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Abstract

This thesis is predominantly based on four projects that focus on moments of
Dirichlet L-functions in the function field setting. That is, the L-functions are,
in the appropriate region of convergence, defined as sums over monic polynomials
in A :=F,[T], the polynomial ring over the finite field of order ¢ for some fixed odd
prime power q.

. . . 1 * 2k.
For the first project, we obtain the main term of mz XmodR|L(1/2,x)| as

deg R — oo, for k = 1,2. Here, R is a monic polynomial in A, the sum is over
all primitive Dirichlet characters of modulus R, ¢*(R) is the number of primitive
characters of modulus R, and L(s, x) is the Dirichlet L-function associated to the
character y. This is the function field analogue of Soundararajan’s result on the
fourth moment of Dirichlet L-functions in the number field setting, and it extends
upon the work of Tamam in the function field setting. Our proofs require us to
obtain results on correlations of the divisor function. This, in turn, requires the
function field analogue of Shiu’s generalised Brun-Titchmarsh theorem, for the spe-
cial case of the divisor function. Therefore, we also explore the Selberg sieve for
function fields.

For the second project, we obtain, for any non-negative integers [i,ls, the main
term of o Z Xmon\L(ll)(l/Z )PILE) (172, )[? as deg Q tends to infinity over

the prime polynomials. Here, L)(s, x) is the I-th derivative of L(s,). Typically
with such results, one makes use of the functional equation for Dirichlet L-functions,
but here this is more difficult due to the derivatives. Furthermore, the derivatives
introduce non-multiplicative factors that complicate the computations. Our method
of addressing this is only applicable to the function field setting, although there are
likely other, more complicated approaches one could explore for the number field
analogue of the problem. We also obtain similar results involving derivatives for the
first and second moments.

For the third project we conjecture, for any non-negative integer k, the main term
of mz ch)C1R|L(1/2,X)|2k as deg R — oo. We do this by expressing each

L-function as a hybrid Euler-Hadamard product: L(s,x) = Px(s,x)Zx(s,x). The
first factor, Px(s,x), resembles a partial product over the primes, and the second
factor, Zx(s,x), resembles a partial product over the zeros of the L-function. We

conjecture that
s 2 1) (@) G 2 @)

We call this the splitting conjecture and, for £ = 1,2, we prove it. Also, for all

- (aﬁ*(lR)XZ;
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non-negative integers k, we obtain the main term of 5 R) Z |PX (1/2,%)|*,

while for 7 Z XmodR|ZX(1/27X)‘2’“ we use a random matrlx theory model to

conjecture the main term. These, along with the splitting conjecture, immediately
give a conjecture for the main term of the 2k-th moment of the L-functions. This
project is based on the work on Gonek, Hughes, and Keating who undertook the
above for moments of the Riemann-zeta function in the number field setting. This
was extended to moments of Dirichlet L-functions by Bui and Keating, and our
work is the function field analogue of this.

For the fourth project we conjecture, for any non-negative integer k, the main term
of m Z Xmon|L’(1/2,x)|2k as deg ) tends to infinity over the prime polyno-

mials. We do this by differentiating the hybrid Euler-Hadamard product formula:
L'(s,x) = Px(s,x)Zx(s,x) + Px(s,x)Z%(s,x). We then make the following split-
ting conjecture for the first derivative:
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We prove the splitting conjecture for the case k = 1. Also, for all non-negative
. . . 1 * / 2k .
integers k, we obtain the main term of mz Xmon]PX(l/Q,Xﬂ , while for

1 2k
ZX(EaX)‘ );

1 *
7,2,

1 ¥ 1 2k : :
peI(e) Z Xmon|ZX(1/2’ X)|?® we use a random matrix theory model to conjecture

the main term. These, along with the splitting conjecture for the first derivative
and results established in the third project, give a conjecture for the main term of

m Z*Xmon|L’ (1/2,x)|?*. While the hybrid Euler-Hadamard formula approach

has been applied to moments of quadratic Dirichlet L-functions in the function field
setting (by Bui and Florea), as well as having been applied to discrete moments
of the derivative of the Riemann zeta-function in the number field setting (by Bui,
Gonek, and Milinovich), this project is the first that we are aware of that uses this
approach for moments of derivatives of L-functions at the central value (in either
the number field or function field setting).
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Notation

In this thesis, most notation will be introduced in Chapter 1; or, if used in only
one chapter or section, it will be introduced there. Nonetheless, there are some
notational introductions for which it is more natural to make them here.

e We denote the set of positive, negative, non-negative, and non-positive integers
by Zo, Zico, Z>0, Z<yp, respectively.

e Throughout this thesis, except sections Sections 1.2, 1.3, and 1.5, ¢ = p" for
some odd prime integer p and some positive integer n. Our results hold for all
¢ in this range. In Sections 1.2, 1.3, and 1.5, as we describe there, we take g to
be a positive integer. This is because we mention results from the number field
setting where ¢ typically has a different definition than its typical definition
in the function field setting.

e We define F, to be the finite field of order ¢, and F," to be its multiplicative
group. Furthermore, we define A := F,[T], the polynomial ring over the finite
field of order q. M is the subset of A consisting of all monic polynomials. For
T C A, n>0 an integer, and B € A, we define

T ={A€T :degA=n}
and

BT = {AB:Ae T}

e For A € A\{0} we define |A] := ¢4, and we define |0] := 0. Let n > 0.
Then, the range deg A < n is not taken to include A = 0.

e As A is a Euclidean domain, we have that primality and irreducibility are
equivalent, and we have unique factorisation. Unless otherwise stated, a prime
in A is always taken to be monic. The letters P, are reserved for prime
polynomials, and are to be taken as such even when not explicitly stated. The
set of all monic primes is denoted by P.

e For non-negative integers n, we define S(n) :=={A € A: P| A= degP <n}
and Sy(n) == {A € S(n) : A is monic}.

e For all positive integers a # 1 we define p,(a) to be the largest (positive)
prime divisor of a and p_(a) to be the smallest (positive) prime divisor of a.
For A € M\{1}, we define p, (A) to be the largest integer such that A has a
prime divisor of degree p,(A), and we define p_(A) to be the smallest integer
such that A has a prime divisor of degree p_(A).
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e For integers a, b we denote the highest common factor and the lowest common
multiple by (a,b) and [a, b], respectively (of course, both (a,b) and [a,b] are
taken to be positive). Similarly, for A, B € A, we define (A, B) and [A, B] to
the highest common factor and lowest common multiple of A, B, respectively.
Here, “highest” and “lowest” are with regards to the degree of a polynomial,
and both (A, B) and [A, B] are taken to be monic.

e Suppose we have a € Z. When we write ) |
divisors e of a. When we write Zef:a, we are summing over all pairs (e, f)
such that e, f are positive and ef = a. Similar restrictions hold over products,
etc. (as opposed to sums). While these definitions apply to any a € Z, it will
typically be the case that a is positive. Similar restrictions hold for A € A (as
opposed to a € Z), but we require that the divisors are monic (as opposed to
positive). While these definitions hold for any A € A, it will typically be the
case that A is monic.

we are summing over all positive

ela’

e Let a be a non-zero integer. We say a is square-free if it is not divisible by p?
for any prime integer p. We say that it is square-full if p? | a for all primes
p | a. We define the radical of a, denoted by rad(a), to be the largest positive
square-free divisor of a. We have similar definitions for elements in A, but we
replace “positive” with “monic”.

e The multiplicative functions w, €2, dg, @, 1 on the non-zero integers are taken
to have their standard definitions: The number of (positive) prime divisors
(without multiplicity), the number of (positive) prime divisors (with multi-
plicity), the number of ways of expressing an integer as a product of k integers
(not counting any multiplication by units), the Euler totient function, and the
Mobius function, respectively. One can easily see the analogous definitions for
A (replace “positive” with “monic” where necessary). We only note that for
a € Ay =F," we define ¢(a) = 1, and for R € A with deg R > 1 we have

o(R) ::HA € A:deg A <degR and (A, R) = 1}‘

gl )

P|R

e On the integers, unless otherwise stated, A is taken to be the von Mangoldt
function. The analogy in A is

A(A) = log|P| if A= aP* for some P € P, integer ¢ > 1, and a € F*
"o otherwise.

e Let £ > 0 be an integer. For a k-times differentiable function f(z), we define
f®)(x) to be its k-th derivative.

e Let a € C and b € C\{0}, and let f be an integrable complex function. The
integral ﬁ:;boo f(t)dt is defined to be over the straight line starting at a and
in the direction of b. That is, t':;boo fydt = [Z, f(a+ ‘%‘s)ds. If a = 0 then
we will simply write Liog f(t)dt, and if b = 41 then we will write t‘fzoo f(t)dt.

e The function log is always in base e. The function log, is, of course, in base a.

9



For a subset S C C, we define 1g(z) to be the function that takes the value 1
if x € S and takes the value 0 otherwise.

We denote the cardinality of a set S by |S|.
Iy is the N x N identity matrix.

Suppose we have complex functions f and g where g is non-negative and the
domain of g contains the domain of f. We write f(z) = O(g(z)) if there is
a positive constant ¢ such that |f(z)| < ¢|g(z)| for all z in the domain of f.
We also write f(z) < g(z) for f(z) = O(g(z)). We write f(z) < g(z) if both
f(z) < g(r) and g(z) < f(x) hold.

Suppose we have complex functions f; and g, where: The function f; depends
on the parameter k; the function g, may or may not depend on the parameter &
(if it is the latter, then g is the same for all k); the function gy, is non-negative;
and the domain of g; contains the domain of fi. We write fi(z) = O(gx())
if there is a positive constant ¢ such that |fi.(z)| < c|gx(z)| for all k and all
z in the domain of f,. We write fiy(z) = O (gr(z)) if, for all k, there is a
positive constant ¢ such that |fx(z)| < ck| gr(x)| for all z in the domain of
fr- We also write fi.(z) < gi(x) for fr(z) = O(gk(z)) and fi(z) <y gr(z) for
(@) = Ok (gi(x)).

Suppose we have complex functions f; and g, where: The function f; depends
on the parameter k; the function g, may or may not depend on the parameter
k (if it is the latter, then g, is the same for all k); the function g, is non-
negative; and the domain of f; is unbounded and is contained in the domain

of g We write fi(z) = O(gr(z)) as x " oo if there is a positive constant c,
and a positive constant X}, that is dependent on k, such that | fi(x)| < c|gx(z)|
for all £ and all z in the domain of f; that satisfy |z| > X;. We also write

fr(z) < gr(x) as x £ 5o for fi(@) =O(gr(z)) as x £ .

Suppose f and g are complex functions, where the domain of f is unbounded
and is contained in the domain of g. We write f(z) ~ g(z) as  — oo if
%Hlasx%oo. We write f(z) = o(g(z)) asx%ooﬁf @ —— Oas
xr — 00. Now, let ¢ € C, and suppose f and g are complex functlons where
the domain of f contains some open neighbourhood of ¢ and the domain of g
contains the domain of f. We write f(z) ~ g(z) as © —> ¢ if L% — 1 as

g(z)
r—>c.
“RHS” and “LHS” are abbreviations of “right-hand side” and “left-hand side”.

v is the Euler-Mascheroni constant, defined by

e (30 [ o)

For a Dirichlet L-function, L(s, x), where x is a Dirichlet Character on F,[T7,
it is known that all zeros lie on the critical line. Therefore, we can write them
as p = % + ¢7y. Furthermore, they can be ordered. We denote the n-th zero
by p, = %—i—z'fyn, and it is defined by ... < 7., <7 1 <0<y <7 <

If L(s,x) has a zero at s = 0 then we define 7y = 0; otherwise we do not
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define v5. When we are working with more than one Dirichlet L-function, we
will write p,,(x) and 7, (x) to distinguish. For a Dirichlet L-function, L(s, x),
where y is a Dirichlet Character on Z, we can do the same as above, if we
assume the generalised Riemann hypothesis.

An N x N unitary matrix, A, has N eigenvalues and they all lie on the unit
circle in C. Therefore, we can write them as e for some § € (—x, 7], and we
call # an eigenphase. For each eigenphase 6 € (—m, 7|, the value 6 + 2mm, for
any integer m # 0, is also an eigenphase (although it gives the same eigenvalue
that 6 does), and we call it a periodicised eigenphase. We can order the
eigenphases in the following manner: ... < 0 5 <01 <0< 0; <6, <

If 0 is an eigenphase of A (that is, 1 is an eigenvalue) then we define 6y = 0;
otherwise we do not define 6. When we are working with more than one unitary
matrix, we will write 6,,(A) to distinguish.

For products, we use the convention that what is inside the first (pair of)
parentheses is what is being multiplied. This applies to curved parentheses,
square brackets, modulus bars, etc. For example,

H(l—i—f(a))Ql:[ (1+%> +1

should be taken to equal

<H(1+f( ) (

a - (Bul@)) - (

Sw(x)

u(e) |-

v(c)

In certain cases, we can avoid the parenthesis and we may do so for presenta-

tional purposes. For example, the product [], ng EZ; is the same as [], (5 EZ;),

and this may occur when the product is by itself or when it appears at the
(a)

end of an expression. However, we would not write [, 1+ % in the place of

IL, (1 + 9560) for example, as this could be misread as (H 1) +

g(a)

11



Chapter 1

Introduction

1.1 The Riemann Zeta-function

The very heart of analytic number theory is undoubtedly the Riemann zeta-function.
For Re(s) > 1 it is defined as

o0

((s) = 1 (1.1)

ns’
n=1

This was first studied as a function on the reals by Euler in the eighteenth century,
who obtained [Eul44] the following Euler product (a product over the primes):

C(s) = H 1_11'

p prime P

Here, we can see how the Riemann zeta-function connects the prime numbers with
the natural numbers, and it is this that makes it so important in the study of primes.
The value of ((s) at s = 2 and several other positive even integers was obtained by
Euler. For all integers n > 1 we have

(=1)"" Bon (27)*"
2(2n)! ’

¢(2n) =

where By, is the 2n-th Bernoulli number. The study of ((s) as a function on the
complex numbers was first made by Riemann in his manuscript of 1859 [Rie59]. We
note that, for all € > 0, (1.1) is uniformly convergent on Re(s) > 1 + ¢, from which
we deduce that (1.1) is holomorphic on Re(s) > 1. Riemann showed that it has a
meromorphic continuation to C with a simple pole at s = 1 with residue equal to 1.
Further, he obtained the following functional equation:

W_§P<E)C(S) = W_lgsf(l _ S)C(l — 5).
2 2

Recalling that I'(s) has poles at the non-positive integers, the functional equation
shows us that ((s) must have zeros at the negative even integers, known as the
trivial zeros. What are of great interest are the other zeros that lie in the critical
strip defined by 0 < Re(s) < 1, known as the non-trivial zeros. In his manuscript,
Riemann stated that, in this strip, the number of zeros of ((s) with 0 < Im(s) <T
is asymptotic to % log % as T — oo, which was proven by von Mangoldt in 1905.
In 1896, Hadamard and de la Vallée Poussin independently proved that there are

12



1.1. THE RIEMANN ZETA-FUNCTION

no zeros of ((s) on the line Re(s) = 1, which allowed them to deduce an asymptotic
for the prime counting function:

T

m(x) := {p € N:p prime,p < z}| ~ Li(z) ~ (1.2)

log

as © — oo, where Li(z) := [,”, =~dt is the logarithmic integral. (The function

=2 logt log =
is simpler than Li(x), but, as we see below, Li(z) is better when one is concerned with
bounding the error term in the approximation). Several decades earlier, Riemann
made the famous Riemann hypothesis, asserting that all non-trivial zeros of ((s) lie
on the critical line Re(s) = % The importance of this hypothesis can be seen by the
fact that if it is true then one can obtain a strong bound on the error term of the
approximation (1.2):

7(z) = Li(z) + O(v/zlog z). (1.3)

There are many interesting and interrelated topics in the theory of the Riemann
zeta-function:

e Zero-free regions: These are (unbounded) regions of the critical strip that we
can prove have no zeros of ((s).

e Proportion of zeros on the critical line: Selberg [Sel42] showed that at least a
small positive proportion of the non-trivial zeros lie on the critical line. This
was improved to % by Levinson [Lev74], % by Conrey [Con89|, and approxi-
mately 41% by Bui, Conrey, and Young [BCY11].

e Mean value theorems: In order to understand how large ((s) can be on the
critical line we can study mean values, or “moments”:

1 [T 1 2k
— —+qt)| dt
7 eG+)

Currently we have results on the asymptotic behaviour (as 7' — 00) only for
k =0,1,2, although conjectures exist for higher powers.

e Universality: Suppose we have a compact subset K of the critical strip {s €
C : 3 < Re(s) < 1} with connected complement, and a function f that is
holomophic in the interior of K with no zeros in K. For any € > 0, there

exists ¢ > 0 such that

[f(s) = Cls +at)] <€
for all s € K. This was proved by Voronin [Vor75].

e Special values: As mentioned previously, the values that ((s) takes at the
positive even integers are known and can be expressed in terms of 7 and the
Bernoulli numbers. The values that it takes on the positive odd integers is
considerably more difficult to understand. Apéry [Apé79] was able to show
that ¢(3) is irrational, and it is known that infinitely many of {(2n + 1) (for
integers n > 0) are irrational [Riv00], while at least one of ((5), {(7),((9), ((11)
is irrational [Zud01].

13



CHAPTER 1. INTRODUCTION

We also mention that the derivatives of the Riemann zeta function are important
objects to study. Indeed, Speiser [Spe35] showed that the Riemann hypothesis is
equivalent to (’(s) having no zeros to the left of the critical line. Now, let Ny (7))
be the number of non-real zeros of ((*)(s) with imaginary part in (0,7). Also, let
N, (¢, T) be the number of non-real zeros of (*)(s) with imaginary part in (0,7)
and real part in (—o0, ¢], and let N;" (¢, T) be the same but with real part in [c, 00).
It was shown by Levinson and Montgomery [LM74] that

N} (% +4, T> + N (% _, T) <» Nk(T)%.

That is, most of the zeros of ((*)(s) can be found near the critical line. It was by
using results on ¢'(s) from [LM74], that Levinson showed that at least 3 of the zeros
of ((s) lie on the critical line [Lev74]. So, we can see that the derivatives of the
Riemann zeta-function play a key role in our understanding of the non-trivial zeros
of the Riemann zeta-function.

For more details and a good introduction to the theory of the Riemann zeta-function,
we recommend Titchmarsh’s book, edited by Heath-Brown [Tit87].

1.2 L-functions

L-functions are generalisations of the Riemann zeta-function. While the Riemann
zeta-function encodes information about the primes, other L-functions encode in-
formation about other objects of number theoretic interest. One family of such
L-functions consists of the Dirichlet L-functions. Before defining these L-functions,
we must first define Dirichlet characters. In this section, as well as Sections 1.3 and
1.5, ¢ is a positive integer (in all other parts of this thesis, ¢ is a positive integer
power of an odd prime number). A Dirichlet character of modulus ¢ is a function
X : Z — C* satistying, for all n,m € Z,

L x(nm) = x(n)x(m);
2. x(n) = x(m) if n = m(mod ¢q);
3. x(n) =0 if and only if (n,q) # 1.

There are ¢(q) Dirichlet characters of modulus q. We say that g is the trivial
character of modulus ¢ if xo(n) = 1 for all (n,q) = 1. Now, suppose x is a character
of modulus ¢ and r | ¢. We say that r is an induced modulus of y if there exists a
character y; of modulus r such that

_ )xa(n) if(nq) =1
x(n) = .
0 otherwise.
X is said to be primitive if there is no induced modulus strictly smaller than gq.
Otherwise, y is said to be non-primitive. ¢*(q) denotes the number of primitive
characters of modulus q. We denote a sum over all characters y of modulus ¢ by

meod ;» and a sum over all primitive characters x of modulus ¢ by Z moda

14



1.3. MEAN VALUES OF L-FUNCTIONS

A Dirichlet L-function is a complex function defined, for Re(s) > 1, by

Lis) =3 X0

nS

n=1

where Y is some Dirichlet character. Note that, when y is the character of modulus
1 (that is, x(n) = 1 for all n € Z) we have L(s,x) = ((s). As is the case for the
Riemann zeta-function, Dirichlet L-functions have an Euler product,

1
L(SaX): H 1 ma

p prime ps

as well as a meromorphic continuation to C, and a functional equation. They encode
information about primes in arithmetic progressions. Indeed, in the nineteenth cen-
tury, by showing that L(1,y) # 0 for all non-trivial characters y, Dirichlet proved
that there are infinitely many primes that are congruent to a modulo ¢ (where a, ¢
are coprime integers).

There are many other families of L-functions. In 1989, Selberg [Sel92] introduced
an axiomatic definition of L-functions. The functions satisfying these axioms form
the Selberg class, S, which includes many of the previously established L-functions,
including Dirichlet L-functions. A function F'is an element of S if it can be expressed
as a Dirichlet series,

that is absolutely convergent for Re(s) > 1 and satisfies the following;:

1. F(s) has a meromorphic continuation to C with the only possible pole being
at s = 1;

2. a; = 1 and for all € > 0 we have a,, <, n¢;
3. F(s) has a functional equation with certain conditions;
4. F(s) has an Euler product with certain conditions.

For a more in-depth look at the Selberg class, see the survey by Perelli [Per05].

1.3 Mean Values of L-functions

Mean values, or moments, of L-functions are the average values that an L-function
takes on a line or a set of points, or the average value that a family of L-functions
take at a point. Actually, most of the time we do not only work with L-functions,
but with powers of L-functions, derivatives of L-functions, products of L-functions
with other functions, or some combination of these. Some results that are known are
the following. In the early twentieth century, it was shown by Hardy and Littlewood
[HL18] that

L e “dt ~log T
- - t)‘ t
Pl ) far~ s
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CHAPTER 1. INTRODUCTION

as T'— o0, and it was shown by Ingham [Ing26] that

)
—+@
i | \2

as T' —> oo. Results for higher powers have resisted attempts by mathematicians
for almost one hundred years. Nonetheless, it was a “folklore” conjecture that, for
integers k > 0,

16
dt ~ ——(logT)*

. 11 [fy 1 N2k
Thinoow?/tzo C<§+zt>‘ dt = f(k)alk), (1.4)

where f(k) is a real-valued function and *

a(k) =[] ((1 — %)k f: %). (1.5)

p m=0

As described above, this has been proved for the cases k = 0,1,2 where we have
f(0)=1, f(1 ) =1, f( ) = 5. It has been conjectured via number theoretic means
that f(3) = 5 [CG98] and f(4) = 222 [CG99]. By using a random matrix theory
model, Keating and Snaith [KS00b] recovered the “folklore” conjecture (1.4) giving
an explicit form for f(k) that agrees with the established results for £ = 0,1,2, as
well as the conjectures obtained via number-theoretic means for k = 3,4. In fact,
the conjecture of Keating and Snaith extends beyond the non-negative integer val-

ues for k. We consider this in more detail in Section 1.5.

Conrey, Farmer, Keating, Rubinstein, and Snaith [CFK*05] developed a recipe for
conjecturing the full main terms for moments of L-functions. As they describe, they
assume certain cancellations between the off-diagonal terms that arise in moment
calculations, but it is not clear how or why these cancellations occur. Nonetheless,
their conjectures are consistent with previously established results and conjectures
on moments of L-functions, as well as the analogous expressions for moments of
characteristic polynomials of random matrices.

Proceeding with our discussion on moments of L-functions, one can, alternatively,
study the following mean values:

ﬁ S

0<Im(p)<T

Here, we are considering the derivative of the Riemann zeta-function, and, instead of
averaging over the critical line, we are averaging over a set of points. Namely, we are
averaging over the zeros of ((s) in the critical strip. Of course, under the assumption
of the Riemann hypothesis, all such zeros would lie on the critical line. N(T') is the
number of zeros in the critical strip with imaginary part in (0, 7]. Such mean values
are related to, for example, the proportion of simple zeros on the critical line. In

(-

Tt is not immediately obvious that a(k) is convergent. To see this, we note that

) = ———i—Ok( )andzg'fzod’“(?m) =145 +Ok( 2),andso

m
p

((1-3) w2 = (o) <
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1.3. MEAN VALUES OF L-FUNCTIONS

the way of results, Gonek [Gon84] proved under the assumption of the Riemann
hypothesis that

¥ O O ~ 58T

) 0<Im(p)<T

Asymptotic formulas for higher moments, even under the assumption of the Rie-
mann hypothesis, have yet to be obtained, although there are various other results
such as bounds. We refer the reader to the introduction of Kirila’s article [Kir20]
for more details.

While the above mean values are concerned with a single L-function, the Riemann
zeta-function, on the critical line, we can also consider, for example, the mean value
of Dirichlet L-functions at the central value of % Paley [Pal31] is attributed to
showing that

L(%,X>‘2 ~ @logq (1.6)

1 .
)2

x mod g

as ¢ —» oo. Heath-Brown [HB81] proved that

¢*1<q)X§11 L(%,x) ‘4 _ QL (logq)* H ( o ) + O(Qw(Q) qb:éq) (logq)?’),
(1.7)

where ¢ is a positive integer. In order to ensure that the error term is of lower order
(as ¢ — o0) than the main term, we must restrict g to

log log ¢ — 7log log log q

w(q) <

log 2

Soundararajan [Sou07] addressed this by proving that
1 * 1
2 LG
¢ (Q)Xmodq (2 )
—(log g)* ( )(1+O i) L>+O lo
&) H 1+p‘1 (Iqu ¢(Q)> <</5*( )( 20 )

Here, the error terms are of lower order than the main term without the need to have
any restriction on ¢g. This was further improved by Young [Youll] who obtained
lower order terms for the case where ¢ is an odd prime:

71 5 o) = etosar 0.,

=0
where the constants ¢; can be given explicitly. The error term was subsequently
improved by Blomer et al. [BFK*17] who proved that

s 3 G = S toear + 0a7),

x mod g =0

4

(1.8)

NI
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CHAPTER 1. INTRODUCTION

Again, results have only been obtained up to the fourth power, but, as is the case
with the Riemann zeta-function on the critical line, for conjectures on higher pow-
ers one can look to random matrix theory [KS00a, BK07] to obtain the following

conjecture:
1
L(3%)
2 X

P
¢*<q)x mod q

as ¢ — oo, where a(k) is as in (1.5), and G is the Barnes G-function. For conjec-

tures on the lower order terms, we refer the reader to the work of Conrey, Farmer,

Keating, Rubinstein, and Snaith [CFK*05].

plg ~m=0

One may ask why we are interested in mean values of L-functions. They are certainly
interesting in that results for higher powers are difficult to obtain, but they also have
several applications. For example, the Lindelof hypothesis states that for all € > 0
we have

1
<(§ + it) = O, (t9).
It can be shown that this is equivalent to the statement that for all o > % we have
[{p € C:Relp) = 0,Im(p) € [T,T +1],¢(p) = 0}|= o(log T').

The Riemann hypothesis would imply that the RHS is zero, and so we see that the
Lindelof hypothesis is weaker. However, it is still unproven. Another equivalent
statement of the Lindelof hypothesis can be given in terms of mean values: For all
e > 0 and all positive integers k,

o I{ER RN

Thus, we see that an understanding of the mean values of ((s) can prove (or dis-
prove, although this seems unlikely) the Lindeléf hypothesis. We refer the reader to
[Tit87, Chapter 13] for proofs of these equivalences. For a detailed account of the
various applications of mean value theorems to the theory of ((s) and its zeros, we
recommend [Gon05].

What about moments of families of L-functions at a point? One application is to
the non-vanishing of those L-functions at that point. For example, it is a folklore
conjecture of Chowla that L(%, X) # 0 for all Dirichlet characters y. To illustrate the
connection to moments involving Dirichlet L-functions, let N(g) be the proportion
of primitive characters y of modulus ¢ such that L(s,x) does not vanish at s = 1.

2
By the Cauchy-Schwarz inequality, we have that
1 2\
el
2 )

¢*1(Q> LZ L(%X)‘ < Nla): (925*1(61) >

mod g xmod g

giving the lower bound

vz (5|21 60)) (g Z 4G

mod q x mod q
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1.3. MEAN VALUES OF L-FUNCTIONS

Unfortunately, the numerator is of lower order than the denominator as ¢ — oo,
meaning this bound is not very strong. To address this we multiply L(%, X) by a
mollifier M(x). The mollifier takes the form M(x) = >, \l’/—% for some b, and
0 < k < 1, and the idea is that this mollifier will negate the effect that the large

L(%, X) have on making
1 2
Lz9l)
X )

Gl Z ) (e

mod q x mod ¢

That is, we obtain

N(g) (Q%@LZ ver(3:9)|) (0 =

mod g x mod ¢

wor(3)[) e

as ¢ — 00, for some constant 0 < ¢ < 1. Hence, we obtain a positive lower bound
for the proportion of non-vanishing Dirichlet L-functions at %

This leads us to twisted moments of L-functions, which feature in Chapters 6 and
7. One such example is the second moment of the Riemann zeta function on the
critical line where it is twisted by a finite Dirichlet series:

[ = /teR ’g(% +z’t> A(1 +it>

2
where f(x) is usually a smooth function with support in [1, 2], and

2

2f<%)dt, (1.10)

As) =Y &

s
n<T?

with a, <. n® for all € > 0, and 0 < § < 1. When f(x) is the indicator function
on [1,2] and @ < 1, it was shown by Balasubramanian, Conrey, and Heath-Brown

2 Y
[CHBS5] that

aqGe T(d7 6)2
I=T — 1 —_— 2 log4 —1 T
Z [d e]( og< 2nde )+ v+iog +olT),

de<T? V7

among other related results. One application of this is obtaining a lower bound

for the proportion of complex zeros on the critical line. The condition 6 < % is

significant in that when 6 < % only the diagonal terms contribute. When 6 > %, one
must also consider the off-diagonal terms. For 6 < ;—g, this undertaken by Bettin,
Chandee, and Radziwilt [BCR17]. They proved, among other related results, that

when f(z) is a smooth function with support in [1, 2], we have

I=T % % /tER <log (Téi’dee)z) + 27>f<%)dt + 0. (T%+ET%9 + T%+e),

d,e<T?

Interestingly, a corollary of their result is an upper bound of the correct order of
magnitude for the third moment of ((s):

2T 1 3 0
/ ‘C(—Jrit)‘ dt < T(log T)5.
=1 | \2
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CHAPTER 1. INTRODUCTION

If we are able to obtain an asymptotic formula for (1.10) that is valid for § < 1
(with f(z) being a smooth function with support in [1,2]), then we would be able
to resolve the Lindelof hypothesis.

For the twisted fourth moment, we consider

/tTO C(%Ht)mfl(%vLit)’?dt- (1.11)

Again, (1.11) is related to the Lindel6f hypothesis, but also has applications to up-
per bounds on the number of primes in short intervals. An upper bound for (1.11),
when 6 < %, was obtained by Deshouillers and Iwaniec [DI82], which was later
improved to 0 < 711 by Watt [Wat95]. With regards to an asymptotic formula for
(1.10), Gaggero Jara obtained such a result for § < = in his thesis [GJ97]. This
was improved to 6 < & by Hughes and Young [HY10] and to 6 < ; by Bettin, Bui,
Li, and Radziwilt [BBLR20]. We mention that Motohashi [Mot09] approaches the
problem of obtaining an asymptotic formula for (1.11) via an alternative method:
Spectral theory.

One can also study twisted moments of Dirichlet L-functions:

* 1 2k 1
> H5)| [B(3ox
x mod ¢

for k = 1,2. Here, we define

2

)

B3 = X P

n<g®

where the b, can be chosen arbitrarily given the condition b, <. n¢ for all ¢ >

0, and 0 < k < 1. For the second moment, an asymptotic formula when x <

% was obtained by Iwaniec and Sarnak [IS99]. Again, considering £ > % means

that off-diagonal terms will be involved. Nonetheless, an asymptotic formula when
Kk < f’—oll was obtained by Bui, Pratt, Robles, and Zaharescu [BPRZ20], and one of
their applications of this was to obtain the correct order of magnitude for the third

moment of Dirichlet L-functions:

1 x
o 2

x mod g

N 0
L(§,x)‘ = (log q)1.

With regards to the twisted fourth moment, Hough [Houl6] obtained an asymptotic
formula for

5

x mod q

L<%>X> )4X(11)Y(52)7

where 1 < [},ls < ¢" are square-free and satisfy (l1,05) = 1, and k < 3% This
was extended to cube-free [y, Iy by Zacharias [Zac19], allowing for the application to

non-vanishing results.
In Chapters 6 and 7, we encounter twisted moments of Dirichlet L-functions, where

the Dirichlet series associated to the twist has an explicit form. Furthermore, this
will be in the function field setting, which we introduce in the following section.
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1.4. FUNCTION FIELDS

1.4 Function Fields

There is another setting that one can study number theory. While in the above, we
have been concerned with the integers (referred to as the number field setting or
classical setting), we can, instead, study polynomials over finite fields (referred to
as the function field setting). There are many analogies between the two settings,
and the function field setting often acts as a signpost for the number field setting,
as we will see later, but first let us make some definitions. Much of the material in
this section can be found in Rosen’s book [Ros02], and we recommend this for an

in-depth account of analytic number theory in function fields. Further details can
also be found in the thesis of Andrade [And12].

Let g := p" for some positive prime integer p and some positive integer n, with
q # 2, and let [F, be the finite field of order ¢. We denote the multiplicative group
of F, by F,*. Let A := F,[T| be the polynomial ring over F,. The notation of A
does not demonstrate dependence on ¢, but as our results hold for all prime powers
q # 2, this is not necessary. For T C A, an integer n > 0, and B € A, we define
T, ={A €T :degA =n} and BT := {AB: A € T}. We identify A, with F,*,
and remark that this is the multiplicative group of A (note this is finite as is the
case for Z).

We define M to be the set of all monic polynomials in A. These play the role of the
positive integers. Indeed, any non-zero element of A can be uniquely expressed as
the product of an element of the multiplicative group F,* and an element in M, just
as any non-zero integer can be uniquely expressed as the product of an element in
the multiplicative group {1, —1} and an element in Z.o. We can see that |M,| = ¢"
and [A,| = (¢ — 1)¢".

For non-zero A € A we define |A| := ¢%&4 and for the zero polynomial we define
|0] := 0. This is natural in the sense that we define the norm of an element A # 0 to
be the number of equivalence classes modulo A, just as in the number field setting
we have |n| = n = |Z/nZ| for non-zero n. Of course, we also have that the norm
function on A is multiplicative.

As is the case with Z, A is a Euclidean domain. In particular we have unique
factorisation and primality is equivalent to irreducibility. When referring to a prime
in A, it will always be a monic prime unless stated otherwise. The letters P, Q) are
reserved for primes in A and are to be taken as such even when it is not explicitly
stated (particularly in the ranges of summations and products). We denote the set
of monic primes by P. For non-negative integers n we define
Sn):={Ac€A:P| A= degP < n}and Spy(n) = {A € S(n) : A is monic}.
We define the totient function for a € Ay = F,* by ¢(a) = 1, and for R € A with
deg R > 0 by

o(R) ::HA € A:degA <degR and (A, R) = 1}‘

gl )

PR

As we can see, there are many fundamental analogies between Z and A. Further
analogies can be seen in deeper results too, as we will see, but there are also impor-
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CHAPTER 1. INTRODUCTION

tant results that have only been obtained in the function field setting. For example,
we have the striking result that

Pul = = 3" nld)a? (112)

d\n

That is, we have an exact formula for the number of primes of a given degree. Also,
taking x = ¢", we have

q” 1 n q" q%
PeP:|Pl=z} =|P=—+= gt =L 0<_>
{PeP:|Pl=a) =Pl = T+ 25 (et = L oL

dn
d#1

:logxqz + O(loa;;Zx)'

This illuminates an analogy with the classical prime number theorem, (1.2), and the
stronger statement, (1.3), that is dependent on the classical Riemann hypothesis.
We refer to (1.12) as the prime polynomial theorem.

We can define, for Re(s) > 1, the Riemann zeta-function on A:

=Y o

AEM

[e.9]

1_q1 s’

Note that the far RHS provides a meromorphic continuation of (4(s) to C, with
simple poles, of residue (logq)™!, at 1+ 212;7:; for m € Z. Note also that the Riemann

hypothesis is true in that there are no zeros off the critical line Re(s) = 1 (in fact,
there are no zeros at all). We also have the Euler product formula

1
) =] 7=
PeP |P[s

We can also define Dirichlet L-functions on A, but first we make some definitions
and point out some results. We go into more detail here for the function field setting,
as this thesis is concerned primarily with this setting. A Dirichlet character on A
of modulus R € M is a function y : A — C* satisfying, for all A, B € A,

L X(AB) = x(A)x(B) ;
2. x(A) = x(B) when A = B(mod R);
3. x(A) =0 when (A, R) # 1.

We say that xo is the trivial character if yo(A) = 1 for all (4, R) = 1. It is not
difficult to see that x(1) =1 and |x(A)| =1 for all characters x and all (A, R) = 1.
We say that a character y is even if y(a) = 1 for all a € F,*; otherwise we say that x
is odd. The number of Dirichlet characters of modulus R is ¢(R), while the number

of even Dirichlet characters of modulus R is, for R € M\{1}, equal to R)

Now, suppose S | R. We say that S is an induced modulus of y if there exists a
character y; of modulus S such that

(A = {X1<A) if (A,R) =1

0 otherwise.
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X is said to be primitive if there is no induced modulus of strictly smaller degree
than R. Otherwise, x is said to be non-primitive. ¢*(R) denotes the number of
primitive characters of modulus R. We note that all trivial characters of modulus
R € M\{1} are non-primitive as they are induced by the character of modulus 1.
We also note that if R is prime, then the only non-primitive character of modulus
R is the trivial character of modulus R. We denote a sum over all characters x of
modulus R by > and a sum over all primitive characters x of modulus R by

Z XmodR.

From point 2 above, we can view x as a function on A/R.A. This makes expressions
such as x(A™!) well-defined for A € (A/RA)*.

x mod R’

It is not difficult to see that the set of characters of a fixed modulus R forms an
abelian group under multiplication. The identity element is xo. The inverse of x is
X, which is defined by Y(A) = x(A) for all A € A. The subset consisting of even
characters forms a subgroup.

Now we state some results on Dirichlet characters.

Lemma 1.4.1. Suppose x is a non-trivial character of modulus R € M. Then,
> xA)=o.
deg A<deg R

Proof. The case R = 1 is trivial, so suppose R # 1. We can find some B € A with
(B,R) =1 and x(B) # 1. From this, and the fact that

Yo o xA)= > xAW= Y, xAB=x(B) > x4
deg A<deg R AE(A\RA)* A€(A\RA)* A€(A\RA)*

the results follows. O

Lemma 1.4.2. Suppose that R € M. Then

S ) {¢>(R> if A= 1(mod R)

mod R 0 otherwise.

Proof. Thisis clear if R=1or A= 1(mod R). If R # 1 and A # 1(mod R), then we
can find a character x; of modulus R such that y;(A) # 1. Since all the characters
of a given modulus form a multiplicative group, we have

dox(A) = D> e =xa(4) D x4,

xmod R xmod R xmod R
from which the result follows. O
Similarly, we can prove the following lemma.

Lemma 1.4.3. Suppose R € M with R # 1, then

0 otherwise.

Z V(A) = {% if A= a(mod R) for some a € F,*
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From Lemmas 1.4.2 and 1.4.3 we can deduce the following.

Lemma 1.4.4 (Orthogonality Relations). Let R € M. Then,

> X(Ax(B) =

x mod R

and, if R # 1 as well, then
> X(Ax(B)

0 otherwise.

{¢(R) if (AB,R) = 1 and A = B(mod R)

x mod R

X even
B q_%QS(R) if (AB,R) =1 and A = aB(mod R) for some a € F,*
o otherwise.

With regards to primitive characters, we have the following.
Lemma 1.4.5. For R € M, we have
2

xmod R 0 otherwise,

W(E)o(F) if (AB,R) =1

and

* 1 F,* EF=R FE F 7 AB,R -1
ST x@x(B) =4 ! 2 aer, ZFl(AfaB)u( Jo(F) if ( )

ymod R 0 otherwise.
X even

Proof. We prove the first result. The proof of the second result is similar. The case
(AB, R) # 1 is trivial. If (AB, R) = 1, then

Y oxxd =3 S 4B,

x mod R EF=R xymod E

Now we apply the Md&bius inversion formula, and make use of Lemma 1.4.4. The
result follows O

Corollary 1.4.6. By taking A, B =1 in Lemma 1.4.5, we can see that
¢"(R)= Y u(E)$(F).
EF=R

We can now define Dirichlet L-functions in function fields, and demonstrate some
of their properties. A Dirichlet L-function on A is a complex function defined, for
Re(s) > 1, by

L(s,x) = Y

x(4) _ ZOO s
AeM n=0

where y is a Dirichlet character and Ly(x) = > e, X(A). If xo is the trivial
Dirichlet character of modulus R, then
)CA(S)-

1 1
L(‘SvXO): Z |A|5:H1—1:H(1_

AL wE o
? :1

1
|P®
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We can see that the far RHS provides a meromorphic continuation to C with simple
poles at 1 + 212;7;’ for m € Z. We also see that the Riemann hypothesis holds here
as well. Now suppose x is a non-trivial character of modulus R € M\{1} and
n > deg R. Then, by the periodicity of Dirichlet characters and Lemma 1.4.1, we

have

Ln(x) = Z > x(4)=o. (1.13)

deg A<deg R
degB<n deg R
Hence,
deg R—1
_ —ns
L(s,x) = Y La(x)q ™.
n=0

That is, L(s,x) is a finite polynomial in ¢—*, and this provides a holomorphic ex-
tension to C. We also have a functional equation (see [Ros02, Theorem 9.24 A)): If
X is an even primitive character of modulus R € M, then

deg R

(6" = 1) Ls, ) = W()a ™+ (¢ = 1) (a) " L1 = 5,%); (1.14)

and if x is an odd primitive character of modulus R € M, then
degR—1 , _ _\ deg R—1 .
L(s,x) =W(x)q > (¢7°)"" L1 —s,X); (1.15)
where |W(x)| =

It was conjectured by Weil [Wei49] that Dirichlet L-functions in A, as well as various
generalisations, satisfy a Riemann hypothesis, asserting that all their zeros lie on
the critical line Re(s) = 3. This ground-breaking result was first proven by Deligne
[Del74]. Tt is arguably the most important result in the function field setting, and
it demonstrates some of the major differences between this setting and the number
field setting.

We end this section by stating the analogous conjecture of (1.9) for Dirichlet L-
functions in A, which will be required later. See [CFO00] for details. For all non-
negative integers k, it is conjectured that

1 1 = di(P™)? *
deglérioo (degR)k2¢(R)H(Z [P >Z -

PR “m=0 x mod R

where
1Y & di(Pm)”
=TT ((1- ) S5 )
11 ( ) 2
Again, f(0) =1, f(1) =1, f(2) = &, and as we will see later, it is conjectured that
G*(k+1)  Tq
G(2k+1)

f(k) =

IZI

z:O

where G is the Barnes G-function.
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1.5 Random Matrix Theory

It has been known for some time that there is a relationship between the zeros of the
Riemann zeta-function and the eigenvalues of random unitary matrices. In 1972 it
was observed by Montgomery and Dyson that the pair correlation of the non-trivial
zeros of the Riemann zeta-function appears to behave similarly to the pair correla-
tion of eigenvalues of a typical Hermitian matrix. The latter can be seen to be the
same as the pair correlation of the eigenphases of a typical unitary matrix. Later,
Odlyzko produced numerical evidence in support of this [OdI87].

To be more explicit, assuming the Riemann hypothesis, let us write the non-trivial
zeros of the Riemann zeta-function as p, = % + 1Y,. As we know, the number of
zeros up to height 7" on the critical line is asymptotic to % log %, so let us “unfold”
the zeros by taking w, := 3* log 3%, so that we have unit mean spacing between the
zeros: limy o0 77| {w, € [0, W]} = 1. Now define

Fla, B: W) = %Hwn,wm €10, W] a < wn—wy < BY.

Montgomery [Mon73] conjectured that

F(a,p) = lim F(a,B; W)

W—o0
exists. Furthermore, we note that
Fla,B;W) = Z Liag)(Wy — wp,).
W, Wm €[0,W]

Let us replace the function 1|, ) with a function f that has Fourier transform with
support in (—1,1). Montgomery showed that

_ o in(7z)\”
lim flwn —wn) = [ f(z) (1 - (S > )dx,
W—o0 wn’wge[()’w] /—oo T

which led him to conjecture that

F(a, 8) = /j <1 - (M)Q + 6(x)>d:c, (1.17)

™

where 0 is Dirac’s delta-function. Consider now the unitary matrices. For A € U(N)
we can write the eigenvalues of A as ¢?"(4) with 1 <n < N. We refer to the 6,,(A)
as the eigenphases of A and we can see that their mean density is % We unfold
them by defining ¢,,(A4) := 2£6,,(4). We can now define

Fu(a 5 N, A) 1= 1 {60(A), 6(A) : @ < 9,(4) ~ 6(4) < 5}
Dyson [Dys62] showed that

Fy(a,p) ;== lim Fy(a,B; N, A)dA

N—00 JAcU(N)
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1.5. RANDOM MATRIX THEORY

exists, where the integral is with respect to the Haar measure, and that

Fula, B) = /j (1 - (Mf + 5(x))dx.

T™r

We see that this is identical to (1.17). Further results on correlations exist; for a
survey regarding random matrix theory and the Riemann zeta function, we recom-

mend [KS03].

Given that the eigenvalues of a matrix are the zeros of its characteristic polynomial,
it is reasonable to expect a relationship between ((s) on the critical line and the
characteristic polynomials of unitary matrices. Keating and Snaith [KKS00b] modeled
((s) at around height 7" on the critical line by the characteristic polynomial of a
random N x N unitary matrix. (Here, N is chosen such that the mean spacing
between the eigenphases of a random N x N unitary matrix is the same as the mean
spacing of the zeros of the Riemann zeta-function at around height 7" on the critical
line). They obtained the following result for Re(k) > —1:

2 N T(TG +5) 2
Z(U,0)*dU = | | =5 ~ feup(k)N"". 1.18

Here U(N) is the set of all unitary N x N matrices; for all U € U(N), we take
Z(U,0) := det (IN — Ue‘“’) to be the characteristic polynomial of U; the integral
is with respect to the Haar measure on U(N); “CUE” stands for circular unitary
ensemble; and

G*(1+ k)
k) = ——=.
Jeve(k) = G0 am)
In particular, if k is a non-negative integer, we have foygr(k) = Hf;é (Ji—'k), (The

fact that (1.18) is independent of # is not immediately obvious, and so we remark
that this lack of dependency is not an error). Now, we note that

1 if k=1

5 ifk=2

k) = { 12 )
feuz(k) 2o k=3
2¥ ifk=4

16!

That is, fougp(k) agrees with the established values of f(k) that are described in
(1.4), as well as the values that have been conjectured by number theoretic means
(again, see (1.4)). This lends strong support to the connection between the Rie-
mann zeta-function and random matrix theory, and it provides a conjecture for the
moments of the Riemann zeta-function.

Note that this conjecture does not introduce the factor a(k) in (1.4) in any natural
way. This was addressed by Gonek, Hughes, and Keating [GHKO07] who expressed
((s) as a hybrid Euler-Hadamard product: ((s) ~ Px(s)Zx(s), where Px(s) is a
roughly a partial Euler product and Zx(s) is roughly a partial Hadamard product
(a product over the zeros of ((s)). X is a variable that determines the contribu-
tion of each factor. They conjectured that, asymptotically, the main term of the
2k-th moment of ((s) on the critical line can be factored into the main term of
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the 2k-th moment of Px(s) multiplied by the main term of the 2k-th moment of
Zx(s) (known as the splitting conjecture); and they showed that the former con-
tributes the factor a(k) in (1.4) and conjectured via random matrix theory that the
latter contributes the factor f(k). That is they obtained a conjecture for the 2k-th
moment of ((s) in a way that the factor a(k) appears naturally. They also lent sup-
port for the splitting conjecture by demonstrating that it holds for the cases k = 1, 2.

The relationship between random matrix theory and the Riemann zeta-function ex-
tends to other L-functions, particularly certain families of L-functions [KS99|. For
example, one aspect of the relationship is that the proportion of L-functions of a
certain family with conductor ¢ that have j-th zero in some interval [a, b] appears
to be the same as the proportion of matrices of a certain matrix ensemble of size
N x N that have j-th eigenphase in [a,b]. At least, this appears to be the case
as ¢ — oo. N = N(q) is chosen so that the mean spacing of the eigenvalues is
the same as the mean spacing of the zeros of the L-functions of conductor ¢q. The
ensemble is dependent on the family. In the number field setting the reason for the
connection between the family and the ensemble is not directly evident. One must
consider the function field analogue of the family, and in this setting we have a spec-
tral interpretation of the zeros that allows us to determine the associated ensemble.
Therefore, function fields play a key role in the relationship between L-functions
and random matrix theory. We recommend [KS99] and [CF00] for a more detailed
discussion on this topic.

Let us consider the family of Dirichlet L-functions. The associated ensemble of ma-
trices is the unitary matrices [CF00, page 887]. By making use of this relationship,
Bui and Keating [BK07] obtained an analogue of [GHKO07]| where they considered the
2k-th moment of Dirichlet L-functions at s = %, averaged over all primitive Dirich-
let L-functions of modulus ¢, instead of the Riemann zeta-function averaged over
the critical line. That is, using a hybrid Euler-Hadamard product for the Dirichlet

L-functions, they conjectured (among other results) that, for non-negative integers

k,
¢*1(q) > LG X>

x mod q plg

2k

~ a(k) fevr(k) (logq)* H (Z dk(ﬂ) B

pm

m=0

as ¢ — 00. This had been conjectured previously (see [KS00al), but this approach
allows for all the factors to appear naturally. The similarity with (1.4) is due to the
fact that the Riemann-zeta function on the critical line, and the family of Dirichlet
L-functions evaluated at %, share the same symmetry and associated matrix ensem-
ble.

In the function field setting, Bui and Florea [BF18] developed the hybrid Euler-
Hadamard product model for the family of quadratic Dirichlet L-functions. In the
number field setting, Bui, Gonek, and Milinovich [BGM15] developed such a model
for the discrete moments of the derivative of the Riemann zeta-function. As we will
see later, we develop such a model for the family of all Dirichlet L-functions, as well
as their first derivatives, at the central value of % in the function field setting.
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Chapter 2

Statement and Discussion of
Results

In this chapter we state the main results that we prove in this thesis and discuss
them with regards to, for example, their applications and their relations to the work
of others. The actual proofs and their preliminary lemmas are given in the later
chapters. In addition to the background given in Section 1.4, further results on
function fields are given in Appendix A. These results are required in this thesis,
but they are well known, and hence the reason they are in an appendix.

2.1 The Brun-Titchmarsh Theorem for the Divi-
sor Function

This thesis focuses on mean values of Dirichlet L-functions and their derivatives
at the central value in function fields. A crucial result for the proofs of all fourth
moment results in this thesis is the function field analogue of Shiu’s generalised
Brun-Titchmarsh theorem [Shi80], for the special case of the divisor function:

Theorem 2.1.1. Suppose «, B are fived and satisfy 0 < a < % and 0 < B < % Let
X € M and y be a positive integer satisfying S deg X <y < deg X. Also, let A€ A
and G € M satisfy (A,G) =1 and deg G < (1 — a)y. Then, we have that

Ydeg X
Z d(N> <<Ol,,3 q ¢<e§)
NeM
deg(N—X)<y
N=A(mod G)

Remark 2.1.2. We are summing all monic polynomials, in a certain arithmetic
progression, whose difference with X is of degree less than y. The condition on the
size of y is necessary to ensure that we are working in a large enough interval rel-
ative to the size of X so that we can ensure that we see average behaviour. The
condition on the size of G is necessary to ensure that our arithmetic progression in
the interval has a large enough number of elements; again, this is to ensure that we
see average behaviour.

The result itself makes intuitive sense. Indeed, the polynomials we are summing over
are of degree equal to deg X, and therefore, we expect the divisor function to be, on
average, of size deg X. Furthermore, there are %I ~ (z)‘(l—é number of polynomials in

29
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our sum.

It is trivial to extend the theorem to 0 < a < 1 and 0 < 8 < 1 once you have proved
it for 0 < a < % and 0 < B < % So, it is a bit unusual to use the latter condition.
We do this as it is the form Shiu used, as we see in Theorem 2.1.4.

We also prove another similar result:

Theorem 2.1.3. Suppose «, B are fived and satisfy 0 < a < % and 0 < B < % Let
X € M and y be a positive integer satisfying S deg X <y < deg X. Also, let A€ A
and G € M satisfy (A,G) =1 and deg G < (1 —a)y. Finally, let a € F;. Then, we
have that

q¥ deg X

> AN) <ap )

NeA
deg(N—X)=y
(N-X)eaM
N=A(mod G)
We prove Theorems 2.1.1 and 2.1.3 in Chapter 3. They require the Selberg sieve in
function fields. This is an established result in this setting, but a precise statement
and proof is difficult to come by. Therefore, we provide this in Appendix B.

For comparison, we give Shiu’s theorem in the number field setting:

Theorem 2.1.4 (Shiu). Suppose f is a non-negative, multiplicative function satis-
fying the following two conditions:

1. There exists a positive constant Ay such that f(p') < Ay for all primes p and
all integers [ > 1.

2. For every e > 0, there exists a positive constant As(€) such that f(n) < As(e)nf
foralln > 1.

Furthermore, let 0 < «a, 8 < %, and let a,k be integers satisfying 0 < a < k and
(a, k) =1. Then,

y 1 f(p)
2 )< g (,; ),
. =

n=a(mod k)

uniformly in a, k,y provided that k < y'~* and 2° < y < .

2.2 The Second and Fourth Moments of Dirichlet
L-functions

In Chapter 4 we obtain the main term of the second and fourth moment of Dirichlet

L-functions at the central value, where we average over all primitive characters of

modulus R € M. We also obtain an exact formula for the second moment, where
we average over the primitive characters of square-full R € M:

Theorem 2.2.1. Let R € M\{1}. Then,

« 2 (R)
ML NI

x mod R |R|

¢(R)
|R|

deg R + O( logw(R)).

Q,X
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L-FUNCTIONS

Theorem 2.2.2. Let R € M\{1} be a square-full polynomial. Then,

5 [o(2)

2 R)3 R)3 deg P
o) degR—l—Qﬁ(R@ Z| °6
PIR

~ IR P|—1
xmod R
1 o(R)?®  _o(R) 1 2)
+ — - +2— L=—=) )
(q2_1)2( | R|? |R|2 H%< |P|2)

We prove these two theorems in Section 4.1. One may ask why we are able to obtain
an exact formula in Theorem 2.2.2 but not in Theorem 2.2.1. To answer this, sup-
pose we have EF = R where u(FE) # 0. Sums over such E, F' appear in the proofs
of Theorems 2.2.1 and 2.2.2. Now, if R is square-full, then F' has the same prime
factors as R. This makes our calculations considerably easier and so we can obtain
an exact formula. On the other hand, if R is not square-full, then F' will not always
have the same prime factors as R. This complicates matters and we are required to
bound certain terms, which ultimately means we do not obtain an exact formula.

In Section 4.4 we prove the following.

Theorem 2.2.3. Let R € M\{1}. Then,
1 * 1

2 |Hgx

¢ (R>XmodR <2 )

1—q! (1— P71’ A w(R) + (log deg R)®
B 15 H( 1+ [P~ >(degR) <1+O<\/ deg R ))

P|R

4

One should compare Theorems 2.2.1 and 2.2.3 to (1.6) and (1.8), while noting that
1—q~! 1 1
= 272 T 120(2)°

£ = 1284(2) and and comparing |R| and deg R above to ¢ and log ¢

in (1.6) and (1.8) !.

We dedicate two sections, 4.2 and 4.3, to preliminary results that are required for
the proof of Theorem 2.2.3. The first involves preliminary results that are likely
to have applications to other problems. The second involves preliminary results for
which it is more difficult to find other applications.

Before proceeding, we give a brief outline of the proof of Theorem 2.2.3. By applying
the functional equation and then Lemma 1.4.5, we obtain, after some rearrangement,
the following:

5 o(1)f

x mod R

1 1
:( > u(E)gb(F)) > m+ > wWEGF) Y [ABCD|E

2

EF=R A,B,C,DeM EF=R A,B,C,.DeM
deg AB<deg R deg AB<deg R
deg CD<deg R deg CD<deg R
(ABCD,R)=1 (ABCD,R)=1
AC=BD AC=BD(mod F)
AC#BD

1Please excuse the fact that in the function field setting the parameter ¢ is different to that in
the number field setting. This is the case because we wished to preserve the standard notation
that is used in the two settings.
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CHAPTER 2. STATEMENT AND DISCUSSION OF RESULTS

The first term on the RHS is called the diagonal term (or terms) and the second
term on the RHS is called the off-diagonal term (or terms). The former is consid-
erably easier to address than the latter. Indeed, only the first half of Section 4.2 is
required for its preliminary results.

Now, consider the inner sum of the off-diagonal terms. The key aspect is the con-
dition AC' = BD. Let us write N := BD. Note that, given the restrictions, there
are at most d(N) ways to choose B, D, assuming N is fixed. Let us also write
AC = KF + N. This comes from the fact that AC is equivalent to BD modulo
F. Again, note that, given the restrictions, there are at most d(KF + N) ways to
choose A, C'; assuming KF' + N is fixed. So, the inner sum of our off-diagonal sum
can be written as something similar to

> ) d(N)d(KF + N). (2.1)

That is, we have expressed our off-diagonal terms in terms of sums of the product
of a divisor function and a shifted divisor function. Section 4.3 is dedicated to rig-
orously establishing this.

The second half of Section 4.2 is dedicated to solving sums of the form (2.1). Instead
of having a sum over the product of a divisor function and a shifted divisor function,
we express this in terms of sums of a single divisor function, but the summation
ranges are over arithmetic progressions in intervals. We can then apply our analogue
of the Brun-Titchmarsh theorem. This concludes our brief outline of the proof.

2.3 The First, Second, and Fourth Moments of
Derivatives of Dirichlet L-functions

In Chapter 5, we focus on moments of derivatives of Dirichlet L-functions at the
central value, but we average only over the primitive characters of modulus @) € P.
Since () is prime, the only non-primitive character of modulus @ is the trivial one,
and so ¢*(Q) = ¢(Q) — 1 ~ ¢(Q) as deg) — oo. In Section 5.1, we prove the
following two results.

Theorem 2.3.1. For all positive integers k, we have that
1 1 —(—1 F(d K d k-l
3 L(k)(_jx) _—(logq)* (deg @) +Ok((logq)k( g Q) )
0@ ="\ F-1 QP QP

XFX0

Theorem 2.3.2. For all positive integers k we have that

2 2k
s = [ (3)] = Gepr s+ oftos0 aes ).

X7X0

In Section 5.4, we prove the following two results.

Theorem 2.3.3. For all non-negative integers k,l we have that

cb(lQ) (log ql)z’”” XH%;Q )L(k) G X> WL(Z) (% X) ‘2

XFX0
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OF DIRICHLET L-FUNCTIONS

— (1 . qil)(deg Q)2k+2l+4

: /1170270370420 Ir (al + asz, a; + aq, 1)fl (az + a4, az + as, 1)da1da2da3da4
2a1+asz+ag<l
2a2+a3z+as<1

+ Opi((deg Q427
where for all non-negative integers i we define
filz,y, z) =2'y' + (z — 2)'(z — y)"

Theorem 2.3.4. For all non-negative integers m we define

Dy,
1 1 1 L[
= lim ‘L(m) (_’ )
deg Q—o0 (1 — g71)(log ¢)™ ¢(Q) (deg Q)*m+4 xr%;c? 2
XFX0
— /Ilm’a&wzo <(a1 +az)™(ar +a)™+ (1 —ay —az)™(1 —ay — a4)m>
2a1+a3z+as<1
2az2+a3z+as<1

. ((ag +a3)"(ag +ag)" 4+ (1 —ay —a3z)™ (1 —ay — a4)m) da;daydasday.

We have that
1

D,, ~
16m*

as m — 0OQ.

In proving Theorem 2.3.3, one runs into certain obstacles. One such obstacle is
that the functional equation ((1.14) and (1.15)), which is required to express the
derivatives of our Dirichlet L-functions as short sums, is more difficult to use. This
is because we are working with derivatives of L-functions, and this ultimately means
we must take derivatives of the functional equation. For the even case, this is prob-
lematic as the k-th derivative involves 2* terms on each side, only one of which is
what we want. Section 5.2 is dedicated to addressing this. Section 5.3 is dedicated
to handling some of the summations that arise in the proof of Theorem 2.3.3.

We now discuss the results. Theorems 2.3.1, 2.3.2, and 2.3.3 are extensions of
Tamam’s work [Tam14], where she proves them for the cases where k,l = 0. There
is, however, an error in her work in that she takes d(A) < deg A on page 209, which
does not hold. We ultimately address this via our use of the analogue of the Brun-
Titchmarsh theorem that we developed in Chapter 3, as well as several subsequent
results.

In the number field setting, Conrey, Rubinstein, and Snaith [CRS06] conjectured
using random matrix theory that, for positive integers k,

1 T
7).

as deg T — 00, where

v I(03) S i) )

p prime m=

1 2% )
c’(§ + zt)) dt ~ aby(log T)F+2*
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and values for by, b, ..., b5 are explicitly given. In particular,
1
bl :gv
61
by =———.
7T 25.32.5.7

Notice the similarity between these conjectures and the corresponding special cases
of our results:

2

@ > L’(%,x) N(logq)%(degQ)3 (2.2)
x mod Q
XFX0
and
@ 2 [P ()] ~ ot - awer. o9

x mod @
XFX0

This is not surprising given that the Riemann zeta-function and the family of Dirich-
let L-functions share the same symmetry [CF00]. While conjectures on moments of
the derivatives of ((s) are made in [CRS06], definitive results have been obtained by
Conrey [Con88]. While there are some clear differences, there are still similarities
between Theorem (3) in [Con88| and our Theorem 2.3.3. Another of Conrey’s result
states that

as m — 0o, where

1 4
¢m (5 —l—it)‘ dt.

T —4m—4 T
Cy,, = lim Tl(log (—)) /
’ T—s 00 2 =1

This was our motivation for obtaining Theorem 2.3.4. Note the similarity between

the two results. The factor of ((2) = %2 in Conrey’s result corresponds to the factor

of (4(2) = # in our definition of D,,.

2.4 A Random Matrix Theory Model for Moments
of Dirichlet L-functions

In Chapter 6, analogous to the work of Bui and Keating [BK07] in the number field
setting that is described in Section 1.5, we develop a random matrix theory model for
the moments of Dirichlet L-functions at the central value in function fields, where,
again, we average over primitive characters of modulus R € M. First, in Section
6.1, we prove an Euler-Hadamard hybrid formula:

Theorem 2.4.1. Let X > 1 be an integer and let u(x) be a positive C*°-function
with support in [e, qufX]. Let

v(x) = /too u(t)dt

=T
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and take u to be normalised so that v(0) = 1. Furthermore, for y € C\{0} with
arg(y) # m, we define Ey\(y) = gi;o ¢ —dw; and for z € C\{0} with arg(z) # T,
we define

U(z) := /:u(x)El(zlogx)dx.

Let x be a primitive Dirichlet character of modulus R € M\{1}, and let p, = 3 +iv,
be the n-th zero of L(s,x). Then, for all s € C we have

L($7X) = PX(S7X)ZX(87X)7 (24)
where
X(A)A(A)>
Px(s,x) = exp ( s
xo) 2. TaFoeAl
deg A<X
and

Zx(s.0 =ex0 (= U ((s = p)log)x) ).

Pn
Strictly speaking, if s = p or arg(s—p) = m for some zero p of L(s,x), then Zx (s, x)
is not well defined. In this case, we take

Zx(s,x) = 3131)8 Zx(50,X)

S

and we show that this is well defined.

Remark 2.4.2. We note that our hybrid Euler-Hadamard product formula, (2.4),
does not involve an error term, unlike the analogous Theorem 1 in [GHKO07] and
Theorem 1 in [BK07]. This is due to the fact that we are working in the function
field setting.

We also note that Zx(s,x) is expressed in terms of u(x). Whereas, Px(s,x) and
L(s,x) are independent of u(x). Thus, given the equality (2.4), we can see that,
as long as u(x) satisfies the conditions in the theorem, the value of Zx(s,x) is
independent of any further choice made on u(x). Ultimately, this is due to the fact
that we are working in the function field setting and due to our choice of support for
u(zx). Indeed, this is why our support for u(x) is not quite analogous to the support
of u(x) in Theorem 1 of [BK07]. We note that in Theorem 1 in [BK07], Px(s,x)
and L(s, x) also do not depend on u(z), but this is because the dependency exists in
the error term.

We conjecture that the 2k-th moment of the L-functions can be split into the 2k-th
moment of their partial Euler products multiplied by 2k-th moment of their partial
Hadamard products:

Conjecture 2.4.3 (Splitting Conjecture). For integers k > 0, we have
1 * 1 2k
2 1G]
¢ <R)XmodR 2
1 1 2%
~ * Px <_7 X) >
<¢ (R>Xmod 2

R
as X,deg R — oo with X <log, deg R.

1
Zx <§:X>

k) ' (qﬁ*gR)X%;

m
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We then obtain the 2k-th moment of the partial Euler products in Section 6.2,
and we use a random matrix theory model to conjecture the 2k-th moment of the
Hadamard products in Section 6.3:

Theorem 2.4.4. For positive integers k, we have
| . 1y 2 <, (Pm)*) e
i () e T (55540 o)
¢*(R) ZR X ( ) H Z |P|m

2
x mod deg P<X \ m=0
P|R

as X,deg R — oo with X <log, deg R. Here, y is the Fuler-Mascheroni constant,

and
() £

PeP =0

Conjecture 2.4.5. For integers k > 0, we have

1 . 1\ G2k+1) (deg R\*
PN A CRY e (%)
x mod R

G2k+ 1)\ e X
as deg R — oo, where v is the Euler-Mascheroni constant and G is the Barnes
G-function. For our purposes, it suffices to note that

G2 L +1 k-1

2]<:+1

:1

z:0

Remark 2.4.6. We must point out that our support for Conjecture 2.4.5 follows
the method of [GHKO7] and relies on results established in [GHKO07]. However, as
will be described in Remark 6.3.2, there is an error in one of these results. For this
reason, we reformulate Conjecture 2.4.5 into Conjecture 2.5.10 and provide support
for this in Chapter 7 (specifically Sections 7.1 and 7.2) via a method that differs
from that in [GHKO7]. Nonetheless, some of the tools developed there can be used to
address the error that is described in Remark 6.3.2, and we explain this in Remark

7.2.2.

Theorem 2.4.7. We have that

¢*(1R) > |2 (% X)

x mod R

2

In Section 6.4 we rigorously obtain the second moment of the Hadamard product:
2 1 *

1 1 -1
L{30)Px(54)
27X PX 27X
x mod R

deg R 1 1
e’ X |P|
deg P>X

P|R

as X,deg R — oo with X < log,deg R.

In Section 6.6 we rigorously obtain the fourth moment of the Hadamard product:

1 1 —14
L) Pe(3) |
2X X2X

Theorem 2.4.8. We have
2 2 G 5 2
¢*(R) 2’ ¢*(R)

x mod R x mod R
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DIRICHLET L-FUNCTIONS

~Y

1 (degR)4 H (1—|P]—1)3
12\ e7 X 1+ |P|!
deg P>X
P|R

as X,deg R — oo with X < log, logdeg .

We can see that Theorems 2.4.7, 2.4.4, and 2.2.1 verify the Splitting Conjecture for
the case k = 1. This can be seen from the fact that a(1) =1 and

-1
= dl(Pm)2 ( 1 )
deg];[<X (mz::() |P|m degl;LX |P|
PIR P|R

Also, we can see that Theorems 2.4.8, 2.4.4, and 2.2.3 verify the Splitting Conjecture
for the case k = 2. This can be seen from the fact that

o1 (- ) S50 - I ((-) )
(e

() Gl ()

1
= (1 - W) =)t =1-q"
Pep

(2.5)

and

deg P<X \ m=0
PIR
I 1 \2\ 7! 1-|PI™)°
- T () - (=) - IS
deg P<X |P| |P] deg P<X
PIR P|R

However, in Theorem 2.4.8 we required the condition X < log, logdeg R which is
stronger than the condition X < log,deg R in the Splitting Conjecture.

Furthermore, we note that the Splitting Conjecture, Conjecture 2.4.5, and Theorem
2.4.4 do not together reproduce the conjecture (1.16). Most notably they do if we
impose py(R) < X, but also if we impose that R is prime or various other restric-
tions.

Finally, we note that Theorems 2.4.7 and 2.4.8 are special cases of the twisted second
and fourth moments of Dirichlet L-functions. Considering the results we referenced
at the end of Section 1.3 on twisted moments of Dirichlet L-functions in the classical
setting, and what would be the function field analogue of the those results, it is likely
that one can extend Theorems 2.4.7 and 2.4.8 to hold for a larger range: One of the
form X < kdeg R, where, for the second moment we have 0 < Kk < % and for the
fourth moment we have 0 < K < 3—12 Further extensions could be possible but would
go beyond what is currently established in the classical setting. We could perhaps

extend the range of X Conjecture 2.4.3 as well.
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2.5 A Random Matrix Theory Model for Moments
of the First Derivative of Dirichlet L-functions

In Chapter 7 we develop a conjecture for the main term of even moments of the first
derivative of Dirichlet L-functions in F [T at the central value. As in Section 2.3,
where we also worked with derivatives, we are averaging over non-trivial characters
of prime modulus ) and taking the limit as deg () — oo; although, some of our
conjectures apply more generally to R € M, in which case we write R instead of
Q. As in Section 2.4, we wish for all factors in the main term to appear naturally.
Thus, we will be making use of the Euler-Hadamard hybrid formula and random
matrix theory.

We begin by differentiating the formula (2.4) to obtain
L'(s,x) = Px(s,X)Zx(5,X) + Px(s,X)Zx (s, X)- (2.6)
Similarly as in Section 2.4 we make a splitting conjecture.

Conjecture 2.5.1 (Splitting Conjecture for the First Derivative). For all integers
k >0, we have

@ 2 [z

x mod @

L 1o\ 1 VBNEL (2.7)
”(mng\P%’Xﬂ )'(mng\ZX@X)\ )
XFX0 XFX0
and
k
2 S o
L VERNEL 1 VBINEL (2:8)
”(mxn%;Q\PX<§7X>\ )'(mx%\%(axﬂ )
XF#X0 X#X0

as X,deg Q) — oo with X <log, deg Q).

Before providing support for this conjecture, we consider its application to the mo-
ments of derivatives of Dirichlet L-functions. For this, we will require the following
conjecture, which is based on random matrix theory. Support for this conjecture is
given in Section 7.2, while preliminary results that are required are given in Section
7.1.

Conjecture 2.5.2. Assume that max,cgp{|u' (z)|} < ¢*. This is certainly possible
given that our only requirement on u s that it is a positive, normalised C* -function
with support in [e, el T ).

Let N(R) := |(logq)deg R|. Let U(N) be the set of N x N wunitary matrices and,
for A € U(N), let 0,(A) € (—n,7| be its n-th eigenphase. Let X ~ log,deg R.
Finally, let

KA,X(S) = H <1 _ Se*i(logq)e'YXen(A)>.

107 (A)|< Toggyerx
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FIRST DERIVATIVE OF DIRICHLET L-FUNCTIONS

Then, for integers k > 0, as X,deg R — 00,
1 N IRNE. - ok
. —,x) ~/ [Ny x (1) dA
¢*(R) ZdR Aev(N(R))

%3
N g

deg R K
e’ X ’

~by ((log q) deg R)** (

where the integral is with respect to the Haar measure and by, is as in equation (1.4)
of [CRS06]. The first two relations are conjectural, while the last can easily be seen
to be true.

We will also require the following Theorem, which we prove in Section 7.3.

Theorem 2.5.3. Let k > 0 be an integer. As X,deg@Q — oo with X <log,deg @,

o T ()
X7#X0

where, for 1 =0,...,2k, we define

I
l l 1
. 1= 1.2(I—m)
cp(l) == mEZO ( > ( >m.2mk .

(While we only require cg(k) in the theorem above, we require ¢ (0), ..., cx(2k)
for the proof of the theorem). We can now give a conjecture for the moments of
derivatives of Dirichlet L-functions.

"~ o)) o x (e7x)

Conjecture 2.5.4. By applying Theorem 2.5.8 and Conjecture 2.4.5 to (2.7), we
congecture that

1 , 1 1 2k G2(k +1 . y
mng‘PX(§7X)ZX <§,X> ~ a(k)ck(/ﬂ)%(bg(ﬁ X (degQ)
XFX0 (29)

as X,deg Q) — oo with X = |log, deg Q].
By applying Theorem 2.4.4 and Conjecture 2.5.2 to (2.8), we conjecture that
1 ’ 1 1
— Y Px(—,x)fo(—,x)
X#X0

as X,deg Q — oo with X = |log,deg Q].

2k

~ a(k)bk((log q) deg Q)zk(deg Q)k2 (2.10)

By (2.6), the Cauchy-Schwarz inequality, and (2.9) and (2.10), we conjecture that

@ > L'(%WN%Na(’f)bk((logQ)degQ)%(degQ)’“z (2.11)
o

as X,deg () — o0.
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We note that the cases k = 1,2 of (2.11) are in agreement with our established
results (2.2) and (2.3). One may wish to recall (2.5) when verifying the latter.

We now provide support for conjecture 2.5.1 - the splitting conjecture for the first
derivative - by establishing that it holds for the case k = 1. In Section 7.4 we prove
the following theorem.

Theorem 2.5.5. As X, deg@Q — oo with X < log, deg @, we have

]_ 1 1 2 3
?(Q) XmZO;Q Px <§’X>ZX <§7X)‘ ~ §(logq)2X2 deg Q.
X#X0

This result, along with Theorem 2.4.7 and the case k = 1 for Theorem 2.5.3, verify
(2.7) for the case k = 1.

We also have the following theorem.

Theorem 2.5.6. As X,deg@Q — oo with X <log,deg @, we have

1 1 N, (1 \[? (logg)*(degQ)®
mngPX@’X)ZX(ﬁ’X)‘N —
XFX0

This theorem follows immediately from (2.6), the Cauchy Schwarz inequality, Theo-
rem 2.5.5, and the case k = 1 of Theorem 2.3.2. Furthermore, we have the following
theorem.

Theorem 2.5.7. As X,deg@Q — oo with X <log,deg @, we have
1
?(Q) 2

x mod @
XF#X0

, (1 NP (logg)?(deg Q)
X<_ )’ ~ 3e7 X ’

2>X

This theorem follows immediately from the fact that

ZS((‘S? X) :PX(Sa X)—lL/<Sv X) - %ZX(& X)
P50 L5000 = PE S Pl L)

(which follows from (2.6)), the Cauchy-Schwarz inequality, and the following two
Propositions that we prove in Section 7.5.

Proposition 2.5.8. As X,deg Q) — oo with X < log, deg (), we have

1 1 N1 ,1 NP (logg)?(deg Q)
WXH%Q PX(?’X> L<§’X)‘ T R0x
XFX0

Proposition 2.5.9. As X, deg ) — oo with X < log, deg Q,

27

Pf{(%vX) Px<;,x>1L<1 X)‘z N XdegQ‘

1
mx;%o@ PX(%:X) 2 Ze
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We can now see that Theorems 2.5.6, 2.5.7, and 2.4.4 verify that (2.8) is true for
the case k = 1.

Finally, as explained in Remark 2.4.6 we reformulate Conjecture 2.4.5 into the con-
jecture below.

Conjecture 2.5.10. Assume that max,cg{|v'(z)|} < ¢*. This is certainly possible
given that our only requirement on u is that it is a positive, normalised C'*°-function
with support in [e, !0 "],

Let N(R) := |(logq)deg R|. Let U(N) be the set of N x N unitary matrices and for
A€ U(N) let 0,(A) € (—m, 7] be ils n-th eigenphase. Let X ~ log,deg R. Finally,
let

KA,x(S) = H <1 _ Se—i(logq)e'YXen(A)>.

‘Hn(A”SW

Then, for integers k > 0, as X,deg R — 00,

¢*(1R) Z* ZX(%’XN%N/AGU(N(R)‘AAX ‘ a4

o GA1+k) (( N(R) )"f

G(1+ 2k) \ (logq)er X
_GA(1+k) (deg R\"
G(1+2k)\ e X ’

where the integral is with respect to the Haar measure and G is the Barnes G-
function. The first two relations are conjectural, while the last can easily be seen to
be true.

Support for this conjecture is given in Section 7.2, along with the support for Con-
jecture 2.5.2. Indeed, both are similar.

As we did in Section 2.4, we remark that one could likely extend the range of X in
Theorems 2.5.5 to 2.5.7, and Propositions 2.5.8 and 2.5.9. This is because we are
again dealing with twisted moments. This is clear for Propositions 2.5.8 and 2.5.9,
and for Theorems 2.5.5 to 2.5.7 it can be seen from their proofs. We note, however,
that Conjectures 2.5.4 and 2.5.10 require that X ~ log, deg R.
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Chapter 3

The Brun-Titchmarsh Theorem
for the Divisor Function

In this chapter, we prove a result on sums of the divisor function over arithmetic
progressions in intervals of F,[T]. For the ring of integers, such a result (slightly
stronger, actually) was obtained for a certain class of multiplicative functions by
Shiu [Shi80]. However, we only require the case of the divisor function, and so
our proof is slightly easier. Technically, we prove two results. We restate them
before proving them, for ease of reference. The first theorem, Theorem 2.1.1, is the
following.

Theorem. Suppose «, 3 are fizred and satisfy 0 < a < % and 0 < B < % Let

X € M and y be a positive integer satisfying S deg X <y < deg X. Also, let A€ A
and G € M satisfy (A,G) =1 and deg G < (1 — a)y. Then, we have that

Ydeg X
S A <<a,5% (3.1)
NeM
deg(N—-X)<y
N=A(mod G)

We refer the reader to Remark 2.1.2 for an intuitive explanation of this result.

Remark 3.0.1. We recall that, for A € A with deg A > 1, the degree of the largest
prime divisor of A is denoted by py(A), while the degree of the smallest prime divisor
of A is denoted by p_(A). Now, an important aspect of the proof of Theorem 2.1.1
15 considering the size of the prime divisors of the polynomials. Indeed, suppose that

@ <p_(N) < dfff, for some integer r > 2. Then,

d(N) < 2™ < ey <9

The problem here is when r is large. That is, when the smallest prime divisor of N
1s small. In order to address this, the proof makes use of the following key technique:

Let z < deg X be real number whose exact value is not required at this time. Let us
write

e €5 €5 €.
N =P . PP, . P,
where

deg(Py) < deg(P) < ... <deg(P,)
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(there is some freedom here in the ordering of the prime divisors of a given degree,
but our results are identical for any ordering) and j is chosen so that

deg (Pfl o va’) < 2 < deg (PJH% o P,f”),

and let

BN ::Plel e Pjej

3.2
Dy :=Pj 5+ . P, (3.2)

We then split the sum over N into two. One is a sum over the possible By, and
another is a sum over the possible Dy. The benefit of this is that if p_(Dy) is large,
then d(Dy) is small and so the latter sum is small, and if p_(Dy) is small, then
p+(By) < p—(Dy) is small and this allows us to make the former sum small. So,
this technique allows us, in any case, to have some control over the size of the whole
sum over N.

The second theorem, Theorem 2.1.3, is the following.

Theorem. Suppose «, 3 are fired and satisfy 0 < a < % and 0 < B < % Let
X € M and y be a positive integer satisfying S deg X <y < deg X. Also, let A€ A
and G € M satisfy (A,G) =1 and deg G < (1 —a)y. Finally, let a € F;. Then, we

have that

Ydeg X
Y d(N) <ap %
NeA
deg(N—X)=y
(N—-X)eaM
N=A(mod G)

Before proving these two theorems, we prove a corollary of Theorem B.2.2 (The
Selberg sieve in function fields) and two lemmas.

Corollary 3.0.2. Let X € M and y be a positive integer satisfying y < deg X.
Also, let K € M and A € A satisfy (A, K) = 1. Finally, let z be a positive integer
such that deg K + z < y. Then,

2qY
2 S5

NeM
deg(N—X)<y
N=A(mod K)
p—(N)>z
Proof. Let us define
S={NeM:deg(N—-X)<y,N=A(mod K)}
and

Q = {P prime: P{ K}.

Then, following the notation of Section B.2 we have that

|SQ,>Z| = Z L,

NeM
deg(N—-X)<y
N=A(mod K)

p—(N)>z
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FUNCTION

which is what we want to bound.

For D | Ilg <, with deg D < z we have that

y
|ISpl = [{N € M :deg(N — X) <y, N =A(mod K), N = 0(mod D)}| = ﬁ
Therefore, for such D, we have w(D) = 1 and |r(D)| = 0. We also have that
(D) = ¢(D). We can now see that

and we have that

GeMcz ¥(G) H|K o(H) — GeM o(H)

(G,K)=1

To this we apply Lemma A.3.5 and the fact that

S ZLI, (1 - 1) STLG-ie) - %

H\K P|K PIK
to obtain
Z 1(G) > ¢(K)f_
w57, VG T IR 2
G|HQ <z
Also, we have that
3 ‘r([E, F])‘ — 0.
E,FEMS%
E,F|llg <,
The result now follows by applying Theorem B.2.2. O]

Lemma 3.0.3. Let us define ¢ to be such that
H{A e F,[T]:degA=n,A is prime}|< L
n

for all prime powers q # 2 and all positive integers n. Let d be such that

1 1
1 <0 1
|P|z —1 |P|s

for all prime powers q # 2 and all primes P € F,[T|. Let ¢ be such that

el
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for all primes powers q # 2 and all % <6 < 1. Finally, let zg > 3 be such that
L P _1
8Z ‘ elogz =3¢
Then, for all z > 2y, we have

Z 1< qiz.

NeM
deg N<z
p+(N)<log, 2

for all z > z.

Proof. We have

Sooo1<e Y N[ < Y

_1
[N|™3
NeM NeM NeM
deg N<z deg N<z p+(N)<log, z
p+(N)<log, z p+(N)<log, 2

1 1 1 1
ST (e T ()
deg P<log, z |P|8 -1

1
deg P<log, z ’PIS -1

log,z 7
1 1 1 qs"
<g3%exp (0 E 1> < q8%exp <c0 E )
deg P<log, z ’P’S n=1

n

7

log q Z8 1,
<exp | ——z 4+ c0¢ < q?”.
8 log, 2

Lemma 3.0.4. Let z and r be a positive integers satisfying rlog,r < z. Then
d(N 1
> < toe(-15)
em, VI
deg N>3
p+(N)<Z
Proof. Let 3 <6 < 1. We will optimise on the value of § later. We have that
d(N) Nz d(N) Nz d(N)
) L 0-1) V) 0-1)
> R > Np =97 > N
NeM NeM NeM
deg N>Z deg N>Z p+(N)<Z
p+(N)<2 p+(N)<Z
2 [+1
<, (6-1)3 1 (3.3)
= 1L ( - *Z PP

Sexp<(10gQ)( +2 Z pp T Z Zl+1>

||
deg P<Z
where the last relation uses the Taylor series for the exponential function

Note that

deg P<Z 1=2

2 Zi;li—zwzl@v; > s —L)Q

deg P<Z2 1=2 PeP |Pl°

2 (3.4)
=3 () =0,

pPcpP
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N

where the last relation uses the fact that § > 3. Also, we can write ﬁ =
1 1 1-6
L+ (|P| . 1).

We have that

Z %: iﬂ(%+0<qg>) <logz —logr+ O(1) <log(z) + O(1),

(3.5)

where the second-to-last relation follows from a similar calculation as (3.5).

We substitute (3.4), (3.5), and (3.6) into (3.3) to obtain

d(N -
Z % < 22exp (log q(0 — 1)% + ZCq(15)r).

wem, IV
deg N>3

p+(N)<2

We can now take 6 =1 — “Zi” (by the conditions on r given in theorem, we have

that % < § < 1, as required). Then,

d(N 1 1 1
E %<<z2exp(—rogr+2cr4><<zQeXp(—TOgT).
e IV 8 9

deg N>3

p+(N)<2

We can now prove our first theorem, Theorem 2.1.1.

Proof of Theorem 2.1.1. Let z := {5y and for each N in the summation range of
(3.1) we define By and Dy as in (3.2). We break up the problem into four cases:

1. p_(Dn) >

N

z;

2. p_(Dy) < %z and deg By < %z;

3. p—(Dy) < w(z) and deg By > 3z;

4. w(z) < p-(Dn) < 3z and deg By > 32;
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where

w(z) = {1 if z < 2z

log,z if 2 > z.
and zj is as in Lemma 3.0.3.

Consider case 1. Because deg By < z < y, we can find a monic polynomial X p, such
that deg(X — BnyXp,) < y. Then, the following three statements are equivalent:

o deg(N — X) < y;
e deg(ByDy — ByXp,) < ¥;
o deg(Dy — Xp,) <y — deg By.

Also, because (By,G) = 1, we can find some Ap, € A such that (Ap,,G) =1
and ByAg, = A (modG). Then, again because (By,G) = 1, the following three
statements are equivalent:

e N=A (modQG);
L] BNDNEBNABN (mOdG),
° DN = ABN (HlOd G)

We also have that

deg Dy 20 deg X

d(Dy) < 2%PN) < 20-N) < 27y < 248,

So, using Corollary 3.0.2 for the fourth relation below, we have

> dN)= ) dBy)d(Dy)< > d(B) > d(D)
BeM

NeM NeM € DeM
deg(N—X)<y deg(N—-X)<y deg B<z deg(D—Xp)<y—deg B
N=A(mod G) N=A(mod G) (B,G)=1 D=Ag(modG)
p—(Dn)>32 p—(Dn)>32 p—(D)>3z2

g’ d(B)
o, d(B) 1< K=
> 2 EGEP
deg B<z deg(D—Xp)<y—deg B deg B<z
(B,G)=1 D=Ag(mod G) (B,G)=1
pf(D)>%z
v 1\° Yz Ydeg X
<zl 2 ) <o =< e
BeM
deg B<z

Now suppose N satisfies case 2. Then, the associated P;;; from (3.2) satisfies the
following three conditions:

e deg Py < L2
o deg P > %z;
e (Pj11,G) =1 (since Pj4; | N, N =A (modG), and (4,G) =1).
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For a general prime P with deg P < %z, we denote ep > 2 to be the smallest integer
such that deg P¢? > %z We note that deg P°? < z. Furthermore,

1 _1, 1 1,
Y opes Xt ¥ bt

degPS%z degPS%z %z<degP§%z
and
d(N) Kap [N|5 < X[ < g8V = g5
Hence,
> A< >0 Y AN <apa YT Y1
deg(N_%) 08 P<32 g (N ) A8 P32 g (N=3)
€ — < €, — < e — <
NiA(modGZ)/ (PG)=1 NiA(modG:g (PG)=1 NiA(modGz)/
p—(DN)S%Z N=0(mod P¢P) N=0(mod P¢P)
deg By<lz (3.7)
1 1
1 ¢’ ¢qs” 1 ¢’q 5"
—g38” < << .
q Z GPer| = |G Z [ Per] G|
degPS%z dengéz
(P,G)=1
Now suppose N satisfies case 3. If z < 2y, then p_(Dx) < w(z) = 1, and so
> d(N)=o0.
NeM
deg(N—X)<y
N=A(mod G)
p—(Dn)<w(z)
%z<degBN§z
If 2 > zy, then, using Lemma 3.0.3 for the last relation below, we have,
PR CYETLEED DI LD DR DI
NeM NeM BeM NeM
deg(N—-X)<y deg(N—-X)<y 12<deg B<z deg(N-X)<y
N=A(mod G) N=A(mod G) (B,G)=1 N=A(mod G)
p—(Dn)<w(z) p—(Dn)<w(z) p+(B)<w(z) N=0(mod B)
%z<deg Bny<=z %z<degBN§z
1 qY qv _s ¥ _1
ngz S_q 8Z 1<<_q SZ_
2 emcia’ T X G
%z<degB§z %z<degB§z
p+(B)<w(2) p+(B)<log, 2

Now suppose N satisfies case 4. If z < zy, we break up the possible values of p_(Dy)
into the following cases:

Z<p*(DN)§ Z,

S|

r+1

for 2 <r < z. We then see that

X X 1 1 2
Q(Dy) < JBX deg X W00 D) 200
p-(Dn) 17 af af
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and so, taking a := 22%, we have d(Dy) < a". Hence, using Corollary 3.0.2 for the

third relation below, we have

> dN)<> a" ) d(B) > 1
r=2 NeM

NeM = BeM
deg(N—-X)<y %z<deg B<z deg(N—X)<y
N=A(mod G) (B,G)=1 N=A(mod G)

w(z)gpf(DN)S%z p.t,.(B)g%z . N=0(mod B) )
deg By>1z S12<p—(DN)<1z
z
<» ad E d(B) 5 1
r=2 BeM DeM
%z<deg B<z deg(D—Xp)<y—deg B
(B,G)=1 DEAB(mold QG)
p+(B)<iz p—(D)>7372
z
qY d(B
<<¢(G) E (r+1)a" E —|(B|)
o r=2 BeM
%z<degB§z
(B,G)=1
p+(B)<tz

z r a" Lo p — v
s P(G)

deg X.

|
=
8
.

Now suppose z > z;. Then, we break up the possible values of p_(Dy) into the

following cases:
Z?

S|

(Dn) <
T+1Z<P( N) <

for 2 < r < ry := mins z, —=
? log, 2

} Note that this covers all Dy with w(z) <
p-(Dn) < 5. We also have rlog,r < z, and so we can apply Lemma 3.0.4 for the

fourth relation below. We have,

> dN)<> a" ) d(B) > 1
r=2 NeM

NeM BeM
deg(N-X)<y %z<degB§z deg(N—X)<y
N=A(mod G) (B,G)=1 N=A(mod G)

w(z)<p—(Dn)<52 p(B)<iz | N=0(mod B)
degBN>%z " r+1z<p,(DN)§;z

o
<> a" ) d(B) > 1
r=2 BeM DeM
%z<deg B<z deg(D—Xp)<y—deg B

(B,G)=1 D=Ag(modG)

p+(B)<iz p—(D)>452

¢ < d(B)

S Y 4D

¢(G)Z r=2 BeM |B|

%z<degB§z
(B,G)=1
p+(B)<tz

Yz — rlogr

< (r+1)a" exp ( — )
9(G) = 9
T deg X
<L, eg X.
9(G)
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]

The proof of Theorem 2.1.3 is very similar to that of Theorem 2.1.1, although some
minor changes must be made to Corollary 3.0.2 as well. To see why the proofs are so
similar, consider the following. In Theorem 2.1.3, N is such that its coefficients in
positions y+1,y+2,...,deg N are the same as those of X; its y-th coefficient differs
from that of X by some fixed a # 0; and the coefficients in positions 0,1,...,y — 1
are free to take any value in F,. In Theorem 2.1.1, N is such that its coefficients
in positions y + 1,y + 2,...,deg N are the same as those of X; its y-th coefficient
differs from that of X by a = 0 (i.e. the y-th coefficients are also the same); and
the coefficients in positions 0,1,...,y — 1 are free to take any value in [F,. Thus,
the only difference between the N in the two theorems is that the y-th coefficient
in Theorem 2.1.1 differs from the y-th coefficient of X by a = 0, while for Theorem
2.1.3 it is some fixed a # 0. Ultimately, this makes no difference to the bound we
obtain, but it does require us to use different notation, and thus the requirement
of having two different theorems for essentially the same result. The difference in
notation is only that in Theorem 2.1.3 we have deg(N — X) < y, while in Theorem
2.1.1 we have deg(N — X) =y but (N — X) € aM.
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Chapter 4

The Second and Fourth Moments
of Dirichlet L-functions, Averaged
over Primitive Characters

In this chapter, we prove Theorems 2.2.1, 2.2.2, and 2.2.3. For a discussion on
these results and a brief, intuitive explanation of their proofs, we refer the reader to
Section 2.2.

4.1 The Second Moment

For ease of reference, we restate the theorems before proving them. Theorem 2.2.1
is the following.

Theorem. Let R € M\{1}. Then,

1(3)

?_ olf)
|R]

deg R+ O (%ﬁ)) logw(R)) .

1 *
¢*(R) 2

x mod R

Proof of Theorem 2.2.1. From Lemma A.1.2, Lemma A.1.3, and (A.8) in Appendix
A, we have

1 .
¢*(R) 2

x mod R

1 N2 2 . x(Ax(B) 1 *
(=] = — — + — c(x)-
(2 )‘ ¢<R)X§Rd ",‘%;QAR |AB|2 ¢<R>X§R

For the first term on the RHS, by Lemma 1.4.5 and Corollaries 1.4.6 and A.3.3, we
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have

X(A)Y(B _ Z W(E 3 1 %

xmodR A,BeM |AB| ¢ EF R A,BeM |AB|
deg AB<deg R deg AB<deg R
(AB,R)=1
A=B(mod F)

1 2 1
= X mtam B Y

AeM F=R A,BeM
deg A<% deg R deg AB<deg R
(A,R)=1 (AB,R)=1
A=B(mod F)
A#B
_9o(R) o) 2 1
deg R+ O logw(R) | + > wWEF) D> _.
IR R o*(R) 4=, 25w AB[:
deg AB<deg R
(AB,R)=1
A=B(mod F)
A#B

(4.1)

We will look at the third term on the far RHS of (4.1). Consider the case where
deg AB = z and deg A > deg B. Then, deg B < 3 and we can write A = LF' + B
for monic L with deg L = z — deg B — deg F'. So,

1 1 qz 1 z2q2
> =Y ) r< D B T aE
A,BEM |AB| BeEM |B| LEM [LF|z ~ |F] BEM |B] |F]
deg AB=z deg B<— deg L=z—deg B—deg F' deg B<§
deg A>deg B
(AB,R)=1
A=B(mod F)

The case where deg A < deg B is similar. For the case deg A = deg B, we have
degB= 3 and A= LF + B for L € A with deg L < deg B — deg F. So,

1 z+1
1 1 2 qz
> < > > T <im X
A BEM |AB|z BeM |B|7 LeA |LF|2 |F| BeM |F]
deg AB==z deg B:— deg L<deg B—deg I deg B:%
deg A=deg B
(AB,R)=1
A=B(mod F)
A+B
Hence,
deg R—1 1
1 1 2 R|2 deg R
2 1<<722q;1<<—||Fg,
aBem  |ABJ2 £ 2=0 £
deg AB<deg R
(AB,R)=1
A=B(mod F)
A+B
and so

2 1 |R\2 degR
(R > wWE)F) Y \AB\& Z |( |F|

EF=R A,BeEM
deg AB<deg R
(AB,R)=1
A=B(mod F)
A#B

52



4.1. THE SECOND MOMENT

2<(R)| Rz deg R
- (R

< |R[73,

where the last equality follows from (A.19). Applying this to (4.1) gives

2 * X(AX(B) _ ¢(R) (¢(R) )

LYY 2= B deg R+ 0 B logw(R) ).

0*(R) £ a5cu  |AB|2 & TR *B(R)
deg AB<deg R

Finally,

x odd X even
i (
__ o) + Ce(x)—co(x))
s\ 2, mZ

By similar methods as previously in the proof, we can see that the above is O(1).
The result follows. O

We now prove Theorem 2.2.2:

Theorem. Let R € M\{1} be a square-full polynomial. Then,

> [1(3)

o) deg R + Qﬁ(}ggg Z |degP
PIR

~ IR P|—1
xmod R
1 #(R)? o(R) 1 2)
+— - (- =) ).
(q2_1)2( | R|? |R|2 H%< |P|2)

Proof of Theorem 2.2.2. We have that

* 1 2 * AX(B
L(_)){) _ 3 X( )x(l )
2 |15 2 |AB
x mod R x mod R A,BeEM

deg A,deg B<deg R

1
= Z 1(E)o(F) Z ‘AB‘%

EF=R A,BEM
deg A,deg B<deg R
(AB,R)=1
A=B(mod F)
1 1
= E N(E)¢(F) E A; E Bl-
EF=R AeM | Al2 BeM |B|>
deg A<deg R deg B<deg R
(A,R)=1 B=A(mod F)

The second equality follows from Lemma 1.4.5. For the last equality we note that
if R is square-full, FF = R, and pu(FE) # 0, then F' and R have the same prime fac-
tors. Therefore, if we also have that (A, R) = 1 and B = A(mod F'), then (B, R) = 1.
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Continuing,
* 1 2
L(3)
> 1l
x mod R
1 1
=D BN Y o > e Y
EF=R AeM ‘A|2G\(A,R) sem B2
deg A<deg R deg B<deg R
B=A(mod F)
1 1
= > uBeE) Y pwG) D o D oo
EF=R GIR dem AR g IBJ2
deg A<deg R deg B<deg R
G|A B=A(mod F)
1 1
-Sumenyue Y (X )X o)
EF=R GIR KeA dem AR sem B2
deg K<deg FF—deg G  deg A<deg R deg B<deg R
KOLO A=GK(mod F) B=GK(mod F)

(4.2)

The last equality follows from the fact that F' and R have the same prime factors,
and so, if u(G) # 0, then G | F. Hence, if G | A, then A = GK(mod F') for some
K € A with deg K < deg F' — deg G or K = 0.

Now, we note that if K € A\ M, then

1 1 1
2 A 2 LF + GK|} 2 L[>

AeM LeM LeM
deg A<deg R deg L<deg R—deg F’ deg L<deg R—deg F’

A=GK(mod F)
1 (|R|% 1>
g —1\|F| |F|z/)

Whereas, if K € M, then

1 1 1
Z T Tt Z 1
A |Alz |GK]|2 Lem |LF + GK]|z
deg A<deg R deg L<deg R—deg F'
A=GK(mod F)

o (|R\é 1)
IGK|]z 2 —1\|F| |F]z2)

S R O[O S

Hence,

KeA AeM BeM
deg K<deg F'—deg G deg A<deg R deg B<deg R
KO;O A=GK (mod F) B=GK (mod F)
1 (|R|é 1 )2 3 .
ENENCRT A >
deg K<deg F—deg G
or
K=0
L2 <|R|é 1 > 1 3 1
# I\ FE e & KR

deg K <deg FF—deg G
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1 1
+ o > —
|G| =, K|
deg K <deg F'—deg G
1 (|R| B 1,2 ) degF degG
(¢ —1)*\IFGl "|F|G]z |Gl |F|3|G |G| G|

By applying this to (4.2), and using (A.24) to (A.27), we see that

> [1(5)

3 3
2:¢(R) degR+2¢(}f|g Z |degP
IR

Nt |R|” | Pl=1
1 o(R)*  ¢(R) L 2)
Sl - T2 l——x) )
(q2—1)2( |R|? IR|2 g( |p|2)

]

4.2 The Fourth Moment: General Preliminary
Results

In this section, we prove some general preliminary results that are required for
Section 4.4. They are general in that it would not be unusual for such results to
have applications to other problems.

Lemma 4.2.1 (Perron’s Formula). Let ¢ be a positive real number, and let k > 2
be an integer. Then,

Z ds = 4 .
Z(logy)t ' ify > 1.

If k=1, then

c+iooys 0 Zf0§y<1a
/ —ds =< mi ify = 1;
2 ify > 1.

Proof. Suppose k > 2. We will first look at the case when y > 1. Let n be a positive
integer, and define the following curves:

l1(n) :=[c — ni, c + nil;

We can see that

c+i00 s s s s S
/ y—kds: lim / y—kds—/ y—de—/ y—kds—/ y—kds )
c—ico 5 nee \ L) $ Ia(n) 5 ls(n) § la(n) S
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For the first integral we apply the residue theorem to obtain that

. Yy ..o 2mi k—1
lim —ds = = 1)!(logy) .

n—oo L(TL) S

For j € {2,4} we have that

/ y—kds
li(n) S

For the third integral we note that when s € l3(n) we have |y*| <1 (since Res <0

and y > 1). Hence,
/ y—kds
I3(n) S

So, for y > 1 we deduce that

c+ioco , s .
Yy 2mi k—1
Qs = ] .
/ rds (k_l)!(ogy)

=0.

lim
n—oo

< lim y_/ 1lds = lim
l.

k k
n—oo N, i (n) n—oo 1

1
< lim —k/ lds = lim —— = 0.

lim
n—oo

Now we will look at the case when 0 < y < 1. Again, let n be a positive integer,
and define the following curves:

li(n) :=[c — ni, c + nil;

lo(n) ::{c +ne i te [TW, g} } (orientated clockwise);
L(n) :=l1(n) Uly(n).

c+100 s s s
/ y—kds = lim / y—kds—/ y—kds .
c—ico S n—oo L(n) S la(n) S

The limit of the first integral is equal to zero by the residue theorem, because there
are no poles inside L(n). The limit of the second integral is also zero, and this can
be shown by a method similar to that applied for the curve l3(n) in the case y > 1.
So, for 0 < y < 1 we deduce that

c+i00 , s
Y
/C_ioo S—de =0.

Now suppose k = 1. The proof for the case y > 1 is identical to the corresponding
proof when k > 2, except for how we evaluate the integral over I3(n). Instead, we

do the following:
s Res Res
lim y—ds < lim J ds + i ds
n—oo | J, S n—00 s€lz(n) ’S| s€lz(n) |8‘
3(n) Re(s)<—/n —/n<Re(s)<0

<im (2 1ds + 1d (4.3)
- ngr;o n s€ls(n) §+ E s€ls(n) 5 '

Re(s)<—y/n —v/n<Re(s)<0
(Wny_ﬁ L0 sin(n_é))

We can see that

< lim
n—o00 n n

=0.
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The proof for the case 0 < y < 1 is also identical to the corresponding proof when
k > 2, except for how we evaluate the integral over ly(n), which is, instead, done in
a similar method as (4.3). For the case y = 1, we have the following:

c+100 1 1 c+1i00 1 —Cc—100 1
/ —-ds = —</ —ds + / —ds) = Ti.
c—ico S 2 c—ico S —c+ico §

The last equality follows by similar means as how we evaluated integrals previously
in this proof: Express the integrals in terms of a limit of an integral over a rectangle
and then apply the residue theorem and some simple bounds. O

Lemma 4.2.2. For all R € M and all s € C with Re(s) > —1 we define

fr(s) == H E

—s—1"
PiR 1+ |P]

Then, for all R € A and j = 1,2,3,4 we have that

1—|pP|™!

(4) J

PIR

Remark 4.2.3. We must mention that, in the lemma and the proof, the implied
constants may depend on j, for example; but because there are only finitely many
cases of j that we are interested in, we can take the implied constants to be indepen-
dent. Furthermore, strictly speaking, we require that deg R > 2 so that log, log, | R|
is well defined and non-zero.

Proof. First, we note that

fr(s) = gr(s)fr(s), (4.4)

where

1 1
gr(s) = ZQlog|P| <‘P‘s+1 +1 + |P[2s+2 — 1)‘
PIR

We note further that
#(5) =(9r()* + gin(s) ) frls),
7(5) =(9n(s)* + 39r(5)gi(s) + g(5) ) fr(s), (4.5)
7/(5) =(9m(s)" + 69n()%gis) + A9r()9h(5) + 39(5)? + g1 (5) ) fr(s).

For all R € A and k = 0,1, 2,3 it is not difficult to deduce that

o <3 e 46

P|R

(logz) .

The function ~——— is decreasing at large enough z, and the limit as x — oo is
0. Therefore, there exists an independent constant ¢ > 1 such that for £ =0,1,2,3
and all A, B € A with deg A < deg B we have that

(log’ADk-f—l . (log’BDk—i—l
Al-1 = [B[-1
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Hence, taking n = w(R), and R,, and m,, defined as in Definition A.2.1, we see that

(10g|P’)k+1 (10g’P| k+1 mp+1 q T’k_H Mn+1
Z—|P|_1 <> 1 <<Z <<Zr"f
P|R P|R, r=1 (4.7)
<(m, + )" < (log, logq|Rn|) < (log, logq|R|)kJrl

where we have used the prime polynomial theorem and Lemma A.2.2. So, by (4.4)—
(4.7), we deduce that

1—|P|™

17(0) < (log, log,|R) T 1+|P[

PIR

Lemma 4.2.4. Let R € M, and define zg’ := deg R — log, 9«(R) - We have that
Qw(N)

5 ey
|V

deg]gg}%'

(N,R)=1

(I1—q") 1—|P|™" 4
5 (5 e

+0 ( H (%}Z:_i) <(deg R)*w(R) + (deg R)*log deg R)) :

P|R

Remark 4.2.5. This result is to be expected. Indeed, consider the function F' defined
for Res > 1 by

Qw(N)

vem IV

We can see that

ro =T (0 g o+ ) = L (= )

Pep Pep

PIR PR 4.8)
_ L+ |P|” L= [P Gl pp(L=1P

-11 (1— EE )H (1+ \P\s) ~ Cal2s) H%(H \P\s)‘

Now, due to the pole of (4(s) at s =1, F(1) = Z(NEM Lj\;lv) is not well-defined.
N,R

However, we are interested in Y Nem QT](V]‘V) , so let us replace (4(1) by
deg N<zp'
(N,R)=1
Z — = zi' < deg R.

e N
deg N<zg'
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Then, from (4.8), and the fact that (4(2) =1 —q ' and 2’ — deg N < deg R for

small N, we expect

2w(N)

2. T
NeM
deg N<zpg'
(N,R)=1

2 — deg N)?

9w(N)

~(degR)® Y

Nem N
deg N<zpg'
(N,R)=1

~1-q¢H]] (%) (deg R)*.

PR

Proof of Lemma 4.2.4. STEP 1: Let F' be defined as in Remark 4.2.5, let ¢ be a

positive real number, and define yr := ¢*

1 c+100

&' On the one hand, we have that

2w(N) c+100 yRS

YR’ 1
— F(s+1)=——ds=— g ds
i c—100 ( * ) 53 i |N| c—100 |N|853
NeM
(N,R)=1
4 9)
() YR\ 2 () (4.
= E “—log (=) = (logq)? E (25’ — deg N)?
N N ’
vem NN veu IV
deg N<zpg' deg N<zp'
(N,R)=1 (N,R)=1

where the second equality follows from Lemma 4.2.1. On the other hand, for all
positive integers n, define the following curves:

li(n) :

lQ(TL) .

Then, we have that

1 c+ioo

T Je—ico

1 S S
=— lim (/ F(s+1)ylz ds—/ F(s+1)y§
im0 \ i) s (n) s

- / Fls+1)%
l3(n) §

F(s+1)

(2n + 1)mi (2n + 1)7rz}
_ c :
logg ' log ¢
Cn+Dmi 1 (2n+ D)
L —}

logg = 4 log g
I @Cn+1L)m 1 (2n+1)mi
"It g i g )
1 (@2n+ Dmi . (2n + 1)7rz'}
4 logg ' log g

1(n) Uly(n) Ulsz(n) Uly(n).

de

(4.10)

/W)F( +1)y;E )

STEP 2: For the first integral in (4.10) we note that F'(1 + s)yRS has a fifth-order

pole at s = 0 and double poles at s = 22 for m = +1, 42, .

Tosq ,tn. By applying

Cauchy’s residue theorem we see that

1
lim — / F(s+1)%2

(s + 1)3/1% +22Res 2mai F'($ + 1)yR

log ¢
mEZ
m7#0

(4.11)
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STEP 2.1: For the first residue term we have that

Ress—o F'(s + l)yR

1 d4 1 1— ’P’—s—l (412)
— l el 1 2.2 - - =r s ]
41 550 ds? (CA(S T Ca(2542) gj[% (1 + \H“)yR
If we apply the product rule for differentiation, then one of the terms will be
1 1 1— P57t d*
il 1 1)2¢2—— - - =t
s 11m (CA(S + ) S CA<28 + 2) (1:1)|IR 1 T ’P’sl) dS4yR
_(1—¢7")(logq)? 1—|PI™ (2)!
t\1+ [Pt

|
_ (1 =g ")(logq)® I (1 il L
|

4
24 1+ \P|—1>(degR)

+0 ( log g H (%) (deg R)3w(R)> .

Now we look at the remaining terms that arise from the product rule. By using the
fact that (4(s+ 1) = —— and the Taylor series for ¢~*, we have for k = 0,1,2,3,4

that
li ! @ 1)s=0(1 4.13
S%W@C(S‘F )s = O(1). (4.13)
Similarly,
dk dk —1-2s
lim —((2s +2) " —hm@@—q ):0(1). (4.14)

By (4.13), (4.14), and Lemma 4.2.2, we see that the remaining terms are of order

1— [P
(log ¢)° H (#P;*) (deg R)*log deg R.
PR

Hence,

2Ress—o F(s + 1)yR
s3

(- q)(logg)’ H(l—‘P"1)<degR>4

12 sir \L+[P[
+0 ((log q)* H (%}il_i) <(deg R)*w(R) + (deg R)*log deg R))

(4.15)

STEP 2.2: Now we look at the remaining residue terms in (4.11). By similar (but
simpler) means as above we can show that

Res,_2 F(s—i—l)yR = — (lo 21_[ 1_|P‘1 deg R
i 5 &4 TP )T

P|R
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and so
‘ YR’ . 2 1— |P|71
Z Ressz% F(s+ 1)? =0 ((log q) H <W deg R |. (4.16)
= Fi

STEP 2.3: By (4.11), (4.15) and (4.16), we see that

S

ds

n—oo 71 83

(1 —q ") (logq)? 0 (1 — P!

12 1+ |P|!

1
lim —/ F(s+1)yR
L(n)

) (deg R)*

P|R

+0 <(log q)* [H (%};:j) ((deg R)*w(R) + (deg R)*log deg R)) :

i (4.17)

STEP 3: We now look at the integrals over l5(n) and l4(n). There exists an absolute
constant x such that for all positive integers n and all s € l3(n),l4(n) we have that
F(s+ 1)yr* < k|R|*". One can now easily deduce for i = 2,4 that

lim
n—oo

iy’

1 S
—./ F(s+ 1)y8§ ds| = 0. (4.18)
li(n)

STEP 4: We now look at the integral over [3(n). For all positive integers n and all
s € l3(n) we have that

Cas + 1)

Ca2s+2) o)

and

1—\P|‘5‘1) ) <1+\p\i) ! .
H(1+|P|51 YR <<H 1—|P’_% H(g ) |R|

P|R P|R P|R
<]] <1 +— > [I@ |rI=
P|R —1 P|R
1 8
<J[® 157 <]] ( > < 1.
PIR PIR | P
We can now easily deduce that
lim i/ Fs + 1)3/de3‘ —0(1). (4.19)

STEP 5: By (4.9), (4.10), (4.17), (4.18) and (4.19), we deduce that

2w(N)
> 2 vy
Nem IV
deg N<zp'
(N,R)=1
(1-q¢" 1—|pI™ 4
=51l 15 p ) (des F)
P|R
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+ O(}l;[% (%ﬁ}_i) <(deg R)*w(R) + (deg R)*log deg R))

Lemma 4.2.6. We have that

2w (N) —1 3¢+1
Z N :q2q z* + q2q z+1=0(2?).

NeM
deg N<z
Proof. For s > 1 we define
Z | N’s+1
NeM
We can see that

2 2 2 2
e ) )

Pep PeP [P[s+1

—H<1— : )2_<2s+2 (Zq ><_ )

PeP TEER

By comparing the coefficients of powers of ¢~°, we see that

2w(N) ( ° ) 1( ° ) qg—1 3¢+1
g —_— = E n+1|—- E n—1|= z? + r+ 1.
vew NS I\ 2 2
deg N<z

Lemma 4.2.7. Let R € M. We have that

. ! 1—|P|"! 2
& ||<§(H2—W)<deg3> H(W)“@gm.
IR PIR
deg N<deg R

(N,R)=1
Proof. We have that

9w (N) 9w(N)

2w(E)) 9
< < (degR)".
( Py |N!)(§; m)< 2 Ty < ldeh)
deg N<deg R deg N<2deg R

(N,R)=1

where the last relation follows from Lemma 4.2.6. We also note that

IR Z“ —H1+

E|R E|R P|R

Qw( )

This proves the first relation in the lemma. The second relation follows from (A.17)

and (A.18). O
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Lemma 4.2.8. Let F,K € M, x > 0, and a € F,. Suppose also that %ac <
deg KF < %x. Then,

> d(N)d(KF 4 aN) < ¢"2?

|KF|
dog NS Mg kP aK
eg N=z—deg z—deg KF
(N.F)=1 deg H<™—=5

Remark 4.2.9. The factor of q‘”xQﬁ 15 to be expected. Indeed, we expect
d(N)dA(KF + aN) ~ z* because, generally speaking, d(A) is on average equal to
deg A, and we have deg N,deg(KF + aN) < xz.The other factor is due to the fact
that there are |13_2| elements of degree x—deg K F'. Of course, we have not considered

that (N, F) = 1.
Proof of Lemma 4.2.8. We have that,

> d(N)d(KF +aN)

NeM
deg N=x—deg K'F
(N,F)=1
<2 > > d(KF + aN)
NeM GIN
deg ]\(/;Ji;)ielg KF deg Gg%
< E E d(KF 4+ aN)
GeM NeM
degG’S% deg N=x—deg KF
(G,F)=1 GIN
- Z § : E d(KF +aN)
H|K CEM r doe NOM e
—de; z—deg K It =xr—
deg ngdfg“ deg G< 2 eg (:;D‘N eg
(G,F)=1
(G,K)=H
=X > > d(HK'F + aHN')
H|K GeM N'em
deg Hgmfg” deg Gg% deg N':x—d/eg {<F—degH
(G,F)=1 G'|N
(G,K)=H

where N',G', K' are defined by HN' = N,HG' = G,HK' = K. Continuing, we
have that

> d(N)d(KF + aN)

NeM
deg N<zx—deg KF
(N,F)=1
< E d(H) E E d(K'F + aN')
H|K GeM N'eM
deg H< 2=des K deg G< 24 HE deg N'=z—deg KF—deg H
(G,F)=1 G'|N
(G,K)=H
< > d(H) ) > d(M)
HIK G Mearcr deg(M K’F)MEAc/ll KF—deg H
deo F< T=deg KF degGS% eg - =xr—deg —deg
BESTT (G.F)=1 (M—K'F)eaM
(G,K)ZH MEK/F(mOd Gl)
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L. 1 d(H) 1
SCURE 2 m 2 6@

H|K GeM
deg H< 2=deg KF degGﬁ%
-2 (G,F)=1
(G,K)=H
d(H)
T, .2
<q"x wF qu; T

—deg KF
deg H< 2=dea KF

The third relation holds by Theorem 2.1.3 with § = = and o= }l (one may wish to
note that (K'F,G’) = 1 and that the other condltlons of the theorem are satisfied
because %x <deg KF < %:v) The last relation follows from Lemma A.3.4. O

Lemma 4.2.10. Let F € M, K € A\{0}, and x > 0 satisfy deg KF' < x. Then,

d(H
Y AN)A(KF +N) < q'z> ) %
New e A
deg N=x deg H<Z
(N,F)=1

Proof. The proof is similar to the proof of Lemma 4.2.8. We have that

> dAN)AKF+N)<2 Y > dEKF+N)< Y > d(KF+N)

NeM NeM G’\N GeEM NeM
deg N=x degN—x deg G< deg G< 5 deg N=x
(N,1)=1 (N, )= (G,F)= 1 GV

> Y ) dKF+N)

H|K GeM  NeM
deg H<Z deg G5 deg N=zx

(G, F) 1 GIN
(G,

> Z Y dA(HK'F+HN),

HIK GeM N'em
deg H<Z deg G<3 deg N'=x—deg H
(G.F)= 1 a|N
(G,K)=H

where N',G', K' are defined by HN' = N,HG' = G,HK' = K. Continuing, we
have that

Y AN)AKF+N)< Y dH) Y Z d(K'F 4+ N')

NeM H|K GeEM
deg N=x deg H<Z deg G degN’ T— degH
(N,F)=1 (G,F):l G'|N’
(G,K)=H
> d(H) ) > d(M),
H|K GeM MeM
deg H<Z deg G< 3 deg(M—X)<z—deg H
- (G,F)=1 M=K'F(modG")
(G,K)=H

where we define X := 7% ¢ H_ We can now apply Theorem 2.1.1 to obtain that

Z d(N)A(KF + N) <¢"x Z ‘ Z

NeM H|K GeM ¢ H|K ||
deg N=x deg H<Z deg G<3 deg H<Z
(N, F)=1 (G,F):l

(G,K)=H
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The proof of the following lemma is very similar to that of Lemma 4.2.10.

Lemma 4.2.11. Let a € F," with a # 1, and x > 0. Furthermore, let F € M and
K € (1 — a)M satisfy deg KF = z. Then,

d(H
E d(N)d(KF + aN) < ¢*2* g %
Nt ]
deg N=x deg H<Z
(N,F)=1

4.3 The Fourth Moment: Specific Preliminary Re-
sults

In this section, we prove some specific preliminary results that are required for
Section 4.4. They are specific in that it is not so easy to find applications of these
results to other problems.

Lemma 4.3.1. Let F € M and zy, 2o be non-negative integers. Then, for all € >0
we have that

1+e
1 . 19
Z 1 < m<qz1qzz> if 21+ 20 < l—odegF
A,B,C,DEM L gm@ P+ =)’ if itz > gdegF
deg AB=z;
deg CD=z9
(ABCD,F)=1
AC=BD(mod F)
AC#BD

Proof. We can split the sum into the cases deg AC' > deg BD, deg AC < deg BD,
and deg AC = deg BD with AC' # BD. The first two cases are identical by sym-
metry.

When deg AC' > deg BD, we have that AC' = KF + BD where K € M and
deg KF > deg BD. Furthermore,
2deg KF =2deg AC' > deg AC + deg BD = deg AB + deg CD = z| + 2o,
from which we deduce that % < deg KF < 21 + z9; and
deg KF + deg BD = deg AC + deg BD = 2y + 29,
from which we deduce that deg BD = 21 + 2o — deg K F.
When deg AC' = deg BD, we must have that deg AC' = deg BD = 2+ (in particu-

lar, this case applies only when z; + 25 is even). Also, we can write AC = KF+ BD,
where deg KI' < deg BD = % and K need not be monic.

So, writing N = BD, we have that

> > > d(N)d(KF + N)

A,B,C,DeM KeM NeM

deg AB=2; %22 oo K F<zq+2z, €8 N=21+22—deg K I
deg C D=2 2 & =ae (N.F)=1
(ABCD,F)=1
AC=BD(mod F)
AC#BD (4.20)
+ S d(N)A(KF + N).
KeA n N€M+
z z z z
deg KF <222 deg N=21222
(N, F)=1
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STEP 1: Let us consider the case when z; 425 < % deg F'. By using the well known
bound that d(N) <, |N|¢, we have that

> > d(N)d(KF + N)

KeM NeM
1122 cdeg KF<z 42, de8 N (2}\1/-;‘2)2 deg KF
€
< (q“q”) ) > 1

KeM NeM
21+22 <deg KF<z+22 deg N (i\17+z)2—1degKF

O D S

KeM
%<degKF§zl+zz
<<q21q22 32+ 2
- |F|
o 1+e 1
<< < 1 2) —

As for the sum

> S AN)(KF + N),
KeA NeM
deg KF< 21;@ deg N= 21‘2FZ2
(N,F)=1

we note that it does not apply to this case where z; + 2z < %degF because
deg KF' > deg F > %%, which does not overlap with range deg KF' < 2%
in the sum.

Hence,

21 2 e 1
Z 1 < <qlq2) W

A,B,C,DeM
deg AB=2z1
deg CD=2z2

(ABCD,F)=1

AC=BD(mod F)
AC#BD

STEP 2: We now consider the case when z; + 2o > deg F.

STEP 2.1: We consider the subcase where 21+22 <deg KF < ZI“Q . This allows
us to apply Lemma 4.2.8 for the first relation below

> Z d(N)d(KF + N)

KeM 3( ) deg N= M —deg KF
Z1+22 217“2 eg Z1+Z2 eg
<deg KF< (N,F)=1
1 1 d(H)
21 7 2 N
<Lqq? (21 + 22) IF] Z K| Z |H|
KeM HI|K
21;22 <deg KF<M deg HSM
1 d(H)
21 .29 2 — 7
<P (n+ 2 Y Z
F |H|
| | KeM HIK
degKSZH-ZQ
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:qz1q22(21 +Z2)2% Z @ Z L

Fl = Hl & K
deg H<z1-+22 deg K<z1+22
H|\K
o 1 d(H
oy X
degggjz\f—h@
1
<<qz1q22(z1 +z2)3m.

STEP 2.2: Now we consider the subcase where W < deg KF < z1 + z5. We
have that

> > d(N)d(KF + N)

KeM NeM

) cdeg K P < 2, VB N2 b2 Heg K
- ¥ 3 d(N)A(KF + N)
NeM KeM
deg N< lezz deg KF=z1+22—deg N
(N,F)=1
< E d(N) E d(M),
NeM MeM
deg N< 21‘:22 deg(M—X(N))<z1+zg—degN
(N,F)=1 M=N(mod F)

where we define X () = Ts+z2-deeN \We can now apply Theorem 2.1.1. One may
wish to note that

3 319
y=21+ 20— deg N > 1(21 + 29) > Zl_OdegF

and so
40
deg FF < —y = (1-—
gl < y=(1-a)y,
where 0 < a < %, as required. Hence, we have that

> > d(N)d(KF + N)

s KeM NeM
(212_2*2) <deg K F<z 42, 98 N=(Z]{7+FZ)2;1deg KF

2142 L d(N)

deg N< %
(N,F)=1

<0t ) ( 2 ﬁ)

NeM
deg N<z1+22

1
<<qz1qz2(zl + ZQ)SW‘

STEP 2.3: We now look at the sum
> > d(N)A(KF+N).

KeA NeM
deg KF< 21-522 deg N= 21'522
(N,F)=1
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Note that this is zero if z; + 25 is odd. So, we assume it is even. In particular, this
means that deg K F < 2322 is equivalent to deg KF < 232 — 1. Now, by Lemma
4.2.10 we have that

Z Z d(N)d(KF+N)<<q¥(Z1+Zz)2 Z Z_

KeA NeMm KeA  HIK
deg KF< 21;22 degN:ZI;rz2 deg KF<=1=2 zl+22
(N,F)=1
z1+= d H
EACEE D VR D DR
i || i
degH<%—degF—1 degKS%—degF—l
H|K
| d(H) L1
:qz1+z2 (21 + 22)2— Z 2 < qZ1+Z2 (Zl + Z2> IF AN
o2 7]

deg H<¥—deg F-1

STEP 2.4: We apply steps 2.1, 2.2, and 2.3 to (4.20) and we see that

1
Z 1 <<qz1qzz(zl _i_Z2)3ﬁ

A,B,C,DeM ¢

deg AB=2z;

deg CD=xz2
(ABCD,F)=1

AC=BD(mod F)
AC#BD

for zy + 29 > deg F. O
In fact, we can prove the following, more general Lemma.

Lemma 4.3.2. Let F' € M, 21, 22 be non-negative integers, and let a € F;. Then,
for all e > 0 we have that

1+e€
Z 1 < ﬁ <q21 qZQ) Zf 21+ 29 < deg F

A,B,C,DEM < ﬁqzlq@(zl +2)?  if 24 2 > degF

deg AB=2z;

deg CD=2z2

(ABCD,F)=1

AC=aBD(mod F)
AC#BD

Proof. The case where a = 1 is just Lemma 4.3.1. The proof of the case where
a # 1 is very similar to the proof of Lemma 4.3.1. The main difference is when
deg AC = deg BD. Again, we would have that deg AC' = deg BD = % and
AC = KF +aBD, but instead of K being in A and deg K F' < deg BD = Z“LZQ , we
would have K € (1 —a)M and deg KF = deg BD = 232, Hence, in Step 2 3, we

would use Lemma 4.2.11 instead of Lemma 4.2.10. O

Lemma 4.3.3. Let R € M and define zp := deg R — log, 2«(R) - Also, let a € Fy.
Then,

1
Z 1(E)o(F) Z m

EF=R A,B,C,DeM
deg AB<zp
deg CD<zpg

(ABCD,R)=1
AC=aBD(mod F)
AC#BD

<|R|(deg R)3 < ¢*(R) H (%) (deg R)*(log deg R)®.
P|R
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Proof. The second relation follows easily from (A.20). So, we proceed to prove the
first relation. We apply Lemma 4.3.2 with ¢ = 5—10 to deduce that

1
2 |ABCD|z

A,B,C,DeM
deg AB<zgp
deg CD<zp
(ABCD,R)=1
AC=aBD(mod F)
AC#BD
1 21 .29 %—H 1 2Lz 3
<<m Z <QQ> +W Z q2q? (21 + )
21,22<2R 21,22<2zR
21 +22<E degF 19 deg F<z1422<2deg R
1 2 2 1 1 3
degR 2 q7% K + —q¢**(deg R)".
< w1 X T et e (e
So,
ORI I DE——
EF=R A,B,C,DEM |ABCD|>
deg AB<zp
degCD<zp
(ABCD,R)=1
AC=BD(mod F)
AC#BD
<g(dexB)’ Y n(E) + Y lu(E) 2
EF=R EF=R ’F’

<q**(deg R)*2“"®) + |R| < |R|(deg R)”,

where the second-to-last relation uses the following.

()
2 e \F\m 2

<ZZ:M<E>¢<F>¢<R>EFZRu %( )1‘%@%)
o 2 H( |1_1)—¢<R>¥(l+|P|1_1)—¢<R>£> o

4.4 The Fourth Moment

We are now in a position to prove Theorem 2.2.3, which we restate for ease of
reference.

Theorem. Let R € M\{1}. Then,

5 u(1)

1—q! (1- [P 1) ] w(R) + (log deg R)S
D “R),HR< e )<degp”) (”O(\/ dog I ))
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Proof of Theorem 2.2.3. Let x be a primitive Dirichlet character of modulus R €
M\{1}. By lemmas A.1.2 and A.1.3, we have that

1 2 X(A)X(B)
‘L<§7 X)‘ =2 ABZGM W + c(x) = 2a(x) + 2b(x) + c(x),
deg AB<deg R

where
zp :=deg R — logq(QW(Q))

o X(A)X(B)
A,BEM
degABng

x(A)x(B)
b(x) = > .
A,BEM |AB|z
zr<deg AB<deg R

and c(x) is defined as in (A.8). Then,

Y L(%»c)r =3 <2a(x) +2b(x) +C(X)>2-

x mod R x mod R

We will show that Z in la(x)|* has an asymptotic main term of higher order
th ) )|? and )|2. From this and the Cauchy-Sch
an Z o X)|? an Z X)|?. From this and the Cauchy-Schwarz

inequality, we deduce that Z
X

totic formula.

in ( )|? gives the leading term in the asymp-

One may ask why we break the moments up into these three pieces. To answer this,
consider the proof of Lemma 4.3.3 (which we will use to address the off-diagonal

terms of Z* dR|a(x)]2 ). There, we made use of the following calculation:
X Mo

¢ |u(EB)| = 2 = |R|.

E|R

We can see that by using zp instead of deg R, we ensure that there is cancellation
with 3 p|n(E)], and this is crucial to ensure that our error term is of lower order
than the main term.

Naturally, one asks how we then deal with the sum Z* |b(x)|?, which in-

x mod R

volves the range zp < deg AB < deg R. Here, we replace the sum Z* iR with
X Mo

> ymodr- Lhis is helpful because we can now avoid the . p[u(E)| factor, but it

does mean we are overestimating the contribution of Z ClR|b()<)|2. This, how-
X Mo

ever, is mitigated by the fact that the range zzp < deg AB < deg R is relatively
small, and so we are left with a lower order term, as required.

So, essentially, as is often the case in analytic number theory, we break the sum into
two smaller sums where we can apply a different method to each smaller sum. With

regards to the sum Z dR\c(x)P, this is simply an outcome of our application
X MO
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of the functional equation that needs to be addressed separately as it does not “fit”

nicely with the other two sums.

STEP 1: We have that

Z* |a(X)|2 _ Z* Z X(AC)Y(BD)
x mod R xmod R A,B,C,DeM |ABCD‘§
deg AB<zp

degCD<zpR

1 *
Y. ———5 > X(AO)X(BD)
|ABCD|z {5

A,B,C,DeM
deg AB<zp
deg CD<zgr

. mﬁﬂégumwx

A,B,C,DeM

deg AB<zg F|(AC—-BD)
degCD<zgr
(ABCD,R)=1

where the last equality follows from Lemma 1.4.5. Continuing,

* 1
2
T la)P= > wEWFE) Y ———
xmod R EF=R A,B,C,DeEM |[ABC'D|z
deg AB<zpR
degCD<zp
(ABCD,R)=1
F|(AC-BD)
1 1
= Z M(E)(b(F) Z T+ Z ILL(E>¢(F) Z 1
EF=R A,B,C,DEM |[ABCDJ>  gr=p A,B,C,DEM |ABCD|?
deg AB<zp deg AB<zgp
deg CD<zgp degCD<zp
(ABCD,R)=1 (ABCD,R)=1
F|(AC—BD) F|(AC-BD)
AC=BD AC#BD
1 1
(T uwomn) Tl Y amer S
<EF:R A,B,C,DEM |[ABCDI> g A,B,C,DeEM |[ABCD|?
deg AB<zpR deg AB<zp
deg CD<zp deg CD<zp
(ABCD,R)=1 (ABCD,R)=1
AC=BD F|(AC—BD)
AC#BD

(4.21)

STEP 1.1: We will look at the first term on the far RHS of (4.21). Since AC = BD,
we can write A= GU,B=GV,C = HV,D = HU, where G, H,U,V are monic and
U,V are coprime. Let us write N = UV, and note that there are 2*0Y) ways of
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writing N = UV with U,V being coprime. Then,

>
AL
A,B,C,DEM |[ABCD|2
deg AB<zpR
degCD<zp
(ABCD,R)=1
AC=BD
1 2w() 1\°
= > w2 Wl X @
e GOV 2o T\ & T
U,V)=1 eg N<zp zp—deg N
g AUV o (NR)=1 G
deg H2UV <zp
(GHUV,R)=1
2w(N) 1)? 2w(N) 1)?
= > @)t X > @)
Ml X G N G
W\ & @t & W &
de]%/ésfff deg GSM ZR <]€e]§ JXISZR deg GSM

(4.92)
where zg' = deg R — log, 9°(%).

Let us look at the first term on the far RHS of (4.22). We can apply Corollary A.3.3
because r = W > log, 3@ This gives

O
NeM ’N’ GeM ‘G’
deg NSZR/ deg G< zngegN

(N R)=1 (G,R)=1

2 w(N) i
:((gT]];)) Z 2|N| (,zR—degN—{—O(lOgW(R)))
NeM
deg N<zp'

(N,R)=1

R\’ 9w(N) , 4.23
:(%) Z ] ((ZR —degN)2+O(degRlogw(R))> (4.23)
NeM
deg N<zp'
(N,R)=1

gt (AP 4
I (e ) ceen

+0 (H{ <(11%];‘|__11)3) ((deg R)*w(R) + (deg R)*log deg R)) ;

where the last equality follows from Lemma 4.2.4 and Lemma 4.2.7.

Now we look at the second term on the far RHS of (4.22). Because zg' < deg N < zp,
we have that deg G < log, (i)w(R). Using this and Corollary A.3.3, we have that

V2
1 1 R
& 1 GET())H 7]
deg GLER—B— deg G<log 3 Wik
(G.R)=1 GRS
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Also, by similar means as in Lemma 4.2.6, we can see that

9w(N) 9w(N) B des B

< _ .

P
ZRI(S]\lee}%)]Xlng zr'<deg N<zp

Hence,

I

NeM GeM
2r'<deg N<zp deg G< ZR—gegN
(N,r)=1 (G,R)=1

where the last equality uses (A.21).

By (4.22), (4.23) and (4.24), we have that

(X wman) ¥ m

A,B,C,DeM
deg AB<zpR
degCD<zp

(ABCD,R)=1

AC=BD

1—q !, (1— 1P s
24—§¢ (R)ll:!z (W>(degR)

+0 ((b*(R) H ((11:_’|—PP’|__1)) <(deg R)*w(R) + (deg R)*log deg R)) :

PIR

STEP 1.2: For the second term on the far RHS of (4.21) we simply apply Lemma
4.3.3. From this, Step 1.1, and (4.21), we deduce that

S a2

x mod R
(L= 1P)’

l—qg ', 4
=5 ¢ <R>g(w)<degm

+0 <¢*(R) H (w) <(deg R)*w(R) + (deg R)*(log deg R)6>> .

-1
PiR 1+ |P|
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STEP 2: We will now look at > _JBOOI?. Using Lemma 1.4.4, we have that
X mo
* 1

DO Y bP=6®) Y ———

x mod R x mod R A,B,C,DeM IABCD| 2
zr<deg AB<deg R
zr<deg CD<deg R

(ABCD,R)=1

AC=BD(mod R)

1 1
=¢(R) -+ 6(R) S
A,B;EM |ABCD|z Z |ABCD|?

A,B,C,DEM

zr<deg AB<deg R zr<deg AB<deg R
zp<degCD<deg R zr<degCD<deg R
(ABCD,R)=1 (ABCD,R)=1
AC=BD AC=BD(mod R)

AC#BD

(4.25)

STEP 2.1: Looking at the first term on the far RHS, we apply the same technique
as in (4.22) to obtain

1
R 2., TABCDE

A,B,C,DeM
zp<deg AB<deg R
zr<degCD<deg R
(ABCD,R)=1
AC=BD
( ) Qw(N) 1 2
de(g]{/]\f;)d_e%R M<deg G<M
o (G.R)=1 (4.26)
9w(N) 1\2
<O(R)Y =+t > —
[N G|
NeM GeM
degNij’ w<degg<w
(N,R)=1 e
2
9w(N) 1
zr'<deg N<deg R deg G<M
(N,R):l (G,R):l

where zg' := deg R — log, 9%

We look at the first term on the far RHS of (4.26). By Corollary A.3.3, we have
that

N

GeM GeM GeM
zngegN<deg G< deg RgdegN deg G< deg R;degN deg GS zngegN
(G,R)=1 (GvR):l (G,R)=1
R R
<<%<w(R) +logw(R)) < %w(}%),

and so

w S (2 @)

NeM GeM
de]gVNgjlf’ zR_gegN<degG’<d°gRgd°gN
(N R)= (G.R)=1
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¢<R>)3 2 20)
R R
<rl(Gap ) ) P
deg N<zpg'
(N,R)=1
¢(R) ’ 2 1_|P‘_1 2
(o) < L () (s

For the last relation we applied Lemma 4.2.7.

Now we look at the second term on the far RHS of (4.26). Because zg' < deg N <

deg R, we have that w < log, 9“5 Hence, using Corollary A.3.3 and
Lemma 4.2.7, we have

S = G S )
zg'<deg N<deg R deg G< deBFi—deg N

(N, R)=1 (G,R)=1

R 3
<Inl( ) 3
NeM
deg N<deg R

(N,R)=1

P|R

Qw(N)
[V

Hence, by (A.22),

an 3 tameo <5 T (oo

A,B,C,.DeM P|R
zr<deg AB<deg R
zr<degCD<deg R
(ABCD,R)=1
AC=BD
3
1-[P|")
(R (— deg R)3w(R).
<o (BT (“3rpr ) des BYw(R)

PIR

STEP 2.2: We now look at the second term on the far right-hand-side of (4.25):

1
¢(R) > [ABCD|:

A,B,C,DeM
zp<deg AB<deg R
zr<degCD<deg R
(ABCD,R)=1
AC=BD(mod R)
AC#BD
]_ z1+z29
om Y Y e T e
zr<z1,22<deg R (ql 2)2 A,B,C,.DeEM zp<z1,22<deg R
deg AB=z;
deg CD=xz2
(ABCD,R)=1
AC=BD(mod R)
AC#BD
—1\3
3 (1_|P| ) 3
<|R|(degR)” < ¢"(R ——— | (deg R)’w(R).
IR|(degR)” < ¢"(R) ] A ) (Ges Ry (R)

P|R

(4.27)
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The second relation follows from Lemma 4.3.1 with F' := R. Indeed, for ¢ > 2%°, we
have

19
21+ 29 > 2z = 2deg R — 2log, 2¢(R) > 92 deg R(1 — log, 2) > 10 deg R;
and for ¢ < 22° we use Lemma A.2.3 to obtain
deg R 19
> 925 = 2deg R — 2log, 29 — 24 R-O(—) > degR
At 2 2k ‘8 84 8 logdeg R 10 °®

for all deg R greater than some constant d that is independent of ¢q. There are a
finite number of cases where ¢ < 2%° and deg R < d, and so the second relation of
(4.27) holds for them too.

STEP 2.3: Hence, we see that

2 Lprl):s e 3w
XII%;RV) WP <ot )Igj ( 1+ [P )(d g R)°w(R).
PR

STEP 3: We will now look at »-° 4 rlc(x)|*. We have that

STl < Y el = Y et = Y e+ Y le(P

x mod R x mod R x mod R x mod R x mod R
X even X even
Now,
o - 1
x mod R xmod R A,B,C,.DeM |ABCD‘ 2

deg AB=deg R—1
deg CD=deg R—1

1 1
=¢(R) > ABCD[S + o(R) > [ABCD|E

A,B,C,DeM A,B,C,DeM
deg AB=deg R—1 deg AB=deg R—1
deg CD=deg R—1 deg CD=deg R—1

(ABCD,R)=1 (ABCD,R)=1

AC=BD AC=BD(mod R)
AC#BD

For the first term on the far RHS we have that

1L 2¢/(N) 1\?
2 ABCD| ~ 2 W( 2, |_G|>

A,B,C,DeM NeM GeM
deg AB=deg R—1 deg N<deg R—1 deg G= deg R—deg N—1
deg CD=deg R—1 2
(ABCD,R)=1
AC=BD
Qw(N) 9
= —— < (degR)".
Z V] (deg R)

NeM
deg N<deg R—1

For the second term we have that

1 _q |R)| 3
2 |ABCD|: |R 2 1< ®(R)(degR) ’

A,B,C,DeM A,B,C,DeM
deg AB=deg R—1 deg AB=deg R—1
deg CD=deg R—1 deg CD=deg R—1

(ABCD,R)=1 (ABCD,R)=1
AC=BD(mod R) AC=BD(mod R)

AC#BD AC#BD
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where we have used Lemma 4.3.1. (Strictly speaking, with regards to our application
of Lemma 4.3.1, we have 2(deg R — 1) > degR When deg R > 20. When deg R <
20 we can apply Lemma 4.3.1 for the case 21+ 29 < degR with € = 20, and we
still get the desired result, including the cancellation of the ¢ factor). So,

Z lc(X)? < |R|(degR) < gb*(R)H (%) (deg R)*(log deg R)S.

x mod R P|R

Similarly, by using Lemma 4.3.2 for the even case, we can show, for a = 0, 1, 2, that

Z Z X(AC)X(BD)
1
xmod R A,B,C,DEM |ABCD| 2
deg AB=deg R—a
deg CD=deg R—a

<o [ () o my0og aes

P|R
and
3 3 X(AC)X(B f?)
xmodR A,B,C,DEM |ABCD| 2

X even deg AB=deg R—a
deg CD=deg R—a

<¢*(R) H ((1_|—P|_)) (deg R)*(log deg R)°.

—1
PiR 1+ |P|

Hence, by using the Cauchy-Schwarz inequality, we can deduce that

> el < o [T (T30 ) s mosa

x mod R P|R

STEP 4: From steps 1 to 3, and the use of the Cauchy-Schwarz inequality (as
described at the start of the proof), the result follows. O
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Chapter 5

The First, Second, and Fourth
Moments of Derivatives of
Dirichlet L-functions with Prime

Modulus

In this chapter we prove results on moments of derivatives of Dirichlet L-functions
at the central value, where we average over characters of a prime modulus ). For a
discussion of the results and their relation to the work of others, we refer the reader
to Section 2.3.

5.1 The First and Second Moments of Derivatives

In this section we prove Theorems 2.3.1 and 2.3.2. First we require a lemma.

Lemma 5.1.1. For all positive integers k we have that

degQ—1

n 1 1 _ 1
> iyt = e @)l + 0 (e @I ).
n=0 2 -

Proof. We have that
deg Q—1
S
n=0
deg Q—1
1 L ntl kon
= n 2 —ntg2
. % ( q q)
1 deg Q—1 1 deg Q—1
=7 > ((er)kqnTH —nkq%) — — > <(n+1)"“q"TH —n’“q"TH)
qz — 1 n=0 1 = 1 n=0
1 k—1 k deg@—1 )
1 i ntl
~ e Q) +o( X (Hawar Y o)
- i=0 n=0
1 1 _ 1
——p e Q)01 + 00 (e Q) 1k )

78



5.1. THE FIRST AND SECOND MOMENTS OF DERIVATIVES

We now prove Theorem 2.3.1, which we restate for ease of reference.

Theorem. For all positive integers k, we have that

@ 3 L(k)(%’x):—(—llogq)k (deg?)k+0k((logq)kw)_

x mod Q q- -1 |C2|2 |62|§
XFX0
Proof of Theorem 2.3.1. We can easily see that
deg Q—1
L®)(s,x) = (—log q)"* Z nfg Y x(A),
AeM
deg A=n
from which we deduce that
1 (1 logq iy -
Q) > L (@X) Z D DD BEPIEY
xmod Q =1 AeM xmodQ
X#X0 deg A=n xzxo
logq k deg Q-1
- 2 et )
AeM
deg A=n
—log q)* (deg Q)* deg Q)*1
gz —1 Q2 Q2

For the second equality we used Lemma 1.4.4, and for the last equality we used
Lemma 5.1.1 and the fact that ¢(Q) = |Q| — 1 (since @ is prime). O

We now prove Theorem 2.3.2, which we restate for ease of reference.

Theorem. For all positive integers k we have that

1 1 2 B (log q>2k
mxgg‘m (5’X)‘ = o 1 es @ +0((log ) (des ).
XF#X0

Proof of Theorem 2.3.2. For positive integers k we have that

deg Q—1
1 n
L("”<§,><) —log q)"* Z nfqgmr Y x(A)
AeM
deg A=n
log |A])¥y (A
:(—logq)k Z (qu’ ‘)7X< )’
AeM RIE
deg A<deg Q
and so
1 ’ 1\
_— Z L(k)( 7X>
¢( >Xm0dQ 2
XFX0
(10gQ)2k Z (1qu‘A’10gq’BDk Z —
= T xX(A)x(B).
¢(Q) A,BEM |AB| 2 xmod Q
deg A,deg B<deg @ X7X0
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We now apply Lemma 1.4.4 to obtain that

XFX0
gy o BT o g~ o allos )
AeM |A| (b(Q) A,BEM |AB|%
deg A<deg Q deg A,deg B<deg Q

For the first term on the RHS we have that

2k deg@-1
S LA L e 0.
AeM

2k+1
deg A<deg Q

n=0
where the final equality uses Faulhaber’s formula. For the second term we have that

L (log,|A|log,|B])" 1 (degQ_l k 3)2
Qe A @l &

A,BEM n=0
deg A,deg B<deg Q

| SR N2 EIn2 "
<o (@@ 3 af) < i (esQ)Ql) < s Q)

The result now follows. O]

n=0

5.2 Fourth Moments of Derivatives: Expressing
as Manageable Summations

In order to prove Theorem 2.3.3, we will need to express our L-functions as shortened
sums by using the functional equation. We do this in this section. We begin with
the odd character case.

Lemma 5.2.1. Let x be an odd character of modulus QQ € P, and let k be a non-
negative integer. Then,

1
k) (=
L <2’X)
(fk(deg A,deg B,deg Q) + go( deg A, deg B, deg Q))X(A)Y(B)
|AB]

)72k 2

(logq

- >

A,BeM
deg AB<deg Q

Z ho(deg A, deg B, deg Q) x(A)x(B)
ABJ

+

)

deg AAéiiﬁgQ— 1
where
fr(deg A, deg B, deg Q) =(deg A)¥(deg B)* + (deg Q — deg A)*(deg Q — deg B)*;
gox(deg A, deg B,deg Q) =(deg Q — deg A — 1)¥(degQ — deg B — 1)*
— (deg @ — deg A)*(deg Q — deg B)";
th(deg A, deg B, deg Q) = — (degQ — deg A — 1)*(deg Q@ — deg B — 1)".
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5.2. FOURTH MOMENTS OF DERIVATIVES: EXPRESSING AS
MANAGEABLE SUMMATIONS

Remark 5.2.2. The “O” in the subscript is to signify that these polynomials apply
to the odd character case. It is important to note that govk(degA,deg B, deg Q)
has degree 2k — 1, whereas fk(deg A, deg B, deg Q) has degree 2k (hence, the later
ultimately contributes the higher order term); and that all three polynomials are
independent of q.

Proof. The functional equation (1.15) gives us that

deg Q—1 dos 01 deg Q—1
D L)@ =W)g 2 ()= Y Lu@)(@)"
n=0 n=0
degQ—1
_ —deg 01 \ L (¥ 1—s\degQ—n—1
=Wx)g 2 Y. L. :
n=0

Taking the k' derivative of both sides gives

deg Q—1
(—loggq)* > n*L.(x)(q*)"
n=0
tex O deg Q—1
=(—log)'W(x)g~ "> Y (degQ—n—1)FLy(x)(¢g'*)*=< "
n=0

Let us now take the squared modulus of both sides. In order to make our calculations
slightly easier, we restrict our attention to the case where s € R. We obtain

(log ¢)** 2degf_2 ( > z”fj’“Lxx)Lj(x)) (g%)"

n=0 i+j=n
0<i,j<degQ

)Qk —deg Q+1

=(logq)™"q
2deg Q—2
> (3 er@—i— 1w Q=i = DLOLD ) (g
n=0 i+j=n
0<i,j<degQ
Both sides of the above are equal to ‘L(k)(s, X)‘2- By the linear independence of

powers of ¢~*%, we have that ‘L(k)(s, X)‘Q is the sum of the terms corresponding to
n=0,1,...,deg@ — 1 from the LHS and n = 0,1,...,deg@ — 2 from the RHS.
This gives

_ 2
(log ) ~**| LM (s, x)|
deg Q—1

-3 (X HLwnm)er
n=0 i+j=n
0<i,j<deg @
deg Q—2
_i_qfdegQJrl Z ( Z (degQ —i— 1)k(degQ _] _ 1)kLz<X)Lj<¥)> <qlfs)2dengn72'
A o

We now substitute s = % and simplify the right-hand-side to obtain

posa #1010
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DERIVATIVES OF DIRICHLET L-FUNCTIONS WITH PRIME MODULUS

deg Q—1

= > ( > z’kﬁLxx)Lj(y))q-?

0<i,j<degQ

deg Q—2
DY (T ewQ-i- 0@ - LOLE o

i+j=n
0<i,j<deg @

|3

deg Q—1
= > ( > [i’“jk + (deg@Q — i — 1)*(deg Q — j — 1)’@} Li(X)Lj(y))q—
" Oéi;ifiggQ
— > (degQ—i—1)*(deg @ — j — D Li(x) L; (Vg

i+j=deg Q—1
0<i,j<deg Q

w3

_deg@Q-—1
2

Finally, we substitute back L, (x) = Y. aem x(A) to obtain the required result. [
deg A=n

As the functional equation for even characters is more complicated, we must first

prove a lemma before being able to express the associated L-functions as shortened
sums.

Definition 5.2.3. For all s € C and all non-trivial even characters, x, of prime
modulus we define

L(s,x) = (¢ = 1)L(s,x). (5.1)

Lemma 5.2.4. For all non-trivial even characters, x, of prime modulus and all
non-neqative integers k we have that

7 (1 X) :;m)(l x) L1 ki(_logq)k—ipk( ¢ )Eu)(l x)
9’ q%—l 9’ q%—lizo K q%—l 9’
1 b q%
e () G
A ZO( 89)" "pr, pa 5 X

q% q% k1 k q%
pk,i( T ) =—— Z ( )pﬂ(l—) fori < k.
qz — 1 g2 — 155 \J qz — 1

1
Remark 5.2.5. Because 1 < 22— < 4 for all prime powers q, we can see that the

q2-1
1
q

polynomials pk,i( u 1) can be bounded independently of q (but dependent on k and
q% - ,

i of course). The factors (—logq)*~¢ are of course still dependent on q, as well as k

and 1. These two points are important when we later determine how the lower order

terms in our main results are dependent on q.
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Proof of Lemma 5.2.4. We prove this by strong induction on k. The base case, k =
0, is obvious by Definition 5.2.3. Now, suppose the claim holds for j = 0,1,..., k.
Differentiating, k£ 4+ 1 number of times, the equation (5.1) gives

k
) k 1 . .
LD (s, x) = (¢ = DLED(s,0) + ¢ Y ( B )(— log q)* LY (s, x).
j

J=0

Substituting s = % and rearranging gives

1 k
1 1. 1 ¢ k+1 1
L(k+1) (_’ > — —L(k+1) (_7 > . —lo k+17_]L(j) (_7 )
%) = 1 5 X q5—1j§0 j (—logq) 5 X

We now apply the inductive hypothesis to obtain

1
L(k+1)<_ )
2>X
1 A(k+1)<1 X>
q%—l 2’
qz k:—i—l) ft1 ! g2 iy (L
1 logq ! 1 _logq] lp z< 1 )Ll <_7X>
S () remar S s () 0
1 . 1
=— (k+1)<_’X>
gz —1 2
k 1 k 1
1 » qz k+1 q2 A
+ —log q)"*! 1(— ; < . )pn-(—))L(’)(—,x)-
q5—1;< ) q2—1; ) g 2
The result follows by the definition of the polynomials py; . O

Lemma 5.2.6. For all non-negative integers k, and all non-trivial even characters
x of modulus Q) € P, we have that

1 A 1
1 L(k) o)
(log ¢)*(q2 — 1)? (2 X>
Z fr ( deg A, deg B, deg Q) + 9Ek ( deg A, deg B, deg Q))X(A)X(B)

1
A,BEM |AB|>
deg AB<deg Q

DY

deg Q—2<n<deg@Q A,BEM
deg AB=n

2

3 hggn(deg A, deg B, deg Q) x(A)X(B)
|AB|z

Y

where
fr(deg A, deg B, deg Q) = (deg A)*(deg B)* + (deg Q — deg A)*(deg Q — deg B)*,

and gEJg(deg A, deg B, deg Q) , hE7k7n(deg A, deg B, deg Q) are polynomials of de-
grees 2k — 1 and 2k, respectively, that are symmetric in deg A,deg B, and whose
coefficients can be bounded independently of q.

Proof. Let us define L_;(x) := 0, and recall from (1.13) that Lgego(x) = 0. We can
now define, for n =0,1,...,deg @,

M, (x) := La(X) — ¢Ln-1(X)-
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Then, the functional equation for even characters, (1.14), can be written as

deg Q deg @

= M) =W g 2 M@ (5.2)

Note that both sides of (5.2) are equal to L(s, ). We proceed similarly to the odd
character case. First we differentiate, & number of times, the equation (5.2); and
then we take the modulus squared of both sides. . In order to make our calculations
slightly easier, we restrict our attention to the case where s € R. This gives

2deg Q
(log )™ 3 ( >0 MO0, m) (a)"
i OSZE%EZgQ
2deg Q
(Iqu degQZ ( Z deg Q — i)k(degQ _ j)kMi(X)Mj(Y)) (qlfs)Qdengn.
0<:J;J<ngQ

Now we take the terms corresponding to n = 0,1,...,deg@ from the LHS and
n=0,1,...,deg@ — 1 from the RHS to obtain

L®(s, )
deg Q
—(log9)™* > ( > ikj’“Mi(x)Mj@) ()"
" OSZj;%TiggQ
deg Q—1
(1qu —degQ Z ( Z degQ _ i)k(degQ . ])kMz(X)M](X)) (ql—s)QdegQ—n.
O<Z—;]<ngQ

Substituting s = % and simplifying the RHS gives

(3
deg Q—1
—tog* > (X (4 (epQ - 0 dew @ - ) MOOM 0 )
n=0 i+j=n
0<i,j<deg Q@

|3

L - _\ _deg@
+(logg)* > iNFEMOOM(R)g

i+j=deg Q
0<i,j<degQ

(5.3)

Now, we want factors such as L,(x) in our expression, as opposed to factors like
M, (x). To this end, suppose p(i, j) is a finite polynomial. Then,

degQ—1

Z ( 2_: p(i,j)Mi(x)Mj(Y))q‘g
o 0<i,j<deg Q
=2 ( > p(i’j)<Li(X) _qu‘—l(X)> (Lj(y) —qu_l(y)>)q—z
"0 it
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5.2. FOURTH MOMENTS OF DERIVATIVES: EXPRESSING AS
MANAGEABLE SUMMATIONS

=3 (X sinbonm e
n=0 i+j=n
0<i,j<degQ
deg Q—3
. . . _n=2
+ > ( > p<2+1a]+1)Li(X)Lj(X))q :
n=0 i+j=n
0<i,j<degQ
deg Q—2
.. . n-1
X (X s nneonm )
n=0 i+j=n
0<i,j<degQ
deg Q—2
. . _ _n—1
- Y (X s ninbonm e
n=0 i+j=n
0<i,j<degQ

Grouping the terms together gives

de§_1< > p(@j)Mi(X)MJ(y))q;

n=0 i+j=n
0<i,j<deg@

deg Q—1
= > Y|l L) =l 1) = aipli o+ 1,5) + p( )| L0 Li(R)a

n=0 i+j=n
0<i,j<deg @

- > apli+1Lj+ DLi(x)L(Xe

i+j=deg Q—2
0<i,j<degQ

n[3

_degQ-2
2

i .. . . . . _\ deg@-1
+ Y (q2p(m + 1) +q2p(i+1,5) —qp(i + 1,5 + 1>)Li(X)Lj(X)q E

i+j=deg Q—1
0<i,j<degQ

In the case where
p(i, j) = i*j* + (deg Q — i)"(deg Q — j)*
we have that
gp(i+ 1,7 +1) — ¢Zp(i,j + 1) — ¢2p(i + 1, 5) + p(i, 5)
(% = 12 (fuli,j,deg Q) + gi(i. j, deg Q) ).

where gp (7,7, deg @) is a polynomial of degree 2k — 1 whose coeflicients can be
bounded independently of q.

We can now see that (5.3) becomes

1 N
(1qu>2k(q% T (k‘)(é,X)
degQ—1
— Z ( Z (fk(i,j, deg Q) + gpi(i, 7, deg Q)>Li(X)Lj(Y))q_

n=0 i+j=n
0<i,j<deg@

deg Q
Py ( 3 hmn(z’,j,deg@)Lxx)Lj(z))q—’%,

n=deg Q—2 i+j=n
0<i,j<degQ

|3
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where hg (7, j, deg Q) is a polynomial of degree k whose coefficients can be bounded
independently of ¢. Finally, we substitute back L,(x) = > aem x(A) to obtain
deg A=n

the required result. O

5.3 Fourth Moments of Derivatives: Handling the
Summations

In this section we demonstrate some techniques for handling the summations that
we obtained in Section 5.2.

Lemma 5.3.1. Let Q) € P, and let pl(deg A, deg B, deg Q) and
pz(deg A, deg B, deg Q) be finite polynomials (which, for presentational purposes,
we will write as p; and py, except when we need to use variables other than deg A,

deg B, deg@Q). Then,

o 55, M5, M)

x mod Q A,BeEM C,DeM

XFEX0 deg AB<deg Q deg CD<degQ
1
- Z Lﬁ T Z Dipe - ?(Q) Z LQL
A,B,C,DeEM |ABCD| 2 A,B,C,DeEM ’ABCD| 2 AB.C.DEM |ABCD| 2
deg AB<deg @ deg AB<deg Q deg AB<deg Q
deg CD<deg @ deg CD<deg @ deg CD<degQ
AC=BD AC=BD(mod Q)
AC#BD
Proof. This follows by expanding the brackets and applying Lemma 1.4.4. O]

Lemma 5.3.2. Let p(deg A,deg B,deg C,deg D, deg Q) be a finite homogeneous
polynomial of degree d. Then,

Z p(deg A, deg B,deg C,deg D, deg Q)
A,B,C,DEM |ABCD|>
deg AB<deg Q
deg CD<degQ

'AC=BD

_ -1 d+4
=(1—¢ ")(deg Q) /117@7%7%20 p(a1 + as, a + aq, as + ag, as + as, 1)da1da2da3da4
2a1+a3z+as<1
2a2+a3+as<1

+ O, ((deg Q)*).

Remark 5.3.3. The subscript p in O, should be interpreted as saying that the
implied constant is dependent on the coefficients of p.

Proof. Consider the function f defined by
tl deg At2deg Btgdeg Ct4deg D

|ABCD|2

f(ti,ta, ts,ts) = Z

A,B,C,DeM
AC=BD

(5.4)

with domain |¢;| < %q’%. Note that AC' = BD if and only if there exist G, H, R, S €
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M satisfying (R,S)=1and A= GR, B=GS,C =HS, D= HR. Hence,

f(ti,ta, 13, ts)

- >

tldeg GRtheg GSt3deg HSt4deg HR

G,H,R,Se M ’GHRS’
(R,S)=1
Z tldeg GRtheg G5t3deg HSt4deg HR
G,H,R,Se M ’GHRS’
T 9.5
B q—l Z tldogGR—i-thdcg GS+1t3degHS+1t4dcg HR+1 ( )
\GHRS|

G,H,R,SeM

— § tlal+a3t2a1+a4t3a2+a4t4a2+a3

a1,a2,a3,a4>0

9

_ q—l § ’ t1a1+a3+1t2a1+a4+1t3a2+a4+1t4a2+a3+1

a1,a2,a3,a4>0
where the second equality follows by Lemma A.1.1.

Now, for i = 1,2, 3,4 we define the operator €2; := t,-d%_. For non-negative integers

ki1, ko, ks, ks we can apply the operator Q10,2055 to (5.4) and (5.5) to obtain

3 (deg A)" (deg B)**(deg C)**(deg D)*
|ABCD)|z

7hdeg At2deg Bt3deg Ct4deg D

A,B,C,DeM
AC=BD

— Z (al + a3)k1 (al 4 a4)k2 (a2 + a4)k3 (a2 + a3)k4t1a1+a3t201+a4t3a2+a4t4a2+a3
a1,a2,a3,a4>0

—q Z (ay + as + )" (ay + ag + 1) (ay + ag + 1% (ag + a3 + 1)™

a1,a2,a3,a4>0
.t a1+a3+1t d1+a4+1t a2+a4+1t az+az+1
1 2 3 4

=(1—q") Y (a1+a3)"(ar+ as)?(az + as)™(az + as)™

a1,a2,a3,a4>0

. tlm +as3 t2a1 +aq t3a2 +ayq t4a2 +as

+ q_1 Z (aq + ag)kl(al + a4)k2 (ag + a4)k3 (ag + as)k4

(a1,a2)=(0,0),(0,1),(1,0)
a3,a4>0

. tlal +a3 t2al +aq t3a2 +aq t4a2 +as .

From this we can deduce that if p(deg A,deg B,deg C,deg D, deg Q) is a finite ho-
mogeneous polynomial of degree d, then

Z p( deg A, deg B,deg C, deg D, deg Q) 4 deg Ay deg By degCy degD
T 1 2 3 4
A,B,C,DEM |ABCD|z
AC=BD

=(1-q") Z p(ar + as, a1 + as, az + as, az + ag, deg Q)

ai,a2,a3,a4>0

. tlal +as t2a1 +aq t3a2 +aq t4a2 +as

+q Z p(ar + a3, a1 + ag, as + ay, az + ag, deg Q)

(a1,a2)=(0,0),(0,1),(1,0)
az,a4>0
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. tlal +a3 t2a1 +aq t3a2 +aq t4a2 +as .

Now, we can extract and sum the coefficients of ¢,"1¢,%2¢5%¢,% for which i, + i <
deg @ and i3 + iy < deg ) to obtain

Z p(deg A,deg B,deg C,deg D, deg Q)

1
A,B,C,DEM |[ABCD|?

deg AB<deg @
deg CD<deg Q
AC=BD

=(1-q") Z p(ar + as, a1 + ag, as + as, az + ag, deg Q)

a1,a2,a3,a4>0
2a1+a3z+aqs<deg @
2a2+a3+aqs<deg @

+q71 Z p(al+a37a1+a4aa2+a47a2+a37degQ)

(al :a2):(0a0)7(071)7(170)
a3,a4>0
2a1+a3+as<deg @
2a2+a3+as<deg @

-1
=(1—-q) / a1,a9,a3,a4>0 p(al + as, a1 + aq, az + aq, as + as, deg Q)dalda2da3da4
2a1+a3z+as<degQ
2a2+a3z+as<deg Q

+O0p((deg Q)*°) + Oy ((deg Q)"?)

_ -1 d+4
= (1—¢ )(deg Q) /11,a2,a3,a4>0 P(al +asz, a1+ ag, Az + ag, Az + as, 1)da1da2da3da4
2a1+a3z+as<1
2a9+asz+ayg<l

+ O, ((deg Q)d+3) )
]

Lemma 5.3.4. Let p(deg A,deg B,deg C,deg D, deg Q) be a finite polynomial of
degree d. Then,

Z p(degA,deg B,deg C,deg D, deg Q)

1
A,B,C,DEM |ABCD| 2

deg AB<deg Q
deg CD<deg Q
AC=BD(mod Q)
AC#BD

<, (deg Q)™

Proof. Because deg AB,deg C'D < deg @, we have that

p(deg A, deg B, deg C, deg D, deg Q) <, (deg Q)"

Hence,
Z p(degA,degB,degC,degD,degQ)
1
A,B,C,DEM |ABCD| 2
deg AB<deg Q
deg CD<deg Q
AC=BD(mod Q)
AC#BD
1 _z1tz9
<pldeg Q) > ———— =(deg Q) D g oL
A,B,C,DEM |[ABCD|? 0<21,z0<deg Q A,B,C,DEM
deg AB<deg Q deg AB=z1
deg CD<deg Q deg CD=2z2
AC=BD(mod Q) AC=BD(mod Q)
AC#BD AC#BD
(5.6)
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SUMMATIONS

We now apply Lemma 4.3.1 with € < % to obtain

DIV D S

0<z21,22<deg @ A,B,C,DeEM
deg AB=2z1
deg CD=z>
AC=BD(mod Q)
AC#BD

<<Tclg| 3 (qéﬁ)ﬂ*zuﬁ 3 ¢ (2 + 20)

0<21,22<deg Q 0<z1,22<deg Q
21+22§% deg Q z1+zg>% deg Q

<<%(deg Q)’ < (deg @Q)°.
The result follows by applying this to (5.6). ]
Lemma 5.3.5. Let p(deg A,deg B,deg C,deg D, deg Q) be a finite polynomial of
degree d. Then,
1 p(degA, deg B,deg C,deg D, deg Q)
9(Q) ZM [ABCDI}

deg AB<deg Q
deg CD<deg Q

Proof. Because deg AB,deg C'D < deg (), we have that
p(deg A, deg B, deg C,deg D, deg Q) <, (deg Q)"

<p (deg Q)d+2-

Hence,

1 Z p(deg A,deg B,deg C,deg D, deg Q)

1
NQ) 4 5o Dem |ABCD|:
deg AB<deg Q
deg CD<deg @
< (degQ)d< 3 1 )( 3 1 )
P o@Q \ LS 1ABE/\ 52, |CDP
deg AB<deg @ deg CD<deg @
(deg Q)* ( m+n>2 442
= ¢ > | <(deg@)".
@ \ 2,
n+m<deg Q

From Lemmas 5.3.1 to 5.3.5 we can deduce the following:

Lemma 5.3.6. Let Q) € P, and let pl(deg A,deg B, deg Q) and
pg(deg C,deg D, deg Q) be finite homogeneous polynomials of degree dy and ds, re-
spectively. Then,

o 5B, Mz, =)

x mod Q A,BEM C,DeM
XFX0 deg AB<deg Q deg CD<deg @

=(1— ¢ ")(degQ)*®*!

. /117a27a37a4>0 D1 (a1 + as, a1 + ay, 1)p2 (az + a4, ao + as, 1)da1da2da3da4
2a1+a3+as<1
2a2+az+as<l

+ Op1 D2 ((deg Q)d1+d2+3) :

89



CHAPTER 5. THE FIRST, SECOND, AND FOURTH MOMENTS OF
DERIVATIVES OF DIRICHLET L-FUNCTIONS WITH PRIME MODULUS

Similarly, the following can be proved:

Lemma 5.3.7. Let Q) € P, and let pl(deg A,deg B, deg Q) and
pg(deg C,deg D, deg Q) be finite homogeneous polynomials of degree dy and ds, re-
spectively. Then,

o 5,5, Mz, =)

x mod Q A,BeEM C,.DeM
X even deg AB<deg Q deg CD<deg @
X7FX0

—g 7 (deg Q)"+

' /L17a27a3,a420 pi(a1 + as, ay + as, 1) p2(az + as, az + as, 1)daydasdasday
2a1+az+as<1
2a2+a3+as<1

+ Opy o ((deg Q) +7).

The proof of Lemma 5.3.7 is similar to the proof of Lemma 5.3.6. We use Lemma
4.3.2 instead of Lemma 4.3.1.

We can similarly prove the following:

Lemma 5.3.8. Let Q) € P, let pl(deg A, deg B, deg Q) cmdpQ(deg C,deg D, deg Q)
be finite homogeneous polynomials of degree di and do, respectively, and let a €
{0,1,2}. Then,

o S5, M5, m)

x mod Q A,BEM C,DeM
XFEX0 deg AB=deg Q—a deg CD=deg Q—a
_ d1+d2+3
_Opupz ((deg Q) ) )

and

o 55, M5, m)

x mod Q A,BEM C,DeM
X even deg AB=deg Q—a deg CD=deg Q—a
XFX0
_ di+d2+3
_Op1 P2 ((deg Q) ) .

5.4 Fourth Moments of Derivatives

We are now equipped to prove Theorems 2.3.3 and 2.3.4. For ease of reference, we
restate Theorem 2.3.3:

Theorem. For all non-negative integers k,l we have that

1 1 1 2 1
Q) oz 2 29(50)] 29 (%)

XFX0
— (1 . q—l)(deg Q)2k+2l+4

. /M’%a&a@o fr (a1 + as, a1 + aq, 1)fl (ag + a4, a2 + as, 1)da1da2da3da4

2a1+a3+as<1
2a2+az+as<1

+ O ((deg Q)2k+2l+%> ,

2
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5.4. FOURTH MOMENTS OF DERIVATIVES

where for all non-negative integers i we define

fiw,y,2) =a'y" + (2 —2)'(z — y)".
Proof of Theorem 2.3.3. We have that

1 1 2 1 2
(k) (= OF
5(Q) 2. ’L (2’X>‘ ‘L (2’X>‘
x mod Q
XFX0
1 ‘ 1 2 1 2 1 1 2 1 2
- £ G () g () B
i@ 2 1 BRI I T z
x odd X even
XFX0
(5.7)
Using Lemma 5.2.1, we have, for the first term on the RHS, that
1 1 1 2 1 2
L (o))
ogq 2 2
s teegrm 2 [1 (G ’X
x mod @
x odd
Ly ( 5 (i + gou ) x(AX(B) Ly ho,kx<A>y<B>>
- A\ 1 1
¢( )xmon A,BEM |AB|§ A,BEM |AB|§
x odd deg AB<deg Q

deg AB=deg Q—1

(fz + 90,1>X(C)Y(D) hOJX(C)X(D)>

degCD<deg @ deg CD=deg Q—1

(5.8)
By using Lemmas 5.3.6 and 5.3.7, we have that

| (fi+ 904 ) X(AX(B)
o 2 I )

1
x mod Q A,BeEM |AB|2
x odd deg AB<deg @

| ( > (1 +go,l)x<c>x<D>>

1
C,DeM |OD|2
deg CD<deg Q
1 Z ( Z (fk; + go,k>X(A)Y(B)>
¢( )XmOdQ A,BEM ‘AB‘E
X7X0 deg AB<deg @

1
C,DeM |CDI>
deg CD<deg @

. < Z (fl + 9071>X(C)Y(D)>

1
x mod Q A,BeEM |AB|2
X even deg AB<deg Q
XF#X0

1 (fk + go,k)X(A)Y(B)
ECRA> )

1
C,DeM |CD| 2
deg CD<degQ

| ( > (1 +go,l)x<c>x<D>>
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= (1 - 2q71)<deg Q>2k+2l+4 /al,a27a37a4>0 fk (al + as, ay + Qy, 1)fl (CLQ + Qy, G2 + as, 1)
2a1+az+as<l
2a9+asz+tas<1

. da1 da2da3da4
+ Oue((des@+242)

Strictly speaking, Lemmas 5.3.6 and 5.3.7 require that the polynomials fj 4+ go » and
fi + go, are homogeneous, which is not the case. However, these polynomials can
be written as sums of homogeneous polynomials, with the terms of highest degree
being fi. and f;, respectively. We can then apply the lemmas term-by-term to obtain
the result above.

We now have the main term of (5.8). Indeed, for the remaining terms we can apply
the Cauchy-Schwarz inequality and Lemmas 5.3.6, 5.3.7, and 5.3.8 to see that they

are equal to Oy, ((deg Q)QHQH%). Hence,

Cb(lQ) (log q1)2k+21 ZQ ’L(k) (%7 X> ‘Q‘L(l) (%’ X) ‘2

x mod

x odd
= (1 - 2q71)<deg Q>2k+2l+4 /al,a27a37a4>0 fk (al + as, aq + Qy, 1)fl (CLQ + Ay, A2 + as, 1)
2a1+az+as<l
2a9+asz+tas<1

. da1 da2da3da4

+ OkJ ((deg Q)2k+2l+g> .
(5.9)

We now look at the second term on the RHS of (5.7). By using Lemma 5.2.6 and
similar means as those used to deduce (5.9), we can show for all non-negative integers
X even

7,7 that
An /1 ~on /1
i@ <_ > 76 <_ >
5 X 5 X
XFX0

= ¢ ' (deg Q)+ ** [Ll,@,ag,a@o filar + as, a1 + as, 1) fj(as + as, as + as, 1)

2a1+a3z+aqs<1
2a2+a3+as<1

2 2

1 1 1
$(Q) (log )* 2 (g5 — 1)4 2

x mod @

: daldagdagda4
+ 0 (deg QP2+,
Using Lemma 5.2.4 and the Cauchy-Schwarz inequality, we obtain that

¢(1CQ) (log q1)2k+21 Xr;(g ‘L(k) (%, X) ‘Q)L(l) (%, X)

X even
XF#X0

= ¢ (deg Q) /w,ag,%zo frlar + az, a1 + aq, 1) fi (a2 + as, as + az, 1)

2a1+a3+as<1
2a2+a3+as<1

2

. dCLl dCLQdCLg da4

+ O ((deg Q)2k+2l+§> _
(5.10)
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The proof follows from (5.7), (5.9), (5.10). O
We now proceed to prove Theorem 2.3.4:

Theorem. For all non-negative integers m we define

D,
1 1 1 1 4
= lim ‘L(m) (—, ) ’
oo T g 7 (@) et 2 7 (5
XFX0
= /1171127&3’(1420 <(CL1 -+ ag)m(al -+ a4)m + (1 — a1 — a3)m(1 — a1 — a4)m>
2a1+az+as<l
2a2+az+as<1
. <(a2 +a3)"(ag +ag)" 4+ (1 —ay —a3z)™(1 —ay — a4)m) da;dasdasday.

(5.11)

We have that

~ 16m?

as m —» 0.
First, we require a lemma.

Lemma 5.4.1. Let m > 8 be an integer. For all non-negative x we have that

(-2 <o

m — )
and for all z € [0,2m3] we have that

(1 — £>m > e_xe_gm_%
- >

Proof. By using the Taylor series for log we have that

T \m x T x
o (1= 2y = e 2t
og( m) o 2m  3m?2  4m3

Clearly, the RHS is < —x, which proves the first inequality. For the second inequality
we use the bounds on z to obtain that

x2+ x3 4 xt L <x2i<x>i_a@2 1
2m  3m?2  4m3 '“_mizo m/  m — £
4 ) 1
<| — ) <8m 3,
m3 —2m~3
from which the result follows. O

Proof of Theorem 2.3.4. Let us expand the brackets in (5.11) and multiply by m?.
One of the terms is the following:

m? CLl’%asmzo(l —a;—az)"(1—a; —ay)™(1 —az —az)™ (1 —as —aqg)™
2a1+az+as<1
2a9+a3z+as<1
- dajdagdasday
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a1 + ag\™ a; + ag\™ az + az\m az + ag\™
= [a1,a2,a3,a4>0 <1 o ) <1 N ) <1 N ) (1 B >
g m m m m

ajtaztags<m
2a2+az+as<m

. daldag dagda4,

where we have used the substitutions a; — 2. On one hand, by using Lemma 5.4.1,
we have that

ap + az\m ap + ag\™ ag + az\™m A + ag\m
ez (1= 7)) (120 (1202 ) (1202
112,03,a4 2 m m m m

2a1+az+as<m
2a2+4a3z+as<m
. daldagdagda4
a; +as\™m a; + ag\m as + as\m™m Ao + ag\™
> 1(1— 1— 1-— 1-—
0<a1,a2,a3,a4<m3 m m m m
2a1+az+as<m
2a2+az+as<m
- daydasdasday
L 1
_ 3 _
>e8m / e 2(‘”+a2+“3+a4)da1da2da3da4 —_— —
0<ai,a2,a3,a4<m3 16

as m — 00. On the other hand, by the same lemma, we have that

ap + az\m™ ap + ag\™ a9 + az\™ Ao + ag\™
a1,a2,a3,a4>0 <]' - ) (1 - > (1 - > <1 - )
e m m m m

2a1+az+as<m
2a2+az+as<m

- daydasdasday

1
S/ 6_2(“1+“2+“3+“4)daldagdagdcu —_— —
0<ai,a2,a3,a4<m 16

as m — 00. So, we see that

m4 al,ag,ag,a420(1 —a; — (lg)m(l —a; — (1,4)m(1 — a2 — (Zg)m(l — a2 — (Z4)m
2a1+a3+ags<1
2ag9+asz+as<1 12
. daldagdagda4 (5 )
— 1
16

as m — 0OQ.

Now, after we expanded the brackets in (5.11) and multiplied by m?, there were
other terms. These can be seen to tend to 0 as m — co. We prove one case below;
the rest are similar.

4 m m m m
m a17a27a37a420(1 —a; —a3)"(1 —a; —ag)™(az + az)™(ag + a4)™da;dasdazday
2a1+a3z+as<1
2a9+asz+as<1
4
m
4 m m
Sm ai,a2,a3,a4>0 (CLQ + a3) (CLQ + a4) < 4m )
2a14a3+ags<1
2az2+a3+as<1

where we have used the following: The maximum value that (as + a3)(az + a4) can
take subject to the conditions in the integral is at most equal to the maximum value
that f(z,y) := xy can take subject to the conditions z,y > 0 and x +y < 1. By
plotting this range and looking at contours of f(x,y) we can see that the maximum
value is ;. The result follows. O
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Chapter 6

A Random Matrix Theory Model
for Moments of Dirichlet
L-functions

Many of the results in this Chapter are based on the number field analogues in
[GHKO07] and [BKO7].

6.1 The Hybrid Euler-Hadamard Product Formula

In this section, we prove Theorem 2.4.1. That is, for primitive Dirichlet characters of
modulus R € M\{1}, we express L(s, x) as two factors. The first is a partial Euler
product, while the second is a partial Hadamard product (a product over the zeros of
the L-function). We will briefly give an intuitive explanation of how this is obtained.

We use the logarithmic derivative of our L-function. Namely we will use a function
of the form %%(s + aw, x), where s, w are variables and the details regarding
a and © are not needed at this time. We will integrate this function over an appro-

priate line.

Due to the i factor, this function has a pole at w = 0. With an appropriate contour
shift we can obtain its residue: £ (s, y).

The function also has poles at w = £ for all zeros, p, of our L-function. These can
be captured by our contour shift and we can obtain a sum over the zeros.

Of course, we require a product over the zeros, but this is obtained by integrating
our result and taking exponential: The sum over the zeros becomes a product, and
%(s,x) becomes L(s, x).

If we directly calculate our original integral of %%(3 + aw, ), without taking
contour shifts, and then integrate and take exponentials, we obtain an Euler prod-
uct. Equating this with the results we obtained by taking contour shifts, we obtain
our Hybrid Euler-Hadamard product formula.

The key is the function W%(s + aw, x): It allows us to obtain a sum over the
zeros via its poles, and this can be made into a product by reversing the logarithmic
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differentiation.

Now, before proving Theorem 2.4.1, we prove several lemmas.
Lemma 6.1.1. For all Dirichlet characters x and all Re(s) > 1 we have

__SX ZX

AeM

Proof. Taking the logarithmic derivative of

o032

PeP

gives

v, A(P)loglP| [, x(P) X(AAA)
=2 " pp (1 rP|s) P ey

pPepP AeM

Lemma 6.1.2. Let x be a non-trivial character. As Re(s) — oo,

Pisw=0.

Proof. As x is non-trivial, there is some maximal integer N > 0 with Ly (x) # 0.
Hence,

N
L(=s,x) = Y _ La(x)q" >, ¢V
n=0
and
N
L'(—s,x) = —logq Y _nLn(x)q" < ¢" ).
The proof follows. n

Lemma 6.1.3. Let X be a positive integer, and let u(x) be a positive C*®-function
with support in [e, e’ ™0 ], Let u(s) be its Mellin transform. That is,

and

1
u(r) = 5 /R i)

where ¢ can take any value in R (due to our restrictions on the support of u, we can
see that u(s) is well-defined for all s € C, and so, by the Mellin inversion theorem,
¢ can take any value in R). Then,

1’1(5)<<{||1+1

[s|+1

max,{|u/(7)|}e2R)  if Re(s) > 0
max,{ v/ (x)|}eRel®) if Re(s) < 0.
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Proof. We have, by integration by parts, that

—-X
14q
1

ii(s) = / : 2 lu(z)dr = — / : v (2)da.

s
If |s| > 1, then it is not difficult to deduce that the above is

< { i max {[u/(2)[}e2 R if Re(s) > 0

iy max {[u ()] }e™if Re(s) < 0.

X

If |s| <1, then, by using the fact that f;:q_ v (z)dz = 0, we obtain

elta™ 14+q™

i(s) :/x:e ) 1_8xsu’(x)dx: —/: ) (/y:1 ys_ldy)u’(x)dx

—-X

1+q

<[ Wis < max{lua)])

from which the result follows. O

Lemma 6.1.4. Let X be a positive integer, and let u(z) be a positive C*-function
with support in e, el+‘1_x], and let u(s) be its Mellin transform. Let

o(x) = /t Tt

=T

and take u to be normalised so that v(0) = 1. Note that its Mellin transform is

3(s) = ﬂ(s%—l).

S

Let x be a primitive Dirichlet character of modulus R € M\{1}. Then, for s € C
not being a zero of L(s,x), we have

= 3 X(AAMA) 3 a(1+ (pn — 5)(log ) X)

L AeM |A|S Pn pn -

: (6.1)

where p, = % + iy, s the n-th zero of L(s,x). Note that, by Lemma 6.1.3, we can
see that the sum over the zeros is absolutely convergent.

Proof. Let ¢ > max{0, (1 — Re(s))(log ¢) X }. By the Mellin inversion theorem, we
have

5 UMD, () LS ) s,
AeM ’A| ’A| Re(w)=c w
1 iw+1) (AN
2mi Re(w)=c w AeM |A|S+m

_ 1 ﬂ(w+1)£’(

w
——y)dw.
" (10gq)X’X> v

The interchange of integral and summation is justified by absolute convergence,
which holds because ¢ > (1 — Re(s))(log ¢)X and by Lemma 6.1.3.

270 JRe(w)=c w L
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We now shift the line of integration to Re(w) = —M, for some
M > max{0, Re(s)(log ¢) X'}, giving

AA(A) [ aea 7 (1 + (pn — 5)(log g) X
AX;AX( ) ( )U<€ X) (S7X)_Z ( P ( g4 )

|Al® L . Pn— S
_L. ﬁ(w+1)£’( w ,X>dw,
270 JRe(w)=—M w L (logq) X

where the sum over the zeros counts multiplicities. This requires some justification.
We make use of the contour that is the rectangle with vertices at

c+ z((d —Im(s))(log ¢) X + 27mX>,

—M + @((d — Im(s)) (log ¢) X + 27mX>.

Here, d > 0 is such that § +4d is not a pole of %(5, x) (that is, not a zero of L(s, x)).
It is clear that as n —> oo we capture all the poles and the left edge tends to the
integral over Re(w) = —M. Due to the vertical periodicity of Lf/, and our choice
of d, we can see that the top and bottom integrals are equal to O,/ (n™'), which

vanishes as n — 0.

By Lemmas 6.1.2 and 6.1.3, if we let M — oo then we see that the integral over
Re(w) = —M vanishes.

Finally, we note that

( degA) 1 ifdegA <X
vlie X ) =
0 ifdegA>X(1+q%).

Also, since X is a positive integer, there are no integers in the interval
(X,X(1+q¢™)) € (X, X +3), and so there are no A € A that have degree in this
interval. It follows that

3 X(A)A(A)U( log|4) ) S X(A)AA)

e (logq) X
|AJ* |AJ*
AeM

[]

Lemma 6.1.5. Suppose u(z) has support in [e,e' ™ . For all z € C\{0} with
arg(z) # m we define

U(z) := /OO u(z)Ey(zlog x)da.

—0
(Recall, for y € C\{0} with arg(y) # =, we define Ey(y) = [*7>° ¢ “dw). Let x be

w=y

a primitive Dirichlet character of modulus R € M\{1}, and suppose p is a zero of
L(s,x) and s € C\{p} with arg(s — p) # w. Then,

/s+oo a(l + (p — so)(log Q)X)

0=s P — S0

dsg = —U((s — p)(log q)X).
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Proof. We have

stoo (1 + — s lo sF00
/ (1+(p—s0)(log )X d o — / x(pfso)(logq)xu(x)dmdso
so=s P — So S0=s p— z=0

5400 6(p s0)(log q) X log ©
= / u(z) / dsodz
=0

s5—p) logq X log z+o00 oW
/ / —dwdzx
=0 w=(s—p)(log q) X log z w
/ x)E; ( p)(log q¢) X log x) dx
=0

—~U((s = p)10gg) X).

The interchange of integration is justified by absolute convergence, which holds for
X > 1 O

We can now proceed with the proof of Theorem 2.4.1, which we restate for ease of
reference.

Theorem. Let X > 1 be an integer and let u(x) be a positive C*-function with
support in [e, et "], Let

o(z) = /t )t

=z

and take u to be normalised so that v(O) = 1. Furthermore, for y € C\{0} with
arg(y) # m, we define FE1(y) := 5+;° €~ dw; and for = € C\{0} with arg(z) # T,
we define

U(z) = /00 u(z)Ey(zlog z)dz.

=0

Let x be a primitive Dirichlet character of modulus R € M\{1}, and let p, = 5+,
be the n-th zero of L(s,x). Then, for all s € C we have

L(57X) = PX<57X)ZX<87X>7

where
_ X(A)A(A)
PX(87X) = €xp ( Z |A|810g|A|
AEM
deg A<X
and

Zx(s,x) = exp ( - U((s - pn)(logq)X))-

Strictly speaking, if s = p or arg(s—p) = for some zero p of L(s,x), then Zx (s, x)
is not defined. In this case, we take

ZX(Sa X) = hms ZX (507 X)

So—

and we show that this is well defined.
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Proof of Theorem 2.4.1. Suppose s € C is not a zero of L(s, x) and arg(s — p) # 7
for all zeros p of L(s, x). We recall that (6.1) gives us

L’ (1l + (p, — So)(logq) X
= Y x(A LGS (1 + (pn — s0)(log q) )7
AeM |A| ’ Pn pn - SO
deg A<X

to which we apply the integral f >*dsy to both sides to obtain

log L(s, x) = gﬂ; % - zp: U((s — p)(log q)X>- (6.2)

deg A<X

For the integral over the sum over zeros, we applied Lemma 6.1.5, after an inter-
change of summation and integration that is justified by Lemma 6.1.3. We now take
exponentials of both sides of (6.2) to obtain

L(s,x)zexp< Z %) < ZU<8— logq)X>)

degA<X
:PX (87 X)ZX<57 X)

Now suppose we have s € C, not being a zero of L(s,x), but with arg(s — p) =
7 for some zero p of L(s,x). We can see that limg,_ s L(so,Xx) = L(s,x) and
limg, s Px (S0, X) = Px(s,x) # 0. That latter is non-zero as Px(s, x) is the ex-
ponential of a polynomial. From this, we can deduce that limg, s Zx(so,x) =

L(S,X)(PX(S,X)) e

Similarly, if s is a zero of L(s,x), then we can see that limg,_ s Zx(s0,X) =
-1
L(85X>(PX(57X)) = 0.

This completes the proof. O

6.2 Moments of the Euler Product

Before proving Theorem 2.4.4, we prove a lemma.

Lemma 6.2.1. For all Re(s) > 0 and primitive characters x we define

oo IL0) I (30)"

deg P<X X <deg P<X

and for positive integers k and A € Sp(X) we define ag(A) by
. ax(A)x(4)
Pi(s,0)f = ) A
AeSm(X)

Then, for positive integers k, we have

P50 (10 P (3
—(1+ou(x ) X ar(A)x(A4) (6.4)

AeSm(X) |A|§
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We also have that

ar(A) =di(A) if A€ Sum (z) or A is prime
2 (6.5)

X
0 < ag(A) <dip(A) if AZ Sm <§> and A is not prime.
Proof. First we note that

PX(%’X):GXP( %) ( 2 ZJIPI )

AeM deg P<X j=1
deg A<X

where

Ne:= Lde{;PJ

Also, by using the Taylor series for log, we have
!
P —ew( X ALy s R
2 deg P<X j= 1J|P| 1 j27|P|
e X <deg P<X J=

Hence,

1 1 -1
P(p)r(e)
X 2X 2X

:eXp( >3 j|P|]_ > 36 J2J!P!J )

deg P<X j=Np+1 2<d p<x j=1

We now show that the terms inside the exponential are equal to O(X *1), from
which we easily deduce

1 k . /1 k
Pr(3x) = (140 (X)) Pi(50)
To this end, using the prime polynomial theorem for the last line below, we have
X
+

deg P<X j= Np—}—l] 2<d p<Xx j=1

o0

] pj o j
ST s ALy subL y S
5 <deg P<

degP<X J=Np+1 =7|P| <degP< Jj=1

Z
-y oy Z Z P)j+ Z Z
X =3 Pl% X ‘]2j|P|J
2<deg 2<deg

degP<XJ Np+1 -]|P|7 =2

< Y > |P|—%<<q‘§ DR T qn <<%.

deg PS% §<deg P<X deg PS% §<n§X

We now proceed to prove (6.5). The first case is clear, so assume that A & Sy <§>
and A is not prime. We note that

(30) (o)
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:(”Tz(f;) |P| )(1 2|P| 22<|?|i““)

(5 (S0 (D

r=0 T17T220 r=0
ri+2ro=r
Since
2 1\ L5]+1
0<2(1- ( — —> <
3 2
for all » > 0, the result follows. O]

We can now prove Theorem 2.4.4, which we restate for ease of reference.
Theorem. For positive integers k, we have
1 L < gy (P e
* k
pe(E [~ ath B )
i S [ ) e TT (24

x mod R deg P<X \ m=0
P|R

as X,deg R — oo with X <log,deg R. Here, vy is the Fuler-Mascheroni constant,

and
(-5 £4)

peP m=0

Proof of Theorem 2.4.4. Throughout this proof, any asymptotic relations are to be

taken as X, deg R h o0 with X < log,deg R. By Lemma 6.2.1 it suffices to prove
that

1 "
¢*(R) 2

xmod R

o I (£45) 9
PR ~

ax(A)x(A)
Z |Al2

AESM(X)

We will truncate our Dirichlet series. This will allow us to bound the lower order
terms later. We have

3 ag(A)x(A4) _ 3 M+O<|R|—ﬁ>, (6.7)

AESM(X) |Al2 AESm(X) |A|2
degAgidegR
This makes use of the following:
ar(A)x(4) 1 dy(A) 1 ( 1 )"“
S <R =R ——
2 Al . 2 |Alx a1 [Pl

AeSpm(X) AeSpm(X) deg P<X
deg A>i deg R

1 1 1 1
=|R| 16 exp( Z —klog <1— 1>) = |R| 76 exp (k;O( Z 1>>
deg P<X [Pl deg P<X [Pl

1 qi¥ 1 deg R 1
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By the Cauchy-Schwarz inequality, it suffices to prove that

2 00 2 -1

1 ; ax(A)y(A) ( di (P™) ) k2

¢ (R>XI§R AG%X) |A|§ degll_DISX n;) ’P’ ( )
deg A<l degR PIR

Now, we have that

1 *
() 2

x mod R

an(A)y(4)]
Z |A\%

AeSpm(X)
deg A< % deg R

1 Oék(A)Oék(B)
= —_— E)o(F
¢*(R) Z |AB|% Z p(E)(F)
A,BESM(X) FEF=R
deg A,deg BS% deg R |(A-B)
(AB,R)=1
1 ay(A) oy (B)
——— > uE)F) D a (6.9)
¢o*(R) EF=R A,BESM(X) |AB|z
deg A,deg BS% deg R
(AB,R)=1
A=B(mod F)
Oék(A 2 1 873 A ak(B
DI R D G D D
AES (X)) EF=R A,BES(X) | |2
deg Agi deg R deg A,deg Bgi deg R
(A.R)=1 (AB,R)=1
A=B(mod F)

A#B

We first consider the second term on the far RHS: The off-diagonal terms. We note
that the inner sum is zero if deg F/ > % deg R, and we also make use of (6.5), to
obtain

1 O_/k(A)Oék(B)
— > w(E)$(F) > — T
¢*(R) EF=R A,BESM(X) |AB|z
deg A,deg Bgi deg R
(AB,R)=1
A=B(mod F)
A#B

1 di(A)di(B)
¢*(R) E;R P> |AB|

A,BESm(X)

1
deg F<7degR

éﬁ 1 C L D S

deg P<X EF=R
deg F<ldegR

S L) T

deg P<X FeM
deg FS% deg R

g(;f?';) exp (O (2k§)> =o(1).

The second-to-last relation makes use of a similar result to (6.8), and the last relation
follows from the fact that X,deg R — oo with X < log,deg R. Now we consider
the first term on the far RHS of (6.9): The diagonal terms. We required a truncated

~—
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sum only for the off-diagonal terms, and so we extend our sum using similar means
as in (6.8):

3 %AV: 3 O"“Ef)2+o(|Rré).

AeSp(X) | ’ AeSm(X) ’ |

deg Agi deg R (AR)=1
(A,R)=1

Now, using (6.5) for the first relation below (and part of the second relation), we
have that

> ey

AeSm(X) | ‘ deg P<X

m=0
(A,R)=1 PR
B H (i dk(Pm)Z) H (1+ |p| +Zm 2 |(P|m) )
= —m 2
deg P<X \ m=0 ’P| X <deg P<X 1_|_ _|_z dk (Pm)
PR 2 pm_ \P\ m=2  [P|™
_qp (o 1__ o AlEr)” (6.10)
dexp<x \ m= |P|m degp<x |P| m:o 2
P|R
)" 1
1— — 1+ Ok(—>
H( 7) A (10135
eg P< X <deg P<X
2\ —1
di (P k?
=(1+o(W))alk) ] (Z\(P—W)> (evx) .
deg P<X \ m=0
PR
For the last equality, we used Lemma A.2.7. The proof follows. O

6.3 Moments of the Hadamard Product

In this section we provide support for the Conjecture 2.4.5, which we restate for ease
of reference.

Conjecture. We have

1 *
¢*(R) 2

x mod R

1\ G2k+1)(degR\"
ZX(E’XM NG(2k+1)(evX) ’

as deg R — oo, where v s the Euler-Mascheroni constant and G is the Barnes
G-function. For our purposes, it suffices to note that

k—1

G*(k+1)
2k:+1

I:l

z:O

First we give a lemma.
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Lemma 6.3.1. For real y > 0 define

Ci(y) == — /t jo cos(®) 41,

t

and let x be real and non-zero. Then,
Re Ey(iz) = — Ci(|z]).

Proof. 1f x > 0, then

1x+00 e W 100 e~ W ) 67”
Re By (iz) = Re/ —dw = Re/ —dw = Re/ ; dt = — Ci(|z|),
¢

w=1ix w

w=iz W =x

where the second relation follows from a contour shift. Similarly, if < 0, then

. 1T+00 oW —100 oW o0 eit )
Re Fy(iz) = Re —dw = Re ——dw = Re —dt = — Ci(|x]).
w w w ‘ t

w=iz =iz =|z|

]

Now, writing 7, (x) for the imaginary part of the n-th zero of L(s, x), we can see

that
1 . 1|2
¢*(R)XI§R ZX(E’X)‘
1 *
:gb*(R) Z exp | —2kRe Z U( — 7 (x)(log q)X))
x mod R Yn(X)
) (6.11)

== Z* exp | — 2k Re Z /00 u(z)Ey (= iva(x)(log ¢) X log x)dx)

ymod R v (x) 0

:¢*(1R> Z* exp | 2k Z/ ) Ci (J7n(x )|(logq)X10g3:)dx).

x mod R Yn(X)

We note that the terms in the exponential tend to zero as |v,(x)| tends to infinity,
and so the above is primarily concerned with the zeros close to % As described
in Section 1.5, there is a relationship between the zeros of Dirichlet L-functions

near i and the eigenphases of random unitary matrices near 0: The proportion

of Dir2ichlet L-functions of modulus R that have j-th zero (that is, its imaginary
part) in some interval [a,b] appears to be the same as the proportion of unitary
N(R) x N(R) matrices that have j-th eigenphase in [a,b] (at least, this is the
case in an appropriate limit). Naturally, one asks what value N(R) should take in
terms of R. We note that the mean spacing between zeros of Dirichlet L-functions
of modulus R is lfﬁ, while the mean spacing between eigenphases of unitary
N x N matrices is 2F. Therefore, we take N(R) = [loggdeg R]|. So, by replacing
the imaginary parts of the zeros with eigenphases of N(R) x N(R) unitary matrices,
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we conjecture that

1 ‘ 1\ 2
&*(R) I;R ZX<§’X>
(2k2/ ) Ci (|7a(x )|(logq)Xloga;)d:c>
xmodR Y (X)
~ exp | 2k ) Ci (|6, log q)X log x)dx |dA
/AGU<N(R)) p( )z/ (18.(A)](log )X log ) )

(6.12)

as deg R — 0o, where the integral is with respect to the Haar measure, and 6,,(A)
is the n-th eigenphase of A. An asymptotic evaluation of the far RHS can be made
identically as in Section 4 of [GHKO7]; but we simply replace their log X with our
(logq) X, and we replace their N = |logT| with our N(R) = |loggdeg R|. This
leads us to the conjecture that

1 * 1 2k G%k—}— 1) degR k2
¢*(R)XH%R ZX(E’XM TGk + 1) ( X ) ) (6.13)

as deg R — oo. We note that in [GHKO7], their u(z) has a slightly different support
than the support of our u(x). However, this does not affect the result.

Remark 6.3.2. As described in Remark 2.4.6, there is an error in [GHKO7] that
we must address. The problem begins in (6.12). We argued that the zeros close to %
behave similarly to the eigenphases near 0, and used this to justify our interchange of
all the zeros with the eigenvalues that lie in (—m, wt]. This justiﬁcatz’on 1S concerning
because it is by no means the case that all the zeros are close to : 5, and we are also
dismissing the periodicised eigenvalues in (—oo, —m| U (7, 00).

Now, the problem in [GHKO7] is that, between their equations (20) and (21), they
argue that the far RHS of our (6.12) is

/ o(vim) T (2’“ Z / 7) Ci (16,(4)](log 4) X log:c)d:c>dA
~ exp | 2k Z ZCi (|9n(A) +27rj|(logq)Xlogx) dgg) dA.
/AeU(N( ( 7r7T]/r 0 ( )

r)) j=—00
(6.14)

That is, the eigenphases are periodic with period 2w, and they have included these
periodicised eigenphases in the exponential sums without affecting the main term.
Their justiﬁcation for this is that for each 0,,(A) the contribution of the terms j # 0
18 K oz a)X (see the proof of their Lemma 6). While this is correct for an individual

0,.(A), an error arises in that there are N(R) number of 0,,(A), and this ultimately
means that (6.14) does not hold. Indeed, we have

exp | 2k Cl 0, log ¢) X log x)dx |dA
/AGU(M)) p< Zﬂ]/ﬂ (10,(A)]l0g )X log 2) )
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N/AGU(N( exp (% 3 Uimm( i Ci(|0n(A)+27rj|(logq)Xlogx))dx

R) On(A)e(—m,m] b7 &= j=—oo

1
_— dA
+O((logQ>X>D
N/ exp (Zk; Z / u(x) ( ZCi (16,(A) + 2mj|(log q) X log x)) dx) dA
aev (N(r) O (A)(—m,m] 7 =0 = oo
EN(R)
: lo) kAl
o ( <(10g Q)X>)
G2(k+1) (deg R\* EN(R
(D) (AR RN )
GR2E+1)\ e X (logq) X
The first relation follows from the second-to-last equation in the proof of Lemma 6
in [GHKO07], while the last relation follows from Theorem 4 in [GHKO07]. As we can

see, (6.14) is in contradiction to the third line above. Furthermore, the last line
above is in contradiction with (6.13).

Nonetheless, (6.13) is ultimately correct because none of the errors described need
have arisen. Indeed, we first dismissed the zeros in (—oo, —7m| U (w,00) and later
included the periodicised eigenphases in (—oo, —7] U (m, 00), without correctly ad-
dressing the effect on the main term in both situations. Instead, we should argue
that we can interchange the zeros in (—oo,—m| U (7,00) with the eigenphases in
(—o0, =] U (m,00). Of course, we mentioned previously that it is only the zeros
and eirgenphases near their respective central values that behave similarly to each
other, and so this cannot justify this interchange. However, it is believed that, for
a typical Dirichlet L-function in function fields and a typical unitary matriz, their
respective zeros and eigenphases are somewhat equidistributed, and this could justify
an interchange and avoid the problematic error terms. It is also important that the
range (—oo, —m| U (m, 00) avoids the discontinuity of Ci(x) at x = 0, and this is why
this “equidistribution approach” would not immediately work for the zeros near the
central value.

Further justification for this is given in Sections 7.1 and 7.2 (see Remark 7.2.2).

6.4 The Second Moment of the Hadamard Prod-
uct

Before proving Theorem 2.4.7, we prove several lemmas. First, by (6.4) we have
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Rearranging and using (6.3) gives

Pe(3x) =(1+0(x )P (5)

o) 10 L (-3

deg P<X X <deg P<X
:<1+O(X*1)> Z a_1(A)x(A)
AESM(X) |A|é ’

(6.15)

where «_ is defined multiplicatively by

P) —1 ifdegP <X
o =
' 0 if deg P > X

0 ifdegP <X

1 ff <degP <X
0 ifdegP > X;

0 ifdegPﬁ%

a (PP):=% -3 if3 <degP <X
L0 if deg P > X;
a_1(P™) =0 for m > 4.

Lemma 6.4.1. For all R € M, we have that

o\ (HS)a 1 (HT)|
X
2. [HST| <
HSTESm(X)
(S,T)=1
(HST,R)=1

deg HS,deg HT< 1 deg R

as X — 00.

Proof. Using Lemma A.2.7, we have that

3 |0z_1(17|f§)§47:|1(HT)| <<( ZX)U{%) “ 11 <1—|P|‘1>_3<<X3

HSTeSm(X) HeSpm( deg P<X
(5,T)=1
(HST,R)=1

deg HS,deg HT <15 deg R

as X — o0. O

Lemma 6.4.2. For all R € M, we have that

a_l(HS)a_l(HT) 4
deg ST <« X
2 [HST| EoL <
HSTESp(X)
(S,T)=1
(HST,R)=1

deg HS,deg HT< % deg R

as X — 00.
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Proof. We have that

a_1(HS)a_1(HT) 1 deg ST
deg ST — -—
)3 [HST| g ST < ) )| > ST
HSTeSm(X) HeSm(X) S, TeSM(X)
(S,7)=1
(HST,R)=1

deg HS,deg HT<:- deg R
Consider

fls) = )ﬁ% > |_$|5)2= I

S, TeSm(X TESM(X) deg P<X

Taking the derivative of the above and then evaluating at s = 1, we obtain

deg ST 1\ 2 deg P
2. SEY =2 |1 (1_“3’ 1) 2 |P|—1<<X3

S, TeSM(X deg P<X deg P<X

as X — oo, where we have made use of Lemma A.2.7 and the prime polynomial
theorem. This, along with the fact that

1 -1
— 1-|P -1> X
> = I (-1er) <
HeSm(X) deg P<X
as X —» oo, proves the lemma. O]

Lemma 6.4.3. Let V € M. V may or may not depend on R. As X,deg R —
with X <log,deg R, we have

a_1(HS)a_1(HT)
Z |HST|

HSTeSm(X)
(S, T)=1
(HST,V)=1
deg HS,deg HTSl—l0 deg R

“(06®) I (@) (o) - I 0~ m)

PV PV

Proof. The second relation in the Lemma follows easily from Lemma A.2.7. We
will prove the first. In this proof, all asymptotic relations are to be taken as
X, deg R % 0o with X < log, deg R.

Similar to (6.7), we can remove the conditions deg HS,deg HT < % deg R from the

sum and this only adds an O(|R|_%) term . Now, writing C = HS and D = HT,
we have

Z a_1<HS)Oé_1(HT) Z O‘—1<C)a_1(D)‘(C,D)]

|HST)| |C'D|

HSTES A (X) CDESM(X)

(S.T)=1 (CD,V)=1
(HST,V)=1

2
a_1(Cla_1(D) 9(G) a_1(CG)

> (S >y — .
CDESM(X) €D G|(C,D) GESM(X) G2 CESMm(X) ¢

M ) M M
(CD,V)=1 (G,V)=1 (C,V)=1
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Before continuing, let us make a definition: For all A € M and all P € P, let ep(A)
be the largest integer such that P*»(4) | A. Continuing, we note that we can restrict
the sums to polynomials that are fourth power free. Indeed, a_1(P™) = 0 for all
P € P and all m > 4. Note that if P | G then we must have that 0 < ep(C) <
3 —ep(G), while if P{ G then 0 < ep(C) < 3. So, we have

a_1(CG) el L (PiFer@) S (P
Sl ) ()

CeSMm(X) ] P|G

Jj= deg P<X 7=0
(c,V)=1 PIG
PV
. —e . . -1
5 (PY) LD o (Piter@) 5o (PY)
(S5 s =) (s ewl)
deg P<X \ j=0 P|G j=0 P|G \ j=0
PV
So,
2
> I
GeS (X) CeSMm(X) ]
M
(C,V)=1
: 2 ot (P g aa())
-1 —1
(Z il )H (o (=) (o) )
deg P<X 0 deg P<X 7=0 7=0
PV PW
2
¢ 04 L (P7F)
!PP’ | Pl
degP<X = j= 0
PV
3 3—i 31 ¢ Pz Pj-i-z) (Pk:-i—z)
H Z Z ’P21+J+k|
deg P<X i=0 j=0 k=0
PV
1
O () T (1+0(m))
gP<X( P X <deg P<X |77
PV PV
1
(1 0( *5) 1—— .
(* o)) 11 P
deg P<X
PV
The result follows. [

Lemma 6.4.4. Let R € M. Suppose Zy < degR and F | R. Further, suppose
C,D € Spu(X) with deg C,deg D < {5 deg R. Then, we have

1 07 (2, + nico|
> - <
|AB|> ||

A,BeM
deg AB=27
AC=BD(mod F)
AC#BD
(AB,R)=1

Proof. Consider the case where deg AC' > deg BD, and suppose that deg A = i.
We have that AC' = LF + BD for some L € M with deg L = deg AC' — deg I’ =
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i +degC' —deg F', and deg B = Z; — deg A = Z; — i. Hence,

1
2 |AB|2

A,BEM
deg AB=271
AC=BD(mod F)
(AB,R)=1
degAC>degBD
Z 2 > 1
BeM
degL z-l—degC deg F' deg B=Z71—1
a Z Z L dPICIN | Pzt D]
Fl = |F|
degL z+deg0 deg I
Similarly, when deg BD > deg AC' we have
3 1 _ ¢ (Z+ D)
T S .
B, WBET I
deg AB=Z1
AC=BD(mod F)
(AB,R)=1
deg AC>deg BD

Suppose now that deg AC' = deg BD = i. Then, 2¢ = deg ABCD = Z; + degCD.
We have deg B =1 — deg D = w, and AC = LF + BD for some L € A
with deg L < ¢ —deg F' = w — deg F'. Hence,

1 4
Z ‘AB‘l =q 2 Z Z 1

A,BEM BeM LeA
deg AB:Z1 deg B— Z1+deg C—deg D degL< Z1+deg CD —degF
AC=BD(mod F) 2 ?
(AB,R)=1
deg AC=deg BD
1 Zy
|CD|2 3 L= 971
|F| |F|

BeM
deg B— Zy +deg207deg D

The result follows. O
We can now prove Theorem 2.4.7, which we restate for ease of reference.
Theorem. We have that

1 * 1 2 1 * 1 1 —12
¢*(R)XI§R Zx(5)] :¢*<R>X§R\L<§’X>PX<§’X> |
_degR ( B i)
e’ X degl;[>x L | P|
P|R

as X,deg R — oo with X < log, deg R.

Proof of Theorem 2.4.7. Throughout the proof, all asymptotic relations will be taken
as X, deg R -4 co with X < log, deg R. Now, by (6.15), we have

st 2 [50P (G ~ am S H0m (5 | oo
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Similar to (6.7), we truncate our sum:

P;(G’X)—l: > ozl(C)X(C)JrO(‘R,SlO).

1
CeSm(X) C]2
deg CS% deg R

Using this, the Cauchy-Schwarz inequality, and Theorem 2.2.1, it suffices to prove
that

2 a_1(C)a_1(D)x(C)x(D)
2 |CD|

x mod R C,DeSM(X)
deg C,deg D< - deg R

(6.17)

Now, by Lemmas A.1.2 and A.1.3, we have

L<17X> ‘2 Z al(C)aég‘);{(C)y(D)

x mod R C,DeSpm(X)
deg C,deg D< % deg R

LS ) Y eaQeaDOND)

1
xmod R C,DESM(X) |CDJ2
deg C,deg D< 1—10 deg R

where

AX(B
A, BEM |AB|z
deg AB<deg R

and c¢(x) is defined as in (A.8).
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We first consider the case with a(y). We have

1 - a_1(C)a (D)x(C)x(D)
— > ay) > R

¢ (R)XmodR C,DeSMm(X) ’CD|2
deg C,deg Dgl—lo deg R

2 Z* Z a_1(C)a_1(D)x(AC)X(BD)
a (R)X mod R A,BeEM |ABCDI2
C,DeSpm(X)
deg AB<deg R
deg C,deg D %0 deg R

2N ey S el@eadd)

* 1
¢*(R) EF=R A,BEM |[ABCD|z
C,DESM(X)
deg AB<deg R
deg C\deg D< L deg R
ABCD,R)=1
A(C’EBD(rm))dF) (6.18)
oz_l(C)oz_l(D)
=2 Z 1
ABEM |ABCDI
C,DESM(X)
deg AB<deg R
deg C,deg DS% deg R
(ABCD,R)=1
AC=BD
2 a_1(C)a_1(D)
o S umeE) Y D)
¢ (1) EF=R A,BeM |ABCD|z
C,DESM(X)
deg AB<deg R
deg C\deg D< L deg R
(ABCD,R)=1
AC=BD(mod F)
AC+#BD

For the first term on the far RHS, the diagonal terms, we can write A = GS,
B=GT,C=HT, D= HS where G,H,S,T € M and (5,T) = 1, giving

9 Z a,1(0>a,1(D)
1
A,B,C,DEM |[ABCD|?
C,DeESM(X)
deg AB<deg R
deg C,deg Dgl—lo deg R
(ABCD,R)=1
AC=BD

a_1 (HT)Oé_l(HS)
-9 Z
= (GHST]

H,S,T€Sn(X) (6.19)
deg G2ST<deg R
deg HS,deg HT'< 1—10 deg R
(GHST,R)=1
(8,1)=1

—9 Z Oé_l(HS>Oé_1(HT) Z 1
|HST)| |G|
H,5,TeSm(X) GeM
deg HS,deg HTSl—l0 deg R deg Gﬁw
(HST,R)=1 (G,R)=1
(S, 1)=1

By Corollary A.3.3 and Lemmas 6.4.1, 6.4.2, and 6.4.3 we obtain the asymptotic
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relation below. The final equality uses Lemma A.2.7.

IV T rmd 8l H( rPr)

A,BEM |ABCD|> deg P<X
C,DeSpm(X) PJ[R
degAB<delgR
deg C,deg D<= deg R
* ABCD,R-1 (6.20)
AC=BD
deg R 1
~ 1—— .
e X 1 ( |P|>
deg P>X

P|R

For the second term on the far RHS of (6.18), the off-diagonal terms, we use Lemma
6.4.4 to obtain

2 a_1(C)a_i(D)
S wEerE) Y ¢
¢ (1) EF=R A,BeEM |ABCDIz
C,DESAM(X)
deg AB<deg R
deg C,deg D< L deg R
(ABCD,R)=1
AC=BD(mod F)
AC#BD
2 a_l(C)O{_l(D) Z 1
w2 : WES(F) Y .
¢*(R) C,DESM(X) |CDI2 EF=R A,BEM |AB>
deg C,deg Dgl—lo deg R de&gAABB;)d:e% R
(OD.R)=1 AC=BD(mod F)
AC#BD
|R|2 deg R
¢o*(R) C,DESM(X) EF=R ’ ‘
b M
deg C,deg DS% deg R
R|32“®) deg R
R[5 des Ry,
¢*(R)
(6.21)

Finally, consider the case with ¢(y). We recall that if x is odd then it consists of
one sum, whereas, if y is even it consists of three sums. We will show that one of
the sums for the even y is of lower order. The other sums for the even y, and the

odd y, are similar. We then see that the total contribution of the case with ¢(x) is
of lower order. We have

Z Z X(A)X(B) Z a_1(C)a_1(D)x(C)x(D)

1 1
XmodR A,BEM |AB|> C,DESM(X) € D2
X even deg AB=deg R deg C,deg D< 1—10 deg R

1 * a_1(Cha_1(D)x(AC)X(BD
S*RZ Z 1(C)ai( )X(;)X( )<<X3,
" )XmodR A,B,C,DEM |ABCD|z
C,DESMm(X)
deg AB= degR
deg C,deg D< X jgdeg R
(6.22)
where the last relation follows by similar means as the case with a(x). ]
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6.5 Preliminary Results for the Fourth Hadamard
Moment

In this section we develop the preliminary results that are required for the proof of
Theorem 2.4.8. We begin with two results that will simplify the problem.

Lemma 6.5.1. For X > 12, we have that
1 -2 —1 *k 1
PX<§>X> = (1+0(X™)Px <§7X>>
where
o (1 B(A)x(A)
Py <—7X> = Z %
2 AeS Al
(X))
and [ is defined multiplicatively by
P) =
A(P) 0 ifdeg P > X

1 ifdegP < %
B(P?) =492 if¥<degP<X

0 ifdegP > X
B(P*):=0 for k > 3.

{—2 if deg P < X

(6.23)

Proof. By Lemma 6.2.1 we have

Pe(30) = 0rox ) ] (1—7(](3],?)2 11 <1+X2(|?|2)2'

deg P<X X <deg P<X

By writing Py (%, X> as an Kuler product, we see that

() ()

deg P<X 5 <deg P<X

_2x(P)? +5X(P)4 _ x(py +X(P)6
_p**<1 ) M (1+ P2 PP g3 T PP
—1Ix 27X 1_M+2X(P)2
X <deg P<X |P|2 |7
1 3
re(3a) T (vomr)
(30 I (1+o(r
5 <deg P<X
Kk 1 _3
=P (§;X> exp O( >, 1P 2))
X <deg P<X
1

The result follows. The requirement that X > 12 is so that the factor

—1
(1 — %ﬁ) + %) in the second line is guaranteed to be non-zero. O]
2
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Lemma 6.5.2. We define

Fly- Y faw

1
2
deg Ag% log, deg R

Then, as X,deg R -5 oo with X < log, deg R,

ri (50) = (4 +of(asr ).

Proof. We have, as X,deg R —— oo with X < log, deg R,

B(A)x(A) 1
1 < 1
2 |Al2 (deg R)3 Aeg(x)

N

6(A)]
|A]

AeSpm(X)
deg A>é log, deg R

—(degR)"® [] <1+2|P|—%+2|P|—%>

deg P<X

=(deg R) ™ exp (o(de;)(wri))
—(deg R)™# exp (0 (%)) < (deg R)™%.

]

We now prove several results that will be used to obtain the main asymptotic term
in Theorem 2.4.8.

Lemma 6.5.3. SUppOS@ Al,AQ,Ag,Bl,BQ,Bg e M Satz'sfy A1A2A3 = BlBng.
Then; there are Gl; G27 G37 ‘/1,27 ‘/1,37 ‘/2,17 ‘/2,37 ‘/3,17 ‘/3,2 € M; Satlsfylng (‘/i,ju Vk,l) =
1 when both i # k and j # | hold, such that

A =GVipgVig By =GiV21 Vs,

Ay = GoVa1Vaz By = GaVioVas
Az = G3V3,V35 By = G3Vi3Va3.

Furthermore, this is a bijective correspondence. To clarify, G; is the highest common
divisor of A; and B;; and in'V; ; the subscript i indicates that V; ; divides A; and the
subscript j indicates that V; ; divides B;.

Proof. Let us write A; = G;5; and B; = G;T;, where

G; = (A, By)
6.24
Since A; Ay A3 = B1 B3B3, we must have that
815253 = T1T2T3. (625)
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First we note that, due to (6.25) and the coprimality relations in (6.24), we have
that S; | T;Ty and T; | S;Sk for 4, j, k distinct.

Second, again due to to (6.25) and (6.24), we must have that (S, S, S3), (11, T», T3) =
1.

Third, for ¢ # j, we define S;; = (5;,5;) and T;; := (1;,7;). Again due to to
(6.25) and (6.24), we have (S;;)* | Ty and (T;;)* | Sk for i,j,k distinct. Fur-
thermore, (S, j;,Si.5,) = 1 and (1}, j,, Tiyj,) = 1 for all {iy,j1} # {i2,j2}, and
(Sivjrs Tiyjp) = 1 for all iy, j1, 42, jo.

From these three points we can deduce that

Sy = 51251 3(T23)* S Ty = Ty 2Ty 3(S23)* Ty
Sy = 12599 3(T13)* S’ Ty = T12T53(S1 3)* T
S3 = S13523(T12)* S5’ Ty = Ty 3T53(S12)*Ts'

for some S;" and T}’ satisfying (S, 7;') = 1 for all i and (S, S;"), (T/,T}') = 1 for
i # j. By (6.25) we have that S,'Sy'S3" = Ty'Ty'Ty'. From these points we can
deduce that

S = Ur2Ui 3 T = Uz1Us
Sy = Uz Uz 3 T, = U2Us 2
Sy’ = Us 1Us 2 15 = Ui 3Uz3

where the U, ; are pairwise coprime. Also, for ¢, j, k distinct, because U, ; | T} and
(Sj,Tj) = 1, we have that (Ui,jy Sj) = 1, and hence (Ui,jy Sj,k)7 (Ui,j7 Sj,i) = 1. Simi-
larly, for 4, j, k distinct, we have (U, ;,T;x), (Ui ;,T5) = 1.

So, by defining

Vie = Si13153U1 2 Vo = Sa3T1 30Uz V31 = Sa3T12Us3;
Vig = S12T53U13 Vo3 = S12T13U23 V3o = S137112Us 2

we complete the proof for the existence claim.

Uniqueness follows from the following observation: If we have G; and V; ; satisfying
the conditions in the Lemma, then we can deduce

Gz’ = (AZ, Bz) for all ’i, and

Vz‘ijjV}z'Vki> (A Ez Aj . ..

——r ) = | B, —) for ¢, 7, k distinct,
Vi,iVi,j A J

Vig = (VisVho:
k

where we define BZ,AZ by BZ = G,LBZ = (A1,7B1,)Bl and Al = Glzzll = (A1,7B1,)A’L
for all 7. Since the far RHS of each line above is expressed entirely in terms of
Ay, As, A3, By, By, B3, we must have uniqueness. n

Lemma 6.5.4. Suppose Vi3, Va3,V31, V30 € M, and (Vi3,V31V32) =1 and
(Vai3,V31V39) = 1. Then,

{(Vi2,V21) € M2 1 (Vig, VagVar) = 1, Vo, VigVaa) = 1, (Vi Vai) = 1}
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- U {(Vi2120) € M2
Vem
(V,(V1,3V3,1,V2,3V3,2)):1

ViaVar = Vi (Vig, VasVaa) = 1, (Var, VigVaa) = 1, (Vi Vi) = 1},
and for each such V' we have

#{(Vl,zavz,l) € M*:
ViaVar =V, (Vig, VasVa) = 1, (Var, VigViz) = 1, (Vi Va) = 1}

2w(V)—w <<V,V1,3V2,3V3,1V3,2) )

Proof. For the first claim we note that (Viq,Va3V31) = 1 and (Voq1,VigVse) =1
imply that

(V. (Vig Vo) (Vi Vaa) ) = 1,

and, due to the given coprimality relations of V; 3,V53,V5 1, and V35 given in Lemma
6.5.3, we have

Vi3, Vas) - (Van, Vap) = (VisVan, VasVsa).

The first claim follows.

We now look at the second claim. For A, B € M, we define Ag to be the maximal
divisor of A that is coprime to B, and we define A” by A = AgA®. We then have
that

_ Vi,3Ve 3V31V32 __ Vist1/ Ve,s1/Va11/Vs,2
V= VV1,3V2,3V3,1V3,2V - VV1,3V2,3V3,1V3,2V Vv 4 4 )

where the last equality follows from (V, (Vi3Vs1,Va3Vs2)) = 1 and the fact that
(Vis,Va1) = 1 and (Va3,V32) = 1. Now, V = Vj,V5 and by the coprimality
relations we must have that VV13V"32 | V5 and VV23VV51 | V4. So, we see that

#{ (Via, Vo) € M?
ViaVer =V, (Viz, VagVaa) = L, (Ve VigVaa) = 1, (Viz, Vau) = 1
=#{(V1,2, Voi) € M?: VigVar = Vinuvasva v, VY 2V V23V V1 Va2
VIRV | Vi VRV VL (Vig, Vo) = 1]

2w(V)—w ((V,V1,3V2,3V3,1V3,2) )

=¥ (VV1,3V2,3V3,1V3,2) —

]

Lemma 6.5.5. For all R € M with deg R > 1, non-negative integers k, and s € C
with Re(s) > —1 we define

—s—1 k

frats) =TT (1=1PI77)

P|R
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hr (s H<1+|p| Sl)

P|R

Then, for all non-negative integers j and all integers v we have

f&(frgl> <; k (log, deg R+ 0(1))' ] (1 - |P|1)k,

P|R
) 2rme : 7 1 —k
hR”“(logq) <; K (log,deg R+ O(1)) H{(l—i— |P| )

Generally, we could incorporate the O(1) terms into the relation <, but for the case
deg R = 1, where we would have log,deg R = 0, the O(1) terms are required.

Proof. We will prove only the claim for fpx(s) and r = 0. The proofs for all r and
hri(s) are almost identical. First, we note that

fri(s) =k gr(s)fri(s), (6.26)
where
Z log|P|
‘P‘s+1 _ 1
PR

We note further that, for integers 7 > 1,

I(%k( ) = Grpj(8)frr(s), (6.27)
where Gy ;(s) is a sum of terms of the form
kgl (s) g (s) .. gi(s), (6.28)

where 1 < m < j and Y " (j, + 1) = j. The number of such terms and their
coefficients are dependent only on j.

Now, for all R € M, and non-negative integers [, it is not difficult to deduce that

I+1
0 (log\PD
0 E -_ 6.29

P|R

I+1
The function % is decreasing at large enough z, and the limit as * — oo
is 0. Therefore, there exists a constant ¢, > 0 such that for all A,B € A with

1 < deg A < deg B we have that
I+1 I+1
(loglA)™ _ (log|B|)™
G > :
Al -1 1B -1

Hence, taking n = w(R) and using Definition A.2.1, Lemma A.2.2, and the prime
polynomial theorem, we see that

(]_Og|P| l+1 mn+1 ’]"l+1 mn+1

Z (10g|P|)l+1 << Z Z q << Z Tl << (m +1)l+1
PI-1 & P[-1 T & "

P|R P|Rn, r=1

< (log, log,|Ra| + 0(1))'™" < (log, deg R, + 0(1))l+1 < (log,deg R+ O(1))".
(6.30)

The result follows by (6.27), (6.28), (6.29), and (6.30) . O
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Lemma 6.5.6. Let R, M € M with degM < deg R, k be a non-negative integer,

and z be an integer-valued function of R such that z ~ deg R as deg R — oco. We
have that

ge(N)—w ((v.a)

Z N (z — deg N)*

NeM
deg N<z
(N,R)=1
(1-¢Y H <1_|P|1) H ( 1 )( k+2 k+1
= T ool T p-1 z + Ok (Z log deg R)
(k+2)(k+1) Plits 1+ |P| =i 1—|P|
PtR

as deg R — o0.

Proof. Step 1: Let us define the function F', for Res > 1, by

(V)= (V)

F(s)= ][] (1+%+#+...)

==

<1+ Ly )
IZEMZER

2 1
= E—— -
H (1— |P|=s ) H (1 — |P|S>
PIMR 1;%
B 1+ yPy—5> (1 — |P\—S> < 1 )
~T1 () 1T () 1T (o
PIR

2o 1 () I (o)

P|MR
PIR

=
=

Now, let ¢ be a positive real number, and define

et k=0
R PE if k # 0.

On the one hand, we have that

L c+ioco F(l N S) ys s :L Z ZW(N)—W ((N,M)) /’c—l—ioo ys

———d
270 J o ino skl 2mi = |N| Cico | IN|3sEHT °
(N,R)=1
(6.31)
ot - )
= Z — deg .
|
K=, |N|
deg N<z
(N.R)=1

For k£ > 1, the interchange of integral and summation is justified by absolute con-
vergence, and the second equality follows by Lemma 4.2.1. For k = 0, the above
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holds by Lemma 6.5.7 below. We remark that we take y = qz+% when k£ = 0 so that
(ﬁ, k + 1) # (1,1), which would be a special case of Lemma 4.2.1 that would be
tedious to address.

On the other hand, for all positive integers n define the following curves:

L(n) = :C_ (2n1;—gi)m,c+ (anjrgi)m};
L(n) :::_ }1 B (QnI:gi)ﬂi’C_ (2nl(jgi)m}

L(n) :=li(n) Uly(n) Uls(n) Uls(n).
Then, we have that

1 c+1i00 ys

% e F(l +S) $k+1d8
IR / PO+ )L ds — / F1+5)-Lds (6.32)
2mi n=vo0 \ i) S S st

yS
— F(l—l—s) / F(1+s) ds).
/lg,(n) Gh+1 o) Gkt

Step 2: For the first integral in (6.32) we note that F'(1+s) kil has a pole at s =0
of order k£ + 3 and double poles at s = 212;’;2 for m = +1, :|:2 ,+tn. By applying
the residue theorem we see that

S

1 y
lim — F(1 d
== /L(n) (1+5) Ght1 8

n—oo 271

s 6.33
2m7m F(l ‘I‘ S) y ( )

“Togq k+1 ’

Y
=Ress—o F(s+1) g

meZ
m##0

Step 2.1: For the first residue term we have

s

)
Ress—o F(s + 1) s

1 ) dk+2
- (k+2)! shi>n0 dsk+2

(et I () I e )

PIM P|M
PIR

(6.34)
If we apply the product rule for differentiation, then one of the terms will be
——— lim
(/{: + 2)! s—0
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1 1—|P| 1 1 dk+2
(CA(S + I)QSQCA—(QS D) H (1 + |P|sl) ]l_]\[/[ (1 _ |P|51) Sk+2y )

P|MR
PIR

S5 T () T () (e ow) ™

P|MR

PIR
The O(1) term is to account for the case where y = ¢**2 (when k = 0).

Now we look at the remaining terms that arise from the product rule. By using the
fact that (4(1+ s) = 7q_s, the Taylor series for ¢7%, and the chain rule, we have,
for non-negative integers 7, that
i ——— L 5+ 1)s = 0,01) (6.35)
im —————((s s = 0;(1). .
s—0 (log q)i=1 ds
Similarly, for non-negative integers i,

1 d 1 di
im —((2s + 2 i
(log )7 0 EACAE

~ (logq)’ i s (1 B q_Hs) = 0;(1). (6.36)

By (6.35), (6.36), and Lemma 6.5.5 and the fact that deg M < deg R, we see that
the remaining terms are

(log q)* (1—]P]_1) ( 1 ) k1
< — 5 II ————— | 2" logdeg R.
| 1 | p|-1
(k;—l—2).PM 1+ |P]| = 1 —|P]

PIR
Hence,
yS
Ress—o F(s+ 1) s,
(=g ")(logg)* 1—|p™ 1 k+2 k+1
B (k+2)! H 1+ |P|]! H W z -l—Ok(z logdegR)
PIMR P|M

PIR
(6.37)

as deg R — oo.

Step 2.2: Now we look at the remaining residue terms in (6.33). By similar (but
simpler) means as above we can show that

Y (log q)* 1—|P™! 1
R‘ess:%%;qi F(l + S) SR = Ok( mk+l H W H W z
P|MR plM
PIR

as deg R — 00, and so, for k > 1,

1—|P| 1
- k
> Res,_ _amss F(1+ 5) 2 g Ok<(logq) 11 (W) 11 (W)Z>
meZ PIMR PIM
m#0 PtR

(6.38)
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as deg R — o0o. When £ = 0 we look at things more precisely and see that the
term - cancels with the term with - and so (6.38) holds for k = 0 as well.

Step 2.3: By (6.33), (6.37) and (6.38), we see that

1 S
lim —/ F(l—i—s)yR
L(n)

n—oo 271 53
(1 - g ")(logq)" 1—|P 1 k+2 k+1
- (k + 2)! H 1+ |P|! H W z +Ok(z logdegR)
PIMR P|M
| i
(6.39)

as deg R — oo.

Step 3: We now look at the integrals over l5(n) and l4(n). For all positive integers
n and all s € l3(n),l4(n) we have that F'(s + 1)y®* = Oy g(1). One can now easily
deduce for i = 2,4 that

|
lim ‘—/ Fi+5)-Lds| = 0. (6.40)
271 1;(n)

n—»00 gk+1

Step 4: We now look at the integral over I3(n). For all positive integers n and all
s € l3(n) we have that

CA(S + 1)2

CA(QS + 2)
1 —|p|-

I (i)

P|MR

P{R
1+|P\ i) ( 1 > e R
< —— _V|R|"2|R| = | M| 120 R)

—0(1)

and

I (=)

P

P|R
1—|— P i 1 1 1
<<H (‘Pl | | — H (|P|12—_3)q0(degR)12degR
PR 1—|P[74 PIM 1—[P|71
<O(1)

as deg R — oco. We now easily deduce that, for £k > 1,

1
lim |— F(1 ‘: 1 Al
P e /lg(n) (1 9)frds| = 0o (841

as deg R — oo. For the case kK = 0 we must be more careful. Using the fact that
. 1

F(1+ s) has vertical periodicity with period é’g”q, and the fact that y = ¢*"2 where

z is an integer, we have that

*iJr’iOO ys
F(1+ 5)—d
1 (4'm+2)7r1 _%_’_ (4m—+4)mi s

_Z/ e 1+s)y—d3+/ o F(l—{—s)y_ds
_,_;'_ S S

4mmi + (4m+2)mi
log q log q

»M»—A
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27 27
4+ s

1
Z lo, s lo
_Z/ - 1+3)%d5—/ P ) g s

S
+ log g 5+ log g

N»—‘

2771

2m logq y°
“logq Z/_ F(l+s) ( 4m+2)7rz> ds

4mmi
+ log g ) s+ log g

(4m+2)mi
7 14 lemtam

B RO

log q _’_%Z’g;z s (S + 27i

*Z‘i’ioo 1
< / . ds< 1.

sl fs

A similar result can be obtained for the integral from —i to —% — ico. Hence, we

2
have that

n—oo YiwA

1 S
lim | / F(1+5)Lds| = o(1) (6.42)
I3(n) s
as deg R — oo.

Step 5: By (6.31), (6.32), (6.39), (6.40), (6.41) and (6.42), we deduce that

(V)= ((v.) .

Z N (z —deg N)

NeM
deg N<z
(N,R)=1

(I1—q") H <1_‘P|_1) H ( 1 )( k+2 k41
(k+2)(k+1) FlitR 1+ |P| = 1—|P|

PIR
as deg R — oo. [

Lemma 6.5.7. Let F(s), z, and ¢ be as in Lemma 6.5.6, and let y = qz+%. Then,

1 c+100 s 2w(N)—w((N,M))
o F(1+ S)y—ds = i
T Je—ico S NeM | |
deg N<z
(N,R)=1

Proof. Let w > z+ % and define

(V) —w (M)
Fw(s) =
PR
deg N>w
(N.R)=1
Then,
1 c+ioco ys
— (1 =—d
omi ), F+e)Tds
1 c+ioo Qw(N)—w(( )) y 1 c+ioco ys
L Las+ Fo(s)La
" omi oo Z | N |+s +2m oo (S)s s
NeM
deg N<w
(N.R)=1
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2w(N)—w((N,M)) 1 c+ioo ys
= — F,(s)=ds,
A;/l |N| + 2700 J o ino () s 0
deg N<z
(N,R)=1

where we have used Lemma 4.2.1 for the last equality. We must show that the
second term on the far RHS is zero. To this end, we note that

1
Fw(S) < Z W’Rw <K q’w(ZfRe(s)),
NeM
deg N>w

and we define the contours

¢ —ni,c+ nil;

n,m) :=[c + ni,m + ni;
n,m) :=[m + ni,m — nil;
n,m) :=[m — ni, c — nil;
n,m) =l

We then have that

m q®

/ Fw(s)y—ds < 2£q2w<i> — 0
l3(n,m) S
as m — 00, since ¢ > qz+% = y. We also have that
co+ni s 2w e’} t
/ Fw(s)y—ds < kA <i> dt < O, pe(n™) — 0
c+ni S n t=c qw
as n — 0o, and, similarly,

Fw(s)y—ds — 0
. s

—ni

as n —» oco. Finally, we note that

/ Fw(s)y—ds =0
L(n,m) S

for all positive n, m, by the residue theorem. Hence, we can see that
c+1i00 ys
/ F,(s)*=ds =0.
c—100 S

as required. O

We now give a Corollary to Lemma 6.5.6.

Corollary 6.5.8. Let R, M € M with deg M < deg R, k be a non-negative integer,
and z be an integer-valued function of R such that z ~ deg R as deg R — co. We
have that

(V) —w ((v,0))

(deg N)*
1\%4 V]
deg N<z
(N,R)=1
Sl i) Ll Ll I 1 k+2 k1
=iy I (e ) T (g ) (772 + 02 o dew )
P|MR P|M
PIR

as deg R — oo.
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Proof. By the binomial theorem we have

k
(deg N)* Z( ) )i(z — deg N )12,

and let us define

o == 11 (i) 11 (=)
PIR

Then, by Lemma 6.5.6, we have

2

NeM
deg N<z
(N,R)=1

k2 bk ' i k1
=a(R)z Z<Z>m(—l) + Oy (a(R)z"*"1og deg R)

=0

ge(N)—w ((v.a)

(deg N)*
[N

_a(R)ZF? &2 k+2
C(k2)(k+1) & (
a(R)Z]H'Q

— k+11
“hia T Ok(a(R)z""logdeg R).

. ) (—1)" + O (a(R)2"*' log deg R)

]

Lemma 6.5.9. Suppose v is a multiplicative function on A and that there exists
a non-negative integer r such that v(P*) = O(k") for all primes P (the implied
constant is independent of P). Furthermore, suppose there is an n > 0 such that
v(A) <, |A" as deg A - 0.

Let R € M be a variable, a,b > 0 be constants, and X = X(R),y = y(R) be non-
negative, increasing, integer-valued functions such that X < alog, logdeg R and
y = blog,deg R for large enough deg R.

Let ¢ and € be such that ¢ > € > max {O, 1-— %} and ¢ >, and let 6 > 0 be small.
Finally, let S € M; S may depend on R. We then have that

Z V(A)
acom 1Al
M

deg A<y
(A,S)=1

v(P v( P2 o
H ( |§3|C) |§3|2c)+‘ >+Oq,a,b,c,r,e,5<(deg3) b(e—e)(1 6)>

deg P<X
(P,S)=1

as deg R — oo.
Proof. Let d > 2. By similar means as in Lemma 6.5.7, we have that

L[~ p(A) g v(4)
i) 2 A 5 05T 2. Afe

d=1004 €5 ((X) AESM(X)
(A,9)=1 deg A<y
(4,8)
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Now, let n be a positive integer and let us define the following contours in C.

[ 2nmi 2nmi
L(n) = |d— nm’d n nmi ;
| logg log ¢
[ 2N 2N
lo(n) :=|d+ ,—c+e+ ;
| logg log q
2nmi 2nmi
ls(n) = —c+e+ ,—C+e€—
0gq log ¢
2nme 2nme
lyn):=| —c+e— ]
) log ¢ log ¢

We can see that

1 d+ico V(A) q(y—i-%)s
2mi d—ioco | |s+c S
AeSpm(X)
(A,9)=1
1 i </ Z V(A) q(y+%)sd / Z V(A) q(y+%)sd
=— lim —ds — —ds
), N—00 s+c s+c
(A,8)=1 (A,S)=1
A) gvta)s A) gt+3)s
_/ ZV()q2d8_/ ZV()(]?dS'
I3(n) |Alste s la(n) |Alste s
AESM(X) 4 AGSM(X)
(A,8)=1 (A,8)=1

For the integral over L(n) there is a simple pole at s = 0. So, we have

1 V(A) qvta)s
271 L(n) AESp(X) ‘A’S+C S
(A,5)=1
v(A) ( v(P)  v(P? )
- 14—~ 4 o).
RN
M og P<
(A,9)=1 (P,S)=1
We can see that for all s € l3(n) and all s € l4(n) we have that ) acs,,(x ) |A(|;4+)C

(A4,8)=
and q(?“%)s are uniformly bounded, independently of n. Hence, we can see that the
integrals over l3(n),l4(n) tend to 0 as n — oo.

Now consider the integral over l3(n). Suppose ¢ < 1. Then, for all positive integers
n and all s € l3(n) we have that

P) . [u(P?)
A s+c<< 11 ( |P| TP *)

deg P<X
(A,5)=1 (P,S)=

< ] (1+OT,G<W))§GXP<OT¢< > |;|e>)

deg P<X deg P<X
(P,S)=1 (P,S)=1

<explO (XX: q ) <explO ((log deg R)a(l—e)> < (deg R)b(c’e)‘s
- "\ 2 - nea logq logdeg R

i(1—e)

0
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a7b7c7q7r7€76

as deg R oo. Now suppose € > 1, then we can show that

A
Z Ij4<s+>c < exp <Or,e,a (CL logq log deg R)) < (deg R)b(C—e)5
AESM(X) 4]
(A,9)=1

a7b’c7q7,r7€76
0o. We also have that

as deg R
q(y+é)s < (deg R) b9,

from which we deduce that

A (y+3)s
/ ) q ds<<(degR) b(c—e)(1-9)
2mi Is(n

+
) AeS (X)
(A,9)=1

a7b?c)q’r7€76

as deg R O

We now prove a result that is required to bound the lower order terms in the proof
of Theorem 2.4.8.

Lemma 6.5.10. Let FF € M, A3, By € Spm(X) with (A3Bs, F') = 1, and 21, 29 be
non-negative integers. Also, we define

1 if deg A = 0

deg(A
eg() {degA if deg A > 1.

Then, for all e > 0 we have the following:

Le deg(AsB
3 L (%) |A333I$
A1,A2,B1,BoeM
deg A1 B1=21

deg Aa Bo=z9
(A1A2B1B2,F)=1
A1A2A3£BleB3(m0d F)
A1A2A3#B1B2Bs

if 21 + 29 + deg A3Bs < % deg F'; and

§ : 1
1« qZ1+z2|A333’<21 + 29 + deg A333)3—F
A1,A2,B1,BoeM ¢< )
deg A1 B1=21
deg A Ba=2z2

(A1AQBlBQ,F)=1
A1A2A3EBlBgB3(mOd F)
A1A2A37£BlB2BB

if 21 + 2o + deg A3Bs > deg F.

Proof. We can split the sum into the cases deg A1 A3 A3 > deg B1 By B3, deg Aj Ay As <
deg BlBng, and deg A1A2A3 = deg BleBg with AlAQAg 7& BlBQBg.

When deg A1 A; A3 > deg By By B3, we have that A1 A; A3 = KF + BBy B3 where
K € M and deg KF' > deg By By Bs. Furthermore,

2 deg KF =2 deg A1A2A3 > deg A1A2A3 + deg BBy B5
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=deg A1 By + deg A3 By + deg A3Bs = 21 + 2o + deg A3 B3,

from which we deduce that

deg AsB
ag = Zl+22+2 83 3<degKF§z1+z2+degA3::a1.

Also,
deg KF + deg B1 By = deg A1 Ay As + deg B1 By = z1 + 23 + deg Ags,
from which we deduce that

deg B1By = z1 + 2o + deg A3 — deg K F.

Similarly, if deg A1 A; A3 < deg By By B3, we can show that

deg Ay B
bo = Z1+Z2+2 82855 _ qog KF < 2 + 2 + deg By —: by

and

deg A1As = 21 + 2o + deg By — deg K F.

When deg A1 Ay A3 = deg B1 By Bz, we must have that
21 4 22 + deg B3 — deg As

deg AlAQ - 9 )
deg B, By — 21+ 2o + deg2A3 — deng'

Also, we can write A1As A3 = KF + B1ByBs, where deg KF < deg B1ByB3 =
w and K # 0 need not be monic.

So, writing N = B;B, when deg AjAyA3 > deg B1BsBs, and N = A; Ay when
deg A1 Ay A3 < deg By B, B3, we have that

> !
A1,A2,B1,BoeM
deg A1 B1=21
deg Aa Ba=2z2
(AlAgBlBQ,F)Zl
A1A2A3£BlBQBg(m0d F)

A1A2A3§£BlBQBg
< ¥ 3 A(N)d((KF + NBy)A™")
<dK€I/é/Zt?< deg N=z1+ ]\Q-edMA —deg KF
0 g sai g IN=21 (]2\7,F)El 3 g (643)

+ Y 3 d(N)d((KF + NA3)33—1>

KeM NeM
bp<deg KF<b; deg N=z1+z2+deg B3—deg KF

(N,F)=1
+ > 3 A(N)A((KF + NB;)A; ™).
KeA\{0} NeM
deg KF<a0 deg N= z1+z2+deg2A3—deg Bg
(N,F)=1

129



CHAPTER 6. A RANDOM MATRIX THEORY MODEL FOR MOMENTS OF
DIRICHLET L-FUNCTIONS

We must remark that if A; | (KF + NBs) then we define (KF + NB3)Az™!
by (KF + NBg)Agil . Ag = (KF + NBg) If Ag )f (KF + NBg), then we lg—
nore the term with (KF + NBs)As™! in the sum; that is, we take the definition

d((KF + NBg)A;fl) := 0. We do the same for (KF + NA3)B; ™.

Step 1: Let us consider the case when z; + 2o + deg A3 B3 < % deg F'. By using well
known bounds on the divisor function, we have that

3 3 d(N)d((KF + NBg)Ag—l)

KeM NeM
ap<deg KF<aj; deg N=2z1+2z2+deg Az—deg KF

(N,F)=1
<<e<qzlq22)2 > 3 1
KeM NeM
ap<deg KF<a; deg N=z1+z2+deg A3—deg K F'
(N,F)=1
4 1
) S
KeM
ap<deg KF<ai
145 21+ 20 +deg A 1e degA
<<<q‘“q”> " As| = 2’F| B2 <, (qzlq”) | As] ug,’?’-

Similarly,

3 3 d(N)d((KF + NAg)Bg—l)

KeM NeM
bo<deg KF<by deg N=z1+z2+deg B3—deg KF
(N.F)=1

degB;
|F|

1+e
< (qzlq”) | Bs|
As for the sum

3 3 d(N)d((KF + NBg)Ag,_l),

KeA\{0} NeM
deg KF<ag deg N= 21+22+deg2A3—degB3
(N,F)=1

we note that it does not apply to this case where z; + z5 + deg A3B3 < % deg F’
because this would imply deg KF' > deg F' > ?—gao, which does not overlap with
range deg K F' < ag in the sum.

Hence,
RN deg(A;B
St () s )
A1,A2,B1,B2eM
deg A1 B1=21

deg Ag Ba=z22
(AlAQB1BQ,F)=l
A1A2AgEBlBng(m0d F)
A1A2A3#DB1B2B3

for 21 + 29 + deg A3 B3 < % deg F.

Step 2: We now consider the case when z; + 25 + deg A3 B3 > % deg F.
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Step 2.1: We consider the subcase where ay < deg KF' < %ao. This allows us to
apply Lemma 4.2.8 for the second relation below.

> 3 d(N)d((KF n NBg)A;fl)

KeM NeM
ap<deg KF<3ao deg N=z1+22+deg Az—deg KF’
(N,F)=1
< > > dW)d(KF+N)
KeM NeM
a0<degKF<3a0 deg N=2a9— degKF
(N, F)=
1 1 d(H
<<qzlqz2|A333|(Z1+Z2+degAng)2|—| 3 T 3 |(_|)
KeMm H|K
a0<degKF§7ao deg H< 2a0—(‘12eg KF
1
qulq22|A3B3|(z1+22+degAgB3)27 > Z H
Pl IR |
deg K F'<2aq
1 d(H 1
<07 g AsBol (21 + 2+ deg AsBo)* 3 <_|) 3 -
HeM KeM
deg H<2ag deg K<2ay

H|K

1 d(H
<@ q**|A3Bs|(z1 + 22 + deg A3B3)3|_F] Z |1(LI\2)
degﬁé\gao

1

Lq™q?|A3Bs|(21 + 22 + deg A3Bg)3m,

Similarly,

> Z d(N)d((KF + NA3)33—1>

KeM NeM
bo<deg KF<3by deg N= Z1+Z2+deg Bs—deg KF
(N,F)=1

<Lq"q*|A3Bs|(21 + 22 + deg A3B3)3m,
Step 2.2: Now we consider the subcase where %ao < deg KF < a;. We have that

> Z d(N)d((KF n NBS)A3‘1>

KeM NeM
7ao<degKF<a1 deg N= Z1+Z2+degA3 deg KF
(N,F)=1
< ) > d(N)A(KF + N)
KeM NeM
7ao<degKF<a1 deg N=2ao— degKF
(N, F)=
< > > d(N)A(KF + N)
NeM KeM
degN<a0 deg K F=2ag—deg N
(N, F)=
> d(N) > d(M)
NeM MeM
degN<aT0 deg(M—X(n))<2ap—deg N
(N,F)=1 M=N{mod F)
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where we define Xy := T2%~4N (The monic polynomial of degree 2ag — deg N
with all non-leading coeflicients equal to 0).

We can now apply Theorem 2.1.1. One may wish to note that

3 319
Y= 2a0—degN24(21+22+degA3B3) ZEdegF

and so

40
F<—y=(1-
deg 579 ( 04)?/

where 0 < o < %, as required. Hence, we have that

3 3 d(N)d((KF + NBg)Agfl)

KeM NeM
7a0<deg KF<a; degN= 21+22+degA3 deg KF
(N, F)=
1 d(N)
G ¢ | A3 Bs| (21 + 22 + deg A3 Bs)—— T
A 2
degN<a70
(N,F)=1
1
ququQ |A3B3|(21 + 29 + deg Ang)gﬁ.

Similarly, if %bg < deg KF' < by then

3 3 d(N)d((KF + NAg)Bgfl)

KeM NeM
3b0<deg KF<b; deg N=z1+z2+deg Bg—deg KF’
(N,F)=1

1
<q*q*|AsBs|(z1 + 22 + deg A3B3)3m-

Step 2.3: We now look at the sum

3 3 d(N)d((KF + NBg)A3‘1>.

KeA\{0} NeM
deg K F<ag deg N= z1+z29+deg Az —deg B3
(N,F)=1

By Lemma 4.2.10 we have that

2 > d(N )d((K F+ NBg)A3‘1>
KeA\{0} NeM
deg KF<ag deg N= 21 +22+d9g2A3—deg Bj
(N,F)=1

< Y > d(N)d(KF + N)

KeA\{0} NeM
deg KF<ag deg N=ao
(N,F)=1

d(H)
<<q ’A333| (21 + 2o + deg A3 B3)? Z Z ’—
KeA\{0} H|K

deg K F'<ag
1
<21 A;B deg A3 B3)*—
<q |A3Bs|(21 + 22 + deg A3 3)| F] E | E ]H]
KeA\{0} H|K
degKF<a0
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1
<¢* 2| A3Bs|(21 + 22 + deg A3Bs)3|?|;

where the second-to-last relation uses the fact that ag is an integer (since

deg A1 Ay A3 = deg B1B2Bs) and so deg K F' < ag implies deg KF' < ag — 1, and the
last relation uses a similar calculation as that in Step 2.1.

Step 2.4: We apply steps 2.1, 2.2, and 2.3 to (6.43) and we see that

§ : 1
1« qzﬁz? |A333’(21 + 29 + deg A333)3—F
Aj1,A2,B1,B2eM 925( )
deg A1 B1=21

deg Ay Ba=2z2
(A1AQBlBQ,F)=1
A1A2A3EBlBgB3(mod F)
A1A2A3#B1B2 B3

for z; + 29 + deg A3 B3 > % deg F'. m

6.6 The Fourth Hadamard Moment

In this section we prove Theorem 2.4.8, which we restate for ease of reference.

Theorem. We have

¢*(13>XH%; (5 :¢*<1R>X§ L3)P(50)

1 <degR>4 H (1— ]P]—1)3
12\ e X 1+ |P|™!
deg P>X
P|R

4

as X,deg R — oo with X < log, logdeg R.

Proof of Theorem 2.4.8. In this proof, we assume all asymptotic relations are as
X, deg R -4 0o with X < log, log deg R. Using Lemmas 6.5.1 and 6.5.2, we have

o S ) ()
i 2 [FE[ e ()]
x mod R
1 S N | FRNE
:qj*—mxr%;R 2(5)| [PE (1) +0((@ee =)

By the Cauchy-Schwarz inequality, Theorem 2.2.3, and Lemma A.2.7, it suffices to
prove
1 * 1 49— /1 2
Lz |PE (5]
5, 2, M VP (1
x mod

1 (1— P71’ e
Nﬁ(deng 11 (W) II a-1p).
dcg}‘)‘PEX deg P<X
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By Lemmas A.1.2 and A.1.3, we have

qﬁ*gmxn%; L[PGl
i, 3 (2000200 +e00) T (5.

where ¢(x) is as in (A.8) and

zr :=deg R — log, gw(R).

- xX(A)x(B)
a(x) = Z W7
A,BEM
deg AB<zp

x(4)x(B
=y MAuB)
A,BEM |AB|2
zp<deg AB<deg R

Note that, by symmetry in A, B, the terms a(y), b(x), and ¢(x) are equal to their
conjugates and, therefore, they are real. Hence, by the Cauchy-Schwarz inequality,
it suffices to obtain the asymptotic main term of

¢*?R) S a(xf’lgf?(%,x) ‘2 (6.44)

x mod R

and show that

1 * — 1 2 1 * —r1 2
s 2 P )|t g 30 (PR ()

are of lower order. The reason we express the sum in terms of a(y) and b(x) is
because the fact that a(y) is truncated allows us to bound the lower order terms
that it contributes. We cannot do this with b(x) but, because b(x) is a relatively
short sum, we can apply others methods to bound it.

. _ 2
Step 1; the asymptotic main term of ﬁ Z XmodRa(X)2‘P§}* <%7X>‘ :
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By Lemma 1.4.5 and Corollary 1.4.6, we have that

1 * —/1 2
* Z a(X>2 P)*;'* 5 X
0*(R) 2o (2 )
_ 1 Z* 3 B(As3)B(Bs)x(A1A2A3)X(B1 B2 Bs)
¢*<R)xmodR A1,A9,B1,BsEM |Ay Ay A3 By By Bs| 2
As,B3eSpm(X)

deg Ay By,deg A2 B2<zR
deg Az,deg ngé log, deg R

_ 3 B(A3)8(Bs)
- 1
M AoBrBeer | A1A2A3 BBy B2
1&3,53619',\42(‘6)() (645>
deg A1 B1,deg A2 Ba<zp
deg Ag,deg B3<1 log, deg R
(AlAgAgBlBng;,R):l
A1A2A3=BlBQBg
1 5(143)5(33)
+WR) Z 1(E)o(F) Z T
EF=R A1,As,B1,BaeM |A1A2A3 B1 By B |2
Az, BzeSpm(X)

deg A1 B1,deg Ao Bo<zp
deg A3z,deg ngé log, deg R
(A1 A3 A3 By By Bs,R)=1
A1A2A3EBleB3(mOd F)
A1A2A3#B1B2B3

Step 1.1: We consider the first term on the far RHS of (6.45): the diagonal terms.

By Lemma 6.5.3 we have

3 B(A3)B(B;3)
1
A1,A2,B1,B2eM |A1A2A33182B3| :
As,B3eSpm(X)
deg A1 B1,deg A2 Ba<zp
deg A3,deg B3< 1 log, deg R
(A1A2A3BlBQB3,R):1
A1A2A3=BlBng
. Z 5(G3%,1%,2)5(G3V1,3V2,3)
|G1G2G3Vi 2V1 3Va1Vo 3V3 1 Va0

G1,G2,V1,2,Vo1EM
G3,V1,3,V2.3,V3.1,V3 268 (X)
deg(G1)2V1,2V1 3V2,1V3,1<zR
deg(G2)2Va,1Va,3V1,2V3,2<zR

deg G3V3,1V3,2<4 log, deg R
deg G3V1,3V2 3<% log, deg R
(G4, R),(V; 5, R)=1 Vi,jk
(Vi,jsVi)=1for (i £k ANj#1)

o Z B(G3V51V52)B(GsVi3Vas)
|G'3Vi 3Va3V31V3 0|

G3,V1,3,V2.3,V31,V3 2650 (X)
deg G3V3,1V3,2< log, deg R
deg G3V1,3V2,3§é logq deg R

(G3V1,3V23V31V3 2,R)=1
(V1,3V2,3,V3,1V3,2)=1
> : > 1
ViV G1Gs|
Vi,2,Ve1€EM | 1,2 2’1| G1,G2eM ‘ 1 2|
deg V1,2V21<zr—deg V1 3V31 degG1<ZR*degV1,2V2,1V1,3V3,1
deg V1,2V2,1<zr—deg V2,3V3 2 TR
(Vi,2V2,1,R)=1 deg Gp < SR 1220 2,302
(G1G2,R)=1

(V1,2,V2,3V3,1)=1
(V2,1,V3,2V1,3)=1
(V1,2,V2,1)=1
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By Lemma 6.5.4 we have

1 1
2 Vi2Va] 2 |G1Gy

Vi,2,Vo1EM G1,G2eM
deg V1,2V21<zp—deg V1,3V3,1 FRAes V1,2V2,1V1,3V5,1
deg Vi 2Va1 <zp—deg Vo 5 Vs, deg G1= 2
1,2V2,152R— 2,3V3,2 —deg V] 9V 1 Vo 3 V-
(Vi,2Ve,1,R)=1 deg Go< 2t eg 1,22 2,1V2,3V3,2
(Vi,2,V2,3V3,1)=1 (G1G2,R)=1
(V2,1,V3,2V1,3)=1
(Vi,2,V2,1)=1
> SIS ) 1
- 1% GG
VeM | ‘ Vi2,V21e€M G1,G2eM ’ ! 2|
degV<zp—degV1,3V5,1 Vi2Vo1=V  goe < P78V V13VE 1
deg V<zr—deg V2 3V3 2 (V1,2,V2,1)=1 B 2
) > 1,2,V2,1 d <2R—degVV2’3V3’2
(V,R(V1,3V3,1,V2,3V3,2)):1 (V1,2,Va,3V3,1)=1deg Go< ————F—=—=
(V2,1,V3,2V1,3)=1 (G1G2,R)=1

2w(V)fw ((V,V1,3V2,3V3,1V3,2) )

Z Z 1
N V] ey |G1Gyl
deg Glg zRp—deg VV1’3V371

VeM
deg V<zr—deg V1 3V3,1
deg V<zr—deg V2 3V3 2

2
zRfdeg VV2’3V3’2
2

So, we have

1
Ao Brpsem | A1A2A3B1 By Byl
A3z,B3€Sm(X)
deg A1 B1,deg A2 Bo<zp
deg Asz,deg ngé log, deg R
(A1 A3 A3 By By B3, R)=1
A1A2A3=B1B2B3

— Z B<G3‘/3,1‘/3,2>6(G3‘/173‘/2,3)
|G3V1,3V23V51 V30|

G3,V1,3,V2.3,V3,1,V32€SMm(X)
deg G3V371V3,2§% log, deg R
deg G3V1,3V2’3§% log, deg R

(G3V1,3V2,3V3,1V3 2,R)=1
(V1,3V2,3,V3,1V3,2)=1

W(V)*W((WV1,3V2,3V3,1V3,2)>
3 2 3 1
4 GG,
dec V< VEé\/lV Ve ‘ | G1,G2eM | 1 2|
eg vV szr—degVi,3V3 1 zp—deg VV] 3V3 1
deg V<zr—deg V2 3V3,2 deg G1 < —75——

2V 2V - deg G2<
(VvR(V1,5V5,17V2,5V3,2))—1 (G1GaR) 21

2
zp—deg VV2’3V3,2
(6.46)
Now, by Corollary A.3.3, if

zr — deg VV1,3V3,1

5 > log, 3w(F)

- that is,
deg V' < deg R — log, 18*"") — deg V1 5V3,
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- then
1 R R
S L4 )(zR—degV%3%1)+O<¢( )logw(R)>
Gi1eM |G1| 2|R| |R|
do Gy < 2R V V13V
e (6.47)
R
:2TR|) (degR degV + O(logdeg R + w(R)))
If
degV > deg R — log, 18“F) _ deg VigVaa,
then
1 1 R
> =< Y =< MW(R) (6.48)
G1eM |G1| GieM ‘Gl‘ ‘R|
deg Gh < zr—deg VV1 3V31 deg G1<log,, 3% (%)
(G1LR)=1 (G1,R)=1

Similar results hold for the sum over Gs.

So, let us define

mg :=min { deg R — log, 18 — deg 14 3V31, deg R —log, 18U — deg V4 3Vs 2}
my :=max { deg R — log, 1820 _ deg VisVa1, deg R —log, 1820 _ deg V4 3Vs 2}

Then, by (6.47) and (6.48), we have

2w(V)—w <(V,V1,3V2,3V3,1V3,2) )

1
> V] 2 |G1 G

G1,GoeM
zp—deg VVly3V3‘1

VeM
degV<zr—deg V1 3V31

deg V<zp—deg V273V3’2 de 1= zp—degVVy 3V3 o
(VvR(Vl,SVS,l,V2,3V3,2))=1 degGQ(SGT
1G2,R)=
"J(V)—w( V\Vi3Va3V31 V32 >
_ o(R)? 2 ( )
4| R|? %
7 2 7]
deg V<myo

(V,R(V1,3V3,1,V2,3V372)) -1

: (degR—degV+O(logdegR+w(R))>2

+ ll(R, ‘/1,37 ‘/Ei,lv ‘/2,37 ‘/3,2)a
(6.49)
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where
ll (Ry ‘/1,37 ‘/3,17 ‘/2,37 ‘/;3,2)
w(V)—w( (V,VisVasVs1Va,
<<¢(R)2w(R)degR Z 2( ) (( 1,3V2,3V3 32))
ARE 2 7]
mo<deg V<mi
(V,R(V1,3V3,1,V2,3V3,2)>:1 (650)

2w(V)—w ((V,V1,3V2,3V3,1V3,2))

O(R)%w(R)?
- 2 V]

|RI?

VeM
m1<degV <deg R

(V,R(V1,3V3,1,V2,3V3’2)) -1

We now apply Corollary 6.5.8 to both terms on the RHS of (6.49). For the second
term, we use (6.50) and it is then just two direct applications. For the first term,

2
we must expand <deg R —degV + O(log deg R + w(R))) and use Corollary 6.5.8
on each of the resulting terms. We obtain

S V)= ((v,v1,3V2,3V3,1V3,2)>

1
> V] 2 [G1Go|

G1,G2eM
zp—deg VV1’3V3’1

Vem
degV<zr—deg V1 3V31

deg VSZR—deg V2,3V372 deg G1§

2
zp—deg VV2,3V3,2

(V,R(V1,3V3,1,V2,3V3,2)):1 degGQ(SGle,R)il
3
1 — gt ) w(R) +logdeg R (1—1P|7)
- deg R)*( 1 O( ) 14 (P
13 (deg R) ( - deg R FIE% L+ |P|™

1 1 - |P[! 1 1
1+ |P|! 1—|P|!
P|V1 3V 3V3,1 V3.2 P|V1,3V2,3V3,1 V3,2

Pt(V1,3,V2,3),(V3,1,V3,2)
=:3(R, Vi3, Va3, Va1, Vs2).
(6.51)

Before proceeding let us make the following definitions: For A € A\{0} and P € P
we define ep(A) to be the largest non-negative integer such that Pe*Y) | A, and

v =] (1 + wm%). (6.52)

P|A
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Then, we can see that

S0 (bes) O (5
T+ P =P
V1,3,V23€Sm(X) PV1,3Va 3 P|V1,3Va 3

V1,3V2,3=B3’ Pt(V1,3,V2,3)

1—|P| 1
S INEE= =D SRR DR | [ ==
P|Bs’ W1 Wa= Bg V1,3,V2,3€S5Mm(X)  P|W2

(W1,Wa)= Vi,3V2,3=B3’

rad(V1 3,V2, 3)=rad Wy

1—|P|™! (W) , (6.53)
_H<1+|p|—1> Z H( — P 1)2 ’ H(eP(B?))—l)
P|By/ W1 Wo=Bs' P|Ws PlWy
(W, Wy)=1
1 - |P|71 2 /
_ ——+ (er(B) - 1)
(1+ |P|—1> 11 (1 T (e”( )
P|By/ P|By/
1—|P|™
= 1 By ———— | =~(B3").
( +€P( 3)1+|P|_1> ’Y( 3)
P|By/
Similarly,

1—|PI™! 1
il =) = ~4y).
Z H (1+‘p|1> H <1_‘p‘1) 7(A5) (6.54)
V3,1,V3,2€Sm(X) P|V3,1V3,2 P|V3,1V3 2
V3,1V3,2=As’ Pi(V3,1,V3,2)
We now substitute (6.51) to (6.46) and apply (6.53) and (6.54) to obtain
3 B(As3)B(Bs)
A1 A2 A5 By By By 2

A1,A2,B1,B2eM
Asz,B3eSpm(X)
deg A1 B1,deg A2 Bo<zpg
deg As,deg B3§% log, deg R
(AlAgAgBleBg,R):l
A1A2A3=B1B2B3

_ 5(G3%,1%,2)5(G3V1,3V2,3)l
= e 2(R, Viz, Vas, Va1, Vaa)
|G3V13Va V51 V30|

G'3,V1,3,V2,3,V3,1,V3 265 (X)

deg G3V3,1V3,2<§ log, deg R

deg G3V1,3Va 3<% log, deg R

(G3V1,3V2,3V3,1V3 2,R)=1

(V1,3V2,3,V3,1V3,2)=1
/ /

_ B(G3A;")B(G3B3') RV~ Vo Ve V.
- |GA/B ‘ 2( y V1,3, V2.3, V31, 3,2)

G3,As’,Bs’ ESM 3473 23 V3,1,V3,2€SMm(X) V1,3,V 3€Sm(X)

deg G3Az’'<i loquegR V3,1V3,0=A3’ V1,3Va,3=B3’

deg G3B3'<1 5 log,deg R
(G’3A3’Bg JR)=1
(As’,B3’)=1

1= q! H ((1 - |P’1)3> (deg R)* Z 5(G3A3/)5(G333/)7<A3/)7<BS/)

1 o/
18 1+]|P] s et 1GaAYBY]

P|R
deg G3A3’§é log, deg R
deg G3B3'<1 log, deg R
(G3As' By’ \R)=1
(As’,B3")=1

+13(R),
(6.55)
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where

ls(R)

<<£][%< 11:_‘;” 1) )(degR)g(w(R) + log deg R)
> Sl )

G3,A3",B3’€eSpm(X)
deg G3A3’§é log, deg R
deg Gnglgé log, deg R

(GsAs’'Bs’,R)=1
(As',B3")=1

(6.56)

Consider the first term on the far RHS of (6.55). We recall that S(A) = 0if A
is divisible by P? for any prime P. Hence, defining Ilp x := Hdeg p<x P; we may
assume that G3 = I.J? where I, J | lIp x, (IJ,R) = 1, and (I, J) = 1. By similar
reasoning, we may assume that Az’ = KA3"” where K | I, (A3",RIJ) = 1; and
B3 = LB3" where L | I, (L,K) = 1 and (B3",RIJA3") = 1. Then, by the
multiplicativity of g and v, we have

B(G3A3")B(G3Bs')
Z ’G A /B l| 7("43,)7(33/)
G3,A3’,B3’€SM(X) 3413 3
deg G3A3l§% log, deg R
deg Gng’Sé log, deg R
(G3As' Bs',R)=1
(A3,7B3,):1
> A4S Sy z o
2
e 1] ol |J\ T |K| |L|
deg IS% log, deg R deg JS% log, deg R—% (L, K)
(I,R)=1 (J,RI)=1
) B(A5")v(A5") 3 B(Bs")y(Bs")
" 7 .
A3"|(TTp x)? [457] B3"|(ITp x)? B4l
degAg”S%loquegR—degIJQK deng”S%loquegR—degIJQL
(As" ,RIJ)=1 (Bs" ,RIJAs")=1
(6.57)

Consider the case where deg [ > = logq deg Ror degJ > = logq deg R. Without loss
of generality, suppose the former Then all the sums above except that over I, can
be bounded by O((logq log deg R)C) for some constant ¢ > 0, while the sum over [

can be bounded by O((deg R)_é) (this is obtained in the same way we have done
several times before, such as in (6.8)). So, with these restrictions, we have that the
above is O((deg R)’é).
Now consider the case where deg I < = logq deg R and deg J < — logq deg R. Then,
1 , 1
gloquegR —deglJ*K > 1—610gq deg R

and

1 1
3 log, deg R — deg I1J°L > 6 log, deg R.
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In particular, we can apply Lemma 6.5.9 to the last two summations of (6.57):

3 B(A3")v(A5") 3 B(Bs")v(Bs")
Az"|(Ilp, x)? ’A3I,| B3"|(Ilp, x)? ’Bgﬁ,
deg Az <% logq deg R—deg 1J2K deg B3'<{ log, deg R—deg I.J?L
(As" RIJ) (B3",RIJA3")=1
v (P) ﬁ(PQ)v(PQ)) ( B(P)v(P) 6(P2)7(P2>>‘1
= + 1+ +
= IL (o 2 B I (1 252 25
(P,R)=1
A"y (As" P)y(P P2y (P !
3 6(3)7//<3)H(1+6( )v()+6( )Z( ))
A3”|(H’P,X)2 |A3 | P|A3// |P| |P |
deg A3”§§ log, deg R—deg IJ2K
(A3” ,RIJ)=1

+ 0((deg R)—%)

B B(P)y(P)  B(P*)y(P?) B(P)y(P) = B(P*)y(P?)\
= 11 <” Pl P )H(” Pl P >

deg P<X P|IJ
(P.R)=1

B(P)Y(P) | B(PY)y(P?) B(P)y(P)  BPHY(PH\ ™
degllx(”( A ) (i A ))
(P.R)=1

) B(P)y(P) 5(P2)’}/(P2) B(P)v(P) B(PQ)’Y(PQ) 1\ !
Il_I[J<1+( 1P| * P2 )(1+ | P| + |P2| ) )

—|—O<(degR)_Tl7>
L (1 2R 2

e 7] 72
(P.R)=1

28(P)~(P) 26(132)7(132))1
. 1
JH( R R T

+ O((deg R)_Tg)

(6.58)
Consider now the two middle summations on the RHS of (6.57). We have
BE?)y 5 L2
KZH \Kl Z
( —1

0T T

i i PIK (6.59)
_ B Y(P) (,  BEP)(P)\
o (17 IPI e )1 L (1 e 0+ o) )
_ 25( P2

1 (1)
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Applying (6.58) and (6.59) to (6.57), we obtain

G3A3/ G3B3I
> eI (o)
G3,A3' 33€$M(X) 3058
degG3A3< log, deg R
degGgB3< log, deg R

(G3A3/Bg ,R)=1

(As’,Bs")=1
26(P)y(P) QB(PQ)V(PQ))
— 1
HX<+ Pl [P
(P,R)=1
B(I)? B(J?)?
I|§X u’ JUTZPX |J’2
deg I<-L 61 log, deg R deg J< L g1 logg deg R
(I,R)=1 (J,RI)=1
2B(P2)7(P)) < 2B(P)~(P) 2B(P2)7(P2))_1
: 14 22 2 1
;!(+ soner ) L0

+ O((deg R)_6L7>
[ (1+2000 00 50

L 7] 2 PP
(P.R)=1
81y
i I
deg[§64loquegR
(I,R)=1
2N (), BUPRE) B 6<P2>2)1
. 14+ —————— (1
}.I((+ T A T R VO B T

+ O((deg R)_%>

_ 2B(PYy(P)  2B(P(PY) | BPY? | B(PP [, 28(P(P)
_degrp[<X<” L T 2 R T ER N T (” B(P)IP ))
(P,R)=1

+ O((deg R)_$>.

Now, recalling the definitions of 5,7 (equations (6.23) and (6.52), respectively) we
see that the product above is equal to

I () I (eour)

deg P<X 5 <deg P<X
PR PR
() () I ()
P|R 1 T ’Plil degl|3>X 1 + |P|71 deg P<X 1 + ‘P‘il
PR

(SR I ()

P|R
P|R
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[T - II a-1pr2)

deg P<X deg P<X
B (AR W (LK AT
(t=a7) ;H( e I (S5 )(6x)
|R deg}‘)]‘DEX

where we have used Lemma A.2.7 for the last equality. Recall that the above is to
be applied to the first term on the far RHS of (6.55). We now consider /3(R): the
second term on the far RHS of (6.55). By means similar to those described in the
paragraph after (6.57), we can show that there is some constant ¢ > 0 such that

18(G3A3")B(G3B3')|
Z |G3A3/B3/|

V(A3 (Bs') < X¢ < (logq log deg R)c.
G3,A3",B3'€Sp(X)
deg G3A3’§% log, deg R
deg G3B;3/S% log, deg R
(G3A3'Bs’',R)=1
(As’,B3")=1

We apply this to (6.56) to obtain a bound for l3(R).

Hence, considering all of the above, (6.55) becomes

B(As)B(Bs)
2 | Ay Ay A3 By By Bs|2

A1,A2,B1,B2eM
A3z,B3eSpm(X)
deg A1 B1,deg A2 Ba<zpr
deg Az,deg ngé log, deg R
(A1 A2 A3 B1 B2 B3, R)=1 (6.60)
A1A2A3=B1B2B3

1y (<1—|P|1>3)
48\ er X dog Pox 1+ |P|I!
P|R

Step 1.2: We consider the second term on the far RHS of (6.45): the off-diagonal
terms. We have

S e 3 B(A9)3(By)

1
EF=R A1, A9, By, BoeM |A1A2A3B1 B2 Bs|2
As,B3€SMm(X)
deg A1 B1,deg A2 Bo<zp
deg A3z,deg ngé log, deg R
(AlAQAgBlBQBg,R):l
A1A2A3EBlBQBg(InOd F)

A1A2A3#DB1B2B3
z
1B(A3)B(Bs)| Bg ) N _ate
< > > WENSF) > e Y L
| A3 By 2 ‘
Asz,B3eSm(X) EF=R Z1,22—0 A1,A2,B1,BoeM
deg As,deg ngé log, deg R deg Ay B1=21

deg Aa Ba=2z2
(A1A2B1B2,R)=1
A1A2A3£BleBg(m0d F)
A1A2A3#£B1B2 B3

(A3Bs,R)=1

By Lemma 6.5.10 we have, for € = 5,

il _z1t29
> a > !
21,22=0 A1,A2,B1,BaeM
deg A1 B1=2z1
deg Ag Bo=z9
(AlAzBlBQ,R)Zl
A1A2A3£BlBQB3(mOd F)
A1A2A3#BlB233
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A B H—% R 214z 1l e
<<| 3|F31|‘ Z q( 1+ 2)(2+2)
z1,22=0
21422 +deg1A3233§ % deg I

A B i zZ1+=
A
21,22=0
21+29 +deg1A3QB3> % deg F
[ A3 B3| | [A3Bs] ., 3
“R(deg R)”.
< o) q*"(deg R)

We also have

> \u(E)W(F)('T;ff'_f + O g

=|AsBs["T > 7 |u( +]Ang|qu(degR)3 > u(E)
FEFF=R | EF=R

<|A3Bs|""|R| + |AsBsR|(deg R),

where the last relation uses the following results:

> eI < 3 e

EF=R EF=R

o H( ) ng(ﬁ) o 2 el ()
ol (1+ 7= = 3035 = 1

Finally, using the fact that

Z ’5(143)5(33”’14333!%“ < ( Z ’ﬁ(A)HA’%+E)

A3,B3€Spm(X) AEM

deg As,deg ngé log, deg R deg AS% log, deg R
(AsBs,R)=1
2 2
1 1
(X om0 X i)
AeM AeM
deg AS% log, deg R deg AS% log, deg R
4
1 7
(X M) saen?

AeM
deg AS% log, deg R

we see that

1 B(A;3)B(Bs) R 341
" E 1(E)o(F) E r < ——(deg R)
»*(R) 4=, ot men  [A1AsA3BiByBs|z  ¢*(R)
Asz,B3eSp(X)
deg A1 B1,deg A2 Ba<zp
deg Ag,deg B3<1 log, deg R
(A1A2A3B1B2B3,R)=1
A1A2A3£BleB3(m0dF)
A1A2A3#BlBQBg
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This is indeed of lower order than (6.60). This can be seen by applying (A.17) and
Lemma A.2.4 to the product in (6.60), and by using Lemmas A.2.5 and A.2.4 on

the factor ¢l(1!2) above.

* — 2
Step 2; the asymptotic main term of ﬁ Z Xmode(X)2‘P§* <%aX>‘ :

We have that

i S ()

7 2 0P (5]

( x mod R xmod
< 1 3 3 5(143)5( Bs)x (A1 A2 43)X(B1 B2 B3)
_Qb*(R) x mod R A1,A2,B1,BoeM ’A1A2A3313233’5

As,B3eSpm(X)
zr<deg A1 B1,deg A2 Ba<deg R
deg Ag,deg B3<} log, deg R

¢(R) S B(As)5(Bs)

* R 1
¢ ( ) A1,A2,B1,BaeM |A1A2A3BleB3|2 6.61
A3,B3ESM(X) < . )
zr<deg A1 Bj1,deg As Ba<deg R
deg As,deg ngé log, deg R
(AlAQAgBlBQBg,R)Zl
A1A2A3=B1 B2 B3
o(R) B(A3)B(Bs)
T @) |Ay Ay A3 B ByBs?
A1,A2,B1,B2eM 142243212223
Asz,B3eSm(X)
zr<deg A1 Bj1,deg Ao Bo<deg R
deg Az,deg ngé log, deg R
(A1A2A3BlBQBg,R)=1
A1A2A3EBlBQB3(mOdR)
A1A2A375B1B2B3
Step 2.1: For the diagonal term, by similar means as in (6.46), we obtain
3 B(A3)B(B;3)
1
A1,A2,B1,BoeM |A1A2A3BIBZB3| ?
A3z,B3eSpm(X)
zr<deg A1 B1,deg Ax Bo<deg R
deg As,deg B3 g% log, deg R
A1A2A3=B1 B2 B3
_ Z B(G3V51V32)B(G3V13Va3)
G3‘/1 3‘/2 3‘/3 1‘/3 2
G3,V1,3,V2,3,V3,1,V3 2€SMm(X) ’ o ‘
deg G3V3,1V3 2<% log, deg R
degGgVLng,gg%logq deg R
(G3V1,3V2,3V3,1V32,R)=1
(V1,3V2,3,V3,1V3,2)=1
(6.62)

20.;(\/)701 ( (V,V173V2,3V3,1V3,2) >
2 v
VeMm ’ ’
deg V<deg R—deg V1 3V3 1
deg V<deg R—deg V2, 3V3 2
(V,R(V1,3V3,17V2,3V3,2)) =1

2. 1
G1,G2eM ’ 1 2|
—deg V'Vy 3V deg R—deg VVy 3V
max{O,zR 082 L3Y3.1 4 e 2y < eg cg2 1,3V3,1

zp—deg VVy 3 V- deg R—deg V'Vo 3 V-
maX{O,w <degG2<¢

(G1G2,R)=1
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Now, if —ZR_degZVL?’V"”l < log, 3*") then

deg R — deg V'V 3V- 1
°8 ng L3731 < log, 3@(B 4 5 log, 2w (R < log, 6“0

and so, by Corollary A.3.3, we have

1 1 R
2 Gt X, o e
Gi1eM ! GreM !
(G1,R)=1

If 2n=dee atss ~ Jog 397 then

2
> e
Gi1eEM |G1|

zp—deg VVq gV« deg R—deg V'V g V-
maX{onymm <deg Gy < XBRIB8VV13V5.

(G1,R)=1
1 1 R
- Z m N Z G| < <b|<R|)W(R>7
G1eM 1 G1eEM 1
deg G < 28 fimdee T3 Va1 deg Gy < ZR-0EV VL3 Vo
(G1,R)=1 (G1,R)=1

where we have used Corollary A.3.3 twice for the last relation. Similar results hold
for the sum over Gy. Hence, proceeding similarly as we did for the diagonal terms

* o~ 2
1 sok [ 1
of 5etmy D moa g WO | FX (5’X>

¢(R) 3 B(As)B(Bs)
| Ay Ay A3 By By Bs|2

, we see that there is a constant ¢ such that

(R
¢( ) A1,A2,B1,B2eM
A3z,B3eSm(X)
z<deg A1 B1,deg A2 Bo<deg R
deg Asz,deg ngé log, deg R
(A1A2A3B13283,R):1
A1A2A3=DB1B2B3
o(R)?

((1 — [P’

Ry )(logq log deg R)°.

Step 2.2: We now look at the second term on the far RHS of (6.61): the off-diagonal
terms. Using Lemma 6.5.10, we have

¢(R) 3 B(As)B(Bs)
| Ay Ay A3 By By Bs|

*k
¢ (R) A1,A2,B1,BaeM
Asz,B3eS(X)
zr<deg A1 B1,deg A2 Bo<deg R
deg Az,deg B3<1 log, deg R
(A1A2A3B1B2Bs,R)=1
Al A2A3EBl Bng(mod R)

A1A2A3#BlBng
_oR) S BB e
e R 1
(b( ) Az, BzeSpm(X) ’A?’B:S’Q zr<z1,z2<deg R A1,A2,B1,BoeM
deg As,deg B3s< 1 log, deg R 322 ﬁ; g; 22
(ABBB’R):]' (A1A2A3BlBQBg,R):1
A1A2A3£BleBg(mOdR)
A1A2A37531BQB3
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de R 3 z1+2z
<<% Z |3(A3)B(Bs)|| A3 Bs 2 Z ¢z
Asz,B3eSam(X) zp<z1,22<deg R
deg Asz,deg ngé log, deg R
(A3B3,R)=1
R|(deg R)® . |Rl(deg R)**1
CHMBRT s aanaBy 1Bl < IR

¢*(R) ¢*(R)

A3,B3€Sm(X)
deg As,deg B3§% log, deg R

(A3B3,R)=1
: : 1 * 2| oo [ 1 2
Step 3; the asymptotic main term of PSI0] Z XmodRc(x) ‘PX (§7X>‘ :
We recall that ¢(y) differs, depending on whether x is even or odd. Furthermore, if

X is even, then there are three terms to consider. However, by the Cauchy-Schwarz
inequality, it suffices to bound the following for ¢ = 0,1,2:

o > i)’ Pj%*(—,x) :
Cb <R>XmodR 2
X even

where

- ¥ x(A)x(B)
dz(X) T |AB|% .
A,BEM
deg AB=deg R—1i

We will bound

1 * .
W Z do(x)* | Px

x mod R
X even

The other cases for d;(x) and the odd case are similar.

Now, we have that

ﬁ S do(x)? f?(%x)‘ <

x mod R XmodR

2
00 ()
X even

1 B(As)B(Bs3)x (A1 A2 As)X(B1B2Bs)
¢*(R) 2 2 |Ay Ay A3 By By Bs|2

x mod R Al,AQ,Bl,BQ eM
Asz,B3eSp(X)
deg A1 B1,deg A2 Bo=deg R
deg Ag,deg B3<1 log, deg R

o) B(As)B(Bs)
| Ay Ay A3 By By Bs|2

*
¢ (R)Al,A2,Bl ,B2eEM
As,B3€SMm(X)
deg A1 B1,deg A2 Bo=deg R
deg A3,deg B3 Sé log, deg R
(AlAQAgBlBQBg,R)Zl
A1A2A3=B1 B3B3

¢(R) 3 B(As)B(Bs)
| A1 Ay A3 By By Bs|?

(6.63)

_|_

*
gb <R)A1,A2,Bl732€/\/(
Asz,B3€Sa(X)
deg A1 B1,deg Ay Bo=deg R
deg As,deg ngé log, deg R
(A1A2A3B13233,R):1
A1A2A3£BlBng(m0d R)
A1A2A3#B1 B2 B3
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For the first term on the far RHS of (6.63), we have, similarly to Step 2.1,

A3/BBS
3 P(A3)8(Bs)

1
A1,A2,B1,B2eM ‘A1A2A3BlBQBS‘ :
Az, B3eSpm(X)
deg A1 B1,deg As Bo=deg R
deg As,deg B3§% log, deg R
(AlAQAgBlBQBg,R):I
A1A2A3=B1 B3B3

_ Z B(G3V51V52)3(G3Vi3Vas)
|G3V13Va3V31Vs 4]

G3,V1,3,V2,3,V3,1,V3 2680 (X)
deg G3V371V3,2§% log, deg R
deg G3V173V2,3§% logq deg R

(G3V1,3V2,3V3,1 V3 2,R)=1
(V1,3V2,3,V3,1V3 2)=1

>

VeM
deg V <deg R—deg V1,3V31
deg V' <deg R—deg V2 3V3 2

(V,R(V1,3V3,1,V2,3V3,2)) -1

1
2 |G1Go|

Gl7G26M
deg R—deg V'V 3V3 3

2w(v)—w ((V7V1,3V2,3V3,1V3,2) )
Vi

degG’1:
deg Go= 5
(GlGQ,R):l
G3V31 Vs G3Vi3Vs
< Z ’6( 3V3,1 3,2)6( 3V1,3 2,3>|
|G3Vi3Va3Vs1Vas|

2
deg R—deg VV273 V3’2

G3,V1,3,V2.3,V3,1,V3 2650 (X)
deg G3V3,1V3 2<% log, deg R
deg G3V1,3V2 3<% log, deg R

(G3V1,3V2,3V3,1V3,2,R)=1
(V1,3V2,3,V3,1V3,2)=1

2

Vem
deg V<deg R—deg V1,3V31
deg V<deg R—deg V2 3V3 2

(V,R(V173V3,1,V2,3V3,2)) =1
) (1—|P|™hH3 c
<(degR) H{ (W (log, log deg R)",

2w(V)—w <(V,V1,3V2,3V3,1V3,2) )

V]

for some positive constant c.

For the second term on the far-RHS of (6.63), we have, similarly to Step 2.2,

¢(R) 3 B(As)5(Bs)

1
A1,A2,B1,B2eM ‘AlA?A;SBlBQB?" °
Asz,B3eSp(X)
deg A1 B1,deg Ay Bo=deg R
deg As,deg ngé log, deg R
(AlAQAgBlBQBg,,R):I
A1A2A3£BlBQB3(mOd R)
A1A2A37§BleBg
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P(R) Z B(As)B(Bs) Z ]

1
A3,B3eSm(X) ‘A333| : A1,A2,B1,BoeM

deg As,deg B3< : log, deg R gig ﬁ;g;iiigg

| R|¢*(R)

(A3BS’R):1 (AlAQAgBlBQBQ,,R):I
A1A2A3£BleBg(m0dR)
A1A2A3#B1 B2 B3
|R|(deg R)? 1 |R|(deg R)*1
L— A Bs3)|| A3 Bs|2 _
& (R) Z |B(A3)B(B3)||AsBs|? < 5 (R)

Asz,B3eSpm(X)
deg As,deg B3§% log, deg R
(A3B3,R)=1
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Chapter 7

A Random Matrix Theory Model
for the First Derivative of
Dirichlet L-functions

7.1 Preliminary Results for the Moments of the
Hadamard Product and its Derivative

In this section we give some preliminary results that are required for Section 7.2
where we provide support for Conjectures 2.5.2 and 2.5.10. We begin with a dis-
cussion on the equidistribution of the zeros of a typical Dirichlet L-function and an
application of this.

For a suitable function ¢ and a primitive Dirichlet character y of modulus R €
M\{1}, we define

Ald) =Y (b(%(x)(logq) deg R>

2T
n(X)

and

W(R.0) = S 3 o).

x mod R

That is, A(x, ¢) is the function ¢ evaluated and summed at the normalised (to
have unit mean spacing) zeros of L(s, x), while W (R, ¢) averages this over primitive
characters of modulus R. In [KS99], particularly (31’) for the unitary case and the
discussion after equation (55), support is given for the idea that

lim  W(R,¢) — /OO o(x)de,

deg R— 00 -0
given certain restrictions on ¢.

For much of the remainder of this section, we suggest an approach to generalising
the above, particularly in a way that would have applications to conjecturing mo-
ments of derivatives of Dirichlet L-functions. This approach is based on some initial
considerations of the matter, but we make no claims on its accuracy; it should be
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viewed simply as a suggestion on how to proceed.

Let x be a character of modulus R € M\{1}, and suppose we have a positive
valued, increasing function ¢ : Z-o — R with ¢(deg R) = o(deg R) as deg R — oc.
For example, such a function could be X = |log,deg |. For an appropriate real
function ¢, we define

Rlx.é,¢) = % 2(;) o(c(deg R) 7 (x)) (7.1)

and

~

W (R, ¢,c)

¢, ¢) (7.2)

mod R

For ﬁ(x, ¢, c) we are evaluating and summing ¢ at scaled zeros of L(s, x) (scaled by
c(deg R)). Given that c¢(deg R) = o(deg R) and that the mean spacing between the

Zeros is (1ong)—7;1egR’ we see that the mean spacing between the scaled zeros still tends
to 0 as deg R — oo. Therefore, if the zeros of L(s, x) are equidistributed in some

manner, we would expect ﬁ(x, ¢, ) to be roughly equal to f;i_oo ¢(z)dx, at least
for large deg R. While such an equidistribution of zeros is not expected for every
L(s, x), it is expected for most L(s,y) with primitive characters. Therefore, since

W (R, ¢, c) averages ﬁ(x, ¢, c) over primitive characters of modulus R, we expect

lim W(R ¢,c) = /Oo ¢(x)dz.

deg R— 00 —

We hypothesise the following, more general result:

W(R, ¢,c¢)
>0 7 ¢(deg R) /°° , Ly c(degR)\?\ (7:3)
= de + ————=— de+0O| | —————=
/x_oo Pla)de + (logg)deg R Jo— o #lede+ (logg) deg R
as deg R — oo, where L, is a constant that is dependent on ¢. Furthermore,
let C'(A) be the set of all primitive Dirichlet characters on A, of any modulus in

M\{1}. We further hypothesise that there is a subset C(A,c) C C(A) satisfying
the following two conditions:

1. C(A,c) contains almost all elements of C'(A) in that

oy X € C(A ) t degmod(x) < n}| _
n—woo [{x € C(A) : degmod(x) < n}| ’

where mod(y) is the modulus of the character x.

2. For all sequences (X )mez-, in C(A, ¢) with deg mod(x,,) — 00 as m — oo,
we have

A(Xm, b, €)

/ ﬂc(dengd(Xm)) /OO ¢ (z)dx

" (log ¢) deg mod(xm) J— o (7.4)
Ly ¢( degmod(x.m)) 2
+0((aogq> wie)) )
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This effectively says that ﬁ(x, ¢,c) tends to [° _ ¢(z)dx as deg R — oo, as long
as we avoid an almost empty set of characters y. One may ask why we hypothesise
this. The reason is that instead of working with

— 1 ko~
W(Rv ¢7 C) = o A(X7¢7 C),
P
we may instead be working with, for example,

(b*(lR) Z* exp <£(X,¢, c))

x mod R

We cannot immediately pass the sum through the exponential, but we do have that

*(IR) S exp (&X, ¢70)>

Qb x mod R
1 * N 1 * —~
— w (A A (x
¢*<R)X§R o p( (X,aﬁ,c)) - ‘WR)XI;R e p< (X,qb’c))
' x€C(Ac) ~ XZC(A,c) (75)
%(b*(R)xn%R exp (/Foo o(z)dzr + 0(1)> +0o(1)
XEC(Ac)
A exp </__ qb(x)d:c),

assuming that C(A, ¢) is large enough compared to C(A).

One may ask what exactly “for an appropriate ¢” means. This will likely require
that, at the very least, ¢ is an infinitely differentiable function except at a finite
number of points (which are not singularities), as well as some bounds on its deriva-
tives.

Now, our application of (7.4) will be in the following manner, with c¢(deg R) =
(logg)X and X ~ log,deg R. Let x € C(A, c) with modulus R, and let [a,b] be an
interval. Then, as deg R — 0o we have

> ((log ) X7 (x))
n(x)€la,b]
1
~degR gb(a:)dx+—/
2 te [a(log q)X , b(log q)X}

) ¢(z)de  (7.6)
2 X te [a(log @)X , b(log q)X}

LoX
0 (deg R) )
In Section 7.2 we will use (7.6) for several different functions for ¢. Thus, we will

need to establish some results regarding their integrals. Therefore, we give the
following four lemmas.

Lemma 7.1.1. We have that

/-

INIE]

xcotxdr = g log 2.
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Proof. First we note that the singularity of cot x at 0 is negated by the factor of x,
meaning the integral is well defined. Now, by the Taylor series for sin, we have

1
. o 2 = =
thoxlog sinx = Ihmoxlog <$(1 +O(x ))) = hmoxlogx = achnloo . logx = 0.
(7.7)

From this, we have that

™ us
2

bl bl )
/ rcotxdr = [m log sin x} — / logsin xdxr = — / log sin xdx.
=0 =0 =0 =0

Now, we note that, via the substitution y = = — x, we have

s 0 st
/2 log sin xdx = —/ log sin (g — y)dy = /2 log cos(y)dy;
=0 y=5 =0

Y

and, via the substitution y = m — x, we have

/2 log sin xdx = —/2 log sin(m — y)dy :/ log sin(y)dy.
=0 Y y=5

=T =3

Using these two results, we have

2/2 log sin(x)dz = /2 logsin(x)dx—i—/2 log cos(x)dz
=0 =0

=0

8

[NIE

2 us
—/ log(sin x cos z)dx = /2 log (sz )dx = /2 log sin(2x)dz — glog2
=0 x =0

INE]

=— / log sin(z)dx — = log log sin(z)dx — glog 2,
=0

us

bl > T
/ xcot xdr = —/ log sin zdx = §log2.

=0 =0

O
For the following Lemma, recall that for real y > 0 we have defined Ci(y) :=

o fOO cos
t

Lemma 7.1.2. We have that

/ log(2 —2cosz)dz =0
=0

/ Ci(z)dz =
=0
We also have that

/t = %(Ciﬂtl) - %log (2- 2cos(e%f)))dt —0

and

and

/teR (‘;t(clqtp) 0.

|t|>e’Y
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Proof. Using a similar result as (7.7), as well as Lemma 7.1.1, we have that

/ log(2 — 2cosz)dx = [x log(2 — 2 cos x)]” B 2/ _wsine
=0 i

z=0 —02—2cosx
T xsini cos§
=mlog4 — -
=0

2z
sin 5

g
=mlog4 — 4/ xcot xdx = 0.
=0

For the second result, we have that

xli_n}O |z Ci(z) — sin(z)|

~ lim | :C/OO cos(w /°° cos(w) sin(zw) dw
z—0 wW=x w w=x w w
oo
= lim :c/ Sln(ll))dw‘
z—0 w=z w2

N|=

1 <1
< lim (x/ —dw+x/ —gdw> = lim xlogx =0
z—0 wez W w=L W z—0
2

and, similarly,

lim (2 Ci(z) —sin(z)) = lim (x / h Sin(w)dw) — lim L =0

T—00 T—00 w=z u}2 T—00 I

From this we deduce that
/ Ci(z)dz = [x Ci(z) — sin(x)} = 0.
=0 =0

For the third result, we must first justify why the integral is well defined. Indeed,
—1log (2 — 2cos(e7t) has singularity at ¢ = 0. Furthermore, from the well-known
result that Ci(|t|) ~ v + log|t| as ¢ — 0, we can see that Ci(|¢|) also has a sin-
gularity at ¢ = 0. However, these two singularities cancel and so the integral is
indeed well-defined. The result follows from the fact that the integrand is an odd
function. Similarly, the fourth result follows from the fact that the integrand is an

odd function. m
Lemma 7.1.3. Suppose y € (O, %) and 2 < a < % Then,
) 6iyt
/ T —dt<loga
t|<a y

and

d [ ,evt—1
— | e"— dt < loga,
/|t|§a de ( wyt ) g

where the implied constants are independent of y.

Proof. Let 7, := {ae® : § € [0, 7]}, and let Ty, = v, U [—a, a]. We have that

et e Let — 1 Lewt — 1
/ et dt / et dt / elf————dt = — / et — dt,
t|<a iyt ter, iyt t€7a wyt t€7a wyt
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since our integrand has no poles. Now, because a < i, we have

6iyt -1 it
. = Imax
1yt [t]<1

et — 1
- < max
wyt <

max
t€Ya

_1‘<<1
t b)

i

where the implied constant is independent of y. Also, for ¢t € ~, with Imt¢ > loga,
we have e < a~!. Therefore,

) eiyt -1 ) eiyt -1 ) eiyt -1
/ et———dt = / et ———dt + / et ———dt
teva 1wyt t€va wyt t€va wyt

Imt<loga Imt>loga
<</ 1dt+a1/ 1dt < loga.
t€Ya t€va
Imt<loga Imt>loga

For the second result, we similarly have that

d et 1 d et _
/ —(e’te - )dt: —/ —(e”e,—>dt.
It<a dt wyt tery, di wyt
We note that

d [ ,evt—1 A€t =1 [(eW —1—iyte!
—le"—— | =e +wy ,
dt wyt yt (yt)?

and
et — 1 L et — 1 — jyte™
max |——— + 4
€ |yt Y (yt)?
< et — 1 L (eiyt —1- iyteiyt)
< max iy
h<l| oyt (yt)?
< 6“—1_'_, et — 1 — jte” <1
max | —————— .
ES! t y 2
Hence,

d [ ,evt—1 .
— [ " — dt < 1dt +a 1dt < loga.
tey, dt 1yt t€7a =

Imt<loga Imt>loga

Lemma 7.1.4. We have that

L ‘ L
™ ete” 'y el ete My
/ — + —dy + / —dy =0,
y=—m Y L —ew lyl>n Y

where we are working with Riemann integrals. We note that the first integral is well
defined as the singularities at y = 0 cancel. We also have that

™ d (61'6_'7@/ eiy ) d eie_fyy
(4t : dy+/ —< . >dy=0-
/1,:7r dy \ 1y L —ew yi>x Y\ W
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Proof. We consider the first result. We have that

ev  cos(y)+isin(y) 1—cos(y)+isin(y)  cos(y)+ isin(y) — 1
1—ew 1 —cos(y) —isin(y) 1—cos(y)—+isin(y) 2 — 2cos(y)
L

Yy
1 cos? (%) — sin? (%) 4 2¢sin (%) cos ( ) 1 cos < > 1

4 sin? (%) 251n (%) 2’

from which we deduce that

. ) .
™ ey e e 'Y
/ — + - dy+/ —dy

y=—m Y L —ew lyl>r Y

— /7r o <%> _ cos(ey) dy +/ cos(e™y) dy + /°° sin(e 7y) dy — .
y=—m 28in (%) Y y|>7 1y y=—00 Y

For the first integral on the RHS, we see that the singularities cancel, and we have
an odd function, meaning the integral evaluates to 0. The second mtegral is also
odd and so it also evaluates to 0. The final integral is equal to fyoifoo ) 4y - one of
several integrals given the name of “Dirichlet integral” - and evaluates to m. Hence,
the above is 0, as required. We note that the third integral is Riemann integrable
but not Lebesgue integrable.

For the second result, we have that
T d (eie“/y ety ) d (eievy)
—|—+ — |dy + / — | — dy
/y_Tr dy \ 1wy 1—e¥ s Ay \

6ie‘“’y eiy ™ eie_”/y eie_wy
e, () - (L)
wy — € y=—m Yy y=—m Yy y=m

We end this section with a brief discussion on the low lying zeros of Dirichlet L-
functions. In [KS99] and [CF00], support is given for the idea that the the low lying
zeros of Dirichlet L-functions behave similarly to the eigenphases of unitary matrices
that are near 0. To be more precise, let & # 0 be an integer and let us define

[]

1
“(R)

{rmod: (EVLEE, () ¢ fo,1)}]

zk(R)]a, b] :=
and

vi(N)|a, b] := Haar{A € U(N): %Qk(A) € [a, b]},

where 75 () is the k-th zero of L(s, x) and 0;(A) is the k-th eigenphase of A. It can
be shown that there is a measure v;, such that

Nlim vi(N)|a, b] = vila, b],

—0

and there is support for

lim  zx(R)[a,b] — vgla, b].
deg R—o0
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In particular, taking N(R) := (log q) deg R, it is believed that

wlim (B, b) — o (N(R)[a.b]) 0.
Here, k is fixed. In particular, the k-th zero and the k-th eigenphase tend to their
respective central value as deg R, N(R) — oo. An interesting question is whether
the above holds for k that depends on R. To this end let k(R) be a function of R. If
k(R) is a constant, integer-valued function, then we have just reproduced the above.

If k(R) = {degRJ, then we do not expect that

wdim (g (R)la.b] = vy (N (R)) a,]) = 0,
because (generally) the k(R)-th zero and the k(R)-th eigenphase remain at a fixed
distance from their respective central values (even as deg R, N(R) — o0), and we
only expect similar behaviour as we approach the central values. Suppose instead

that k(R) = LdegRJ where X ~ log, deg R. While this is an increasing function,

2X
the k(R)-th zero and the k(R)-th eigenphase are (generally) within O(X™!) of their
respective central values, and so we might expect that

tim (2um(R)a, ] — vegy (N (R)) a,8]) = 0.

deg R— o0

We make the following, stronger hypothesis:

Let k(R) = LdSLXRJ where X ~ log, deg R. Then,

lim max |z,(R)[a,b] — vi (N(R))la, b]‘ =0. (7.8)

deg R— 00 0<|k|<k(R)

In the hypothesis above, there is nothing special about the requirement that X ~

log, deg R. All that is required is that k(R) = {%J = o(deg R) as deg R — o0,

so that the k(R)-th zero tends to the central value as deg R — oo. (Recall that the

mean spacing of the zeros/eigenphases is (1ong)—7;1eg,R’ and so, typically, the k(R)-th
k(R)

deg R

zero is within Oq( > distance of the central value).

The hypothesis is based on some considerations of the matter, and, as before, we
make no claims on its accuracy. It should be viewed as a suggestion on what to
investigate if one wishes to provide stronger support for our conjectures on moments
of derivatives of Dirichlet L-functions.

7.2 Moments of the Hadamard Product and its
First Derivative

In this section, we provide support for Conjectures 2.5.2 and 2.5.10. We begin with
Conjecture 2.5.10. First we give a lemma that simplifies our problem.

We recall from (6.11) that

¢*(13) > ZX(%“) ‘%

x mod R
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u(x) Ci (] (x)|(log ¢) X log x)dx) :

Lemma 7.2.1. Let X ~ log,deg R and let c(deg R) = (logq)X. Let x € C(A,c)
with modulus R. Also, as stated in Congjecture 2.5.10, assume that
max,er{ | (z)|} < ¢*. Then, as deg R — 00, we have

> / #) Ci (|7 (01108 )X log 7) da
deg R
—ZCI 17 (x)|(log ¢) X )—i—O(qXX).

T (X)
In particular, the error term is o(1).

This is not surprising as u(z) is normalised, and logxz ~ 1 for x in the integration
range.

Proof. 1t suffices to prove that

Z / ) Ci (yn(x)(log ¢) X log z) dz

Tn X)>0
deg R
Z Ci (v (x)(log ¢) X )+O< egX>
Tn(x)>0

as the case where 7, (x) < 0 is almost identical.

We have that

Z / 2) Ci (1a(x)(log ¢) X log z)da — > Ci (ya(x)(log ¢) X)

Tn(x)>0

Z /xe (Cl logq)Xlogg;) Ci(%(x)(logq)X))dx

el x)(log ¢) X log =
— Z / / dedx.
(>0 7= v v

7 (x)(log ¢) X

First, consider the case where v, (y) < ¢. Using (7.6) for the third relation below,

we have
yn(x)(log ¢) X logz
Z / / cos(w) dwd
w
qX r—=e

0<m (x)< w="n(x)(log ) X

- ZqX/“

0<')’n <

/ 27 cos (7, (x) (log ¢) X y) dyda
y

=1

1+q log = 1

:/: u(x)/ - cos(vn(x)(log ¢) X y)dydz

=1 Y
0<yn(x)<q¥
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dee R elta logx (log g) X
<8 / / cos(yt)dtdydx
X r=e t=
deg R et /logx 1 deg R
< u(x ydx .
X r=e < ) y=1 Yy qXX

Now consider the case where 7, (y) > ¢*. By using integration by parts twice, we
have

sm( (X )(logq)Xlogx) sm( ()(logq)X)

/vn(x)(log q)X logx Cos(w)
dw =
—m()logx W Yn(x)(log ¢) X log Yn(X)(log ) X
COS ( »(X)(log q)X) _cos (’yn(x)(log q)X log x)
(n(x)(log ) X ) (7(x) (log ) X log )
n(x)(log ¢) X log x
- o,
=7n(x)(log ¢) X w
(7.9)

For the second term on the RHS, using (7.6), we have

/°° umsm( Y (x)(log ) X) "
() > X =0 n( )(logQ)X
> sin (7,(x)(log ¢) X) L degR [ sin(t) ,, . deg R
Y () >a* n(x)(log ) X X Jizogg)xex t (log q)X2¢X

For the third, fourth, and fifth terms on the RHS of (7.9), we see that they are of
order (v,(x)(logq)X) ~? and, again using (7.6), we have

o 1
u(x sdx
%%;qx =0 ( )(%(X)(logq)X)

= > ! < deeft Ly degR
(7 (x) (log Q)X)Q X Jisgogg)xex t? (log ) X 2¢X"

T (x)>q%

We now look at the first term on the RHS of (7.9). We have

/e1+q—X u(ﬁ) sin (’Yn( )(10g q)X log 33)
e Tn(x)(log ¢) X log z

:/1+q_X u(@y)ey 5111( ( )(logq)Xy)
et y m(x)(log ) X

_ [u<ey>ey cos (a(x ><1ogq>Xy)]”“

Y ((x)(log 9)X)?

L+g™* d ru(e¥)e’y cos (7 (x) (log C])Xy)d

+/y:1 dy( y ) (1 (x)(log ) X)*

Due to the conditions on u(z), the first term on the far RHS is zero. Given that
max,eri |t/ (2)|} < ¢* and the integral is of length ¢=, we see that the second

term on the far RHS is of order ('yn(x)(log q)X) - and, as before, we have

> ! < desll
o (mO0(ogg) X)) (logg)X2g¥

dy

y=1
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Now, by Lemma 7.2.1 and similar reasoning as in (7.5), we obtain

1 *
¢*(R) 2

x mod R

ZX(%J() ‘Qk ~ ¢*<1R> Z* exp <2k > i (|%(X)|(1OgQ)X)>,

\mod R ()

2k

which we rewrite as
1 * 1
% Z ZX <_7 X)
¢ (R)XmodR 2

¢*<1R> Z* H [’1 . ei(logq)e'YX’Yn(X)IQk exp (ka Ci ("')/n(X)KlOg q)X)

x mod B |’YMX)|§W Tn(X)

~Y

ke Z log (2 — 2 cos ((log q)e”X%()O)))] ,

‘%L(XNSW

(7.10)

where we have used the fact that

[NIES

1 — ¢iloga)e” Xy (x)

_ (2 — 2 cos ((log q)e“’X’Yn(X))> :

One may ask why we have introduced the factor e”. The reason is because

1
5 log (2 — 2cos(e'x)) ~ v + log|z|

as r — 0; and, as we have mentioned previously,
Ci(|z]) ~ v + log|z|
as x — 0. In particular, for
o(z) = Ci(|z]) — %log (2 — 2cos(e'x)),

the singularities at « = 0 cancel, and so we can apply (7.6) to the term in the
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exponential in (7.10). That is, if x € C(A, ¢) where ¢(deg R) = (log ¢)X, we have

exp (Qk: Z Ci (|7n(x)|(log q)X) —k Z log <2 — 2cos ((log Q)GVX%(X)»)

Tn(X) |'Yn(X)‘SW

=exp (21{5('%( )Z Ci (J7(x)|(log ¢) X) — %log (2 — 2cos ((log q)e”X%(X))>)

< fegqreTx

+2k ) Ci(jm(x)l(log q)X))

I CO1> oz e

B kdeg R ) 1 B N
=exp ( X Jyex Ci (Jt)) i log (2 2 cos (e t))dt
kdeg R .
+ Ci(|t|))dt 4+ o(1
X It)> % 1<| |) o )>

B kdeg R [~ ) kdeg R
- ( X S Ci(le)dt 2re' X Jy<n log (2 = 2cos(t))dt + 0(1))
=exp (o(1)) =1+ o(1),

(7.11)

where the second relation uses (7.6) and the last two results in Lemma 7.1.2, and
the fourth relation uses the first two results in Lemma 7.1.2. Applying this to (7.10)
and using the reasoning of (7.5), we obtain

¢*(1R)XH§; Zx GX)

2k

‘ 1 — tloga)e” Xvn(x)

XmOdR |"Yn( ‘ (log 9)e7X q)e'YX

(7.12)
Equation (7.8) provides support for replacing the zeros in the product with the corre-

sponding eigenphases of N(R)x N (R) unitary matrices, where N(R) = |(log ¢) deg R|.
Therefore, we obtain

¢*(1R)Xr§; ZX(%’X)

2k
~ 1 — ei(logq)e”Xan(A)>dA
/AeU(N(R)) H <

|‘9n(A)|SW

- / Rax(1)]dA.
Aev (N(R))

That is, we have provided support for the first relation in Conjecture 2.5.10. To
summarise, in (7.10) we introduced the product which, after interchanging the zeros
with eigenphases, is exactly what we want; while everything else inside the expo-
nential cancels and contributes a lower order term, and this is possible because in
the exponential we have removed the singularity at 0.

The second relation in Conjecture 2.5.10, namely that the above is

G*(1+k) (deg R K
G(1+2k)\ e X ’
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may follow by similar means as in [KS00b], although in this case it is more difficult
as we lose structure by only considering the eigenphases up to W. We do not
investigate this further in this thesis. However, we do note that this second relation

should hold if we are to have consistency with Conjecture 2.4.5.

Remark 7.2.2. We recall that in Remarks 2.4.6 and 6.3.2 we describe an error
in the support of Conjecture 2.4.5. This error arises by first incorrectly dismissing
the zeros in (—oo, | U (m,00) in (6.12), and then incorrectly including the periodi-
cised eigenphases in (—oo, | U (7,00) in (6.14). Our remedy for this is to, instead,
simply replace these zeros with these eigenphases; this is justified by the fact that
the zeros and eigenphases generally appear to be equidistributed and so they have
the same effect in (6.12) and (6.14), respectively. Much of what we describe here
has been carried out in this section. Indeed, our applications of (7.6) has allowed
us to replace sums over zeros with integrals. In the same manner, we could then
replace these integrals with sums over eigenphases, as required. All of this is based
on the equidistribution of the zeros of a typical Dirichlet L-function and of the eigen-
phases of a typical unitary matriz. Of course, for this to be valid we must avoid any
singularities of Ci(x), but we addressed this in this section.

We now proceed to give support for Conjecture 2.5.2. We first note that

A

2k 2k

z’yn x)(log ¢) X log =

IZ/IOM; dz

n(X) (719)

2:(3x

As in Lemma 7.2.1, we wish to simplify our problem.

Lemma 7.2.3. Let X = [log,deg R] and let c(deg R) = (logq) X . Let x € C(A,c)
with modulus R. Also, as stated in Conjecture 2.5.2, assume that max,cr{|u/(2)|} <
qX. Then, as deg R — 0o, we have

14— % ; ;
e iyn (x)(log ¢) X log iyn (X) (log ¢) X 1 2X dec R
Z/ ()& €—+O<(0gQ) eg )

. dz = .

In particular the error term is O((log q)2X).
Proof. We have that

wn(x)(log q)X logz et (x)(log9) X
> / dom Y

i (x)(log )X (y+1) _ givn(x)(logq) X

i7n(x)(log ¢) Xy

q

=(log q) X Z/ u(ey+1)ey+1ye

() Y0

dy.

For |v,(x)| < ﬁ, using (7.6) and Lemma 7.1.3, we have

qfx

(log q)X Z /y:O u(ey+ )€y+ Yy i’yn(x)(log q)Xy

i (x)(log )X (y+1) _ civn(x)(logg) X

dy

X
|7n(X)| (IOZW

=(log q X/ u(evthery Z

et () (log @) X (y+1) _ pivn(x)(log )X

N i7n(X)(log ) Xy

dy
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X ezyt -1
< (logq) degR/ u(ey+1)ey+1y/ e ———dtdy
y=0 t<gx W
qu
<(logq)*X degR/ u(evtHe!Hydy
y=0
log q)>X deg R 7" log ¢)°X deg R
<<( 0gq) X eg / u(e e dy < (log q) X cg R
q y=0
For |v.(x)| > ﬁ, using integration by parts, the fact that max,cp{|v/(z)|} <

¢*, and (7.6), we have

q—X

(10g Q)X Z / u<€y+1)€y+1 ef'Yn(X)(logq)X(erD
y=0 i (x)(log ¢) X

dy
X
\’Yn(X)|>(10(éW

" g e () (log 9) X (y+1)

— (lo —(u ey+1 6y+1
(lEg)X 3 / dy( ) )(i%(x)(logq)X)Qdy

y=0

X
|'WL(X)|> (102 DX
-X

1 g d .
SlosX 2 (~ <x><1ogq>x)2/ R G D E
X n Y=

\’Yn(X)|>(10ng

Y

1 1
<(logq)X < (logq)deg R —dt
2. x (m0ogg)X)” g 2
\’Yn(X)|>W
1 deg R
< log q)X cg R
q
Similarly,

-X

1 e
log ¢) X / u(e?)ev dy
(logg) 2 « Jy=0 ) i (x)(log ¢) X

Iy 0> ok
em(x)(logg) X
=(log ¢)X :
2 « m(x)(logq)X
I (0> ok
it 1 deg R
< (logq) degR/ e,—dt<< %.
q

lt[>qX

ivn (x)(log @) X

The proof follows. O]

Now, by (7.13), Lemma 7.2.3, and similar reasoning as in (7.5), we obtain

¢*(1R) Z* Zx (% X) ‘Qk

1 n’n x)(log q) X (log q)2X deg R 2k 1 2%k
Y O( - ) Zx (_, X) -
¢ (R)x mod R ' v, (x) l'}/n q 2 ( . )

log q)e’ X em()(logg)X |2k 1 2%
( ) Z ZX <_7 X)
¢*(R) — Z’yn X)(log q)ev X 2
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The second relation uses the Cauchy-Schwarz inequality and Conjecture 2.5.10 (and,
strictly speaking, it also uses some of the results that we establish below). Now, for

x € C(A,c), where c¢(deg R) = (log q) X, we have that

et (x)(log ) X et (x)(log g)e” X

Z ivn(X)(log g)e7 X * Z 1 — cimO0(ogq)er X

n(x) [ (X)‘SW
et (x)(log 9) X et (x)(log g)e? X )

SR e

17 OO|< oz ayerx

ein(x)(log ) X
2 moegeX
‘77»(X)|>W

d it eVt d it
cg i (e ¢ >dt+ e At +o(1)
<&

- + -
et 1 — et

T X 27X o i€t
deg R el Mt et deg R gle 't

= — | dt dt 1
2" X Jy<n ( it * 1—et * 2" X Jysr 0t +ol)

—o(1),

where the second equality uses (7.6) and the second result in Lemma 7.1.4, and the
last equality uses the first result in Lemma 7.1.4. Hence, we have

et (x)(log g)e? X

em(x)(log9) X
2(:) () (log )X 2 T teaex oL
Tn X

|’Yn(X)‘§W

Applying this to (7.14) and using similar reasoning as in (7.5), we obtain

1 * 1 2k
Z/ (_7X>
7,2, 173
( log q) eVX) Z* B Z e () (ogq)er X |2k . (1 ) 2k
¢"(R) 1 — eim(x)(logg)er X X Q»X
xmod Ry (OIS (rogyerx

2k 1

B ((log q)eVX) 2" Z* Z eim(x)(log g)e? X

* __ pivn logq)e" X
o (R) =k 1 — etm(x)(logq)

|’Yn(X)|§W

By similar means used to obtain (7.12), and by (7.8), we obtain
1 N 1\ 2
Z(5:%)|
¢*(R) 2 X(z”‘)
x mod R
N ((log q)e”’X)% Z*
¢* (R) x mod R

cim()(logg)e’X |2k

Z 1 — eirm(x)(logg)er X

|’Yn(X)|SW

H ‘ 1 — n(X)(logg)e? X

‘Wn(X)KW

2k

eien(A)(log q)e’ X 2k

1 — eitn(A)(logg)er X
10n (A< g grev

~ ((log q)eVX) o

Aev (N(R))

164



7.3. MOMENTS OF THE FIRST DERIVATIVE OF THE EULER PRODUCT

2k
H 1— eien(A)(log q)e’ X dA

10n(A)|< (og i

:/ A (1) aA.
aeu(nw)

So, we have provided support for the first relation in Conjecture 2.5.2. The second
relation in Conjecture 2.5.2, namely that the above is

()

is based on Theorem 1 of [CRS06]. One may be able to use the methods in [CRS06]
to obtain this rigorously, although it would be more difficult as we lose structure
by only considering the eigenphases up to W. We do not investigate this
further in this thesis. However, we do note that the second relation is consistent
with Theorem 2.5.7 (which is rigorously established and not conjecture), as well as

being consistent with what we would expect the fourth moment,
1 1

@ = |75
o(Q) 2, |73

x mod @
X7#X0

to be if we are to reproduce (2.3) by applying (2.6), Conjecture 2.5.1, and the

Cauchy-Schwarz inequality.

4

)

7.3 Moments of the First Derivative of the Euler
Product

In this section we prove Theorem 2.5.3. For Theorem 2.4.4, where we were not
working with derivatives, we showed that

ng,x)k :<1+O(§)>P§((%,X>k
:<1 + 0(%)) AGZ Oék<|/114)|>§<A)’

Sm(X)
where
-1 -1
\ o X(P) X(P)?
rev= I (1-957) I (43
deg P<X 2 <deg P<X
and

o — di(A) ifAeSu(X
oY
’ <dp(A) fAZSu(%

or A is prime

and A is not prime.

We prove a similar lemma.
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Lemma 7.3.1. For primitive characters x of modulus R € M\{1}, we have that

P(3)
log| P|x(P) log| P|x(P)? C (Ll o\ k
(-3 PR T R row) B () (1+o(y))
deg P<X degpgg

Proof. Defining Np := Lde)@(?J»
P (1 )k
2’

(- 3 MY ()

we have that

AeM
deg A<X
Np N
x(P)’) (1 )’“
= — log| P = Pxl=,
( dz gl IZ‘P‘; (50
eg P<X i=1
log| P|x(P) log| P|x(P)? (L Nk
(- oy WP s PR ) (1)
(- > T T R om) A(pa
eg P<X deg P<3
log| P|x(P) log| P|x(P)? (L N\ k
_(_ () _ o)) Px(5.x) (1+0(5)).
(-3 Ty o) () (1ol
eg P<X degPﬁ%
where the last equality uses Lemma 6.2.1. [

We also require the following lemma.

Lemma 7.3.2. As X,deg R Oy oo with X < log, deg R, we have

log|Py| ... log|P| ar. (A
> ooy el ellleld oy < g
deg P1<X AESMm(X) [Py B2 | Al2
: degPl...PlA>%degR
deg <X

Proof. We have that

log| 7| .. .log| P, A
Z Z Og| 1| Og| l|ak( )X(PIPIA)

1 1
deg Pr<X AESM(X) Py P2 |Al2
: degP1...PlA>%degR
degPZ<X

log|Py|...log|F| di(A
<<’R| 8 Z Z Og| 1 Og| l| k( )

T T
deg Pi<X AESpM(X) ’Pl S | Al

deg P, <X

1 log|P|\' 1\*
<R T > I
aespex |P1 AESM(X) | Al

1 d .R 1
<|R|75(deg R) exp (O(k e)g( )> < |R|
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We now prove Theorem 2.5.3, which we restate for ease of reference.

Theorem. Let k > 0 be an integer. As X,deg @ — oo with X <log,deg @,

2

- > P () ~ ) o g)x* (1)

X7X0

where, for 1 =0,...,2k, we define

cx(l) == i (;) (;) mlzimkz(lm).

m=0
While we only require ¢ (k) in the theorem above, we require ¢(0),. .., cx(2k) for
the proof of the theorem.

Proof of Theorem 2.5.3. Throughout this proof, all asymptotic relations should be
taken as X, deg @) 2 o0 with X < log, deg Q.

By Lemma 7.3.1, we have

P 1 2k
> [Pl

x mod @
X#X0

log| P|x(P log| P|x(P)?
~Y |y g| I>§( ), 3 gl PIx(P) +o(1)
|P|2 | Pl
xmod @ ' deg P<X deg P<X
XF#X0

2k e 1 ok
Pe(e)]

By the Cauchy-Schwarz inequality, it suffices to show that, for [ = 1,..., 2k,

1 10g|P|X(P)'2l‘ 1
— E E Pyl =, x
1 X )
(b(Q) xmod @ ' deg P<X |P|2 (2 )

XF#X0

1 log| P|x(P)?
(@) 2| 2 |P|

"~ aba)los g x* (%)

2 1 ok y
LRI

(b xmod @ ' deg P<X
X#X0
1 1 2k 2
— Pi(5:%) X+
@ 2, N <
x mod @
X#X0

We will prove the first result. The second is similar to the first, and the third follows
immediately from Theorem 2.4.4. By Lemma 7.3.2, it suffices to show that

@Z > s lodlAl Rl o

1 1
xmod @ ' deg P; <X AeSpm(X) |P1‘Pl‘2 |"4|2
X7X0 . degPy...PA<}degQ

degPZSX
k‘2
~a(k)en(1)(log ¢) 1 X2 (evx) .

To this end, we have that

1 log|Py|.. . log| Pi] ax(A) ’
0 2| 2 2 T X(P L Pid)
9(Q) xmodQ | deg PI<X AESMm(X) ISRR Ik A2

XFX0 : degP1...PLA§%degQ

deg Pl <X
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l
Z Z Z H (log]P|> H (log\Qz ) o (A)o(B)
1
deg P1<X deg Q1<X A,BESm(X |P|2 i=1 Qi |2 |AB|>
: : deg P .. PlA< degQ
degf)lSX dengSX dengQlBS%degQ
Pl...PlAEQl...QLB(mOdQ)

l
Z Z Z H <10g|P|) H (10g|Qz ) a(A)ax(B)
T
degP1<XdegQ1<X A,BESMm(X |P‘2 i=1 ’Ql‘Q ’AB’2

. deg P .. PlA< degQ
degPl<X deg Ql<X deg Q1...QB< 3 deg Q

We note that, when deg P, ... PbA < %degQ and deg@;...Q;B < %deg Q, the
condition P; ... A= (Q;...Q;B(mod @) can only be satisfied if
P ...PA=0Q:...QQ;B. Then, for this case of equality, we can remove the condi-

tions deg P ... BA < %deg Q and deg Q... QB < % deg () by similar means as in
Lemma 7.3.2. Also,

1

l
3 H (log\P!) 11 <1Og|Qi!) o (A)ag(B)
1 1
Q) s rex dparex  apesmx Pz /3 \ |Qil2 |AB|2
. deg P .. PZA< degQ

degPl<X deg Oy<Xx deg Q1..QB< ;5 deg @

s 250 (2,50

deg P<X AeSm(X) |

<<(d%52))21 exp <Ok<de§Q>) =o(1).

By these three points, it suffices to show that

SNIDSRD SIS 11

deg P<X deg Q1<X  A,BESm(X) IdE
: Pi..PA=Q;..Q,B

: (logmz@) (Ao, (B)
1 ‘Q2|2 ‘AB‘%

i=

deg B<X deg Q<X

~a(k)ex (1) (log g)? X2 (evx)

2

Consider the case where Py, ..., P, are distinct and Q1,...,Q; are distinct. As we
will see, this case contributes the main term. We will condition on the number of
P, that are equal to some ();. Suppose there are exactly m such P;. There are
(Tln) ways of choosing such P;; there are (Tln) ways of choosing such );; and there
are m! ways of equating them. By symmetry, each such case is, without loss of
generality, equal to the case where P, = @); for i = 1,...,m. The requirement that

... BA = Q...Q;B then becomes P, 1... PA = Qi1 ... @QB. This implies
that A = Qmy1...Q,C and B = P4y ... BC for some C € Sy(X). That is, we
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have

! !
Z Z Z (10g|Pi|) (1Og|Qz ) oy (A)ar(B)
1 T
deg Pi<X deg Q1< X ABGSM (x) =1 [Pz /o \ @ |2 |AB|2
. . P A=Q1..QB

deg <X deg Q<X
Pr,...,P; distinct Q1,...,Q; distinct

LN/
SNMIEITIDS )3 )3
deg Pi<X deg Qm4+1<X cesSm(X)

deg P <X deg Q<X
P1,...,P, distinct Py,...,P;,Qmt1,...,Q: distinct

() 10 () 11 ()

Z:;k(Qerl in)cmlﬂ( M - Pzg)mﬂ
SO0 5. 60

deg PI<X deg Qm+1<X i=1

deg PZSX deg QZSX
Py,...,P distinct  Py,...,P,Qm+1,---,Q; distinct

l

i—0 |Pi|J j= ol
11 { toslPl= - )H (bg\czir _
0o ag(P?)? o an(Q)2
i=m+1 ijo % i=m+1 ijo %
ak(C)Q
2 1o
M

(7.15)

From (6.10), we have

ap(C)? X k2
) |T|(1+0(1))a(k)(e X) : (7.16)

CeSMm(X)

Also, for any prime P,

0o ay(Pi)ay(Pit!
S MO 4 Ouide) 4

2 1
= +0x( 55 ). (7.17)
0o an(PI)?2 5
Zj:o k|§a|j) 1—|—Ok<%> ’P’ 1P|
and so
J j+1
200: o (Qu ) (Q" )
2. log|Qi| = OOO al(:?(gj;
deg Q<X Zy‘:o QP
P1,..,P,Qm41,...,Q; distinct
1

deg Q<X
Pr,. ., PLQm1,--.,Qr distinct
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Applying the method above inductively, we obtain

! ZOO o (Qif) o (Qi7 1)

(2= @it
Z H <log‘Q1’ ZOO a(Qi7)?

deg Qm1<X i=m+1 J=0  |Q:]7

deg ;<X
P1,....,P,Qm+1,...,Q; distinct

l—m

=(k(log q)X + Ok(1))
Similarly

0o ap(Pd)a, (Pt
>, el

> 11 <10g|B| J':ZOOO L ):(k(logq)X+Ok(1))

deg Pp+1<X i=m+1 j=0 [P

l—m

deg P<X
P;...P; distinct

and
f[( lo[g]|DP|| ) = ((logq)QXT(l —l—O(X’l)))m.

deg P <X
Py...P,, distinct

So, we have
l
10g|1%-|)
SIS T

deg P1<X deg Q1< X A,BESM(X) =1
. . P .. P A=Q1..Q;B

l
log|Qi]'\ (A (B)
H( Qi ) AB|>

deg PZ<X degQZSX
P1,...,P; distinct Q1,...,Q; distinct

T —

=a(k)ci(1)(log ¢)* X* <€”X ) .

as required. We must remark that, when m = [, the sums

Z and Z

deg Qm+1<X deg Ppny1<X
deg Q<X deg P<X
Py,...,P,Qm+1,...,Q; distinct P;...P; distinct

should be taken as there being no summation; they should not be taken as the empty
sum which evaluates to zero. Similarly, when m = 0, the sum

2.

deg P1<X

deg P <X
Py...Py, distinct
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should be taken as there being no sum.

Now consider the case where at least two of Py, ..., P, are equal or at least two of
@1, - .., are equal. This case contributes lower order terms, ultimately because we
have at least one less degree of freedom in the P; or in the @);, and this translates to
at least one less factor of X in the final expression. Upon initial considerations, this
is certainly believable, but the proof is tedious as we must condition on the number
of distinct P | P;... PQ;...Q;, among other things. Nonetheless, we provide a
proof for completeness.

We first condition on the number of distinct P | Py... PBQ;...Q, for which the
possibilities are r = 1,...,2l — 1. Now, if P | P, ... F,Q...Q,, then P must fall
into one and only one of the following five categories:

1. PT(PIPlanQZ) andP|P1Pl,

2. P|(P...P,Q...Q)) and P | —(Pl...IJPll;é]jl...Ql) and P ¢ —(leQPll;.Q?%an) :

3. P|(P,...P,Q;...Q;) and P —(leppll;gj{._Ql) and P { —(PI“%;@?{QZ) .

4. P|(P,...P,Q;...Q)) and P —(Plfpll;gjlﬁ_@) and P | —(Pl_%b?f_@l) ;

5. P*(PlplanQl) andP|Q1...Ql.

We now condition on the number of distinct P that fall into each category. Let r;
be the number of distinct P in category i. We must have that

rirtrotrgtrat+rs=r.

Furthermore, if P | P;... P, then P must be in categories 1, 2, 3, or 4; and if
P | @Q;...Q; then P must be in categories 2, 3, 4, or 5. Also, if P is in category 2
or 4, then P? | P,... P, or P? | Q,...Q, respectively. From this, we see that we
must have

14+ 2rg + 134+ 14 <1,

(7.18)
T2+T3+2T4+T5 < l.
Also, since at least two of Py, ..., P, are equal or at least two of ()1, ..., Q; are equal,
we must have that
ri+2ro+r3+ry <l—1
or
ro+r3+2ra+r5s <0 —1
From this and (7.18), we must have
T1+3T2—|—27’3—|—3T4+T5§2l—1. (719)

So, the possible values of (ry,ry,73,74,75) are elements (but not necessarily all of
them) of the set

Dl,r = {(7’1,7”2,7’3,7”4,7’5) EZ2052T1+T2+T3+7’4+T5:7’, 7’1+27’2+7’3+7”4§l
ro+r3+2ry+715 <1, ry+3rg+2r3+3ry +1r5 < 20— 1},

171



CHAPTER 7. A RANDOM MATRIX THEORY MODEL FOR THE FIRST
DERIVATIVE OF DIRICHLET L-FUNCTIONS

To help keep track of notation, the D stands for “distinct primes”.

Now we condition on the number of P (not necessarily distinct) that fall into each
category. For i = 1,3,5, let n; > r; be the number of P (not necessarily distinct)
that are in category 7. Now, for the distinct P, ..., P;  in category 2, there are
maximal integers ay,...,a,, > 1 and a},...,a;, > 1 such that

Pial...PimaTQ | (PlplleQl)
and

/
P, P

trg

!
Ay Har, | P...PB.

Let ny := ay + -+ + @y, > 19 and n = aj + -+ +aj, > r2. We define ny,ny > 4
similarly. Note that we must have

n1+n2+n’2+n3+n4§l,
ng +n3 +nly +ng +mns < 1.

So, the possible values of (ny,ny, nb, ns, njy, ny,ns) are elements (but not necessarily
all of them) of the set

Nl,(Tl JT2,T3,74,75)

. / / 5. . / .
= {(711,”27”2,”37”4;”4,715) € Zzo tny > Vi, n; > r; Vi,
/ /

ny+ng +ny+ng+ng <1, ng+mng+ny+ng+ns <}

To help keep track of notation, the N stands for “not necessarily distinct primes”.

Finally, for each category, ¢, we condition on the number of ways that we can have
n; (or nj) primes when exactly r; are distinct. That is, the number of ways of
compositioning n; (or n}) into r; terms. Specifically, we are interested in the sets

Ci,ni,ri ::{(ai,l, . 7ai,r¢) I~ Z>0ri Da + ...+ Qi gy = nl}

/ . / !/ ri . ./ / _ /
Cj,n;,rj —{(a]71, e ,ajﬂ,]_) E Z>0 J . a/j71 + o e + aj,"'j — n]}

(7.20)

for i = 1,2,3,4,5 and 7 = 2,4. To help keep track of notation, the C' stands for
“composition”.

So, we have distinct primes

P1,17 -7P1,7"17
P2,l> '7P2,7“27
P31, Py,
P4,17 -7P4,7"47
P5,1> '7P5,7"5

(the first subscript in the primes represents which category they belong to) such
that

(Pr. PLQu. .. Q1)
:(P271a2‘1 .. P27r2a2‘T2) (P371a3’1 . Pgmgag’m) (P471a4‘1 .. P477~4a4’r4)
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and
PQ1 ... Q
(Pr...B,Q1... Q1)
:(PLlel,l - PLTlal’rl)(Pg,lalg’l c P277,2a/2”2)(P471a£1’1 - P47T4a£17T4)<P5,1a5’1 e P57T5045,'r5).

(The powers are as in (7.20)). In particular, the requirement that P, ... BA =
Q1...Q;B becomes

A= (P4’1a11,1 L P47T4‘1§1,r4) (P571a5,1 o P5,r5“5”“5)0
and

B = (Pl’lal!l Py 1T1) (PQ 1 921 ... P27T2al2ﬂ“2)0

)

for some C' € Sp(X).

Before proceeding, let us define §(a) = 1 if a = 1 and §(a) = 0 otherwise. Now,
from the above we can see that the contribution of the case where at least two of
Py, ..., P are equal or at least two of ()1, ...,Q; are equal is

201

=2 ) >

’ ’
= (Tl ,T2 77'377'477'5)€Dl r (nl ,N2,Mo,N3,MNy 7”41”5)€Nl,(7"1 ,T2,T3,T4,T5)

2. 2 2.

a1,1,,01,7; )ECT g ,ry  deg Pr1,...,deg P1ry <X CeSp(X)
ag’l,...,a2m2)602’n2m2 deng,l,...,deg P2‘7<2 <X
!, )EC; . deg P3.1,...,deg P3,rq <X
T2 degP471,...,degP4,T4§X
JEC3n5,r5  deg Py 1,...,deg Py rs <X
) a,n/, h oy all primes above distinct

)

a5,1,5505,75 )EC5 ng rg

[ LolPuiabre F (sl Pyl

PR U P Lo B Vo PR R
ﬁ (10g|P27i2|)2a2,i2+a/2,¢2 T4 (10g|P4,i4|)2a4’i4+a£‘*i4 r3 (10g|P3ﬂ-3|)2“37i3
b |P2,i2|a27i2+a/2’i2 b | 47i4|a4,i4+a§17i4 P |P3,1'3 |a3,i3
Yk C H;l:l‘Pl»il |al’i1 ng 1|P2 22| 2 2 o CH25 1|F)5,i5|%’i5 Hz4 1’P4 z4| i ta
]
20—1

<p X¥ ; > 3

(r1,r2,73,74,75)€Dy ;- (n1,n2,m5,13,1) 04 05)EN] (1) rg rg.ry.rs)
™1 75 . 3 .
E ((log Q)X) Zi1:1 5(a1,i1)+2i5:1 5(“5,15)+2 Zi3:1 6(113,13)
(@1,1,--,01,71)EC1,nq,rq
(a2,17- ~7a2,72)€02 n9,Ty
(ll/2717 ’a/277“2)€C;,n/2vr2
(03,17--- as, 7‘3)603 n3,r3
(ailvl""’aflvr4)ec4,nipr4
(a4,1,,04,r4 )EC ny ry
(a5,17--- as, 7‘5)605 ng,TE

2011

< (logq)* ' xFH Z > 3

- (T17T27T37T47T5)€Dl r (n17n2an27n37n47n47n5)ENl (r1,79,73,74,75)

173



CHAPTER 7. A RANDOM MATRIX THEORY MODEL FOR THE FIRST
DERIVATIVE OF DIRICHLET L-FUNCTIONS

> 1

;1,501 T ECI ,M1,T1
J1500yA2,7m9 ECQ ,n9Q,To

7’L T2
,1500,A3,rg ECB ,ng3,r3

’

a ey
4,10 0% 4,y 4n4 ry

1 )
2 )
a’271 ..... a’2 ,2)
3 )
y Jec
)

a4.15e,04,r )EC g,y
as5,1,--,05,r5)€C5,ng vy,

<<k(log q>21—1Xk2+2l—17

as required. For the first relation, to address the factors involving a4, we apply a
similar reasoning as in (7.15), (7.16), and (7.17). Also, the first relation uses the
fact that, for integers ¢ > 0 and d > 2,

(log|P|)°
— 0 < L
> i <
deg P<X
and for integers ¢ > 1,
log|P|)¢
Z —( T;ILI ) < (logq)°X°.
deg P<X
The second relation uses the fact that
T1 5 T3
> 6(ari) + Y 0(as,) +2) dlass,) <y ra+2rs <2 -1,
=1 ig=1 i3=1

which follows from (7.19). We must remark that if C;,, ,, or C] _,

ity ATC empty for

some ¢ (for example, if ; = 0), then the sums

3 or Y

/ ’ /
(ai,l7--~,ai,ri)eci,ni,ri (ai,l ----- aiyr..)ec- I
i

respectively, should be taken as there not being any summation and should not be
taken as the empty sum that evaluates to 0.

As mentioned before, and as we can see above, if at least two of P, ..., P, are equal
or at least two of @),...,Q; are equal, then in whatever way this may manifest
(which we addressed by conditioning) we always lose at least one factor of X. The
conditioning is just a technicality that is required so we can establish that this really
is the case. O]

7.4 The Second Moment of P} (%JC) Zx (%JC)

In this section we prove Theorem 2.5.5, which we restate for ease of reference.

Theorem. As X,degQ — oo with X < log,deg@, we have

1
5 2,

XFX0

/1 1 \* 3 -
Px(§,x>Zx<§7x>‘ ~ 5 (log¢)" X" deg Q.
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Proof of Theorem 2.5.5. Throughout this proof, all asymptotic relations should be
taken as X, deg ) — oo with X <log, deg@.

As in Lemma 7.3.1, we have that

1
1 1\ P)’f(ﬁaX> 1\
Z PA;((_7X>ZX<_7X) = Z L(_7X)
2 2 (1 2
xmod Q xmod@ ' Ix | 5, X
XFX0 XFX0
log| P| (P log| P|x(P)? N
~ Y ( 3 log PIX(P) | 3 Mw(l))L(_,X)
|P|2 X 1P| 2
xmod Q deg P<X deg P<%5-
X#X0 -2

Therefore, it suffices to show that

a2 (2 )

x mod @ deg P<X

XF#X0

1 log| PIx(P)*) , (L \[*

R o AN 7 L _ .

Q@ ( 2~ p (3] <dee
xmodQ ' *deg P<
XFX0

2

Ng@og 0)2X2 deg Q(1+ O(X™)):;

ﬁ Z ‘L(%,x) 2<<degQ.
(7.21)

We will prove the first result. The second can be obtained similarly. The third
follows immediately from Theorem 2.2.1. Now, by Lemmas A.1.2 and A.1.3, we
have

s 2 |(3 ()

x mod @ deg P<X

2

1
deg P<X | P[>

_ 1 log[PIx(P)|* v, 1
5@ > | 2 ‘ 0+ 5 2

xmod @ ' deg P<X x mod @
XF#X0 XF#X0

where

(omr 3 AN

1
A,BEM |AB| 2
deg AB<deg @

and c¢(y) is defined as in (A.8). We will show that the sum involving a(y) con-
tributes the main term. One can similarly show that the sum involving ¢() is equal

to O((log ¢)2X?).
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To this end, we have that

1 log| P|x(P) 2@
q@ 2| 2 : ‘ )

xmod @ ' deg P<X |‘P|5
XFX0

1
Xmon deg P1<X |‘P1‘P2"4B|2
XFEX0 de%BPéj;lX (722)
deg AB<deg @
—9 Z (log| P1|)(log| P»|) B 2 Z (log| P1|)(log| P»])
- 1 1 :
e |P,PyAB|z NQ) L ix  |PPRABI:
deg Po<X deg Po<X
A,BEM A,BEM
deg AB<deg @ deg AB<deg Q

P1 AEPQB(mOd Q)

It is not difficult to see that the second term on the far RHS is O(|Q|_%) For the
first term, we first consider the diagonal terms. That is, when P/A = P, B.

If P, = P,, then we must also have that A = B, and so

, oy osADIsIP) 5~ (ol

1
deg Py<X [P P ABz deg P<X |PA]
deg Po<X AeM
A,BEM degA<M
deg AB<deg Q 2
PLA=P,B
Pi=P,
_(logq)?
5 X deg Q1+ 0(XT).

If P, # P,, then we must have that A = P,C and B = P,C for some C € M.
Therefore,

IS (log| P1[) (log| )

1
deg P <X |PLPAB|
deg Po<X
A,BEM
deg AB<deg Q
P A=P>B(mod Q)
Pi#P>
log| 4| log| P;| 1
=2 > TRl L2 B 2 i
deg P1<X deg Po<X CeM
Pi#P deg C<7deg@7(;eg PPy
log| P log| P
s lelBl g LRI o - s R+ 0(1))
deg PL<X P deg Pa<X P2
eg 1< eg ros
PP,
log| P,
=(logq) > ’FL’1|(X+O(1))(degQ—degP1+O(1))
deg PL<X 1
log ¢ log| P |
— X(X +1 o1
> 2. pp K& Do)
deg P1<X

=(log )’ X*deg Q(1+ O(X™1)).

Finally, we consider the off-diagonal terms on the far RHS of (7.22). That is, when
PA = P,B(mod Q) but PLA # P,B. Using Lemma 6.4.4 with C' = P; and D = P,
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we have, for Z; =0,...,deg@ — 1,

Z1
1 q 2 (Zl+1)|P1P2|
) ;< :
A, BEM |AB|z @
deg AB=27
PlAEPQB(mOd Q)
P A#P;B

Therefore,

(log|P1[)(log| ) _ deg@ ! !
> —- < —= Y (log|P|)(log| Pa]) [P Pz < |Q] 5.
deg P <X ’P1P2AB|2 |Q’2 deg P1<X
deg P,<X deg Po<X
A,BEM
deg AB<deg Q
PlAEPQB(mOdQ)
PLA%P,B

The proof follows. []

7.5 The Second Moment of the Derivative of the
Hadamard Product

In this section, we prove Propositions 2.5.8 and 2.5.9, which, as described in Section
2.5, are required for the proof of Theorem 2.5.7. We begin with Proposition 2.5.8,
for which we require a lemma.

Lemma 7.5.1. As X,degQ — oo with X < log, deg (), we have

5 a_1<c>x<c>'2 > f(degA,degB,degQ)x(A)Y(B))

7 2,

1 1
xmod@ \! ces(x) C2 ABEM [AB|2
X7X0 deg C< Tlo deg Q deg AB<deg Q
(degQ)3( _X
L )]
sox L TOW)

where a_q is defined as in (6.15) and

f(deg A, deg B, deg Q) =(deg A)(deg B) + (deg Q — deg A)(deg Q — deg B).

Proof. Throughout this proof, all asymptotic relations should be taken as
X, deg Q@ — oo with X < log, deg Q.
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Now, we have that

50 Z,

04_10 C
3 (C)x(C)

2 5 f(degA,dengegQ)x(A)Y(B))

1 1
xmodQ \! cesn(x) |C]2 A,BEM |AB|>
X7X0 deg CS% deg Q deg AB<deg Q
o Z f(deg A, deg B, deg Q)a,l(C)oz,l(D)
= 1
ABeM |ABCD|z
deg AB<deg Q
C,DESM(X)
deg C,deg DS% deg Q
AC=BD(mod Q)
1 Z f(deg A, deg B, deg Q)a_1(C)a_1(D)
oQ) 4=, |ABCD|> '
degAB<degQ
C,DESM(X)
deg C,deg Dgl—lo deg Q
(7.23)
For the second term on the RHS we have
1 Z f(degA,deg B, deg Q)a,l(C)a,l(D)
(b( ) A,BEM |ABCD|%
degAB<degQ
C,DGSM(X)
deg C,deg DS% deg Q
deg Q)? 1 deg Q)3 de
ldes Q) > e (O(—gQ>) < |Q|s.
Q) A,BEM |ABCD|2 Q|2 X
degAB<degQ
C,DESpM(X)
deg C,deg D< s deg Q
For the off-diagonal terms on the RHS of (7.23), we have
Z f(deg A, deg B, deg Q)a_l(C)oz_l(D)
ey |ABCD|2
degAB<degQ
C,DGSM(X)
deg C,D< 15 deg Q
AC=BD(mod Q)
AC#BD
1 de 3
< (degQ)? Z T < ( g?) Z ICD|z
A,BEM |ABCD|> Q|2 C,DESM(X)
dg’;glg‘ggjj?)g(? deg C,deg Dgl—lo deg Q

deg C,deg D 1—10 deg Q
AC=BD(mod Q)
AC#BD

(deg Q)?|Q| 10

1
— < QT
ok

<

where the second relation follows from Lemma 6.4.4. Finally, we address the diagonal
terms on the RHS of (7.23). When AC' = BD we can find unique GHST € M such
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that A=GS, B=GT,C =HT, D =HS, and (S,T) = 1. Hence,

Z f(degA,deg B, deg Q)Oé—1(c)04—1(D)
|ABCD|z

A,BeEM
deg AB<degQ
C,DeSMm(X)
deg C,deg D % deg Q
AC=BD

B f(deg GS,deg GT,deg Q)1 (HT)a_1(HS)
B 2 |GHST]

GeM
H,8TeSm(X)
(51)=1
deg G2ST<deg Q
deg HS,deg HTSl—lO deg Q

a1 (HT)a_1(HS)
Z |GHST)|

GeM
H757T68M (X)
(5,7)=1

deg G2ST<deg Q (724)
deg HS,deg HT'< 1—10 deg Q

. <2(deg G)? + 2(deg ST — deg Q)(deg G)

+ 2(deg S)(deg T') + (deg Q)(deg @ — deg ST)>

B a_1(HT)a_1(HS)
B Z |HST)|

H,S,T€SMm(X)
(S,1)=1
deg ST'<deg @
deg HS,deg HT <75 deg Q

. ((deg@ —deg ST)®  (deg @ — deg ST)?

12 4
+ (deg S)(deg T')(deg @ — deg ST
(deg @)(deg Q — deg ST)?

+ 5 + O((degQ)2)>,

where, for the last line, we evaluated the sum over G. Now, by similar means as in
Lemma 6.4.2, we can show that, for e =0,1,2,3

oL (HT)a_, (HS)| S
E deg ST)" < X°1
H,5,TeSm(X)
(S,1)=1
deg ST<deg @

deg HS,deg HTgﬁ deg Q

and, for ¢ =0, 1,

la_1(HT)a_y(HS) ~
deg S)(degT)(deg ST')*
> Hor  (degS)(deg T)(deg ST)
H,S,T€Spm(X)
(S,T)=1
deg ST<deg @
degHS,degHTgl—lOdegQ
|Oé_1(HT)Oé_1(HS)| ;
< deg ST)""? <« X°.
< Z ST (deg ST)"™ <«
H,S,TeSm(X)
(S,7)=1

deg ST'<deg @
deg HS,deg HT <75 deg Q
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Also, by Lemmas 6.4.3 and A.2.7 we have that

a1 (HT)a_1(HS) 5 (degQ)? _x
2 |HST] (deg Q) = =% (HO(Q ))‘
H,5,T€Sn(X)
(s.1)=1

deg ST <deg @
deg HS,deg HT<{- deg Q

Applying these three points to (7.24), we obtain

|ABCD|> - 30X

Z f(deg A, deg B,deg Q)a_1(C)a_1(D)  (degQ)? (1 N O(q_§)>.

A,BeEM
deg AB<deg Q
C,DeSpm(X)
deg C,deg D< % deg Q
AC=BD

The proof follows. O

We can now prove Proposition 2.5.8, which we restate for ease of reference.

Proposition. As X, deg @) — oo with X < log,deg (), we have

1 1 1,1 \[P (logg)?(deg Q)
mw;c? PX(é’X> L<§’X)‘ T Box
XFX0

Proof of Proposition 2.5.8. Throughout this proof, all asymptotic relations should
be taken as X, deg Q —— oo with X < log,, deg Q).
By (6.15) and a method similar to (6.7), we have
1 \-1 . L1\
Px(3x)  =(1+0(x)Pi(5:4)

B » a_1(C)x(C) &
(o) 3 Far rolers)
deg C< 15 deg @

where «_; is defined as in (6.15). Hence, by the Cauchy-Schwarz inequality and
Theorem 2.3.2, it suffices to show that

1 ‘ ( Z a—l(C)X(C>> (1

> 1 L\5:x

(@) x mod Q CceSpm(X) |C|z (2 >
XF#X0 deg Cg% deg Q

®  (logg)*(deg @)
3e7 X '

We first consider the case where y is odd:

1 ( 3 al(C)X(C)) (1

S0 2 — o) V5

(b(Q)xmon CeSMm(X) C|2 <2 >
x odd deg CS% deg Q

2

By Lemma 5.2.1 we have

NARNTE f(deg A, deg B, deg Q) x(A)X(B)
2(3:%) 2 |AB?

(logq) 2

A,BEM
deg AB<deg Q
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3 go(deg A, deg B, deg Q) x(A)x(B)

+ T
A,BEM |AB|2
deg AB<deg Q
ho(deg A, deg B, de AX(B
S o(deg A, deg ng)X( )x( )’
A,BEM |AB|>2

deg AB=deg Q—1

where
f(deg A, deg B, deg Q) =(deg A)(deg B) + (deg Q — deg A)(deg Q — deg B),

and go(deg A, deg B, deg Q)) is a polynomial of degree 1 that is symmetric in

deg A, deg B and ho(deg A, deg B, deg Q) is a polynomial of degree 2 that is sym-
metric in deg A, deg B.

Now,
Ly ( 5 a1 (Cx(O)[* 5 go<degA,degB,deg@)xm)xw))
1 1
¢<Q)xmod@ CeSm(X) Cl2 A, BEM [AB|2
x odd deg CSTIO deg Q deg AB<deg @Q
el 3 ( 3 OO 5 go(degA,degB,degQ)X(A)Y(B)>
qb(Q)xmon CESM(X) C|2 A.BeM |AB|>
XFX0 deg CS% deg Q deg AB<deg Q
_ Z go(degA,degB,degQ)a_l(C)a_l(D)
A,BEM |ABCD’%
deg AB<deg Q
C,DESM(X)
deg C,deg Dgl—lo deg Q
AC=BD(mod Q)
1 3 go(deg A, deg B, deg Q) a1 (C)a—1(D)
P(Q) Ao |ABCD|2

deg AB<deg Q@
C,DeSm(X)
deg C,deg D< - deg Q

o1 (O)]|a-a (D)) !
<(deg@) D] —  +0(jQl™)
A,BeEM |ABCD| :
deg AB<deg Q
C,DeSpm(X)
deg C,deg Dg% deg Q
AC=BD(mod Q)

_eg@) 3 leiQllai(D)

Feg@) 3 e @llas D o0

W52 |ABCD|: 5= |ABCDIz
deg AB<deg Q deg A,B<deg Q
C,DESM(X) C,DeSm(X)
deg C,deg Dgl—lo deg Q deg C,deg Dg% deg Q
AC=BD AC=BD(mod Q)
AC#BD
la_1(HS)||a_i(HT) | o
—(dezQ) Y Mo dBDL s~ L o+ o(er)
H,S5,TeSpm(X) | l GeM | |
deg HS,deg HT'< 1~ deg Q deg G< deaQ=deg ST
(5,7)=1
<(deg Q)°X?,

(7.25)
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where, for the second-to-last relation, the first term follows by similar reasoning as
in (6.19) and the second term follows by similar reasoning as in (6.21) (although
it is easier here as @) is prime); and for the last relation we use a similar result as
Lemma 6.4.1. Similarly,

1 a1 (C)X(O) [
(>

5 ho(deg A, deg B, deg Q)X(A)y(3)>

1 1
xmod Q \! Cesp(X) Cl2 A,BEM |AB|>
x odd deg CS% degQ deg AB=deg Q—1
1 1
< (deg Q)? —— +0(|Q"3) < (deg Q)2 X3,
st 2 Gagopp TO0O) < (9
deg Aé:deg Q-1
C,DeSMm(X)

deg C,deg D< % deg Q
AC=BD(mod Q)

(7.26)
where the last relation follows almost identically as (6.22).
So, by Lemma 7.5.1, (7.25), (7.26), and the Cauchy-Schwarz inequality, we have
1 a—l(C)X(C)) (1
L SENEAPIEN
#(Q) 2 ‘( 2 [eik: 2

x mod Q CeSm(X)
X odd deg CS% deg Q

_ (log g)?
—oQ) 2 (

2

a_1 C C
3 (C)x(C)

2 S f(deg A, deg B, deg Q)X(A)Y(B)>

wmodo \| cesoxy €12 A,BeEM |AB|z
x odd deg CS% deg Q deg AB<deg @
+0((log g)*(deg Q)3 X).
(7.27)
We next consider the case where y is even:
1 Oéfl(C)X(C) (1 ?
EEIIPD '( 2 o )" () (728)
xmod Q CeSMm(X)
§;§§ deg C< % deg Q
By (5.1) we have that
1 1 .,/1 (logq)gz . /1
L’(-, ) _ L’(—, ) n I—L(—, ) 7.29
2 X qz — 1 2 X qz — 1 2 x ( )
First, we recall from (6.17) that
1 L(O)x(C 1 [
xmod Q CeSMm(X) C|2
even 1
>§(?5XO deg C< {5 deg @ (730)
1 a_1(C)x(C) 1 > degQ
<o 2| X O (L] <22
(@) x mod Q CeSm(X) C|2 2 X
XF#X0 deg C< % deg Q
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Also, by Lemma 5.2.6, we have that
1 ~ 71 2
L=,
(log q)2(q> — 1)2 <2 X>
. f(deg A, deg B, deg Q) x(A)X(B)
- 1
A,BeEM |AB‘ ?
deg AB<deg Q
deg A, deg B, de A (B
Py ge(deg A, deg ng)x( )X(B)
A,BeEM |AB|z
deg AB<deg Q
hpa(deg A, deg B, deg Q) x(A)x(B)
D DD ,

1
deg Q—2<n<deg Q@ A,BeM |AB|z
deg AB=n

where
f(deg A, deg B, deg Q) =(deg A)(deg B) + (deg Q — deg A)(deg Q — deg B),

and gE(deg A, deg B, deg Q)) is a polynomial of degree 1 that is symmetric in
deg A, deg B and hE,n(deg A,deg B, deg Q) is a polynomial of degree 2 that is sym-
metric in deg A, deg B.

Similarly to (7.27), we can show that

L1 a1 (OX(C) (1
O(Q) (g2 — 1)2 2 ‘( 2 ﬁ)L(g,@

2

x mod Q ceSm(X)
X even d <1
X0 eg C<75deg@

~ (logq)? a_1(C)x(0)
e e (R

2 S f(deg A, deg B, deg Q)X(A)Y(B)>

T T
xmodQ \! CesSp(X) Cl2 A,BEM |AB|>
§;¥§ deg Cg% deg Q deg AB<degQ

+0((log ¢)*(deg Q)? X).

(7.31)

Now, if we apply (7.29) to (7.28), then one of the terms will be (7.31) directly above.
182
Another term will be (7.30) multiplied by a factor of (Uoglﬂ) . There are then two

2-1

terms remaining which we can bound using the Cauch; Schwarz inequality, (7.30),
and a bound for (7.31) which we obtain from Lemma 7.5.1 (note that the LHS of
the result in Lemma 7.5.1 is not restricted to even x as in (7.31), but it is still an
upper bound for (7.31)). Thus, we obtain

1 a1 (C)x(C)Y ,, /1
WZ ( 2 |(J|? )L<5’X)

2

xmod Q CeSm(X)
f(;‘;?: deg C< % deg Q
_(log)* ( 3~ 2a(ON(C) ’ 5 f(deg 4, degB,degQ)xM)Y@))
= T T
(@) x mod Q CeSMm(X) C|2 A,BEM |AB|>
);;\;3;1 degCg% deg Q deg AB<deg @
+0((log ¢)*(deg Q)7 X).

(7.32)
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Therefore, by (7.27), (7.32), and Lemma 7.5.1, we have

BT, =

2

xmod Q CESM(X)
X#X0 deg C<15 deg @
:(logq)2 Z ( Z a_1(C)x(O)|? Z f(deg A, deg B, deg Q)X(A)Y(B)>
(@) wmoao \! cesoxy €2 ABeM |AB|>
XFX0 deg C< % deg Q deg AB<deg Q
+0((log q)*(deg Q) X)
_(log g)*(deg Q)°
3e7 X ’
The proof follows. []

We now proceed to prove Proposition 2.5.9. We will require the following lemma.

Lemma 7.5.2. Suppose P, P, € P with P, # P, and deg P;,deg P, < X. As
X —> 00, we have

Oé_lHSO(_lHT
3 (HS)a(HT)

|HST|
H,S,TESM(X)

(T,8)=1

I1 (1- %) (1 v O(|P1|*1)> (1 n O(|P2|’1)>

and

Z Oé_1<HPQS)Oz_1(HP1T)
|HST)|

H,S,TeSm(X)
(T,S)=1
(Py,8)=1
(P2 ,T):l

I1 (1 - %) (1+o(P™)) (1+0(PI ™)

deg P<X

and

a_1 (HPQS)Oé_l(HT)
2. |HST]

~~ I <1 - I_JIDI) (1+0(PI™) (1+0(RI™).

deg P<X

Here, the “big O terms O(|P1|™") and O(|P2|™") are with respect to Py and P as
variables, respectively, and not as X — oo.
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Proof. For P€ P, e >1,and A € A, we write P¢ || Aif P¢| A and P! A. Now,
recalling that a_;(P?*) = 0 for all P € P, we have that

3 3—11 3—ig

~1(HS)a_1(HT) a_1(HS)a_1(HT)
Z ‘HST’ Z ZZ Z |HST’

H,S,TeSM(X) 11,12=0 71=0 jo= OHSTESM X)
(T,S)= (T,5)=1
(P T)—l (P, T)=1
(P2,5)=1 (P2,5)=1
P11 Py2||H
P [|S
Py2||T

Z %g . 1 1+J1P2 )Oz 1<P1i1p2i2+j2) Z og,l(HS)Oéfl(HT>
’Pl 7,1+_]1|P2|’L2+j2 ‘HST|

11,12=0 71=0 j2=0 H,5,TeSm(X)

(T,8)=1
(P, Py, HST)=1

~ L (o m) () (o)

e e
| Pr[ 47| Ptz
11,12=0 71 =0 j2=0

- IL (1) (rotmm)(-otmy),

deg P<X

where the second relation follows almost identically as the proof of Lemma 6.4.3.
Similarly,

Z Oéfl(HPQS)Oéfl(leT)
|HST)|

H,5,Te€Sn(X)
(T,5)=1
(PL,9)=1
(Pz T)=1

2—11 2—19

a_1(HPS)a_(HPT)
YYY % 2=

11,i2=0 j1=0 j2=0 H,5,TeS\(X)
(T,5)=1
(P1,9)=1
(P2, T)=1
P12 ||H
p1j1HT
P28

2—1i1 2—19

Z Z Za 1 Plll P212+J2+1) (P i1+j1+1P2i2> Z Oé_l(HS>Oé_1(HT)
‘Pl 11+J1’P2’22+J2 |[—[ST|

11,i2=0 71=0 j2=0 H,5,TeSMm(X)

(T,S)=1
(P, Py, HST)=1

1T (1 ,;,)(HO(!H! 1))(1+o(|132|*1)),

deg P<X

and

a_(HPS)a_(HT
3 (HPyS)a(HT)

|HST]
H,S\TeSpm(X)
(T,5)=1
(P1,T)=1
(P2, T)=1
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SESE y s
|HST]
11=0 j1=0122=0 jo= OHSTESM )

(T,9)=

(P1,T):1

(P2,T)=1

P P2 ||H
P18
Pi2||8

_ i BZ“ i 2Z’2a 1 Pl 1+J1P212+J2+1>a 1<P1 1P2 ) Z Oéfl(HS>O‘71<HT>
|P1 11+11‘P2‘12+22 |HST|
11=0 j1=0122=0 j2=0 H,S5,TeSpm(X)

(T,S)=1
(P, Py, HST)=1

~— 11 (“%)wa1>)(1+0<\P2“>>-

deg P<X

We can now prove Proposition 2.5.9, which we restate for ease of reference.
Proposition. As X,deg @ — oo with X <log,deg @,

2

X deg Q

~ (1 22 ow
(log ¢)"——

2 ) 03

Proof of Proposition 2.5.9. Throughout this proof, unless otherwise stated, all

1
X#Xo

asymptotic relations should be taken as X, deg @) M o with X < log, deg Q.

Similar to Lemma 7.3.1, we have

ORI

x mod @ PX <§7X

2

XFX0
log| P|x (P log| P|x(P)? 1 N1 /1 2
s < 5 og| PIx( )+Z og| Px(P) +O(1))P)*(<_7X> L(—,x>
< |P|z N | P 2 2
x mod @ deg P<X deg P<%5-
XFX0

By the Cauchy-Schwarz inequality, it suffices to show that

@ > ( > —log“];")g(m>P§?(%,x)_lL<%,x) N(logq)Q%

deg P<X

i 5|3 R 1) () 222

X
x mod Q deg P<%

L1 N\t /1 > degQ

50 Pi(5%) L<§’X>’ STx
x mod Q
XFX0

—_

We will prove the first result. The second can be shown by similar means as the first.
The third follows immediately from (6.16) and Theorem 2.4.7. Similar to (6.7), we
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have

(1 a1 (C)X(C) s

Pi(sx) = R L o(1QI ).

X(Q X) CGSZM(X) C|3 (‘ | )
degCS%degQ

Hence, by the Cauchy-Schwarz inequality and the first equation in (7.21), it suffices
to show that

_ ‘( T 10g|P|X(P)>< 3 a_l(O)X(O)> 1

Z opl — 1 ) Ll5x

QS(Q) x mod @ deg P<X |P|§ CeSm(X) |C|2 (2 )
XFxo deg CS% deg Q

X deg @
2e7
Now, by Lemmas A.1.2 and A.1.3, we have

| log| P|x(P) o (XY, /1
5 (Z N >( 2 o )L(ﬁ’x>

x mod Q deg P<X CeSpm(X)

2

~Y

X#X0 deg C< {5 deg Q
1 ( Z 10g|P|X(P))( Z Oé—l(O)X(O)) ?
== > T — 1 )| «X)
¢< )Xmon deg P<X |P|2 CeSpm(X) |C|2
X#X0 deg C< {5 deg Q
1 log| P|x(P) a_1(C)x(C)|?
b O |((X (s OO
?(Q) ymodQ | \deg P<X |P|2 CESMm(X) C2
XFX0 deg C< 1—10 deg @

where

X(A)X(B)
a(x) :=2 Z T
A,BEM |AB>
deg AB<deg Q
and c(x) is defined as in (A.8). We will show that the sum involving a(y) contributes
the main term. By similar means, the term involving ¢(x) can be seen to be equal

to O(X?).

To this end, we have that

1 3 ‘( 3 10g|P|X(P)>< 3 a—l(C)X(C)>
¢(Q) x mod @ deg P<X ‘P‘E CceSm(X) ‘0’5
XFX0 deg Og% deg Q

—9 3 (log| P1])(log| Pa])ar—1(C)a—1 (D)

deg P <X |P,P,ABCD|>

deg Po<X
A,BeM
deg AB<degQ
C,DESM(X) (7.33)
deg C,deg DL % deg Q
P1AC=P>BD(mod Q)

2 Z (log| P1])(log| Pa|)a—1 (C) a1 (D)
9(Q) |P,P,ABCD)|z '

2

a(x)

deg P1 <X
deg Po<X
A,BEM
deg AB<deg Q
C,DeSMm(X)
deg C,deg DL 1—10 deg Q
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The second term on the RHS can be seen to be O(|Q|_%).

For the first term on the RHS we consider the off-diagonal terms first. That is, when
PAC = P,BD(mod @), but PLAC # P,BD. Almost identical to Lemma 6.4.4, we
have, for Z; =0,...,deg @ — 1, that

> L 47 (Z 1 )|APCD)
A,BEM |AB|% |Q|
deg AB=2,
Py AC=P,BD(mod Q)
AC#BD
Hence,
P 3 (log| P1|)(log| P1|) -1 (C)a—1 (D)
1
deg PL<X |PLPyABCD|z
deg Po<X
A,BEM
deg AB<degQ

C,DeSMm(X)
deg C,deg DL % deg Q
PlACEPQBD(mOd Q)

PLAC#P,BD
deg Q—1
(log| P1|)(log| P1|)a—1(C)a_1(D) 1
DV T DS :
deg PL<X [P PC D Z1=0 A,BEM |[AB|>
deg P, <X deg AB=21
C,DES M (X) Py AC=P, BD(mod Q)
deg C,deg Dg% deg Q (ﬁ%ﬁgi)l
deg Q o (degQ)4Q|10 a1
<IEL S (gl (logI AR PCD]E < LEDICE o101,
Q|2 deg PL<X Q|2
deg Po<X
C,DESm(X)

deg C,deg D< 1—10 deg Q

We now consider the diagonal terms in (7.33). That is, when PLAC = P,BD.
Consider the case where P, = P,. Then, the condition PLAC = P,BD becomes
AC = BD, and we have

5 3 (log| P [)(log| P |)er—1 (C) a1 (D)
1
deg Pr<X |P1P2ABC'D|§
deg Po<X
A,BEM
deg AB<deg Q
C,DESM(X)
deg C\,deg Dg% deg Q
PLAC=P;BD
P =Py
_2( 3 <log|P|>2) ( 5 a1<c>a1<D>>
- 1
deg P<X 1P| A,BEM |[ABCD|?
deg AB<deg @
C,DESMm(X)
deg C,deg Dgl—lo deg Q
AC=BD
X(X+1)deg@ X degQ
~(log q)* ( ) ~ (log q)*———,

2 e X 2e7

where the second relation uses (6.20).
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Now consider the case where P; # P,. We can write A = GA', B=GB', C = HC',
and D = HD', where (A,B') = 1 and (C",D') = 1, and G, A", B’ € M and
H,C', D" € S)4(X) are unique . The condition PLAC = P,BD becomes P A'C’ =
P,B'D’. Now, we must have that P, | B’ or P, | D', but we cannot have both;
otherwise, the coprimality relations would imply that P; { A’C’ which means that
P*{ PA'C" and P;? | P,B'D’, a contradiction. Similarly, P, | A’ or P, | C’, but
not both. So, there are four cases we must consider:

o If P, | B and P, | A, then we can write B’ = P,B” and A’ = P,A”. Then,
the condition PLA'C' = P,B'D’ becomes A”"C’' = B”D’, and the coprimality
relations tell us that A” = D’ and ¢’ = B”. Let us define T := A” = D'
and S := C' = B” . Note that we must have (7,5) = 1, (P,T) = 1, and
(P, S) =1.

o If P, | D' and P, | C', then we can write D' = P;D” and C' = P,C". Then,
the condition PyA'C" = P,B’'D’ becomes A'C” = B'D”, and the coprimality
relations tell us that A’ = D” and C” = B’. Let us define T := A’ = D"
and S := C"” = B’ . Note that we must have (T,S) = 1, (P,S) = 1, and
(P, T) = 1.

e The case where P, | B’ and P, | ', or, where P, | D" and P, | A', are
identical by symmetry. So, suppose we have the former. Then we can write
B = P\B” and C' = P,C". Then, the condition PA'C" = P,B'D’ becomes
A'C" = B"D’, and the coprimality relations tell us that A’ = D’ and C” = B”.
Let us define T':= A’ = D" and S := C” = B” . Note that we must have
(1,5)=1, (P, T)=1, and (P, T) = 1.
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So, we have that

(log| P1|)(log| P2|)a—1 (C)a—1 (D)
2 |P,P,ABCD|2

deg P1 <X
deg Po<X
A,BEM
deg AB<deg Q
C,DeSMm(X)
deg C,deg DS% deg Q
P AC=P>,BD
P1#Ps
S (log| P1[)(log| P, |) 3 a_(HS)a1(HT)
deg P <X |P1P2| GeM |GHST|
deg P <X H,S,TeSm (X)
P1#P deg G2 Py P, ST <deg Q
deg HS,deg HTS% degQ
(T,5)=
(P T)_l
(P2,9)=1
X Z 10g|P1 lOg|P2|) Z Oé_l(HPQS)Oé_l(HPlT)
deg PL<X | PP GeEM |GHST]
deg Po<X H,5TeSm(X)
Pi#P deg G2ST<deg Q
deg H P> S,deg HPng% deg Q
(T,5)=1
(P1,8)=1
(P2, T)=1
lO P1 10 P2 a_1 HPQS a_q HT
2 Y (log| 1) (log| P|) 3 ( Ja—1(HT)
’P1P2’ |GHST)|
deg P1<X GeM
deg Po<X H,5TeSm(X)
P1#P; deg G2 P ST<deg Q
deg HP,S,deg HT< {5 deg Q
(T,8)=1
(P1,T)=1
(P2, T)=1
(7.34)
Consider the inner sum of the first term on the RHS. We have
Z Oé_l(HS)Oé_l(HT)
=, |GHST]
deg G2 Py P, ST<deg Q
deg HS,deg HT< - deg Q
(T,5)=1
(P1,T)=1
(P2,5)=1
. Z Oé_l(HS)Oé_l(HT) Z 1
|HST)| |G|
H,S,TeSm(X) GeM
deg P1 P2 ST <deg Q deg G<w
deg H S,deg HTgﬁ deg Q
(T,8)=1
(P1,T)=1
(P2,5)=1
Z a_1(HS)a_1(HT) {degQ — deg PIPQSTJ
|HST)| 2
H,5,TeSp(X)
deg Py P, ST<deg Q
deg HS,deg HT<{5 deg Q
(T,8)=1
(P1,7)=1
(P2,5)=1

deg Q—deg PlPQSTJ with degQ

By results similar to Lemmas 6.4.1 and 6.4.2, replacing L >
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contributes only O(X 6) to our final result, which does not affect the main term.
Furthermore, we can remove the condition deg P, P, ST < deg () as this follows from
the conditions deg HS,deg HT < 1 5 deg @ and deg P, deg P, < X. Then, similar
0 (6.7), we can remove the condltlon deg HS,deg HT < 15 deg @ and this will only

alter our final result by O(\Q| 11). We can apply snmlar reasoning to the inner
sums of the second and third terms on the RHS of (7.34), and so we see that

3 (log| P [)(log| P |)av—1 (C)a—1 (D)
1
deg P1<X |‘Pl‘P2"4‘BC"D|E
deg Po<X
A,BEM
deg AB<deg @
C,DeSMm(X)
deg C,deg Dgl—lo deg @
PIAC=P>,BD
P1#P;
_deg@ 3 (log| 1 |)(log| P|) 3 a1 (HS)a_1(HT)
2 PP [HST]
deg P1<X H,S,TeSMm (X)
deg Pa<X (T,9)=
P1#Py (P, ):
(P2,8)=1
degQ Z log\Pl lOg|P2|) Z _1<HPQS>O{_1(HP1T)
| PP, |H ST
deg P1<X H,STeSm(X)
deg Po<X (T,5)=1
P1#Py (P1,9)=1
(P2,T)=1

_1(HPQS)CY_1(HT)

pag S (BRI

M

deg PL<X | PP |[H ST
g P1< H,8,TeSpm(X)
deg Po<X (T,9)=1
Pi#P (P, T)=1
(P27T):1
<(log q) deg @,
where the last relation uses Lemma 7.5.2. This completes the proof. O
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Appendix A

Function Fields Background

In this appendix we prove results that are required in this thesis, but are well known.
We begin with a few results involving L-functions; and then look at the growth of
the functions w, ¢, and ¢*, as well as Mertens’ third theorem in F,[T]; before ending
with some results on sums of multiplicative functions.

A.1 A Few Results on L-functions

Lemma A.1.1. Let ty,tq,t3,t4 € C be such that |t1t4| < 1 and |tats| < 1. Then,

Z (t1t4)degR(t2t3)degS

R,SeM |RS|
(R,S)=1
t1t4 deg R t2t3 deg S B t]_t4 deg R+1 t2t3 deg S+1
> >
R,SeM |RS| R,SeM |RS|

Proof. We have that

<t1t4> gR tgtg deg t1t4 egR t2t3)deg5
2 VD DD S|

R,SeM IeM R, SEM
(R.S)=I
B Z (titotsty)? Z (tity)dee Bt (tyts)deed
far M |2 S |25
( S)=1
from which we deduce that
Z (t1t4)degR<t2t3>degS
R,SeM ‘RS’
(R,S)=1
_< Z (t1t4>degR(t2t3)degS) (Z (t1t2t3t4)degl>_l
R,SeM |15 IeM [1]?

The result follows by noting that

(titatsts) ! O, 1
E = § titotsty)" = .
1]? (¢ titatsta) 1 — g Matatsty

IeM n=0
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In the next two lemmas, we use the functional equation for Dirichlet L-functions to

2
express ‘L(%, X)‘ as a shortened sum.

Lemma A.1.2. Let x be a primitive odd character of modulus R € M\{1}. Then,

1 2 x(A)x(B
L=y MAMB ),
A,BEM |AB|z
deg AB<deg R

where we define
x(A)x(B
CO(X) N Z ( ) (l )
A,BEM |AB|2

deg AB=deg R—1

Proof. The functional equation for odd primitive characters gives

deg R—1 deg R—1 d Rildengl
Lis,x) = > La00g ™ =Wx)g 2 (¢ > La(x)g "
n=0 n=0
,wdegR_l =\ ,,(1—s)(deg R—1—n)
=W)g 2 Y, La(Xg :
n=0
That is,
deg R—1
Lis,x) = Y L™ (A1)
n=0
and
deg R—1
deg R—1 — —s e —1—n
L{s; ) =Wa~ 2 > La(x)g-eermimn, (A2)
n=0

We now take the squared modulus of both sides of (A.1) and of (A.2). In order
to make our calculations slightly easier, we restrict our attention to the case where
s € R. We obtain

L(s, )P = Z_( 3 L@-<><>Lj<y>)qm (A3)

n=0 0<i,j<deg R
i+j=n
and
2deg R—2
[L(s, )P =gt 37 ( )3 a-(x)@«(y))q“8><2deg““>. (A4)
n=0 0<i,j<deg R
i+j=n

By the linear independence of powers of ¢~* we can see that |L(s, x)|? is equal to
the sum of the terms n = 0,1,...,deg R — 1 on the RHS of (A.3) and the terms

n=0,1,...,deg R — 2 on the RHS of (A.4). That is,

deg R—1

Ls)P= 3 ( 3 Li<x>Lj<y>)q—“S
n=0 0<i,j<deg R
1+j=n
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deg R—2

+q—degR+1 Z ( Z Li(X)Lj(Y))q(l_S)(QdegR_Q_n)-

n=0 0<i,j<deg R
+j=n

Hence,

ZdegR_l( > Li(x)Lj(Y)>q3+de§_2< > Li(x)Lj(y))qg

n=0 0<i,j<deg R n=0 0<i,j<deg R
i+j=n itj=n
TS xX(A)x(B) 3 x(A)x(B)
- 1 1
A,BEM |AB|z A,BEM |AB|z
deg AB<deg R deg AB=deg R—1
as required. 0

Lemma A.1.3. Let x a primitive even character of modulus R € M\{1} (note that
this requires deg R > 2). Then,

INE 3 X(A)x(B)
’L 50 X ‘ =2 1 +Ce(X)>
(2 ) A,BEM |AB| 2
deg AB<deg R

N

() = — — 1 3 X(AX(B)  2q 3 Y(A)x(B)

1 2 1 1 1
(qé - 1) A,BeM ‘AB|2 q2 -1 A,BeEM ‘AB‘?’
deg AB=deg R—2 deg AB=deg R—1

1 x(A)x(B)
— D —
(q2 - 1) A,BEM |AB|z
deg AB=deg R

Proof. The functional equation for even primitive characters gives us that

deg R—1
(¢ =D)L = (@ =1) Y L)g™
n=0
des B dos R deg R—1
eg _  \des R—1 N
=W00a > (¢ = 1)) Y L(®e (A.5)
n=0
a deg R—1
:W(X)q_%R (ql_s — q) Z Ln(y)q(l—s)(degR—l—n)'
n=0

Let us define L_;(x) := 0 and recall that Lge, r(x) = 0. Then, we can define

M;(x) = qLi-1(x) — Li(x)
fori =0,1,...,deg R, and so (A.5) gives us that

deg R

(" = 1) L(s,x) = Y Mu(x)g™ (A.6)
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and

deg R

(qlfs _ 1)L(8,X> _ degR Z M (1 s)(deg R— n) (A?)

Similarly as in the proof of Lemma A.1.2, we take the squared modulus of both sides
of (A.6) and (A.7), and use the linear independence of powers of ¢~*, to obtain

(¢ =)7L 0P =Y ( > Mi(X)Mj(y)>qns

n=0 \0<ij<degR
i+j=n
deg R—1
+q deg R Z ( Z Mz(X)M] (Y)> q(lfs)(2 deg an)_
n=0 0<i,j<deg R

i+j=n

Again, to make our calculations slightly easier, we have restricted our attention to
the case where s € R. We now take s = % and simplify to obtain

2

1 2], (1
(@ = 1)"](5%)
deg R—1 4
egR
23 (X Meumm)eie Y M0Mme
n=0 0<i,j<deg R 0<i,7<deg R
i+j=n i+j=deg R
Now,
deg R—1
S (X wmeomm)
n=0 0<i,5<deg R
1+j=n
deg R—1 deg R—1
=S q2( 5 Li_1<x>Lj_1<x>)q-2—Zq( 3 Li_1<x>Lj<x>)q—z
n=0 0<i,j<deg R n=0 0<i,j<deg R
i+j=n itj=n
deg R—1 deg R—1
S q( 3 Li<x>Lj_1<y>)q—z+ 3 ( 3 Li<x>Lj<x>)q—z
n=0 0<i,j<deg R n=0 0<i,j<deg R
i+j=n itj=n
deg R—3 deg R—2
— _n 1 — _n
= > q( > Li(X)Lj(X))q Py q?( > Li(X)Lj(X)>q ?
n=0 0<4,5<deg R—1 n=0 0<i,j<deg R—1
i+j=n itj=n
deg R—2 deg R—1
1 — _n — _n
- > q2< > Li(X>Lj(X))q 2+Z( > Li(X)Lj(X))q :
n=0 0<i,j<deg R—1 n=0 0<i,j<deg R—1
i+j=n itj=n
1 2 x(A)x(B
PRI S ()
A,BEM |AB]2
deg AB<deg R
x(A)x(B 1 x(A)x(B
S ()(;)Jr(?fﬂ—q) 3 (H;)’
A,BEM |AB|2 A,BEM |AB|z
deg AB=deg R—2 deg AB=deg R—1
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and similarly,

_degR
Z M;(x)M;(X)q~ >
0<i,j<deg R
i+j=deg R
x(A)x(B 1 x(B)x(A x(A)x(B
Ly B L B g aAxE)
A,BeEM |AB|z A,BEM |AB|z A,BeEM |AB|2
deg AB=deg R—2 deg AB=deg R—1 deg AB=deg R
Hence,

L NP X(A)x(B) q x(A)x(B)
Llf2 ¥ MB_ e s KB
A,BeEM |AB|z (q2 - 1) A,BEM |AB|z
deg AB<deg R deg AB=deg R—2

2¢° 3 X(A)x(B) 1 T X(A)x(B)

T T T 1 2 )
=1 4 5m |AB|z (‘ﬁ - 1) A,BEM |AB|z
deg AB=deg R—1 deg AB=deg R
as required. O
It is convenient to define

ce(x) if x is even

c(x) = L (A.8)
co(x) if x is odd.

A.2 The Growth of the Functions w, ¢, and ¢*

In this section we obtain bounds on the functions w, ¢, and ¢*. Some of these
bounds involve factors of the form log,deg R. Thus, for the implied constants to
be independent of ¢, we require that deg R > ¢q. We are in fact able to avoid this,
although this requires us to change the bounds somewhat. We also give some lim inf
and limsup results. Naturally, due to the limit, these results avoid the need to
consider deg R > q. Before proceeding, we must define the primorial polynomials
and prove a result on their growth.

Definition A.2.1 (Primorial Polynomials). Let (S;)icz., be a fived ordering of P
such that deg S; < deg S;41 for alli > 1 (the order of the primes of a given degree
is not of importance here). For all positive integers n we define

We will refer to R,, as the n-th primorial. For each positive integer n we have unique
non-negative integers m, and r, such that

R, = (de lplm P) <1_[1Q) (A.9)

where the Q); are distinct primes of degree m,, + 1. This definition of primorial is
not standard.
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Lemma A.2.2. For all positive integers n we have that
log, log, | R,| = m, + O(1).
From this we can deduce that
m, < log, log,|R,|
for n satisfying m,, > 1. In particular, the implied constant is independent of q.

Proof. For the first claim, by (A.9) and (1.12), we see that

mn+1

log,|Ry| = deg R, < ) (qi + O(Cﬁ)) < ¢t
i=1
and
log,|R,| = deg R,, > Z <qi + O(qii)) > g
i=1

By taking logarithms of both equations above, we deduce that
log, log,|Ryn| = m, + O(1).

For the second claim, if m,, > 1 then log,log |R,| > 1, and so by the first claim we
have

mTL
— <Ll — <K L
log, log, | ity log, log, | Ry|

O
Using this result we can obtain results about the growth of the w, ¢, and ¢* functions.

Lemma A.2.3. For deg R > 1 we have

log, | R
w(R) €« —4 .
(R) log, log,|R|

We also have

log, log, | R| B

lim sup w(R) = 1.

deg R—00 lqu|R‘

We emphasise that the implied constant in the first result is independent of q, which
18 why the first result does not follow immediately from the second.

Proof. For the first claim, if deg R > 1 with w(R) = 1, then the result clearly holds.
So, suppose w(R) > 1. Tt suffices to prove the result for the primorials. Indeed, if
w(R) = n, we then have that

log, log, |R|

W(R) log, log, | Bt |
log, ||

1.
w<RN> logq|Rn| <<
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log, | Rx|

Now, if m,, = 0 then we can easily see that w(R,) < If m,, > 1, then by

(1.12) we have

log, log, | Rn|"

T’n
1 qm
. . : (A0
and
log,|Ra| =deg Ry = > > u(d)gi + (my, + 1)1,
=1 dl|i
| (A.11)

M L3 ]
=D uld) 37 a" A (ma > 4
d=1 =1

Thus, using Lemma A.2.2 for the second relation,

w(R,) < 1 < 1
log, | Rn| my, log, log,|Ry| )

For the second claim we begin by considering the primorials. By similar means as
n (A.10) and (A.11) we have

:Z%Zp(d)qfi tr=3 L 4+ 0@%) +r,

i=1 " dli i=1

g—14=\i+1 i i(i+1)

q q qm
o)
q—lmn—i—l—i_r + (m,)?

ma il i it+1
_ 1 (q g q >+O(q%)—|—rn

and

log, | Rl = 3 u(d) Zq T (D)
d=1

From these two results and lemma A.2.2, we deduce that

q—l +(mn+1)rn+0(q%).

log, log,| |

w(R, —1 A.12
(2n) log, | ) (A.12)
as n — 0o, which shows that
log, log |R
lim sup W(R)M
deg R—00 logq ’ R|

We now proceed to prove the other inequality. We are required to work with S € M
to avoid a clash of notation with “R” which will appear in our use of the primorials.
We consider two cases:

deg S )é

deg S > 3
log, deg S

< o7
w(S) < ( log, deg S

and w(S) > (
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For the first case,we have

w )logqlogq|5| < (10queg5>§
log,|S]| deg S

as deg S — oo. For the second case we can see that w(S) — oo as deg.S — o0,
and so, by (A.12),

log, log,| S| log, log, [ Rus)|

S < ”
) g ror = @) T Ry

as deg S — oo. Thus,

log, log,|S|
lim sup w(S)—L—>4_—
degS%o].zc)) ( ) Iqu’S‘ N

and the result follows . O
Lemma A.2.4. For deg R > q,

Bl

H(R) > ————.
(F) log, log,|R|

We also have that

.. . (O(R) _
dlelg}%glfo ( 7] log,log,|R| | =e77.
Proof. We begin with the first claim. Again, we are required to work with S € M
to avoid a clash of notation with “R” which will appear in our use of the primorials.
We first consider the case where w(S) < ¢ (recall that, by our assumption, we also
have deg .S > ¢). We have

¢(5)

O(S) o o) o —q
]S| 2 (1_q )

> > 1.
IS~ Ryl

log, log, | S| >

Now consider the case where w(S) > ¢. it suffices to prove claim for the primorials.
Indeed, assuming this holds (for the third relation below), we have

() ¢(rad(S)) ¢ (Rus))
Bl [rad(.5)] | Russ)|

log, log, | S| > log, log,[rad(S)| > log, log, |Rus)| > ¢

for some positive constant ¢ that is independent of g. Now, for n > ¢ we have

%LHQ |113|>> 0 (g)=e(- ¥ ka)

deg P<mn+1 deg P<mn+1 k=1
1 1
)
men(= X ol ¥
mn"!‘l mp+1
:exp( (Z L)io )
2
=exp (— lom+0()) ! >>;
P &1 m, ~ log, log, | Rl
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We now consider the second claim in the lemma. For all n > 1, we have that

0 ()< T (-m)

deg P<mpn, deg P<mn+1
and so by Lemmas A.2.7 and A.2.2 we deduce that
P(Rn) e’

~ A.13
|R,| log, logq|Rn| ( )

as n — 0o. Now, we write M as the union of two disjoint sets B and C, where
2
B ;:{S € A:log,log,|S| > (10&1 lqu’Rw(S)D }
C:={S € A:log,log,|S| < (log,log,|Rus))’}.
Suppose S € B. Then,
#(S) gb(rad(S))
log, log, |S| =———+
57 Ba o8l =T E)

¢(Ru(s))
| Rus)l

as deg S — o0o. The limit follows from the fact that the term inside the square
brackets is bounded below by some positive number when w(S) > 1 (the case w(S) =
1 is trivial); this, in turn, follows from (A.13). Now suppose S € C and deg S — oc.
Then, we can see that w(S) — oco. Keeping this in mind, we obtain

¢ Rw S )
log, log,|S| > 9 fus) log, log,|S]

|Ru(s)l

(A.14)

1
> log, logq|Rw(S ] (logq logq|SD2 — 00

¢(5) ¢(Ruys)) O(Lu(s)) _
5 log, log,|S| > Wlogqlogqbﬂ > Wlogqlogqm s — e 7
(A.15)
as deg.S — oo. From (A.14) and (A.15) we see that
. (9(R) _
>e 7.
fimint (g7 om w1 ) >
Equality follows by considering the primorials. O]
Lemma A.2.5. For deg R > ¢,
o(R)
P(R) > ——F——.
(7) log, log, | R|
We also have that
o (97(R) . 1
lim inf ( log, log |R| | = e l—— |.
deg R—oo \ ¢(R) 1 ™1 Igj (|P| — 1)2
Proof. We begin with the first claim. From Corollary 1.4.6, we have that
¢"(R) 3 o(F) 1 1
Y w1 () T (S
o(R) =, To(R) A pip MPI=1) g 1P
2 2
le P2|R (A.16)
= 1——.
(=) O )
PIR PIR

P%R P2R
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Hence, for deg R > ¢, we have

¢"(R) _ ¢(R) 1
o(R) ZH(I |P|—1)>>H< \P\)‘ R~ Tog,log, IR

P|R

where the last relation follows from Lemma A.2.4.

For the second claim, we begin with the primorials. As n — 0o, we have

¢ (Rn) ( 1 )
log, log, |R,| = 11— ———)log,log,|R,
o ol = L=y ) ostoml

_ o(R,)
-1l (- o) o ool

(- )

where the last equality uses (A.13). This proves that

o (65(R) — I
dlgg%glofo ( ¢(R) logq logq|R|) <e ]:DI;L <1 (‘P‘ _ 1)2).

To prove the other inequality, We must again work with S € M to avoid a clash of
notation with “R” which will appear in our use of the primorials. There are three
possible cases:

1. w(S) < g¢;

2. log,log,|S| > (log, logq|Rw(5)|)2 and w(S) > ¢;

2
3. log,log,|S| < (log,log,|Rus)l) -
For the first case, we can easily see that

4(5) (R
o(5) \oealo&lS1 = gy

as deg S — oo. For the second case, we have

¢*(5)
¢(9

log, log, S| — o0

log, logq |S]

) log, log, | S|

)
(-
ﬂ( |P|—1 )(ﬁg)bgqlogqlsl

> H ( |P| ~ 1) )gb’(}f |) (log, log,|R., 5)|)(logqlogq|5|)é — 00

pPeP

as deg S — 0o, where the limit uses Lemma A.2.4. For the third case we have that
w(S) — oo as deg S — oo, and so, by (A.13),

¢"(5)
¢(5)

log, log,|S|
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o)
11 (1- |P|—1>) 5T (o8 %15

P|S

> 1 ( |P| —1)? )(ﬁl(ff S)|) (log, log, Rt |

pPcP

—ll (1- (|P|1—1)2)

as deg S — co. Thus,

| ¢*(S) — L
&églgl—r}fo(qb(S) logqlogq|5|> >e H (1— (|P| _ 1)2)

PeP

and the result follows. O]

We also have the following lemma on the asymptotics of certain functions involving

¢ and w.
Lemma A.2.6. For Re M,

11 (ﬁ) =11 (1 = \P\l); (A.17)

PIR

I (i) = I i) w18

P|R P|R

2°(R)|R|z deg R

5 (R) < |R|3; (A.19)
m <o ] (U5 ) towdes (A.20)
P|R
1— [P 2.
<<11:£(1+|P| 1) (deg R)%; (A.21)
[Rlw(R) [T (1 |PI™") < ¢°(R) deg R. (A.22)
P|R

The fourth result requires that deg R > 1.
Proof. For the first result, it suffices to note that

> H (1P (1 =1P) =TI (1= 1P172)

PIR
>H<1—|P| ) = ()—1—q_12%.

pPcP
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For the second result, it suffices to note that

) T etam) T )
() - e =

To prove the third result, we first note that, for deg R < ¢,

St =S T~ (- =) (- 777) 1l (1)

P|R P|R
P2R PR
2 2 2q
1 1
> 1-— >(1—-——
‘H( !P!—l) = 1l ( !P!—l) —( q—l)
P|R deg P=1

2\ %
2(1__) 1,
q

where the third relation uses (A.16) and the last realtion a variation of the well
known result that lim, (1 +n"!)" =e. Thus, for deg R < ¢, we have

(A.23)

(B)|R|zdeg R 2 deg R - 2w(R)
¢*(R) |R|2 RS

Clearly, for large enough ¢ the above is < |R|_%. There are only finitely many other
¢, and so, by Lemma A.2.3, we can deduce that the above is < |R|_% for all q. For
deg R > q we use Lemmas A.2.3, A.2.4, and A.2.5 to obtain

log deg R ogy deg

2R | Rz deg R 2 =R dea 7 (deg R)(log, deg R)* 2l e
* < 3
¢*(R) |R|2 |R|$

Similarly as before, the above is < |R]_%.

The fourth, fifth, and sixth result can be proved similarly as the third result: For
deg R > q we use Lemmas A.2.3, A.2.4, and A.2.5; while for deg R < ¢ we use
(A.23). m

Finally, we end this section with Mertens’ Third Theorem in F,[7].

Lemma A.2.7 (Mertens’ Third Theorem in F,[T]). We have

11 (1 - %) B ~ .

deg P<n
Proof. The proof is very similar to that of Theorem 3 in [Ros99]. ]
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A.3 Sums Involving Multiplicative Functions

First, we note that, for R € M,

“ =11 (1 - ’;’S) (A.24)

E|R PIR

and

Z,L degE _H(

E|R P|R

) 3 |§Tffl, (A.25)

PIR

where the first equation holds for all s € C. The second equation is obtained by
differentiating the first with respect to s and, while it holds for a larger domain, we
are only interested when Re(s) # 0.

Also, for all square-full R € M we have that

W(E)6(F) o(R) [E' (R
2 rF| "E:‘“E>uﬂ|R| I §:|Ews

EF=R EF=R EF=R

:75?11(1‘|Pﬁﬂ)

P|R

(A.26)

and

p(E)p(F)deg F ¢(R) ( 1 )( deg P )
= 1-— degR+ Y ———" ).
;;% ww e %;H%PS—I
(A.27)

The first equation holds for all s € C. The second equation is obtained by differ-
entiating the first with respect to s and, while it holds for a larger domain, we are
only interested when Re(s) # 1.

Lemma A.3.1. Let R € M. We have that

Proof. 1t suffices to prove the claim for the primorials:

Z deg P < logn
EEI
P|Rn

From the prime polynomial theorem, we can deduce that there is a constant ¢ €
(0,1), which is independent of ¢, such that |P<,,| > cq’? for all positive integers m.
In particular, if we take m = [@ log 2], then |P<,,| > n . So,

d P logq lo og ni1 d P logq log +1 ) i
eg eg t o q
< - — K lo n,
Z|p|_1— >, DL |p|_1 Z F—11 8
P|R, =1 PeP =1
deg P=i
where the second relation follows from the prime polynomial theorem again. m

204



A.3. SUMS INVOLVING MULTIPLICATIVE FUNCTIONS

Lemma A.3.2. Let R € M and let x be a positive integer. Then,

Z 1 ‘ﬁ(lf‘)l‘—i—O ‘75‘(}5} logw(R) if £ > deg R
[A] ~ R R) w(R), ,

g A 4 %x +0 ¢\(R| logw(R) ) + O<2 = ) if v < deg R.

(A%R);l

Proof. For all positive integers x we have that

ORI I DRTES D D

AeM AeM E|(A R) E|R AeM
deg A<z deg A<a: deg A<z
(A,R)=1 E|A
1 E
ST VR T O ER AR
E|R AeM ‘ ’ E|R | ‘
deg E<z deg A<z—deg E deg E<z
E
H x—degE—i—l)— Z H(E)(x—degEﬁLl).
o o
deg E>x

By (A.24), (A.25), and Lemma A.3.1, we see that

N (x —deg E+1) = gh‘(;j) + O(qjy(];b) logw(R)>.

E|R

When x > deg R, it is clear that

E ,u x—degE+1):0.
EIR
deg E>x

Whereas, when z < deg R, we have that

JdegE  x 2w(F) g
Z M a:—degE+ < Z \|E| & < — Z u(E)| < —
E|R E|R T Br q
deg E>z deg E>x deg E>x
The proof follows. []

Corollary A.3.3. If a >0 and x = adeg R, then,

1 o(R) ¢(R)
AGZM WZ 7] T+ O, ( 7] 1ogw(R)>.

deg A<z
(A,R)=1

Ifb>2 and z = log, b (B then

1 ¢(R) ¢(R)
/;4 m—wx—I—Ob( 7] logw(R)>.

deg A<z
(A,R)=1
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Proof. First consider the case where x = adegR. If ¢ > e e , then

w(R w(R
2 ( )‘T < 2 (R) < qiggidegR_%degR < q_%degR < @
¢° ¢ s IR
If g < e s then
ZW(R)J: - Zw(R) _ qo(&%)—;degR < qf%degR <, @

Rl

where the second relation holds for deg R > ¢,, where ¢, is some constant that is

dependent on a, but mdependent of ¢q. Finally, there are only a finite number of
4log2

cases where g < e« * and deg R < ¢,, and so

2By P(R)
¢ T |R|

for these cases too. The proof follows from Lemma A.3.2.

Now consider the case where x = log, b*(%) . We have that

2w(F) g _QW(R)(logq b)w(R) < ow(R) B ( 4 )w(R)
q* - pw(R) b <b+—2>w(R) - b+2
o(R)
= 1—— .
(i )<<”H< 7)<
PIR
Again, the proof follows from Lemma A.3.2. O]

Lemma A.3.4. We have that

y ¢( :< “ )+O(1).

NeM EGM
deg N<z

Proof. For all N € A we have that

ZM H(l |p|—1) 1_[(1—|P| 1):¢>|(ij|)'

E|N P|N
So,

1 1N L ME? g~ plE)? 1
o X W o MY ee - & &,
deg N<z deg N<z deg N<z deg E<x deg N<z

E|N
w(E x—degE—i—l) ( w(E)? >
S — (3 ME N o).
P EE| 2 G(B)|E|
deg E<z
L]
Lemma A.3.5. We have that
2
N
e W)
deg N<z



A.3. SUMS INVOLVING MULTIPLICATIVE FUNCTIONS

Proof. For square-free N we have that

1 1 -1 1 1 1 1

- M=) = =T (14— —+... )= -

o) \ngv( PI) |N|PHV( ) 2
rad(M)=N

and so

N)? 1 1
SENE Y X wr ot
veu PN S e M [M]

deg N<z N is square-free rad(M)=N deg M <z
deg N<z
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Appendix B

The Selberg Sieve in Function
Fields

In this appendix we first give an introductory example of the Selberg sieve for the
ring of integers, which will provide clarity and perspective, before rigorously proving
the general Selberg sieve in function fields. Publications relating to the Selberg sieve
in function fields do exist, but they are difficult to come by and do not always contain
what is desired. An article by Webb [Web83] is the most comprehensive that we
could find, but we still feel it is necessary to include this appendix for clarity.

B.1 An Introduction to the Selberg Sieve

Suppose z and y are positive integers with y being small compared to x. We wish
to obtain an upper bound for the number of primes in the interval S := [z, + ).
That is, we require an upper bound for the size of the set

S":={a €S :ais prime}.

If Vx+y < x, which is to be expected since y is small compared to x, then a
necessary and sufficient condition for an element a € S to be prime is that p t a for
all primes p < /x +y. However, since we require only an upper bound for |S’|, it
turns out to be more convenient to work with the necessary condition that p 1 a for
all primes p < y/z. That is, in order to obtain an upper bound for |S’|, it suffices
to obtain an upper bound for the size of the set

S":={a€ S:pta for all primes p < \/x}.
Now, for positive integers d, we define
Sqe:={aeS:d|a}.

By the inclusion-exclusion principle, we have that

(V)
1S < IS < IS+ > (—1) > |Spiy i |
J=1 2§1111‘1<--~<Pi]-§\/E

Of course, when d > x + y, we have |Sy| = 0, and so the above can be improved to

(v/3)
S < 18]+ > (=1) > Spom | = > 1l(d)|Sal. (B.1)
j=1 2§p¢1<...<pi].§\/§ d<z+y

Piy -+-Pij <z+y p+(d)<V=
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For d in the summation range, we have
1S4 = £+ 0(1), (B.2)

which gives

5’| <y Z @%—O( Z M(d)Q).

d<z+y d<z+y
p+(d)<VE p+(d)<vE

For the error term we can see that this is larger than |{d < v/z : d is square-free}|,
which is about ((2)~'y/z in size. Whereas, for the main term we can see that the
sum is certainly < log(x + y). Therefore, for the error term to be smaller than the
main term, we require, roughly, that y > /z. Ideally, we would like a result that
applies to y that is even smaller compared to x.

In order to improve upon this, let us take 1 < 2z < x+y, which we are free to choose
optimally later. Further, for 1 < d < z with p, (d) < v/z, let Ay be real variables,
and for all other d let Ay := 0. It is important to keep in mind that \; = 0 if
pi(d) > \/x. Indeed, we will only express this when we require it. Now, consider

D MlSal =)D M (B.3)

d<z a€S dla
d<z

We wish to use the above to bound [S’|. Note that, by taking 2 = z +y — 1 and
Ag to equal p(d) for 1 < d < z satisfying py(d) < y/z, we obtain (B.1), and so our
new approach should not give us anything worse. Now, if a € S is prime, then (B.3)

counts it A times. If @ € S is not prime, then it is counted ) 4, Aq times. So, for
d<z
(B.3) to be a valid upper bound for |S’|, we require that

M >1
Z Ag >0 for a € [x,z + y). (B.4)
i

Now, one of the main aspects of the Selberg sieve is the following change of variables.
For 1 < e < z let A, be a real variable, except when p,(e) > /z or e > /z, in
which case we define A, := 0. Then, for all positive integers d, we define \; by

= > A
e, f:le,f]=d

Note that, by this definition, we satisfy the condition that Ay = 0 if p,(d) > /x or
if d > 2. The first condition in (B.4) is satisfied if we impose A;* > 1. The second
condition is automatically satisfied:

2
BIVED DI DIP UYED SYUVEY S SEW IEN)
dla dla e,f:le,f]l=d e, fla ela
d<z e</z

We remark that this change of variables loses us some generality in that not all

possible values for the Ay can be expressed in this way. Of course, while we do lose
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generality, we benefit in that the conditions on the variables are more easily satisfied.

So, assuming the condition A;? > 1 is satisfied, we have

Sl< Y Y= ¥ (ZA€)2: S A8

wloaty) da  acloaty) \ ea N
dsz e<vz (B.5)
—ZAAf<m+O ((Z!M))
ef<vz ’ e,f<Vz e<\/z

Now, one may attempt to minimise the far RHS subject to the condition A? > 1,
perhaps via the method of Lagrange multipliers. This would be difficult though,
due to the error term where the modulus function has been used. Therefore, we
will have to deal with the main term and the error term separately. Applying the
method of Lagrange multipliers to only the main term is certainly achievable. In
order to ensure the error is small, we have the freedom to choose z to be appropri-
ately small, as we will later see. (The whole point of introducing z was to give us a
way to reduce the size of the error term).

Let us proceed with the main term. We can make it easier to apply the method
of Lagrange multipliers. Indeed, currently, most of the terms in the sum are the
product of two variables. We will simplify the problem:

T S I ED I VI S SR

e.f<Vvz e.f<Vz gl(e.f) 9<Vz e,‘f(s}f 9<Vz
g e?

(B.6)

where, for g </,

e<y/z e< Y2
gle I

By the Mobius inversion formula (Lemma B.1.1) we have

- = Z ,u(g)@eg'

N
9<=

Note that the condition, that A, = 0 if p,(e) > /x or e > /z, is equivalent to
the condition that ©, = 0 if p, (g) > v/z or g > /z. Also, the condition A,* > 1
becomes

( g;u(g)@g)2 > 1. (B.7)

Now, minimising the far RHS of (B.6), subject to (B.7), via the method of Lagrange
multipliers is much easier because each term in the sum is dependent on one variable
only. We can easily use this method, although the following is slightly quicker. If
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the condition (B.7) is to hold, then, using the Cauchy-Schwarz inequality, we have

1 g( > u(g)@g)2 = < > % ¢(9)@9)2

9<Vz 9<Vz
p+(9)<Vz (BS)
1(g)*
(X 55)( X ewer)
9<Vz 9<v/z
p+(9)<Vz p+(9)<Vz

So,

2\ —1
Sowes= X owex( X A0
9<Vz 9<Vz 9<Vz g
p+(9)SVE p+(9)<Vz
The smallest value this could possibly take is when we have equality, which would
require equality in both inequalities of (B.8). For the second inequality of (B.8),
that means we have a constant ¢ such that, for g < /z satisfying p, (9) < /x, we
have

p(9)
0, =c——. B.9
) B9
In order to have equality in the first inequality of (B.8), we need
u(g)Q) )

c==+ —= . B.10
( ; ¢(9) (B10)

9<vz

p+(9)<vz

From (B.6), (B.9), and (B.10), we have

(e, f) _ 2 _ pg)?*\ "
Z AeAf ef - Z¢(9)@9 _( g<Z\/2 ¢(g)> :

e,f<Vz 9<Vz <
p+(9)<Vz

For convenience, let us assume z < z so that g < /z implies p, (g) < /= (initially,
we had z < x + y, but we do not lose much in our new assumption because, by our
our initial conditions on ¥, x is not much smaller than z + y). Then, using Lemma
B.1.2, the above becomes

e, 2\ ! 2

e,f<Vz 9<Vz

which concludes our minimisation of the main term on the far RHS of (B.5).

Now we consider the error term. We have

A, =e Z 1(9)Bey = i( Z M)_ e M(g)ﬁb(eg)

o 2 o) ¢ 2ot
B w(9)*\ " enle) p(g)?
o <Z} i) 2 Sy
(e.g)=1
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and so, using Lemma B.1.3,

e I 2 1 e vz 1
2 1Al < _logz 2 W &g) 10g2g§¢(9) A0 T ;gqﬁ(g)

e<\/z e<\/z gS%

NZ

log 2

(B.12)

Finally, applying (B.12) and (B.11) to (B.5), we obtain

y =
logz  (logz)?

|9 <

This is optimised roughly when z = y, giving our main result:

15" <« L.
logy

Because we took y = z < x, we require that y < x. This is fine given that we are
interested in the case where y < /.

Lemma B.1.1. Let f,g: Z~qg — C be functions such that

= f(dn)

d>1

for all positive integers n. Suppose also that

ZZM (den)

e>1 d>1

15 absolutely convergent for all positive integers n. Then,

= 3 u(e)gfen

e>1
for all positive integers n.

Proof. For all positive integers n we have that

> ule)glen) = pule) f(den) = Z me = f(hn) Z e

e>1 e>1 d>1 h>1 de= h>1

=f(n),

where for the second equality we used the fact that absolute convergence allows us
to change the order of summation. O]

Lemma B.1.2. We have that
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Proof. Suppose ¢ is square free. Then,

s~ o) Oy ) = X

plg

So, we have that

g<z g<z rad(n)=g n<lz
g is square-free

O
Lemma B.1.3. We have that
; W <Lz
Proof. We have that
T (%) = 1) W)
) H(p_l) g <1+p—1> d%; o(d)
and so
= pAd) A ) D) L gy
nzgz (n) nzgzdzm: ¢(d) ; [d} o(d) ; do(d) +0(z) < z.
O

B.2 The General Selberg Sieve in Function Fields

We now wish to prove the function field analogue of Section B.1. Let S C M be a
finite subset, and for D € M let Sp := {A € S : D | A}. Furthermore, let Q C P,

z be a positive integer, and Ilg <, :=[[ peg P. We are interested in the size of
- deg P<z

SQ,>z = 8\ UP|HQ,§Z Sp = {A €S (P ‘ Aand P € Q) = degP > Z}.

Note that we are generalising the Selberg sieve in that S is not necessarily an inter-
val in M, and Q is not necessarily the set of all primes in A. However, if we are to
do this then we require the following condition:

Suppose there exists a multiplicative function w, with 0 < w(D) < |DJ, and a
function r such that

e
S| = “Tp 181 + (D).

While our result will hold given the above condition, it will only be helpful if the
function r is small enough. Intuitively, %ﬁ) represents the proportion of elements

in § that are divisible by D, and r is an error term. In our number field example,
we had w(d) =1 and r(d) = O(1). Before stating our result, we prove a lemma.
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Lemma B.2.1. Define 1) multiplicatively by 1 (P°¢) := % — W‘(I;‘)j Then, for all
A e M, we have

|A\ =Y w(E)

E|A

Proof. Suppose A = P;°* ... P,". Then,

o= o (& 1) o0 () - T16
|

E|A
Al

w(A)

Theorem B.2.2 (The Selberg Sieve for Function Fields). We have that

-1
1 (G)
ISQ,>Z|§( > e ) EEY ‘r([E,F])‘.
GeMc 3 E,FGMS%
Gllg <. E,F|llg <.

Proof. For D | Ilg <, with deg D < z we let A\p be a real variable. For all other
D € M we define Ap := 0. It is important to keep in mind that A\p = 0 for D { IIg <.
Indeed, for convenience, it will only be expressed when required. Consider

> AlSol =) > o (B.13)

DeMc, AeS DeEM<,
D|A

In order for (B.13) to be an upper bound for |Sg ~.| we require that

A >1

> Ap>=0  forall A€S. (B.14)

DGMSZ
D|A

Now, for E' | llg <. with deg & < %, let Ap be a real variable, and for all other

E e Mlet Ag :=0. Let us define the Ap by

Z ApAp.

E,FeM
[E,F]=D

Note that, by this definition, we still satisfy the conditions that Ap = 0 if D { IIg <,
or deg D > z. Further, the first condition in (B.14) is equivalent to

AZ2>1

— Y

(B.15)

while the second condition is satisfied:

=D =) ) AEAF:< > AE)Q.

DeMc<, D|A DIA E,FeM EEMgg
D|A [E,F]=D E|A
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So, given (B.15), we have

[Sos:l =D ) Apzz( > AE)2= > Aphp- S|

AeS DeM<, AeS EeMS% E7F6MS%
Di4 BlA (B.16)
([E FJ)

E,FeMc; E,FeMcg

First, we consider the first term on the far RHS. By Lemma B.2.1, we have

w([E, F]) (E)w(F) !(E,F)|
AEAF—: AEA
w(E)w(F)
_ Z ApAp EF] Z (@) .17
BEFeM_ G|(E,F)
w(E)w(F)
= 2, @) D, Aehr—pp V(@O
GEMS% EF€M<% GGMS%
G|E,F
where
w(EG
E€M<z ’El EEM |EG|
G|E deg EG<%

By the Mobius inversion formula (the proof of which is very similar to Lemma B.1.1),
we have that

||

Ag = uG@ G-

FTE X, MO
deg EG<%

Note that, by definition, ©¢ = 0 if degG > 5 or G { [Ig<.. Also, the condition
(B.15) is equivalent to

(GE; z u(G)G)G)2 > 1. (B.18)

So, we wish to minimise the far RHS of (B.17) subject to (B.18). If (B.18) is to hold
then, using the Cauchy-Schwarz inequality, we have

1§( > M(G)@G>2:< > % w(G)@a>2

GlMe. < (B.19)
( > 4 wG )( 3 ¢<G>@G2).
GeM. GeM.;
Glllg, <z Glllg <.

Hence,

2\ —1
s von (3 )
GEMS% GEMS%
Glllg,<: Glllg <.
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The smallest value the LHS can take is when we have equality, which requires
equality in both inequalities of (B.19). For the second inequality this requires some
¢ € R such that

@)

O¢ Cw(G) (B.QO)
for all G € M<: with G | Ilg <.. Then, we have equality in the first inequality of
(B.19) if

2\ —1
c= i( &) ) . (B.21)
o5, V(C)
Glllg <

So, from (B.17), (B.20), and (B.21), we have

w([E, F)) G\
EF; ZAEAF [E, F]] _( Z )) (B.22)

l\)

which concludes our minimisation of the first term on the far RHS of (B.16).

We now consider the second term. First, for E | [Ig <. with deg £ < 3, we have

E QN IE
Ag Z% Z N(G>®EG::E( [:Z)((G) ) | | Z M )
= GeM_; GeM
deg EGL3 Glllg < feg‘gggg
:i< M(G)Q)_1 |E|n(E) U
S @) ) wEBW(E) &, ()
Gl < fe(g;ggﬁgg
(E,G)=1

ElwE) (P, 1P\
()0 (E) ,Q(w(m(l w(P) ) 11

We also have

GEMS% HI=F GEMS% HI:EHG%M
G|HQ,§Z Glllg <z denggsz
(B.G)=H (B,G)=1
-1
3 p(H)? wG)? 11 ( B W(P)> u(G)?
A= (H) o= WG o 1P| o= ¥(G)
degEgggg degEgggg
(E,G)= (E,G)=1

Hence, we see that |Ag| < 1, and so

S Aeder(E )| < S (18 F)
E,FEMS% E,FEMS% (B23)
E,Fllig <.
The proof follows by applying (B.22) and (B.23) to (B.16). O
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