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Abstract
In studies of social behaviour, social bonds are usually inferred from rates of interaction or association. This approach has
revealed many important insights into the proximate formation and ultimate function of animal social structures. However, it
remains challenging to compare social structure between systems or time-points because extrinsic factors, such as sampling
methodology, can also influence the observed rate of association. As a consequence of these methodological challenges, it is
difficult to analyse how patterns of social association change with demographic processes, such as the death of key social
partners. Here we develop and illustrate the use of binomial mixture models to quantitatively compare patterns of social
association between networks. We then use this method to investigate how patterns of social preferences in killer whales respond
to demographic change. Resident killer whales are bisexually philopatric, and both sexes stay in close association with their
mother in adulthood. We show that mothers and daughters show reduced social association after the birth of the daughter’s first
offspring, but not after the birth of an offspring to the mother. We also show that whales whose mother is dead associate more
with their opposite sex siblings and with their grandmother than whales whose mother is alive. Our work demonstrates the utility
of using mixture models to compare social preferences between networks and between species. We also highlight other potential
uses of this method such as to identify strong social bonds in animal populations.

Significance statement
Comparing patters of social associations between systems, or between the same systems at different times, is
challenging due to the confounding effects of sampling and methodological differences. Here we present a method
to allow social associations to be robustly classified and then compared between networks using binomial mixture
models. We illustrate this method by showing how killer whales change their patterns of social association in
response to the birth of calves and the death of their mother. We show that after the birth of her calf, females
associate less with their mother. We also show that whales’ whose mother is dead associate more with their opposite
sex siblings and grandmothers than whales’ whose mother is alive. This clearly demonstrates how this method can
be used to examine fine scale temporal processes in animal social systems.
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Introduction

In many group living animals, individuals do not socialise
indiscriminately; rather, they have preferred and avoided as-
sociates (Hinde 1976; Whitehead 2008; Strickland et al. 2017;
Kappeler 2019). Preferred associates are conspecifics with
whom individuals choose to associate, cooperate or otherwise
synchronise their behaviour: they share a social bond. Here we
refer to preferential social association between a pair of indi-
viduals as a social bond, and the sum of an individuals or a
group of individuals’ social bonds as their social preferences.
In animals, social bonds are usually inferred from observed
patterns of association or interaction. Patterns of social bonds
across a population or social group give rise to complex emer-
gent social structures, and social network analysis has
emerged as a powerful tool to study these emergent patterns
(Krause et al. 2015; Croft et al. 2016). Changes in social
preferences—for example in response to changes in group
demography—will necessarily result in changes to the emer-
gent structure of the social network. However, observed rates
of association can be affected by extrinsic factors other than
social preference, which means it is methodologically difficult
to quantify how social preferences change with time or in
response to external events. These methodological challenges
contribute to the current gap in our understanding of how
individuals change their social preferences in response to the
turnover of individuals in the population (Ilany and Akçay
2016; Shizuka and Johnson 2019). Here we present a new
method to quantify social preferences and apply this to
understand how a highly social marine mammal changes
their social preference in response to the birth and death
of key individuals.

A key reason why comparing patterns of social bonds is
challenging is because the observed rate of association or in-
teraction between a pair of individuals can be affected by
extrinsic factors other than social decisions. Behavioural dif-
ferences between populations, or within the same population
at different times, may result in pairs of individuals with the
same underlying social preference having different observed
rates of interaction. Individuals in highly social species, for
example, are likely to have higher observed pairwise rates of
interaction and association compared to those in less social
species. These differences in observed association rate may
occur not only between populations and species but also with-
in subgroups of a population or within the same population at
different times. Moreover, data collection methodology can
lead to systematic differences in observed rates of association
(Croft et al. 2008; Whitehead 2008). For example, data col-
lected by focal follows are not always directly comparable to
those collected from ad hoc observations of association (Davis
et al. 2018). Indeed, a key challenge when trying to under-
stand the social structure of an animal population is to control
for these sampling effects and uncover the ‘true’ association

patterns in the data (Bejder et al. 1998; Croft et al. 2011;
Farine and Whitehead 2015; Weiss et al. 2020). The metrics
of social preference between individuals are therefore deter-
mined not only by their social bond but also by how the data
were collected and features of the animals’ social behaviour.
To compare patterns of social preference between systems, it
is necessary to take this variation into account (Croft et al.
2008; Whitehead 2008).

In a recent study,Weiss et al. (2019) used binomial mixture
models to capture the variation in social associations within a
population as a way to understand social complexity. Mixture
models are—in essence—a form of cluster analysis. By iden-
tifying clusters of similar associations in observed data, the
models can be used to transform a continuous value of social
association strengths to a categorical variable, thus increasing
the robustness of the measures. For example, in a population
where individuals have a strong social bond with members of
their social group but occasionally associate with members of
other social groups, there are two categories of social associ-
ation: within-group associations and extra-group associations.
Mixture models offer a way to pick out these categories of
social bond from observed patterns of association. Unlike the
continuous social association rate, this categorical variable is
robust to variation in sampling effort, social gregariousness
and network completeness (Weiss et al. 2019). An unexploit-
ed yet potentially powerful application of these models is to
use these categorised associations as a tool to compare social
bonds between networks of different individuals or the same
individuals at different time points. This opens the potential to
examine what factors are important in driving the structure of
social preferences and how this changes over time or how they
differ between populations and species.

We illustrate our method with the example of demographic
change in resident killer whales. Demographic change—the
ageing, recruitment (birth or immigration) and death of indi-
viduals in a social group—has the potential to profoundly alter
the structure of animal social networks (Shizuka and Johnson
2019). However, studies to date have rarely tested the effect of
demographic processes on animal social structure, partly be-
cause of the methodological challenges of doing so (Shizuka
and Johnson 2019). In many mammals, individuals of at least
one sex associate with their mother throughout their life
(Greenwood 1980; Mabry et al. 2013). How this mother-
offspring relationship changes as the offspring ages is likely
to be a key axis of variation in mammalian social systems
(Prox and Farine 2020). In cetaceans, for example, the
strength of mother-adult offspring association is argued to be
linked to the degree to which the population is split into sub-
groups (Rendell et al. 2019). Thus, understanding the ontog-
eny of mother-offspring relationships has the potential to give
important insight into how social structures develop and are
maintained in social mammals. Similarly, with lifetime
mother-offspring associations the death of an individual’s
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mother represents a dramatic change in the offspring’s social
environment. How individuals adjust their social preferences
after the death of key social partners, such as their mother, is
central to understanding the emergent structure of animal so-
cieties (Firth et al. 2017; Shizuka and Johnson 2019).

Resident killer whales (Orcinus orca) live in multi-level fis-
sion-fusion societies (Bigg et al. 1990). Killer whale society is
based around matrilines: neither males nor females disperse and
adults of both sexes are regularly found in close association with
their mothers (Bigg et al. 1990). In turn, matrilines preferentially
associate in pods forming a multi-level social structure (Bigg et al.
1990). The southern resident killer whales have been subject of
detailed demographic and social study since 1976.However, inter-
annual sampling differences in observed association rate compli-
cate in-depth study of temporal changes in social preference. This
long-term, multi-generational data is rare, especially in long-lived
animals such as cetaceans. This population therefore offers an ideal
system for illustrating the use of mixture models to investigate the
interplay of social and demographic change. In addition, the ab-
sence of dispersal means that the only sources of individual turn-
over are the death of whales, and the birth of new calves, simpli-
fying the processes of demographic change. And as mating is
usually outside of the immediatematriline, only a female offspring
joins the close social group (Ford et al. 2011, 2018). Furthermore,
in resident killer whale, mother-offspring relationships are a key
determinant of survival in both adult males and females (Foster
et al. 2012). In this study, we use our newly developed methodo-
logical framework to understand how mother-offspring relation-
ships change as the offspring ages and as new offspring are born.
We also use the framework to understand how the social environ-
ment of individuals whose mothers are alive differs from those
whose mothers have died.

Overall, we have two aims with this study. Firstly, we aim
to develop and apply a novel analytical technique to allow
comparison of social preferences among times, groups or pop-
ulations. Secondly, we use this methodology to investigate the
links between demography and social structure in resident
killer whales.

Methods

Binomial mixture model method

Binomial mixture models and social associations

We use binomial mixture models to cluster association indices
into one, two or more components. In these models, the ob-
served number of associations between a pair (i and j) of
individuals (x: the numerator of a social association index) is
considered to be the result of a sample from the number of
times the members of the pair are observed (d: the denomina-
tor of the social association index) and their social bond (b):

xi; j∼binomial di; j; bi; j
� �

Binomial mixture models, in essence, fit n binomial distri-
butions to the observed associations (see ‘How many compo-
nents?’ section for an explanation of how n is chosen). Each
distribution is referred to as a component (k). Maximum like-
lihood estimation is then used to select the most parsimonious
mean and deviation for each component to explain the ob-
served distribution of the data. More information on
the use and application of binomial mixture models in
the study of social associations can be found in Weiss
et al. (2019) and references therein.

We apply this method to categorise social bonds as belong-
ing to a particular component. This method explicitly assumes
that there are a certain underlying number of rates of social
association, and the number of these association rates does not
vary between years. By assigning a social association to a
component, therefore, we can investigate the following: (a)
how the properties of the individuals associating predict the
strength of social association they will have; and (b) what
social and life-history traits predict when an association be-
tween a pair of individuals will change their association
rate. Overall, this allows us to understand how the so-
cial structure of a population is linked to the properties
of individuals in the population.

Binomial mixture models were developed, tested and ap-
plied in R (R Development Core Team 2019), with the dplyr,
ggplot2 and VGAM packages (Wickham 2016, 2019;
Pedersen et al. 2019; Wickham et al. 2019). We have also
developed a package—socmixmods—to facilitate the imple-
mentation of mixture models in social association data. This
package can be found at: github.com/samellisq/socmixmods.

Resident killer whales

The southern resident killer whales are a population of the
salmon-eating ‘resident’ killer whale ecotype inhabiting the
North East Pacific ocean (Bigg et al. 1990; Ford et al. 2000).
They are a closed population, with no known genetic contact with
other sympatric killer whale populations (Olesiuk et al. 2005;
Ford et al. 2011). The southern resident killer whales have been
the focus of a long-term individual based demographic study by
the Center for Whale Research since 1976. All whales in the
population are individually identified based on unique appearance
of their saddle patch and dorsal fin, and, in adults, clear sexual
dimorphism in fin shape and body size allows identification of the
sexes of individuals (Bigg et al. 1990; Ford et al. 2000). Sub-
adults can be sexed based on opportunistic sightings of ventral
genital markings, but some individuals die before their sex can be
ascertained (Bigg et al. 1990). As almost all whales in the popu-
lation are observed annually and neither males nor females dis-
perse from the population, all births (of calves surviving until they
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first observed which usually occurs within the first 6 months) and
deaths in the population since 1976 can be reliably inferred from
the census data. Our study is based on these data collected from
live animals in the field and hence it was not possible to record
data blind.

In the summer months, resident killer whales regularly en-
ter the waters around the San Juan Islands, Washington State,
USA. As part of intensive surveying efforts, the Center for
Whale Research has collected video and photographs of
groups of whales encountered in the waters around San Juan
Island since 1976. We use these images to define social asso-
ciations between whales. Whales are considered to be associ-
ating if they are photographed surfacing synchronously or
successively within 1 body length of each other during an
encounter. For the purposes of this study, we use the social
data collected by the Center for Whale Research between
1990 and 2015 over which time the median population size
was 86 (range: 78–98). During this time, there has been a
consistent, intensive sampling effort to quantify patterns of
group structure and social associations in those groups have
been recorded. We applied a chain rule to define groups of
associating whales per sampling day (further details can be
found in Ellis et al. 2017). We use a daily sampling period
so that two whales observed in the same group at any point
during a single day are considered to have been part of the
same group on that day. Application of the chain rule therefore
rarely, if ever, has the effect of splitting a group of whales in
close association into multiple groups within the sample peri-
od (1 day). For each pair of whales i and j in the population in
a given year, we calculated the numerator and denominator of
the simple ratio index (Cairns and Schwager 1987; Whitehead
2008). Specifically, we calculated the following: (1) the num-
ber of times they were observed in the same group in a day
(simple ratio index: x, with a daily sampling period, see also
‘Binomial mixture models and social associations’ section
above) and (2) the total number of times they were observed
overall including when apart (simple ratio index d: x + yi+yj +
yij). Where yij is the number of sampling periods (here days) in
which whales were identified but did not associate
(Whitehead 2008). We do not calculate the social association
for whales in either their year of birth or year of death as the
partial data available for those years may affect measures of
social association. In this study, we use these statistics as the
basis for classifying social associations into categories (see
below; Weiss et al. 2019). Overall, between 1990 and 2015,
173 whales lived in the population of whom 83 were female
and 78 were male (some calves die before they have been
sexed). The median number of years lived through the dataset
between 1990 and 2015 by females was 18 (range 0–25) and
by males was 8.5 (range 0–25). This difference is likely to be
driven by the strong sex difference in lifespan in the popula-
tion: very fewmales reach the age of 40whereas females often
live into their 80s and beyond, with many females living to

have a long post-reproductive lifespan (Olesiuk et al. 2005;
Foote 2008; Croft et al. 2015; Ellis et al. 2018).

Maternal pedigree has been constructed for the whales in
this population based on observations of infant swimming
behaviour and population genetic structure (Bigg et al. 1990;
Barrett-Lennard 2000). Detailed annual population censuses
mean that mother identity and age are known for all whales
born in this population since 1976 (Bigg et al. 1990). In addi-
tion, for calves who had not reached sexual maturity by 1976,
mother identity and approximate age were inferred from pat-
terns of association and the onset of sexual maturity (see Bigg
et al. (1990) for more details). In these pre-1976 calves,
mothers were only assigned if they were known with a good
degree of certainty, and ambiguous cases were not included
(Bigg et al. 1990). These known and inferred mothers were
used to build a maternal pedigree and to assess the relation
between pairs of individuals in the population (see
pseudocode workflow supplementary 1). We establish relat-
edness to the second degree (i.e. where coefficient of relation-
ship r ≥ 0.25: grandparent-grandoffspring, aunt/uncle-neph-
ew/niece), as our resident pedigree is not deep enough to reg-
ularly establish more distant relationships. We classify dyads
by kinship class (sister-sister, aunt-niece, grandmother-
grandson etc.) rather than relatedness (e.g. r = 0.5) because
we are interested in the social association between kinship
classes rather than the impact of genetic relatedness on social
behaviour per se. We calculated kinship class conservatively:
if the relationship between a pair of individuals cannot be
established, it is marked as unknown. For example, if one of
a pair of whales do not have a known mother, it cannot be
established if they are siblings, so we class their kinship class
as ‘unknown’ (if there is no other relationship such as mother-
offspring; supplementary 1). Eighty-six percent of dyads have
unknown kinship in our data and are therefore not included
our kinship analysis. Matrilines in this population form long-
term stable social groups called ‘pods’ (Bigg et al. 1990; Ford
et al. 2000). Pods have been stable over the length of the 40+
years of this study with no observed pod fusion or movement
of matrilines between pods (Bigg et al. 1990; Parsons et al.
2009), and analysis of unique within-pod vocalisations sug-
gests that pods represent groups of common matrilineal de-
scendants (Ford 1989, 1991). We therefore assume all dyads
between whales from different pods are not maternally related
and classify them as ‘out-pod non-relatives’. Dyads are clas-
sified as in-pod non-relatives if they can be demonstrated to
not be related within the second-degree (i.e. r is not ≥0.25; see
supplementary 1).

How many components?

To assess how many components are present in the data, we
first needed to establish a criterion to determine model fit.
Weiss et al. (2019) found the integrated completed likelihood
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(ICL) to perform best as model-fitting criteria for association
data; however, they found that if the number of separate
sighting (index denominator) was less than 40, the ICL could
sometimes underestimate the number of components. The
mean number (± std. dev. [SD]) of sightings per dyad (the
simple ratio index denominator) for the killer whale data is
24 ±8. We therefore repeated the simulations used in Weiss
et al. (2019) but with killer whale-like input to determine the
best performing model fitting criteria for this data. We simu-
lated a population with a known number of components (k =
1–9), with a population size chosen from a normal distribution
derived from the observed killer whale data (mean = 81, SD =
4), and a sampling effort (simple ratio index denominator)
chosen from normally distributed representation of the ob-
served sampling efforts over all years of the study (mean =
24, SD = 8). We ran this simulation 500 times and scored the
number of times the three tested model fit criteria—Akaike
Information Criterion (AIC), Bayesian Information Criterion
(BIC) and ICL—correctly assigned the best fittingmodel to be
the inputted k value. BIC had the highest success rate,
assigning the correct number of components in 293 simulation
iterations (AIC success = 202, ICL successes = 271). We
therefore used BIC as our model fitting criteria. We suggest
others using this technique run similar simulations to assess
both the utility of fitting criteria and their accuracy given the
data under consideration

The aim of our analysis is to understand how social asso-
ciations change in response to demographic events. To do this,
we assume that the killer whale social system has a fixed
underlying social structure and a corresponding fixed number
of components, which does not vary between years (see
‘Discussion’ section). We model this underlying structure by
fitting a model of the same number of components to each
year of the data. Alternative analytical frameworks, such a
fitting different numbers of components to each year of the
data, may be appropriate to answer other research questions.
To assess the most parsimonious number of components over
all years, we fittedmodels with 1 to 9 components to each year
of association data. The fit of each component model (BICk)
was assessed by BIC. Within each year, we calculated the
deviation (ΔzBICk) of each component models z-scored BIC
from best fitting component models z-scored BIC:

ΔzBICk ¼ BICk−νBIC
σ2
BIC

� �
− min

i∈K; K¼1;…;9

BICi−νBIC
σ2
BIC

� �

where νBIC and σ2BIC are the mean and standard deviation of
the BIC over all components (1–9). The best fitting model in
each year will therefore have a ΔzBIC of 0, and a model fit
one standard deviation from the best fitting model would have
aΔzBIC of 1.We then summed these deviations over all years
to assess the parsimony of each component model over all

years (Table 1). This process demonstrated that a three-
component model is the most parsimonious model over the
26 years of the study (see ‘Results’ section for details; also see
four-component model supplementary 2). We recom-
mend other users of the method similarly explore the
most parsimonious number of components their model
contains and explore the biological implications of alter-
native models (supplementary 2).

Assigning bonds to components

We applied a three-component mixture model to each year of
association data in our population. Here we use the same tech-
nique to assign every social bond in the population to a com-
ponent. During the fitting of the mixture model, each associ-
ation is assigned a probability μ of belonging to each fitted
component. We consider a given social association to belong
to the component which has the highest μ. Component
assigning was rarely ambiguous: for 80% of associations,
the difference between the highest μ and second highest μ
was over 0.8, and in only 1.2% of associations was the differ-
ence in μ less than 0.1. Components, k, are numbered from 1
to 3, with k1 as indicating an association in the weakest com-
ponent, k2 in the intermediate strength component and k3 as
an association in the strongest component.

Applying the method

Details of the statistical analyses used in each section of the
results are detailed below. For all analyses, we report posterior
mean and the 95% credible intervals around these coefficients
for each reported factor. Credible intervals not overlapping 0
give 95% confidence that the coefficient in question is differ-
ent from 0. All statistical analyses described below were per-
formed in R (R Development Core Team 2019), using the
dplyr, stringr, ggplot2 and brms packages (Wickham 2016,
2019; Bürkner 2017; Wickham et al. 2019). The statistical
models described below were evaluated with Hamilton
Markov Chain Monte Carlo algorithm implemented in stan
via brms (Bürkner 2017; Stan Development Team 2020).
All models were checked for, and adjusted to ensure: conver-
gence of coefficients; absence of divergent transitions; suffi-
cient tree depths; good mixing of chains; and effective sample
sizes in both the ‘bulk’ and the tails of the distribution.

We explored the social environment of individual killer
whales using Bayesian generalised linear mixed effects
models to test for differences in the number of associations
in each component maintained by whales in different age-sex
classes For each model, the number of social associations of a
given component (k =1–3) a whale has was used as the re-
sponse variable, with either sex or age category as the predic-
tors. Both males and females had infant, juvenile and adult age
categories, and females had an additional post-reproductive
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age category (Table 1). Where sex was the predictor, we used
a random intercept for the age category. All models had a
Poisson error-structure with a log link function, and whale id
and year as additional random intercepts.

Social complexity is not a focus of this manuscript but we
report Shannon’s entropy as a measure of social complexity
(Weiss et al. 2019) for each annual model to highlight other
uses of the model framework and to allow comparison with
other systems.

Social dynamics of mother-offspring associations

We use the fitted components to explore how mother-
offspring associations change as the offspring ages.
Specifically, we test how the probability of a mother-
offspring association being in the strongest k3 component
changes with offspring age for males and females. We model
the probability (P(k3)) that the relationship between a
mother (m) and offspring (o) in a given year is in
(P(k3)o,m) using a Bayesian generalised mixed effects
models with the basic structure:

k3o;m∼Bernoulli P k3o;m
� �� �

logit P k3o;m
� �� � ¼ sexo þ f 1 ageo∙I

�
sexo ¼ 0

� 		
þ f 2 ageo∙I sexo ¼ 1ð Þð Þ þ εo;m

ε∼N 0;σð Þ

where I is an indicator function that takes the value 1 if
its argument is true, and 0 otherwise, f1 and f2 are
estimated smooth functions, ageo is the offspring’s age
(in years) and sexo is the offspring’s sex (0 = female, 1
= male). The effect of offspring age was modelled as a
smooth function of age because we are interested in
understanding potentially non-linear patterns between
offspring age and P(k3). We estimated these smooth
functions using penalised thin-plate splines as the basis,
with the number of knots chosen by generalised cross-

validation (Bürkner 2017; Pedersen et al. 2019). The
term εo, m is a random intercept (group effect) for each
mother-offspring pair, included to account for repeated
observations of the same dyad. Models used uninforma-
tive priors for all parameters. We used the same struc-
ture to model the probability that a mother-offspring
association was in component 2 (P(k2)), and the prob-
ability that an association is in either k2 or k3 (P(k3 +
k2)). The coefficients of fitted smooths cannot be easily
interpreted; we therefore describe the output of the
model graphically, and using the predicted means and
credible intervals of the relationship between component
probability and age.

We also explore howmother-offspring associations change
in response to social events, namely, (1) the birth of an off-
spring to the daughter in the mother-daughter association
(daughters’ offspring model); (2) the birth of an offspring to
the mother in the mother-offspring association (mother’s off-
spring model). To examine the effect of either of these events,
we compare the social preferences of the actors before and
after the event. We focus on the 5 years either side of the
event, not including the year of the event. Five years
(mean ± SD: 5.48 ± 2.58) is the mean inter-birth inter-
val in this population (derived from (Nattrass et al.
2019)), and results do not qualitatively differ with small
changes in this threshold (SE unpublished results). The
data are treated as categorical with the years before the
event coded as 0, and the years after the event coded as
1. It is important to note that the analysis is therefore
limited to the associations where the event occurs: so in
the daughters’ offspring model, mother-daughter pairs
where the daughter does not produce her own offspring
by 2015; and in the mother’s offspring model, offspring
who do not have a younger sibling by 2015 are not
included in the model. As in the previous models, the

Table 1 Mean numbers of intermediate k2 and strong k3 social
connections in male and female killer whales in different age
categories. Age categories are derived from the literature (Olesiuk et al.
2005). Female age at adulthood reflects the average age of first birth of the
first offspring, whereas males represent the average age the physical ma-
turity is attained (as opposed to sexual maturity which achieved several

years earlier) (Olesiuk et al. 2005). Age of becoming post-reproductive is
the age at which 95% of population female fecundity has been achieved
(Ellis et al. 2018). Separating physically mature males from sexually
mature males (Olesiuk et al. 2005) does not make a qualitative difference
to the results (supplementary Table 6)

Sex Age category (age in years) Mean # k2
connections

Std. dev. # k2
connections

Mean # k3
connections

Std. dev. # k3
connections

F Infant (0–4) 5.59 5.12 1.86 0.88

Juvenile (5–11) 7.03 5.33 2.05 1.02

Adult (12–41) 7.70 5.54 1.98 1.13

Post-reproductive (42+) 6.99 5.07 1.80 1.24

M Infant (0–4) 6.21 4.80 1.72 0.91

Juvenile (5–15) 6.75 5.22 1.78 0.95

Adult (15+) 7.43 5.50 2.03 1.31
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response variable is whether a particular mother-
offspring association in a given year is in component
k3. The predictors indicate whether the year is before
or after the event. Both models have dyad-id and the
age (in years) of the offspring (in the mother-offspring
association) in the year of the event as random inter-
cepts. The mother’s offspring model has mothers age (in
years) as an additional random intercept. The models
have a Bernoulli error structure and logit link function.

Impact of mother death on social preferences

Classifying associations into components provides the
opportunity to investigate how social associations with
other kinship classes differ when a whales’ mother is
dead compared to when they are alive. This analysis
uses all whales with a known mother in the population,
classifying in any given year if their mother is alive or
dead. A smaller sample size precluded the use of the
before-after framework we used for the changing
mother-offspring association analysis described above.
Computational and conceptual limitations lead us to
model the association with each kinship class separately.
In each model, the probability of the association with a
given kinship class being in component 3 (P(k3)) is
modelled as the response variable in a Bayesian gener-
alised mixed effects model, with mother alive as a pre-
dictor. Offspring age (in years) and offspring id are
included as random intercepts.

We also included offspring sex as a predictor interacting
with mother status if the number of observations in all cat-
egories (mother alive or dead vs offspring sex male or fe-
male) was greater than 50 (supplementary Table 2). Fifty
was arbitrarily chosen as the threshold but corresponds ap-
proximately to the number of observations that are required
for these models to allow amodel with an interaction term to
fit to the data. Offspring sex was included in models of:
same-sex siblings; aunts, in-pod non-relatives and out-pod
non-relatives. If there were fewer than 50 observations in
one or more sex-status categories (supplementary Table 2),
the models did not include sex as an interacting effect. It is
also important to note that some matrilineal kinship
classes—namely offspring and grandoffspring—are only
possible for females. Small sample sizes precluded model-
ling of the relationships between a whale when their mother
was alive or dead and their uncle and grandoffspring
(supplementary Table 2); these kinship classes are therefore
not included in the results. A lack of variation in the re-
sponse values (no k3 associations are between whales in
different pods) prevented the out-pod non-relative response
to mother death being modelled, so this kinship class is not
included in this analysis.

Results

Social mixture model summary

Three-component mixture models are the most parsimonious
fit to the data over the 26 years of the study (summedΔzBIC
of 0.74; Table 1). In support of this interpretation, the three-
component mixture model was the most commonly the best
fitting model (11/26 years). The one-component mixture mod-
el was the least parsimonious model and was not the best
fitting model in any year of the study. The four-component
model was the second most parsimonious and second most
commonly best fitting model (supplementary Table 1). The
results presented below are qualitatively similar when the
analysis presented below is repeated with a four-component
model (supplementary 2).

We fitted three-component binomial mixture models to
each year of 26 years of resident killer whale association data,
consisting of a total of 86343 social (or potentially social)
associations between 173 whales. Of these associations,
77562 were classified as weak k1 component associations
(this includes both weak and completely absent associations),
7338 were classified as intermediate strength k2 component
associations and 1443 were classified as strong k3 component
associations (supplementary Fig. 1; supplementary 3). The
median social complexity in the three-component models
was 1.06 (range 0.69–1.10; supplementary Table 3).

In a given year, each whale maintains, on average, 1.90
(±1.10, mean ± SD) of the strongest k3 associations and
7.10 (± 5.34) intermediate strength k2 associations. All
other social connections are of the weakest k1 level.
Males do not differ from females in their number of k2
or k3 associations while either immature or adults
(supplementary Table 4). However, whales of different
sex-age categories differ in the number of k2 and k3 as-
sociations they maintain (Table 1). In particular, males
have fewer k2 associations as infants than as adults, and
females have fewer k2 associations as infants and juve-
niles than as adults (supplementary Table 5).

Kinship class is known for 12541 (14%) annual whale-pair
dyads, representing 2917 unique pairs of individuals (because
many pairs are observed over multiple years). We found
a strong link between kinship and social association in
resident killer whales: closer relatives tend to have as-
sociations classified in a higher component (Fig. 1). For
example, 44.6% of mother-offspring pairs, and 71.4% of
mother-immature offspring pairs, are found in the stron-
gest k3 category (Fig. 1), while 90.1% of associations
between non-relatives are found in the weakest, k1 as-
sociation category (Fig. 1). Under the alternative four-
component model, the additional category separates the
mother-immature offspring relationships into an ‘extra
strong’ association component (supplementary 2).
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Social dynamics of mother-offspring associations

Between 1990 and 2015, we observed 1146 mother-offspring
association years from 201 unique dyads. 96 of the associa-
tions (covering 588 association years) are between a mother
and her male offspring, and the remainder are between
mothers and their female offspring. The mean (± SD) age of
sons in the data is 9 (± 6) while the mean age of daughters is
13 (± 9). Mother-offspring relationships change as offspring
age, and the change in this relationship differs for male and
female offspring (Fig. 2). Predicted probability of mother-
daughter association being k3 drops sharply between the ages

of 12 and 18 from 0.84 (post. mean, cred. int. = 0.73–0.92) to
0.40 (post. mean, cred. int. = 0.29–0.52). In contrast, the prob-
ability of mother son-association being in k3 does not change
between 1 (post. mean = 0.72, cred. int. = 0.60–0.82) and 26
(post. mean = 0.59, cred. int. = 0.19–0.84). The probability of
mother-offspring bonds being in k2 mirrors the probability of
the association being in the k3: there is no change in the
probability of mother-son’s bonds being in the k2 with age,
and a sudden increase in the probability of mother-daughter
associations being in the k2 between ages 12 and 17
(supplementary Fig. 2). There is no change in the probability
of mother-offspring associations being in either the k2 or k3
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Fig. 1 The percentage of each category of relatedness pair classified into
each component (k1 component = weakest category of association; k3
component = strongest category of association) of a binomial mixture
model from 26 years of social association data. y-axis represents the
categories of matrilineal kinship distinguishable from the pedigree up to
(matrilineal) relatedness of 0.25, with sample size in brackets. Mother-
offspring relationships are split into those between immature (infant and
juvenile) offspring and their mother and adult offspring and their mother.

All other kinship categories include all ages of partners. Numbers in each
tile show the percentage of a given category of social bonds classified in
that component. Tile colour also represents the percentage: from a low
percentage of associations in that component (white/pale yellow) to a
high percentage of associations in that component (dark blue). This figure
represents only pairs of individuals with a known kinship, and ‘non-rel-
atives’ are individuals known to have a relatedness of <0.25
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(i.e. not the k1) with age for either sex (supplementary Fig. 3).
Biologically similar dynamics are found in the four-
component model with the extra step of associations moving
from the strongest ‘mother-immature offspring’ association
category to the next strongest category over the first 10
years of the offspring’s life (supplementary 2).

The daughters in 53 of the 105 mother-daughter dyads
gave birth to their own offspring. In the 5 years after the birth
of their first offspring females (daughters’ offspring model,
see ‘Methods’ section) have a lower probability of their asso-
ciation with their own mother being in component 3 than they
have in the 5 years prior to the birth of their first offspring

(post mean = −1.17, cred. int. = −2.06 to −0.38; Fig. 3). In
contrast, the 5 years either side of the mother giving birth
(mothers’ offspring model, see ‘Methods’ section), there is
no difference in the probability of a mother-daughter associa-
tion being in k3 (post mean = −0.44, cred. int. = −1.20–0.31;
Fig. 3). In both models, offspring age (as year) is included as a
random intercept.

Impact of mother death on social preferences

The predicted probability of the association between siblings
of opposite sex being in component 3 is higher when their

Fig. 2 The posterior predicted (±
credible intervals) probability of a
mother-offspring association be-
ing in component 3 as a function
of age for male and female off-
spring. Predictions are from a
Bayesian generalised linear mod-
el with offspring age modelled as
a four-knot spline. Lack of over-
lap in credible intervals between
points suggests that the whales
with those properties have differ-
ent probabilities of their associa-
tion being in k3

Fig. 3 Number of mother-daughter associations in k3 and not in k3 in the 5 years before and after the birth of a new offspring (n = 105). Left tile shows
the 5 years before and after the birth of an offspring to the daughter, and the right tile shows the 5 years either side of the birth of an offspring to themother
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mother is dead than when their mother is alive (post. mean.
0.99, cred. int. = 0.44–1.52; Fig. 4). Similarly, grandmother-
grandoffspring associations have a higher probability of being
in component 3 when the grandoffspring mother is dead than
when she is alive (post. mean. = 3.11, cred. int. = 1.18–
5.98; Fig. 4). The probability of a whale’s social asso-
ciation with other relatives, including same sex siblings,
and non-relatives does not change when the whale’s
mother dies (Table 2; Fig. 4).

Discussion

Comparing social preferences between different groups of in-
dividuals represents a significant methodological challenge.
Here we have developed the use of mixture models to com-
pare social preferences over time or between different groups
of individuals. By classifying associations using mixture
models, much of the noise derived from sampling variability
and other extrinsic factors can be eliminated allowing us to

compare across networks through time (or across populations)
using relatively simple models and metrics. Previous work
comparing social preferences and structures between net-
works has tended to rely on data being collected in a compa-
rable way or by using statistical and randomisation methods to
control for known drivers on inter-network differences (e.g.
Matsuda et al. 2015; Meise et al. 2019;Wilkinson et al. 2019).
The advantage of the methodology demonstrated here for
comparing social preferences between networks is it trans-
forms the continuous social association index—the values of
which are susceptible to various extrinsic factors—to a cate-
gorical variable. This categorical variable allows us to develop
a comparable measure of social preference independent of
variation in association metrics driven by methodological
and sampling effects. These categories then allow an investi-
gation into how properties of individuals, such as their ages or
life-history stage, predict properties of their association, and
how that changes with time. In addition, the association cate-
gories are directly comparable between networks and can
therefore be used to compare social preferences in different
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Fig. 4 Predicted change in the
probability of the association
between a whale and their
relations when the whale’s
mother is alive and when she is
dead being in the strongest social
component (k3). Predictions are
from a Bayesian linear model,
described in the text. Each panel
represents a separate model. In
each panel points shows the
posterior mean and error bars the
95% credible intervals. An
interaction between offspring sex
and mother status is included if
each of the four categories
(mother alive, dead vs sex: male,
female) have more than 50 data
points, if not sex is not included in
the model. Note, as all kinship
classes are matrilineal only
females have offspring as
relations. The probability of the
association between opposite sex
siblings and grandmothers and
their grandoffspring being in
component 3 is if a whale’s
mother is dead. All other
relationships are unchanged.
Sample sizes were too small to
investigate how relationships
between a whale and their uncles
or grandoffspring changed after
the death of their mother, and a
lack of variation in the response
prevented the out-pod non-rela-
tive model fitting, so these rela-
tionships were not modelled and
not included in this figure
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contexts and systems. We have illustrated the utility of this
methodology be comparing over annual social networks in
resident killer whales which has led to four important insights
into their social system: (1) resident killer whales society can
be considered as consisting of multiple classes of social bond
defined by their association frequency; (2) the classes gener-
ally reflect the kinship structure of the population; (3) mother-
son associations stay constant with age into adulthood, where-
as mother-daughter associations decline after the birth of the
daughters first calf; and (4) whales have higher association
with their opposites sex siblings and their grandmothers if
their mother is dead compared to if their mother is alive.

Encouragingly, the binomial mixture model method has
provided results that concord with previous work in the south-
ern resident killer whales. For example, in this study, we
found that southern resident killer whales have three catego-
ries of association, and that the categories are associated with
kinship. In agreement with this, using long-term observations
and association indices, Bigg et al. (1990) proposed that the

resident killer whale society has three tiers: matrilines, pods
and communities. Further observations of patterns of associa-
tion, analysis of genetic relatedness and study of vocalisations
have largely confirmed this structure in the southern residents
(Ford 1991; Barrett-Lennard 2000; Parsons et al. 2009), and
this schema has been widely adopted by researchers studying
this population (e.g. (Baird 2000; Olesiuk et al. 2005; Ford
2014)).This study has shown that the strongest associations
are between close maternal relatives, the matriline, the second
strongest bonds are between more distant relatives and some
other members of their pod, with the weakest associations
between whales in different pods. In our analysis, we assume
(after analysis) that the population has an underlying structure
with three types of social association. Changing this assump-
tion to four types of association does not change our conclu-
sions about killer whale biology (supplementary 2). In
common with previous work on a non-overlapping
dataset (Bigg et al. 1990) and anecdotal knowledge—
using our new methodology, we found that while

Table 2 Output of models investigating how the probability of a
whale’s social association with a given ‘Relation’ changes after the
death of the whale’s mother. In all models, probability of an association
being in k3 is used as the response variable with ‘Variable’ as the fixed
effects in a Bayesian linear model, with a Bernoulli error structure and
offspring age and offspring identity as random effects. Offspring sex and
an interaction between offspring sex and mother status are included if
there are more than 50 data points in all four possible categories
(mother status vs. sex); otherwise, sex is not included in the model.

Whales of unknown sex are not included in the analysis. All other
relationships are unchanged. Note, as all kinship classes are matrilineal,
only females have offspring as relations. All other relationships are
unchanged. Sample sizes were too small to investigate how
relationships between a whale and their uncles or grandoffspring
changed after the death of their mother, and a lack of variation in the
response prevented the out-pod non-relative model fitting, so these rela-
tionships were not modelled and not included in this table. Estimates with
a credible interval not overlapping 0 are italicised

Relation Variable Estimate Cred. Int.

Same sex sibling Intercept −1.14 ±0.29 −1.73 to −0.58
Mother status (alive vs dead) 0.14 ±0.39 −0.6–0.95
Offspring sex (F vs M) 0.79 ±0.4 0.01–1.59

Interaction 1.26 ±0.95 −0.57–3.2
Opposite sex sibling Intercept −0.6 ±0.16 −0.93 to −0.29

Mother status (alive vs dead) 0.99 ±0.27 0.44–1.52

Offspring Intercept 1.86 ±0.45 1.06–2.85

Mother status (alive vs dead) 0.26 ±0.27 −0.27–0.78
Grandmother Intercept −2.41 ±0.45 −3.44 to −1.7

Mother status (alive vs dead) 3.11 ±1.22 1.18–5.98

Aunt Intercept −2.78 ±0.77 −4.45 to −1.38
Mother status (alive vs dead) 1.89 ±1.14 −0.27–4.22
Offspring sex (F vs M) −0.67 ±0.94 −2.54–1.1
Interaction 0.42 ±1.56 −2.57–3.67

Nephew or niece Intercept −2.52 ±0.49 −3.56 to −1.69
Mother status (alive vs dead) 0.66 ±0.55 −0.38–1.79

In-pod non-relative Intercept −9.21 ±2.15 −14.72 to −6.36
Mother status (alive vs dead) 6.26 ±3.4 1.52–14.64

Offspring sex (F vs M) −1.74 ±2.17 −6.83–1.7
Interaction −192.66 ±298.5 −870.86 to −6.41
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mother-daughter associations in resident killer whales
decrease in strength as the daughter ages, mother-son
associations remain strong throughout the sons life.

Our newmethods allowed us to examine, for the first time, how
social preferences change in response to demographic processes in
resident killer whales. While males associate strongly with their
mother their whole life, females associate less with their mother
after the birth of their first offspring, whereas after the birth of a
sibling, there is no change in the strength of relation between
mothers and their daughters. This suggests that it is the daughters
driving the change in mother-daughter association patterns with
age rather thanmothers. This accordswith theoretical expectations.
In species with bisexual philopatry and non-local mating—like
resident killer whales—reproductive competition is expected be-
tween mothers and their daughters who are competing for the
same resources (modelled in Johnstone andCant (2010) and tested
in Croft et al. (2017)). Competition for reproductive resources is
not present between mothers and their sons because the sons off-
spring are outside the social group (Johnstone and Cant 2010;
Foster et al. 2012). The changing social preferences of mothers
and daughters could be part of a response to this reproductive
competition. Interestingly, this contrasts with patterns found in a
study of common bottlenose dolphins (Tusiops truncatus)—who
have a different social structure—where previous work has sug-
gested that mother-offspring associations decline sharply when
their mothers become pregnant (Connor et al. 2000). More re-
search is needed to understand the behavioural ecology of
mother-daughter associations in cetaceans. A consequence of fe-
males associating less with their own mother is that they begin to
separate theirmatriline from their mother’smatriline, which in turn
will drive the development of a multi-level society. Our results
support the argument that degree of matrilinearity is a key driver
of the emergent structure observed in cetacean societies, and that
increasing matrilineal affiliation can lead to increasing separation
of the society into distinct social modules (Rendell et al. 2019).

The presence or absence of an individual’s mother is reflected
in differing social preferences for other relatives. Whales whose
mothers are dead have a higher probability of associatingwith their
opposite sex siblings and their grandmother. Males are therefore
associating more with their sisters (and vice versa). This suggests
that at least part of the social support is being provided by close
female kin. Reproduction in this population is dominated by the
oldest males (Ford et al. 2011, 2018). By increasing their associ-
ation with their brothers, females may also increase their inclusive
fitness if an increased association with siblings helps their brother
to survive (for example by increasing their social centrality (Ellis
et al. 2017)). Grandmothers may also gain inclusive fitness bene-
fits by increasing their association with their grandoffspring (we
could not distinguish between association with grandsons and
granddaughters in our analysis). Female resident killer whales
have an extended post-reproductive lifespan, ceasing reproducing
in their late thirties (Ellis et al. 2018). The evolution of this unusual
phenomena is driven by the benefits that older females can provide

their offspring and grandoffspring (Foster et al. 2012; Brent et al.
2015; Nattrass et al. 2019) and reproductive conflict between older
females and their reproducing daughters (Johnstone and Cant
2010; Croft et al. 2017). By associating with their grandoffspring,
grandmothers can increase their inclusive fitness both by increas-
ing the reproductive success of their granddaughters and helping
their grandsons survive long enough to reproduce (Hawkes et al.
1998; Ford et al. 2011, 2018; Nattrass et al. 2019).

These insights into the social structure of killer whales are
driven by our novel methodology allowing us to classify so-
cial associations. Classifying social associations into compo-
nents removes inter-annual variation due to sampling and re-
veals the underlying social structure of the system. The meth-
od of classifying bonds also potentially has other uses in this
and other systems. For example, in this study, we were able to
use the classified associations to quantify the social environ-
ment experienced by individual killer whales. Variation in the
number of social associations of different strengths within a
population, or between populations, may represent differences
in cognitive capacity (Taborsky and Oliveira 2012; Dunbar
and Shultz 2017) or a trade-off between socialising and other
activities (Dunbar et al. 2009; Marshall et al. 2012) or lack of
social opportunities (e.g. Brent et al. 2017; Goldenberg and
Wittemyer 2017). Understanding the variation in individual
social environments will give important insights into the links
between cognition and social behaviour. Another potential use
of this method is to identify types of association at the popu-
lation level. Recently, there has been interest in understanding
the role that ‘strong’ social bonds have on individual fitness
(Silk et al. 2009, 2010; McFarland et al. 2017; Ellis et al.
2019). However, this approach has been criticised because it
requires choosing either a threshold over which to consider an
association ‘strong’, and changing this threshold can change
the interpretation of the underlying biology (Ellis et al. 2019).
Rather than choosing a threshold, applying mixture models
would allow strong bonds to emerge from the data. This meth-
odology may also provide a useful way to understand hierar-
chical or multilevel societies. Distinguishing the levels of so-
cial organisation in a multi-level society is a challenging ana-
lytical problem (Morrison et al. 2019; Grueter et al. 2020).
Classifying associations may provide a new and general way
in which to understand social association in a complex socie-
ty. Lastly, classifying associations allows networks to be com-
pared. Although here we compare the same population at dif-
ferent times, the same methods could be used to compare
different populations, species and systems.

There are limitations to the methodology we describe here.
Firstly, applying a mixture model to social data relies on sev-
eral assumptions. Perhaps the most important assumption is
that the diversity of social relationships in the population can
be approximated to a fixed number of distinct association
rates. This is a common assumption in studies of animal soci-
ality, particularly in studies of social complexity, and is based
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around an understanding of cognition (Bergman and Beehner
2015; Fischer et al. 2017; Weiss et al. 2019). In a multi-level
society—such as that of resident killer whales—the binomial
components can be linked clearly to biology but in other types
of social system, the link may be less clear. Secondly, we
assume number of components or types of social relationship
is constant through time. In biological terms, we are assuming
that the system has a constant underlying social structure. This
is not to say that there can be no annual variation from this
structure: changes in demography (for example a year which
happened to contain no mother-offspring pairs) or ecology
(for example high levels of structure in good ecological con-
ditions) may add or remove components in a given year. In
this study, we use information criteria to choose the most
parsimonious number of components to identify the core of
the social structure which stays constant through the study
period. However, in other systems, perhaps with more fluid
social structures or more ecologically driven social variation,
the assumption of an unchanging core of social structure may
not be a valid. To answer other research questions, it might be
more appropriate to make other assumptions or other analyt-
ical decisions. For example, to identify ‘strong bonds’ in a
population, it might be more appropriate to combine associa-
tions for all years and apply the mixture model to this com-
bined dataset. A third limitation of this approach is its com-
plexity. An alternative approach to answering the questions
addressed here is to control for effects of sampling either
within the structure of a statistical model or using forms of
data permutations (e.g. (Matsuda et al. 2015; Meise et al.
2019; Wilkinson et al. 2019)). However, these approaches
also have limitations, particularly in being able to robustly
quantify and account for sources of variation in the data.
Overall, we have demonstrated that this method can be used
to answer important questions and that, alongside other
methods, can become a tool for researchers trying to under-
stand the structure and function of animal social relationships.

In the study, we have demonstrated that using mixture models
to classify social associations can lead to important insights into the
underlying social structure in complex animal societies. We used
this methodology to show the links between kinship structure and
social structure in resident killer whale societies, and to show how
theses associations change as individuals age, give birth and their
relatives die. We expect that applying this methodology to other
systems and other research questions will lead to further important
insights into animal sociality.
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