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History matching using Gaussian process emulators is a well-known methodology for the calibration of computer

models. It attempts to identify the parts of input parameter space that are likely to result in mismatches between

simulator outputs and physical observations by using emulators. These parts are then ruled out. The remaining “Not

Ruled Out Yet (NROY)” input space is then searched for good matches by repeating the history matching process. An

easily neglected limitation of this method is that the emulator must simulate the target NROY space well, else good

parameter choices can be ruled out. We show that even when an emulator passes standard diagnostic checks on the

whole parameter space, good parameter choices can easily be ruled out. We present novel methods for detecting these

cases and a Local Voronoi Tessellation method for a robust approach to calibration that ensures that the true NROY

space is retained and parameter inference is not biased.
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1. INTRODUCTION1

Computer models typically solve physical equations, such as coupled systems of PDEs in order to learn2

about features of the real-world. Calibration of computer models broadly involves using partial and imper-3

fect observations of the real world in order to learn which settings of the model’s input parameters lead to4

outputs that are consistent with real-world observations given relevant uncertainties such as measurement5

error and model discrepancy (we define these terms in Section 2.2).6

When a computer model is inexpensive, it can be embedded in an MCMC or optimization algorithm7

for calibration directly (see e.g. [1]). However, many computer models are expensive and/or take a long8

time to run. For example, climate models may take days or weeks of run time on supercomputers [2].9

When it is not possible to run the model often enough to calibrate directly, a small, carefully chosen, set10

of model runs, often termed a ‘design’ or ‘ensemble‘, can be run and used to construct an ‘emulator’ or11

‘surrogate’; an inexpensive statistical model used to approximate the computer model [3,4].12

Bayesian calibration [5,6] and history matching [7–10] are both extensively used methods for calibrat-13

ing with an emulator. Bayesian calibration places a probability distribution over a ‘best input’ and updates14

this distribution using model runs and observations of the real process. Rather than relying on making15

distributional assumptions, history matching attempts to identify the parts of the input parameter space16

that are likely to result in mismatches between computer outputs and observations by iteratively remov-17

ing those regions of parameter space in which we are virtually certain that there are no good matches.18

Previous research has applied history matching to many fields, including oil reservoir modelling [11,12],19

epidemiology [13,14] galaxy formation [15–17] climate systems, [1,18–23]. In this paper we focus on history20

matching. For discussions comparing the two approaches, see [24,25] and the discussion in [15].21

Beginning with an emulator, history matching uses a distance function to rule out input choices that22

lead to outputs that are ‘too far’ from observations. The distance, called implausibility, is computed ac-23

cording to a norm that standardises according to all relevant uncertainties, including the uncertainty con-24

tributed by the emulator. We define this formally in Section 2. Large implausibility regions are ruled out,25

whilst small implausibility regions may either be good parameter choices or “too uncertain to tell”, hence26

they are termed “Not Ruled Out Yet” (NROY). Following an initial history match (wave 1), a new design27

is then constructed within NROY space and more accurate emulators are constructed within this region28

for the purposes of cutting out further space.29
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A currently unexplored limitation of history matching can occur when the emulator is unable to simu-1

late the unknown target NROY space effectively, even if it seems to pass all standard emulator diagnostic2

checks [26]. Poor simulation may result in true NROY space being ruled out without any indication for3

the analyst that this has occurred. For simulators that are constantly under development, such as climate4

models, this could be a costly mistake that causes parameterizations or even computational methods and5

hardware to be needlessly revisited, even though the model was already fit for purpose.6

This paper will discuss factors that contribute towards ruling out good parameter choices and then7

will present a novel Local Voronoi Tessellation design that can be used for robust multi-wave calibration8

of computer models that ensures the true NROY space is retained without biasing the parameter inference.9

Section 2 will present a review of emulation and history matching methodologies. It will further illustrate10

these with a numerical example to demonstrate that, even when an emulator validates well on the whole11

parameter space, good parameter choices can still be ruled out. Section 3 presents the novel detecting12

method we have developed, as well as a local Voronoi Tessellation method for robust history matching.13

Section 4 will outline the application of the study methods to two illustrative examples, as well as to the14

output of the French climate model, IPSL-CM [27,28].15

2. EMULATION AND HISTORY MATCHING16

2.1 Emulation17

Gaussian process emulators are used to approximate expensive computer simulators whilst quantifying18

uncertainty in the approximation [29,30]. A Gaussian Process (GP) is a stochastic process. Any finite num-19

ber of random variables from the Gaussian process has a joint Gaussian distribution [31]. Assuming f20

represents the complex computer model with input parameters x, an emulator for f(x) can be constructed21

by fitting a mean function m(x) and a correlation function c(x, x′) so that22

f(x)|β,σ2,υ, δ ∼ GP
(
m(x),σ2c(x, x′; δ,υ)

)
, (1)

where m(x) = hT (x)β, β = (β1,β2, ...,βk) is a vector of unknown regression coefficients, h(x) is a q-23

length vector of regression functions, σ2 is a hyperparameter that controls the scaling of the process, δ is24

a vector of correlation length parameters that used to define the correlation function. The nugget term,25

υ, is a small number added on the principal diagonal of the design correlation matrix and is often used26
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to represent observation noise, account for uncertainty in inactive inputs or to avoid numerical instability1

during computation. The nugget can be specified or it may need to be trained along with the other hyper-2

parameters (for example, when inputs are varied in the design, yet not included in the correlation function)3

[32]. With a zero nugget, the emulator interpolates the model runs at the training locations.4

The choice of correlation function, c(x, x′), is one of the key elements of the Gaussian Process. Standard5

choices include the power exponential correlation function [21] and the Matérn correlation function [31],6

both depending on correlation length parameters (which we will refer to as δ throughout), and only on7

the distance |x − x′|, rather than the individual locations x and x′. Such correlation functions, also called8

kernels, are known as stationary and are used in the majority of cases. An overview of methods for fitting9

non-stationary Gaussian processes is given in [33].10

Let the computer model run at n points, X = (x1, . . . , xn)
T ∈ X at which we obtain training runs11

F = (f(x1), . . . , f(xn)), where X is a p -dimensional input space. Given the emulator hyperparameters and12

F, the posterior for f(x) is13

f(x)|F, X,β, δ,υ,σ2 ∼ GP(m∗(x), c∗(x, x′)), (2)

with the posterior expectation m∗(x)

m∗(x) = h(x)Tβ+ c(x,X)A−1(F− h(x)Tβ),

and posterior variance c∗(x, x′)

c∗(x, x′) = c(x, x′)− c(x,X)A−1c(X,x′)),

and A = k(X,X). There are often different approaches to handling hyperparameters β, δ and σ2. [29]14

adopted a maximum likelihood method to fit the hyperparameters. A drawback of this is that the hyper-15

parameters are usually highly confounded leading to a ridge on the likelihood surface for large δ and σ2.16

One way out of this is to specify δ. [30] do this and then propose a ‘non-informative’ prior P (β,σ2) ∝ σ−2.17

β and σ2 can then be integrated out leading to a posterior predictive student-t process emulator. [34] use18

an informative Normal-inverse gamma prior for β and σ2. Fitting GPs via Full Bayes Markov chain Monte19

Carlo (MCMC) methods with a benefit that prior distributions can be used to penalise the ridge on the20

likelihood surface [6,33,35].21
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2.2 History matching1

Like Bayesian calibration, History matching requires a ‘best input‘ assumption linking the model and2

reality via3

y = f(x∗) + η, (3)

where y represents reality, x∗ is the ‘best input’ of the computer model and η is the model discrepancy,4

which is independent of f(x) and x∗ [7]. To learn about x∗, we have observations z with unknown mea-5

surement error e and6

z = y + e, (4)

where e has mean zero and is independent of η.7

The implausibility measure is used to calculate the distance between the output of the model and the8

observations so that we can rule out parameter settings that are too far from the observations. For a single9

output at a given value x, implausibility is defined as10

I(x) = |z − E [f(x)] |√
Var [z − E [f(x)]]

, (5)

where E [f(x)] is the emulator prediction. Under (3) and (4)11

Var [z − E [f(x)]] = Var [f(x)] + Var [e] + Var [η] . (6)

For r outputs, the implausibility can be calculated as the maximum across all outputs [11], the second or12

third largest [25], or via a multivariate version of (5) [e.g.24].13

Large values of I(x) indicate that we are confident that f(x) is too far from the observations and so14

can be ruled out. The space that has not yet been ruled out, “Not Ruled Out Yet” (NROY) space, X 1, is15

defined as16

X 1 = {x ∈ X |I(x) ≤ T}, (7)

where T is a selected threshold. A common choice is T = 3 based on the three sigma rule [36]. We define17

the NROY space found by the computer model directly (without an emulator) as “true” NROY space or18

target NROY in order to compare with the NROY space found using an emulator. Target NROY space X ∗19

Volume x, Issue x, 2020



6 Wenzhe Xu, Daniel B. Williamson, & Peter Challenor

is defined as1

X ∗ =

{
x ∈ X | |z − f(x)|√

Var [e] + Var [η]
≤ T

}
. (8)

History matching does not seek to identify X ∗ using a single set of computer model evaluations, but2

through iteratively designed experiments known as ‘waves’ [15]. In the first wave, the emulator is con-3

structed based on an ensemble at a set of points which cover the whole input space X , then history match-4

ing attempts to rule out space from the initial space through (7). Using an ensemble at a new set of points5

X1 ∈ X 1 (defined in equation(7)), a new emulator can be constructed, and a second wave of history match-6

ing will further reduce the input space. In general, at wave k, a new set of points xk is drawn from the wave7

k−1 NROY space, xk ∈ X k−1 and are used to construct a new emulator. The wave k NROY space is defined8

as9

X k = {x ∈ X k−1|Ik(x) ≤ Tk}, (9)

where Tk is a selected threshold for wave k and Ik(x) is the implausibility function (e.g. (5)) defined on10

X k−1 and with the wave k emulator. Moreover, for different approaches developed for multi-wave designs11

xk, please see [25] and [37].12

As NROY space is iteratively reduced, the majority of the runs of the simulator are made closer to13

the target space, X ∗. This ensures the density of points in important regions of the model input space14

are greater than using Bayesian calibration (assuming an equivalent budget of model runs), ensuring our15

emulators are more accurate where it counts. In the later waves, we are more likely to believe Normality16

assumptions implicit in using Gaussian processes, a smaller value of threshold Tk can be adopted for17

history matching.18

2.3 The importance of diagnostics19

Before cutting areas of parameter space, diagnostics must be used to assess the adequacy of an emulator.20

[26] present a variety of diagnostics that compare Gaussian process emulator predictions and simulation21

outputs at validation points. One example is to look at standardised prediction errors, Di(f(xi)), calculated22

via23

Di(f(xi)) =
f(xi)− E [f(xi)]√

Var [f(xi)]
, (10)
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for a set of runs f(x1), . . . , f(xm) left out of the training set. Note often these left out runs are actually those1

used to fit the emulator, with one at a time left out and the emulator refit (these are Leave One Out (LOO)2

errors). [26] state that standardised large errors (larger than 2) suggest there could be a conflict between3

the emulator and the simulator, though we should expect 5% of points to fail this test if we have not4

been underconfident, and we may have extrapolation issues on the input space boundaries. In practice,5

if less than 5% of the errors are large and there is no systematic problem (e.g. all large errors are in the6

same region of parameter space) an emulator is considered to have “validated”. It would then be used in7

history matching, calibration or for any other purpose by practitioners. Many applications using GPs now8

fit hundreds or thousands of emulators simultaneously [38,39], making detailed examination, beyond a9

quick check to see if the number of large errors is “about 5%”, impractical.10

Whilst the test described above may be adequate to assess the global performance of an emulator,11

when history matching the primary concern should be the local performance of the emulator within target12

NROY,X ∗. When the emulator at a given wave is incorrect outside target NROY, the worst thing that could13

happen is that a poor parameter choice is retained. However, this could still be removed by a future wave14

with a more accurate emulator. However, an emulator that is inaccurate within true NROY could lead to15

good choices being irrecoverably ruled out. As far as we are aware, this concern has not been addressed16

within the literature.17

To fix ideas, we consider history matching on the 1D function considered by [40]. The function has the

equation

y(x) = sin (30(x− 0.9)4) cos (2(x− 0.9)) +
(x− 0.9)

2
.

We use a 10-run maximin Latin Hypercube (LHC) [41] to design the runs to train the emulators used in18

this example.19

Figure 1 shows the emulator performance and the results of the first wave of history matching, com-20

pared to the true NROY space found by the 1D model directly. The true function and the corresponding21

emulator posterior mean with uncertainty is shown in the top right panel. We can see that the region22

[0, 0.4] is hard to predict by comparing the true function and emulator prediction. From the leave one out23

diagnostic plot (top left) we can see that the emulator has failed at one point, but that this single failure24

wouldn’t be deemed serious enough to invalidate the emulator. The results of history matching with this25

emulator are shown in the bottom left and right panels (we set the threshold as 3). Comparing the true26

model calibration results with the emulator calibration results, we find nearly one third of the true NROY27
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FIG. 1: Top left: Leave One Out diagnostic plot against x. The emulator prediction and two standard deviation intervals
are given in black. The true function values are in blue if they lie within two standard deviation prediction intervals,
or red otherwise. The pink line and the pair of red dotted lines present the observation with observation error and
discrepancy in all 4 panels. Top right: Emulator performance for the 1D model. The true function is represented by the
black curve and ten black points are inputs used to train the emulator. The blue line represents the emulator posterior
mean, and the blue dotted lines give the two standard deviation prediction intervals. Bottom left: History matching
results and the true NROY region. The blue interval defining the NROY space after first wave, the red Interval defining
true NROY X ∗. Bottom right: As with bottom left but enlarged over the NROY regions.

space is ruled out.1

In an application with many emulators being used to cut a high dimensional parameter space using2

many metrics, such critical cases may often occur and be difficult to catch. A trainable nugget would enable3

simpler functions to fit the data [35], and this might alleviate the problem in some cases, particularly if we4

have achieved what looks like an acceptable fit by over-fitting. We would generally use a trainable nugget5

when building emulators, for these reasons. However, in most cases where we see this pathology, the6

emulator fits well across the parameter space, but near the true NROY there is an issue which would not7

normally raise a diagnostic flag. In these cases, it is likely that the overall fit is good, but that there is some8
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local non-stationarity near where the function behaves like the data. In such cases, if a trainable nugget had1

not already been used, one would be unlikely to solve the problem and may lead to reduction in global2

performance (i.e. we may still have a good emulator from a validation perspective, but might rule out less3

space given that there will be a larger posterior variance). With or without a trainable nugget, we should4

still expect 5% of predicted points to lie outside our prediction intervals. If most or all of these occur near5

true NROY, we may still rule out good parts of that space by mistake.6

The history matching literature usually recommends only ruling space out if 3 or more outputs have7

large implausibility, and this might insure against ruling out true NROY in some cases (if we have more8

than 1 or 2 metrics). However, a poor emulator near the true NROY region may often be a feature of the9

design that can appear for emulators of all metrics, and flagging this issue in a key region might make us10

wary of trusting emulators for other metrics in that region. Larger cutoff thresholds are sometimes used in11

earlier waves to retain more space until we are more confident about ruling out. If this is done routinely, it12

may still be that true NROY is ruled out using the larger threshold. If this is done to ensure that all points13

where there may be an issue are not ruled out, the cutoff may have to be set so high as to ensure that no14

space would be ruled out at all. In the following section we offer a method for detecting the type of history15

matching failure we have highlighted and then use it to present a method of robust history matching that16

makes use of the emulator we have in the regions where it performs well.17

3. METHODOLOGY18

3.1 Detection19

Suppose we have already fitted a GP emulator. We may use our GP to compute the standardised errors,20

Di(f(xi)), given in equation(10), for design X. Those errors that would normally be flagged as too large21

are grouped into what we term the ‘failed’ set,22

XF = {xi ∈ X|Di(f(xi)) > TF } ⊆ X. (11)

Here TF is a threshold which is usually set as 2 (or even 1.96 with the argument that if the emulator were23

a good fit, 5% of these points should raise a flag). We treat XF as a set of candidate points near which the24

emulator could be failing in such a way as to cut out regions of target NROY, X ∗. This could only happen25

if a point were inside or close to X ∗ and if, at the same time, the flag indicated a failure that would mean it26
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(and neighbouring space) was ruled out. For each point xm ∈ XF , f(xm) is compared with the observation1

z to discover whether the emulator failure points are near X ∗ and we form a set of ‘doubt points’ that2

could be close enough to target NROY to cause an issue. The doubt points set, XD, is defined using (8) via3

XD = {xm ∈ XF || z − f(xm)| ≤ T
√
Var [e] + Var [η]

}
, (12)

where T is the selected threshold, e is the observation error and η is the discrepancy. We define the set of4

remaining points XN , XN = X\XD.5

Standard history matching can be applied directly if XD is empty. Otherwise, in principle, with ex-6

isting methods we might have to seek to add further runs from the computer model and/or find a more7

complex or bespoke emulation. The latter may not always be easy or even possible. Emulation and history8

matching are increasingly methods being adopted by modellers in order to calibrate their own models.9

Developing a bespoke emulator using a tailored kernel or mean function may be possible for UQ experts10

in any given problem, but it raises barriers to wide application in general that may not be necessary. Fur-11

ther model runs near XD will likely enable standard methods to work well and fix the issue in many12

cases. However, in applications like climate modelling where running the model requires specialist equip-13

ment (e.g. supercomputers) and scientist time, it often the case that runs need to be done in batches and14

time/budget constraints mean that only a small number of batches will be available. Wasting one of these15

just to improve part of an emulator may sacrifice a whole potential wave of history matching.16

Our method is based on the notion that the emulator works well enough in most of the parameter17

space so that it can be used for history matching anyway. However, in regions of space near XD, it would18

be safer not to remove space at all, and to resample that space in the next wave. Essentially, we will add19

further runs of our simulator to correct the errors in this region, but we will first cut out all of the space20

that can safely be cut out with the existing emulator. The goal then, when XD is not empty, is to separate21

the whole input space into two regions, one containing XD and the other containing XN in such a way as22

to ensure that history matching in the latter region only will not discard parts of X ∗.23

3.2 Local Voronoi Tessellation24

There are several different approaches that can be employed to partition the input space into two distinct25

regions. One conventional approach is to use a classification method [42]. Logistic regression may be seen26
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as an obvious choice for classification [43]. However, in these problems XD may contain only 1 or 2 points,1

meaning that our training data is a highly imbalanced dataset which is hard to use to train a logistic2

regression, or any similar model-based classifier. The typical results of these attempts tend to put most or3

all points in the ‘normal’ region and fail to adequately capture the doubt region.4

A machine learning method Synthetic Minority Over-sampling Technique (SMOTE) can be used for5

classification on imbalanced datasets [44]. SMOTE uses synthetic data generation to increase the number6

of samples in the minority class so that the data set becomes balanced. SMOTE first finds the n-nearest7

neighbours in the minority class for each of the samples in the class, then random samples are generated8

on the lines between the neighbours. Though promising, SMOTE requires at least two points in XD which9

in many instances will not apply.10

A Voronoi tessellation is a partitioning of a space into convex cells called Voronoi regions [45]. Sup-11

posing that X = (x1, . . . , xn)
T ∈ X is a set of centres of an n-cell Voronoi tessellation, a Voronoi region, Vi,12

is defined as the set of points in X , whose ‘nearest’ point is xi, so that13

Vi =
{
x ∈ X

d(x, xi) ≤ d(x, xj)
}
,∀j ∈ {1, . . . , n}\i. (13)

where d(x, xi) is commonly defined as the Euclidean distance. When history matching, our correlation14

function, c(x, x′), provides an appropriate notion of distance between inputs. Our n inputs x ∈ X can be15

used as the centres of a Voronoi tessellation. We cannot use the correlation directly (as the distance between16

the two points increases, the correlation decreases), therefore we define a Voronoi Tessellation Vi with the17

emulator posterior correlation function as18

Vi =
{
x ∈ X

|c∗(x, xi)| ≥ |c∗(x, xj)|
}
, ∀j ∈ {1, . . . , n}\i. (14)

Finding a Voronoi tessellation can be computationally challenging when the design is large or when19

the input dimensions become even moderately sized (e.g. > 4). However, we do not need to map the20

whole parameter space. Our goal is to find the local Voronoi tiles that cover XD, ensuring that all possible21

values we have not run but might doubt our emulator for near true NROY are included. Specifically, a22

local Voronoi tessellation will partition the input space into a doubt region, XD ⊇ XD, and normal region,23

XN ⊇ XN , by finding XD.24
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We define a local Voronoi tessellation XD =
⋃
{i:xi∈XD} Vi, with1

Vi =
{
x ∈ X

|c∗(x, xi)| ≥ |c∗(x, xj)|
}
,∀j s.t. xj ∈ XN .

3.3 Local augmentation2

The local Voronoi tessellation, XD, represents the union of convex sets around the doubt points. Given that3

the emulator failed to predict the doubt points, but was able to predict the surrounding normal points, we4

can deduce that there is a region between each normal point and each doubt point where the emulator is5

reliable (it predicts the normal points well) and a region near the doubt points where it is not. Though XD6

will contain much of this region, if not all, there is no guarantee that it should contain the whole badly7

performing region. We therefore include an augmentation step to ensure that as much of the region where8

the emulator cannot be trusted (near target NROY) is included in XD.9

For any design point xi, the design point xj with the largest value of c∗(xi, xj) is the point with the10

most influence on xi. For xi ∈ XN , we want to ensure that their most influential points are not doubt points11

where we do not trust our emulator as this would indicate a possibility that some part of the region bor-12

dering XD and near to xj is unreliable. Our augmentation step adds all points from XN with this property13

to XD before arriving at a final XD.14

Specifically, for each xi ∈ XN , let

xk(i) = arg max
k:xk∈X

c∗(xi, xk).

Let XD′ =
{
xi : xk(i) ∈ XD

}
, the set of points in XN whose most influential point is a doubt point. We then15

augment the doubt set by XD′ so that XD = XD ∪ XD′ , and compute the local Voronoi tessellation on the16

augmented set as before.17

3.4 Robust history matching18

Having isolated a region of parameter space, XN = X \ XD in which we feel confident enough in our19

emulator to rule out parameter space, we can history match in just that region. Specifically, we define20

X ′N = {x ∈ XN : I(x) ≤ T} (15)
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FIG. 2: Comparison between logistic regression classification (right), and Voronoi Tessellation with the GP emulator
correlation prior function (left). The blue part is the normal region which can be employed in history matching. The
red part is the retained doubt region.

FIG. 3: The 1-dimensional model multi-wave calibration result. Left: history matching with our method first wave
result, the red interval defining the true NROY space, the blue interval defining the NROY space by standrad history
matching and the green interval defining the the NROY space by our method. Centre: leave One Out diagnostic plot
against x for second wave emulator. Right: history matching second wave result.

with I(x) as in equation(5). The NROY space X 1 after wave 1 is defined as1

X 1 = XD ∪ X ′N . (16)

4. NUMERICAL EXAMPLES2

4.1 The 1-dimensional function3

We apply the methodology of the last section to the 1-dimensional function from Section 2.3 and a 5-4

dimensional function described below. We use the R package DiceKriging [46] to construct the emula-5

tors throughout.6
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FIG. 4: Leave one out diagnostic plots. Each panel represents leave one out predictions from an emulator against one of
the 5 inputs. Black points and error bars are from the emulator posterior mean and two standard deviation prediction
intervals. The true function values are in blue if they lie within two standard deviation prediction intervals, or red
otherwise.

The 1D model of Section 2.3 only has 1 doubt point. The doubt region highlighted by our local Voronoi1

tessellation is highlighted in red on the left hand panel of Figure 2. The right hand panel shows that the2

logistic regression classifier fails to identify any doubt region due to the unbalanced design.3

We present our robust history match of this function in Figure 3. The wave 1 result is shown in the4

left panel with the green interval defining wave 1 NROY space. A second wave is performed with 105

randomly selected runs within NROY space and the leave one outs are shown in the middle panel of6

Figure 3, highlighting that there are no doubt points. The right panel shows the second wave results. We7

see that all of the target NROY space is retained.8

4.2 A 5-dimensional function9

In order to examine the performance of our method in higher dimensions we look at the 5D function

f(x) =
√
x1 +

1
√
x2

+ x3 + sin(x4) + exp(x5).
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FIG. 5: Local Voronoi cell plots over each two parameters. The red point is the doubt point and the pink points are
selected by augmentation step. The light blue region is the Local Voronoi cell of the doubt points which is the doubt
region.

Note that this function tends to infinity as x2 tends to zero which may happen in many physical models.1

We use a 50 member maximin Latin Hypercube (LHC) to select points for wave 1 and use the function2

evaluations to construct an emulator.3

Leave one out diagnostics against each input are presented in Figure 4. By eye, we see that the emulator4

has individual large errors near the observations, which might indicate that the emulator does not simulate5

the target ’NROY’ space effectively. Using equation(12) we identified 1 doubt point. The local Voronoi6

tessellation plot for all inputs is presented in Figure 5. The red point is the doubt point and the pink point7

is selected by the augmentation step. The light blue range is the Local Voronoi tessellation. We apply the8

robust history matching algorithm described in Section 3.4, retaining the local Voronoi tiles as part of9

NROY space and applying the usual constraint to the rest of the space.10
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TABLE 1: Standard vs robust history matching with top row as the percentage of the original space as
NROY and the bottom the percentage of target NROY retained.

Standard
HM wave 1

Robust
HM wave 1

Robust
HM wave 2

Robust
HM wave 3

Retained
NROY volume 0.6373% 4.6660% 3.9132% 0.2251 %

Retained
target NROY % 24.755% 99.643% 99.643% 99.449%

We compare our robust method with standard history matching in Figure 6. In these density plots,1

each pixel on any panel represents the proportion of points behind that pixel in the other 3 dimensions of2

the parameter space that is NROY. The scale corresponds to the colours in the upper triangles, whilst plots3

on the lower triangle mirror the upper triangle but with independent scales so as to reveal any structure4

hidden by the comparative colour scheme.5

The top left panel in Figure 6 shows the target NROY space and the top right panel in Figure 6 shows6

the wave 1 NROY space following standard history matching. The first wave has incorrectly cut out a large7

corner of the target region (low x1 and low x2, x3, x4 and the lower half of x5). Wave 1 of robust history8

matching, shown in Figure 6 (bottom left panel ), does not have this issue and cuts out less parameter9

space overall (as expected). We continue to perform robust history matching for 2 further waves, though10

in waves 2 and 3, there were no doubt points, so these waves are the same as standard history matching11

(but from a different wave 1). The wave 3 NROY space is shown in Figure 6 (bottom right panel).12

Table 1 shows the volume of NROY space as a percentage of the original space (top row) and the13

percentage of target NROY retained following each wave of history matching (bottom row). Target NROY14

is 0.09% of the original space. Though standard history matching cuts more space than our robust method15

in wave 1, it cuts out nearly 75% of target NROY, whilst we only cut 0.2%. After 2 further waves of history16

matching, we have still retained the target NROY, but have reduced our NROY to 0.17% of the original17

space.18

This example shows a case where history matching can be non-robust in 5 dimensions and that our19

robust history matching effectively enables us to continue the analysis, without having to run a new wave20

1. We now show a case from our work tuning climate models where this issue has presented itself and how21

our method performs.22
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FIG. 6: NROY density plots for 2-D projections of NROY space. Top left: Target NROY space. Top right: Wave 1 NROY
space following standard history matching. Bottom left: Wave 1 NROY space following robust history matching. Bottom
right: Wave 3 NROY space after robust history matching. The scale corresponds to the colours in the upper triangles,
whilst plots on the lower triangle mirror the upper triangle but with independent scales so as to reveal any structure
hidden by the comparative colour scheme (the change from light blue, blue to red indicates that the density is rising).

Volume x, Issue x, 2020



18 Wenzhe Xu, Daniel B. Williamson, & Peter Challenor

5. APPLICATION: PROCESS-BASED TUNING OF CLIMATE MODELS1

As part of the ANR (The French National Research Agency) funded project HIGH-TUNE, developers of2

the French climate models CNRM-CM and IPSL-CM are developing tools to automatically tune bound-3

ary layer cloud parameterisations within their models based on history matching to high resolution Large4

Eddy Simulations. Our collaboration involves providing methods to emulate and history match to a large5

number of process-based metrics quickly and automatically, so that the modellers can use the tools in-6

dependently. With multiple unsupervised history matches, it is important that our methods are robust to7

possible ensemble issues, and so the method we describe in this paper should be part of our set of tools.8

We illustrate its importance through an example of a metric that fails our tests in IPSL-CM.9

IPSL-CM is an atmosphere model that is used to predict planetary atmospheres, including the Earth10

and other celestial bodies (Mars, Titan, Venus), as well as regional climate, process studies [2,27,28]. We run11

a single column version of the model and perturb 5 cloud parameters chosen by the modellers. The model12

is run for a particular boundary layer case (in this case SANDU, capturing transitions from cumulus to13

stratocumulus clouds) with the idea of seeing which parameter choices lead to reasonable representations14

of clouds in these region types (compared to high-resolution simulations). Parameter ranges were deter-15

mined by the project, and in our analysis we have mapped the parameters onto [−1, 1] for fitting emulators16

and history matching.17

We generate a 30-member design as the first 2 LHCs in a 150-member extended LHC composed of18

10, 15-member LHCs following [22] (each additional LHC ensures that the composite design is orthogonal19

and fills the space in each extension phase). Leave one out diagnostic plots for our fitted emulator are20

presented in the top of Figure 7. To history match, we use an observation of 12.18, the observation error21

variance and discrepancy variance are both set as 0.0006.22

There are 2 failed points near the observation, which might indicate that the emulator does not sim-23

ulate the target NROY space well. Using equation(12) we identify 1 doubt point and another doubt point24

defined by our augmentation step. Since the target NROY is unknown in the climate model, in order to25

fairly compare our method with standard history matching, we use the remaining 120 data points (from26

our 150 member LHC) as validation data. The validation results are shown on Figure 7 in the middle and27

bottom rows. In this small data set, we have 11 points in target NROY space, the standard history matching28

misses one target point after wave 1, our method retains all the true NROY. In order to fairly compare, we29

do three waves with each methodology.30
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FIG. 7: Top: Leave one out diagnostic plots. Each panel represents one left-out latin hypercube predicted by the emula-
tor, black points and error bar are from the emulator posterior mean and two standard deviation prediction intervals.
The true function values are in blue if they lie within two standard deviation prediction intervals, or red otherwise.
The observation with observation error are in solid and dotted red lines respectively. Middle: Validation results after
wave 1 following standard history matching. All the points are model runs with the emulator training data presented
in black. The validation data are green if they are retained in the NROY after wave 1 history matching, or grey other-
wise. Bottom: Validation results after wave1 following robust history matching. The colours are as for the middle row
with the red point being the original doubt point and the orange point, the doubt point selected by our augmentation
step.

The NROY density plots (upper triangle) and minimum implausibility plots (lower triangle) are pre-1

sented in Figures 8, 9, 10 and 11 (upper right), for each pair of parameters. For the NROY density plots,2

each pixel on any panel represents the proportion of points behind that pixel in the other 2 dimensions of3

the parameter space that is NROY. The right scale corresponds to the colours in the NROY density plots.4
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FIG. 8: Wave 1 NROY space for LMDZ-SANDU after ro-
bust history matching.

FIG. 9: Wave 3 NROY space for LMDZ-SANDU after ro-
bust history matching.

FIG. 10: Wave 1 NROY space for LMDZ-SANDU follow-
ing standard history matching.

FIG. 11: Wave 3 NROY space for LMDZ-SANDU follow-
ing standard history matching.
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For the minimum implausibility plots, each pixel on any panel on the lower triangle represents the mini-1

mum implausibility found in the remaining dimensions of parameters space behind that pixel. The colours2

are given indicated by the scale on the left.3

Only the first wave had doubt points, so wave 2 and wave 3 use standard history matching. Our4

method retains more space in the first wave (around 1%). We can see from Figure 10 that this retained5

space is in the centre of the space spanned by thermals fact epsilon and thermals ed dz. The wave6

3 NROY density plot of robust history matching shows the doubt area is still in the NROY space, showing7

that standard history matching incorrectly ruled out part of X ∗.8

This application showed that incorrectly ruling out parameter space can occur in practice: in this case9

when history matching climate model parameterisations. For climate models in particular, this mistake10

could prove very costly as history matching is used to assess the quality of a given parametersiation or an11

alternative. If good models are accidentally discarded, the parameterisation or even the resolution of the12

model or its implementation might be needlessly changed, wasting time and resource for the modelling13

centre.14

6. DISCUSSION15

In this paper we demonstrated a potential issue with history matching that occurs when emulators that16

seem to validate well by most standard analyses, do not simulate the (unknown) target subspace well17

enough. We showed that this can lead to good parts of parameter space being ruled out unintentionally,18

and that existing methods, such as using nuggets, variable thresholds or only ruling out if multiple metrics19

fail, were not designed specifically for such pathological cases and do not necessarily address the problem.20

We developed a method for detecting these cases based on standard diagnostics. We then presented a21

robust history matching method based on using a tailored local Voronoi tessellation designed to capture22

the region where the emulator is not as good as it needs to be, and isolate it so that the rest of the input23

space can be pruned as normal, without having to re-run the simulator.24

We demonstrated the efficacy of our method in comparison to standard history matching for 2 numer-25

ical examples designed to demonstrate the issue, and then applied the method to a process metric from26

a single column version of the French climate model LMDZ. We showed that, unlike standard history27

matching, our method manages to effectively cut parameter space whilst ensuring that the target space is28

preserved.29
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Whilst it may be possible to observe the diagnostic issue we have highlighted and to offer a bespoke1

history match for a particular quantity in any given application, this is not feasible in applications where2

tens, hundreds or even thousands of emulators are built and are to be compared with observations [see,3

e.g.15,38,39] as part of the calibration. We also want methods that do not require frequent intervention by4

an experienced statistician. Hence our robust method provides a way to safely and automatically isolate5

any regions of parameter space where it would be dangerous to history match with the current emulator,6

but still allows the same emulator to be used appropriately without requiring a bespoke analysis.7
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