
1. Introduction
The East Asian Summer Monsoon (EASM) affects up to one third of the world's population (Chang, 2004), 
and the arable land in China is estimated to feed 20% of the Earth's population on 7% of the world's farm-
lands (Cui & Shoemaker, 2018). The reliance of agriculture on EASM rainfall means that there is a strong 
drive to predict when rain will arrive.

In East Asia, the wet season begins with the abrupt reversal of the lower-level zonal wind over the South 
China Sea (SCS), accompanied by an off-equatorial shift in the tropical rainband over this area, known as 
the South China Sea Monsoon (SCSM; B. Wang & LinHo, 2002). This is followed by the development of 
an east-west oriented front of precipitation, known as Meiyu in China, which brings intense rainfall to the 
Yangtze River valley from mid-June to -July (Ding & Wang, 2005; B. Wang & LinHo, 2002). SCSM onset tim-
ing is considered a precursor to the broader-scale onset of the monsoon over East Asia (Lau & Yang, 1997; 
B. Wang et al., 2004) and additionally appears correlated to monsoon rainfall intensity over China, with an 
early onset associated with a drier summer (He & Zhu, 2015; Huang et al., 2006). The monsoon onset over 
the South China Sea varies interannually from late-April to mid-June (e.g., B. Wang et al., 2004 and see Fig-
ure 1), giving over a month's uncertainty. In this paper, I propose a novel approach to improving predictabil-
ity of the SCSM onset by exploring whether recent theoretical advances in monsoon dynamics can provide 
insight into controls on SCSM onset timing and inform seasonal forecasting efforts.

Abstract Monsoon onset over the South China Sea occurs in April–May, marking the start of the wet 
season over East Asia. Skillful prediction of onset timing remains an open challenge. Recently, theoretical 
studies using idealized models have revealed feedbacks at work during the seasonal transitions of the 
Hadley cells and have shown that these are relevant to monsoon onset over Asia. Here, I hypothesize 
that monsoon onset occurs earlier in years when the atmosphere over the South China Sea is already in 
a state where these feedbacks are more easily triggered. I find that local anomalies in lower-level moist 
static energy in the preceding January–March are well correlated with South China Sea Monsoon onset 
timing. This relationship remains relatively consistent on decadal timescales, while correlations with 
other teleconnections vary, and is used to develop a simple forecast model for onset timing that shows skill 
competitive with that of more complex models.

Plain Language Summary Arable land in China is estimated to feed 20% of the world's 
population on 7% of the world's farmlands, with much of this region watered by rainfall from the East 
Asian Summer Monsoon. Forecasting the arrival of the monsoon, which occurs first over the South China 
Sea in April–May, is therefore helpful for agricultural planning. However, producing a reliable forecast 
remains an open challenge. Recently, simple climate models, for example, models including seasons but 
with no land, have been used along with observations to investigate the most basic processes controlling 
climatological monsoon onset over Asia. In this paper, I suggest that year-to-year variations in monsoon 
onset timing are controlled by the same processes and, based on these, I suggest climate variables that 
may help in predicting when the monsoon will begin. By using this approach, I find that the “Moist Static 
Energy” (a quantity that combines temperature and humidity) over the South China Sea in January–
March is strongly correlated with monsoon onset timing. This insight can be used to predict future onset 
timing competitively compared with more complex forecast models.
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SCSM onset timing shows both interannual variability and slower, interdecadal trends (Kajikawa et al., 2012; 
Kajikawa & Wang, 2012; Figure 1). The El Niño Southern Oscillation (ENSO) has been identified as one 
clear source of interannual variability, with La Niña (El Niño) events linked to early (late) monsoon on-
set via their influence on the Western North Pacific subtropical high (Zhou & Chan, 2007). However, the 
strength of the relationship between the SCSM and ENSO varies dramatically on decadal timescales, likely 
influenced by the the Pacific Decadal Oscillation (PDO; Chan & Zhou, 2005) and Atlantic Multidecadal 
Oscillation (AMO; Fan et al., 2018). In addition to ENSO, SCSM onset variability has been related to a range 
of factors in the preceding winter and spring: thermal and mechanical forcing over the Tibetan Plateau (G. 
Wu & Zhang, 1998); temperature contrasts between the South China Sea and Western North Pacific and 
the land surface temperature to the north (P. Liu et al., 2009); and the cross-equatorial flow over the South 
China Sea (Hu et al., 2018; Lin et al., 2017).

Physical-Empirical models have been developed to predict SCSM onset timing and intensity based on cor-
relations with sea surface temperature (SST), sea level pressure and temperature tendency anomalies in the 
preceding months. These models can show high forecast correlation skill over the time-periods analyzed 
(e.g., r = 0.72, Zhu & Li, 2017). Recently, dynamical seasonal forecasting ensembles have also been found to 
give skillful prediction of the SCSM onset in hindcasts (Fan et al., 2016; Martin et al., 2019). However, the 
skill of both types of model stems from teleconnections such as ENSO, whose correlation with the SCSM 
vary decadally.

Here, I try a different approach. First, I identify the processes found to be most important to monsoon onset 
in idealized modeling studies (e.g., Bordoni & Schneider, 2008; Geen et al., 2018). I then explore whether 
these insights can help to identify direct, local precursors to the monsoon. My aim is to find common path-
ways via which multiple teleconnections affect onset timing. In Section 2, I motivate the precursors that I 
hypothesize to be relevant and detail the datasets used in the paper. In Section 3, I then examine the correla-
tion between SCSM onset and these precursors over different time periods. In Section 4, I develop a simple 
forecast of SCSM onset and test its predictive skill. Section 5 concludes.

GEEN

10.1029/2020GL091444

2 of 10

Figure 1. (a) Onset timing of the SCSM in pentads (5-day means; black circles). The dotted line shows the 11-year 
rolling mean, which I use to distinguish longer term trends from interannual variability. The overall mean onset timing 
is pentad 28 (solid line). Green (orange) circles show predicted onset pentads for each year based on MSE over 5°–15°N, 
110–125°E (SST over −5°–5°N, 160–210°E). Details of how these forecasts are generated is given in Section 4. (b) 
Rolling mean skill statistics for the forecasts in (a) to show how skill varies in time. Darker lines show Pearson r, lighter 
lines show root mean square error, both based on centered 31-year rolling windows. An equivalent plot for CERA-20C 
data is given in Figure S3.
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2. Methods
2.1. Hypothesized Precursors

To select potential mechanistic pathways, I apply results from idealized modeling studies that compare the 
seasonal behavior of the Hadley cell in aquaplanets with Earth's monsoons (Geen et al., 2020; Hill, 2019). 
One important expectation from this theoretical work is that, if the tropical atmosphere is near convective 
quasi-equilibrium (CQE) and the influence of extra-tropical eddies on the Hadley cell is weak, then the 
0-streamfunction line separating the Hadley cells is colocated with the maximum in subcloud moist static 
energy (MSE). If this maximum is off the Equator, as is the case during the monsoon season, then the max-
imum ascent and associated rainfall will lie just equatorward of this (Nie et al., 2010; Privé & Plumb, 2007). 
MSE is defined

   .ph c T Lq gz (1)

where cp = 1,004.6 J K−1 kg−1 is the heat capacity at constant pressure, T is temperature, L = 2.507 × 106 
J kg−1 is the latent heat of vapourization of water, q is specific humidity, g = 9.80665 m s−2 is the gravita-
tional constant, and z is geopotential height. Values for constants are those used in the JRA-55 reanalysis.

The connection between the overturning circulation and MSE distribution results in two feedbacks occur-
ring during monsoon onset. First, diabatic heating by the insolation warms the summer hemisphere. In 
response, the ITCZ shifts into the summer hemisphere and the winter-hemisphere Hadley cell becomes 
cross-equatorial. This cross-equatorial cell advects cooler, drier air up the MSE gradient, while diabatic pro-
cesses increase MSE poleward. As a result, the MSE maximum shifts farther poleward and the cell becomes 
more cross-equatorial. The result is a positive feedback between the circulation and the thermal forcing, so 
that the convergence zone jumps abruptly into the summer hemisphere (Bordoni & Schneider, 2008). The 
second feedback relates to the tropical upper-level easterlies generated by a cross-equatorial Hadley cell. 
These limit the propagation of eddies to lower latitudes. As a result, the cell becomes primarily thermally 
driven, rather than eddy-driven, and responds strongly to changes in the MSE distribution, strengthening 
the cell, and so further enhancing the easterlies (Geen et al., 2019; Schneider & Bordoni, 2008).

Although these ideas have been developed in an idealized framework, they appear to apply to both the 
climatology (Bordoni & Schneider, 2008; Geen et al., 2018; Ma et al., 2019; Nie et al., 2010) and interannual 
variability (Hurley & Boos, 2013) of the Asian monsoons in reanalysis data. In this study, I further hypothe-
size that in the months prior to monsoon onset, both local and remote influences may cause the atmosphere 
to be in a state where these feedback cycles will more readily begin, so that onset may then occur earlier 
in the season. Based on this, I suggest that early SCSM onset will be associated with positive 850-hPa MSE 
and negative 200-hPa zonal wind speed anomalies in the SCSM region. The present study is motivated by 
an interest in prediction of climate over China. However, some initial exploration of the correlations with 
monsoon onset over the Bay of Bengal and India are shown in Figure S1.

2.2. Data and Metrics

Results are presented for the JRA-55 reanalysis data set (Japan Meteorological Agency/Japan,  2013; 
Kobayashi et al., 2015) for years 1958–2019, with SSTs taken from the COBE SST data set (Japan Meteoro-
logical Agency, 2006; Japan Meteorological Agency, Ongoing). In addition, results are shown in supporting 
material (Figures S2 and S3) for the CERA-20C data set (Laloyaux et al., 2016), confirming that similar 
relationships are seen over a longer record. Daily mean 850-hPa zonal wind data were used to establish the 
SCSM onset pentad using the criteria developed by B. Wang et al. (2004). SCSM onset is defined as the first 
pentad after April 25th (pentad 24) where the average zonal wind speed over 5°–15°N, 110°–120°E, USCS, 
is westerly, and where USCS is positive in at least three of the four subsequent pentads (including the onset 
pentad) and the accumulative 4-pentad mean of USCS > 1 m s−1. The onset pentads identified in the JRA-55 
data set are shown by the black circles in Figure 1. These are broadly consistent with dates evaluated in pre-
vious studies using the NCEP/NCAR (Kalnay et al., 1996; B. Wang et al., 2004) or ERA-Interim reanalyses 
(Martin et al., 2019; Uppala et al., 2005). JRA-55 data are presented here due to the long data record and use 
of 4Dvar data assimilation, but correlations were also checked using the ERA-Interim, NCEP/NCAR and 
NCEP/DOE-R2 (Kanamitsu et al., 2002) data sets, with similar conclusions obtained overall (not shown).

GEEN

10.1029/2020GL091444

3 of 10



Geophysical Research Letters

In this study, I aim to explore precursors for interannual variability, but slower decadal trends are also 
present in the data. When investigating correlations data were therefore detrended with an 11-year rolling 
mean, which is illustrated for the onset dates by the dashed line in Figure 1. This ensures that the corre-
lations presented relate to interannual variability, rather than to coincident trends in variables due to, for 
example, global warming or variations in multi-decadal modes. Note that the initial and final 5 years are 
detrended using the mean of the initial and final 11 years to allow these to be included.

3. Hypothesis Testing
Figure 2 shows correlations between the hypothesized predictors, averaged from January to March, and the 
SCSM onset pentad, with both detrended with an 11-year rolling mean. A negative correlation indicates that 
a positive anomaly is associated with earlier monsoon onset. Looking first over the full reanalysis record, I 
see correlations that are consistent with the hypothesized relationships. Spring 850-hPa MSE over the South 
China Sea is negatively correlated with SCSM onset timing (Figure 2a), while 200-hPa zonal wind over 
East Asia is weakly positively correlated with monsoon onset (Figure 2b). MSE anomalies can be expected 
to relate to anomalies in SST and MSE advection. Over the full record, SCSM onset is correlated with SST 
over the Philippines to the east (Figure 2c), but the correlation is weaker than that with MSE. This suggests 
that the MSE pattern is partially, but not completely, related to local SST anomalies. Breaking down MSE 
into its contributions from internal, latent, and potential energy, the majority of the correlation was found 
to come from the latent heat (not shown). The seasonal evolution of the MSE correlation with SCSM onset 
is shown in Figure S1. A dipole is seen in April and May, with enhanced MSE over the SCS and reduced 
MSE to the south associated with earlier onset. By June onset has occurred in most years, but a significant 
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Figure 2. Correlations between potential predictors and the SCSM onset pentad. Panels ((a)–(h)) show maps of Pearson correlation coefficient between SCSM 
onset pentad and January–March averaged 850-hPa MSE (left column), 200-hPa zonal wind (center column), and SST (rightmost column). The top row shows 
the correlations for the full data set, second and third rows show correlations for early and late periods respectively (see titles). Bottom center (j) shows running 
correlations of SCSM onset pentad with: MSE averaged over 5°–15°N, 110–125°E (blue); MSE averaged over −30° to −20°N, 120–150°E (orange); SST averaged 
over the Niño 4 region (green). Averaging areas for MSE are indicated by boxes in (a) and (d), and for SST by the box in (i). Stippling on maps and the dashed 
line in (j) indicate the threshold where the correlation is significantly different from 0 (p < 0.05). For all panels, data has been detrended relative to an 11-year 
rolling mean.
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correlation remains to the south indicating that late onset is linked to enhanced MSE over and to the south 
of Indonesia.

To investigate whether these relationships are consistent throughout the reanalysis record, I also divided 
the data into two 31-year sections, an early period spanning 1958–1988 (Figures 2d–2f) and a later period 
spanning 1989–2019 (Figures 2f–2i). A statistically significant negative correlation between January–March 
850-hPa MSE is present over the South China Sea for both of these time periods. In contrast, for upper-level 
zonal wind, it becomes clear that the correlation is dominated by the later period, with the earlier period 
showing no statistically significant relationship over East Asia. The mean SCSM onset pentad became ear-
lier in 1994, but I find that dividing the data as 1958–1993 and 1994–2019 gives similar results (not shown).

It has been noted that the ENSO-SCSM relationship appears to have strengthened from the late 1970s on-
wards (B. Wang, Huang, et al., 2009) and that this provides a strong source of predictability for SCSM onset 
(Martin et al., 2019). The correlations over the later period are consistent with the ENSO teleconnection 
influence exerting a strong influence on SCSM onset. The MSE correlation pattern shows a clear East-
West asymmetry across the Pacific Basin (Figure 2g), while the zonal wind correlation resembles the upper 
branch of the Walker cell (Figure 2h) and the SST correlation shows a clear ENSO pattern (Figure 2i). The 
lack of correlation of 200-hPa zonal wind with SCSM onset in the earlier period suggests two possibilities. 
First, upper-level easterly anomalies in the preceding spring may not causally connect to an earlier Hadley 
cell regime change as hypothesized in Section 2.1, and may instead simply be coincident with SST anoma-
lies that result in warm, humid air converging over the SCS region. Alternatively, these upper-level easter-
lies may contribute causally to an earlier transition, but may only be steady if SST anomalies are present to 
support zonal flow anomalies. Systematic model simulations would be needed to distinguish these possi-
bilities. Overall, I conclude that upper-level zonal wind does not provide a steady predictor for SCSM onset.

In contrast, in the earlier period there is no clear connection between ENSO and SCSM onset. Instead, the 
strongest correlation is found to be with MSE over Australia (Figure 2d). This correlation is not captured by 
looking purely at SSTs (Figure 2f) and is predominantly due to the latent heat (not shown). Specifically, in 
this period, higher MSE over Australia from January–March was associated with later onset of the SCSM. 
The dipole around the Equator in Figure 2d suggests that meridional thermal gradients, and their influence 
on the Hadley circulation, were more important precursors for monsoon onset in this period, compared 
with the role of zonal thermal gradients and the Walker circulation in the later period. This is supported 
by Figure 3, which shows the correlation of onset with the local Hadley and Walker cells, as defined by 
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Figure 3. Correlations of January–March averaged local Hadley (top) and Walker (bottom) cell overturning (Schwendike et al., 2014) with the SCSM onset 
pentad. Left and right columns show correlations for 1958–1988 and 1989–2019, respectively. Thick dark lines show 500-hPa cross sections of the time-
mean Hadley and Walker overturning circulations over the two periods, with contour interval 3,000 kgs−1 m−1. Stippling indicates where the correlation is 
significantly different from 0 (p < 0.05). For all panels, data have been detrended relative to an 11-year rolling mean.
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Schwendike et al. (2014). In the earlier period, Walker circulation anomalies show little correlation with 
SCSM onset timing, but a weakening of the Northern Hemisphere Hadley cell in January–March is associat-
ed with earlier monsoon onset. In the later period, a strong correlation can be seen between both the Walker 
and Hadley circulations and SCSM onset, reflecting the influence of ENSO on the circulation.

Figure 2j shows running correlations with a 31-year mean, indicating how the teleconnections vary in time. 
The blue and orange lines show MSE averaged over the boxes shown in panels (a) and (d), while the green 
line shows the SST averaged over the Niño 4 region (panel (i)). For SCS MSE, a statistically significant nega-
tive correlation is found to be present over almost the entire record, although the strength of the correlation 
does vary in time. The correlation of onset with Australian MSE is in fact stronger than that with SCS MSE, 
but begins to drop off after 1983, while the relationship with Niño 4 SST strengthens at this point. SCS MSE 
approximately follows the correlation with both connections but is consistent across the record. Previous 
studies (Zhu & Li, 2017) identified different precursors to those presented here; I find that rolling correla-
tions of these also show strong interdecadal variations (Figure S4).

Figure S2 confirms that similar behavior is seen in the CERA-20C data set. Here, the correlation does dip be-
low the 95% confidence level, but nonetheless remains more steady than other teleconnections. I note that 
all correlations are low in the very early years of the data set (prior to ∼1930). This might result from either a 
lack of predictability or sparse observations in this period; an in depth analysis of the available observations 
would be needed to explore this issue.

4. A Simple Forecast
The correlations in Figure 2 suggest that the area mean MSE over 5°–15°N, 110°–125°E could provide a 
useful predictor of SCSM onset. To assess the predictive skill, I test how well data from previous years can 
be used to predict the onset timing for the next year. To mimic a plausible operational forecast, an expanding 
window method is applied to the un-detrended data. The prediction for a given year is estimated by using 
least squares regression to fit a linear model between the observed onset dates and SCS MSE from all previ-
ous years. Each year the window used for generating the forecast expands as new observations are incorpo-
rated. This approach was repeated using the SST averaged over the Niño 4 region to confirm the skill is not 
purely a result of the correlation with ENSO and to provide a model for comparison in periods not covered 
by previous studies (specifically Martin et al., 2019; Zhu & Li, 2017).

The forecasts produced are shown in Figure 1a from 1968 onwards, providing 10 years of training data 
for the first forecast plotted. Figure  1b shows rolling skill metrics evaluated with a 31-year window (cf. 
Figure 2j). Note that skill is expected to be initially low, as the early years are forecast based on a limited 
amount of data. An equivalent forecast for CERA-20C is given in Figure S3, helping to distinguish whether 
lower skill results from a lack of training data or reduced correlation with MSE. In general, for both JRA-55 
and CERA-20C, the SCS MSE based forecast has a higher correlation with the observed onset pentads and 
a lower RMSE than the forecast using the Niño 4 SST, although there are short windows where the Niño 4 
forecast shows higher correlation with the observed dates. Skill is low for both models prior to 1930, reflect-
ing the weak correlations seen in Figure 2j in this period.

Averaging over a subset of years allows comparison with previous efforts with more complex models. Zhu 
and Li (2017) applied three predictors to model the SCSM onset dates in the NCEP/DOE-R2 data set, achiev-
ing a correlation over their test period, 2005–2014, of 0.72 (RMSE 2.08 pentads). Martin et al. (2019) found 
that the Met Office GloSea5 ensemble (MacLachlan et al., 2015; Williams & Coauthors, 2015) could predict 
SCSM onset with a correlation of 0.5 over a study period from 1993 to 2015. Over these periods, the predic-
tions using SCS MSE show correlations with observed onset dates of 0.70 (p = 0.03; RMSE 1.96 pentads) 
and 0.67 (p = 0.0005; RMSE 2.00 pentads), respectively. The Niño 4 forecasts show lower skill: 0.23 (p = 0.5; 
RMSE 2.93 pentads) and 0.27 (p = 0.2; RMSE 2.88 pentads). It is worth noting that the correlations and fore-
cast skill vary interdecadally (Figures 1, 2, S2 and S3), and that correlations were relatively strong through-
out 1993–2015. The stronger correlation with ENSO in the later period may have given optimistic estimates 
of forecast skill in previous studies. Where possible, it would be helpful to produce longer hindcasts to give 
a more complete a picture of model skill.
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Repeating the predictions using only MSE averaged in January–February or January, I find the correlations 
also remain high when only earlier data are used. For the 2005–2014 and 1993–2015 periods, January–
February averaged MSE gives correlations of 0.69 (RMSE 1.92 pentads) and 0.65 (RMSE 1.98 pentads), 
respectively, while January-mean MSE gives a correlations of 0.55 (RMSE 2.13 pentads) and 0.60 (RMSE 
2.06 pentads). Using only a single precursor, this simple model is able to give an initial estimate of SCSM 
onset timing with roughly 3–4 months lead time (given that onset occurs in May on average), and shows 
correlations competitive with previous models.

Last, I note that the SCS MSE-based forecast in Figure 1 appears reasonably well correlated with the ob-
served variability, but does not capture the extremes in onset timing, which might have the highest impact 
on agriculture. I find that, for the JRA-55 data, this issue appears to be improved by applying exponential 
smoothing to account for non-stationary statistics in the forecasting model. For example, with exponential 
smoothing applied RMSE decreases for both the GloSea5 and Zhu study periods (Figure S5). However, this 
improvement was not reproduced when forecasting the longer CERA-20C record. An explanation of the 
method and figures showing the forecast generated are included in the supporting information (Text S1 and 
Figure S5) for interested readers.

5. Discussion
Based on theoretical insights into controls on the meridional overturning circulation that have been de-
veloped in aquaplanets, I set out with two hypothesized predictors for SCSM onset: lower-level MSE and 
upper-level zonal wind in the preceding January–March. While the latter does not correlate well with SCSM 
onset timing, I find that MSE is a useful predictor of interannual variability in SCSM onset. Although the 
strength of individual teleconnections to the South China Sea varies in time, looking at local MSE allows us 
to take a step farther along the mechanistic chain from a remote forcing to a local impact on the monsoon 
onset. Multiple processes can produce local MSE anomalies, but these anomalies are consistently corre-
lated with SCSM onset timing across the JRA-55 record (Figure 2) and additionally show relatively steady 
correlations throughout twentieth century in the CERA-20C data set (Figure S2). The correlation strength 
was also tested in other reanalysis data sets (not shown). In ERA-Interim, similar correlation patterns and 
strengths are seen to those shown in Figure 2. Correlations in NCEP/NCAR and NCEP/DOE-R2 were also 
found to follow similar patterns, although these are weaker in magnitude. These findings are thus robust 
across data sets.

Generating a simple linear regression model based on this single predictor, I produced predictions of onset 
timing from 1993 onwards via an expanding-window approach. I find predictive skill comparable with en-
semble forecast results from as early as January. I conclude that local MSE in the months preceding SCSM 
onset is a useful source of predictability and would merit further exploration both for use in Physical-Em-
pirical forecast models and for guiding development of dynamical forecasting ensembles.

Despite this favorable comparison in skill, onset in several years was poorly predicted. Subseasonal fac-
tors such as intraseasonal oscillations (R. Wu, 2010; Zhou & Chan, 2005) and tropical cyclones (B. Liu & 
Zhu, 2020; Mao & Wu, 2008) have been found to trigger onset in individual years, limiting seasonal pre-
dictability. Although MSE anomalies do appear to precondition the region for early or late onset, it is there-
fore also highly important to account for sub-seasonal systems that may cause deviation from the seasonal 
forecast. Recent results suggest that these problems of seasonal and sub-seasonal prediction may be best 
approached in parallel: the sub-seasonal character of SCSM onset varies between early and late onsets, so 
that an improved sub-seasonal prediction of SCSM onset is expected to benefit from the consideration of 
interannual variability (H. Wang et al., 2018). I also note that although the correlation indicates skill, the 
predictions in Figure 1 do not capture the extremes in onset well. Exponential smoothing was explored as a 
method to address this issue (Text S1 and Figure S5).

The present study focuses on the SCSM onset, motivated by an interest in seasonal prediction of Chinese 
climate. However, it is also interesting to explore if this relationship with MSE applies elsewhere. Figure S1 
shows how the correlation with MSE evolves over Spring and Summer for the SCSM, Bay of Bengal mon-
soon (BOBM), and Indian summer monsoon (ISM). For consistency, onset pentads for the BOBM and ISM 
are evaluated using 850-hPa wind based metrics (Mao & Wu, 2007; B. Wang, Ding, et al., 2009), with average 
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pentads 24 and 30, respectively. A negative correlation with MSE over the Bay of Bengal is not seen for 
BOBM onset. Instead the dominant signals are positive correlations over the Indian Ocean and central 
Pacific. These indicate that the BOBM onset is strongly related to ENSO, but that delayed onset is also asso-
ciated with enhanced MSE to the south, physically consistent with the aquaplanet physics. However, I note 
that in the BOBM region the reversal of the meridional MSE gradient does not appear to be concurrent with 
onset and that the 850-hPa wind reversal used to define onset is here associated with the development of a 
shallow, rather than deep, overturning circulation (not shown). MSE reversal occurs later in approximately 
pentad 28, at which time the cross-equatorial cell deepens. The aquaplanet dynamics may therefore not be 
a suitable model for BOBM onset.

For the ISM, a weak correlation with MSE over the Tibetan Plateau is seen in January–March, but does not 
persist into April. A strong, negative correlation over India develops in May, which develops into a dipole 
in June, similar to that seen for the SCSM (left column). ISM onset occurs in pentad 30 on average, corre-
sponding to the end of May, with a standard deviation of 1.7 pentads. The correlation seen in May might, 
therefore, indicate some late-stage predictability from MSE or could simply reflect the increase in MSE that 
occurs during monsoon onset.

This theory-motivated approach has successfully identified a predictor whose correlation with SCSM onset 
persists across the record and highlights the direct benefits of better understanding the controls on the 
large-scale circulation. Consistent behavior is observed in other regions but with reduced lead time. Further 
work is needed to examine where the aquaplanet is an appropriate model for monsoon onset and where 
MSE might be used to predict regional monsoon onset. However, the second proposed predictor, 200-hPa 
zonal wind, did not correlate well with monsoon onset. This could relate to a lack of memory in the system 
for upper-level wind anomalies or could indicate issues with applying ideas from highly idealized models to 
Earth. The theoretical foundation for understanding the climatological monsoon still shows some key gaps, 
in particular the role of zonal asymmetries and transient weather systems in the seasonality of the Hadley 
cells (Geen et al., 2020). The results presented here suggest that bridging these gaps may provide further 
opportunities for improved seasonal forecasts.

Data Availability Statement
Data sets for this research are available in these in-text data citation references: Japan Meteorological Agen-
cy/Japan (2013); Japan Meteorological Agency (Ongoing); ECMWF (2016).
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