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Over the past 30 years or more, chalcogenide phase-change materials and devices have generated 

much scientific and industrial interest, particularly as a platform for non-volatile optical and 

electronic storage devices. More recently, the combination of chalcogenide phase-change 

materials with photonic integrated circuits has begun to be enthusiastically explored and, amongst 

many proposals, the all-photonic phase-change memory brings the memristor-type device concept 

to the integrated photonic platform, opening up the route to new forms of unconventional (e.g. in-

memory and neuromorphic) yet practicable optical computing. For any memory or computing 

device, fast switching speed and low switching energy are most attractive attributes, and 

approaches by which speed and energy efficiency can be improved are always desirable. For 

phase-change material based devices, speed and energy consumption are both enhanced the 

smaller the volume of phase-change material that is required to be switched between its amorphous 

and crystalline phases. However, in conventional integrated photonic systems, the optical readout 

of nanometric-sized volumes of phase-change material is problematic. Plasmonics offers a way to 

bypass such limitations: plasmonic resonant structures are inherently capable of harnessing and 

focussing optical energy on sub-wavelength scales, far beyond the capabilities of conventional 

optical and photonic elements. In this work we explore various approaches to combining the three 

building blocks of Si-photonics, resonant plasmonic structures and phase-change materials to 

deliver plasmonically-enhanced integrated phase-change photonic memory and computing 

devices and systems, underlining the inherent technical and theoretical challenges therein. 

_______________________________________ 

a) Corresponding author:  david.wright@exeter.ac.uk 

I. INTRODUCTION 

Silicon photonics is now a relatively mature and established technology, and one that is at the very 

centre of the scientific community’s attention1–6. One of the main reasons for this is the inherent 

energy efficiency and wider bandwidth of the optical signal transport channels, as compared to 
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electrical interconnects. The marked advantages of photonic circuits for signal transport mean that 

silicon photonics is already used extensively in data centres and for board-to-board and chip-to-

chip communication, and has also seen preliminary experimental application for on-chip signal 

transport7. More recently, the combination of Si-photonics and chalcogenide phase-change 

materials, or PCMs, (similar to those used for example in re-writeable DVD and Blu-ray disc 

formats) has led to the development of novel integrated optical memory and computing devices8–

13. Here, the low-loss, high-bandwidth and innate parallelism (e.g. via the use of wavelength 

division multiplexing, or WDM) of the photonic approach, in tandem with the multi-state 

programming capabilities of chalcogenide PCMs, portend a new generation of fast, low-power 

computer processors (or co-processors) that exploit in-memory and neuromorphic computing 

approaches14–20.  

The basic concept of the integrated phase-change optical memory device is shown in FIG. 1; a thin 

chalcogenide PCM layer is fabricated on the top surface of a conventional photonic integrated 

waveguide (see FIG. 1(a)). Specifically, the PCM here adopted is the archetypal chalcogenide 

phase-change alloy Ge2Sb2Te5 (or GST for short). Optical pulses sent down the waveguide (the 

‘pump’ pulses in FIG. 1(a)) evanescently couple to the PCM layer and enable it to be switched 

between its crystalline and amorphous states, or to one of many intermediate levels of crystallinity 

lying between these states. Since the refractive index of PCMs is highly phase-state dependent, as 

shown in FIG. 1(b), the programmed phase-state of the PCM layer in turn controls (or programs) 

the optical transmission of the waveguide, and it is this transmission modulation that is used in the 

readout process (indicated by the ‘probe’ pulse in FIG. 1(a)) to determine the ‘information’ stored 

in the PCM cell. 

As of today, up to 35 levels (>5 bit) can be reliably read, written and erased on a single PCM  

cell11, and a demonstrative 512 bit memory device has also been successfully fabricated and 

tested12. Additionally, multi-state PCM cells of the type shown in FIG 1 have been used to provide 

arithmetic functionality15,18, have been incorporated into novel photonic crossbar arrays to deliver 

ultra-fast matrix-vector multipliers17, have been used to realise synaptic and neuronal ‘mimics’10 

and even small-scale neuromorphic processors14. 

The ‘conventional’ phase-change photonic unit cell of FIG. 1, however, typically requires 

switching energies of a few hundred pJ, and switching times in the tens to hundreds of 

nanoseconds8,9,11. Approaches that can reduce switching energy requirements, and increase 

switching speeds, will obviously be of much benefit. Since the PCM switching process is bound 

to unavoidable fundamental physical limitations, namely the heating of the PCM unit cell, 

improvements in switching speed and energy are most likely to be achieved via two scenarios: a 

reduction of the unit-cell volume, or a magnification of the light-matter interaction. Plasmonics 

can provide us with access to both these scenarios. Indeed, plasmonics offers additional light 

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
42

96
2



3 

 

 

 

manipulation tools, otherwise inaccessible with conventional photonics. The collective oscillation 

of conduction electrons in a suitably shaped metallic nanoparticle (the so-called localized surface 

plasmon, LSP) can couple with the impinging radiation, which in turn squeezes light into much 

reduced volumes, and greatly magnifies the local electric field, usually leading to a much reduced 

(non-diffraction limited) device footprint. In this work we aim to underline the as yet untapped 

potential for the realisation of fast, energy-efficient photonic memory and computing devices 

arising from the union of the energy-efficient silicon photonics platform, the sub-wavelength light-

squeezing and field-enhancing capability of plasmonic resonant structures, and the intrinsic 

tuneability functionality brought by PCMs. 

 

FIG. 1. Photonic Phase-Change Memory device schematics and operative principles (reprinted with permission from 

Ref.16). a) Device geometry and experimental data. (i) Device architecture and schematic of operating principle. ii) 

Device cross-section as represented in (i). (iii) Optical image of a test device. (iv) SEM image of the device represented 

in (iii). (v) Transmission data for the device in (iii) as a function of the wavelength. b) Refractive index (i) and 

extinction coefficient (ii) of the device materials.  

II. A SHORT OVERVIEW OF PLASMONICS-ENHANCED PHOTONICS 

The general light manipulation properties offered by metallic resonant nanoantennas have been 

widely reported (see e.g. Refs.21–28). The application potential of plasmonically-enhanced 

conventional silicon photonics devices (i.e. those not incorporating PCMs) is also quite well 

explored, with plasmonically-enhanced Si-photonics having already been demonstrated for  
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sensing29–32, optical nanofocusing33, lasing34, emitters35, optical mode control36–38 and coupling39, 

scattering control40,41, photodetectors42, and more. Also the use of hybrid plasmonic waveguides, 

either SPP (surface plasmon-polariton) or MIM (metal-insulator-metal) types, has been 

successfully demonstrated for applications such as Mach-Zehnder modulators43–46, detectors47, 

signal amplifiers48, modulators49, and switches50.   

In many of the cases discussed above, the properties/performances of the various plasmonically-

enhanced waveguide devices were locked-in at the design stage, though some hybrid plasmonic 

waveguide concepts do offer tuneability43–45,47–50 in their response. Tuning of the response of 

metallic nanostructures can be roughly classified in two general cases: methods directly modifying 

the metal dielectric function (e.g. carrier injection), and methods inducing a variation of the 

dielectric function of the surrounding environment (e.g. carrier injection and carrier generation, 

thermo-optic effects, liquid crystals, chemical adsorption, photochromic molecules, MEMS-

NEMS, matter displacement, and, the focus of this work, PCM approaches). The use of PCMs to 

engender tuneability in plasmonic devices is particularly attractive, since PCMs have the appealing 

characteristics of both non-volatility and a remarkably large variation of optical properties between 

phases (amorphous and crystalline states). For example, as seen in FIG. 1(b), the archetypal PCM 

alloy GST exhibits, in the near IR, differences in the real and imaginary parts of the refractive 

index of around  Δ𝑛𝑚𝑎𝑥 > 2 and  Δ𝜅𝑚𝑎𝑥 > 1.  Indeed, the combination of PCMs with plasmonic 

nanostructures to provide active, dynamically tuneable (or reconfigurable) optical metasurfaces 

for the control of free-space light propagation is now quite a well-explored topic (see e.g. Ref.51), 

but the exploitation of PCMs to tune waveguide-mounted plasmonic devices is, at present, rather 

underexplored. We therefore discuss such a topic in the following sections.  

III. PHASE-CHANGE ENABLED TUNEABILITY OF ON-CHIP PLASMONIC 

DEVICES 

An early proposal which saw the combination of phase-change materials with plasmonics in an 

integrated silicon photonics type platform is found in Rudé et al.49 (see FIG. 2(a)). The authors 

demonstrated the transmission tunability of a hybrid Au/SiO2 plasmonic waveguide, by varying 

the crystal fraction of an 80 nm thick GST layer fabricated on top of the waveguide’s surface. 

Switching of the PCM layer was here attained through an off-plane laser pulse, although electrical 

switching was also suggested as a possibility by the authors. The device shows a superior optical 

contrast when compared to alternative techniques for SP waveguide attenuation tunability, and 

whilst the authors underline how the switching energy is rather high (a 6.9 nJ figure is reported), 

the PCM non-volatility (and thus, the passive retention of the waveguide attenuation) is indeed an 

alluring and energy-efficient characteristic, compared to volatile technologies. 
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Another, and quite recent, proposal for combining PCMs with plasmonically-enhanced photonic 

integrated circuit (PIC) devices include that reported by Zhang et al.52 and shown in FIG. 2(b). 

This reprises Rudé’s concept for modulating SPP propagation, although this time in a MIM 

waveguide, with a GST region contiguous to (or interjecting) the dielectric core of the waveguide. 

The authors use this idea to configure both integrated switches and modulators. The study is purely 

numerical, and it does not pursue practical switching solutions, although the authors also propose 

the use of an external laser source. Additionally, the MIM waveguide inherits the high insertion 

loss (IL) previously seen in Rudé et al. Yet, the concept shows how a drastic reduction of the 

modulator footprint can be achieved, while maintaining a high optical contrast (here of up to 

~70%) by use of a GST inclusion measuring only 50 nm × 200 nm in size. This result highlights 

the potential for very small volumes of PCM to yield excellent control of waveguide propagation, 

when combined with appropriate plasmonic structures. 

 

 

FIG. 2. GST-enabled SP propagation tuneable devices. a) Au/PCM hybrid waveguide (Reprinted with permission 

from Rudé et al.49). (i) Device schematic representation. (ii) Optical microscope image of the fabricated device; inserts 

highlight the device with the GST in its amorphous and crystal phases. (iii-iv) Intensity images of the scattered and 

transmitted light at λ = 1550 nm for the GST in its amorphous and crystal phases respectively. (v) Difference of the 

collected signals reported in (iii) and (iv), demonstrating the optical contrast capability. Colour bar in arbitrary units.  

b) Tuneable propagation on MIM waveguide concept (Reprinted with permission from Zhang et al.52). (i) Device 

schematic representation. (ii) Calculated transmission as a function of the GST inclusion crystal fraction. (iii-iv) 

Simulated electric field (normalised; colour bar on the right) in the amorphous and crystal phases respectively. 
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The work highlighted in FIG. 2 is concerned with modulator solutions that tune and control the 

propagation of SPPs. In Singh et al.53, the combination of plasmonics and PCM technology with 

more conventional silicon photonics platforms is explored. In this (simulation-only) work, the 

authors propose a GST-enabled photonic modulator which enhances the absorption functionality 

by use of a series of optimized gold nano-rings, fabricated on top of a dielectric ridge waveguide 

(see FIG. 3(a)). Such a structure by itself selectively absorbs a narrow portion of the spectrum, 

whose bandwidth is determined by the nanorings’ geometrical parameters (i.e. radius and 

thickness). The authors embed a nanoring array on a silicon dioxide layer, built on the top surface 

of a conventional rib waveguide. On top of this structure, a PCM layer is deposited and capped 

with an electrical contact, with the PCM switching process being carried out electrically. The 

absorption induced by the PCM layer, as well as the wavelength selectivity, are determined by the 

PCM phase. Importantly, the work of Singh et al. suggests how the use of low footprint 

nanostructures can have similar, if not higher, modulation performances than encountered in SPP 

waveguides or in MIM devices, but at a much reduced IL. 

Turning to the use of the combination of PCMs and plasmonics for photonic integrated circuit 

(PIC) type memory and computing devices, to our knowledge, only two additional works are 

currently published. One, by Gemo et al.54, seeks to improve the performance of the all-photonic 

phase-change memory (of the type shown in FIG. 1(a)) by exploiting the plasmonic resonance of 

a dimer nanoantenna fabricated on the top surface of an integrated waveguide (see FIG. 3(b)). 

Such a device greatly enhances the electric field magnitude in the gap between the two halves of 

the dimer antenna, and with a PCM layer deposited into the gap region, the device i) maximises 

the light-matter interaction, ii) changes its resonant properties upon variation of the phase-state 

(crystal fraction) of the PCM inclusion, and iii) by use of a much-reduced PCM volume, requires 

a fraction of the switching energy of the conventional device architecture. The numerical 

investigation highlights how such a device, designed in a way to allow for practicable fabrication 

using standard lithographic techniques, is capable of yielding an optical contrast of roughly 12.5% 

(maintaining an appreciably low IL of 0.38 dB), by use of a 2 pJ / 2 ns energy write (amorphization) 

pulse and a 15 pJ/16.5 ns erase (re-crystallization) pulse – improvements of one to two orders of 

magnitude as compared to the conventional device. Moreover, by use of appropriately tailored 

write/erase pulses, 4 memory levels were arbitrarily addressed, demonstrating the multi-level 

storage functionality of the plasmonically-enhanced PCM device. A later work55 shows also the 

preliminary results of an experimental investigation of such devices, hinting to the confirmation 

of the expected behaviour. 

While in the work of Gemo et al., switching of the PCM cell is achieved in the same manner as in 

the standard all-optical integrated phase-change memory device, i.e. by sending appropriate optical 

switching pulses down the waveguide, in the work of Farmakidis et al.56 a plasmonically-enhanced  
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FIG. 3. Plasmonically-enhanced PCM integrated photonic devices. a) Nanoring implemented electro-optic modulator, 

reprinted with permission from Singh et al.53 (i) Device schematics. (ii) Electric field distribution (normalised scale) 

in the amorphous (top) and crystal (bottom) phases. (iii) Wavelength- and phase-dependent transmittance. b) All-

photonic phase-change memory, reprinted with permission from Gemo et al.54. (i) Device pictorial representation. (ii) 

Top view of the device (left), and log of the normalised electric field distribution across the device cut plane for 

amorphous and crystal GST (right). (iii-iv) Overview of the overwrite and programming operations. The insets report 

the pulse temporal profiles (the optical contrast is also reported as an inset in (iv)). c) Mixed-mode photonic memory, 

adapted with permission from Farmakidis et al.56. (i) False coloured SEM image of the a device. (ii) Calculated optical 

intensity across the device for the amorphous (left) and crystal (right) GST phases. (iii) Wavelength dependency of 

the optical response. (iv) Switching-energy requirement. 
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approach with dual electrical/optical switching (and dual electrical/optical reading) is proposed, 

and experimentally demonstrated. The concept is illustrated in FIG. 3(c). The device consists of 

a bow-tie like nanoantenna that interjects the dielectric waveguide, leading to the formation of a 

50 nm nanogap at the waveguide centre into which a PCM layer (here again GST) is deposited.  

The device has a somewhat larger IL (roughly 9 dB) with respect to the all-optical solution, but 

a multi-level memory capability of 20 levels was successfully demonstrated, along with the 

aforementioned, and very attractive, capability for dual-mode (electrical/optical) operation 

(which makes interfacing to electronic devices considerably more straightforward).   The dual-

mode plasmonically-enhanced device achieved order-of-magnitude type improvements in 

switching energies and speeds, as compared to the conventional device architecture.   

 

IV. PERSPECTIVES AND POSSIBLE IMPLEMENTATIONS 

In section III we underlined how the use of finely tuned plasmonic nanoantennas, when combined 

with PCMs, gives access to a previously underexplored manipulation tool that yields useful optical 

contrast and low IL Si-photonic waveguide devices. A constraint on the operation speed of such 

devices (i.e. switching from low transmissivity to high transmissivity) remains, as it is here 

imposed by the phase-change dynamics (primarily the speed limitations imposed by the 

crystallization process), but single-nanosecond switching should almost certainly be achievable. 

Moreover, PCM switching is of course non-volatile, making integrated phase-change photonic 

devices ideal for the realization of photonic memory and (in-memory and neuromorphic) 

computing devices. 

Previous  numerical54,56 and experimental56 results highlight that the addition of a PCM-embedded 

nanogap within the plasmonic resonant structure allows one to magnify the light-matter 

interaction, and so modulate the device optical response in amplitude and, potentially, optical 

phase and scattering directivity too.  The use of a nanoscale volume of PCM, which reduces the 

volume of material that needs to be heated during switching and so in turn reduces switching 

energies, would not be effective without a supporting plasmonic nanoantenna (or other resonant 

cavity). Indeed, the PCM volume reduction, the high volume/surface ratio, and the GST thermal 

boundary resistance57, contribute to a very effective switching process, which for the all-optical 

plasmonically-enhanced memory device of Gemo et al.54 sees an energy requirement of only 4.36 

aJ/nm3, quite close to the theoretical minimum of 1.9 aJ/nm3 (calculated using values of specific 

heat, melting temperature and enthalpy of fusion, as reported in Ref.54). 

One obvious drawback of following a plasmonically-enhanced device route for the provision of 

integrated photonic memory and computing devices is increased fabrication complexity, which in 

turn could lead to unacceptable variations in device-to-device properties due to fabrication 
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tolerances. This issue is examined in more detail in FIG. 4 (for the device of the type shown in 

FIG. 3(b)). FIG. 4(a) reports the transmission data, which determines the derived values of optical 

contrast (see FIG. 4(c)) and IL (FIG. 4(d)). Specifically, the introduction of the PCM in the 

nanogap shifts the diameter-dependent resonance feature to shorter values (smaller nanoantenna 

diameters), correlated with a corresponding shift (see FIG. 4(b)) of the electric field enhancement 

factor, EF (defined as the squared average e.m. field value in the nanogap divided by the squared 

peak input e.m. field value). Regardless of the phase of the PCM inclusion, it can be seen that the 

EF is significant, and this correlates directly with the effective optical intensity perceived by the 

PCM inclusion, leading to the desired increase in energy efficiency.  Two optimal disc diameters 

for the dimer nanoantenna can be seen (in FIG. 4(c)) at around 170 nm and 250 nm, the former 

having a slightly higher transmission modulation (ΔT) and a smaller insertion loss (see FIG. 4(d)). 

However, the resonance for a 170 nm disc diameter is quite sharp, while that for 250 nm diameter 

is significantly broader.   Thus, one may opt for the solution allowing for slightly poorer optical 

performance, yet increasing the fabrication tolerance. Regardless, with the steady advancement of 

the nanoscale fabrication techniques and establishment of improved technology nodes, it is 

possible to foresee how such fabrication barriers will eventually be eroded, possibly allowing one 

to aim designs towards the more fabrication-critical dimensioning.  

 

FIG. 4. Numerical analysis of the optical characteristics of the dimer-disc plasmonically-enhanced photonic PCM 

device, illustrated in Gemo et al.54. a) Transmission data, as a function of the disc diameter, for the nanoantenna-only 

configuration (green, dotted line) and GST-implemented configuration (blue and red lines). b) Field enhancement 

factor data for the three configurations, calculated at the nanogap location. c) Optical contrast |Tcry - Tam| derived from 

the crystal and amorphous transmission data. d) Correlated minimum IL data.  
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We also remark that not all fabrication parameters require fine-tuning, and therefore the otherwise 

lengthy fabrication optimization can be limited to the most impactful parameters. As an example, 

the all-optical plasmonically-enhanced device shows a remarkable tolerance in terms of the 

nanoantenna displacement from, and rotation about, the optimal location at the centre of the top 

surface of the waveguide (see FIG. 5, where both dependencies can be fitted with broad sin2 

functions). 

From the results presented in this section, and in the related literature54–56 it is clear that plasmonic 

enhancement has the potential to drastically improve the energy and speed performance of the 

conventional integrated phase-change photonic memory devices. Yet, this achievement comes not 

only at the price of additional fabrication complexity (already discussed), but also at the reduced 

optical (transmission) contrast (around 20% in the best-optimized configuration). The 

conventional architecture can achieve much higher contrasts, simply by extending the size (along 

the waveguide) of the PCM unit cell, an unavailable degree of freedom for the plasmonically-

enhanced cell. However, there are possible complementary strategies allowing one to not only 

increase the optical contrast up to (or even surpassing) that of the conventional architecture, but 

also to further improve device energy performance and switching speed. 

 

FIG. 5. Fabrication tolerance analysis of the dimer-disc nanoantenna illustrated in Gemo et al.54, with respect to the 

displacement 𝑠 from the waveguide centre, and from the tilting angle 𝜃 from the intended orthogonal orientation. a) 

Simulated ΔT as a function of displacement and tilt angle. b) Fit of the data as a function of the tilt angle, calculated 

at displacement 𝑠 = 0, as: ΔT(𝜃) = ΔT(0) ∙ sin2 𝜃. c) Fit of the data as a function of the displacement 𝑠, calculated 

at 𝜃 = 0, as: ΔT(𝑠, 𝜃) = ΔT(θ) ∙ 10−6 ∙ (1 + sin2 𝜃) ∙ 𝑠1.8. 

One strategy consists in the adoption of multiple plasmonic structures along the waveguide. As a 

result of the interaction of adjacent structures, a finely tuned centre-to-centre distance (between 

successive nanoantennas) allows the establishment of anti-symmetric resonant modes. Such a 
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resonance configuration further suppresses the waveguide mode propagation and increases the 

e.m. field magnitude in both nanostructures, as previously demonstrated in Jin et al.58, Therefore, 

two optimally located nanostructures can induce an optical contrast proportionally higher than two 

non-interacting nanostructures. A preliminary calculation is carried out here for the case of 

nanoantennas comprising two simple rectangular bars (dimer-bars) separated by a small gap (here 

of 40 nm), as shown in FIG. 6(a).The transmission data, FIG. 6(b), evidences a non-linear 

dependency of the waveguide transmission as a function of the centre-to-centre distance, with 

peculiar opposite behaviour for the amorphous and crystalline cases (i.e. where the crystal case 

shows a lowering of transmission, the amorphous case shows an increasing transmission). Both 

the optical contrast, ΔT, and insertion loss, IL, benefit significantly from this peculiar interaction 

(FIG. 6(c)), demonstrating that fact that multiple nanoantennas structures can effectively exploit 

characteristics offered by localized surface plasmon resonances. 

Another strategy that can lead to a remarkable increase of the optical contrast is that of embedding 

the plasmonic nanoantenna within the body of waveguide, as shown schematically in FIG. 6(d). 

The effect of embedding plasmonic antennas within the body of a waveguide was previously 

explored in simulation by Castro-Lopez et al.41, though for a case not including phase-change 

materials. For the case of dimer-bar type antennas, with PCM in the gap region and with the 

antenna buried at the bottom of the rib section of the waveguide, our calculations (see FIG. 6(e) 

and (f)) show that the maximum optical contrast doubles with respect to that obtained with the 

device fabricated on the top surface, with only a minor increase of the IL. This is due to the higher 

interaction of the plasmonic resonant mode with the natural location of the e.m. field peak within 

the waveguide mode. The enhancement factor here calculated increases to a value of above 100, 

in place of the value of 20 for the configuration with the nanoantenna on the waveguide’s top 

surface, pointing also towards even further improvements in switching energy and speed for the 

embedded configuration. The embedded configuration also offers more robust protection against 

environmental degradation of the plasmonic and phase-change materials used in the device. 

The dimer-bar type antenna configuration shown in FIG. 6 also potentially lends itself more easily 

to the provision of a dual-mode electrical/optical operation, as achieved in the work reported by 

Farmakidis et al.56 and shown previously in FIG. 3(c), but here using a more conventional 

dielectric waveguide. For example, by extending the bar antennas towards the edge of the 

waveguide, it should be possible to make electrical connections to the bars, so that they play a dual 

role of both a plasmonic nanoantenna and an electrode that would allow the PCM region to be 

switched (or read out) electrically. One possible design for this is shown in FIG. 6(g), along with 

its optical performance in FIG. 6(i) and (h), from which it can be seen good optical performance 

can be achieved (with both optical contrast and IL greatly improved over the hybrid waveguide 
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configuration56), while at the same time providing electrical access for potential dual-mode 

operation. 

 

FIG. 6. Plasmonically-enhanced integrated photonic phase-change memory concepts increasing the theoretical optical 

contrast; the examples use a dimer-bars nanoantenna configuration, with gap width, bar width and thickness of 40 nm, 

40 nm and 30 nm respectively.  a) Pictorial representation of the double-dimer configuration. (b,c) Data obtained for 

the double-dimer solution using a fixed bars length of 154 nm, as a function of the centre-to-centre distance (as 

indicated in (a)). The degenerate solutions (at distance d = 0) represent the solution for a single nanostructure, reported 

as unique markers. b) Transmission data for the crystalline (blue) and amorphous (red, dashed) Ge2Sb2Te5 PCM 

inclusion. c) Resulting optical contrast (left axis, green line; absolute units) and insertion loss (right axis, orange dashes 

line; dB units) theoretically obtainable after phase switching.  d) Pictorial representation of the device embedded 

configuration. (e,f) Data obtained for the in-waveguide embedded solution. e) Optical contrast (absolute units) for the 

embedded configuration (continuous line), compared to the surface-bound device (dashed line). f) Correlated IL values 

for the embedded and top configurations.  g) Pictorial representation of the mixed-mode operativity extension for the 

device in the embedded configuration, comprising two ITO contacts overlapping the Ag bars and interjecting the rib 

waveguide core. h) Transmission (left axis) and ΔT (right axis) data calculated in absence of the ITO contacts, for 

reference. i) Transmission (left axis) and ΔT (right axis) calculated for a fixed bar length of 650 nm, as a function of 

the ITO contact/Ag bar overlap (as indicated in (g)). 

Finally, we turn our attention to technological issues linked with the fact that the highest 

performing, and most often used, plasmonic materials are gold and silver, both highly diffusive 
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metals. Indeed, gold is known to diffuse readily into both silicon and chalcogenides, alloying with 

both to form, for example, gold-silicides and gold-tellurides59. This in turn leads to deleterious 

effects in plasmonic PCM structures, suppressing optical resonances and leading to changes in 

PCM switching properties (crystallization temperatures). Diffusion, being a temperature-activated 

process, is worsened by the high-temperature dynamics involved during the PCM phase-switching 

process in which, for amorphization, the PCM must be heated to above its melting temperature.  

To counteract the large diffusivity of high-performing plasmon-supporting metals, a few strategies 

can be pursued. One obvious approach is to place anti-diffusion barriers51,59,60 between the 

plasmonic material and the PCM and/or any Si or diffusion-susceptible dielectric layers. Of course 

it is important that any such a diffusion barrier should not significantly alter, at least in a deleterious 

way, the optical or thermal properties of the device itself. Silicon nitride (Si3N4) has been shown 

to be a good barrier choice in this respect, since quite thin layers (< 10 nm) can provide sufficient 

diffusion protection59. 

A second obvious approach to the problem of the diffusion of plasmonic metals is to search for 

alternative, non-diffusive options. Any such options should ideally be CMOS-compatible, to allow 

for, ultimately, easy integration into PIC fabrication lines. Aluminium is one such material: it is a 

good plasmonic metal61 and has already been used successfully for a number of CMOS-compatible 

plasmonic applications62–64
. However, the melting temperature of Al, at 6600C, is very close to that 

of most commonly used PCMs (e.g. Ge2Sb2Te5 melts at 6300C,  Ge1Sb2Te4 at 6140C), thus there 

is a danger that during the PCM amorphization process any thermally adjacent Al plasmonic layer 

might also melt, leading to device degradation. To assess the suitability of other metals for 

integrated phase-change photonic device applications, we have therefore explored, in simulation, 

the optical performance (in terms of achievable (normalised) transmission contrast, ΔT, and 

insertion loss, IL) for a device consisting of a single dimer-bar antenna system (i.e. as shown in 

6(d), and with the antenna on the top waveguide surface). The results are shown in FIG. 7, where, 

to limit the calculation range, only elemental materials are here considered. 

As expected, the noble metals Au and Ag indeed show the best optical performance, with high 

optical contrast accompanied by a low IL.  Aluminium also delivers good optical performance, as 

does copper; but Al has the previously mentioned problem of low melting point, and Cu is not 

very CMOS ‘friendly’. FIG. 7 also highlights how nanoantenna materials with optical properties 

nearest those of a perfect-metal (i.e. low refractive index, high extinction coefficient) exhibit the 

best performances. Whilst none of the materials examined in FIG. 7 yield optical performances 

comparable to that of Au, Ag or Al, two CMOS compatible solutions with reasonable optical 

performances emerge, namely Tantalum and Niobium. Both these elements have attractively high 

melting temperatures, are relatively inert chemically and physically, and Nb has already been 

successfully demonstrated for plasmonic (free-space) perfect absorber applications65. Further 
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exploration of the potential suitability of Nb and Ta for integrated plasmonic phase-change 

photonic devices is thus recommended. 

 

FIG. 7 Optical properties of the dimer (bars) plasmonically-enhanced integrated phase-change photonic memory 

device, as a function of the nanoantenna material. Two markers (vertical and diagonal crosses) are used, reporting the 

two values corresponding to the first and second |ΔT| peaks respectively. (a) Peak |ΔT| values (normalised to the 

maximum value obtained, here for Ag, of 45.9%). (b) IL calculated at the peak ΔT configuration. 

V. CONCLUSION 

The co-integration of phase-change materials and plasmonics into the silicon photonics platform 

offers a promising route for the development of fast, low-power, integrated photonic memory and 

computing devices and systems. Silicon photonics enables low-latency, low-energy, high-

bandwidth and parallelized on-chip signal transfer; plasmonic resonant structures can efficiently 

couple with the guided optical mode and squeeze the optical energy down to deep subwavelength 

features; and phase-change materials, thanks to their inherent non-volatile phase switching 

capabilities and the large change in optical properties (complex refractive index) that results from 

such switching, can tune the plasmonic resonant mode, in fact driving the nanoantenna optical 

response. In this short perspective paper, we underlined how the optimized combination of these 

various building blocks can lead to superior performances as compared to conventional, non-

plasmonic, device designs. Indeed, improvements in terms of switching energy efficiency and 

speed in the range of one to two orders of magnitude were obtained. We also showed that the 

design-space for plasmonically-enhanced phase-change memory and computing devices is quite 

broad, with a wide range of appropriately configured nanoantenna structures (e.g. circular, bar and 

bow-tie type antennas; top-surface and embedded antenna types) yielding good optical 
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performance. Moreover, we showed how the electrical and optical domains can be brought 

together in so-called dual-mode, optical/electrical, device designs, where the PCM cell can be 

written and read in both domains. This could lead to easier integration of phase-change photonic 

devices and systems with our currently predominantly electronic computing world.  
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