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Abstract: Novelty detection is crucial to ensure the availability and reliability of an industrial gas turbine. With the application of 
modern health monitoring systems, there is an ample amount of data gathered from gas turbines, however they are usually from 
normal events with limited knowledge of any novelty. In current practice, the unknown event is detected by comparing with a 
model of normality through pointwise approaches, which is inefficient in terms of false alarms or missing alarms. This paper 
proposes an accurate novelty detection approach using performance deviation model and extreme function theory. The model is 
established from the multi-sensor real-time performance data. Outputs of the model, that is, the deviation curves, are considered 
as functions instead of individual data points to test the status of the system as ‘normal’ or ‘abnormal’ by the extreme value theory. 
The effectiveness of the proposed approach is demonstrated by the monitoring data from a single shaft gas turbine on site. 
Compared with other traditional methods, the proposed approach is superior in terms of high detection accuracy and high sensitivity 
with a good balance between the false alarm rate and missing alarm rate. This paper provides a reliable approach for the real-time 
health monitoring of the industrial gas turbines.  
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1. Introduction 

    The industrial gas turbine (GT) is widely used in power 
plants and distributed energy systems. It is a complex 
thermodynamic system working under harsh environment and 
transient conditions. The improvement of availability and 
reliability of GTs are crucial to avoid unpredicted breakdowns 
and decrease the operation costs [1]. The performance-based 
health monitoring of GTs gathers real-time health-related 
information of the system and helps to make condition-based 
maintenance strategy, which has raised widely attention among 
manufacturers and operators [1,2].  

The first step to describe the health state of the system is to 
decide whether any damage exists, usually through novelty 
detection approaches [3]. Novelty detection is defined as the 
task to identify new behaviours different from the normal 
expectations [4]. Usually, the available performance data of 
GTs are of low sampling rate so abstracting the abnormal 
features through traditional signal processing methods like 
spectrum analysis is difficult [5]. Some fault classification 
schemes require both normal data and abnormal data to train a 
good classifier [6]-[8]. They are unsuitable for application on 
site as the monitoring data with abnormal labels are insufficient 
or even unavailable for such a safety-critical system. Liu et 
al. [9] propose a Support Vector Machine (SVM) framework 
for fault detection with unbalanced data. One class learning 
methods including one-class SVM [10] and isolation forest [11] 
are also proved to be effective to deal with the datasets where 
there are none or very few examples of the minority class. 
Considering the realistic situation, the change of the ambient 

conditions and operation conditions have great influences on 
the monitoring parameters of the GT, which could increase the 
false alarm rate of the system if the classify is sensitive to 
the between-class separability of the features. Therefore, the 
real-time novelty detection of the GT with only normal data is 
challenging. For industrial GTs, the novelty detection is carried 
out based on a performance model of normality. The model 
should take into consideration the complicated nonlinearity of 
GT operations. The unknown event is then tested by the model, 
resulting in an indicator describing the novelty. The indicator is 
then compared with a threshold. Data lying outside the 
boundary may indicate an abnormal event [12].   

The performance models of GTs are usually categorized into 
the physical-based and the data-driven ones. The physical-
based model is constructed by complex thermodynamic and 
energy balance equations. Various physical-based models of 
GTs have been proposed on different configurations [13], 
loading conditions [14], transient behaviours [15] among 
others. Toolboxes [16]-[18] have also been developed for the 
modelling and thermodynamic simulation of GTs. However, 
accurate modelling is very challenging because of the highly 
complicated and nonlinear physics of GT operation. In addition, 
the nonlinear physics also demands high computational cost, 
which makes physical-based model unsuitable for real-time 
monitoring. With large datasets acquired from the health 
monitoring systems, data-driven models draw more attention 
recently and are commonly constructed through machine 
learning methods like autoassociative neural networks [19], 
nonlinear autoregressive exogenous [20], genetic 
programming [21], convolutional neural network [22] among 



 

others. A data-driven model could learn the relationships 
between the variables of a system directly without a priori 
knowledge of the GT specification or struggling with the 
complicated dynamic equations. A data-driven model based on 
the real operation data could provide more reliable and accurate 
prediction of the GT performance [23]. 

The deviations between the model predictions and the 
measured values could be treated as fault indicators [6,24]. A 
threshold is established based on the statistics of normal 
operations to classify the deviations. For the GTs on site, 
adequate datasets of normality have been well gathered since 
the use of the monitoring systems, so the model of normal 
operations constructed by various performance parameters 
could be accurate and comprehensive. The calculated threshold 
is taken as the decision boundary to decide whether the 
deviation is novelty, that is to say, a potential fault. When the 
GT is running in an abnormal condition, the performance 
deviations are expected to exceed the threshold [25]. The 
threshold of the deviation values should be carefully selected. 
Small thresholds may increase the false alarms while too large 
thresholds may bring missing alarms and reduce the detection 
sensitivity. Traditional thresholds are calculated by the mean 
and variance values of the measurements based on Pauta 
Criterion, also known as 3σ principle [26]. Amirkhani et al. [27] 
set the thresholds through uncertainty analysis of the system 
based on Monte Carlo simulation. Toshkova et al. [28] fit the 
extreme value distribution of the data points and the extreme 
value is set as the threshold. Generally, the thresholds are set 
through a pointwise approach so the novelty detection is 
performed by assessing every single point in a time series. 
Individual points in time series are not independent and 
identically distributed [29]. When dealing with the data points 
from real and complex GT systems, the measurement error, the 
harsh environment and the variable working conditions could 
all affect the detection results, so pointwise comparison is not 
always accurate enough for health monitoring of industrial GTs 
on site.  

Extreme Function Theory (EFT) proposed by Clifton is an 
effective method to assess functions instead of discrete points 
with improvement in classification results [30]. The functions 
are represented by series of points like the power curves of a 
wind turbine [29]. This paper proposes a novelty detection 
scheme combining a performance deviation model and the EFT. 
The model is established by the Backpropagation Neural 
Network (BPNN) to obtain the deviation curves. The decision 
threshold is set using the deviation curve as a function by the 
modified version of EFT proposed in [29]. The main 
contributions of the paper are summarized as follows. 

1) A new BPNN-EFT approach is proposed for novelty 
detection of the industrial GTs for the first time. The proposed 
approach fuses the multi-sensor real-time performance data to 
establish the performance deviation model and detects the fault 
using only normal data. 

2) A data-driven performance deviation model is established 
to predict the performance of the GT accurately. The inputs and 
outputs of the performance deviation model are carefully 
chosen considering the ambient conditions, operation 

conditions as well as the physical conditions of the GT.  
3) The EFT is for the first time applied in the field of GT 

novelty detection and modified to be more intelligent to fit the 
proper extreme value distribution. A threshold is calculated by 
EFT using the performance deviation curves to realize novelty 
detection with high accuracy and sensitivity. 

4) Real-time datasets from a Mitsubishi single shaft GT on 
site are used to demonstrate superiorities of the proposed 
approach for real-time novelty detection compared with other 
novelty detection methods. 

The layout of the paper consists of 5 sections. The second 
section formulates the novelty detection approach combining a 
performance deviation model and EFT. The third section 
describes the background of the case study, including basic 
process of the GT, the problems, the available data, and the 
general methodology. The fourth section is the application of 
the approach with a discussion on results in comparison with 
other methods. Finally, a conclusion is shown in the fifth 
section. 

2. Proposed novelty detection approach 

2.1 Performance deviation model 

Artificial Neural Network (ANN) has been considered a 
typical data-driven approach for system identification and 
performance prediction [31,32]. The nonlinear relationships 
between the inputs and outputs can be learnt through the 
iterative training process. The BPNN as one popular type of 
ANN is widely used for modelling and diagnosis of GTs 
[6,23,33,34]. It has been proved to be a powerful tool to predict 
the performance of GTs and capture the complicated 
nonlinearity of GT operations.  

The performance deviation model based on BPNN is 
established as follows. Let X be the matrix of input parameters 
and Y denotes the output parameters. Both X and Y are of 
normal status. A BPNN is trained to learn the relationships 
between training samples X and Y. The parameters of the 
BPNN are optimized by minimizing the loss function. 
Assuming *f  the predicted outputs based on the trained 
network, the performance deviation values are given by 

 * *∆ = −f Y   (1) 
where *Y  forms the measured outputs. When the testing inputs 
are of normal status, the deviations between the predicted 
outputs and the measured outputs are supposed to be small. 
With abnormal parameters inputting into the model, the 
corresponding deviation values may increase so the deviation 
curves imply the condition of the system. 

2.2 Extreme function theory  

2.2.1 Gaussian Process regression 
EFT is a combination of Gaussian Process (GP) and extreme 

value distribution. A GP is defined as a collection of random 
variables, any finite number of which have a joint Gaussian 
distribution [35]. For a real process f(x), a GP is specified by its 
mean function m(x) and the covariance function k( , )′x x . 

 f ( )~GP(m( ), k( , ))′x x x x   (2) 



 

where  
 [ ]( ) E ( )m f=x x   (3) 

 ( )( )( , ') E ( ) ( ) ( ') ( ')k f m f m= − −  x x x x x x   (4) 

m(x) is the expected function value of input x. m(x) is always 
set to be 0 to avoid expensive computations as in many other 
studies [35]-[37]. k( , )′x x describes the dependence between 
the function values at inputs x and ′x . The squared exponential 
covariance function is a popular choice as the covariance 
function defined as [35] 

 22 2
fk( , ) exp( 2l )σ′ ′= − −x x x x   (5) 

where fσ  and l are hyper parameters and the double bar ‘||’ 
refers to the Euclidean norm. 

For realistic modelling situations, the observations differ 
from the function values by a Gaussian noise ε  with variance 

2
nσ , which are f ( ) ε= +y x . Assuming a training set {X,y} 

where T
1 n[ , , ]=X x x , the covariance function becomes 

 2
ncov( ) K( , ) σ= +y X X I   (6) 

where I is the unit matrix. The prior of the noisy training 
observations y and the testing output *f  at the testing input 
matrix *X  is 

 2
n~ ( ,K( , ) )Ν σ+y 0 X X I  and (7) 

 * * *~ ( ,K( , ))Νf 0 X X   (8) 
respectively. The joint distribution of the training and testing 
outputs under the prior is then defined as 

 
2 *
n

* * *

K( , ) K( , )
~ ,

K( , ) K( , )
σ

Ν
  + 
         

*

y X X I X X
0

f X X X X
  (9) 

where *K( , )X X  is the covariance matrix between the training 
inputs and the testing inputs. 
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It is similar for the rest of the covariance matrices K( , )X X , 
*K( , )X X and * *K( , )X X .  

The predictive distribution is defined by conditioning the 
joint prior on the observations as 

 ( )*, , ~ m( ),cov( )Ν* * *f X y X f f   (11) 

where  
 

1* * 2
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The hyper parameters 2( , , )f nlσ σ=θ  are optimized by the 
maximum marginal likelihood, which is 
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The marginal log likelihood is maximized by the gradient 
ascent-based optimization tool using the partial derivatives of 
Equation (14).  
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where 1cov( )−y yα = .The details and implementation of the 
GP algorithm can be seen in [35]. 
 

2.2.2 Extreme function theory based on Gaussian Process 
Considering the time series of observations as functions, a 

GP model of normality is constructed based on the training 
samples of normal functions. The whole testing function 

* *f ( )=f x  should have a corresponding probability density 
*

nf ( )=z f , where *
nf p( , , )= *f x y x  refers to the multivariate 

Gaussian distribution. According to the definition of a GP, nf  
takes the form 
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where d is the dimension of the testing input vector *x . *m( )f
and *cov( )f   are  given by Equation (12) and Equation (13) 
respectively. 

The basic idea of the EFT is to test whether a function is 
extreme or not compared to the model. The ‘most extreme’ is 
defined as the function with the lowest probability density 
z  [30]. The function becomes more extreme when it moves 
away from the mean function. With considerable normal testing 
functions, the extremum of these functions could be estimated, 
which is the alarm threshold. 

The low values of probability density z converge to the 
extreme value distribution with three possible forms: Weibull, 
Frechet and Gumbel [38]. The generalized extreme value 
(GEV) distribution is used in this paper as it is uncertain which 
distribution it will converge to. The minima distribution 
function of GEV is defined as 

 ( )( )( )1/
( , , , ) 1 exp 1

γ
µ γ σσ γ µ

−
= − − − −L lnz lnz   (17) 

where lnz=ln(z) and μ, σ and γ are location, scale and shape 
parameters. The probability density z is treated on its 
logarithmic form for easier manipulation. The parameters of the 
cumulative distribution function (CDF) are optimized by the 
normalized mean squared error (NMSE) function, given by 

 ( ) ( )22
p p

1

ˆˆNMSE( ) 10ˆ, , 0 /γ σµ σ
=

= −∑
n

i
n L L   (18) 

where Lp is the empirical CDF, L is the fitted CDF calculated 
by Equation (17), n is the number of points to fitting the CDF 
and pσ  is the standard deviation of Lp. The optimization 



 

algorithm is differential evolution used in [29]. With the best 
parameters estimated on the lowest NMSE, a threshold is 
calculated with a confidence interval of 99%, which means that 
1% of the normal functions could be wrongly identified. 

3. Case study 

3.1 Description of the GT 

The case study in this paper considers a Mitsubishi single 
shaft GT M251S with around 29.8 MW generation capacity. It 
forms part of a Combined Cycle Power Plant (CCPP) located in 
a steelwork in northeast China. The GT consists of a 19-stage 
axial-flow compressor, a can-annular combustor, and a 3-stage 
turbine. As shown in Fig. 1, the air is drawn through an air filter 
to the compressor, where the air is compressed and passed to 
the combustor. Mixed with the fuel, the mixture gases are burnt 
in the combustor. The resulting hot gases expand when flowing 
through the turbine to rotate the shaft. The generator at the 
compressor side is then driven to produce power. 

 
Fig. 1. Schematic of an industrial gas turbine M251S in the 

CCPP. 

3.2 Problem statement and data  

The case study presented includes recorded data from the GT 
on site in steady state operation. Table 1 displays 12 
representative parameters. The compressor inlet pressure Pin  
and compressor inlet temperature Tin are the barometric 
pressure and the ambient temperature representing the ambient 
conditions. The load set Lset is the desired operation condition 
of the GT provided by the control system. By controlling the 
fuel gas flow m and the position of the inlet guide vane, which 
remains unchanged in this case, the generator output power W, 
the rotational speed N and the exhaust temperature Tex of the 
turbine are kept in the safe area. The rotor vibrations at 4 
different places and the exhaust pressure, that is, the turbine 
outlet pressure Pex directly reflect the physical conditions of the 
GT. The Tex is an important outlet parameter considerably 
affected by the ambient conditions, operation conditions as well 
as the physical conditions of the GT. 

In a main overhaul, different cracks were found after 
inspection on the blades and the seals of the compressor as 
shown in Fig. 2. The data provided have been classified as 
normal and abnormal by the operators. The normal data 
available were gathered after the overhaul in a period of 26 days 
while 18 days of data from abnormal status were gathered 
before the overhaul. All data points recorded are the peak to 
peak values in 1-minute interval. Fig. 3 displays the values of 

the parameters in different status when taking the exhaust 
temperature Tex and the rotor vibration on the compressor side 
Vcom as examples. 

 
Table 1 Available parameters provided by the operators 

Parameter Units Notation 
Compressor inlet pressure kPa Pin 

Compressor inlet temperature °C Tin  
Fuel gas flow 3Nm / h  m 

Load set MW Lset  
Generator output MW W 

Speed rpm N 
Rotor vibration on the compressor side μm Vcom 

Rotor vibration on the turbine side μm Vturb  
Generator rotor vibration on the GT 

side μm VGTin 

Generator rotor vibration on the 
excitation side μm VGTex 

Exhaust pressure kPa Pex  
Exhaust temperature °C Tex 

 

 
Fig. 2. Photos of the cracks found during the overhaul. (a) 

The overall photo of the cracks. (b)The partial enlarged details 
corresponding to the numbers 1-5 in (a). 

 
It is worth noting that though the cracks are very serious, no 

alarm has been triggered in the actual operation process. Based 
on the classification results from the operators, it can be seen in 
Fig. 3(c) and (d) that though the GT has been operating in an 
abnormal status, the values of the monitoring parameters are 
relatively stable. The vibration of the compressor rotor turns 
larger in Fig. 3(b) when cracks exist, but the values are about 
15 μm, which is far below the 70 μm of the current alarm 
threshold set by the operators. In order to detect the abnormality 
timely and precisely, it is crucial and also the demand of the GT 
operators to set the proper thresholds using the monitoring 
parameters. 



 

 
Fig. 3. Values of the performance parameters in different 

status. (a) The rotor vibration on the compressor side after the 
overhaul. (b) The rotor vibration on the compressor side with 
severe cracks. (c) The exhaust temperature of GT after the 
overhaul. (d) The exhaust temperature of GT with severe cracks. 
 

 
Fig. 4. Overall procedure of performance deviation modeling 

and threshold setting. 
 

 
Fig. 5. Flow chart of real-time novelty detection for unknown 

events. 
 

The proposed novelty detection approach pays attention on 
the change of the exhaust temperature Tex as it is the key 
monitoring parameter of a GT to regulate the fuel supply and 
help control the GT [20]. When establishing the performance 
deviation model, Tex is chosen as the output while the other 
parameters are used as the inputs to the network. Fig. 4 presents 
the overall procedure of the performance deviation modeling 
including the threshold setting based on EFT. Once the 
threshold is set, the real-time implementation is carried out for 
novelty detection according to the flow chart in Fig. 5. 

4. Results and discussion 

4.1 Training the performance deviation model 

In order to get the deviation curves, a BPNN model of 
normality is developed to predict Tex from Pin, Tin, m, Lset, W, N, 
Vcom, Vturb, VGTin, VGTex and Pex. 10000 points are sampled 
randomly from the 11 parameters respectively for training, so 
the size of the input matrix is 11×10000. All training samples 
are normalized to [-1,1] before training. The BPNN is 
developed in MATLAB. The training function is the ‘traingdx’ 
algorithm and the loss function is mean squared error. 85% of 
the samples are randomly picked for training while the rest 15% 
for validation. Number of hidden layer neurons is chosen as 5 
with best fitting on the validation set. The weight and bias 
values of the network are optimized 5 times to ensure the global 
optimum. The trained network is tested by all the 26-day normal 
data. A comparison of the predicted values with the measured 
Tex is shown in Fig. 6. The average prediction error is 0.16%, 
meaning that the BPNN model can well represent the stable 
operation performance of the GT. Fig. 7 shows the histogram 
of the average prediction errors after 1000 runs of different 
sampling from the normal data. Though the prediction errors 
vary, most of them are between 0.15% and 0.18% and they are 
all below 0.30%. 

 

 
Fig. 6. Predicted GT exhaust temperature and measured 

exhaust temperature. 
 
By computing the gap between the predicted and measured 

values, performance deviation values can be obtained as shown 
in Fig. 8. It can be seen that the deviation values of the normal 
data are relatively stable around zero while the residuals deviate 
noticeably from zero when there are cracks in the system, which 
coincides with the comments in [25]. The deviation curves are 



 

constructed at the resolution of 8 hours including 480 data 
points because an 8-hour interval is a work shift of the GT 
operators. It is desired by the operators to monitor the health 
status of the GT when a work shift ends. Considering all the 
available data, 132 deviation curves are obtained including 78 
deviation curves identified as ‘normal’ and the rest 54 abnormal 
curves. Each deviation curve is treated as a sample to train or 
test as a function in terms of the extremity and novelty. 

 

 
Fig. 7. Histogram of the prediction errors after 1000 runs of 

different sampling from the normal data. 
 

 
Fig. 8. The performance deviation values of the data in 

normal or abnormal status. 
 

4.2 Threshold setting and novelty detection 

The deviation curves are split into three sets including 
training, validation, and testing for threshold setting and 
novelty detection. 100 data points are randomly picked from 
each curve to reduce the computation cost as the GP is quite 
efficient in small sample classification [35]. The training set 
consists of 3 deviation curves in normal status. 40 deviation 
curves, also in normal status, are used to a create validation set 
but a bootstrap method is used here to obtain 120 samples. The 
original deviation curves for validation are randomly and 
repetitively sampled for 3 times. The rest 35 deviation curves 
identified as normal and all the 54 abnormal curves compose 
the testing set. 

The GP model is trained by the training set and then the 
validation samples are put into the model to obtain the 
corresponding probability density values in the logarithmic 
form lnz. The GEV distribution is fitted and optimized based on 

the left tail of the probability density values, which refer to 10% 
of the low values of lnz. Fig. 9 shows the fitting results of the 
GEV distribution.  

 

 
Fig. 9. The GEV distribution fitted on 10% of the lnz data. 
 

 
Fig. 10. Novelty detection results using the performance 

deviation model and EFT in which a sample corresponds to a 
performance deviation curve in 8 hours and the threshold is 
calculated by fitting the GEV. 

 
With the optimized parameters, a threshold is calculated to 

be -92.33 with a confidence interval of 99%. Applying the 
testing samples to the GP model, the corresponding lnz values 
and the novelty detection results are shown in Fig. 10. For better 
visualization, lnz is plotted as –lnz in Fig. 10. and the negative 
value of the threshold is taken. As seen in Fig. 10, all the normal 
testing samples are below the threshold and identified as normal 
correctly while the abnormal testing samples all exceed the 
threshold as expected. There are neither false positives (FP), 
meaning ‘normal’ wrongly identified as ‘abnormal’, nor false 
negatives (FN), meaning ‘abnormal’ wrongly identified as 
‘normal’. 1000 runs of different sampling from the deviation 
curves are also constructed to investigate the effect of random 
sampling when creating the training, validation, and testing 
sets. The average classification accuracy of the testing set after 
1000 runs is 99.68%. 

4.3 Comparison with other methods 

4.3.1 Comparison between BPNN and other networks 



 

The BPNN is compared with other common-used networks 
including the one dimensional convolutional neural network 
(1D-CNN) and the long short-term memory (LSTM) network 
to verify the superiority of BPNN in constructing the 
performance deviation model of the GT. The CNN is a typical 
network with the ‘deep’ layer structure including combinations 
of convolutional layers and pooling layers [39]. The LSTM 
network is widely used in sequence learning for its ability to 
track the relationships and dependencies among time steps [40]. 
In the comparative experiment, the BPNN, the 1D-CNN and the 
LSTM network are implemented by Python using the same 
computer (Intel Core i5-7300HQ CPU @ 2.5 GHz and 8GB 
RAM). The same training, validation and testing data are used 
when training and testing the models.  

For a fixed index of the training points, the comparisons of 
the prediction accuracy and computation complexity are shown 
in Table 2. The results in Table 2 are average prediction 
accuracy and average time for training after running the 
corresponding models 10 times. The optimized BPNN consists 
of an input layer, a hidden layer with 5 neurons and an output 
layer. The structure and parameters of the 1D-CNN and the 
LSTM network are optimized to obtain the similar prediction 
errors as the BPNN. The structure of the 1D-CNN is designed 
to be an input layer, 2 convolutional layers, a pooling layer, and 
a fully-connected layer (the output layer). The LSTM network 
is 3 layers including an input layer, a LSTM hidden layer with 
10 neurons and an output layer. The prediction accuracy of the 
1D-CNN and LSTM network could be higher with more layers 
or neurons but the time for training will correspondingly 
increase. In this paper, the BPNN is the most suitable method 
for building the performance deviation model of the GT as it 
could obtain comparable prediction accuracy using less time. 

 
Table 2 Comparison results of different neural networks 

Method BPNN 1D-CNN LSTM 
Prediction accuracy (%) 99.85 99.84 99.86 

Time for training (s) 28.05 42.91 91.69 
 
4.3.2 Comparison between EFT and other threshold setting 

methods 
Using the performance deviation model and EFT, the results 

shown in Fig. 10 seem to be convincing as data from a real GT 
could be well classified. A GP-based pointwise approach is 
compared with EFT in this paper. The same deviation curves 
are used here, and thresholds of deviation values are set based 
on GP. There are in total 37440 normal data points 
corresponding to 26 days and 25920 abnormal data points 
corresponding to 18 days. A GP model is trained based on the 
normal deviation values of one day. The output of the GP model 
displays a predictive distribution described by a mean 
prediction and covariance intervals. The upper and lower 
thresholds are set by the plus and minus three standard 
deviation values of the mean prediction. Fig. 11 shows the 
novelty detection results by the pointwise approach. Fig. 11(a) 
and Fig. 11(b) are examples of the novelty detection results in 
one day. Fig. 11(c) is the bar plot of the number of FP in a single 

day while the number of FN in one day is shown in Fig. 11(d). 
It can be seen that false alarms and missing alarms occur much 
more frequently compared with the EFT approach. 

 
Fig. 11. Novelty detection with the pointwise GP approach. 

(a) Two examples of the outlier analysis of the one-day data 
points in normal status. (b) Two examples of the outlier analysis 
of the one-day data points with cracks in the system. (c) Bar 
plot of the number of FP each day. (d) Bar plot of the number 
of FN each day. 

 

 
Fig. 12. Novelty detection based on thresholds set by time-

domain features extracted every 8 hours. (a) Mean values. (b) 
Maximum values. (c) Peak and peak values. 



 

Another comparison is made by extracting some statistic 
features in time domain instead of single data points for 
threshold setting. The same validation set, which includes data 
points in normal status, is used here to obtain the series of 
features and calculate the thresholds. The threshold is set as 
μ±3σ, where μ is the mean value of the feature series and σ is 
the standard deviation. The novelty detection results based on 
thresholds set by time-domain features is shown in Fig. 12 in 
the way of control charts.  The charts have lower control limit 
(LCL) and upper control limit (UCL), which are corresponding 
to μ+3σ and μ-3σ respectively. The center line is corresponding 
to μ. The mean, maximum and peak to peak values of the 
deviation curves are chosen as the features respectively. 
Samples plotted outside the limits may trigger an alarm. 

Different approaches are compared through the classification 
accuracy rate (CAR), false alarm rate (FAR), missing alarm rate 
(MAR), and sensitivity (S). 

 ( ) ( )CAR TP TN TP TN FP FN= + + + +   (19) 

 ( )FAR FP TN FP= +   (20) 

 ( )MAR FN TP FN= +   (21) 

 ( )S TP TP FN= +   (22) 
where TP are true positives meaning abnormal samples 
correctly identified as ‘abnormal’ and TN are true negatives 
meaning the correctly identified normal samples. Based on the 
same performance deviation model and different threshold 
setting approaches, the novelty detection performance can be 
seen in Table 3. The values of CAR, FAR, MAR and S for 
different threshold setting methods in Table 3 are all average 
values based on 1000 times of running. It is clearly shown that 
the EFT has higher CAR than all the other approaches. Though 
the FAR of mean feature threshold approach is very low, many 
abnormal samples fail to trigger the alarm with the MAR of 
7.41%. The EFT can effectively reduce the FAR without 
increasing the MAR and it is quite sensitive when detecting the 
novelty. 
 

Table 3 Comparison of different threshold setting methods 
 

EFT Pointwise 
GP 

Mean 
feature 

Maximum 
feature 

Peak to 
peak 

feature 
CAR 
(%) 99.68 79.56 95.50 75.28 88.76 

FAR 
(%) 0.76 27.52 0 14.29 14.29 

MAR 
(%) 0.03 10.61 7.41 31.48 9.26 

S  
(%) 99.97 89.39 92.59 68.52 90.74 

 
4.3.3 Comparison with one-class learning methods 
The proposed novelty detection method is further compared 

with other typical one-class learning methods including local 
outlier factor (LOF)[41], one-class support vector machine 
(OCSVM)[42] and isolation forest (iForest)[43]. In the 
comparative experiment, the same real-time monitoring data 

are used. The one-class learning models are trained by the fixed 
10000 normal data points and then tested with all the 26-day 
normal data as well as the 18 days of abnormal data. The 12 
monitoring parameters of the GT are considered as input 
features of the models. The LOF, OCSVM and iForest are 
implemented by the scikit-learn library of Python. Radial basis 
function kernel is used for OCSVM. To decrease the stochastic 
nature of the training procedure, results of iForest are average 
outcomes by running the model 10 times.  

 
Table 4 Comparison of different novelty detection methods 

Method CAR (%) FAR (%) MAR (%) S (%) 

LOF 87.69 2.13 27.03 72.97 
OCSVM 83.80 0.89 38.31 61.69 
iForest 98.79 1.88 0.24 99.76 

Proposed 
method 

99.68 0.76 0.03 99.97 

 

 
Fig. 13 ROC curve and AUC of different novelty detection 

methods 
 

The comparison results are listed in Table 4. The LOF 
classifier performs relatively poorer in this case maybe because 
the dimension of the features is not small. The FAR of OCSVM 
is low, which means that 99.11% of the normal patterns are 
correctly classified. However, OCSVM is less sensitive to the 
abnormality. The reason may be that for most of the features 
used in this paper, the separabilities between the normal and 
abnormal conditions were poor. When selecting the parameters 
that are well-separated between classes, for example, vibration 
of the rotor on the compressor side, the sensitivity of OCSVM 
to detect the abnormality could rise up to almost 100%. 
However, the prior knowledge of the between-class separability 
is not always obtainable when there are no abnormal data 
available for training. The FAR of iForest is unstable and not 
low enough. It may be because the change of the ambient 



 

conditions and the operation conditions could mislead the 
model to classify the normal data as a fault. The proposed 
method obtains the best detection performance for the real-life 
GT monitoring data among these methods. It realizes novelty 
detection using only normal data. The performance deviation 
model by BPNN fuses different monitoring parameters based 
on the basic principles of the GT. The threshold set by EFT 
based on the deviation curves shows good balance between the 
false alarms and missing alarms.  

The superiorities of the proposed method are also proved by 
the receiver operating characteristic (ROC) curve and area 
under the curve (AUC) displayed in Fig. 13. The ROC curve is 
obtained by the false positive rates (FPr) and the corresponding 
true positive rates (TPr) calculated for all the possible threshold 
values, where FPr=FAR=FP/(FP+TN), TPr=TP/(TP+FN) [4]. 
The curve of the proposed method is closest to the left and the 
top border of the ROC space with the highest AUC, which 
implies that the classifier is the most accurate one. 
 

5. Conclusion 

This paper focuses on the novelty detection approach of an 
industrial GT using performance deviation model and extreme 
function theory. The aim is to detect the abnormality timely and 
precisely, using the real-life monitoring parameters of GTs. A 
case study of a Mitsubishi single shaft GT M251S is carried out, 
where the GT suffers a fault during the operation but fails to 
trigger the current alarm. A performance deviation model of 
normality is established to fuse the multi-type monitoring 
parameters and emphasize the differences of parameters 
between the normal and abnormal status. Deviation curves, 
implying the status of the GT, are obtained based on BPNN. 
The normality of the deviation curves is tested as functions 
instead of the pointwise approach. A GP model is trained using 
the normal deviation curves. The threshold representing the 
extremity of the functions compared to the training functions is 
then calculated based on EFT. The average novelty detection 
accuracy of the proposed method is 99.68%.  

Several comparative experiments are carried out. The BPNN 
is compared with other neural networks to verify that it can 
obtain comparable prediction accuracy using less time. The 
EFT is compared with the pointwise approach, which uses GP 
for modeling and threshold setting. Comparisons are also made 
between EFT and feature based approach, for which the 
threshold is set based on the 3σ rule. The EFT is clearly accurate 
with much lower rate of false alarms (0.76%) and missing 
alarms (0.03%). The proposed approach is further compared 
with common-used one-class leaning methods. The proposed 
one shows quite high sensitivity to detect the abnormal samples 
with good balance between the false alarms and missing alarms. 
This paper shows a successful case of novelty detection on real-
time data from the GT. The use of performance deviation model 
and EFT could help the health monitoring of the industrial GTs 
with high detection accuracy and sensitivity. 

Future work will focus on the online threshold update and 
optimization with real-time normal data of GT from various 

working conditions. It is also interesting to develop real-time 
prototype based on a programmable digital device in 
application field. 
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