars show the efficiencies of two policy combinations.  7 

the largest between annual registration taxes and EV mandates, as well as between fuel 8 
economy regulations and EV mandates. The EV mandates increase the availability and 9 
visibility of EVs. A higher availability of EVs enables the other policies to have stronger effects 10 
by giving a broader range of choice to consumers. Notably, it is implicitly assumed for clarity 11 
that the higher availability of EVs would be accompanied by wider deployment of the charging 12 
infrastructure. Regulations or policies that increase the EV fleet shares by imposing long-term 13 
fleet emissions targets for vehicle manufacturers are also essential.  14 
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In reality, there are likely to be more than two combined policies (since most policy 1 
frameworks already include more than two policies). The following section extends our 2 
conclusions for two policy interactions to the scenarios with three to six policies.  3 

7.4 Effectiveness and cost-effectiveness of more than two policy combinations – scenarios with 4 
multiple interactions 5 

In this section, we study the interactions between multiple policy instruments applied 6 
simultaneously by adding policies to the existing two-policy mixes and examining the changes 7 
in interactions between policies. The objective of this exercise is to understand how the trade-8 
off and synergetic effects between policy strategies evolve, and the implications of the 9 
interactions between multiple policies on policymaking. Here we will focus on three-policy 10 
mixes (Tables 7–8 and Fig. 4), as more complex mixes could logically be inferred from these 11 
results. We show results for four to six policy mixes in Tables E1–E6 in Appendix E. 12 

As shown in Fig. 4, in most cases, the effectiveness of three policies combinations (the grey 13 
bars) are higher than two policy combinations. When three policies are combined, consistent 14 
with two policy combinations, trade-offs originate from combining multiple financial policies, 15 
while synergies arise from combining policies with the ‘enabling’ EV mandates, multiplying 16 
their impact.  17 

The overall trade-off effects of three policy combinations are larger than those trade-off effects 18 
of two policy combinations, due to the accumulation of trade-off effects between pairs of 19 
policies. However, we observe that the overall trade-off effects of three policy combinations 20 
are smaller than the sum of the trade-off effects of individual pairs. The explanation for this 21 
finding is that the additional financial incentive (e.g. EV subsidy) increases the shares for low 22 
emissions vehicles (e.g. EVs) slightly, and this encourages more people to purchase EVs with 23 
the same policy combinations improves the effectiveness of the policy package. Hence, the 24 
cost of three policy combinations is smaller than the average cost of individual pairs, as shown 25 
in Table 7. It is more cost-effective to combine three financial incentives than pairing financial 26 
incentives. This result is contrary to what is predicted by welfare economics, that there are  27 
more penalties the more instruments are used. In the FTT:Transport model, due to the 28 
interactions between policies, the introduction of another layer of policy could improve the 29 
overall effectiveness of the ‘policy package’, and thereby improve the cost-effectiveness of the 30 
original policy combination.   31 

Similarly, in the cases of four- and five-policy combinations, in the absence of an EV mandate, 32 
we observe that while the overall trade-off effects increase with the number of policies, the 33 
overall trade-off effects are smaller than the sum of the trade-off effects of individual pairs. For 34 
example, the trade-off effects between fuel tax, EV subsidies, vehicle tax, and fuel economy 35 
standards are smaller than the trade-off effect when the registration tax is added to the policy 36 
package for all of the countries (Tables E1 and E3 of Appendix E). This is because in the FTT 37 
model, due to path dependency (see Equation 1), when the shares for EV are very low (as 38 
assumed in most countries), and the original policy package (four policy package) does not 39 
lead to significant change in the diffusion pathway, addition policies such as annual registration 40 
tax offers limited benefits for significantly reducing emissions. 41 
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 1 

Fig. 4. Policy effectiveness (in absolute values) and interactions between policies. Policy 2 
effectiveness is defined as cumulative emissions reductions (between 2016 and 2050) 3 
achieved by a given policy or set of policies. The bar diagram shows the effectiveness of 4 
policies in absolute terms (i.e. CO2 emissions reductions achieved by the policies). The grey 5 
bars show the total effectiveness of three policies of the corresponding scenarios. The green 6 
bar shows the reinforcement effect between the policies in the corresponding scenarios. The 7 
red bars show the trade-off effect between the policies in the corresponding scenarios.  8 
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Table 7 1 
The interaction effect between three policies. When the interaction effect is positive, there is a 2 
reinforcement effect between the two policies. When the interaction effect is negative, there is a trade-3 
off effect between two policies.  4 

The interaction effect of three policies (MtCO2)      
Scenario UK US Japan China India 
1.FE+FT+EVS -6.9 -30.1 -10.1 -400.1 -16.1 
2.FE+FT+RT -49.3 -523.4 -41.4 -514.4 -319.4 
3.EVM+RT+VT 56.2 2196.3 20.9 656.3 629.7 
4.EVM+RT+FT  49.7 2292.6 7.2 440.2 664.9 
5.FE+KS+FT 46.5 665.2 20.8 887.3 382.7 
6.EVS+FE+EVM 51.4 860.3 25.1 715.2 502.1 
7.EVS+FE+RT -28.0 -603.2 -27.1 -921.6 -326.4 
8.EVS+RT+EVM 61.0 2207.8 14.2 407.3 667.6 
9.EVS+RT+FT -17.1 -122.6 -17.9 -717.3 -41.0 
10.VT+RT+FT -33.8 -141.9 -21.2 -401.3 -25.4 
11.EVS+FT+VT -0.52 -60.1 -1.4 -105.9 -2.1 
12.RT+VT+FE -53.7 -618.5 -30.6 -606.0 -321.0 
13. FT+VT+FE -20.0 -4.7 -13.0 -170.3 -12.0 
14.VT+KS+RT 60.2 2196.3 10.9 299.3 619.7 
15.FT+VT+EVM 18.0 146.5 7.2 197.5 525.9 
16.EVS+VT+EVM 17.5 253.9 3.3 231.3 19.5 
17.FE+EVM+VT 47.7 2077.1 5.3 407.9 432.7 
18.EV+VT+RT -16.2 -229.4 -4.8 -560.4 -17.4 
19.FE+RT+EVM 46.5 555.2 19.8 587.3 685.4 
20.EVM+FT+EVS 13.8 137.4 10.8 305.5 33.1 

 5 
In the presence of EV mandates, when three policies are combined, we find that there are 6 
always reinforcement effects between policies. Hence, the costs of three- policy combinations 7 
in the presence of an EV mandate are smaller than combinations of financial policies in the 8 
absence of an EV mandate. Moreover, the cost-effectiveness is the highest when the EV 9 
mandate is combined with fuel economy regulation and an EV subsidy for the US, the UK, 10 
Japan, and India. However, the sizes of the overall reinforcement effects are smaller than the 11 
sum of interaction effects between policies. For example, when an EV mandate is combined 12 
with annual registration tax and vehicle tax, we find that the overall reinforcement effects are 13 
smaller than the sum of the reinforcement effects and trade-off effects (i.e. the sum of 14 
interactions between EV mandate and fuel tax, interactions between EV mandate and vehicle 15 
tax, and the interactions between annual registration tax and vehicle tax). This is because the 16 
reinforcement effects between the EV mandates and the financial incentives fall as more 17 
financial incentives are added, due to limited effectiveness of a fixed EV mandate and the 18 
inertia of technological diffusion. Therefore, to maintain the same levels of reinforcement 19 
effects, it would be necessary to increase the stringencies of the EV mandate while adding 20 
financial policies (see Appendix G).   21 
 22 
In particular, the sizes of the overall reinforcement effects depend on the trade-off effects 23 
between policies relative to the reinforcement effects between policies. 24 
 25 
 26 
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Table 8 1 
The cost-effectiveness of three policy combinations (2016 USD/tCO2). 2 

Cost of three policy 
combinations ($/tCO2)         
Scenario         UK         US       Japan       China      India 
1.FE+FT+EVS 633.6 64.9 1020.1 349.3 345.0 
2.FE+FT+RT 861.4 243.4 1697.2 253.6 726.7 
3.EVM+RT+VT 443.1 202.1 1644.8 86.2 1097.6 
4.EVM +RT+FT  717.1 154.2 2113.9 107.7 810.6 
5.FE+ EVM +FT 312.3 34.3 897.1 150.0 121.6 
6.EVS+FE+ EVM 35.6 21.4 207.6 99.1 24.9 
7.EVS+FE+RT 525.0 215.5 2336.6 183.9 807.1 
8.EVS+RT+ EVM 448.4 157.6 1518.6 212.2 589.8 
9.EVS+RT+FT 1483.0 340.2 1659.3 441.9 1092.0 
10.VT+RT+FT 1562.6 741.0 1972.9 549.0 2215.7 
11.EVS+FT+VT 932.8 1325.7 2334.1 738.4 1732.2 
12.RT+VT+FE 547.7 375.7 2919.7 226.6 525.0 
13. FT+VT+FE 594.3 226.9 1200.2 490.0 641.9 
14.VT+ EVM +RT 443.1 202.1 1644.8 106.2 897.6 
15.FT+VT+ EVM 736.9 300.0 1703.5 537.5 600.6 
16.EVS+VT+ EVM 76.4 1559.4 1878.4 240.6 1012.4 
17.FE+ EVM +VT 37.4 101.8 379.6 61.8 70.7 
18.EV+VT+RT 1203.7 706.0 5102.3 469.0 3428.3 
19.FE+RT+ EVM 348.1 36.2 1014.0 176.4 739.6 
20. EVM +FT+EVS 677.6 118.6 819.2 342.6 681.3 

Thus, when four policies are combined, the overall reinforcement effects fall further as more 3 
policies are added, although there are still reinforcement effects between the EV mandate and 4 
other policies. Hence, the overall costs of policies are higher when financial incentives are 5 
added to the policy combinations with an EV mandate.  6 

When five policies are combined, the trade-off effects between policies start to dominate. 7 
Hence, we find that there are trade-off effects between an EV mandate, the fuel tax, the vehicle 8 
tax, the fuel economy regulation, and the annual registration tax, although the trade-off effects 9 
are much smaller than the sum of the trade-off effects between any financial incentives (Table 10 
E3 of Appendix E). For this reason, according to our analysis, in a policy mix, the presence of 11 
an EV mandate is a necessary but insufficient condition for the reinforcement effects between 12 
policies. 13 

7.5 Scenario analysis 14 

The scenario analysis in Fig. 5 illustrates the technological mixes as a result of financial 15 
incentives and fuel economy standards, and compares them with the technological mixes when 16 
EV mandates are introduced. When the EV mandates are added, as a result of the reinforcement 17 
effects, the shares for EVs increase significantly for all countries. Hence, cumulative emissions 18 
fall significantly, especially in developing countries (e.g., China and India). This suggests that 19 
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the EV mandate is an essential component of any policy mix, as it multiplies the effects of all 1 
the other policies multiple times.  2 

 3 

Fig. 5. PLDV service demand by 18 energy technologies in Tpkm/year for five countries. The 4 
first column shows the PLDV technological mix when vehicle tax, annual registration tax, fuel 5 
tax, EV subsidy, and fuel economy standards are combined. The second column shows the 6 
PLDV technological mix when the EV mandate is added to the financial policies and fuel 7 
economy standards.  8 

The overall policy effectiveness of the EV mandate is the smallest in Japan because of the rapid 9 
hybrid car diffusion in the baseline scenario takes over the market. Intuitively, we observe 10 
smaller emissions reduction effects in switching from hybrid cars to EVs, than in switching 11 
from conventional petrol or diesel cars to EVs. While financial incentives encourage people to 12 
purchase low-emission vehicles, these incentives might not be sufficient for the  purchase of 13 
EVs. The diversity of EVs and the availability of infrastructure deployed as a result of EV 14 
mandates have an impact on consumer preferences, especially when EV buyers are entitled to 15 
tax breaks and subsidies. If we assume that EV markets grow with their charging infrastructure, 16 
incentives that encourage the availability of EV models or EV charging stations (as we assume 17 
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happens with EV mandates) are necessary to support EV adoption and thus reduce emissions 1 
from passenger cars.  2 

8. Analysis and policy implications 3 

This research sought to promote a better understanding of the interactions between existing 4 
policies for policymakers in five major economies. We simulate scenarios for various incentive 5 
measures already implemented, and examine the interactions between policies by analyzing 6 
both trade-off and reinforcement effects between any pair of policy instruments and multiple 7 
policies. We created 63 scenarios, consisting of all possible policy combinations of the six 8 
commonly seen policies for five countries.  9 

Overall, we find that there are trade-off effects between all types of financial incentives because 10 
such incentives are charged based on the fuel economy (e.g. fuel tax) or engine size (e.g. annual 11 
registration tax). This implies that the outcomes of each policy combination are not merely 12 
additive. If consumers are incentivised to buy more energy-efficient vehicles due to one of the 13 
financial  incentives, then the effectiveness of the paired incentives will be lower because the 14 
total cost (of taxation) imposed on consumers buying more efficient cars is smaller than the 15 
taxation imposed on consumers buying less efficient cars. Hence, the existence of one incentive 16 
weakens the overall financial incentives of another policy.   17 

Policymakers should consider the trade-off effects, which weaken the overall effectiveness of 18 
the policy combinations. More stringent financial incentives have to be introduced to 19 
compensate for the trade-off effects of financial incentives. Our analyses on the interactions of 20 
multiple policies reveal that the overall trade-off effects of multiple policy combinations are 21 
smaller than the sum of the trade-off effects of individual pairs and that the effectiveness 22 
improves as more financial instruments are added to the existing policy mix. However, this 23 
may prove more costly as cost-effectiveness falls when more financial incentives are added. 24 
The results suggest there might be a trade-off between policy effectiveness and cost-25 
effectiveness of adding financial incentives.  26 

On the other hand, there are reinforcement effects between the EV mandate and all of the other 27 
policies. Since the EV adoption rate increases with higher starting EV shares, the EV mandate 28 
magnifies the impact of the other policies. When there are more EVs available, there are more 29 
choices for consumers, which improves the effectiveness of taxes on emissions in comparison 30 
with situations presenting fewer choices.  31 

We determine that while the EV mandate is not always the most effective policy to significantly 32 
cut emissions when introduced on its own, there are substantial reinforcement effects between 33 
an EV mandate and financial incentives (e.g. fuel tax, EV subsidy, annual registration tax). 34 
Therefore, it is more cost-effective to introduce financial incentives with the EV mandate. We 35 
find that in the analyses of multiple policy combinations, the presence of an EV mandate in 36 
policy mixes substantially reduces the cost of emission reductions. However, with an EV 37 
mandate, we find that overall reinforcement effects fall as more financial policies are added to 38 
the policy mixes. This suggests that a stronger EV mandate is required when more financial 39 
incentives are introduced to mitigate the trade-off effects (see Appendix G). As the number of 40 
EVs on the road increases, it will be possible to achieve further emissions reduction as a result 41 
of the existing financial incentives.  42 
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The non-linearity in a policy mix permits building policy combinations that lead to more 1 
effective outcomes than a set of policies developed independently. The appropriate number and 2 
selection of policies are dependent upon the prevailing economic conditions and the current 3 
structure of the automobile market in individual countries. Table 9 presents key findings 4 
regarding the effects of policies are introduced in isolation and in combination with other 5 
policies. Generally, we find that policy combinations achieve the highest reinforcement effect 6 
when an EV mandate is combined with fuel economy regulation. Certain car market conditions, 7 
such as the number of EVs on-road and stringencies of existing policies, are major influences 8 
on the choice of policies. Hence, in the UK and the US, we find that the reinforcement effect 9 
is the highest when an EV mandate is combined with fuel economy regulation, EV subsidies 10 
and registration taxes. In China, on the other hand, where the annual registration tax is 11 
relatively lower than in the US and the UK, the reinforcement effect is the highest when an EV 12 
mandate is combined with fuel economy regulations and fuel tax. In countries such as Japan, 13 
where current car fleets are already more fuel-efficient than other countries in this study, we 14 
find that the most effective combination emerges when fuel economy regulation is combined 15 
with EV mandates and an EV subsidy.  16 

The existence of synergistic effects contradicts basic principles of standard welfare 17 
environmental economics, which assumes that policies do not interact positively. The standard 18 
theory, which has considerable influence on present-day structuring of policies, states that the 19 
use of one instrument per externality should be used, and that more instruments would lead to 20 
inefficiencies. In our context here, this would mean observing only trade-offs. We do observe 21 
this, but only in a very limited number of cases. Due to path-dependence in transport systems, 22 
we find that the combination of policies of different natures and structures work most 23 
efficiently. For example, while a single fiscal instrument such as a tax on fuel would have to 24 
be unrealistically high to achieve emissions targets. However, in combination with other types 25 
of instruments – such as fuel economy regulations and EV mandates – such a tax could be 26 
substantially lower and produce the same outcome at a much lower cost to both public budgets 27 
and consumers 28 

Table 9.  29 
Summary of key results. Column 1 presents the most effective policy when the policy is 30 
introduced in isolation. Column 2 presents the combination with the largest reinforcement 31 
effect for each country. 32 
 Most effective policy in 

isolation 
The policy combination with the 
largest reinforcement effect 

UK FE EVM+FE+EVS+RT 
US FE EVM+FE+EVS+RT 
Japan FE EVM+FE+EVS 
China EVM EVM+FE+FT 
India FE EVM+FE+RT 

9. Conclusion 33 

General principles for road passenger transport policymaking, true for all markets, that can be 34 
inferred from this work are that one has to  (1) create or enhance the availability of zero-carbon 35 
vehicles, inorder to enhance the effectiveness of other policies, and (2) tax and/or regulate out 36 
the purchase and/or use of high carbon vehicles to disincentivise their presence on roads. If 37 
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either of those things is not done, the effectiveness and cost-effectiveness of policies, 1 
irrespective of what they are, are much lower than they could otherwise be. (3) Layering 2 
policies (adding policies to existing policies) without careful evaluation could be ineffective 3 
and cost inefficient due to policy interactions.  4 

Following that, policymakers must choose whether they prioritise effectiveness or cost-5 
effectiveness (cost over rapidity of emissions reductions). When synergies arise, lower 6 
stringency policies can be used to achieve goals; when interference arises, higher stringency 7 
has to be used to achieve goals. This can guide the choice of policymakers for the composition 8 
of policy packages, in which financial incentives generally tend to interfere with one another, 9 
whereas financial and non-financial policies tend to synergise. Across countries, fuel economy 10 
regulation that phases out less fuel-efficient cars is the most effective policy when introduced 11 
in countries with many large, conventional cars (e.g. the US). We find that policy synergies 12 
seem to be lower in Japan, where there are a number of hybrid cars in the baseline scenario. In 13 
the FTT:Transport model, the incumbent technologies have a distinct advantage and cause 14 
technological lock-in. Achieving a significant long-term CO2 emissions objective becomes 15 
more difficult with the same policy and stringency in the presence of technological lock-in. 16 
Hence, an EV mandate is a useful policy to kick-start the diffusion of EVs in countries where 17 
the shares for EVs are low.  18 

Notably, in this study, we assume that policies are introduced simultaneously when the shares 19 
for EVs are low. Further studies should look into the timing of the policies on the overall 20 
interactions between policies. Beyond these general rules, the model must be used with tailored 21 
scenarios to explore specific policy questions. We conclude that policy interactions are a very 22 
important topic to study, and that more systematic research should be conducted on this subject.  23 

Limitations exist in the current methodology and projections. We assume that consumer 24 
demand induces the diffusion of technology in the private passenger car transport sector and 25 
that automakers are treated exogenously.  26 

In this research, we find that an EV mandate is the most cost-effective policy. This is partly 27 
because we assume that the cost of an EV mandate to consumers is the difference between the 28 
prices of EVs and conventional cars (see Appendix D.5). Over time, consumers could 29 
potentially ‘gain’ from EV purchases if the prices of EVs were to fall below the prices of 30 
conventional cars due to technological learning. In reality, policies such as EV mandates set 31 
annual EV credit targets instead of sales targets, as assumed in this paper. We have not taken 32 
into consideration the cost of EV mandates on the manufacturers or the government. For 33 
instance, to facilitate the implementation of EV mandates or EV subsidies, governments and 34 
manufacturers often need to invest in the construction of EV-charging infrastructure, and this 35 
has not been considered here. Hence, we acknowledge that the cost consideration for EV 36 
mandate may be simplified. 37 

As with other energy models, there are parametric uncertainties regarding the FTT:Transport 38 
model. Sensitivity analyses were carried out to evaluate the effects of the parametric 39 
uncertainties on the sizes of policy interactions (see Appendix F).  40 

Appendix A: Data 41 
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A.1. Data sources for key variables in FTT:Transport 1 
 2 
For the present study, an original database detailing the technological profile of 3 
cars and populations was built, as required by the methodology. The data sources for the 4 
main variables are summarised in Table A1. 5 
 6 
Table A1 7 
Data sources for the main variables. 8 
Variable  Data source 
PLDV sales (differentiated by 
engine size and technology) 

MarkLines database[66] 

PLDV price  Car manufacturers’ websites / Car dealers’ websites 
Fuel cost (gasoline and diesel) [69]  
Electricity price [70] 
O&M cost  [71] 
Fuel economy  Car manufacturers’ websites  
Discount rate  [72] 

[73] 
Learning rate [74] 

[75]  
Mechanical survival rate  [76] 

[77] 
 9 
Table A2 10 
Data sources for the transport regression model 11 

Variables US UK  Japan China India 
Period                                1970-2015 1970-2015 1970-2011 1990-2015 1990-2015 
GDP per capita [78]  [78] [78] [78] [78] 
Oil price [79] [79] [79] [79] [79] 
Road length [80] [81] [82] [83] [84] 
Urbanization [85] [85] [85] [85] [85] 
Urban density  [86] [86] [86] [86] [86] 
Average fuel 
economy standard 

[87] [88] [88] [88] [88] 

PLDV kilometer 
per vehicle 

[89] [90] [82] [83] [84] 

      
A.2. Initial parameters 12 
 13 
Tables A3–A7 show the values of the parameters assumed in the model for the UK, the US, 14 
Japan, China and India, respectively.  15 
 16 
The learning rate and the discount rate are subject to a degree of uncertainty. To account for 17 
the uncertainties regarding learning rates, a sensitivity analysis is presented in Appendix F, 18 
where we examine the extent to which the difference in learning rate creates uncertainties for 19 
the model. 20 
 21 
Table A3 22 
The initial parameters assumed for the UK. 23 
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Type Engine 
size 

Prices of 
cars (USD/ 

vehicle) 

Standard 
deviation of 

price 
(USD/vehicle) 

Fuel 
cost 

(USD
/km) 

Energy 
use 

(MJ/vk
m) 

Private 
discount 

rate 
Learning 

rate 

Intangible 

Petrol 
Econ 16927 6504 0.09 1.70 0.15 1% 0.45 
Mid 31795 10901 0.10 1.77 0.15 1% 0.20 
Lux 40594 28669 N/A 2.15 0.15 1% 0.40 

Adv Petrol 
Econ 20312 6504 N/A 1.36 0.15 5% 0.45 
Mid 38153 10901 N/A 1.42 0.15 5% 0.20 
Lux 48712 28669 N/A 1.72 0.15 5% 0.40 

Diesel 
Econ 22931 22931 N/A 1.32 0.15 1% 0.82 
Mid 32758 32758 N/A 1.76 0.15 1% 0.94 

Lux 38483 38483 0.08 2.05 0.15 1% 0.90 

Adv Diesel 
Econ 27517 22931 0.04 1.05 0.15 5% 0.82 
Mid 39310 32758 0.05 1.40 0.15 5% 0.94 

Lux 46180 38483 0.06 1.64 0.15 5% 0.90 

CNG 
Econ N/A N/A N/A N/A 0.15 1% 0.00 
Mid N/A N/A N/A N/A 0.15 1% 0.00 

Lux N/A N/A N/A N/A 0.15 1% 0.00 

 Econ N/A N/A N/A N/A 0.15 5% 0.00 

Flex Fuel Mid N/A N/A N/A N/A 0.15 5% 0.00 

 Lux N/A N/A N/A N/A 0.15 5% 0.00 

Hybrid 
Econ 25224 1217 0.05 1.29 0.15 10% 1.20 
Mid 36034 4895 0.06 1.35 0.15 10% 0.30 

Lux 47767 11810 0.08 2.02 0.15 10% 0.10 

Electric 
Econ 22931 970 0.02 0.54 0.15 15% 0.00 
Mid 32758 1200 0.03 0.76 0.15 15% 0.00 

Lux 51656 1350 0.04 0.94 0.15 15% -0.60 
Note: ‘Econ’ denotes cars with engine sizes smaller or equal to 1400cc. ‘Mid’ denotes cars with engine sizes larger than 1 
1400cc and smaller than 2000cc. ‘Lux’ denotes cars with engine sizes larger than 2000cc.  2 
N/A indicates that data is not available or that the car technology is not widely used in the country. 3 
 4 
Table A4 5 
The initial parameters assumed for the US.       6 

Type Engine 
size 

Prices of 
cars (USD/ 

vehicle) 

Standard 
deviation of 

price  
(USD/vehicle) 

Fuel 
cost 

(USD
/km) 

Energy 
use 

(MJ/vk
m) 

Private 
discount 

rate 
Learning  

rate 

Intangible 

Petrol 
Econ 17939 2283 0.07 2.74 0.15 1% -0.72 
Mid 20749 4391 0.07 2.87 0.15 1% -0.06 
Lux 29744 15588 0.09 3.42 0.15 1% 0.42 

Adv Petrol 
Econ 21527 2283 0.06 2.19 0.15 5% -0.72 
Mid 24899 4391 0.06 2.30 0.15 5% -0.06 

Lux 35693 15588 0.07 2.74 0.15 5% 0.42 

Diesel 
Econ N/A N/A 0.06 N/A 0.15 1% 0.00 
Mid 24899 1202 0.07 2.92 0.15 1% 0.00 

Lux 35693 3043 0.08 3.47 0.15 1% 0.00 

Adv Diesel Econ N/A N/A 0.05 N/A 0.15 5% 0.00 
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Type Engine 
size 

Prices of 
cars (USD/ 

vehicle) 

Standard 
deviation of 

price  
(USD/vehicle) 

Fuel 
cost 

(USD
/km) 

Energy 
use 

(MJ/vk
m) 

Private 
discount 

rate 
Learning  

rate 

Intangible 

Mid 35855 1202 0.05 2.34 0.15 5% 0.00 

Lux 51398 3043 0.06 2.78 0.15 5% 0.00 

CNG 
Econ 17939 2283 0.03 1.37 0.15 1% 0.00 
Mid 20749 4391 0.04 1.61 0.15 1% 0.00 
Lux 29744 15588 0.05 1.81 0.15 1% 0.00 

Flex Fuel 
Econ 19733 2103 0.05 1.94 0.15 5% 0.00 

Mid 22834 4560 0.05 2.04 0.15 5% 0.00 

Lux 32718 13901 0.06 2.43 0.15 5% 0.00 

Hybrid 
Econ 23958 984 0.03 1.29 0.15 10% 0.00 
Mid 28795 3881 0.03 1.49 0.15 10% -0.12 

Lux 34007 14744 0.04 2.20 0.15 10% -0.06 

Electric 
Econ 29744 1230 0.00 0.54 0.15 15% -0.12 
Mid 30707 3940 0.01 0.76 0.15 15% -0.40 

Lux 90229 24942 0.01 0.94 0.15 15% -1.90 
Note: ‘Econ’ denotes cars with engine sizes smaller or equal to 1400cc. ‘Mid’ denotes cars with engine sizes larger than 1 
1400cc and smaller than 2000cc. ‘Lux’ denotes cars with engine sizes larger than 2000cc.  2 
N/A indicates that data is not available or that the car technology is not widely used in the country. 3 
 4 
Table A5 5 
The initial parameters assumed for Japan 6 

Type Engine 
size 

Prices of 
cars 

(USD 
/vehicle) 

Standard 
deviation of 

price 
(USD/vehicle) 

Fuel  
cost 

(USD 
/km) 

Energy 
use 

(MJ/vkm
) 

 
Private 

discount 
rate 

Learning 
rate 

Intangible 

Petrol 
Econ 12936 2872 0.06 1.90 0.15 1% 0.76 
Mid 21321 3746 0.07 2.01 0.15 1% 0.52 

Lux 27991 15787 0.08 2.28 0.15 1% 0.40 

Adv Petrol 
Econ 15523 2872 0.06 1.52 0.15 5% 0.76 
Mid 25584 3746 0.06 1.61 0.15 5% 0.52 

Lux 33589 15787 0.08 1.82 0.15 5% 0.40 

Diesel 
Econ N/A N/A 0.06 2.12 0.15 1% 0.00 
Mid N/A N/A 0.07 2.40 0.15 1% 0.00 

Lux 33590 3432 0.09 2.95 0.15 1% 0.00 

Adv Diesel 
Econ N/A N/A 0.05 1.70 0.15 5% 0.00 
Mid N/A N/A 0.06 1.92 0.15 5% 0.00 

Lux 40306 3432 0.07 2.36 0.15 5% 0.00 

CNG 
Econ N/A N/A 0.05 N/A 0.15 1% 0.00 
Mid N/A N/A 0.06 N/A 0.15 1% 0.00 
Lux N/A N/A 0.07 N/A 0.15 1% 0.00 

Flex Fuel 
Econ N/A N/A N/A N/A 0.15 5% 0.00 

Mid N/A N/A N/A N/A 0.15 5% 0.00 

Lux N/A N/A N/A N/A 0.15 5% 0.00 

Hybrid 
Econ 19513 2914 0.04 1.35 0.15 10% 0.00 
Mid 22735 4845 0.04 1.44 0.15 10% -0.32 
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Type Engine 
size 

Prices of 
cars 

(USD 
/vehicle) 

Standard 
deviation of 

price 
(USD/vehicle) 

Fuel  
cost 

(USD 
/km) 

Energy 
use 

(MJ/vkm
) 

 
Private 

discount 
rate 

Learning 
rate 

Intangible 

Lux 45301 13194 0.06 1.71 0.15 10% -0.72 

Electric 
Econ 19513 590 0.02 0.54 0.15 15% 0.00 
Mid 31288 1523 0.03 0.76 0.15 15% -0.30 
Lux 45301 2320 0.03 0.94 0.15 15% -0.60 

Note: ‘Econ’ denotes cars with engine sizes smaller or equal to 1400cc. ‘Mid’ denotes cars with engine sizes larger than 1 
1400cc and smaller than 2000cc. ‘Lux’ denotes cars with engine sizes larger than 2000cc.  2 
N/A indicates that data is not available or that the car technology is not widely used in the country. 3 
 4 
Table A6 5 
The initial parameters assumed for China. 6 

Type Engine 
size 

Prices of 
cars (USD 
/vehicle) 

Standard 
deviation of 

price 
(USD/vehicle) 

Fuel 
cost 

(USD 
/km) 

Energy 
use 

(MJ/vkm) 

Private 
discount 

rate 
Learning 

rate 

Intangible 

Petrol 
Econ 8901 2872 0.06 2.09 0.15 1% 0.78 
Mid 16780 3746 0.08 2.36 0.15 1% 0.00 
Lux 41177 15787 0.10 2.91 0.15 1% -0.72 

Adv Petrol 
Econ 10681 2872 0.05 1.67 0.15 5% 0.78 
Mid 20135 3746 0.07 1.89 0.15 5% 0.00 
Lux 49412 15787 0.08 2.32 0.15 5% -0.72 

Diesel 
Econ 13450 N/A 0.06 2.12 0.15 1% 0.00 
Mid 21303 N/A 0.07 2.40 0.15 1% 0.00 
Lux 47300 3432 0.08 2.95 0.15 1% 1.00 

Adv Diesel 
Econ 16140 N/A 0.05 1.70 0.15 5% 0.00 
Mid 25564 N/A 0.05 1.92 0.15 5% 0.00 

Lux 56760 3432 0.07 2.36 0.15 5% 1.00 

CNG 
Econ 8901 2872 0.04 1.97 0.15 1% -0.31 
Mid 16780 3746 0.05 2.13 0.15 1% 0.00 

Lux 41177 15787 0.06 2.54 0.15 1% 0.00 

Flex Fuel 
Econ N/A N/A N/A N/A 0.15 5% 0.00 

Mid N/A N/A N/A N/A 0.15 5% 0.00 

Lux N/A N/A N/A N/A 0.15 5% 0.00 

Hybrid 
Econ 20042 6843 0.03 1.28 0.15 10% -0.72 
Mid 24019 4427 0.04 1.50 0.15 10% -1.00 
Lux 39960 4400 0.05 1.85 0.15 10% -0.84 

Electric 
Econ 9575 3128 0.01 0.54 0.15 15% -0.60 
Mid 27073 4371 0.02 0.76 0.15 15% -0.90 

Lux 42424 11429 0.03 0.94 0.15 15% -1.30 
Note: ‘Econ’ denotes cars with engine sizes smaller or equal to 1400cc. ‘Mid’ denotes cars with engine sizes larger than 7 
1400cc and smaller than 2000cc. ‘Lux’ denotes cars with engine sizes larger than 2000cc.  8 
N/A indicates that data is not available or that the car technology is not widely used in the country. 9 
 10 
Table A7 11 
The initial parameters assumed for India.  12 
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Type Engine 
size 

Prices of cars 
(USD/vehicle) 

Standard 
deviation of 

price 
(USD/vehicle) 

Fuel cost 
(USD/km) 

Energy 
use 

(MJ/vkm) 

Private 
discount 

rate 
Learning 

rate 

Intangible 

Petrol 
Econ 8897 2733 0.05 1.56 0.15 1% 0.38 
Mid 20545 8147 0.08 2.28 0.15 1% 0.06 
Lux 30097 6942 0.12 3.42 0.15 1% -0.48 

Adv 
Petrol 

Econ 10676 2733 0.04 1.24 0.15 5% 0.38 
Mid 24654 8147 0.06 1.82 0.15 5% 0.06 
Lux 36616 6942 0.10 2.74 0.15 5% -0.48 

Diesel 
Econ 12132 2698 0.04 1.54 0.15 1% 0.40 
Mid 17919 8192 0.06 2.27 0.15 1% 0.80 

Lux 27844 9372 0.07 2.76 0.15 1% -0.20 

Adv 
Diesel 

Econ 14558 2698 0.03 1.82 0.15 5% 0.40 
Mid 21503 8192 0.05 2.21 0.15 5% 0.80 

Lux 33413 9372 0.06 1.50 0.15 5% -0.20 

CNG 
Econ 9249 1239 0.04 1.97 0.15 1% 0.12 
Mid 13166 1570 0.05 2.13 0.15 1% -0.08 

Lux N/A N/A N/A N/A 0.15 1% 0.00 

Flex Fuel 
Econ N/A N/A N/A N/A 0.15 5% 0.00 

Mid N/A N/A N/A N/A 0.15 5% 0.00 

Lux N/A N/A N/A N/A 0.15 5% 0.00 

Hybrid 
Econ N/A N/A N/A N/A 0.15 10% 0.00 
Mid 38192 4427 0.04 1.43 0.15 10% -0.80 

Lux 54189 4400 0.05 1.96 0.15 10% -1.10 

Electric 
Econ 9575 3128 0.00 0.54 0.15 15% 0.00 
Mid 27073 4371 0.01 0.76 0.15 15% -0.08 

Lux 42424 1493 0.02 0.94 0.15 15% -0.20 
Note: ‘Econ’ denotes cars with engine sizes smaller or equal to 1400cc. ‘Mid’ denotes cars with engine sizes larger than 1 
1400cc and smaller than 2000cc. ‘Lux’ denotes cars with engine sizes larger than 2000cc.  2 
N/A indicates that data is not available or that the car technology is not widely used in the country. 3 
 4 
 5 
Appendix B: FTT:Transport model methodology 6 
 7 
B.1 Passenger car transport demand 8 

Transport demand is driven by income, population, urban density, family structure and other 9 
demographic factors. Studies have also found induced and rebound effects on the demand for 10 
passenger car transport. More specifically, they find that the demand for transport increases 11 
with economic and infrastructure development. For example, the enhancement of road capacity 12 
in the US and Britain positively impacts transport demand. Improvements in the infrastructure, 13 
such as highway development, generate new consumption of fossil fuels and CO2 emissions, 14 
known as the induced effect. Improvements in energy efficiency in vehicles may lead to an 15 
increase in the service demand for PLDVs, and thus, offset the efficiency gains from 16 
technological diffusion, known as the rebound effect. Hence, it is important to consider the 17 
elasticity of demand for transport in relation to fuel price, energy efficiency, and road 18 
accessibility in the estimation and projection for the demand for PLDV services.  19 
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The demand estimation in this section consists of two parts. The first part is the construction 1 
of an econometric model that predicts the demand for PLDVs (in km per vehicle) using fuel 2 
prices, income, urbanisation, road infrastructure, urban density, and fuel economy. Then we 3 
use the econometric model to predict the future private passenger vehicle transport demand 4 
(per vehicle). In the second part, we develop a model for vehicle stock and project future car 5 
ownership, which is then used to make projections for the total demand for PLDVs.  6 

B.2 Empirical model specification  7 

The empirical model specifies kilometres per PLDV in the country i as a function of GDP per 8 
capita (Y), fuel cost in terms of oil price (FP), and a group of variables, including urbanization 9 
(U), road lengths (M), urban density (UD), and fuel economy (FE). We estimate the dynamic 10 
model because efficiency improvements and fuel price changes take time, and static models 11 
may not capture adequately the long-run adjustments of transport demand. The dynamic model 12 
we specify captures the historical trend of passenger vehicle travel demand. 13 

lnZ?#*	 =	[% +	[7\KZ?#*'7 + [+\K]#* + [A\K( #̂* 14 

+[B\K?#* + [6\K_#* + [8\K_B#* + [C\K(7#*                                                         (B.1) 15 

The interpretation for each variable is indicated in Table B1. The following section 16 
summarises the rationale for each variable in Equation B.1. 17 

Income 18 

Income is known to drive transport demand, and it is recognised as the main driver of transport 19 
demand growth per capita income since higher incomes allow individuals to spend more on 20 
travel. Studies have found that, while there exists a positive correlation between income and 21 
transport demand, the income elasticity for transport demand may decline as a country becomes 22 
richer [91]. 23 

Fuel price 24 
 25 
Since fuel prices affect fuel costs’ share of the total cost of driving, we expect that a fall in fuel 26 
prices will increase the transport distance due to the rebound effect. A large number of studies 27 
have examined the elasticities of gasoline prices in transport fuel demand [92,93]. Price 28 
elasticities are almost always negative: an increase in price leads to lower demand, and vice 29 
versa. 30 
 31 
 32 
Table B1 33 
Interpretation and units of indicators. 34 
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 1 
 2 
Urbanization 3 

Urbanization rate is defined as the share of the urban population to the total population [85]. 4 
With the gradual increase in the proportion of the population living in urban areas and higher 5 
urbanisation rates, over half of all people were living in urban areas by 2012 [94]. With a higher 6 
urbanisation level and as a result of agglomeration economies, it becomes easier for people to 7 
access shops and restaurants. As urbanisation progresses, cities become more congested, 8 
making it is less convenient to use private cars. With improved public transportation and better 9 
accessibility to all aspects of urban life, the average distance travelled by cars declines [91,95]. 10 

Urban density 11 
 12 
Travel distances are often shorter in cities that have greater density due to congestion and the 13 
presence of public transport networks. A number of studies have found that travel demand 14 
decreases with increased urban density. Karathodorou et al. found that there is a negative 15 
relationship between passenger car fuel consumption and urban density [64]. 16 
 17 
Road mileage 18 
 19 
The relationship between accessibility to destinations and the demand for transport can be 20 
measured as an induced effect. In both the UK and the US, Nolan and Lem [95] concluded that 21 
the expansion in road capacity has a positive impact on traffic demand. In the case of China, 22 
Chai et al. [96] found that when road accessibility (measured in mileage) is increased by 1%, 23 
road traffic demand increases by 1.26%. 24 
 25 
Fuel intensity and fuel economy standards 26 
 27 
As fuel economy improves, the average fuel cost per km falls, and the demand for passenger 28 
transport increases as a result of the income effect. The rebound effect is expressed as the 29 
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percentage of the forecasted reduction in energy use that is lost due to consumer and market 1 
responses [97]. 2 

B.2 Empirical model specification 3 

The results for the pooled OLS estimates are presented in Table B2. A country dummy variable 4 
is added to account for the unobserved effect. With the Breusch-Pagan test, we analyze whether 5 
it is valid to pool the data. The null hypothesis H0 for the Breusch-Pagan test is that the variance 6 
of the unobserved fixed effects is zero (i.e., it is possible to use the pooled OLS model). As the 7 
test results show, we fail to reject the null hypothesis, meaning that the random effects 8 
regression is not appropriate. This implies that a pooled OLS model is superior to the random-9 
effects model.  10 

As Table B2 shows, the adjusted R-squared indicates that the model has strong explanatory 11 
power (R-sq=0.89). Consistent with existing studies, the results show that oil prices, 12 
urbanisation, road mileage, population density, and fuel efficiency have a significant effect on 13 
road transport demand. Income does not significantly affect the distances travelled by car per 14 
year probably because, as income increases, people purchase more vehicles instead of 15 
travelling more in each car. The coefficient results show that road accessibility has a positive 16 
effect on road transport demand, while travel demand decreases by 1.5% when the oil price 17 
increases by 10%. As countries become more urbanised, people take advantage of the public 18 
infrastructure when they are in cities. Hence, we find that distance per car falls as countries 19 
become more urbanised and that distance per car increases as more roads are built (induced 20 
demand). Fuel efficiency improvements will result in a transport increase, although the effect 21 
is small (travel demand increases by 0.3% when fuel efficiency improves by 10%).  22 

The problem with the pooled OLS model is that the outcome variable (travel demand) depends 23 
on explanatory variables, which are not observable but are correlated with the observed 24 
explanatory variables. We conduct the Hausman test to validate the suitability of the fixed 25 
effects (FE) Model. For the static models, we hypothesise that the best model is the FE model 26 
and test this with the Hausman test. Table B2 shows that fixed effects should be used since the 27 
chi-square test statistic is 35.02 and has a p-value of 0.00. Hence, we dismiss the Random 28 
Effects Model. However, only three variables are significant in explaining the variability in the 29 
transport demand. Consistent with the findings in the OLS regression, we find that oil prices 30 
and urbanisation decrease travel demand, while population density increases travel demand. 31 
The total significance of the model is not very strong, with an R2 of 0.45. There are two main 32 
reasons for this. Firstly, unlike what is observed in the OLS model, the FE model removes the 33 
non-observable fixed effects. Secondly, there is a significant trend in the time series, which can 34 
be captured only with a dynamic panel model.  35 

To account for the dynamic effect in the panel data, we use the Arellano- Bond estimator with 36 
the general method of moments (GMM), which includes the lagged dependent variable as one 37 
of the explanatory variables. For dynamic specification, the GMM estimator of Arellano and 38 
Bond, which is estimated in the first differences with instruments in levels, is required to 39 
remove the unobservable individual-specific effects. The Arellano-Bond estimator controls the 40 
fixed effects by first-differencing and assuming that the idiosyncratic error is serially 41 
uncorrelated. We carry out the regressions with the GMM in one step with robust standard 42 
errors. Table B2 shows the results for the GMM regressions. All variables are significant at 43 
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either the 5% or 10% levels. Note that the signs for the coefficients of the variables in the GMM 1 
estimations are consistent with the OLS pooled estimation and the FE model. In order to 2 
validate the assumptions of the Arellano-Bond GMM estimator, we carry out the Sargan test, 3 
which yields a result of 145 with a p-value of 0.6308. Hence, we cannot reject the null 4 
hypothesis of over-identified restrictions.  5 

Table B2 6 
Regression results for the Pooled OLS model, the FE model, and the Arellano-Bond GMM 7 
model.  8 

 9 
 10 
B.3 Car population projection 11 

Car ownership models are used to forecast transport demand, energy consumption, and 12 
emission levels. Among the different model types, one of the most well-known approaches is 13 
an econometric estimation of an income-car stock model based on a logistic function [98]. 14 
Historically, GDP growth and economic development are associated with an increase in vehicle 15 
ownership. Past studies have made projections of passenger car ownership based on GDP [98–16 
100].  17 

The Gompertz curve is an S-shaped growth curve that relates per capita vehicle ownership to 18 
GDP per capita. While vehicle scrappage is not explicitly included, it has been tested 19 
empirically to represent growth trend of vehicle stock [98]. We examine trends in the growth 20 
of vehicle stocks for a large sample of countries and employ the Gompertz function to estimate 21 
the relationship between the number of vehicles and per capita income.  22 

Following the previous studies, we estimate car stock with a Gompertz model:  23 

																																																												A#,* =	A#
∗HE/

9%*!,-                                                        (B.2) 24 

Which is equivalent to the following: 25 
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																																																						ln `ln `
F!,-
F!,-
∗ aa = ln(b) + [7(#,*                                            (B.3)                                                                            1 

where " denotes the country, , denotes the year, Vi,t represents the vehicle ownership (vehicles 2 
per 1000 people) of country " in year ,, Vi* is the saturation level and EFi,t is the per capita 3 
income. The parameter a determines car stock demands at zero income levels, and the [ 4 
parameter determines the shape of the S-shape curve. We find the a and b by regressing 5 
ln(ln(F!,-

F!,-
∗ )) against 7(#,*. 6 

Fig. B.1 shows the historical fleet sizes for the five countries (solid black lines). Vehicle stock 7 
projections were done on the basis of Equation B.2 with the parameters shown in Table B4. 8 
The dashed lines in Figure B2 show the car fleet size projections between 2016 and 2050 under 9 
three GDP assumptions, namely, the SSP1, SSP3, and SSP5 assumptions (see Table B4 for 10 
details).  11 

For high-income countries, it is assumed that the GDP increases by 1.3% under SSP3 and 1.9% 12 
under SSP5 between 2020 and 2040. For the middle-income countries, it is assumed that the 13 
GDP increases by 3.9% under SSP3 and 5.2% under SSP5 between 2020 and 2040 [101]. For 14 
the US, the UK, and Japan, the difference in GDP assumptions does not affect the car fleet size 15 
projections significantly. However, in China and India, the size of the car fleet projected under 16 
SSP5 is much larger than that under SSP3, reflecting higher GDP growth projections under 17 
SSP5 compared to SSP3 for China and India.  18 

Table B4 19 

World GDP per capita projections by income group, based on the Shared Socioeconomic 20 
Pathways (SSP) [101].  21 

 22 

 23 
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 1 

Fig. B1. Historical and projected car fleets (in millions) under the SSP1, SSP3, and SSP5 2 
assumptions  3 

B.4 Projections for the demand for PLDV services  4 

The transport distance for a PLDV per year is estimated with Equation B.1, and the projections 5 
for future oil prices, urban density, urbanisation, fuel economy, road mileage, and GDP per 6 
capita are based on Arellano-Bond GMM estimation.  7 

To account for the oil price uncertainties, the travelled distance per car each year is estimated 8 
under the 10 oil price scenarios in addition to the baseline scenario. The baseline scenario oil 9 
price is taken from the projection made in the IEA New Policy Scenario [102]. Scenarios 1 to 10 
5 assume that there is a gradual increase in oil price until the oil price is consistent with the 11 
IEA’s current policy. Scenarios 6 to 10 assume that there is a gradual decrease in oil price until 12 
it is consistent with the IEA’s 450 scenarios [102].  13 

The projections for car distance per year under different oil price scenarios are shown in Fig. 14 
B.1. For the US, the UK, China, and India, the car distance projected tends to decrease between 15 
2020 and 2030 but starts to increase between 2040 and 2050. It is assumed that oil prices will 16 
increase more steeply between 2020 and 2030 compared to the period between 2040 and 2050. 17 
On the other hand, fuel economy keeps improving for all countries, although the effect is 18 
smaller for the US as a result of Trump’s decision to freeze the Obama standards. Between 19 
2020 and 2030, when the effect of the increase in oil price is stronger than the effect of fuel 20 
economy standards improvements on the car distance travelled, we find the distance travelled 21 
by cars falls. Between 2030 and 2040, when the effect of the increase in oil price on the distance 22 
travelled is smaller than the effect of fuel economy on the distance travelled, we find that the 23 
distance travelled by cars increases. Hence, the projections for car distance per year appear to 24 
be U-shaped for all countries except Japan. While the effect ofincrease in oil prices and the 25 
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improvement in fuel economy standards are present in Japan, from the historical trend, car 1 
distance travelled per year has been falling since 1990, and this trend is reflected in the 2 
projections for between 2020 and 2050.  3 

The solid black line is the average distance travelled per car per year, as collected from national 4 
transportation agencies. The dashed blue lines are projections for oil prices assumed in the New 5 
Policy Scenario. The dashed black lines represent projections for the average distance travelled 6 
by car per year when oil prices increase. The dashed green lines represent the projections for 7 
travel distance per year, assuming that oil prices decease gradually (scenarios 6 to 10). As 8 
expected, the higher the oil price, the lower the average distance in all countries and vice versa. 9 
We find that as fuel economy improves, the rebound effect leads to an increase in the demand 10 
for PLDV services. The rebound effect can be mitigated by the higher oil price scenarios.  11 

 12 

 13 

Fig. B2. Average distance travelled by car per year under GDP per capita assumption SSP1. The solid 14 
black lines are the historical trend for the distance travelled by cars. The dashed green lines represent 15 
the distance travelled per car as oil prices decrease (i.e., the lower the oil prices, the lighter the dashed 16 
green lines). The dashed black lines represent the distance travelled per car as oil prices increase (i.e., 17 
the higher the oil prices, the lighter the dashed black lines). 18 

B.5 The decision-making core model 19 
 20 
We detail here the decision-making module of the FTT:Transport model. Part of this section is 21 
replicated from the Supplementary Information of Mercure et al. [9]. 22 
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 1 
B.5.1 Heterogeneity in the vehicle market 2 
 3 
Consumers in vehicle markets are highly heterogeneous, and this heterogeneity varies by 4 
country. Sales for new passenger cars were obtained from MarkLines and matched to price and 5 
fuel consumption information from car manufacturers. Note that MarkLines data are 6 
comprehensive, not samples. Fig. B3 (also see [6]) shows an example of price heterogeneity in 7 
five countries, the US, UK, China, Japan, and India in 2012. For this paper, we have updated 8 
the cost distribution to 2016. We observe that the heterogeneity of vehicle markets varies 9 
widely between nations.  10 
 11 

 12 
Fig. B3. Price distributions for vehicles in 2012 for the five major economies, reproduced from [6].  13 
 14 
B.5.2 Perceived costs and decision-making 15 
 16 
In consumer behaviour theory, consumers are most likely to make purchases according to their 17 
own experiences with the technology or to the consumption experiences of their peers gained 18 
through social interaction [103] and visual influence (demonstrated by [63] in the US). It is 19 
also likely that the choices of consumers are influenced by their peers through the ‘bandwagon 20 
effect’ [33]. The cost distributions reflect the diversity of consumers in terms of choices, taste, 21 
and income. The diversity of sales in terms of cost distribution reflects the diversity of agents 22 
[6]. 23 
 24 
We postulate here that distributions of perceived costs correspond to distributions of observed 25 
costs, with a possible constant offset between them. People, we assume, when considering 26 
purchasing a vehicle, most likely choose something they have seen being purchased, perhaps 27 
by someone they know, such that they were able to gather information (i.e., they most likely 28 
do not choose something they know nothing of, and they gather reliable information 29 
predominantly through observations of their peers). Their observations of the fleet are a subset 30 
of what is on roads, and every agent observes something slightly different. This may be due to 31 
their belonging to a particular social group and social class, and they are most likely to choose 32 
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amongst what their peers have previously chosen, which itself is a subset of what the whole 1 
market has to offer (e.g. poor rural households perhaps purchase different types of vehicles to 2 
rich suburban families, which itself is different than single, middle-class persons). Thus, we 3 
assume restricted technology/information access. In other words, agents do not choose what 4 
they do not know, and they do not know all of the markets. 5 
 6 
The FTT model uses a modified version of discrete choice theory in the form of an evolutionary 7 
theory. It uses observed distributions of costs to represent agent heterogeneity (a form of 8 
revealed preferences) (see [6]). Consumer decisions are modelled with chains of binary logits. 9 
In discrete choice theory [104,105], choices are made in a probabilistic fashion, which means 10 
that unobserved factors, such as taste variation and interpersonal heterogeneity, are taken into 11 
account in the discrete choice model. In the binary logit model, decision making uses pairwise 12 
comparisons of cost distributions, as shown in Fig. B4. We assume that consumers are choosing 13 
between technology !  and technology "  with cost distributions #! ( $ , 	$! )and #" 14 
($ ,$" ),respectively, assuming that (!(*)  is the cumulative distribution of #" ($ ,$! ). The 15 
probability that a consumer chooses technology ! over technology ! depends on the instances 16 
in which the cost of technology ! falls below the cost of technology !. Hence, the fraction of 17 
agents making the choice preferring ! over ! is as follows: 18 
 19 

               &!"'∆$!") =	 ∫ &"($)#!#
$# '$ − ∆$!")/$,         ∆$!" = $! − $" 																														(B.4) 20 

 21 
In the standard discrete choice model, #! is a double exponential Gumbel distribution. Using 22 
the standard error propagation method (see SI of [9] for mathematical details), we have: 23 
 24 

(#!)∆*#!+ = 		
7

7,GHIJ∆@!;/M!;N
  ,   										c#! = dc#

+ + c!
+	                               (B.5) 25 

 26 
 27 
The width of the cost distributions c# 	and c!determine the probability of consumers choosing 28 
one technology over another. This is how the rates of technological diffusion relate to consumer 29 
heterogeneity.  30 
 31 

 32 
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Fig. B4. Top: cost distributions for two technologies ! and !. The red shaded area indicates the 1 
number of units of technology ! cheaper than the median cost of technology i. Bottom: cumulative 2 
probability distribution functions of technology ! and !. Replicated from [16] 3 

 4 
In the FTT:Transport model, the price distributions (e.g. Fig. B3) are segmented according to 5 
passenger car technology, and engine size used to parameterise #!  ($,	$!). The average and 6 
median prices, emissions, and engine sizes with their standard deviation are presented in Tables 7 
A3-A7 of Appendix A. 8 
 9 
B.5.3. The levelised cost of transportation (LCOT) 10 
 11 
For the decision-making component of this model, we separate the investor in transport 12 
technology from the consumer of transport services. We think of them as separate entities for 13 
clarity, even though in some cases they might be the same person. Whether the roles are 14 
fulfilled by the same actors or not, they are quite distinct, where the investor purchases a vehicle 15 
to sell a transport service to the consumer. This is done to clarify the distinction between 16 
technology investment and associated market competition, and the consumption of the service 17 
that technologies produce. It also allows for the possibility that a person who purchases a car 18 
can still travel by train or plane and not use the car he purchased. The mode choice is distinct 19 
from the technology choice, even when performed by the same person. 20 
 21 
The cost of the vehicle, as perceived by the investor purchasing a vehicle or unit of transport 22 
technology, must be taken to include all components relevant to the decision making. Many of 23 
the components are easy to quantify from available data. Others are not straightforward, and 24 
we show here how this is done. When a vehicle is purchased, an initial investment is made, or 25 
a loan is obtained, for the capital cost, and henceforth fuel and maintenance costs are: 26 

																																	<*:=# = ∑
(#!$%&'!)

)*!
,∑

+,!(-)
)*!

./*!(-).*,!(-)0∗2*%!(-)∗3!4--5.6+!(-)
(7.8)--

∑ 7
(7.8)--

*                       (B.6)                   27 

Here /# , (# ,  and ?@#  are the mean capital costs (in USD), fuel cost (in USD/litre) and 28 
maintenance cost (in USD/km), respectively. 7A%#  represents EV subsidies, paid to car 29 
purchasers (and therefore, negative cost) at the purchase time. (=# is the fuel tax, in USD/litre. 30 
The fuel cost depends on the fuel consumption (7#(,) and the distance travelled each year 31 
(B"C,*). @=#(,) is the annual registration tax, which is vehicle and class-specific, paid by car 32 
owners once per year. *(# is the capacity factor, in km/y. 33 
 34 
Several terms in Equation B.6 are distributed, while others are single-valued. Investment cost 35 
distributions can be assigned to distribution of preferences, but variations can also arise in all 36 
other parameters. The discount rate could also be distributed, but we have not included this at 37 
this stage. It is to be kept in mind however that in a root mean square calculation, any 38 
dominating parameter rapidly makes smaller contributions negligible. Here, the vehicle price 39 
distribution dominates; it has the largest standard deviation. Nevertheless, we keep energy use 40 
and maintenance parameters distributed. 41 
 42 
B.5.4. The generalised cost as a comparison measure 43 
 44 
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B.5.4.1 The intangibles 1 
 2 
As inferred from the price distribution of sales, transport costs are not the only factors that 3 
consumers consider when purchasing a vehicle. Many additional aspects (e.g. comfort and 4 
luxury) are valued by the consumer, of which we have little information beyond the price 5 
distribution of what is purchased. We keep in mind that technologies have different pecuniary 6 
costs, particularly across engine size classes; despite this, higher costs appear compensated by 7 
higher benefits, such that higher cost luxury vehicles maintain market shares. 8 
 9 
Were we to simulate technology diffusion based on bare LCOT distribution comparisons, the 10 
lowest LCOT technologies would diffuse more successfully, which is not consistent with our 11 
historical data. Clearly, components would be missing in the LCOT—for instance, comfort, 12 
acceleration, and style—which we may call the “intangibles”. We define “intangibles” for this 13 
model as the difference between the generalized cost, which leads to observed diffusion, and 14 
the LCOT, as calculated from pecuniary vehicle properties for which we have data. The value 15 
of the intangibles, g# , is an empirical parameter obtained from making the FTT diffusion 16 
trajectory match the trajectory observed in our historical data, at the year of the start of the 17 
simulation. 18 
 19 
Adding g# to Equation B.6 produces the following:  20 
 21 

                                              *# = l nh
O@P>!

<

QO@P>!
<,∆O@P>!

<
i+	g#                                               (B.7) 22 

 23 
When g#  = 0, we obtain a rate of diffusion that does not normally match historical diffusion. 24 
One, and only one, set of g# leads to the diffusion of technology in the simulation to have the 25 
same rate as the historical rate at the starting point of the simulation. The interpretation of the 26 
g#  parameters is that they ensure that FTT projects in the future a diffusion trajectory (the rate 27 
of change of shares) that is the same as what is observed in historical data, and represents all 28 
costs not explicitly specified as perceived by agents. 29 
 30 
B.5.4.2 Determining the non-pecuniary g# values in practice 31 
 32 
The unique set of g# cannot be obtained by simple optimization, as too many spurious local 33 
solutions arise. We, therefore, designed a dedicated graphical user interface software that 34 
enables one to robustly determine these parameters by hand (see Fig. B5). This is done for each 35 
technology in every region, making it a time-consuming procedure, but visual inspection 36 
ensures that the parameters are not spurious. We find that g# values follow what is expected: 37 
luxury models have large negative values (large benefits). Since generalized cost differences 38 
already exist in the baseline, diffusion trends exist in the baseline, a fact that is observed in the 39 
data, and the determination of the g# 	parameters is of primary importance. The g# values are 40 
adjusted and fed into the model to calculate the shares for all technologies for the first nine 41 
years from 2016. Note that adjusting the g#value for one technology will affect the slopes for 42 
all other technologies dynamically. Thus, we need to adjust the values for g# until the sum of 43 
the differences between the projected shares and the historical shares for all technologies is 44 
minimized. In the case that other capital costs remain unchanged, g# 	is independent of scenario 45 
assumptions and is a constant value, i.e., it only has to be found once. A sensitivity analysis 46 
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has been carried out to assess how the uncertainties in g#  affect the simulations of the 1 
FTT:Transport model.  2 
 3 
Finally, it is to be noted that changing one g#  value in a set for one region requires to re-4 
determine all the others, as it changes the relative values of all technologies. Furthermore, if 5 
the definition of the LCOT is changed for any reason (e.g., adding a pecuniary parameter, or 6 
changing the discount rate), the empirical g# must all be re-determined since their meaning also 7 
changes. In this sense, the g#contain everything of relevance that is not explicitly represented 8 
in the LCOT; the more parameters are included in the LCOT, the less are implicitly represented 9 
in the g#. It takes a few hours to determine all g# values. 10 
 11 

 12 
 13 
Fig. B5.  Graphical user interface used to determine g#  parameters. Sliders or value inputs 14 
are used in order to change the diffusion trajectory of the model (to the right of the dashed 15 
line) until it is consistent with historical data (to the left of the dashed line). 16 
 17 
B.5 Population dynamics 18 
 19 
New vehicle purchases cover both replacements and increases in the total population. We 20 
assume that sales are limited by the demand, not by the supply. During a time span ∆t, out of a 21 
total j*?*(,) of new registrations in a particular region, a certain fraction of sales is allocated 22 
to different technology categories according to consumer preferences (#! 	as derived above, and 23 
replacement rates, denoted by 1/'#. These parameters can be understood as determining the rate 24 
of influx and out-flux of sales shares in and out of technology categories " and ! in a set of n 25 
possibilities. Using the variable k# 	for the vehicle population in category ", increases in k# due 26 
to purchases being allocated into ", related to the replacement of vehicles scrapped in category 27 
! (i.e. substitutions of " for ! at the time of scrappage), corresponds to the following: 28 
 29 

         30 

(B.8) 
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 1 
where destructions of vehicles in ! are allocated to categories according preferences, which 2 
direct flows of units between categories. Meanwhile, the number of vehicles purchased that 3 
are not replacements are: 4 
 5 
 6 

 7 
 8 
The numbers of vehicles and vehicle destructions follow directly from the sum of the sales 9 
time series, multiplied with the survival function over all ages (numbers), or its derivative 10 
(deaths), which correspond to convolutions. The equations 11 
 12 

k!(,) = l j!(, − m)\!
R

%
(m)Nm 13 

 14 
and  15 
 16 

N!(,) = l j!(, − m)
R

%

N\!(m)

N,
Nm ≃

k#
'#

 17 

 18 
follow, where N!denotes deaths, mvehicle age, and \!(m)the measured survival function for 19 
technology j. In a scheme where computational power minimisation is sought, deaths can be 20 
conveniently and safely approximated with the total population divided by the life expectancy, 21 
k!

'!o .  22 
 23 
Thus, equations B.7 and B.8 are rewritten this way: 24 
 25 

∆k!→# =
k#/,#

∑ k) ,)⁄)
(#!

k!/,!
∑ k) ,)⁄)

∆k*?* = %#
,'̅̅
,#'!

(#!%!
k*?*
'̅
∆, 26 

  27 
Here, ,̅  and '̅  are the average industry growth rate and life expectancy, while the %#	 are 28 
technology category shares of the total fleet. For convenience, we define the matrix of time 29 
constants as s#! = ,'̅̅ ,#'!⁄ . For all flow ∆k!→# of substitutions between i and j, a reverse flow 30 
∆k#→! exists, and a net trend results: 31 
 32 

∆#!" = #!%&!"'!" − &"!'"!)#"
#%&%↓
*̅  33 

 34 
The growth of the fleet can also be expressed in a similar way: 35 
 36 

∆k#
↑ =

1
K
t

k# ,#⁄
∑ k)) ,)⁄

=

!

(#!∆k*?*
↑  37 

 38 

(B.9)  

(B.10
) 

(B.11
) 

(B.12) 

(B.13) 

(B.14) 
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where ∆k*?*↑ 	is the time dependent population growth rate, in principle determined by the 1 
change in demand and capacity factor. We can combine both equations B.11 and B.13 in a 2 
convenient way, by considering expressing it in terms of shares of the total population by 3 
technology %# = k# k*?*⁄ , instead of absolute numbers, which must involve a chain derivative:  4 
 5 

Nk#
N,

= k*?*
N%#
N,

+ %#
Nk*?*
N,

 6 
 7 
The second term cancels with the equation for the population growth, leaving: 8 
 9 

∆%#! = %#)s#!(#! − s!#(!#+%!
∆,
'̅

 10 
 11 
This equation expresses exchanges of market shares between technology categories " and ! 12 
according to preferences and rates of replacement. Cumulating all gains or losses to technology 13 
"  at the expense or profit of all other categories, we sum over !  and obtain the replicator 14 
dynamics equation: 15 
 16 

∆,! =-,!%&!"'!" − &"!'"!),"
"

 17 

 18 
There, the net flow of shares is regulated by the product of the matrices s#!(#!  minus its 19 
transpose. While the matrix s#! is interpreted to represent industrial dynamics and reliability, 20 
the matrix (#! is interpreted to represent consumer choices according to our decision-making 21 
model. Thus, they are completely independent.  22 
 23 
B.6 Social influence and technological diffusion 24 
 25 
In this section, we show briefly that including social influence or other bandwagon effects in 26 
a discrete choice model leads to the replicator dynamics equation. Note that this is shown in 27 
[20] and the SI of [9], reproduced here for reference.   28 
 29 
Discrete choice models define a linear random utility model, in which the utility _#∗(associated 30 
with purchasing a particular type of vehicle ") is expressed as a function of a number of 31 
variables V, such as income, gender, and distance travelled and so on, and regression 32 
parameters [ and u. 33 
 34 

_∗=[#7A#7 + [#7A#7 + [#+A#+ + [#AA#A + [#BA#B…+u# 35 
 36 
We look for the probability that option	" is chosen over other options, 37 
 38 

^(_ > SmE[_7, _7, _7…_7])=^(_ > _7)^(_ > _+)…^(_ > _=) 39 
 40 
This leads to the multinomial logit model (MNL) (see [20] for the mathematical deviation): 41 
 42 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 
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#̂ =	
H
T!
U

∑ H!
T;
U

 1 

 2 
Taking the probabilistic choice #̂ as determining the shares of the market, this determines 3 
how the market evolves, in equilibrium, for changes in variables. 4 
 5 
If we assume the existence of social influence, the relative frequency of picking product "-6 
using agents is the share of the market occupied by product ". This dynamic also arises with 7 
most other types of bankdwagon effects, for example where the frequency of product 8 
availability in markets where scale of production is constrained by and grows with returns on 9 
sales and market size. Re-evaluating equation B.19 by instead multiplying on each side the 10 
probabilities calculated individually for all k  agents, with k7, k+… ,k=  as the numbers of 11 
agents, we have: 12 
 13 

^)_ > maxz_7,_+,…_=,{+
.= ^(_ > _7).7^(_ > _+).< …^(_ > _=).= 14 

 15 
Taking market share %# = k#/k, then we have: 16 
 17 
 18 

^)_ > maxz_7,_+,…_=,{+=	^(_ > _7)17^(_ > _+)1< …^(_ > _=)1= 19 
 20 
 21 
The solution is then: 22 
 23 

#̂ =	
%#H

T!
U

∑ %)H)

T>
U

 24 

 25 
Preferences ^" are instantaneous, but purchases happen at a rate '#'7, following consumer 26 
needs. We then take preferences as the rate of change of shares. 27 
 28 

.,!
./ =

1
!?−1

,!1
(!
)

∑ ,*1
("
)*

 29 

 30 
This is a form of replicator dynamics that can be converted to the version used in this paper (see [20]). 31 
 32 
Appendix C: Costs of PLDV technologies over time  33 
 34 
As described in Equation 3 of Section 4.1, in the FTT:Transport, we assume that the capital costs of 35 
cars fall by a certain percentage (determined by a learning rate) every time the total quantity 36 
manufactured doubles. Tables C1–C5 show the capital costs of cars from 2020 to 2050 using the 37 
FTT:Transport model in the baseline scenario. 38 
 39 
Table C1 40 
Capital costs of cars for the UK from 2020 to 2050 using the FTT:Transport model in the baseline 41 
scenario. 42 

UK Engine 
size 

2020 2025 2030 2035 2040 2045 2050 

(B.21) 

(B.22) 

(B.23) 

(B.24) 



  
 
 
 

 50 

 
Petrol 

Econ 16927 16927 16927 16926 16926 16926 16926 

Mid 31794 31794 31794 31793 31793 31792 31792 

Lux 40593 40593 40592 40592 40591 40591 40590 

 
Adv Petrol 

Econ 27516 27514 27512 27511 27509 27507 27505 

Mid 39308 39305 39303 39300 39298 39295 39293 

Lux 61985 61981 61976 61972 61968 61965 61961 

 
Diesel 

Econ 22931 22931 22931 22930 22930 22930 22929 

Mid 32758 32758 32757 32757 32757 32756 32756 

Lux 38483 38482 38482 38481 38481 38480 38480 

 
Adv Diesel 

Econ 27516 27515 27513 27512 27510 27508 27507 

Mid 39308 39306 39304 39302 39299 39297 39295 

Lux 46178 46175 46173 46170 46167 46164 46161 

 
CNG 

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Flex Fuel  

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Hybrid  

Econ 25223 25220 25213 25204 25196 25185 25172 

Mid 36032 36027 36018 36006 35993 35978 35959 

Lux 47765 47758 47746 47729 47713 47693 47668 

 
Electric 

Econ 22917 22873 22798 22704 22598 22468 22309 

Mid 32738 32675 32568 32434 32282 32096 31869 

Lux 51625 51524 51357 51144 50906 50612 50254 

 1 
Table C2 2 
Capital costs of cars for the US from 2020 to 2050 using the FTT:Transport model in the baseline 3 
scenario. 4 

US Engine 
size 

2020 2025 2030 2035 2040 2045 2050 

 
Petrol 

Econ 17939 17938 17938 17938 17938 17938 17937 

Mid 20749 20749 20748 20748 20748 20748 20747 

Lux 29744 29743 29743 29743 29742 29742 29741 

 
Adv Petrol 

Econ 17938 17937 17936 17934 17933 17932 17931 

Mid 20748 20747 20745 20744 20743 20741 20740 

Lux 29742 29740 29739 29737 29735 29733 29731 

 
Diesel 

Econ 21526 21526 21526 21526 21525 21525 21525 

Mid 24899 24899 24898 24898 24898 24897 24897 

Lux 35692 35692 35692 35691 35691 35690 35690 

 
Adv Diesel 

Econ 17938 17937 17936 17935 17934 17933 17932 

Mid 20748 20747 20746 20745 20744 20742 20741 

Lux 29743 29741 29739 29738 29736 29734 29732 

 
CNG 

Econ 17939 17939 17939 17939 17938 17938 17938 

Mid 20749 20749 20749 20749 20749 20749 20749 

Lux 29744 29744 29744 29743 29743 29743 29743 

 
Flex Fuel  

Econ 19733 19733 19733 19733 19733 19732 19732 

Mid 22834 22834 22834 22834 22834 22834 22833 

Lux 32718 32718 32718 32718 32717 32717 32717 

 
Hybrid  

Econ 23956 23953 23946 23938 23929 23919 23907 

Mid 28794 28790 28782 28772 28761 28749 28734 
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Lux 34005 34001 33991 33979 33967 33953 33935 

 
Electric 

Econ 29726 29660 29556 29425 29279 29103 28893 

Mid 30688 30620 30513 30378 30227 30046 29828 

Lux 90174 89975 89659 89263 88820 88286 87648 

 1 
Table C3 2 
Capital costs of cars for Japan from 2020 to 2050 using the FTT:Transport model in the baseline 3 
scenario. 4 

Japan Engine 
size 

2020 2025 2030 2035 2040 2045 2050 

 
Petrol 

Econ 12936 12936 12936 12936 12935 12935 12935 

Mid 21320 21320 21320 21320 21319 21319 21319 

Lux 27991 27991 27990 27990 27989 27989 27989 

 
Adv Petrol 

Econ 15523 15522 15521 15520 15519 15518 15517 

Mid 25583 25582 25580 25578 25577 25575 25573 

Lux 33588 33585 33583 33581 33579 33577 33575 

 
Diesel 

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux 33590 33589 33589 33589 33588 33588 33587 

 
Adv Diesel 

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux 40304 40302 40300 40298 40295 40293 40290 

 
CNG 

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Flex Fuel  

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Hybrid  

Econ 19512 19510 19504 19497 19490 19482 19472 

Mid 22733 22730 22724 22716 22708 22698 22686 

Lux 45301 45294 45282 45266 45250 45230 45207 

 
Electric 

Econ 19501 19458 19390 19304 19209 19093 18955 

Mid 31269 31200 31090 30953 30800 30615 30394 

Lux 45273 45173 45015 44816 44594 44327 44006 

 5 
Table C4 6 
Capital costs of cars for China from 2020 to 2050 using the FTT:Transport model in the baseline 7 
scenario. 8 

China Engine 
size 

2020 2025 2030 2035 2040 2045 2050 

 
Petrol 

Econ 8901 8901 8901 8900 8900 8900 8900 

Mid 16779 16779 16779 16779 16779 16778 16778 

Lux 41176 41176 41175 41175 41174 41174 41173 

 
Adv Petrol 

Econ 10680 10680 10679 10678 10678 10677 10676 

Mid 20134 20133 20132 20131 20129 20128 20127 

Lux 49410 49406 49403 49400 49397 49394 49391 

 
Diesel 

Econ 10681 10681 10681 10681 10680 10680 10680 

Mid 20135 20135 20135 20135 20134 20134 20134 

Lux 49412 49411 49411 49410 49410 49409 49408 
 
Adv Diesel 

Econ 12817 12816 12815 12815 12814 12813 12812 

Mid 24162 24160 24159 24158 24156 24155 24153 
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Lux 59292 59289 59286 59282 59279 59275 59272 

 
CNG 

Econ 8901 8901 8901 8901 8901 8901 8901 

Mid 16779 16779 16779 16779 16779 16779 16779 

Lux 41177 41177 41176 41176 41176 41176 41176 

 
Flex Fuel  

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Hybrid  

Econ 19999 19996 19991 19984 19976 19968 19957 

Mid 24017 24014 24007 23999 23990 23980 23967 

Lux 39958 39952 39941 39927 39913 39896 39875 

 
Electric 

Econ 9570 9548 9515 9473 9426 9369 9302 

Mid 27056 26997 26902 26783 26650 26490 26299 

Lux 42398 42304 42156 41970 41762 41511 41211 

 1 
Table C5 2 
Capital costs of cars for India from 2020 to 2050 using the FTT:Transport model in the baseline 3 
scenario. 4 

India Engine 
size 

2020 2025 2030 2035 2040 2045 2050 

 
Petrol 

Econ 8897 8897 8896 8896 8896 8896 8896 

Mid 20545 20545 20544 20544 20544 20544 20543 

Lux 30097 30096 30096 30096 30095 30095 30094 

 
Adv Petrol 

Econ 10676 10675 10674 10674 10673 10672 10671 

Mid 24653 24651 24650 24648 24647 24645 24643 

Lux 36115 36112 36110 36107 36105 36103 36101 

 
Diesel 

Econ 12132 12132 12132 12132 12132 12132 12131 

Mid 17920 17920 17919 17919 17919 17919 17919 

Lux 22742 22742 22742 22742 22741 22741 22741 

 
Adv Diesel 

Econ 14558 14557 14557 14556 14555 14554 14553 

Mid 21503 21502 21501 21499 21498 21497 21496 

Lux 27290 27288 27287 27285 27284 27282 27280 

 
CNG 

Econ 8897 8897 8897 8897 8897 8897 8897 

Mid 20545 20545 20545 20545 20545 20545 20544 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Flex Fuel  

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid N/A N/A N/A N/A N/A N/A N/A 

Lux N/A N/A N/A N/A N/A N/A N/A 

 
Hybrid  

Econ N/A N/A N/A N/A N/A N/A N/A 

Mid 68188 68179 68160 68136 68112 68083 68047 

Lux 54186 54178 54163 54144 54125 54102 54073 

 
Electric 

Econ 9570 9548 9515 9473 9426 9369 9302 

Mid 27056 26997 26902 26783 26650 26490 26299 

Lux 42398 42304 42156 41970 41762 41511 41211 

 5 
Appendix D: Calculating the costs of policies 6 
 7 
D.1 Registration tax 8 
 9 
We assume that the registration tax is paid by consumers annually over the lifetime of the car. 10 
The total cost of the annual registration tax to the consumers in a country each year is equal to 11 
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the total fleet number multiplied by the registration tax. In this research, we assume that the 1 
rate of the registration tax is dependent on the PLDV technologies and engine sizes. 2 
 3 

=Q,m\@= = 	tl (@=#,*
+%6%

+%7V#

∗ %#,* ∗ (\HH,*)N,.	 4 

 5 
Where =Q,m\@= is the total annual registration tax paid by the consumers between 2018 and 6 
2050. @=#,* is the annual registration tax (in USD per unit) paid by owners of technology " in 7 
year t. %#,*	is the share for PLDV technology " in year t, and (\HH,* is the total car fleet at time 8 
,. 9 
 10 
D.2 Vehicle tax 11 
 12 
We assume that the vehicle tax is the tax levied on a vehicle at the time of vehicle acquisition. 13 
The total cost of vehicle tax for consumers in a country each year is equal to the number of 14 
new car sales multiplied by the corresponding vehicle tax. In this research, we assume that the 15 
rate of vehicle tax is dependent on PLDV technologies and engine sizes. 16 
 17 

=Q,m\A= = 	tl (A=#,*
+%6%

+%7V#

∗ %#,* ∗ kH|%m\HC*)N, 18 

 19 
Here, =Q,m\A= is the total vehicle tax paid by consumers between 2018 and 2050. A=#,* is the 20 
vehicle tax (in USD per unit) paid by owners of technology " in year ,. %#,* is the share for 21 
PLDV technology " in year t, and kH|%m\HC* is the total car fleet at time ,. 22 
 23 
D.3 Fuel tax 24 
 25 
We assume that fuel tax is paid by consumers based on the car’s fuel consumption. Hence, the 26 
cost of the fuel tax to each consumer is calculated by multiplying the distance travelled by each 27 
consumer, the average fuel consumption factor PLDV and the levels of fuel tax in each country. 28 
Following Table B2, we assume that distance travelled falls when fuel tax increases the cost of 29 
fuel for consumers. The total cost of fuel tax to consumers in a country is the product of the 30 
total fleet number in a country and the cost of the fuel tax for each PLDV. 31 
 32 

=Q,m\(= = 	tl ((=#,*
+%6%

+%7V#

∗ (7#,* ∗ B"C,*(( #̂,*) ∗ %#,* ∗ (\HH,*)N, 33 

 34 
Here, =Q,m\(= is the total fuel tax paid by consumers between 2018 and 2050. (=#,*  is the fuel 35 
tax (in USD per litre) paid by owners of technology "  in year t. (7#,*  is the average fuel 36 
consumption (in litre/km) for each PLDV technology. %#,*   is the shares for technology " in year 37 
,, (\HH,*  is the total car fleet at time , and B"C,* is the average distance travelled by an average 38 
fleet, depending on the levels of fuel tax. The fuel price elasticity of travel demand is 39 
determined in Table B2.  40 
 41 
D.4 EV subsidies 42 
 43 

(D.2) 

(D.1) 

(D.3) 
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We assume that EV subsidies are paid directly by the government to the new EV purchasers. 1 
In reality, the levels of EV subsidies depend on a number of factors, including battery sizes 2 
(e.g., China) or as income credits to car buyers (e.g. US). For modelling purposes, we assumed 3 
that the levels of EV subsidies increase with prices of EVs.  4 
 5 

=Q,m\%R2 = l %R2#,* ∗ 7A#,*	N,
+%6%

+%7V
 6 

 7 
where =Q,m\%R2 is the total EV subsidies paid by the government between 2018 and 2050. 8 
%R2#,* is the subsidies (in USD per unit) paid by the government to EV car owners. 7A#,*	 is the 9 
number of new EVs of size " at time ,. 10 
 11 
D.5 EV mandate 12 
 13 
We assume that the costs for the EV mandates are paid by car manufacturers or the consumers. 14 
We assume that the total costs of the EV mandates equal the difference in the prices of EVs 15 
and of conventional cars, multiplied by the number of new EV sales as a result of the EV 16 
mandates. For example, if the EV mandate requires 10% of new car sales to be EVs in 2020, 17 
then the total cost of the EV mandate programme is the difference between the average price 18 
of EV and of conventional cars multiplied by the 10% of new car sales. 19 
 20 

=Q,m\Z% = l (7A*QC,* − sJ}*QC,*) ∗ kH|7A*	N,
+%6%

+%7V
 21 

 22 
 23 
=Q,m\Z% is the cost of the EV mandate programme to the manufacturer or to the consumers 24 
between 2018 and 2050. We assume the cost is equal to the difference between the price of EV 25 
(7A*QC,*)	and the price of an average petrol car (sJ}*QC,*) multiplied by the number of new 26 
EV sales (kH|7A*) under the EV mandate programme. 27 

We assume that the cost of EV mandate to the consumers is the difference between the prices 28 
of EVs and of conventional cars. This implies that consumers could potentially ‘gain’ from EV 29 
purchases if the prices of EVs were to fall below the prices of conventional cars. We have not 30 
taken into consideration the cost of the EV mandate on manufacturers and the government. For 31 
instance, to facilitate the implementation of the EV mandate or EV subsidies, governments and 32 
manufacturers often need to invest in the construction of EV charging infrastructure, and this 33 
has not been considered.  34 

D.6 Fuel economy standard 35 
 36 
While fuel economy standards have the benefit of reducing fuel consumption for consumers, 37 
fuel economy standards have imposed costs on car manufacturers and consumers. In this study, 38 
we assume that the costs of fuel economy standards ((7IQC,), which are 3% of the gross car 39 
sales, are partly absorbed by car manufacturers, with fuel savings enjoyed by the consumers. 40 

(D.4) 

(D.5) 
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Consistent with our cost assumptions, we assume that the costs of advanced cars are, on average, 1 
20% more expensive than conventional petrol cars7. 2 
 3 

(7IQC, = ?* − (RH\CmJ"K} + ∫ (kH|*mT* ∗ sJ*QKJ^T*	
+%6%

+%7V
)*20% N,    4 

 5 
where 6 
 7 

?* = 3% ∗ ∫ kH|*mT* ∗ sJ^T"IH#,*	
+%6%

+%7V
*20% N,                    8 

and 9 
 10 

(RH\%mJ"K}C = 	l ((72W< − (7;?=<
+%6%

+%7V
) ∗ ( *̂ ∗ B"C,*N, 11 

 12 
Here, ?* is the cost of fuel economy standards ((7IQC,) borne by car manufacturers, which 13 
is equal to 3% of the gross sales. kH|*mT*  is the number of new cars (advanced petrol 14 
cars/advanced diesel cars) sold in time , , sJ^T"IH#,*	  is the average car price at time t, 15 
sJ*QKJ^T*	is the average price for conventional cars, and (72W<   and (7;?=<   are the fuel 16 
economy (in litre/km) for advanced petrol cars and conventional petrol cars. ( *̂	is the fuel 17 
price in USD/litre. B"C,* is the average distance travelled per year by car owners.  18 
 19 
Appendix E: Effectiveness and cost-effectiveness for four to six policy combinations 20 
 21 
Table E1  22 
The interaction effect between four policies. When the interaction effect is positive, there is a 23 
reinforcement effect between the four policies. When the interaction effect is negative, there 24 
is a trade-off effect between four policies. 25 
 26 

The interaction effect  
of four policies (MtCO2)       
Scenario      UK          US       Japan           China             India 
1.KS+FT+VT+EVS 14.7 231.9 5.4 214.4 26.5 
2.KS+FE+VT+EVS 42.2 725.2 17.5 550.7 369.1 
3.KS+FT+FE+VT 37.3 471.9 16.4 719.6 410.5 
4.KS+RT+VT+EVS 59.4 2088.3 9.4 201.5 566.2 
5.KS+RT+FE+VT 26.1 824.1 3.5 491.9 371.1 
6.KS+RT+FT+VT 45.7 1669.2 1.3 212.3 489.0 
7.KS+FT+FE+EVS 39.6 684.1 18.1 533.5 269.1 
8.KS+FE+EVS+RT 83.6 2382.2 13.2 355.1 514.0 
9.KS+RT+FT+EVS 24.5 1012.5 20.3 524.7 405.6 
10. KS+RT+FT+FE 36.7 918.7 1.4 547.9 273.7 
11. RT+FE+VT+EVS -4.6 -721.4 -32.2 -1079.9 -329.3 
12. FT+FE+VT+EVS -194.0 -2796.5 -67.0 -1716.8 -1350.8 
13. FT+VT+EVS+RT -27.4 -270.2 -18.8 -674.2 -37.8 
14. RT+FT+VT+FE -66.0 -643.6 -47.3 -795.8 -333.6 

 
7 We find that the price difference between several powertrain specifications within one car model ranged from 10% to 30% of the car 
price (from the official car manufacturer’s website).  

(D.6) 

(D.7) 

(D.8) 
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15. RT+FT+FE+EVS -47.5 -543.1 -45.5 -1223.7 -366.5 
 1 
Table E2 2 
The cost-effectiveness of four policy combinations (2016 USD/tCO2). 3 

Cost of four policy 
combinations ($/tCO2)         
Scenario    UK       US      Japan       China       India 
1.KS+FT+VT+EVS 882.2 1122.7 2339.0 458.0 1089.0 
2.KS+FE+VT+EVS 78.3 1116.3 1915.2 252.8 1216.1 
3.KS+FT+FE+VT 839.4 138.2 1253.3 271.1 626.4 
4.KS+RT+VT+EVS 466.0 621.2 1858.3 263.3 1192.3 
5.KS+RT+FE+VT 363.9 221.5 1587.5 123.3 408.1 
6.KS+RT+FT+VT 732.3 216.3 1790.4 238.2 1860.2 
7.KS+FT+FE+EVS 535.7 58.4 1007.5 239.6 255.1 
8.KS+FE+EVS+RT 348.6 157.0 1275.0 122.4 1020.2 
9.KS+RT+FT+EVS 727.3 171.8 1451.5 335.7 824.2 
10.KS+RT+FT+FE 754.3 161.0 1620.9 211.1 638.7 
11.RT+FE+VT+EVS 548.3 678.8 2945.7 357.5 1625.3 
12.FT+FE+VT+EVS 1106.0 1545.3 2721.1 900.5 2175.2 
13.FT+VT+EVS+RT 1527.1 1212.8 1867.3 609.2 1850.2 
14.RT+FT+VT+FE 886.0 395.0 3494.1 513.7 1750.0 
15.RT+FT+FE+EVS 861.3 286.9 3513.9 499.8 1089.6 

 4 
Table E3  5 
The interaction effect between five policies. When the interaction effect is positive, there is a 6 
reinforcement effect between the five policies. When the interaction effect is negative, there 7 
is a trade-off effect between five policies.  8 

The interaction effect 
of five policies (MtCO2)       

Scenario     UK          US       Japan       China      India 
1.KS+FT+VT+EVS+FE 49.6 687.2 17.9 566.7 269.7 
2.KS+VT+EVS+FE+RT 27.0 714.8 4.0 275.1 167.6 
3.KS+FT+VT+EVS+RT 27.6 810.6 1.2 42.1 269.0 
4.KS+FT+EVS+FE+RT 38.3 800.5 -1.5 307.5 400.8 
5.KS+FT+VT+FE+RT 57.1 2064.1 -6.8 478.9 328.5 
6.FT+VT+EVS+FE+RT -6.7 -744.6 -48.2 -1189.6 -327.9 

 9 
Table E4 10 
The cost-effectiveness of policy combinations (2016 USD/tCO2) 11 

Cost of five policy combinations 
($/tCO2)         
Scenario   UK         US        Japan        China       India 
1.KS+FT+VT+EVS+FE 865.2 1021.4 2253.5 352.5 1191.8 
2.KS+VT+EVS+FE+RT 364.1 523.6 1602.0 194.3 1218.2 
3.KS+FT+VT+EVS+RT 908.1 1140.8 2970.0 452.9 1825.4 
4.KS+FT+EVS+FE+RT 306.7 89.7 1273.6 330.4 143.2 
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5.KS+FT+VT+FE+RT 746.2 384.0 2101.1 394.7 1607.9 
6. FT+VT+FE+RT+EVS 982.2 406.9 4569.4 722.2 865.5 

 1 
Table E5  2 
The interaction effect between six policies. When the interaction effect is positive, there is a 3 
reinforcement effect between the six policies. When the interaction effect is negative, there is 4 
a trade-off effect between six policies. 5 

The interaction effect of six policies (MtCO2)       
Scenario  UK     US      Japan       China      India 
1.EVM+FT+VT+EVS+FE+RT 20.2 671.2 -35.1 -387.6 167.3 

 6 
Table E6  7 
The cost-effectiveness of six policy combinations (2016 USD/tCO2) 8 
Cost of six policy combinations 
($/tCO2)         
Scenario        UK          US        Japan        China         India 
1.KS+FT+VT+EVS+FE+RT 915.7 295.7 3169.2 732.1 462.6 

 9 
Appendix F: Sensitivity analysis 10 
 11 
F.1 Sensitivity analysis – the baseline scenario 12 
 13 
In this section, we carry out a sensitivity analysis over most relevant technological parameters 14 
of FTT:Transport, including the discount rate, the learning rate, the γ factor (or the 15 
“intangible”), and fuel prices.  These parameters were chosen because they would generate the 16 
most changes in emissions and technological shares.  17 
 18 
The parameters varied here are as follows: 19 
 20 

1. Learning rates for EVs (not varied for conventional petrol and diesel cars because the 21 
learning for mature technologies is insignificant).  22 

2. Consumer discount rates. 23 
3. The price of electric vehicles. 24 
4. γi values for all vehicle types. 25 
5. Fuel prices. 26 

 27 
The variation used is between 5% and 20%, depending on the parameters (see Table F1). The 28 
uncertainty range was chosen based on existing literature for the discount rate, learning rate or 29 
variations that we consider as reasonable, such as the γi values). Learning rate variations were 30 
considered based on [75,106]. We assume a low EV learning rate scenario (5%) and a high EV 31 
learning rate (15%) scenario. Following  [73], we test a low discount rate scenario (5%) and a 32 
high consumer discount rate scenario (25%). 33 
 34 
The intangibles (g values) are derived from the historical trends of technological diffusion. 35 
However, the fitting of g are only accurate to a certain extent, which we estimate between 5% 36 
and 20%, depending on the availability of historical data. For instance, EVs have less historical 37 
data than petrol cars. In the sensitivity analysis, we vary the g values by 10% for every car 38 
technology in order to explore the effect of uncertainties in g values on the final projections. In 39 
principle, g values are constants derived from historical data; we do not expect large 40 
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uncertainties with the g values. Varying the g values too much (i.e., above 10%) would violate 1 
the model. For example, if we vary the g values by 30%, then we will find that the diffusion 2 
trajectory is no longer consistent (see Appendix B.5.4.1 for more details).  3 
 4 
The fluctuations of oil prices have a significant effect on the efficiency of cars purchased by 5 
consumers and the distance travelled by cars over time. In the FTT:Transport model, oil prices 6 
affect total emissions through the demand equations and through consumer choice over car 7 
technologies. We have assumed four oil price scenarios: a very low oil price scenario (50% 8 
lower than the 2016 oil price level), a low oil price scenario (20% lower than the current oil 9 
price projections), a high oil price scenario (20% higher than the current oil price scenario) and 10 
a very high oil price scenario (50% higher than the current oil price scenario). Note that it is 11 
possible for the oil prices to be higher or lower than 50% of the current oil price projections. 12 
The aim of this analysis is to study the effect of a fluctuation in oil prices on the model 13 
projections. 14 
 15 
It is important to analyse model responses to variations in key parameters to ensure the model 16 
is not ‘highly sensitive’ to very specific values for any particular parameter. As a benchmark, 17 
we adopt the definition that a change of X% of CO2 emissions that results from a parameter 18 
variation of Y% is ‘small’ if X is five times smaller Y and ‘large’ if X is of the order of Y. This 19 
is a reasonable definition because if X% change is larger than Y% parameter variation, then 20 
we may see a large propagating uncertainty. However, if X% is much smaller than Y%, then 21 
the output uncertainty is much smaller than the input uncertainty for each parameter. We 22 
conclude this analysis with the following broad findings. 23 
 24 
Learning rates, EV prices, and discount rates tend to have a small impact on the results (i.e., 25 
less than 1% changes in emissions as a result of 5% variation in learning rates and 10% 26 
variation in EV prices and discount rates for most countries. The effects of the learning rates 27 
on the scenario analysis are the largest in the countries with the highest market shares of EV, 28 
such as China, where a 2% decrease in CO2 emissions is the result of a 5% variation (higher) 29 
in the learning rates parameter in the baseline scenario. The effect is negligible in the baseline 30 
scenario in the countries where there are very few EVs on-road (i.e., India) and where we find 31 
that there is no change in emissions as a result of 5% variation in the learning rates parameter 32 
in the baseline scenario. 33 
 34 
For all countries, we find that there is less than 4% change in CO2 emissions as a result of 20% 35 
variation in the g value in the baseline scenario. As we have expected, changes in g for one 36 
technology mostly affects its own pace of diffusion. Hence, we find that changes in g values 37 
have almost no impact on the emissions projections when the shares for EVs are under 1%. 38 
Overall, the relatively low impact of varying the g parameters is explained by the fact that the 39 
model is not sensitive to small changes in pecuniary cost for individual technologies. Since the 40 
model has some degree of momentum and inertia in its diffusion trajectories, changes in the 41 
costs data create a change in the trajectory but not an instantaneous change in the shares. 42 
 43 
Table F1 44 
Sensitivity analysis of key technological parameters in the baseline scenario 45 

 Sensitivity parameters Emissions  Change in shares in 2050 (%) 
UK  % change in 

CO2 
Petrol Diesel NV HEV EV 

 EV Learning rate +5% -0.50 -0.87 -0.03 0.00 0.00 0.90 
 EV Learning rate -5% 0.84 0.49 0.01 0.00 0.00 -0.50 
 Discount rate +10% 0.33 0.19 0.00 0.00 -0.09 -0.11 
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 Discount rate -10% -0.06 -0.38 0.00 0.00 0.18 0.20 
 EV price +10% -0.45 0.48 0.00 0.00 0.00 -0.48 
 EV price -10% 0.22 -0.54 0.00 0.00 0.00 0.55 
 Oil price +20% 2.58 -0.25 -0.01 0.00 0.45 -0.20 
 Oil price +50% -3.93 -0.67 -0.03 0.00 0.14 0.56 
 Oil price -20% 1.03 0.24 0.01 0.00 -0.15 0.10 
 Oil price -50% 3.44 1.04 0.04 0.00 -0.83 -0.24 
 All g +20% -0.49 3.17 0.00 0.00 0.00 3.17 
 All g -20% 0.27 1.33 0.06 0.00 -0.01 -1.38 
 EV g +10% -0.45 -0.78 0.71 0.00 1.18 -1.10 
 EV g -10% 0.22 0.21 -0.11 0.00 0.23 -0.33 
 Hybrid g +10% 0.19 0.14 0.10 0.00 -0.56 0.32 
 Hybrid g -10% -0.84 -0.52 -0.11 0.00 1.04 -0.40 
 Petrol g +10% -0.61 -0.13 0.o8 0.00 0.14 -0.10 
 Petrol g-10% 0.52 0.67 0.24 0.00 -0.38 -0.52 
 Diesel g +10% 0.36 -0.03 0.03 0.00 0.08 -0.08 
 Diesel g-10% -0.31 0.03 -0.03 0.00 -0.07 0.07 
US        
 EV Learning rate +5% -0.54 -0.64 0.00 0.00 0.00 0.64 
 EV Learning rate -5% 0.88 0.79 0.00 0.00 0.00 -0.79 
 Discount rate +10% 0.14 0.16 0.00 0.00 -0.01 -0.15 
 Discount rate -10% -0.26 -0.40 0.00 0.00 0.13 0.27 
 EV price +10% 0.16 0.00 0.00 0.00 0.00 1.08 
 EV price -10% -0.23 -0.70 0.00 0.00 -0.03 -0.50 
 Oil price +20% -3.64 -0.12 0.00 0.00 0.05 0.07 
 Oil price +50% -6.08 -0.37 0.00 0.00 0.08 0.29 
 Oil price -20% 3.12 0.13 0.00 0.00 -0.10 -0.03 
 Oil price -50% 7.62 0.22 0.00 0.00 -0.01 -0.22 
 All g +20% -0.69 -1.72 0.00 0.00 0.06 1.66 
 All g -20% 0.73 0.80 0.00 0.00 -0.06 -0.74 
 EV g +10% -0.24 -1.07 0.00 0.00 0.00 1.08 
 EV g -10% 0.03 0.03 0.00 0.00 -0.03 0.00 
 Hybrid g +10% -0.04 -0.02 0.00 0.00 0.03 0.00 
 Hybrid g -10% 0.03 0.03 0.00 0.00 -0.03 0.00 
 Petrol g +10% -0.11 0.14 0.00 0.00 0.00 -0.14 
 Petrol -10% 0.12 -0.22 0.00 0.00 0.00 0.22 
 Diesel g +10% 0.00 0.00 0.00 0.00 0.00 0.00 
 Diesel -10% 0.00 0.00 0.00 0.00 0.00 0.00 
Japan        
 EV Learning rate +5% -0.10 -0.15 0.00 0.00 0.00 0.15 
 EV Learning rate -5% 0.12 0.11 0.00 0.00 0.00 -0.11 
 Discount rate +10% 0.20 0.22 0.00 0.00 -0.14 -0.08 
 Discount rate -10% -0.14 -0.17 0.00 0.00 0.15 0.02 
 EV price +10% 0.05 -0.01 0.00 0.00 0.17 0.07 
 EV price -10% -0.o6 0.61 0.00 0.00 -0.52 -0.10 
 Oil price +20% -2.28 -0.02 -0.02 0.00 -0.09 0.11 
 Oil price +50% -4.72 -0.05 -0.05 0.00 -0.20 0.26 
 Oil price -20% 2.76 0.02 0.02 0.00 0.11 -0.13 
 Oil price -50% 6.53 0.05 0.05 0.00 0.30 -0.34 
 All g +20% -1.54 -2.40 0.01 0.00 2.40 -0.01 
 All g -20% 4.41 8.34 -0.01 0.00 -8.35 0.02 
 EV g +10% -0.01 -0.01 0.00 0.00 -0.06 0.07 
 EV g -10% 0.34 0.61 0.00 0.00 -0.71 0.10 
 Hybrid g +10% -0.29 -0.53 0.00 0.00 0.61 -0.80 
 Hybrid g -10% 0.34 0.61 0.00 0.00 -0.69 0.10 
 Petrol g +10% -0.29 -1.18 0.00 0.00 1.16 0.02 
 Petrol -10% 0.34 1.88 0.00 0.00 -1.85 -0.03 
 Diesel g +10% 0.00 0.00 0.00 0.00 0.00 0.00 
 Diesel -10% 0.00 0.00 0.00 0.00 0.00 0.00 
China        
 EV Learning rate +5% -2.31 -2.49 -0.20 -0.10 0.00 2.79 
 EV Learning rate -5% 3.41 3.14 0.11 0.00 0.00 -3.25 
 Discount rate +10% 0.62 2.08 0.00 0.01 -0.04 -2.05 
 Discount rate -10% -0.96 -1.73 0.00 -0.02 0.05 1.70 
 EV price +10% 0.99 4.28 0.00 0.03 -0.25 5.08 
 EV price -10% -1.10 -4.79 0.00 -0.04 -1.32 0.98 
 Oil price +20% -5.13 -0.20 0.00 -0.01 -0.02 0.22 
 Oil price +50% -7.02 -0.35 0.00 -0.01 -0.04 0.53 
 Oil price -20% 6.42 0.24 0.00 0.01 0.02 -0.24 
 Oil price -50% 8.83 0.46 0.00 0.02 0.06 -0.64 
 All g +20% -1.18 -4.08 0.00 -0.03 0.45 3.67 
 All g -20% 1.07 4.15 0.00 0.02 -1.01 -3.16 
 EV g +10% -1.09 -4.80 0.00 -0.04 -0.25 5.08 
 EV g -10% 0.58 0.33 0.00 0.01 -1.32 0.98 
 Hybrid g +10% -0.03 -0.21 0.00 0.00 0.81 -0.59 
 Hybrid g -10% 0.05 0.33 0.00 0.01 -1.30 0.98 
 Petrol g +10% 0.51 -0.25 0.00 0.00 -0.84 0.07 
 Petrol -10% -0.46 0.31 0.00 -0.01 -0.12 -0.49 
 Diesel g +10% 0.00 0.00 0.00 0.00 0.00 0.00 
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 Diesel -10% 0.00 0.00 0.00 0.00 0.00 0.00 
India        
 EV Learning rate +5% 0.00 0.00 0.00 0.00 0.00 0.00 
 EV Learning rate -5% 0.00 0.00 0.00 0.00 0.00 0.00 
 Discount rate +10% 0.22 0.79 0.59 0.01 -0.10 -0.10 
 Discount rate -10% -0.48 -0.85 -0.54 -0.02 1.24 0.17 
 EV price +10% 0.04 0.21 0.00 0.03 -0.21 -0.04 
 EV price -10% -0.03 -0.19 0.00 -0.o3 0.19 0.00 
 Oil price +20% -2.82 -0.24 0.00 0.00 0.11 0.13 
 Oil price +50% -6.48 -0.61 0.00 -0.01 0.28 0.29 
 Oil price -20% 1.79 0.26 0.00 0.00 -0.11 -0.14 
 Oil price -50% 5.97 0.56 0.00 0.00 -0.29 -0.37 
 All g +20% -1.49 -2.34 2.12 -0.08 0.15 0.15 
 All g -20% 0.42 0.81 -0.51 0.04 -0.16 -0.19 
 EV g +10% 0.01 0.04 0.00 0.03 -0.04 -0.04 
 EV g -10% 0.01 -0.01 0.00 0.01 0.00 0.00 
 Hybrid g +10% 0.00 0.00 0.00 0.00 0.00 0.00 
 Hybrid g -10% 0.00 0.00 0.00 0.00 0.00 0.00 
 Petrol g +10% 0.47 0.65 0.76 0.00 -0.75 -0.67 
 Petrol -10% -0.27 -0.81 1.05 -0.01 -0.11 -0.11 
 Diesel g +10% 0.12 0.72 -0.51 0.00 0.00 0.38 
 Diesel -10% -0.97 0.20 -0.58 0.00 0.00 0.13 

 1 
F.2 Sensitivity analysis – scenarios with interactions 2 
 3 
In this section, we examine the impact of parametric uncertainties on the interactions between 4 
policies. The parameters are varied by quantities that we considered in the baseline scenario 5 
(see Appendix F.1). We conduct the sensitivity analysis for all 63 scenarios (all possible 6 
interactions), each with eight parametric variations. Tables F2-F5 present the percentage 7 
change in the size of interactions as a result of variations in key parameters that generate the 8 
most changes in emissions and technological shares.  9 
 10 
Changing EV learning rates have a small impact on the interactions, in particular for countries 11 
with a small number of EV (e.g. the UK and India). On the other hand, variations in oil prices 12 
have a bigger impact on the interactions between policies. Overall, we find that the percentage 13 
change in the sizes of interactions as a result of variations in parameters does not increase with 14 
the number of policy interactions. Changes in the size of the interaction effects, as a result of 15 
the variation in parameter, are within 30% for all scenarios. This implies that there is no 16 
‘directional change’8 in the interactions as a result of the parametric uncertainties. Hence, we 17 
argue that the parametric uncertainties will not change the main conclusions of this paper.  18 
 19 

 
8 Directional change refers to a change in direction for the interaction effects (e.g. from trade-off effects to 
reinforcement effects), when the percentage change in the interactions between policies is larger than 100%.  
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Table F2. 
Sensitivity analysis of the parameters on policy interactions (two policy interactions scenario). Each number refers to a percentage change in the size of interactions.  
 

Note: EV LR stands for EV learning rate; DR stands for Discount Rate; OP stands for Oil Price 
RT = “Registration Tax”; FT= “Fuel Tax”; EVS = “EV Subsidy”; VT= “Vehicle Tax”; FE= “Fuel Economy Standard”; EVM = “EV Mandate” 

 

 Parameters RT 
FE (%) 

RT 
FT (%) 

EVS 
RT (%) 

FT 
FE (%) 

EVS 
FT (%) 

EVS 
FE (%) 

VT 
RT (%) 

VT 
FT (%) 

VT 
FE (%) 

VT 
EVS (%) 

FT 
EVM (%) 

RT 
EVM (%) 

FE 
EVM 
(%) 

EVS 
EVM 
(%) 

VT 
EVM 
(%) 

US                 
 EV LR +5% 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.35 0.01 0.01 0.10 0.67 0.95 0.12 
 EV LR -5% 0.00 0.00 -0.01 0.00 0.00 0.80 0.00 0.02 0.67 0.00 0.00 -0.24 -1.02 -0.29 -0.08 
 DR +10% -4.09 8.45 -2.26 5.39 5.58 -5.33 -1.47 6.24 -6.20 -2.77 3.75 5.15 6.45 4.87 -3.45 
 DR -10% 4.61 7.56 2.07 6.14 6.38 4.98 3.32 7.88 6.72 3.19 -5.14 -3.91 -4.25 -7.32 5.89 
 OP +20% 2.60 5.67 -7.24 6.62 -7.98 3.17 7.50 3.76 -6.33 6.90 2.33 -1.54 -4.23 5.34 4.98 
 OP +50% 6.21 6.68 -10.22 7.10 -11.31 5.04 4.22 5.77 -5.29 3.14 1.55 1.52 2.45 6.97 7.57 
 OP -20% -2.73 -5.12 -9.93 -5.10 -9.15 -2.02 -2.49 -7.40 -6.49 -6.32 -4.45 -3.66 -4.65 -5.14 -6.57 
 OP -50% -6.78 -6.27 -15.23 -6.22 -12.04 -5.52 -8.34 -10.34 -9.67 -5.33 -6.29 2.43 6.14 -3.45 -5.40 
UK                 
 EV LR +5% 0.01 0.01 0.12 0.14 0.01 -0.14 0.89 0.23 -0.45 0.55 0.12 0.05 2.04 1.45 0.87 
 EV LR -5% 0.00 0.00 -0.14 -0.04 0.00 0.31 -0.63 -0.45 0.34 -0.29 -0.33 -0.01 -1.44 -1.34 -0.91 
 DR +10% 1.22 4.76 -5.15 -2.45 -2.05 2.46 -3.34 -3.04 3.42 -3.88 5.23 2.18 3.45 3.51 3.22 
 DR -10% -2.54 5.30 2.35 4.69 3.14 -3.87 2.59 2.98 2.10 4.39 -4.53 -3.49 -4.66 -5.22 -4.14 
 OP +20% -2.77 4.78 -9.31 -2.28 -10.20 -3.04 -8.55 -8.95 -1.97 -6.21 -6.28 -7.44 -7.05 6.45 -8.52 
 OP +50% -6.98 6.91 -15.24 -6.19 -12.78 -7.82 -14.52 -11.32 -2.09 -10.39 6.07 7.65 8.46 7.01 6.07 
 OP -20% 2.72 -4.10 -10.10 3.52 -9.66 3.34 -10.34 4.23 2.67 -7.23 -6.54 -8.94 -9.23 -7.45 -9.45 
 OP -50% 2.51 -6.28 -13.37 3.90 -14.02 7.43 -12.63 5.59 3.23 -6.88 5.17 6.53 7.09 -6.11 4.51 
Japan                 
 EV LR +5% 8.02 1.68 2.40 3.90 1.22 2.03 4.42 2.10 2.77 5.21 3.08 3.51 1.63 5.37 2.16 
 EV LR -5% -4.01 0.74 -3.66 2.74 -1.01 4.01 -3.29 -3.19 -3.24 -6.43 -5.73 -3.09 -2.45 -7.66 -1.85 
 DR +10% 1.43 1.90 -3.35 -2.28 -3.90 2.66 -2.08 -5.60 4.59 -5.59 4.18 2.59 5.76 5.30 3.91 
 DR -10% -2.56 1.56 2.64 3.55 3.14 -4.57 3.14 2.74 -5.87 4.76 -6.26 -5.12 -8.26 -7.11 -6.15 
 OP +20% -4.33 1.59 4.94 -5.20 -5.22 -3.43 -5.70 -6.18 -4.76 -4.39 -3.57 -2.26 -5.08 -4.14 -5.32 
 OP +50% -10.23 1.70 8.12 -9.27 -9.11 -12.04 -8.23 -8.46 -5.33 -7.64 4.35 5.24 7.34 -7.11 -7.98 
 OP -20% 5.29 -2.22 4.02 6.15 -6.37 7.28 -10.45 5.94 -8.13 -9.86 -6.42 -5.45 -8.82 6.15 5.10 
 OP -50% 10.53 -2.80 10.81 9.89 -10.04 14.98 -12.07 4.02 -5.21 -6.07 7.05 4.53 7.46 7.32 9.41 
China                 
 EV LR +5% 10.15 5.03 5.41 12.12 3.10 6.65 -8.33 4.75 5.13 -9.34 4.07 3.30 8.58 10.49 7.41 
 EV LR -5% 9.19 -4.01 3.02 -10.14 -5.12 6.34 9.28 -5.13 5.79 7.45 -5.91 -4.49 -6.54 -9.12 -6.95 
 DR +5% 4.35 7.83 4.62 -3.41 -5.89 7.23 3.75 -6.09 4.12 5.08 9.19 -10.31 -14.43 -15.40 -10.41 
 DR -5% -3.96 6.49 -4.21 4.04 6.21 -5.50 -6.41 4.17 -4.55 -4.57 -11.21 12.82 15.47 12.04 12.04 
 OP +20% -5.52 7.02 -7.73 -5.19 -7.93 -6.33 -6.19 -6.80 -5.18 -8.02 8.66 9.41 -9.16 -10.41 8.41 
 OP +50% -12.78 7.57 -15.39 -9.72 -16.74 -11.31 -6.30 -9.62 -12.07 -4.89 -12.49 -13.23 -14.24 -17.69 -11.04 
 OP -20% 5.56 -7.07 10.37 6.91 -9.36 7.31 -11.21 -11.63 6.44 9.25 12.79 14.98 16.42 15.97 12.01 
 OP -50% 12.93 -7.43 12.39 10.03 -13.01 14.73 -12.29 -10.43 12.48 10.29 -14.29 -15.21 19.47 18.43 15.67 
India                 
 EV LR +5% 0.00 0.01 0.00 0.01 0.00 0.05 0.00 0.01 0.00 0.03 0.04 0.01 0.65 0.89 0.19 
 EV LR -5% 0.00 0.00 0.00 0.00 0.00 -0.06 0.00 0.00 0.00 -0.12 -0.02 -0.02 -1.45 -0.41 -0.25 
 DR +5% 1.78 1.79 1.03 2.13 1.39 1.20 1.35 2.03 1.48 2.84 3.66 4.18 5.30 4.32 4.11 
 DR -5% -1.08 2.59 -0.89 -2.37 -1.44 -2.35 3.48 -1.36 -2.92 1.76 -4.22 -5.75 -6.33 -5.71 -3.12 
 OP +20% -1.29 2.06 4.49 -2.12 5.77 -2.41 4.39 3.25 -2.33 -2.84 -5.48 -5.97 -6.45 -4.77 -3.41 
 OP +50% -3.07 2.14 5.08 -3.72 6.34 -3.80 7.04 4.98 -4.10 -1.46 6.39 6.11 -7.22 -3.18 -5.68 
 OP -20% 1.52 -1.98 -3.19 2.81 -4.39 2.49 -8.21 -5.09 3.86 -2.82 -5.59 -5.97 5.99 2.47 4.09 
 OP -50% 3.37 -1.93 -5.40 4.53 -6.94 2.47 -6.76 -5.49 3.49 -2.24 4.05 4.31 6.07 3.95 4.24 
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Table F3. 
Sensitivity analysis of the parameters on policy interactions (three policy interactions scenario). Each number refers to a percentage change in the size of interactions.  

 Parameters FT 
FE 
EVS (%) 

FT 
FE 
RT 
(%) 

EVM 
RT 
VT 
(%) 

EVM 
RT 
FT (%) 

FE 
EVM 
FT (%) 

EVS 
FE 
EVM 
(%) 

EVS 
FE 
RT (%) 

EVS 
RT 
EVM (%) 

EVS 
RT 
FT (%) 

VT 
RT 
FT (%) 

EVS 
FT 
VT (%) 

RT 
VT 
FE 
(%) 

FT 
VT 
FE (%) 

VT 
EVM 
RT (%) 

FT 
VT 
EVM (%) 

EVS 
VT 
EVM (%) 

FE 
EVM 
VT (%) 

EVM 
VT 
RT (%) 

FE 
FT 
EVM (%) 

EVM 
FT 
EVS (%) 

US                      
 EV LR +5% 0.02 0.09 0.08 0.04 4.02 1.32 0.05 0.85 0.12 0.01 0.12 0.04 0.03 0.01 0.00 2.47 1.50 0.51 0.85 1.04 
 EV LR -5% -0.23 -0.74 -0.01 -0.03 -3.05 4.04 -0.14 3.52 -0.09 -0.01 0.08 -0.06 -0.11 0.03 0.04 -1.23 2.06 -0.44 -1.14 -0.77 
 DR +10% -4.32 6.42 -4.12 -3.53 6.22 5.14 -3.09 4.13 -1.53 -2.14 6.35 -4.22 -4.74 3.06 2.45 6.44 4.35 6.24 4.13 6.24 
 DR -10% -5.21 -3.52 3.04 4.75 -4.02 -4.66 -4.14 -5.41 1.55 4.26 7.62 6.01 5.32 -3.53 -4.78 -5.62 -3.46 -4.52 -5.07 -4.33 
 OP +20% 0.78 1.52 -5.77 -6.63 -7.72 -10.57 1.54 -9.51 -6.74 1.97 -5.62 3.06 2.74 4.53 3.34 -11.56 -12.43 -2.61 -9.45 -8.03 
 OP +50% -4.04 -3.34 -11.26 -9.72 9.62 10.94 -10.59 11.52 -9.47 -10.25 -4.79 -12.34 -11.17 3.78 2.83 9.45 10.38 2.52 -5.45 7.47 
 OP -20% -5.22 6.52 -10.22 -10.06 14.59 14.43 -2.04 13.05 -15.73 5.62 -10.67 4.75 3.54 -6.46 -5.73 8.50 12.57 -4.61 -8.52 7.50 
 OP -50% 6.53 7.60 -11.37 -16.63 12.24 11.15 8.33 12.54 -20.35 10.25 -14.72 7.37 8.82 -4.73 -5.72 12.24 11.73 3.52 -10.42 11.19 
UK                      
 EV LR +5% 0.10 0.09 0.71 0.41 2.64 0.45 0.07 0.21 0.45 0.05 0.21 0.46 0.31 0.10 0.05 0.41 0.70 0.05 0.21 0.74 
 EV LR -5% -0.22 -0.98 -0.23 -0.34 -1.95 -1.41 -0.34 -0.74 -0.26 -0.06 0.03 -0.84 -0.47 -0.63 -0.73 -1.04 -0.98 -0.01 -0.16 -0.41 
 DR +10% -1.44 -1.53 -4.36 -5.74 -3.32 -2.04 -1.73 -1.59 -6.73 -1.25 -1.63 -3.17 -2.57 6.55 4.23 -3.23 -1.45 3.23 -1.97 -2.34 
 DR -10% 2.04 2.02 3.46 3.67 3.61 1.76 1.77 1.45 2.78 1.74 1.77 3.64 2.05 -8.64 -7.74 4.53 2.02 -2.26 2.12 3.11 
 OP +20% -12.95 -6.53 -11.54 -12.53 -12.94 -16.66 -2.47 -14.29 -11.83 -2.29 -8.76 -2.77 -1.35 -6.74 -7.92 -13.34 -10.46 -5.69 -14.21 -13.88 
 OP +50% 9.35 12.63 -12.60 -11.53 12.62 11.07 6.24 12.66 -17.73 8.63 -10.73 3.64 5.27 7.65 6.75 9.85 8.82 10.62 12.02 10.31 
 OP -20% -9.14 -7.53 -11.35 -10.06 -9.61 -12.42 -2.87 -10.47 -12.73 -9.24 -12.73 -6.41 -4.20 -10.74 -7.12 -11.93 -9.54 -14.73 -10.69 -10.95 
 OP -50% 10.78 11.23 -16.63 -12.93 -9.59 -10.75 8.39 -11.43 -15.77 -12.14 -16.79 9.67 10.52 -15.60 6.37 -9.42 -11.06 10.09 -11.09 -8.58 
Japan                      
 EV LR +5% 1.04 2.05 1.93 2.15 1.88 1.47 0.17 1.32 3.34 2.19 0.87 0.66 0.32 3.64 2.56 1.04 0.87 5.62 0.87 1.23 
 EV LR -5% 0.78 2.14 -2.56 -1.44 -1.24 1.88 -0.21 1.44 -5.73 -0.98 -0.73 -0.89 -1.63 -4.20 -3.34 0.84 -1.23 -4.62 1.31 -1.41 
 DR +10% 2.83 3.05 -4.35 -4.63 2.62 3.45 -1.58 3.09 -4.83 -1.35 -2.87 -1.34 -1.73 6.64 6.35 2.44 2.92 3.62 2.20 1.89 
 DR -10% -2.59 -4.65 -4.01 3.32 -3.15 -4.22 3.12 -3.52 3.72 -7.26 -2.62 2.04 2.71 -8.74 -7.70 -3.15 -4.77 -4.62 -2.69 -2.02 
 OP +20% -10.48 -8.56 5.63 6.53 -15.27 -17.57 -5.83 -12.23 6.47 -3.87 -4.82 -6.14 -7.85 -4.56 -5.32 -14.24 -12.74 -1.78 -14.29 -12.12 
 OP +50% 9.95 7.56 7.36 9.48 11.22 10.78 10.04 12.54 9.08 8.42 -11.83 9.97 11.20 6.74 7.62 11.58 11.06 5.62 11.09 10.58 
 OP -20% 12.15 14.63 9.63 6.93 17.60 15.52 4.38 14.23 6.48 -12.73 -7.84 7.74 5.27 -11.7 -10.62 10.74 10.72 -10.64 12.67 11.19 
 OP -50% -11.75 15.53 11.06 9.07 -11.07 -12.39 -11.44 -10.45 12.28 14.53 -11.93 -11.16 -10.05 -15.74 11.52 -11.24 -13.57 6.62 -10.86 -9.28 
China                      
 EV LR +5% 5.49 4.63 4.67 3.33 19.47 17.77 5.71 14.43 4.84 2.13 1.21 5.17 6.14 4.73 5.52 16.42 16.78 2.73 10.20 15.37 
 EV LR -5% -4.14 -3.83 5.35 4.06 -17.33 -20.70 -3.69 -18.50 2.98 -3.27 -4.61 -3.87 -4.22 -5.74 -7.12 -18.21 -15.72 -3.72 -11.44 -16.44 
 DR +10% -5.09 -6.67 3.40 2.49 -4.83 -5.33 -7.23 -6.21 7.84 -7.24 -6.56 -7.54 -6.04 9.69 10.35 -6.52 -6.34 -9.62 -4.12 -5.49 
 DR -10% 6.39 7.53 -4.17 -6.32 7.56 6.12 6.96 7.55 -4.70 8.55 -8.53 6.17 7.20 -10.88 -9.51 4.41 5.62 14.62 5.50 5.07 
 OP +20% 8.56 5.47 -8.35 -6.64 5.72 6.74 -2.37 5.41 -7.83 -6.01 -13.62 -5.64 -6.42 10.05 7.63 4.09 5.07 10.27 5.92 3.58 
 OP +50% -11.75 -9.63 -9.15 -12.33 -13.51 -14.37 19.89 -13.98 -10.78 11.62 -10.66 11.78 12.07 -15.45 -10.74 -11.31 -16.72 -12.73 -9.92 -12.32 
 OP -20% -6.60 8.63 11.62 8.13 -7.78 -8.53 -4.07 -7.41 11.98 17.61 -10.62 -6.49 -5.01 19.47 16.73 -10.49 -10.72 -16.72 -9.04 -11.41 
 OP -50% -9.50 -14.63 10.50 13.52 -16.53 -13.66 -16.58 -10.76 14.55 -17.52 -16.62 -15.96 -14.52 -17.65 -15.56 -15.31 -14.69 -20.62 -11.25 -12.85 
India                      
 EV LR +5% 0.03 0.02 0.01 0.05 7.41 6.22 0.04 5.41 0.02 0.00 0.01 0.02 0.03 0.17 0.02 4.35 5.43 0.02 2.04 3.35 
 EV LR -5% 0.04 -0.05 -0.03 0.05 -6.39 8.95 0.00 7.09 0.09 -0.01 0.06 -0.04 -0.08 -0.51 -0.01 5.51 5.37 -0.14 3.25 4.62 
 DR +10% 5.33 4.47 2.38 1.83 2.54 3.42 6.77 2.24 0.85 2.24 0.98 2.59 3.54 3.64 2.84 6.35 2.87 3.52 3.79 6.52 
 DR -10% -6.60 -3.63 -1.02 -2.05 -3.83 -2.21 -5.14 1.89 -1.73 -1.52 -1.03 3.24 2.27 -3.47 -3.83 4.11 -1.97 -6.62 -1.97 3.56 
 OP +20% -5.45 -4.86 6.61 5.94 6.58 6.25 -3.41 5.49 7.73 5.45 3.62 5.59 6.23 -7.60 -6.72 5.15 5.33 -6.77 3.04 4.95 
 OP +50% -3.07 -6.36 8.73 6.92 -8.90 -8.26 -8.54 -7.56 4.74 -4.62 -5.24 -4.92 -5.14 6.65 4.73 -7.31 -6.07 7.34 5.42 -6.52 
 OP -20% -5.52 -3.69 -5.49 -3.01 -6.05 -4.92 -2.70 -5.79 -6.73 -7.23 -7.73 -5.52 -6.12 4.74 2.56 -5.77 -5.72 -6.62 -3.36 -5.75 
 OP -50% -10.93 -9.37 -6.62 -7.83 -7.39 -6.55 -4.47 -7.58 -5.79 -14.25 -12.36 -8.18 -9.42 6.67 5.64 -6.02 -6.39 3.27 -4.15 -4.20 

Note: EV LR stands for EV learning rate; DR stands for Discount Rate; OP stands for Oil Price 
RT = “Registration Tax”; FT= “Fuel Tax”; EVS = “EV Subsidy”; VT= “Vehicle Tax”; FE= “Fuel Economy Standard”; EVM = “EV Mandate” 
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Table F4. 
Sensitivity analysis of the parameters on policy interactions (four policy interactions scenario). Each number refers to a percentage change in the size of interactions.  

 Parameters EVM;FT; 
VT;EVS 
(%)  

EVM;FE; 
VT;EVS 
(%) 

EVM;FT; 
FE;VT 
(%) 

EVM;RT; 
VT;EVS 
(%) 

EVM;RT; 
FE;VT  
(%) 

EVM;RT; 
FT;VT 
(%) 

EVM;FT; 
FE;EVS 
(%) 

EVM;FE; 
EVS;RT 
(%) 

EVM;RT; 
FT;EVS 
(%) 

EVM;RT 
FT;FE 
(%) 

RT;FE; 
VT;EVS 
(%) 

FT;FE 
VT;EVS 
(%) 

FT;VT 
EVS;RT 
(%) 

RT;FT 
VT;FE 
(%) 

RT;FT 
FE;EVS 
(%) 

US                 
 EV LR 

+5% 
3.46 2.69 3.16 3.52 3.46 0.06 0.85 1.07 2.75 3.56 0.10 0.06 1.32 0.06 0.11 

 EV LR -5% -2.66 -5.49 -5.27 -2.47 -4.43 -0.07 -0.93 -0.53 -1.93 -1.11 -0.08 -0.14 4.04 -0.09 -0.09 
 DR +10% 7.25 9.56 6.57 5.05 7.55 -2.44 4.24 5.27 4.28 4.96 -2.69 -3.47 5.14 -3.63 -2.26 
 DR -10% -4.57 -6.02 -5.42 -6.78 -5.71 3.85 -6.50 -6.63 -5.87 -3.77 -3.98 -4.84 -4.66 6.62 -5.37 
 OP +20% -12.42 -9.05 -11.45 -12.57 -9.45 -7.05 -11.05 -10.27 -14.24 -10.84 2.75 1.58 -10.57 3.62 2.80 
 OP +50% 10.27 13.86 -10.38 8.24 12.74 -10.26 10.77 -11.04 10.43 9.73 -7.96 -3.94 10.94 -10.66 -11.73 
 OP -20% 5.38 19.04 5.67 3.45 10.87 -11.96 11.01 -9.27 4.23 11.75 -3.88 -6.46 14.43 4.62 -3.96 
 OP -50% 15.27 12.12 10.09 15.27 11.36 -15.68 13.33 -12.93 14.27 16.83 7.94 4.90 11.15 7.20 7.43 
UK                 
 EV LR 

+5% 
0.10 1.14 0.45 0.27 1.07 0.90 0.11 1.24 0.69 0.98 0.04 0.21 0.45 0.55 0.06 

 EV LR -5% -0.06 -0.99 -0.14 -0.53 -0.89 -0.67 -0.08 -1.69 -0.17 -1.06 -0.03 -0.14 -1.41 -0.74 -0.13 
 DR +10% -2.64 -1.59 -5.57 -4.56 -2.01 -6.04 -1.96 -3.42 -3.42 -4.75 -1.06 -0.87 -2.04 -1.84 -2.63 
 DR -10% 4.04 4.33 4.21 5.47 4.52 4.83 1.05 4.52 4.98 5.74 1.63 2.04 1.76 1.37 2.07 
 OP +20% -10.24 -7.24 -10.05 -9.59 -7.55 -11.05 -10.76 -8.79 -10.52 -10.06 -2.72 -10.48 -16.66 -2.04 -1.09 
 OP +50% 7.07 12.75 10.46 10.27 10.65 -14.86 11.75 11.06 -15.27 -10.46 5.62 8.96 11.07 6.45 7.44 
 OP -20% -10.22 -12.77 -12.52 -11.85 -8.37 -7.54 -14.52 -9.58 -8.52 -11.15 -3.36 -10.11 -12.42 -5.44 -3.08 
 OP -50% -12.06 -17.24 -13.25 -14.59 -10.99 -11.73 -15.46 -11.68 -12.92 -13.62 7.68 8.94 -10.75 -11.06 10.17 
Japan                 
 EV LR 

+5% 
0.85 1.13 0.53 0.85 1.05 3.08 1.18 2.08 0.08 0.01 0.14 0.87 1.47 0.75 0.23 

 EV LR -5% -0.71 -0.97 -0.86 -1.19 -0.87 -2.07 -0.82 -1.64 -0.17 -0.06 -0.01 0.90 1.88 -0.42 -0.67 
 DR +10% 8.45 1.75 3.48 4.57 1.66 3.40 2.89 2.57 6.27 5.45 -1.47 1.83 3.45 -1.05 -2.85 
 DR -10% -10.57 -4.17 -5.20 -4.97 -2.29 -3.63 -3.54 -5.54 4.25 6.52 2.37 -3.49 -4.22 3.64 6.85 
 OP +20% -11.05 -10.27 -16.25 -12.71 -12.02 -8.37 -11.05 -10.57 -10.75 -12.17 -5.37 -9.97 -17.57 -8.44 -6.77 
 OP +50% 14.25 10.37 11.53 13.45 14.90 -11.38 -13.85 -13.84 12.05 11.33 9.56 12.57 10.78 12.06 11.56 
 OP -20% 14.05 11.66 12.69 11.48 15.52 10.56 -16.68 12.05 8.22 9.40 9.89 10.97 15.52 6.34 5.67 
 OP -50% -18.25 14.79 -14.38 -12.57 10.07 15.97 -10.35 16.55 -14.27 -15.19 -13.84 -14.97 -12.39 -14.34 -12.27 
China                 
 EV LR 

+5% 
10.05 12.87 16.05 12.44 18.27 8.07 14.13 12.53 7.55 12.77 4.84 6.45 17.77 7.36 6.07 

 EV LR -5% -9.44 -13.35 -12.07 -17.05 -16.08 -11.67 -19.05 -14.06 -9.42 -15.63 -2.94 -10.67 -20.70 -6.47 -2.89 
 DR +10% -7.57 -3.96 -6.71 -5.32 -3.70 -4.37 -6.38 -2.97 -6.71 -5.33 -4.95 -4.87 -5.33 -6.11 -10.05 
 DR -10% 9.24 8.42 5.54 6.37 8.39 8.03 7.22 3.34 9.74 8.22 7.84 7.22 6.12 6.54 9.93 
 OP +20% 5.37 6.06 6.20 -7.20 6.72 7.72 5.84 7.06 -6.22 -6.47 -1.95 8.60 6.74 -8.95 -3.43 
 OP +50% -13.44 -10.06 -10.03 -10.05 -10.73 -11.15 -10.67 -11.55 -8.05 -10.37 14.12 -14.56 -14.37 11.58 17.57 
 OP -20% -11.65 -12.94 -8.20 -12.15 8.03 9.51 9.20 10.75 -10.76 -14.53 -10.83 7.93 -8.53 -10.15 -10.05 
 OP -50% -17.24 -11.76 -14.43 -14.54 -10.73 -13.36 -11.84 -12.52 -9.42 -17.66 -14.94 -10.67 -13.66 -16.34 -15.99 
India                 
 EV LR 

+5% 
2.24 3.68 5.85 5.32 8.72 0.09 2.37 5.80 1.42 3.22 0.02 0.01 6.22 0.15 0.02 

 EV LR -5% -4.03 -5.52 -7.05 4.07 4.55 -0.02 -2.01 6.44 2.09 1.95 -0.04 0.05 8.95 -0.12 0.07 
 DR +10% 5.25 8.37 3.41 6.75 8.27 2.07 2.57 6.54 5.85 5.38 3.62 6.75 3.42 2.62 5.67 
 DR -10% 4.20 -11.75 -5.94 6.23 -10.53 -3.66 -1.68 -11.05 3.77 -6.17 -6.73 -6.49 -2.21 3.15 -3.75 
 OP +20% 4.20 7.33 7.02 7.24 8.32 10.52 5.28 9.54 6.64 5.26 -5.86 6.87 6.25 7.83 -4.46 
 OP +50% -5.66 -12.06 -7.19 -5.27 -7.06 -8.52 -6.33 -7.26 -7.38 -9.11 -9.56 -4.63 -8.26 -4.04 -9.43 
 OP -20% -7.23 -8.41 -12.45 -7.67 -10.49 -11.64 -4.27 -12.85 -5.56 -14.67 -2.02 -6.08 -4.92 -5.90 -3.38 
 OP -50% -9.62 -11.39 -10.92 7.63 -9.56 -10.08 -7.52 -18.54 6.28 -19.05 -8.37 -11.98 -6.55 -8.84 -6.06 

Note: EV LR stands for EV learning rate; DR stands for Discount Rate; OP stands for Oil Price; RT = “Registration Tax”; FT= “Fuel Tax”; EVS = “EV Subsidy”; VT= “Vehicle Tax”; FE= “Fuel Economy Standard”; EVM = “EV Mandate” 
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Table F5. 
Sensitivity analysis of the parameters on policy interactions (five and six policy interactions scenario). Each number refers to a percentage change in the size of interactions.  

 Parameters KS; FT;VT;EVS;FE (%) KS;VT;EVS:FE:RT 
(%) 

KS;FT;VT;EVS;RT (%) KS;FT;EVS;FE;RT 
(%) 

KS;FT;VT;FE;RT 
(%) 

FT;VT;FE;RT;EVS (%) FT;VT;FE;RT;EVS;EVM 
(%) 

US         
 EV LR +5% 0.97 0.11 0.15 1.14 1.98 0.85 2.69 
 EV LR -5% -0.76 -0.15 -0.22 -0.86 -2.50 -0.74 -5.49 

 DR +10% 3.31 3.42 -3.34 3.74 5.14 -5.45 9.56 

 DR -10% -4.01 -4.59 4.25 -5.06 -6.36 7.24 -6.02 

 OP +20% -11.41 3.31 -8.51 -10.63 -11.05 6.62 -9.05 

 OP +50% 14.50 -6.54 -11.64 14.76 8.24 -11.06 13.86 

 OP -20% 14.86 5.77 -10.91 12.81 12.47 6.56 19.04 

 OP -50% 15.32 10.84 -12.53 15.85 15.20 8.73 12.12 

UK         
 EV LR +5% 0.42 0.03 0.47 0.44 0.74 1.74 1.14 

 EV LR -5% -0.62 -0.01 -0.59 -0.52 -0.80 -1.36 -0.99 

 DR +10% -3.13 -1.25 -5.38 -2.96 -3.36 -3.34 -1.59 

 DR -10% 4.09 2.55 6.44 3.35 5.41 5.75 4.33 

 OP +20% -12.10 -3.64 -9.35 -11.63 -11.05 -2.36 -7.24 

 OP +50% 13.46 6.56 -12.65 13.65 -9.98 5.75 12.75 

 OP -20% -11.22 -4.80 -8.63 -12.24 -13.58 -10.56 -12.77 

 OP -50% -13.09 8.24 -13.65 -16.04 -16.85 -15.57 -17.24 

Japan         

 EV LR +5% 1.87 0.08 4.39 2.53 0.05 1.34 1.13 

 EV LR -5% -2.09 -0.16 -3.55 -1.08 -0.12 -0.87 -0.97 

 DR +10% -2.42 -1.56 5.24 -3.54 4.28 -1.98 1.75 

 DR -10% -4.83 3.41 -6.69 -5.66 -6.72 2.36 -4.17 

 OP +20% -8.21 -6.64 -7.23 -9.67 -10.55 -7.56 -10.27 

 OP +50% -11.89 7.15 -10.01 -10.07 15.26 10.03 10.37 

 OP -20% -10.39 10.41 9.96 -12.63 8.24 7.56 11.66 

 OP -50% -16.43 -12.54 -12.24 -15.98 -12.24 -10.75 14.79 

China         

 EV LR +5% 11.30 5.94 10.48 10.65 14.58 5.66 12.87 

 EV LR -5% -14.38 -3.63 -12.89 -15.99 -10.25 -4.53 -13.35 

 DR +10% -4.87 -5.22 -5.24 -5.13 -6.31 -7.76 -3.96 

 DR -10% 4.03 -8.20 7.97 6.65 7.05 5.35 8.42 

 OP +20% 6.29 -5.54 10.84 7.34 -8.22 -9.63 6.06 

 OP +50% -8.33 16.24 -12.64 -9.74 -11.54 20.39 -10.06 

 OP -20% 9.03 -12.06 11.98 8.55 -12.27 -11.42 -12.94 

 OP -50% -14.87 -16.29 -16.64 -12.06 -19.58 -19.56 -11.76 

India         

 EV LR +5% 2.74 0.10 0.25 3.63 2.94 0.44 3.68 

 EV LR -5% -3.83 -0.38 -0.77 -4.56 2.83 -1.06 -5.52 

 DR +10% 4.03 2.24 2.95 3.09 4.58 3.24 8.37 

 DR -10% -3.74 -7.52 -3.42 -2.49 -6.75 5.15 -11.75 

 OP +20% 7.87 -6.54 8.09 3.30 9.52 10.33 7.33 

 OP +50% -9.49 -10.98 -11.66 -8.57 -11.88 -11.45 -12.06 

 OP -20% -10.94 -5.54 -7.84 -5.66 -8.75 -9.63 -8.41 

 OP -50% -12.14 -8.85 -10.23 -9.09 -15.51 -10.09 -11.39 

Note: EV LR stands for EV learning rate; DR stands for Discount Rate; OP stands for Oil Price; RT = “Registration Tax”; FT= “Fuel Tax”; EVS = “EV Subsidy”; VT= “Vehicle Tax”; FE= “Fuel Economy Standard”; EVM = “EV Mandate”
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Appendix G: High EV mandate scenario 
 
In this research, we assume that 10% of new car sales are EV, consistent with the level China 
proposed in 2019. In reality, to accelerate the rate of EV deployment, many car markets around 
the world (e.g., California, China, and the EU) have announced aggressive electrification goals, 
targeting high electric share in a 2020-2050 timeframe [107]. For example, the EU Zero 
Emission Vehicle (ZEV) mandate targets 15% of EV market shares by 2025 and 35% by 2030.  
Therefore, in this section, under the ‘High EV mandate scenario’, we assume that 35% of new 
car sales are EV by 2030, and by 2040, and 70% of new car sales are EV by 2040 in all five 
countries: the UK, the US, Japan, China, and India (see assumptions in Table G1).  
 
Table G2 shows the effectiveness of a ‘high EV mandate’ on reducing cumulative CO2 
emissions in the five countries, in comparison to the less ambitious ‘EV mandate scenario’ 
assumed in this paper (see scenario assumptions in Table 1 of Section 6). Note that the 
‘additional effectiveness’ of a more stringent EV mandate is relatively small in China because 
the shares for electric cars are the highest in China before the imposition of a more ambitious 
target.  
 
The goal of the analysis is to examine how a higher (or more ambitious) EV mandate affects 
the levels of trade-off and reinforcement effects. Table G3 shows the interactions between the 
financial incentives, the EV mandate assumed in Table 1 (Section 6), and the ‘high EV mandate’ 
(Table G1). The reinforcement effects between the ‘high EV mandate’ and other policies are 
slightly larger than the reinforcement effects between a less ambitious ‘EV mandate scenario’ 
and other policies. This implies that reinforcement effects between financial incentives and the 
EV mandate can be increased by setting a more ambitious EV mandate.  
 
Table G1  
High EV mandate assumptions.  
Target year 2020 2030 2040 
EV sales target 10% 35% 70% 

 
Table G2  
The effectiveness of a ‘high EV mandate’ on reducing cumulative CO2 emissions in the five 
countries, in comparison to the less ambitious EV mandate scenario (see assumptions in 
Table 1 of Section 6). 
 EV mandate scenario High EV mandate scenario 
UK 160.6 306.8 
US 1666.1 2518.8 
Japan  52.3 77.0 
China 1844.7 2034.8 
India 1247.2 1878.5 

 
Table G3  
The interaction effect between five policies. When the interaction effect is  positive, there is a 
reinforcement effect between the five policies. EVM(L) indicates a less ambitious EV 
mandate (see assumptions in Table 1 of Section 6), and EVM(H) indicates a ‘high EV 
mandate scenario’ (see assumption in Table G2).  
The interaction effect of five policies (high EV mandate scenario) 
(MtCO2) 



  
 
 
 

 66 

Scenario  UK US Japan China India 
EVM(L)+FT+VT+EVS+RT 27.6 810.6 1.2 42.1 269.0 
EVM(H)+FT+VT+EVS+RT 31.1 934.9 1.4 44.0 323.4 
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