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Abstract—Electrical node centrality for the power networks is 

an essential parameter to identify the critical nodes under 

attack. Topological analysis is vital for evaluating the network 

robustness while electrical characteristics have to be considered 

to make the analysis consistent for realistic power networks. 

However, the capacity limit of the power network changes under 

various nodal attacks. It is essential to find the relationship 

between the loading margin limit of the power network with the 

node centrality features, so that appropriate measures can be 

considered to improve the robustness of the power networks. 

Thus, voltage stability index (VSI) is defined for every node, and 

its centrality features are modelled. Robust Bayesian regression 

is used to model the nodes responsible for a change in loading 

margin and causing grid blackout. The method has been 

validated on benchmark complex power networks like reduced 

Great Britain network, IEEE 57-bus and IEEE 118-bus systems. 

Keywords—Centrality index, nodal attack, robust Bayesian 

regression, voltage stability index.  

 

I. INTRODUCTION  

Power grids are critical infrastructure in modern society. 
Extreme events or component failure can cause a widespread 
blackout or a massive service interruption in a large area 
causing severe socio-economic consequences [1]. In order to 
prevent power blackouts, it is essential to identify critical 
nodes and branches in the power network where network 
centrality measures with electrical and topological features 
are mainly used. Voltage instability of the power grid can 
cause a major blackout. As defined in [2], voltage stability is 
the ability of the power system to maintain its voltage such 
that, with the increase in load, both power and voltage are 
controllable. It is the ability to maintain steady-state voltage 
after subjected to a disturbance. As given in [3], in order to 
avoid voltage instability, weak buses or lines are needed to be 
improved by distributed generations or voltage supporting 
equipments. The Voltage stability index (VSI) helps in 
finding the weak nodes/links in the power networks [4], [5]. 

A. Previous works in Power Network Centrality Measures 

The robustness analysis of the power network to 
topological features is conducted in [6] using characteristic 
path length, node connectivity loss and blackout size. 
Similarly, in [7], power grid evolution based on the cost of 
the distribution grid is evaluated. In [8], the network 
reconfiguration efficiency is proposed based on the network 
node degree distribution and the clustering coefficient of the 
network. However, the analysis, which is based on purely 
topological features, can be misleading, as it does not 

necessarily capture the complexity of the power grid. The 
node centrality concept, based on AC power flow model [9] 
and betweenness centrality of the graph which is based on 
power network line admittance [10], have been utilized here 
to study the blackout model for the power grids. Several 
indices of the power networks are introduced in [11] to 
identify the critical nodes in the skeleton network 
configuration which captures the topological and electrical 
characteristics of the power grid. Multi-criteria decision 
making (MCDM) strategies are leveraged using these 
features to identify the critical nodes in the network along 
with studying the correlation structures between different 
complex network features of the power grid. 

B. Previous Works on Voltage Stability Index 

Voltage stability of power grids is affected by the static 
and dynamic characteristics of the loads [12]. Continuation 
power flow (CPF) method [13] provides an advantage over 
the traditional power flow technique in terms of convergence 
which traces the solution of the loading margin path with the 
change in the bus voltage. It is a widely accepted measure as 
it provides the distance of the power system from voltage 
collapse. The VSI is proposed in [14], [15] using the local 
voltage phasors, as measured by the phasor measurement 
units (PMUs). In [15], VSI based on Tellegen’s theorem is 
proposed, which is simple, computationally tractable and 
easy to implement in a wide-area monitoring environment 
and the control centers. Various methods for VSI is 
mentioned in [16] based on the power network buses and 
branches. The VSI is derived in the context of voltage 
phasors, nodal current, equivalent change in load bus 
impedance and the Thevenin’s impedance of the network. 
However, the concept of VSI based on nodal attack has not 
been defined in the previous literature, which is the main 
focus of this paper. It is essential to study the change in the 
properties of the power grid when a node is disconnected 
from the network due to an attack as shown in [17]–[19]. 
Hence, the concept of VSI is defined in this paper, which is 
the relative change in the loading margin of the power 
network before voltage collapse occurs.  

C. Contributions of This Paper 

In this paper, the concept of VSI has been introduced in 
terms of the nodal attacks on the grid. The measure is 
obtained for all the nodes, which are attacked in the power 
grid, causing a change in network loading margin. The CPF 
has been used to find the given measures. The VSI, based on 
the local voltage measurements, as discussed in the previous 
section, are not reliable enough to capture the power grid 



 

 

resilience in the case of a nodal attack. In addition to this, VSI 
for the nodes is modelled along with the indices defined in 
[11]. This study is conducted using a robust Bayesian 
regression model, where a customized likelihood function is 
defined for the nodes causing voltage collapse under nodal 
attack. There are very few literatures available, which 
conduct a topological analysis of voltage collapse. In [20], 
some theoretical insight has been provided on the grid 
structure, which influences voltage collapse. However, the 
analysis is conducted on a simplified power flow model based 
on only active power demands. Hence, the analysis fails near 
the voltage collapse points. Hence, robust regression methods 
can improve the analysis to find the dependencies of the VSI 
with the topological and electrical features of the grid. The 
model has been validated on three-benchmark complex 
networks viz. IEEE 57-bus, IEEE 118-bus systems and the 
reduced Great Britain power network. Hence the main 
contributions of this paper can be summarized as follows: 

• Defining the voltage stability index of the power grid, 
based on the relative change in the loading margin due to 
nodal attacks. 

• Fitting a robust Bayesian regression model to find the 
dependencies of the network feature with VSI using of 
Hamiltonian Monte Carlo (HMC) sampling technique 
for the customized likelihood function defined for each 
node causing a blackout in the power network. 

II. NODAL CENTRALITY MEASURES 

The N-node power network can be represented as an

N N×  adjacent matrix { }ijA where the elements of 
ijA

represents the connectivity between different nodes. Hence, 
the node centrality measures can be defined based on the 
adjacency matrix. 

A. Electrical Degree Centrality 

In the power network, the nodes having higher generation 
capacities and load demands are very critical. It represents a 
high amount of power going in and coming out of a node in 
the power network. Electrical degree centrality (EDC) for a 
power network having nodes N captures this aspect for node 
i as follows [21]: 

( )
( )1 .

iEDC ij

j i

I A N e
ρ−

∈Γ

 
= −  
 
          (1) 

Here, ( )( ), , ,max 1G i L i Gs s sρ  = + −
 

, where { }, ,,G i L is s  

represent the generation and load capacity of node i, while 

,maxGs  represents the maximum generation capacity amongst 

the generators. ( )iΓ  represent the adjacent nodes of node i. 

B. Electrical Closeness Centrality 

It is essential during a blackout that the restoration path of 
a power network contains a smaller number of transmission 
lines and transformer branches, as it improves the restoration 
time with less charging capacitance in the transmission lines 
and reduces the possibility of over-voltage. The electrical 
closeness centrality (ECC) highlights this aspect of the power 
network [21], which is defined as: 

( ) ( ) min,

1,

1 ,C

N
Q

ECC ij

j j i

I i N d
= ≠

= −           (2) 

where, 
min,

CQ

ijd represents the minimum total capacitance of the 

transmission line between node i and j. 

C. Electrical Betweenness Centrality 

In the power flow analysis, the power flow might not 
always happen with the shortest route between the generator 
and the load. The electrical betweenness centrality (EBC) 
index is introduced in [22], which can be defined as: 
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where, ( ) ( )gl eq eq eq eq

ij ig il jg jl ijf Z Z Z Z x = − − −   and

( ) ( )eq

ig ii ig ig ggZ z z z z= − − − .             

Here, 
SE

Γ and 
SK

Γ  represent power and load set respectively. 

Also, gl

ij
f represents the power transferred between source 

node (g) and load node (l) with the transmission line 

connecting node i and j. 
ijx represents the reactance of the 

transmission line
ijL . The parameters , ,  and eq

ig ig ii gg
Z z z z in (3) 

represents equivalent impedance between node i and source 
node g, transfer impedance between i and source node g, and 
driving point impedances of node i and g respectively. This 
is calculated using the power transfer distribution factor, as 

defined in [22]. Higher value of ( )EBC
I i  signifies higher role 

of node i in the power flow between the nodes in the network 
and vice-versa. 

D. Eigenvector Centrality 

Let us consider χ and [ ]1 2, , ,
T

N
e e e e= K being the 

dominant eigenvalue and eigenvector for the N N× adjacency 

matrix { }ijA with N nodes. Thus following [21], we get: 

1

, 1, 2, , .
N

i ij j

j

e A e i N
=

= = Kχ          (4) 

Hence, the eigenvector centrality (EVC) of the node can be 
defined as: 

( )
1

1
.

N

EVC ij j

j

I i A e
=

= 
χ

                 (5)  

This index is essential for the importance of a node in the 
topological perspective. 

E. Network Efficiency Centrality 

The network efficiency considering the electrical 
characteristics is given as: 

( ) , min,

1 1
,

1 L

N

B X
k j V kj

E
N N d∈

=
−

          (6) 

where, min,
LX

kj
d represents the shortest path with the minimum 

number of transmission lines and transformer branches to line 

reactance between node k and j. The 
N

V represents the set of 

nodes in the power network. Thus, network efficiency 
centrality (NEC) for node i is defined as the relative change 
in the efficiency after the respective node is removed, which 
is defined as: 

( ) ( ), ,NEC B B i BI i E E E= −           (7)

where, 
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Here in (8),
,B iE represents the network efficiency after node i 

is removed. 

F. Rate of Change of Spanning Trees 

After removing specific key nodes from the graph, the 
number of spanning trees gets reduced, hence making the 
network disconnected [21]. The change in spanning-tree 
(CST) centrality can be defined as the relative change in the 
number of spanning trees when node i is removed which is 
represented as: 

( ) ( ) ( )1 ,CSTI i G i Gτ τ= − −            (9) 

where, ( )Gτ represents the number of spanning trees in the 

network or graph G while ( )G iτ −  represents the number of 

spanning trees with the node i  removed. Higher the value of 

( )CST
I i , the graph becomes more disconnected with the 

removal of i  and vice-versa.  

G. Rate of Change of Network Closeness Centrality 

The importance of a node in the power network can be 
calculated as the relative change in the network closeness 
centrality (NCC) after node i is removed [21], as it highlights 
the impact of restoring a node in the power network by its 
contraction method [8]. It can be defined as: 

( ) ( ) min,

1

1 2 ,LX

NCC kj

k j N

I i N d
≤ < ≤

 
= −  

 
                                (10)    

N represents the number of nodes in the network. Higher 

value of ( )NCC
I i means that node i, is closer to other nodes in 

the network and vice-versa.  

III. VOLTAGE STABILTY INDEX 

As shown in Figure 1, the first task is to find the loading 
margin of the power network, which is found by solving the 
continuation power flow or CPF [13], which is reformulated 
power flow technique solved using continuation techniques. 
The techniques involve a predictor-corrector method to 
incorporate a load parameter so that divergence and the error 
due to singularity of the power flow Jacobian are not 
encountered. When it comes to CPF, the existing power flow 
model is augmented with a constant power model. Let us 
consider be the load parameter such that, 

crit0 λ λ≤ ≤ ,             (11) 

where, critλ corresponds to critical load that can cause voltage 

collapse. Here, 0λ =  represents the base load condition. 

Hence, the active and reactive power flow equations are:  

0, 0
Gi Li Ti Gi Li Ti

P P P Q Q Q− − = − − = .      (12) 

where, ( )
1
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Ti i j ij i j ij

j
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=

= − −
Ν

 is the injected real 

power and ( )
1

sin
Ti i j ij i j ij

j

Q VV y δ δ ν
=

= − −
Ν

is the injected 

reactive power in the thi bus. { },i i j jV Vδ δ∠ ∠ represents the 

voltage at thi and 
thj bus respectively and ij ijy ν∠ represents 

the admittance between thi and 
thj bus for a Ν bus power 

network. The continuation solutions are obtained by varying 

the load { },
Li Li

P Q and generator { },
Gi Gi

P Q at each bus with 

the load parameter λ . They are parameterized as: 
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    (13) 

where, { }
0 0
,Li LiP Q and { }

0 0
,Gi GiP Q  represent the base active 

and reactive power for load and generator respectively. 

Parameters { },
Li Gi

k k represent the respective load and 

generator change at thi bus, with modifications in λ . Here,

base
S∆ is the base apparent power for the power network and 

i
ψ represents the load angle at thi bus. Substituting (13) in 

(12), yields the following set of equations: 

( ) ( )

( )
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1 cos 0,
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i i
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ψ

ψ
     (14) 

 
Figure 1: Schematic to calculate VSI for all the nodes in the power network. 

The solution set { }, ,V δ λ is obtained after solving (14). 

The parameterization of { }, ,V δ λ  in (11) helps in 

quantifying the solution obtained between successive 
iterations using the continuation step-size parameter σ . The 
pseudo-arc length parameterization is used in [23], where the 

solution { }1 1 1, ,j j j
V δ λ+ + +  is constrained to lie on the 

hyperplane of the tangent of { }, ,j j j
V δ λ  which is 

represented as: 

( ), 0,

T
j

j j j j

j

V V

p x zλ δ δ

λ λ

   
   = − − =   
       

σ      (15) 

Here, jz  represents the normalized tangent vector of the 

solution { }, ,j j j
V δ λ and jσ is the adaptive step size 

parameter. The critλ is obtained when the following voltage 

collapse condition i.e. 



 

 

crit

0d
λ λ

λ
=

= ,         (16) 

is satisfied with the iteration given in (15). When ith node is 
removed as shown in Figure 1, the topology of the network 
changes with the change in the admittance matrix constituting 
the power flow as shown in the following equations: 
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Hence, the solution set { }, ,V δ λ′ ′ ′ is obtained by solving (17) 

considering the parameterization defined in (15) till critλ ′ is 

satisfied. However, there will be situations while solving (17) 

for some σ , where equation (16) will not be satisfied, hence 

the steady state solution of (17) is not obtained. Hence, for 

those nodes a low value of VSI
i
is obtained, as no steady state 

solution for the network is obtained for the network when 

those nodes are removed from the network. We now define 

the voltage stability index of that particular node as: 

( )

( )crit crit

0.0001 if equation 16 is satisfied,
VSI

if equation 16 is not satisfied .
i

λ λ


= 

′
     (18) 

If VSI 1
i

>  then, the loading margin limit of the network 

increases. Similarly, if VSI 1
i

< , the network can handle 

smaller perturbations and the network stability decreases. A 

smaller value of VSI
i
 indicates that i is a critical node of the 

network and removing it can cause a network-wide blackout. 
The statistical method to model the VSI in (18) with the graph 

indices defined in section 2 has been explained in the next 

section. The parameters{ }crit crit,λ λ′ are obtained by running the 

CPF routine in MATPOWER [24] for three different 
benchmarks power networks. The data for the reduced GB 

network is obtained from [25]. The nodes signifying the 

increase and decrease in loading margin of the network, along 

with the ones leading to complete blackout are shown in 

Figure 2. It is evident that the nodes that are topologically 

adjacent to each other have similar VSI characteristics.  

IV. ROBUST BAYESIAN REGRESSION WITH CUSTOM 

LIKELIHOOD FUNCTION 

It is crucial to find out the relationship between the node 

centrality measures defined in Section II with the VSI defined 

in the previous section. As we see in Figure 2, for some of the 

nodes the VSI
i
is low, leading to a complete blackout. It is 

essential to model these nodes from their respective node 

centrality measures. These values are modelled as an outlier, 

and the robust regression model is fitted. It is done by placing 

a t-distribution prior to the observed data [26] and sampling 

the posterior accordingly. However, as we see in Figure 2, it 
is difficult for the t-distributed priors to capture the nodes 

which have similar outlier values. Hence it is vital for 

customizing the likelihood to label the network nodes causing 

a complete network blackout when attacked [27]. Those 

observed indices are modelled with a binary indicator, to 
segregate them from the normal nodes where we get a 

definitive VSI. The outlier binary parameter is modelled with 

larger deviations from the usual Gaussian noise estimates 

which are generally known as the “sigma clipping” [28]. 

 
Figure 2: Voltage stability index obtained for complex power networks for 
GB-reduced network (29 nodes), IEEE 57-bus and IEEE 118-bus systems. 
Meaning of the colors are: Red represent VSIi<1 (decrease in loading 
margin), Green represent VSIi>1 (increase in loading margin), Black 
represent VSIi = 1 (steady state limit not found). The edges represent active 
power flow between the nodes with the colourmap signifying its magnitude. 

Let us consider the VSI with the centrality measures as 

VSI = βx ,                       (19)

where, [ ]EDC ECC EBC EVC NEC NCC CST
I I I I I I Ix =  

and [ ]1 2 7

T
β β β=β K . There are N nodes with the 

binary integers 
i

q for each nodes, where it is zero if the node 

causes a blackout and one if (11) converges. We set prior 

probability bΡ  for each node. Hence, we obtained ( )3N +

number of extra parameters which are later marginalized to 

obtain βat the end with the observed I  data. Hence, we write 

the likelihood function as: 

{ } { }( )
{ }( ) { }( )

[ ]

1 1

1

fg bg1 1
1

VSI , , ,

 =  VSI , VSI , ,
i i

N N

i ii i

N q q
N N

i ii i
i

p q

p p

= =

−

= =
=

=

   
      ∏

β

β

b b

b b

I

I

Y ,V

,V IY

L

                                     (20)

where, ( )fg .p and ( )bg .p represent the distribution from 

where the VSI for the non-blackout and blackout nodes are 

sampled. In (20),{ }b bY ,V represent the mean and variance 

of the VSI of critical nodes. In order to separate the different 

nodes in { }
1

N

i i
q

=
, the binomial probability distribution 

function (pdf) bΡ is used as: 
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Applying this principle in (20) yields: 
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In order to find the posterior probability distribution of the 

coefficients β  in (19) using the nodal features and the VSI, 

marginalization is carried out accounting for the covariance 

and other parameters { },b b bΡ Y ,V  and given as: 

{ }( )
{ } { }( )
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, ,
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d d d d , .
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i i

N N
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=

= =
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
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Markov Chain Monte Carlo (MCMC) sampling for 
numerical integration is to be used next to find the high 
dimensional marginal distributions in (23). We here use the 
Hamiltonian Monte Carlo sampler [29], which is useful in 
high dimensional Bayesian inference. The numerical results 
have been explained in the next section. 

V. RESULTS AND DISCUSSIONS 

The complex network measures discussed in Section II 
are obtained from the brain connectivity toolbox [30], and the 
graph and network functions in MATLAB. The nodal 
measures are plotted in Python package Seaborn [31] along 
with several categories of VSI for different power grids, 
which are shown in Figure 3. Here, we observe a distinct 
pattern with the change of the number of spanning trees for 
the three VSI cases, considering different power grid 
topologies. Distinctness is also observed in Figure 3 for the 
case of EBC and NCC since the distributions do not overlap 
for the three power grids considered here, which confirms 
that the fractions of the nodes involved in power flow are 
different for the three different benchmark power grids. 

 
Figure 3: Univariate distribution of the node centrality measures for the three 
benchmark power networks: reduced GB network, IEEE 57-bus and IEEE 
118-bus system with different VSI categories. The distributions represent 
complex network local features associated with each node. (Glossary of 
abbreviations: EDC- Electrical Degree Centrality, ECC- Electrical Closeness 
Centrality, EBC- Electrical Betweenness Centrality, EVC-Eigen Vector 
Centrality, NEC-Network Efficiency Centrality, NCC-Network Closeness 
Centrality, CST-Change in Spanning Trees).  

The closeness factors of the nodes are also quite distinct 
for the power grids considered here. We observe a distinct 
overlap in the three parameters - EDC, ECC and NEC. 
However, it is also observed that the nodes, which causes 
blackout, have low EDC, as evident from the network plot 
shown in Figure 2. It is interesting to check the relation of the 
network centrality indices with the VSI, which is obtained by 
running a robust Bayesian regression model with the 
likelihood defined in (22) implemented using the PyMC3 
package in Python [32]. Since we are using binary indicators 

{ }
1

N

i i
q

=
 along with the continuous variables for modelling the 

characteristics of the nodes, it is helpful we scale the 

continuous variables by two standard deviations for efficient 

regression modelling [33]. The prior distribution for β is 

considered to be normal as ( )0 ,1 0N . As given in [34], the 

prior for the standard deviation of VSI 
ˆV SI

σ  is considered to 

be inverse gamma distribution with parameters 3α =  and

0.5=β . The prior for o u t
ˆV S I

σ is considered to be half-normal 

distribution as discussed in [27]. The standard deviations 

ˆV SI
σ and o u t

ˆV S I
σ  are used along with the β  to model the VSI 

of the node, causing network blackout. The binary index of 

the distribution bΡ  is obtained from the Bernoulli 

distribution, which takes a uniform prior between 0 and 0.5 
suggesting the fraction of the nodes causing the entire power 
grid blackout when it is attacked. The No-U turn sampler 
(NUTS) [29] which adaptively sets the path length of the 
Hamiltonian Monte Carlo sampler, is utilized here for finding 
the posterior distributions of the regression coefficients (19). 

 
Figure 4: HMC sampling diagnostics using energy and divergence plot. 

The sampling algorithm for the robust Bayesian 
regression modeling has been run on a 64-bit Windows PC 
with Intel Core i5-8500 CPU, 3 GHz processor with six 

parallel cores. The sample() function is utilized from the 

PyMC3 package in the sampling process, by running multiple 
parallel chains on the 6 parallel CPU cores to speed up the 
computationally expensive sampling process. Four different 
chains are used for the inference with the symplectic 
integrator to generate the trajectories, thus preserving the 
phase space volume of Hamiltonian transition. Random walk 
Metropolis-Hastings (MH) is utilized for adaptive step length 
of the symplectic integrator, thus reducing the bias in the 
resultant Hamiltonian transition and yielding the samples 
from target distribution [29]. The target acceptance 
probability of 0.95 for the Metropolis-Hastings (MH) 
sampler with symplectic integrator is used in the sampling 
process. We have used 15000 samples for each chain, and it 
was assigned to each of the 6 parallel cores of the CPU. The 
time for parallel computing has also been compared with 
respect to the sampler running on a single core. The 
computing time was ~1159 seconds = 19.3 mins for the 
chains to run on a single core while it took ~380 seconds = 
6.3 mins when all the 6 cores of the CPU were utilized, thus 
indicating a multicore vs. single core speedup factor of 
3.05X. The diagnostics of the sampling are shown in Figure 
4. As observed from Figure 5, the distribution of the VSI is 
similar for all the buses, hence a resultant robust statistical 
model is formulated based on the likelihood in (22) for the 
centrality features and voltage stability index of the nodes. 



 

 

The trajectory of the data from the HMC sampler is 
confined in an energy set. Hence, the chains decouple into a 
deterministic and stochastic exploration of the samples 
amongst level sets. As we observe from Figure 4 first subplot, 
that the energy difference between the level sets is similar to 
the samples between the level sets suggesting that the random 
walk of the chain has explored the marginal energy 
distributions efficiently. In the second subplot of Figure 4, we 
observe that mean of the parameter is converging to a steady 
state value. It suggests that the transition energy between the 
samples remains finite with sufficient exploration with no 
divergence. This is due to the high acceptance rate specified 
in the built-in MH sampler which explores the parameter 
space well but makes the convergence slower. 

 
Figure 5: Distribution of the VSI data in (18) for the benchmarks power 
networks with mean and standard deviation obtained using HMC sampling. 

 
Figure 6: Bivariate 2D kernel density estimates (lower triangular part), 
bivariate scatter plots (upper triangular part) and univariate marginals of the 
posterior distributions of the regression coefficients in (19) amongst the 
nodal parameters and VSI, obtained using the HMC sampler. The scatterplot 
is scaled according to the cumulative loglikelihood function given in (22). 

Hence, it makes the sampling process slower but negates 
any divergence occurring due to infinite energy occurred 

during the transitions. The Gelman-Rubin statistic [35] for β

is found to be 1.01 which confirms the efficiency of the 
sampling process used. The samples from the posterior are 
obtained from the converged chains and are shown in Figure 

5. We observe that the 
V SI

µ
$

 captures the peak obtained from 

the original VSI data for the different buses. Using the 
Bayesian regression model in (19), the variance of the 

estimated coefficients βcan be mapped on to the observed 

variance of VSI for those nodes, where the steady state 

loading margin (
critλ′ ) of the power network is not obtained on 

nodal attack. The VSI of the remaining nodes causing 

blackout is effectively modelled by o u t

V SI
σ

$

 . However, the 

posterior spread in o u t

V SI
σ

$

is thinner as compared to the
V SI

σ
$

which effectively models the low VSI of the nodes causing 

where steady state loading margin (
critλ′ ) of the network is not 

obtained on nodal attack. The 
V SI

µ
$

 in Figure 5 is similar to 

the VSI obtained from the grid as given in the univariate 
distribution in Figure 3. Now we examine the dependence of 
the centrality measures with the VSI by analyzing the 
marginal univariate and pairwise bivariate posterior 

distributions of βas shown in Figure 6. 

We observe from Figure 4, that the mean of 
7β  has the 

highest positive value while that of 
3β has the highest 

negative value suggesting that the VSI measure of the nodes 
increase with an increase in the spanning trees. However, an 
increase in the EBC reduces the VSI of the nodes. It 
physically means that if the nodes, which generally forms a 
part of the shortest power flow route, is removed, then it 
increases the load margin of the power network. However, 
loading margin of the network reduces if the nodal attack 
makes the graph disconnected. Hence, we can conclude that 
the VSI is related to the closeness of the nodes in the graph. 
We observed from Figure 6 that the relationship between 

coefficients 3β and 7β are highly negatively correlated which 

signifies the complementary nature of the EBC and CST on 
the VSI. This indicates that on removing the node, which 
plays an essential role in the power flow between the other 
nodes in the network, can make the network less 
disconnected. This also signifies that the power flow is not 
dependent on the removal of certain nodes in the network. We 
also observe a similar moderate negative correlation between 

coefficients 4β  and 6β . An increase in the network closeness 

increases the VSI of the nodes, while the nodes that are on 
the higher end of the eigenvalue spectrum reduces the VSI. 
The relationship of the network closeness with VSI is also 
evident with the network plots in Figure 2, where the nodes 
having high VSI are close to each other topologically. This is 
observed in the Great Britain map in Figure 2 where areas in 
Scotland like Glasgow and Inverness and areas in Northern 
England like Newcastle, Lancaster, Manchester and Leeds 
fall under the similar voltage stability category. Places in 
Midlands and South England like Cambridge, Oxford, 
Gloucester and Southampton have similar voltage stability 
regions where on nodal attack, the VSI decreases. Larger 

positive range of values of 7β  in Figure 6 suggests that 

( )NCC
I i has higher influence on VSI as compared to other 6 

nodal parameters. It also means that when node i, which is 
electrically closer to other nodes in the network, is attacked, 
it causes the increase in steady state loadability margin. This 
observation is also supported in Figure 2, where the nodes 
with higher VSI are electrically closer to each other. We also 

observe a negative range of values for 3β in Figure 6 

suggesting that ( )EBC
I i has negative influence on VSI. This 

suggests that when node i, which plays an essential role in 
power flow in the network, is attacked, can cause a decrease 
in the steady state loadability margin of the network.  

In the regression model used here, only nodal properties 
are considered, future works will also incorporate the 
topological properties of the network like small worldness, 
modularity, transitivity etc. to check the dependency of VSI 
with other parameters. The calculation of VSI for larger 
networks is expensive. Hence, a sampling strategy for nodal 



 

 

attack can be considered to select the certain nodes to find the 
appropriate regression model. The effect of scalability of 
such analysis on larger complex networks is also another 
potential topic of interest. Further analysis may also consider 
including other centrality measures, which contribute to the 
grid failure along with cascaded attacks. 

VI. CONCLUSIONS  

We use a robust Bayesian regression model to find the 
relationship between the nodal centrality measures and VSI. 
VSI is assigned based on the relative loading margin of the 
network under attack. A Bayesian regression model with 
customized likelihood function has been used to find the 
posterior distributions of the relationships between the nodal 
centrality measures and the VSI. The customized likelihood 
involves separate modelling of the nodes with low VSI. The 
posterior distributions indicate that the nodes which are in the 
path of shortest power flow within the network along with the 
nodes which are in the higher end of the eigenvalue spectrum 
play a significant role in deteriorating the VSI of the network. 
However, the loading margin of the network improves if the 
network closeness and centrality decrease after nodal attack. 
This suggests that the community structure of the network is 
robust to nodal attacks. 
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