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Abstract1

With rapid population growth, there is an urgent need for intelligent traffic control2

techniques in urban transportation networks to improve the network performance. In3

an urban transportation network, traffic signals have a significant effect on reducing4

congestion, improving safety, and improving environmental pollution. In recent years,5

researchers have been applied metaheuristic techniques for signal timing optimisation6

as one of the practical solution to enhance the performance of the transportation net-7

works. Current study presents a comprehensive survey of such techniques and tools8

used in signal optimisation of transportation networks, providing a categorisation of9

approaches, discussion, and suggestions for future research.10
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Nomenclature40

ABC Artificial bee colony41

ACO Ant colony optimisation42

AFSA Artificial fish swarm algorithm43

AVSM Average vehicle speed maximisation44

BA bat algorithm45

BBO Biogeography-based optimisation46

BFOA Bacterial foraging optimisation algorithm47

CFP Cyclic flow profile48

CM Conflicts minimisation49

CS Cuckoo search50
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CT Cycle time51

DE Differential evolution52

DIM Delay imbalance minimisation53

DoD Degree of detachment54

DTM Delay time minimisation55

DUM Drivers’ unhappiness minimisation56

EEM Excess exposure minimisation57

EM Emissions minimisation58

FCM Fuel consumption minimisation59

GA Genetic algorithm60

GOA Grasshopper optimisation algorithm61

GSA Gravitational search algorithm62

GT Green time63

GTO Green times oscillations64

GWO Grey wolf optimiser65

HC Hill climbing66

HS Harmony search67

ICA Imperialist competitive algorithm68

JA Jaya algorithm69

KH Krill herd70

ML Machine learning71

N/A Not available72

NBL Number of bus lanes73

NC Number of cars74

NP Number of phases75

NSGA-II Non-dominated sorting genetic algorithm II76

NSM Number of stops minimisation77

OD Origin destination78
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OIO Optics inspired optimisation79

OT Offset time80

PDUEC Predictive dynamic user equilibrium condition81

PFD Path flow distribution82

PI Performance index83

PS Phase sequence84

PSO Particle swarm optimisation85

QM Queue minimisation86

RGRTM Ratio of green to red times minimisation87

RM Recall Mode88

RS Random search89

SA Simulated annealing90

SCM Schedule adherence minimisation91

SCPG SUMO cycle programs generator92

SFLA Shuffled frog-leaping algorithm93

SM spillover minimisation94

SS Scatter Search95

STM Stop time minimisation96

SUMO Simulation of urban mobility97

TLBO Teaching-learning-based optimisation98

TM Throughput maximisation99

TP Timing plans100

TS Tabu search101

TS Traffic safety102

TST Turning signal type103

TTM Travel time minimisation104

VT Vehicle extension105

VVSM Variance of vehicle speeds minimisation106

WCA Water cycle algorithm107

WOA Whale optimisation algorithm108
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1 Introduction109

Recent decades have seen rapid population growth and the emergence of various110

transportation modes in cities creating an urgent need for performance optimization111

of transportation systems to enhance the capabilities of transportation networks. Al-112

though the capacity expansion by adding new infrastructure to the existing transporta-113

tion networks is one solution to this problem, the growth rate of transportation demand114

often outstrips the capacity to construct new transportation infrastructure. Further-115

more, building new streets and increasing traffic capacity is unlikely to be an optimal116

choice when environmental, economic and urban planning constraints are considered.117

An additional consideration is the potential for road networks to be affected by Braess’s118

paradox (Brockfeld, Wagner, 2003) where additional capacity can, counterintuitively,119

lead to the slowing of traffic through the network. These considerations therefore in-120

crease the significance of performance optimisation of the current transportation infras-121

tructure operation without the requirement to invest in additional capacity.122

In most of the major cities of the world, traffic congestion is one of the most seri-123

ous daily problems in urban transportation networks and increases fuel consumption124

and the emission of pollutants. In an urban transportation network, the intersections125

(junctions) and their traffic lights play an important role in the formation of traffic con-126

gestion. Traffic signals control the vehicles and pedestrian movements at intersections,127

and have a significant effect on reducing congestion, improving safety, minimising de-128

lays, prioritizing public transport, and improving environmental pollution. The op-129

timisation of signal timings is one of the practical solutions that can be performed to130

enhance the performance of the network as well as avoiding traffic congestion. As a131

result, developing efficient signal optimisation techniques to enhance the performance132

of urban networks is a significant research topic of interest in the field of transportation133

engineering.134

Recently, some interesting literature surveys have been performed by researchers135

to show the necessity of controlling traffic signals in urban transportation networks.136

Wang et al. (2018) reviewed the self-adaptive traffic signal control systems for heteroge-137

neous traffic flow composed of connected vehicles and autonomous vehicles. Guo et al.138

(2019) presented a literature review on potential benefits of connected and automated139

vehicles for urban traffic control, in which it has been revealed that more efforts are140

required to verify the advantages of signal optimisation based where connected and141

automated vehicles are concerned. Shahgholian, Gharavian (2018) indicated that the142

advanced traffic management systems consist of traffic information, traffic assignment,143

traffic optimisation, and traffic prediction. Wei et al. (2019) surveyed conventional144

traffic signal control methods such as Webster, Greenwave, Maxband, Actuated, and145

Max-pressure, as well as reinforcement learning-based methods. Araghi et al. (2015)146

reviewed machine learning methods for traffic signal timing. Recent research revealed147

the capabilities of machine learning techniques for the management of traffic conges-148

tion through signal timing control (Sadollah et al., 2019).149

Timing plans of traffic signals have a significant effect on the performance of trans-150
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portation system. Since a transportation system is a large non-linear complex system151

(Zhao et al., 2011), achieving optimal signal timings for the entirety of the network is152

a difficult task. The timing optimisation of traffic signals can be performed in differ-153

ent ways, such as fixed, dynamic, and adaptive modes (Zhang et al., 2015; Bai et al.,154

2020). As its name suggests, the fixed signal control assumes that the signal timing155

plans are constant during different cycles. In dynamic signal optimisation, the signal156

timings are controlled using collected information from the previous cycles (Bai et al.,157

2020). In adaptive signal optimisation, the timing plans are generated based on the158

traffic demands in real time (Khattak et al., 2018).159

From a computational perspective, the signal optimisation problem of urban trans-160

portation networks under various constraints is a non-convex and highly non-linear161

optimisation problem, which make the challenge of finding optimum signal timing162

hard. To address this, in some cases, researchers have focused on convexification or163

reducing the complexity of this problem (??). It has been shown that the signal optimi-164

sation problem belongs to the category of NP-complete problems (Wünsch, 2008). The165

complexity of the problem is dramatically increases for larger and real-world trans-166

portation networks with long study periods.167

Classical optimisation methods have some features that are found to be not suit-168

able for signal optimisation problems. For example, they require gradient computation169

of the objective function and constraints, and are very sensitive to the initial estimates170

of the solution vector. In addition, the discrete nature of the timing and phase sequence171

variables of traffic lights makes the application of conventional approaches even more172

difficult. Signal optimisation for the single junction case has been addressed by prob-173

lem specific models such as SCOOT, MOVA (Wood et al., 2008) and Webster (Webster,174

1958) that have been shown to be effective in practice. However, these methods focus175

on single junctions are not scalable for larger networks with multiple signals where the176

interdependence of signals can be explored. In addition, these methods do not consider177

the interdependence of signals and the dependencies and connectivity of signal are in-178

herent features in larger highly interconnected networks such as those found in cities,179

so the need for alternative techniques for these networks is vital. Metaheuristic tech-180

niques are attractive alternatives to classical optimisation techniques, as they can be181

easily adapted to solve the signal optimisation problems of large-scale transportation182

networks with mixed types of discrete and continuous variables. In the literature there183

are a range of definitions of metaheuristics. According to (Voß, 2000), a heuristic is a ap-184

proximate random method which can find acceptable solutions with relatively fewer185

amount of computational effort, whereas a metaheuristic is an iterative master process186

that guides and modifies the operations of subordinate heuristics to efficiently produce187

high-quality solutions. Metaheuristics do not require the gradient information of the188

objective and constraints functions with respect to the signal timing variables and the189

solution finding process is more straightforward.190

Inspired from the nature or physical phenomena, metaheuristic optimisation191

methods, such as Genetic Algorithms (GAs) (Holland, 1992), Particle Swarm Opti-192

misation (PSO) (Eberhart, Kennedy, 1995), Tabu Search (TS) (Glover, Laguna, 1998),193
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Ant Colony Optimisation (ACO) (Dorigo, Birattari, 2010), Differential Evolution (DE)194

(Storn, Price, 1997) algorithm, Simulated Annealing (SA) (Van Laarhoven, Aarts, 1987),195

Cultural Algorithms (CAs) (Maheri et al., 2021), Biogeography-Based Optimisation196

(BBO) (Simon, 2008), Harmony Search (HS) (Geem et al., 2001) algorithm, Artificial197

Bee Colony (ABC) (Karaboga, Basturk, 2007), and Teaching-Learning-Based Optimi-198

sation (TLBO) (Rao et al., 2011), have attracted a lot of attention from researchers in199

various fields of engineering and science. By adopting a natural concept as a source of200

inspiration, metaheuristics use solution perturbation and stochasticity to solve optimi-201

sation problems. As described earlier, the applicability of these methods is not limited202

to the optimisation problems with continuous and differentiable objective functions203

and constraints, and they can be easily implemented to solve a wide variety of opti-204

misation problems with continuous and discrete variables. However, the performance205

of the metaheuristics is sensitive to the type of the problem and the balance between206

the exploitation and exploration abilities during the search process. As a consequence,207

researchers have trialled a wide variety of algorithms and formulations to solve the208

signal optimisation problem.209

The current study presents a comprehensive survey of metaheuristic optimisation210

techniques applied to the signal optimisation of transportation networks. This review211

covers the range of metaheuristic techniques applied to the problem of traffic signal212

optimisation, providing classifications of the techniques, objective functions, and de-213

cision variables. This is supplemented with a review of the most common simulation214

packages used in academic research and real-world systems for the simulation of traffic215

systems.216

The remainder of the paper is organised as follows. Section 2 describes the com-217

putational simulation of transportation networks. Section 3 describes the signal opti-218

misation problem in more details. Then, Section 4 reviews the various metaheuristic219

methods and approaches developed to provide solutions to the traffic signal optimi-220

sation problem. In Section 5, a publication analysis on the signal optimisation using221

metaheuristics is presented. Finally, Section 6 provides overall conclusion and future222

research directions.223

2 Modelling and simulation of transport/signalling systems224

The modelling and simulation of signalling systems are often categorised with respect225

to their level of detail, referring to Macro, Micro and Meso scale models. In the fol-226

lowing section these categories will be explained along with the various other features227

and capabilities of modelling and simulation software. These modelling and simula-228

tion systems play an important role in the state of the art signal optimisation as they229

can be employed as the cooperating model within a signal optimisation framework. In230

the case of metaheuristic optimisation, the ”fitness/objective function” is represented231

by a particular transport/signalling simulator. A given transport simulation software232

outputs the objective value based on a set of performance matrices (waiting time, de-233

lay, carbon emissions etc.) for a given set of traffic signal variables. These different234

objectives and variables considered in the literature will be discussed in Section 3.235
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2.1 Macro simulation models236

Macroscopic modelling is a mathematical modelling technique where relationships237

among traffic flow characteristics such as density, flow, mean speed of a traffic stream,238

etc. are considered ( Khan, Gulliver (2018)). The method of modelling traffic flow at239

the macroscopic level originated under an assumption that traffic streams as a whole240

are comparable to fluid streams.241

Analytical study by Daganzo, Geroliminis (2008) provides insights into macro-242

scopic models based on Macroscopic Fundamental Diagram approximating the rela-243

tionship between the number of vehicles and the average flow. Similarly, model based244

control approaches such as Lin et al. (2009) and Zhou et al. (2013) and cell transmission245

models such as Daganzo (1995) and Lo (2001) provide insights into different ways of246

modeling of traffic networks. Some of the fundamental concepts have been extended to247

concrete simulation software products and in the following paragraphs some of widely248

known such software is presented. These simulators have been shown to be useful as249

the fitness/cost function for the meta heuristic signal optimisation approaches.250

Saturn is one of the classical macroscopic traffic assignment models found in the251

literature (Hall et al., 1980). A major feature of Saturn is the cyclic flow profile (CFP)252

that describes the flow of traffic past a certain point as a function of time over a sin-253

gle cycle. The model is a collection of routines to modify the CFPs according to given254

conditions. Two distinct forms of input data are required by SATURN; an Origin Des-255

tination (O-D) trip matrix representing zone to zone trip demands for the period of256

interest, and a network description. Saturn assigns travel demands between discrete257

geographical areas to routes, and then simulates travel times on roads and through258

junctions. The complete model is based on an iterative loop between the assignment259

and simulation phases. Thus, the simulation determines flow-delay curves based on260

a given set of turning movements and feeds them to the assignment. The assignment261

in turn uses these curves to determine route choice and updated turning movements.262

These iterations continue until the turning movements reach reasonably stable values.263

Visum is fairly recent macroscopic traffic simulation software similar to Saturn.264

As per the documentation of Visum it claims to have a comprehensive set of features265

such as trip distribution, line cost calculations, fare calculations and timetable-based266

assignment for public transport, and a traffic safety module that contains historical267

data of accidents etc (Software, 2016).268

TRANSYT ( Penic, Upchurch (1992)) is another macroscopic software tool for traf-269

fic signal simulation and optimisation. It simulates a traffic network with signal lights270

and optimises signal settings through an objective function which is a linear combina-271

tion of delay time and the number of stops experienced by vehicles in the network of272

signalised intersections. Similar to Saturn, TRANSYT is based on deterministic macro-273

scopic modelling with CFPs. Features of the simulator include platoon dispersion,274

queue spill-back, and actuated control simulation. A genetic algorithm is employed as275

the optimiser module in TRANSYT. However, with TRANSYT its not possible detach276

the simulator module to use with new optimisation methods. Nevertheless, TRANSYT277
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can be used as a state-of-art simulator and optimiser combination to benchmark new278

combined methods.279

Similar to TRANSYT, Synchro (RAT (2014)) is a macroscopic analysis and optimi-280

sation software application. Synchro’s traffic model is similar to the link-based model281

in TRANSYT. Unlike TRANSYT, Synchro’s traffic model does not consider platoon282

dispersion. Synchro’s signal optimisation routine allows the user to weight specific283

phases, thus providing users more options when developing signal timing plans. Simi-284

lar to TRANSYT, Synchro also has the drawback of not being able to use the simulation285

framework to develop new optimisation methods.286

2.2 Micro simulation models287

Microscopic modelling explicitly represents individual vehicles, and attempts to repli-288

cate the behaviour of individual drivers and vehicles as agents within an agent-based289

simulation. This makes them particularly appropriate for examining certain complex290

traffic problems such as intelligent transport systems, complex junctions, shock waves291

and effects of incidents ( Samaras et al. (2017)).292

Simulation of Urban MObility (SUMO) ( Krajzewicz et al. (2002)) is an agent based293

multi model traffic simulation software. SUMO claims to be scalable in network size294

and the number of simulated vehicles. An agent in SUMO is described by a departure295

time and the route taken and each route is composed of sub-routes that describe a sin-296

gle traffic modality. The traffic flow is simulated microscopically. In every one second297

time-step, these values are updated in dependence to the vehicle ahead and the street298

network the vehicle is moving on. The simulation of street vehicles is time-discrete and299

space-continuous. The car-driver model is continuous and basic traffic rules such as300

maximum velocity and right of way rules are adhered to when simulating traffic. Due301

to the simplicity of use and free and open source access SUMO has won great popular-302

ity in transport simulation. However, the simulation time increases with the city size303

and features in the simulation, making it rather time consuming for real time modelling304

or optimisation (i.e modelling accidents and other emergencies due to weather etc).305

MATSim provides a set of tools to implement a very large agent-based simulation306

(Horni et al., 2016). It can simulate the traffic of a vast region throughout the day.307

MATSim pursues an activity-based approach to demand generation. Similar to SUMO,308

MATSim is agent-based. Unlike Saturn and other classical dynamic traffic assignment309

software, MATSim generates individual activity plans as input to the network loading310

rather than (time-dependent) origin-destination matrices.311

Quadstone (Q) Paramics is a modular suite of microscopic simulation tools claim-312

ing to provide a powerful, integrated platform for modelling a complete range of real313

world traffic and transportation problems ( Essa, Sayed (2016)). A Paramics model is314

represented by a combination of nodes, links and other associated objects to replicate315

real life geometry constraints. Upon release from an origin zone, each vehicle attempts316

to complete its journey towards a destination zone whilst being bounded by physical317

and dynamic vehicle parameters. ( Panwai, Dia (2005)).318

Corsim is a microscopic simulation model designed for the analysis of urban net-319
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works (Bloomberg, Dale, 2000). Corsim’s capabilities include simulating different in-320

tersection controls in different surface geometries including number of lanes and turn321

pockets, and a range of traffic flow conditions. Corsim is based on a link-node network322

model. The links represent the roadway segments while the nodes mark a change in323

the roadway, an intersection, or entry points. The car-following model sets a desired324

amount of headway for individual drivers. The model generates travel times for each325

link which can be aggregated to determine travel time for a particular route.326

Vissim ( Fellendorf, Vortisch (2011)) is another multi modal simulator that allows327

users to define a range of vehicle types including passenger cars, buses, trucks, and328

heavy and light rail vehicles as well as pedestrians and cyclists. The software features329

include the analyses a wide range of traffic activities and a dynamic routing system.330

The simulator claims to be flexible with abilities to add an object with the desired ef-331

fect on road users and to choose the duration for the analysis. Drawbacks of Vissum332

includes the inability to model delays in specific time periods and inflexibility in ad-333

justing lane change behavior for heavily congested conditions ( Jolovic et al. (2016)).334

Transims is a multi modal transport simulator designed for regional transporta-335

tion system based on a cellular automaton (Smith et al., 1995). Transims claims to be336

different from other travel demand forecasting methods in continuous representation337

of time, a detailed representation of persons and households and time-dependent rout-338

ing.339

Mainsim is an open source traffic simulation tool for fast what-if-analyses340

(Dallmeyer, Timm, 2012). Parameters such as the amount of traffic, the routing be-341

havior and the composition of traffic can be set arbitrarily. Mainsim provides simu-342

lation models for cars, bicycles and pedestrians. Similar to the majority of the other343

models, Mainsim too is continuous in space and discrete in time with one simulation344

iteration lasting one second in real time. The models focus urban traffic and the inter-345

dependencies between different types of road users.346

Dracula is another time-based multi model traffic micro-simulator (Liu, 1994)347

where vehicle states change at discrete intervals. Vehicle movements in a network are348

governed by a car-following model, a lane-changing model and traffic regulations on349

the road. Public transport is represented with reserved lanes, bus stops and bus lay-350

bys being modelled. The traffic signals used are fixed-plan or adaptive according to351

prevailing traffic condition or to priorities for public transport. The traffic condition is352

supplied by detectors on the roads.353

MITSIMLab (Yang, Koutsopoulos, 1996), is a traffic simulator that assesses the im-354

pacts of potential designs of traffic management systems, information systems for trav-355

elers, public transport operations, and various transport systems’ strategies at the op-356

erational level. It claims to evaluate systems such as advanced systems for traffic man-357

agement and road guidance systems. Traffic and network elements are represented358

in detail in order to capture the sensitivity of traffic flows to the control and routing359

strategies. MITSIMLab is an open-source application.360
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2.3 Meso simulation models361

Mesoscopic simulation is conceptually located between micro and macro levels. The362

individual vehicles are simulated but the activities and interactions are described in363

macroscopic relationships (Kessels, 2019). This approach is often used when evaluating364

traveller information systems.365

Aimsun (Barcelı́ et al., 2005) is a simulation software that supports static and dy-366

namic simulations. Aimsun integrates three types of transport models: static track367

assignment tools; a mesoscopic simulator; and a microsimulator (Casas et al., 2015).368

Aimsun has capabilities for modeling of various delay values coupled with the stan-369

dard deviation per specified time period. This option was used to model and calibrate370

wait times at inspection booths. However, having one turning movement table for371

each time period, can be inconvenient when navigating between different time periods372

to change the numerical values. Another drawback is that background maps are not373

embedded in the software (Jolovic et al., 2016).374

TransModeler is a mesoscopic modelling based simulation software that can bal-375

ance traffic flows entering the model. TransModeler also has linkage on micro and376

macro levels under the same platform. The user has an option to choose which links377

are to be modeled on a micro scale and which ones on a macro scale. This option can378

be useful when simulating large scale networks and the user wants to shorten the sim-379

ulation time. TransModeler has tools for lane closures and work zones modeling by380

desired time interval, which gives an advantage over other models such as Aimsun381

and Vissim. The limitations of the model includes turning movement table being avail-382

able only for intersections. For all other inputs such as inputs for freeways or physically383

separated toll road facilities the user has to use O-D matrices.384

2.4 Comparison on simulation software capabilities385

The studies by Kotusevski, Hawick (2009), Saidallah et al. (2016), Brockfeld, Wagner386

(2003) and Jau (2010) consider certain comparative features of traffic simulation soft-387

ware. The following tables extend their study through the inclusion of more recent388

traffic simulation software (see Tables 1 and 2). Note that we consider simulation389

only software for a fair comparison. Table 3 provides some studies these simulation390

software have been used.391
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Table 3: The traffic simulation tools used by various references for signal optimisation.

Simulation tool Reference(s)

SATURN Teklu et al. (2007), Guan et al. (2008)
Matlab He, Hou (2012), Tong et al. (2006), Tan et al. (2016),

Tan et al. (2017), Ma, Liu (2019)
Vissim Chentoufi, Ellaia (2018), Stevanovic et al. (2007),

Gökçe et al. (2015), Ghanim, Abu-Lebdeh (2015),
Park, Lee (2009), Guangwei et al. (2007),Ste-
vanovic et al. (2008), Cakici, Murat (2019), Dabiri,
Abbas (2016), Nguyen (2019), Stevanovic et al.
(2015), Stevanovic et al. (2013), Mulandi et al.
(2010), Li et al. (2013), Stevanovic et al. (2011b),
Zargari et al. (2018), Teng et al. (2019), Zhang et al.
(2018)

TRANSYT Dell’Orco et al. (2014), “Brian” Park et al. (2000),
Ceylan (2006), Jamal et al. (2020), Mulandi et al.
(2010), Cantarella et al. (2015)

Celullar automata Sánchez et al. (2008)
TRANSIMS Kwak et al. (2012)
CORSIM “Brian” Park et al. (2000), Park, Kamarajugadda

(2007), Sun et al. (2006), Hajbabaie, Benekohal
(2013), Li, Gan (1999),Yun, Park (2012), Hirulkar
et al. (2013), Mulandi et al. (2010)

Synchro Park, Kamarajugadda (2007), Park et al. (2004),
Mulandi et al. (2010)

Paramics Zhou, Cai (2014), Lee et al. (2005), Araghi et al.
(2017)

SUMO Kai et al. (2014), Thaher et al. (2019),Singh et al.
(2009), Nguyen et al. (2016), Davydov, Tolstykh
(2019), Abushehab et al. (2014), Garcia-Nieto et al.
(2013), Garcı́a-Nieto et al. (2012), Teng et al. (2019),
Olivera et al. (2015b)

Matsim Armas et al. (2017)
Aimsun Nigarnjanagool, DIA (2005), Vilarinho et al. (2014),

Papatzikou, Stathopoulos (2018), Wijaya et al.
(2015)

TransModeler Colombaroni, Fusco (2009)
Visum Baskan, Ozan (2015)
MitSimlab Angulo et al. (2011)
Mainsim Cervone et al. (2019)
Dracula Maher et al. (2013)

3 Signal optimisation problems392

This review of the literature reveals that a wide variety of problem formulations, de-393

cision variables, and objective functions have been employed by researchers for the394

signal optimisation problem. Table 4 categorises the metaheuristics, decision variables,395
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problem types, and objective functions investigated by each publication for signal op-396

timisation. In the following subsections, various problem formulations, decision vari-397

ables, and objective functions adopted by the literature will be reviewed.398

3.1 Decision variables399

Generally, the main objective of a signal optimisation problem is to improve the per-400

formance of the traffic network by optimising the values of signal timing parameters401

(e.g., phase plans, cycle length, green splits, offsets, and phase sequence) under some402

constraints. Each phase plan indicates a particular state of the red and green lights of403

the traffic lights in an intersection. The cycle refers to the time it takes for a traffic signal404

to get from the start of the green light through the yellow and red and until it again405

becomes green (Warberg et al., 2008). The offset determines the start time of green light406

for each phases, which is measured from a given reference point and is used to specify407

how the different signals are shifted to each other. The phase sequence parameter repre-408

sents the order of phases appearing within a intersection. Figure 1 shows the control409

parameters of a traffic light consisting of two phases.410

Figure 1: Signal variables of traffic light.

Tables 4 and 5 list the decision variables adopted by different researchers for this411

problem. From this table, it can be seen that the most of the research in the literature412

considered the cycle, green and offset times as well as phase sequence as decision vari-413

ables within the optimisation procedure. However, some studies adopted other types414

of decision variables besides the signal parameters. For example, in addition to the415

mentioned variables, Yun, Park (2012) considered the actuated signal setting parame-416

ters, including vehicle extension and recall mode. He, Hou (2012) optimised the signal417

timing plans by considering the saturation flow of the intersection as another decision418

variable, which indicates the maximum number of vehicles passing by the intersection419

when the green light is in a signal cycle. In a different approach, Varia et al. (2013)420

solved the signal optimisation problem by assuming the appropriate path flow dis-421

tribution of the dynamic user equilibrium (DUE) traffic assignment for the congested422

urban road network.423
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3.2 Objective function424

As described previously, the aim of the signal optimisation problem is to enhance the425

performance of the traffic network. Researchers have investigated this problem by us-426

ing various types of objective functions. From the perspective of the objective func-427

tion, the signal optimisation problems can be categorised into four types as follows: i)428

single-objective optimisation, ii) bi-level optimisation, iii) multi-objective optimisation,429

and iv) performance-based optimisation. The type of optimisation problems and the430

objective functions adopted by different references for the signal optimisation are sum-431

marised in Tables 4 and 5. In the following subsections, the research related to the each432

category is discussed in more detail. It should be noted that, in this study, we will fo-433

cus only on works related to the signal optimisation problems in which metaheuristic434

methods are used as the optimiser.435

Table 4: The metaheuristics, decision variables, problem types, and objective functions
adopted by various references for the signal optimisation problems.

Reference Method Signal variables Single-
objective

Multi-
objective

Bi-
level

Objective
functions

Memon, Bullen
(1996)

GA N/A X DTM

Park et al. (1999) GA CT, GT, OT, PS X DTM
“Brian” Park et al.
(2000)

GA CT, OT, GT, PS X TM, DTM

Takahashi et al.
(2002)

GA OT X TTM

Sun et al. (2003) GA GT X DTM, NSM
Park et al. (2004) GA CT, GT X DTM
Varia, Dhingra
(2004)

GA GT X TTM

Lee et al. (2005) GA GT X DTM
Sun et al. (2006) GA CT, GT, OT X TTM
Abbas, Sharma
(2006)

GA TP X DTM, NSM, DOD

Tong et al. (2006) GA CT X DTM
Cantarella et al.
(2006)

GA CT, GT X TTM

Teklu et al. (2007) GA CT, OT, GT X TTM
Park, Kamaraju-
gadda (2007)

GA CT, GT X DTM

Branke et al.
(2007)

GA GT X NSM, TTM

Guangwei et al.
(2007)

GA CT, GT, PS X DTM

Sánchez et al.
(2008)

GA GT X TM

Guan et al. (2008) GA CT, GT, OT X TTM
Stevanovic et al.
(2008)

GA CT, GT, OT, PS X TM, DTM, TTM,
NSM

Continued on next page
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Table 4 – Continued from previous page
Reference Method Signal variables Single-

objective
Multi-
objective

Bi-
level

Objective
function(s)

Park, Lee (2009) SFLA GT, OT X TTM
Karoonsoontawong,
Waller (2009)

TS CT, GT, OT, PS X TTM

Colombaroni,
Fusco (2009)

GA CT, OT, GT X DTM

Kesur (2009) GA GT, CT X DTM
Peng et al. (2009) PSO GT X TTM
Renfrew, Yu
(2009)

ACO GT X DTM

Stevanović et al.
(2009)

GA CT, OT, GT, PS X FCM, EM

Kesur (2010) GA CT, OT, GT, PS, NP X DTM, DIM
Putha, Quadri-
foglio (2010)

ACO GT X QM

Tawara, Mukai
(2010)

ACO CT, GT, OT X TTM

Stevanovic et al.
(2011b)

GA CT, OT, GT, PS X DTM

Baskan, Halden-
bilen (2011)

ACO CT, GT X TTM

Stevanovic et al.
(2011a)

GA CT, GT, OT, PS X CM, TM

Chin et al. (2011) GA CT, GT, OT, PS X DTM
Lertworawanich
et al. (2011)

GA CT,OT,GT X DTM, SM, TM

Shen et al. (2011) GA CT, GT, OT X TM
Jahangiri et al.
(2011)

SA CT X TTM

Liu, Xu (2012) BFOA, DE GT X DTM
Hu, Chen (2012) TS GT, OT X DTM, TTM
Putha et al. (2012) GA, ACO GT X TM
Kwak et al. (2012) GA CT, OT, GT, PS X FCM
Yun, Park (2012) GA CT, GT, OT, PS, VE,

RM
X DTM

Renfrew, Yu
(2012)

ACO GT X DTM

Li et al. (2013) GA CT,GT X TM, QM
Stevanovic et al.
(2013)

GA CT, OT, GT X X TM, CM

Varia et al. (2013) GA CT, GT, PS, PFD X PDUEC
Kesur (2013) GA CT, GT, OT, PS X DTM, NSM
Hirulkar et al.
(2013)

PSO CT, PS, OT X DTM

Ren et al. (2013) GA, PSO, SA CT, GT, OT X TTM, PI
Hu, Liu (2013) GA OT X DTM
Garcia-Nieto
et al. (2013)

PSO CT X TM

Continued on next page
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Table 4 – Continued from previous page
Reference Method Signal variables Single-

objective
Multi-
objective

Bi-
level

Objective
function(s)

Zhang et al.
(2013)

GA CT, GT, OT, PS X DTM, EEM

Kai et al. (2014) DE, PSO GT X DTM
Abushehab et al.
(2014)

GA, PSO GT X TTM

Tung et al. (2014) GA GT X TTM
Abu-Lebdeh et al.
(2014)

GA CT,OT, GT X TM

Kesur (2014) GA CT, GT, OT X DTM
Zhou, Cai (2014) GA GT X DTM, EM, FCM
Cantarella et al.
(2015)

GA, SA, HC GT, OT X TM, DTM

Olivera et al.
(2015a)

PSO CT,GT,OT X FCM

Li, Schonfeld
(2015)

GA, SA CT, OT, GT X DTM

Adacher et al.
(2015)

PSO N/A X TTM

Gökçe et al. (2015) PSO GT X TTM
Hajbabaie,
Benekohal (2015)

GA CT, GT, PS X TM

Han et al. (2015) SA, PSO GT X TTM
Stevanovic et al.
(2015)

GA CT, OT, GT, PS X TTM, FCM, CM

Hale et al. (2015) GA, SA, TS GT X DTM
Tan et al. (2016) GA GT X DTM
Gao et al. (2016b) HS PS X DTM
Dabiri, Abbas
(2016)

PSO CT, GT, OT X DTM

Jiao et al. (2016) PSO CT, GT X TM, NSM
Gao et al. (2016a) JA PS X DTM
Wu, Wang (2016) PSO N/A X DTM
Nguyen et al.
(2016)

GA GT X DTM, TM

Chuo et al. (2017) PSO GT X DTM
Gao et al. (2017c) ABC GT X DTM
Srivastava, Sa-
hana (2017)

GA, ACO N/A X DTM

Tan et al. (2017) GA GT X DTM
Armas et al.
(2017)

GA CT, OT, GT X EM, TTM, FCM

Gao et al. (2017a) JA, HS, WCA PS X DTM
Jovanović et al.
(2017)

ABC, SA CT, OT, GT X TTM

Araghi et al.
(2017)

CS, GA, SA GT X DTM

Gao et al. (2017b) ABC PS X DTM
Continued on next page
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Table 4 – Continued from previous page
Reference Method Signal variables Single-

objective
Multi-
objective

Bi-
level

Objective
function(s)

Zhao et al. (2018) ABC CT, GT X DTM, NSM
Chentoufi, Ellaia
(2018)

PSO, TS CT, GT X DTM

Kou et al. (2018) GA CT,GT,OT X EM, TTM, NSM
Costa et al. (2018) GA GT X AVSM, VVSM
Li, Sun (2018) GA TST, CT, OT, GT X TM, DTM, TS, SM
Gao et al. (2018b) JA, ABC, GA,

HS, WCA
PS X DTM

Ardiyanto et al.
(2018)

ABC, HS GT X N/A

Gao et al. (2018a) ABC, HS PS X DTM
Papatzikou,
Stathopoulos
(2018)

SS, HS GT X DTM

Thaher et al.
(2019)

WOA, BA,
GA

GT X TTM

Cakici, Murat
(2019)

DE GT X DTM

Jia et al. (2019) PSO CT, GT X TM, DTM, EM
Li, Sun (2019) GA CT, GT X DTM, TM, SM
Ma, Liu (2019) GA GT X DTM
Zhang et al.
(2019)

GA, HS GT X DTM, DUM

Gao et al. (2019) ABC PS X DTM
Garcı́a-Ródenas
et al. (2019)

SA, GA CT, GT X DTM

Ma, He (2019) GA, AFSA CT, GT X DTM
Sharma, Kumar
(2019)

GA GT, CT X DTM

Nguyen (2019) GA GT X TM, QM
Shi et al. (2020) SA GT, NC, NBL X DTM
Jamal et al. (2020) GA, DE GT X DTM
Liang et al. (2020) GA PS X DTM
Nallaperuma
et al. (2020)

GA GT X DTM, FCM, EM

436

3.2.1 Single-objective optimisation437

The objective functions employed by researchers in the single-objective framework of438

signal optimisation can be classified into four types as follows: i) delay time minimisa-439

tion, ii) travel time minimisation, iii) throughput maximisation, iv) fuel consumption440

minimisation and emissions minimisation.441

i) Delay time minimisation The delay time minimisation (DTM) is one of the popular442

objective functions within the single-objective optimisation framework of signal timing443

Evolutionary Computation Volume x, Number x 19



Jalili et al.

design, which can be expressed as the difference between the existing travel time of sig-444

nalised network and the travel time in the free-flow conditions without traffic control445

devices. In other words, this objective function aims to minimise the waiting time of446

the vehicles due to network signalisation. Pioneering work on the single-objective op-447

timisation of traffic signals was carried out by Webster (1958), in which an approximate448

delay formula is proposed for a single intersection. In the field of signal optimisation449

using metaheuristics, the delay time has been extensively employed by researchers as450

the objective function. For example, Chentoufi, Ellaia (2018) and Jamal et al. (2020) op-451

timised the delay at an isolated intersection. Tan et al. (2017) minimised the average452

delay time during the morning peak hour. Whereas Park et al. (1999), Kai et al. (2014),453

Park, Kamarajugadda (2007), Guangwei et al. (2007), and Tan et al. (2016) used aver-454

age delay of the entire system as the objective function. Wu, Wang (2016) minimised455

the overall delay of the network in each time interval. Li, Schonfeld (2015) and Lee456

et al. (2005) adopted the total delay of the system within the simulation period as the457

objective function.458

To reduce the run time of the traffic simulation model related to the traditional459

delay measures, Kesur (2009) proposed an alternative measurement of delay, called460

extended network delay, which is applicable to both undersaturated and oversatu-461

rated conditions. “Brian” Park et al. (2000) proposed a modified delay minimisation462

approach based on the exponential-type penalty function. Gao et al. (2017a) assumed463

the total network-wise delay time within a set of sampling intervals as the objective464

function. Cakici, Murat (2019) used the average delay at a three-leg intersection as the465

objective function to optimise green times.466

ii) Travel time minimisation Travel time minimisation (TTM) is another popular objec-467

tive function in the field of signal optimisation, which aims to reduce the total travel468

time of all vehicles in the network. Teklu et al. (2007),Varia, Dhingra (2004), Cantarella469

et al. (2006), Guan et al. (2008), and Adacher et al. (2015) employed this measure as470

an illustrative fitness function. In contrast, Gökçe et al. (2015) considered the mean471

travel time through the roundabout to optimise signal variables.Thaher et al. (2019)472

formulated the signal scheduling problem as the minimisation of average travel time,473

in which the total trip time is divided by the total number of vehicles.474

iii) Throughput maximisation The throughput maximisation (TM) aims to maximise475

the number of vehicles processing through the network by choosing appropriate val-476

ues for signal timing parameters. Putha et al. (2012) formulated the total number of ve-477

hicles processed by the network throughout the oversaturation period as the objective478

function for optimum signal timing. Authors added a penalty term to their objective479

function to prevent the occurrence of queues at the end of the green time along coordi-480

nated arterials. Abu-Lebdeh et al. (2014) and “Brian” Park et al. (2000) optimised signal481

variables by maximising the network output. In other research, Sánchez et al. (2008)482

solved the signal optimisation problem by maximising the absolute number of vehicles483

that left the network. Shen et al. (2011) assumed the number of vehicles that leave the484

road network during the given period as the objective function for traffic signal timing485

20 Evolutionary Computation Volume x, Number x



Application of Metaheuristics in Signal Optimisation of Transportation Networks: A ...

optimisation.486

iv) Fuel consumption minimisation and emissions minimisation The transporta-487

tion sector is one of the main contributors to the fossil fuel consumption and the global488

greenhouse gas emissions. In the congested urban networks, the high stop-and-go rate489

and speed variations of the vehicles increase the fuel consumption and emissions. As490

a practical approach, traffic signal optimisation can reduce fuel consumption as well as491

emission of pollutants associated with vehicles, such as carbon monoxide (CO), carbon492

dioxide (CO2), volatile organic compounds (V OCs) or hydrocarbons (HCs), nitrogen493

oxides (NOx), and particulate matter (PM )s. However, signal optimisation problems494

with the objective to minimise emissions or fuel consumption are challenging prob-495

lems. Some traffic signal optimisation tools, such as VISSIM, TRANSYT-7F, and SYN-496

CHRO, uses a weighted combination of the total travel time, total delay, and number497

of stops to estimate the emissions and fuel consumption in the network. However, this498

approach is affected by the number of stops and cannot be used as reliable model to499

estimate the amount of the emissions and fuel consumption in the network. Hence,500

researchers have employed various emission models to measure vehicle emission and501

fuel consumption within the urban traffic network, such as CMEM (Scora, Barth, 2006)502

and VT-Micro (Ahn et al., 2002).503

Fuel consumption minimisation (FCM) and emissions minimisation (EM) have at-504

tracted considerable attention in the literature as objective functions. Stevanović et al.505

(2009) suggested to optimise the signal timing plans by assuming fuel consumption506

and CO2 emissions as the objective functions. Authors used a CMEM model to esti-507

mate the fuel consumption and CO2 emission of each signal timing plan. CMEM is a508

power-demand model developed based on a parameterised analytical representation509

of fuel consumption and emissions production (Scora, Barth, 2006). This model esti-510

mates the tailpipe emissions and fuel consumption by using speed, acceleration, road511

grade,and some model calibrated parameters (Scora, Barth, 2006). In comparison to512

the amount of fuel consumption obtained from the delay or performance index optimi-513

sations, the results demonstrate that considering the fuel consumption as an objective514

function can reduce fuel consumption still further. (Stevanović et al., 2009).515

In another study, Kwak et al. (2012) investigated the impacts of traffic signal tim-516

ing optimisation on vehicular fuel consumption and emissions in an urban corridor,517

in which a VT-Micro model is employed to estimate the vehicle emissions and fuel518

consumption. VT-Micro model, which is developed based on the Oak Ridge National519

Laboratory (ORNL) and the US Environmental Protection Agency (Ahn et al., 2002), es-520

timates the vehicle emissions and fuel consumption by using the instantaneous vehicle521

speed and acceleration levels as input variables. Kwak et al. (2012) optimised the traffic522

signal timing plan by assuming the network-wide fuel consumption derived from the523

VT-Micro model as the objective function. In comparison to the classical optimum fuel524

consumption approaches, the optimisation results demonstrated that the approach can525

improve fuel consumption, emissions, and travel time in the network.526

Olivera et al. (2015a) optimised signal timing programs to reduce the gas emissions527
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(CO and NOx) and fuel consumption based on the Handbook of Emission Factors for528

Road Transport (HBEFA). HBEFA suggests the emission factor for all categories of ve-529

hicles based on the size, type, cylinder capacity, fuel mode of the vehicle (gasoline or530

diesel), type of exhaust technology (with/without catalytic converter), driving style531

(acceleration and speed), road gradient, and maintenance (Colberg et al., 2005).532

Since the vehicle emissions and fuel consumption models applied by the litera-533

ture are approximate, the nature of the signal optimisation problem can be affected by534

these approximate models, and the obtained optimum signal timing plans should be535

investigated in more detail.536

3.2.2 Bi-level optimisation537

A bi-level optimisation problem consists of two optimisation problems, including538

upper-level and lower-level optimisation problems. In this type of the optimisation539

problems, the lower-level optimisation problem is a constraint for the upper-level opti-540

misation problem and both have their own objective functions, decision variables, and541

constraints. The feasible solutions for this problem not only should satisfy the con-542

straints of the upper-level problem, but also should be a near-optimal solution of the543

lower-level problem.544

In some cases, researchers have formulated the signal timing problem within a545

bi-level optimisation framework. For example, Sun et al. (2006) formulated a bi-level546

optimisation problem for dynamic traffic signal optimisation in networks under time547

dependent demand and stochastic route choice, in which the traffic signal optimisa-548

tion is the upper-level problem and the user travel behavior is the lower-level problem.549

Authors used the travel time as the objective function for the upper-layer problem.550

In another study, Srivastava, Sahana (2017) investigated another bi-level optimisation551

problem, in which optimal signal timing problem represents the upper-level problem552

and stochastic user equilibrium indicates the lower-level problem. Authors used the553

total waiting time as the objective function for the upper-level problem, while the ob-554

jective function of the lower-level problem is the travel cost.555

Ren et al. (2013) formulated a bi-objective optimisation approach for evacuation556

routing and traffic signal optimisation with background demand uncertainty. The au-557

thors considered the multi-objective signal optimisation as the upper-level problem558

with the objective functions of travel time and a performance index, in which the559

performance index is composed of delay time and background traffic impact degree560

(i.e., an extent measure of the spill-back) occurrence in the network due to the in-561

fluence of background traffic. While the lower-level problem is the maximisation of562

background traffic impact degree under a logit-based stochastic assignment constraint563

and background demands constraint. Garcı́a-Ródenas et al. (2019) formulated a bi-564

objective problem, in which the upper-level problem is the determining of the time-of-565

day breakpoints and the lower-level problem is the signal control optimisation prob-566

lem for minimum total delay times. Han et al. (2015) investigated a bi-objective model567

of dynamic traffic signal control with continuum approximation, in which the upper-568

level problem is the signal optimisation of green times and the lower-level problem is569
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a dynamic user equilibrium with embedded dynamic network loading. Karoonsoonta-570

wong, Waller (2009) solved the signal optimisation problem as the upper level problem571

in a bi-objective problem, in which the dynamic user equilibrium is the lower-level572

problem.573

3.2.3 Multi-objective optimisation574

As its name suggests, the multi-objective signal optimisation involves more than one575

objective function to be optimised simultaneously. Branke et al. (2007) solved a multi-576

objective signal optimisation problem by assuming the travel time and the number of577

stops as the objective functions. Kesur (2010) formulated a multi-objective optimum578

signal design problem by considering the overall delay and delay imbalance minimi-579

sations. In another study, Kesur (2013) suggested to minimise the delay and number of580

stops in traffic signal networks.581

Li, Sun (2018) developed a multi-objective signal optimum design problem based582

on maximising system throughputs, minimising traveling delays, enhancing traffic583

safety, and avoiding spillovers. In another study, Taale et al. (1998) assumed the de-584

lay per vehicle and the number of stops per vehicle as objective functions for signal585

timing optimisation. Zhang et al. (2013) optimised the signal parameters with respect586

to the minimisation of traffic delay and the risk associated with human exposure to587

traffic emissions. Sun et al. (2003) adopted the average delay and the number of stops588

as two separate objective functions for optimising signal parameters.589

Zhou, Cai (2014) investigated the signal timing optimisation of a single intersec-590

tion in Guangzhou as a multi-objective optimisation problem, in which the vehicle591

emissions, fuel consumption, and vehicle delay are considered as objective functions.592

Stevanovic et al. (2011a) optimised the traffic signal variables by minimising conflicts593

and maximising throughput within the network. The study by Kou et al. (2018) pre-594

sented the trade offs between the emissions and travel efficiency. Nguyen et al. (2016)595

assumed delay time minimisation and throughput maximisation as the objective func-596

tions. Gao et al. (2018b) and Gao et al. (2018a) considered the delay time of the vehicles597

and pedestrians as the objective function. Li, Sun (2019) assumed the throughput, delay598

time, and spillbacks as the objective function for multi-objective signal timing optimi-599

sation. Zhang et al. (2019) investigated the signal optimisation problem by considering600

the driver’s unhappiness as well as delay minimisation as the objective functions.601

Stevanovic et al. (2015) performed a multi-objective signal timing plans optimisa-602

tion by considering minimising the fuel consumption and number of vehicular con-603

flicts. Stevanovic et al. (2013) assumed the number of conflicts and delay time as the604

objective functions. Li et al. (2013) adopted the throughput maximisation and queue605

ratio minimisation as the objective functions. Abbas, Sharma (2006) defined a new606

performance measure, called degree of detachment (DoD), representing the degree by607

which a traffic state is detached from adjacent states. Authors optimised the signal608

timing plans for simultaneous DoD, delay time, and number of stops minimisations.609

The key to multi-objective optimisation is that the objectives should usually be610

conflicting and for many aspects of the signal optimisation problem, the objectives are611
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likely to be correlated. This therefore required careful selection of the objectives for use612

in these studies.613

3.2.4 Performance-based optimisation614

In the fourth category of signal optimisation problems, a performance index (PI) is for-615

mulated by combining two or more above-mentioned objective functions and other616

measures. Table 5 lists the researches in which a given performance measure criteria is617

developed. For example, Yang et al. (2013) formulated an PI by considering the Web-618

ster delay, Webster stop rate, and traffic throughput based on the weight coefficient619

method. To achieve better traffic efficiency, Stevanovic et al. (2011a) suggested a linear620

combination of stops and delays for optimising signal variables. The authors also mea-621

sured the performance of the traffic network by using a conflicts/throughput ratio as622

the objective function.623

In another study, Ghanim, Abu-Lebdeh (2015) developed an PI for signal timing624

optimisation by considering weighted combinations of network general traffic perfor-625

mance, transit travel time, and transit schedule adherence. Chen, Xu (2006) combined626

the average delay and average number of stops to form a PI, which is a function of627

signal setting variables. By introducing weighting coefficients, He, Hou (2012) pro-628

posed a objective function consisting of time delay, number of stops, and traffic ca-629

pacity. Dell’Orco et al. (2014) presented a weighted combination of the delay and stop630

times as PI for signal timing optimisation. Ceylan (2006) employed a weighting method631

to formulate a PI based on the delay time and number of the stops, in which the cost632

of the vehicle stops is considered. Ezzat et al. (2014) formulated a objective function633

based on the two performance metrics, including queue length and vehicular waiting634

time. Stevanovic et al. (2007) used a PI by hybridising the total delay and number of635

stops.636

Lertworawanich et al. (2011) investigated the multi-objective signal optimisa-637

tion of over-saturated networks for the delay and spillover minimisations as well as638

throughput maximisation, in which the mentioned objective functions are converted to639

a single objective function by using weighting coefficients. Spillover is a type of traffic640

congestion, in which the vehicles on the link of the downstream intersection overflow641

backward to the subject intersection. Singh et al. (2009) optimised the green times by642

considering PI consisting of number of the vehicles in different roads. Garcia-Nieto643

et al. (2014) assumed the average of total CO2 and NOx emissions and fuel consump-644

tion as the fitness function. Stevanovic et al. (2013) and Duerr (2000) formulated a PI645

based on the linear combination of delay time and stops. Ma et al. (2014) defined a646

PI consisting of the delay time, fuel consumption, and emissions. Garcı́a-Nieto et al.647

(2012) formulated a fitness function based on the travel time and the number of vehi-648

cles that reach their destinations to measure the performance of the timing plans. Hu649

et al. (2016) formulated a new performance measure based on the ratio of waiting time650

to the travel time and the ratio of green times to the red times. Olivera et al. (2015b)651

formulated an PI based on the emissions, fuel, and travel time minimisations. Zhang652

et al. (2018) expressed the PI as a weighted combination of the vehicle and pedestrians’653
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delay times.654

The development of these performance-based methods allows for multiple, poten-655

tially correlated, performance criteria to be combined into a single objective function to656

be optimised. A key factor in this is the weighting or normalisation of criteria to ensure657

that one criterion does not dominate, or to ensure that the weightings are appropriate658

for the purpose of the optimisation and the stakeholders involved.659

Table 5: The metaheuristics, decision variables, and objective functions considered by
various references for the performance-based signal optimisation problems.

Reference Method Signal variables Performance Index (PI)

Duerr (2000) GA GT DTM, NSM
Ceylan (2006) GA CT, OT, GT DTM, NSM
Chen, Xu (2006) PSO CT, GT, OT DTM, NSM
Stevanovic et al. (2007) GA CT, OT, GT, PS DTM, NSM
Stevanovic et al. (2008) GA CT, GT, OT, PS DTM, NSM
Singh et al. (2009) GA GT TM
Zhang et al. (2010) GA GT EM, FCM
Mulandi et al. (2010) GA CT, OT, GT, PS DTM, NSM
Dong et al. (2010) PSO, SA GT DTM, NSM
Stevanovic et al. (2011a) GA CT, GT, OT, PS DTM, NSM, CM, TM
Lertworawanich et al. (2011) GA CT,OT,GT DTM, SM, TM
He, Hou (2012) ACO CT, intersection satu-

ration
DTM, NSM, TM

Garcı́a-Nieto et al. (2012) PSO GT TTM, TM
Yang et al. (2013) GA GT DTM, NSM, TM
Ezzat et al. (2014) GA GT, CT QM, DTM
Dell’Orco et al. (2014) ABC GT, OT,CT DTM, NSM
Garcia-Nieto et al. (2014) PSO CT EM, FCM
Ma et al. (2014) GA GT DTM, FCM
Wijaya et al. (2015) PSO OT, CT, GT TTM, DTM
Olivera et al. (2015b) PSO GT TM, EM, FCM, TTM
Ghanim, Abu-Lebdeh (2015) GA CT, GT, OT TTM, SCM, DTM, NSM
Hu et al. (2016) PSO PS TTM, DTM, RGRTM
Hamami, Akbar (2018) PSO GT TM, RGRTM
Zargari et al. (2018) SA, ICA GT TM, QM, GTO
Zhang et al. (2018) HS PS DTM
Teng et al. (2019) GWA, GOA GT TM, DTM, RGRTM
Segredo et al. (2019) GA, PSO GT, OT TM, TTM, DTM, NSM,

RGRTM
Davydov, Tolstykh (2019) PSO GT, CT, OT TTM, DTM, TM
Nallaperuma et al. (2020) GA GT DTM, FCM, EM

4 Metaheuristics660

This section reviews the literature regarding the most popular metaheuristic methods661

applied to the field of signal optimisation. As previously described, these methods usu-662

ally simulate some natural phenomena to inspire the numerical optimisation, such as663
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evolutionary theory, physical processes and swarm behaviours of birds and insects. Ta-664

bles 4 and 5 present various metaheuristic techniques employed by researchers for opti-665

mising signal timings. In this section, the popular metaheuristic algorithms in the field666

of the signal optimisation, such as Genetic Algorithms (GAs), Particle Swarm Optimi-667

sation (PSO), Ant Colony Optimisation (ACO), Simulated annealing (SA), Tabu Search668

(TS), and Artificial Bee Colony (ABC), are briefly introduced and their applications to669

the signal optimisation will be discussed.670

4.1 Genetic Algorithms (GAs)671

GAs are tpopulation-based algorithmic models inspired by genetic evolution theory672

(Holland, 1992), in which the characteristics of each individual are represented by us-673

ing genotypes. The solution candidates are encoded into chromosome, and chromo-674

somes are iteratively used as parent solutions to create offspring solutions based on the675

cross-over and mutation operators. GAs have been widely used by researchers to solve676

single and multi-objective and performance-based signal optimisation problems and677

are described below.678

4.1.1 Single objective optimisation679

Teklu et al. (2007) employed GA for optimising green and cycle timings. By consid-680

ering rerouting of traffic, authors used the total travel time over an urban network as681

the objective function. The results showed that considering rerouting can enhance the682

performance of signal timing for more congested networks. Yang et al. (2013) proposed683

a traffic signal controller with a golden ratio-based genetic algorithm (TSCGRGA) to684

optimise the signalised intersections. In comparison to other heuristic approaches, the685

numerical results reported from a single intersection experiment demonstrated that686

TSCGRGA is capable of reducing delay and stop time.687

Kesur (2009) developed an improved version of a GA for the fixed time optimi-688

sation of traffic signals by applying the cross-generational elitist selection, heteroge-689

neous recombination, and cataclysmic mutation search algorithm with real crossover690

and mutation operators. The results revealed that the enhanced algorithm is capable691

of reducing the delay time better than the standard GA. Tong et al. (2006) applied a692

GA for real-time traffic signal optimisation based on the maximum traffic flow capacity693

and minimum delayed vehicles of an intersection. The optimisation results demon-694

strated that a GA is able to produce effective and feasible signal timings. Tan et al.695

(2016) applied a GA for the traffic signal optimisation of an urban intersection under696

oversaturated conditions by minimising average delay time. Authors investigated an697

isolated urban intersection and reported that the GA is able to reduce the delay time698

efficiently. Chin et al. (2011) proposed a traffic signal timing management approach699

based on a GA (GATSTM) for optimising signal timing variables of multiple intersec-700

tions, such as offset, cycle time, green split and phase sequence. The simulation results701

obtained from a simple network with two intersections indicated that the GATSTM has702

a good performance in the traffic flow control of networks with multiple intersections.703
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Varia, Dhingra (2004) applied a GA to solve the dynamic system optimal traffic704

assignment problem by optimising the signal timings. In comparison to the traditional705

methods, authors stated that GAs require significantly fewer assumptions to solve this706

problem. Park et al. (1999) proposed a GA-based signal optimisation, which is able to707

handle oversaturated intersections. The obtained results are compared to those pro-708

duced by the TRANSYT-7F Penic, Upchurch (1992), a traffic and signal timing optimi-709

sation program, which uses hill-climbing for optimisation of signal parameters. For710

the low and high demand scenarios, numerical results indicate that the GA-based sig-711

nal optimisation provide better signal timing plans than the TRANSYT-7F.712

By considering day-to-day variability in traffic demand, Park, Kamarajugadda713

(2007) proposed a GA-based signal optimisation approach. In this approach, the vari-714

ation in the network delay time arising from the varying traffic demand is considered715

based on a integration technique. The authors evaluated the performance of their ap-716

proach on an isolated intersection under moderate and heavy traffic conditions. The717

obtained results were compared with those provided by Synchro (RAT, 2014), a deter-718

ministic signal optimisation software (see Section 2). The results showed that the GA719

can generally yield better signal timing plans than Synchro.720

By using a GA, Kwak et al. (2012) investigated the impact of the signal optimisa-721

tion on the vehicular fuel consumption and emissions in an urban corridor. Authors722

performed a microscopic traffic simulation by using TRANSIMS ( Smith et al. (1995))723

with VT-Micro model used to estimate emissions and fuel consumption and the GA724

is applied to optimise the traffic signal timing plans. The numerical results obtained725

from a case study were compared to those yielded by the Synchro. Results demon-726

strated that integrating the GA with the microscopic TRANSIMS simulation tool and727

VT-Micro model can provide much better network performance than Synchro in terms728

of the air quality, energy, and mobility measures.729

A study by Stevanović et al. (2009) applied GA to minimise the fuel consumption730

and carbon emissions. The approach combined the VISSIM (Fellendorf, Vortisch, 2011)731

microscopic simulator with the CMEM emission model and VISGAOST optimisation732

program. VISGAOST is an stochastic signal timing optimiser based on the GA and VIS-733

SIM microscopic simulator. Authors considered seven objective functions to find the734

lowest CO2 emissions and fuel consumption. The results obtained from a network with735

14 intersections in Park City revealed that the formula commonly used to estimate fuel736

consumption in traffic simulation tools cannot be used as a reliable objective function.737

The results also indicated that the integrated VISSIM-CMEM-VISGAOST with the ob-738

jective function of fuel consumption obtained from the CMEM model can provide 1.5%739

reduction of fuel consumption.740

A study by Kou et al. (2018) employed a GA to optimise carbon emissions and741

travel efficiency as a single objective where the carbon emissions, travel times and the742

number of stops are considered within an aggregated fitness function. This approach is743

simple to implement and the experimental results suggest that it has improved carbon744

emissions, travel times and vehicle stops for the considered cases. However, this work745

does not provide any recommendations of experimental or theoretical basis pon how746
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to determine the weights for the different objectives that are aggregated into a single747

objective.748

Tan et al. (2017) applied a decentralised genetic algorithm (DGA) to optimise the749

traffic network signal during the morning peak. The results obtained from the sig-750

nal optimisation of a case study showed that the DGA can reduce the average delay751

of the network. In another study, “Brian” Park et al. (2000) suggested an enhanced752

GA-based program for signal optimisation under oversaturated traffic conditions. Au-753

thors considered three different strategies during the optimisation procedure, includ-754

ing throughput maximisation, average delay minimisation, and modified average de-755

lay minimisation with a penalty function. The performance of the enhanced GA-based756

signal optimisation procedure was evaluated by optimising a set of intersections with757

different spacing. The results revealed that the GA-based signal optimisation with av-758

erage delay minimisation produced a better signal plan than other GA-based strategies759

and TRANSYT-7F program in terms of queue time.760

In order to improve the performance of the GA, Abu-Lebdeh et al. (2014) discussed761

different techniques and proposed a parallel GA (PGA) for transportation systems. In762

PGA, the population of GA is divided to several sub-populations working separately.763

It is expected that using PGA requires fewer number of function evaluations and re-764

duced running time (Abu-Lebdeh et al., 2014). By using the parallelisation technique,765

the results showed that PGA can significantly reduce the computational time for the766

complex problems.767

Varia et al. (2013) proposed a joint optimisation of signal parameters and dynamic768

user equilibrium (DUE) traffic assignment for the congested urban road network. The769

authors applied the GA for optimising signal setting parameters. The results obtained770

from a real case study verify the efficiency of the GA in solving the joint optimisation771

problem for the real network. In another study, Sharma, Kumar (2019) applied the772

GA to minimise the delay at an intersection by finding red and green cycle intervals.773

The performance of the GA is investigated by optimising three t-intersections in the774

city of Hardwar, India. The results revealed that GA is able to enhance traffic control775

performance of the network.776

Yun, Park (2012) employed GA to optimise the coordinated actuated traffic signal777

systems, in which a given path in Charlottesville, Virginia, USA was investigated as the778

case study. Stevanovic et al. (2008) developed a new signal optimisation tool, known779

as the VISSIM-based Genetic Algorithm Optimisation of Signal Timings (VISGAOST),780

in which GA is used as the optimiser within the simulation tool. Tung et al. (2014)781

compared the performance of GA against Expectation-Maximisation (EM) method with782

local information for signal timing optimisation and demonstrated that GA is capable783

of generating better delay times than EM method.784

Shen et al. (2011) investigated the throughput maximisation of a road network785

with 4 intersections through optimising signal timing plans. Park et al. (2004) em-786

ployed a GA to optimise the time-of-day breakpoints for better traffic signal control,787

in which a two-loop optimisation was performed. Authors optimised the outer loop788

for time-of-day breakpoints and performed inner loop optimisation for timing plans789

28 Evolutionary Computation Volume x, Number x



Application of Metaheuristics in Signal Optimisation of Transportation Networks: A ...

of corresponding intervals. They investigated the signal optimisation of three coordi-790

nated actuated signalised intersections on Reston Parkway in Fairfax, Virginia, USA.791

Ma, Liu (2019) proposed an improved GA with an improved fitness calibration method792

and an adaptive cross-mutation function for optimum signal timing of a intersection793

by considering the travel safety of the elderly, in which a given intersection in Lintao794

County of Gansu Province, China is investigated as a case study. Authors reported that795

the improved version of GA was able to provide better results than standard GA and796

Webster methods.797

Liang et al. (2020) investigated the performance of different versions of GA in sig-798

nal optimisation, including the standard GA, sequential GA, and voting GA. From a799

computational prospective, authors reported that the sequential GA is more efficient800

and the required time for each signal control action grows less rapidly with the num-801

ber of vehicles considered during the simulation process. Hu, Liu (2013) employed802

a GA to optimise the delay time of a grid network consisting of six intersections, in803

which the performance of intersections in different directions are considered. Duerr804

(2000) proposed a new concept for a corridor control system and applied GA to opti-805

mise a signalised arterial in Würzburg, Germany. Takahashi et al. (2002) applied GA to806

optimise the traffic lights of a 13-mile corridor in Detroit, USA.807

Overall, the single-objective GA approach has been found to be very successful808

in optimising the signal timings for transportation networks across a variety of scales.809

However, with multiple potential criteria for optimisation within a transportation net-810

work, it can be difficult to determine the objective weightings, which makes the multi-811

objective optimisation approach an attractive alternative.812

4.1.2 Multi-objective optimisation813

Branke et al. (2007) applied a non-dominated sorting genetic algorithm II (NSGA-II) for814

traffic-actuated signal control by considering different combinations of objective func-815

tions, including the travel time and the number of stops. NSGA-II is a multi-objective816

evolutionary algorithm originally developed by Deb et al. (2002). Authors employed817

VISSIM as a microscopic simulation tool to evaluate the signal timing plans generated818

by NSGA-II. The optimisation results obtained from a single intersection revealed that819

the signal timing plans yielded by NSGA-II are better than those obtained by a traffic820

engineer.821

In another work, Stevanovic et al. (2007) employed a GA to optimise signal plans822

by using the VISSIM software as an evaluation environment. The results reported from823

a real-world traffic network illustrated that the signal timing plans optimised by GA824

are better than those yielded by Synchro. Zhang et al. (2013) employed GA for the825

signal timing plans of a bi-objective model to minimise the traffic delay and the mean826

excess exposure simultaneously. Sun et al. (2003) applied a Non-dominated Sorting GA827

(NSGA-II) to solve the multi-objective signal timing optimisation problem by consid-828

ering the delay and number of stops as the objective functions. The numerical results829

reported by Sun et al. (2003) demonstrated that NSGA-II can efficiently solve multi-830

objective signal optimisation problems under uniform and stochastic traffic arrival pat-831
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terns.832

Kesur (2013) employed NSGA-II for minimising delay and the number of stops833

in large traffic networks under fixed-time signal control. Authors used a MSTRANS834

stochastic microscopic traffic simulation model to evaluate each signal timing plan.835

The performance of the multi-objective approach against the single-objective delay-836

minimisation strategy is evaluated by optimising two test networks under over-837

saturated and under-saturated conditions. For under-saturated condition, both of the838

single-objective and multi-objective approaches provided a relatively similar results,839

while the benefits of the multi-objective approach were more obvious under over-840

saturated condition.841

Sun et al. (2006) defined a bi-level programming formulation and proposed an842

heuristic solution approach for signal control optimisation problem under stochastic843

route choice and time-variant demand. Authors formulated the signal timing optimi-844

sation as a upper level problem with the objective function of travel time, while the845

users’ route choice behaviour is modeled as the lower level problem. Sun et al. (2006)846

solved the upper level signal timing optimisation problem by using Elitist GA and Mi-847

cro GA methods. Elitist GA method is the simple GA with replication mechanism of848

the best individual of the current generation and Micro GA is a class of GA with low849

population sizes, in which the population is restarted for a sufficient number of times.850

For fewer amounts of fitness evaluations, the results obtained from a simple network851

with 10 signalised intersections demonstrated that both of the Micro GA and Elitist GA852

methods provide identical results. While the Micro GA method is capable of generating853

better results than Elitist GA method for higher amounts of fitness evaluations.854

Nguyen (2019) solved the multi-objective signal optimisation problem for through-855

put maximisation and queue minimisation of a oversaturated Intersection by NSGA-856

II algorithm. Costa et al. (2018) applied a Memory-Based Variable-Length Non-857

dominated Sorting Genetic Algorithm 2 (MBVL-NSGA2) for solving a multi-objective858

optimisation signal problem with two objective functions, including maximisation of859

the average vehicle speeds and minimisation of the variance of the vehicle speeds. The860

performance of the MBVL-NSGA2 was validated by using a multi-intersection network861

with real data and the obtained results were compared with those yielded by the tradi-862

tional NSGA-II method. The simulation results revealed that the MBVL-NSGA2 is able863

to produce better traffic signal plans than those provided by the NSGA-II method and864

the usual solutions adopted by the traffic engineers.865

Armas et al. (2017) developed a GA optimiser to optimise the travel times, carbon866

emission, and fuel consumption. The modelling used the Matsim (Horni et al., 2016)867

microscopic traffic simulator and hierarchical clustering was performed on the best868

solutions found in several runs of the algorithm. An analysis of signal clusters and869

their geolocation, estimation of fuel consumption, spatial analysis of emissions, and870

an analysis of signal coordination provide an overall picture of the systemic effects of871

the optimisation process. However, within their study, the multi-modality of transport872

network is not considered.873

Nguyen et al. (2016) developed an improved version of NSGA-II algorithm based874
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on a local search technique, called NSGA-II-LS, for multi-objective signal optimisation875

of delay minimisation and throughput maximisation. Authors applied NSGA-II-LS to876

optimise the signal timings of the area around a football stadium in Bologna city in877

Italy for big events such as football matches or concerts. Li, Sun (2019) employed GA878

to solve the multi-objective optimisation of signal timing plans for simultaneous delay879

minimisation, throughput maximisation, and spill-back minimisation, in which a grid880

network consisting of 9 intersections was investigated. Ren et al. (2013) solved a bi-881

objective problem using the NSGA-II algorithm, in which the upper-level problem is882

the multi-objective signal optimisation for travel time minimisation and a performance883

index composed of delay time and spill-back.884

Stevanovic et al. (2013) investigated the signal optimisation of a 12-intersection885

corridor on Glades Road in Boca Raton using a VISSIM-based GA and the Surrogate886

Safety Assessment Model (SSAM) to reduce surrogate measures of safety and reduce887

the risks of potential real-world crashes. Stevanovic et al. (2015) integrated VISSIM-888

based GA, SSAM, and Comprehensive Modal Emission Model (CMEM) for the multi-889

objective signal optimisation of a network of 5 intersections in West Valley City, Utah,890

USA. The authors plotted a 3-dimensional Pareto front surface for the objective func-891

tions of throughput, fuel consumption, and the number of conflicts. Li et al. (2013)892

tested the performance of NSGA-II against Synchro and Webster methods for signal893

optimisation of a single intersection, in which NSGA-II performed significantly better894

than other methods. Abbas, Sharma (2006) applied NSGA-II algorithm to find a set of895

optimal timing plans for each traffic light by considering the traffic condition at differ-896

ent times of the day, in which the delay time, degree of detachment, and number of897

delays were considered as the objective functions.898

4.1.3 Performance-based optimisation899

GAs have been also previously been used to solve performance-based signal optimi-900

sation problems. For example, Ezzat et al. (2014) proposed a mathematical model rep-901

resenting the stochastic environment of the traffic control and used a GA to provide902

practical solutions and effective signalisation plans. The results demonstrated that the903

signal timings generated by the GA can improve the performance of the network in904

terms of the queuing lengths and vehicular waiting times. Stevanovic et al. (2011a)905

optimised the signal timing parameters using a GA to reduce the risks of potential real-906

world crashes while maintaining efficiency of traffic signals. Ghanim, Abu-Lebdeh907

(2015) developed a real-time traffic signal control by integrating signal timing opti-908

misation and transit signal priority. The authors proposed an algorithm in which ar-909

tificial neural networks (ANNs) are used to keep track of transit vehicle trajectories910

along the traffic control, and then a GA is applied to optimise the signal timing pa-911

rameters. Lertworawanich et al. (2011) transformed the multi-objective signal optimi-912

sation of spillover and delay minimisations as well as throughput maximisation into913

a single-objective optimisation problem based on some equivalent weight coefficients914

and solved it by standard GA. Authors used a grid consisting of nine intersections as a915

case study and showed the potential of the model to resolve spillovers in oversaturated916
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networks.917

4.2 Particle Swarm Optimisation (PSO)918

PSO developed by Eberhart, Kennedy (1995) is a multi-agent metaheuristic method,919

which simulates the flocking behaviour of birds and their social interactions in na-920

ture. In PSO, the solution candidates for the optimisation problem are represented921

by a swarm of particles looking for the best positions within a search landscape. It is922

assumed that each particle has its own position and velocity in the search space and the923

initial positions and velocities are randomly generated within the search space. During924

the optimisation process, the position and velocity of each particle are updated based925

on its own previous best experience (i.e., pbest) and the best experience obtained by the926

whole swarm (i.e., gbest).927

Chen, Xu (2006) applied PSO to optimise the traffic signal timings. In their traf-928

fic model, a local fuzzy-logic controller installed at each junction is used to generate929

initial solutions for PSO algorithm, in which the coordination parameters from adja-930

cent junctions are also considered. The results indicated that PSO is able to enhance931

the performance of the network in terms of delay per vehicle. In another study, Wu,932

Wang (2016) modelled the online traffic network with Cell Transmission Model (CTM)933

and applied PSO for signal optimisation of the network. Gökçe et al. (2015) proposed934

a new microscopic traffic model and applied PSO for the signal optimisation. The nu-935

merical results obtained by the proposed approach demonstrated that PSO is able to936

significantly reduce average delay time per vehicle passing through the roundabout.937

The study by Olivera et al. (2015a) applied PSO as a swarm intelligence tech-938

nique for optimising signal timing programs in metropolitan areas. Authors employed939

SUMO microscopic simulation tool (Krajzewicz et al., 2002) to simulate the traffic940

within the city. The performance of PSO is evaluated by using two areas extracted941

from Malaga and Seville cities, in Spain, and the obtained results are compared to those942

obtained by Differential Evolution (DE) and Random Search (RS) methods as well as943

SUMO cycle programs generator (SCPG). Authors performed a statistical comparison944

between the mentioned algorithms in terms of the best, mean, worst, and standard de-945

viation of the results yielded from 30 independent trial runs of each algorithm. The946

comparative results indicated that not only the signal timing plans obtained by PSO947

outperform to those obtained by the DE, RANDOM, and SCPG methods, but also they948

reduce the CO and NOx emissions with regards to human experts.949

Dabiri, Abbas (2016) integrated PSO and VISSIM simulation software and opti-950

mised the signal timing parameters of an arterial with three intersections located in951

Blacksburg, Virginia, USA. Jiao et al. (2016) applied a Pareto front–based PSO algo-952

rithm for signal timing control of a intersection in Beijing, China. In another study, Jia953

et al. (2019) developed an improved PSO (IPSO) algorithm for multi-objective signal954

optimisation. In IPSO, a hybrid difference operator is used to update the position of955

particles, which combines the differential operator and an inertia weight. Davydov,956

Tolstykh (2019) applied PSO to optimise signal timings of a roundabout in Novosi-957

birsk, Russia. Garcia-Nieto et al. (2013) applied PSO to find the optimal cycle programs958
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of metropolitan areas located in Bahıa Blanca and Malaga in Spain. Peng et al. (2009)959

proposed a PSO algorithm with niche isolation technique to solve the urban traffic light960

scheduling problem, in which the population of particles are divided into several sub-961

groups. Olivera et al. (2015b) employed PSO for green times optimisation of a given962

parts of urban networks of Malaga and Seville cities in Spain.963

Premature convergence and trapping into local optimum points in the search space964

are the main disadvantages of the PSO method. Hence, the studies on the conver-965

gence analysis of PSO should be carefully considered in application of this algorithm966

for signal optimisation (Ozcan, Mohan, 1999; Clerc, Kennedy, 2002). It appears that967

little research has been carried out on the performance comparison of PSO against the968

GA approach and it would be interesting to perform a statistical comparative study969

of the convergence properties of these algorithms in the signal optimisation problem.970

In recent years, multi-objective versions of the PSO method have attracted much at-971

tention from the researchers in different areas (Beiranvand et al., 2014; Sha, Lin, 2010).972

A comparison of a multi-objective version of the PSO method with a multi-objective973

GA approach, like NSGA-II, is another aspect that worth investigating. Moreover, PSO974

has three internal parameters controlling the search process, namely inertia weight (ω)975

and the acceleration coefficients (c1 and c2). The effects of these parameters on the algo-976

rithm’s performance in solving signal optimisation problem also are important research977

topics to be investigated.978

4.3 Ant Colony Optimisation (ACO)979

ACO, introduced by (Dorigo, Birattari, 2010), models the foraging behavior of natural980

ants while identifying the shortest path between their nest and food source. In ACO,981

the optimisation process starts by randomly distributing the ants on the nodes of a982

graph that map to the problem being solved (e.g. cities in the Travelling Salesman983

Problem). In each iteration, the ants try to find the shortest path by using a communi-984

cation protocol, called pheromone. Pheromone is a chemical substance deposited by ants985

on their way back to the nest, which evaporates over time. By using these pheromone986

trails, the ants share information between each other to guide the colony towards the987

food source. During the optimisation process, the pheromone intensities are iteratively988

updated by the ants in proportion to the optimality of their total route. Paths with989

greater amounts of pheromone attract more ants and an autocatalytic process ensues.990

He, Hou (2012) suggested an efficient algorithm based on the ACO to solve the991

single-objective signal optimisation problem. The authors reported that ACO is able992

to perform remarkably better than the Webster and GA methods, and provide smaller993

delay time, fewer number of stops, and larger traffic capacity. Putha et al. (2012) ap-994

plied ACO to solve the over-saturated network traffic signal coordination problem by995

maximising the number of vehicles processed by the network throughout the over-996

saturation period. The authors compared the results obtained from ACO to those pro-997

vided by a GA. Comparison results showed that ACO performs better than GA for their998

problem. However, the study considered only green times as the decision variables.999

Renfrew, Yu (2012) employed rank-based ACO with local search to optimise the delay1000
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time in a single intersection. Karoonsoontawong, Waller (2009) applied ACO with re-1001

duced search space mechanism to solve bi-level signal optimisation problem, in which1002

each ant only searches the reduced search space around the best ants. Tawara, Mukai1003

(2010) applied ACO to solve the signal optimisation problem with a traffic congestion1004

prediction model.1005

Although the comparison results reported from the above studies indicate that1006

ACO performs better than a GA, superiority of ACO against GA should be investi-1007

gated by performing statistical analyses and sensitivity analyses of internal param-1008

eters. Moreover, the application studies of ACO in signal optimisation are focused1009

on the single-objective category. Recently, a multi-objective version of ACO has been1010

proposed by researchers (Lopez-Ibanez, Stutzle, 2012). Hence, it seems that the per-1011

formance of the multi-objective version of ACO algorithm should be investigated in1012

solving multi-objective signal optimisation problem as well.1013

4.4 Differential Evolution (DE)1014

DE algorithm developed by Price et al. (2006) is one of the popular population-based1015

metaheuristic algorithms, in which the solution finding process is based on the infor-1016

mation obtained from the weighted difference of the individuals in the population.1017

Cakici, Murat (2019) applied DE for the signal phasing optimisation of three-leg sig-1018

nalised intersections. Jamal et al. (2020) compared the performance of DE and GA on1019

the signal optimisation of two signalised intersections in the city of Dhahran, Eastern1020

Province, KSA. They reported that the convergence speed of DE is faster than a GA.1021

However, their results showed that a GA can provide more reductions in delay times.1022

Broadly speaking, the potential capabilities of DE algorithm for the signal opti-1023

misation has not been fully addressed yet. A review of the literature reveals that a1024

wide variety of mutation operators have been proposed by different researchers for the1025

DE algorithm (Qin et al., 2008; Mezura-Montes et al., 2006; Price et al., 2006). Future1026

researches can be focused on the performance evaluation of different variants of DE1027

algorithm in signal optimisation..1028

4.5 Other metaheuristics1029

In recent years, a wide variety of novel meta-heuristics inspired by the physical, eco-1030

logical and social phenomena have been developed to solve engineering optimisation1031

problems(Rashedi et al., 2009; Gandomi, Alavi, 2012; Jalili et al., 2017; Yang, Gandomi,1032

2012; Jalili, Husseinzadeh Kashan, 2019). In some cases, researcher have employed1033

other types of metaheuristic methods to solve signal optimisation problem, including1034

Artificial Bee Colony (ABC) algorithm, Shuffled Frog-Leaping Algorithm (SFLA), Tabu1035

search (TS) algorithm, Simulated Annealing (SA) algorithm, Jaya Algorithm (JA), Har-1036

mony Search (HS) algorithm, Water Cycle Algorithm (WCA), Whale Optimisation Al-1037

gorithm (WOA), Cuckoo Search (CS), Imperialist Competitive Algorithm (ICA), Bat-1038

inspired Algorithm (BA), Grey Wolf Optimiser (GWO), and Grasshopper Optimisation1039

Algorithm (GOA).1040

Artificial Bee Colony (ABC) was developed by Karaboga, Basturk (2007) and is1041
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inspired by the collective foraging behavior of a honey bee colony in seeking nectar1042

sources. ABC consists of population of artificial bees, in which each bee represents a1043

solution candidate for the problem. In ABC, the artificial bees are categorised into three1044

types as follows: employed bees, onlooker bees, and scout bees. These three types of1045

bees cooperate with each other to find food sources in the search space. The algorithm1046

uses employed bees to find some food sources and shares the information about these1047

sources with onlooker bees. Then, the onlooker bees select some of the food sources1048

provided by the employed bees and try to find new food sources around them. The1049

food sources with more nectar amounts (i.e., better fitness functions) have more chance1050

to be selected by the onlooker bees. If a food source investigated by a onlooker bee1051

is not improved through a given number of trials, the associated employed bee will1052

become a scout bee. The scout bee is a randomly generated solution within the search1053

space. Dell’Orco et al. (2014) developed a model consisting of ABC algorithm with1054

TRANSYT-7F (ABCTRANS) for signal timings optimisation in coordinated signalised1055

networks. The numerical results revealed that the performance of ABCTRANS is bet-1056

ter than TRANSYT-7F and it can improve the PI of the networks. Gao et al. (2017c)1057

implemented ABC algorithm to multi-objective optimisation of urban traffic lights for1058

minimum delays of vehicles and pedestrians. Authors used a non-domination strategy1059

based metric to compare and rank the solutions for the two objectives. They studied1060

the traffic network of Jurong area in Singapore and reported that the ABC algorithm1061

can outperform the multi-objective version of the GA (NSGA-II) method. In another1062

study, Gao et al. (2019) proposed an improved ABC (IABC) for signal optimisation of1063

a grid network consisting of 9 intersections, in which the performance of the standard1064

ABC is improved through generating new food sources in employed bee and onlooker1065

bee phases. Jovanović et al. (2017) employed ABC algorithm to urban traffic signal con-1066

trol of a grid network with 9 intersections. Authors compared the results obtained by1067

the ABC algorithm to those yielded by SA method, and reported that ABC is able to1068

provide higher quality solutions for the problem. Zhao et al. (2018) proposed a non-1069

dominated sorting ABC (NSABC) algorithm to solve the multi-objective signal optimi-1070

sation problem of a given intersection in Lanzhou city, China.1071

Shuffled Frog-Leaping Algorithm (SFLA) is a population-based metaheuristic1072

technique developed by Eusuff, Lansey (2003) inspired by the behavior of a group of1073

frogs when they are seeking for food. SFLA imitates two main behaviors of frogs as fol-1074

lows: leaping and shuffling. SFLA starts with initialising a random population of frogs1075

within the search space of the problem. Based on the fitness values of the frogs, the1076

population is divided into several small colonies called memeplexes. The frogs in each1077

memeplex perform local search to find higher quality solutions. Then, each memeplex1078

shares information with other memeplexes through the shuffling process. Park, Lee1079

(2009) developed a stochastic optimisation method (SOM) based on SFLA (SFLASOM)1080

for optimisation of coordinated-actuated traffic signal system. Authors investigated an1081

arterial network consisting of 16 signalised intersections and reported that SFLASOM1082

is able to improve the total network travel time.1083

Tabu search (TS), devloped by Glover, Laguna (1998), is a local or neighborhood1084
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metaheuristic search method. From a given random initial solution, TS tries to find a1085

better solution in its neighborhood until the termination criterion is satisfied. TS has a1086

short-term memory, called the tabu list. In TS, new solutions are generated by using a1087

local search and the short-term memory where a list of the tabu solutions is stored. Hu,1088

Chen (2012) applied a greedy randomised TS (GRTS) algorithm to solve the network-1089

level signal optimisation problems. The authors investigated the performance of GRTS1090

on two networks and the obtained results compared to those provided by a GA. The1091

results showed that GRTS can perform better than a GA.1092

Simulated Annealing (SA) is another metaheuristic algorithm which mimics the1093

physical process of heating a material when the temperature is gradually reduced1094

to minimise the defects and system energy (Van Laarhoven, Aarts, 1987). Shi et al.1095

(2020) employed SA to solve the mix-integer-nonlinear-programming signal optimisa-1096

tion problem, in which the the discrete variable of the number of lanes and the con-1097

tinuous variable of green lights duration were considered simultaneously. Han et al.1098

(2015) compared the performance of SA against PSO in solving a bi-objective problem,1099

in which the upper level is the green time optimisation. The results obtained from1100

the six-node network showed that SA is able to produce comparable results to those1101

yielded by PSO. Hale et al. (2015) compared the performance of SA against GA and1102

TS on signal optimisation of the isolated intersections in terms of the optimality and1103

required computational effort. The authors reported that SA is able to provide compet-1104

itive results. Jahangiri et al. (2011) employed SA to find optimum cycle times for urban1105

network consisting of 9 signalised intersections in Hashtgerd city, Iran.1106

Harmony Search (HS) is another population-based metaheuristic algorithm de-1107

veloped by Geem et al. (2001), which imitates the searching process of a musician in1108

finding a perfect state of harmony to model a searching strategy for global optima in1109

optimisation problems. Gao et al. (2018a) applied HS and ABC algorithms to solve1110

the multi-objective traffic lights scheduling for minimum delay times of vehicles and1111

pedestrians in Jurong area of Singapore. The authors compared the results between1112

these approaches and NSGA-II showed that ABC and HS perform better than NSGA-II1113

algorithm. Zhang et al. (2019) developed a non-dominated sorting HS (NSHS) algo-1114

rithm for simultaneous delay and the drivers’ unhappiness minimisation. In another1115

study, Gao et al. (2016b) proposed a discrete HS (DHS) algorithm for optimising urban1116

traffic light scheduling problem, in which a new solution finding strategy is defined1117

based on the a small harmony memory to improve the performance of standard HS. In1118

addition, authors used a set of three local search techniques within the DHS algorithm1119

to enhance the exploitation ability. Authors investigated the performance of DHS by1120

using the available traffic data from a partial traffic network in Singapore and reported1121

the superiority of DHS over the standard HS algorithm. Zhang et al. (2018) investi-1122

gated the signal optimisation problem for the pedestrian-vehicle mixed-flow network,1123

in which the problem is converted to a mixed-integer linear programming problem and1124

then, the DHS algorithm is used to optimise the signal settings.1125

Jaya Algorithm (JA) and Water Cycle Algorithm (WCA) are relatively new meta-1126

heuristic approaches developed by and Rao (2016) and Eskandar et al. (2012). Jaya is a1127
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Sanskrit word meaning victory and the JA is a population-based metaheuristic which1128

strives to become victorious by reaching the best solution. WCA is a population-based1129

algorithm inspired by the natural water cycle process, in which the flowing of rivers1130

and streams towards the sea are simulated to perform the search process. Gao et al.1131

(2016a) applied JA to solve the urban traffic signal control of a network with 100 inter-1132

sections based on real-life traffic data in Singapore. The authors used a neighborhood1133

search technique to improve the exploitation ability of JA. Gao et al. (2017a) applied1134

HS, WCA, and JA methods to solve a large-scale urban traffic light scheduling prob-1135

lem. Authors improved the performance of the modified JA and WCA methods by1136

adding a feature based search (FBS) strategy. Comparison between the results obtained1137

from mentioned metaheuristics and the existing traffic control systems revealed that1138

the the metaheuristics were able to significantly reduce delay times. Numerical results1139

were also demonstrated that the performance of the methods depends on the sizes of1140

case studies. For large-scale networks, WCA performs better than HS and JA in terms1141

of the statistical results and required computational effort. However, for the smaller1142

sizes of networks, HS and JA are slightly better than WCA. In another study, Gao et al.1143

(2018b) compared the performance of five different metaheuristic algorithms, including1144

JA, HS, ABC, GA, and WCA, for traffic signal scheduling of the Jurong area in Singa-1145

pore. The authors proposed three local search operators to improve the performance1146

of the metaheuristic algorithms. The results showed that the ABC algorithm with local1147

search technique performs than other algorithms.1148

Thaher et al. (2019) applied novel metaheuristic algorithms, including Whale Op-1149

timisation Algorithm (WOA) (Mirjalili, Lewis, 2016) and Bat-inspired Algorithm (BA)1150

(Yang, 2010), to solve traffic scheduling problem of a real signalised segment at the cen-1151

tre of Nablus city, Palestine. WOA imitates the social behavior of humpback whales1152

and BA mimics the echolocation system of micro-bats in nature. The results obtained1153

from three case studies revealed the efficiency of WOA over BA and GA methods.1154

Scatter Search (SS) algorithm is a population-based metaheuristic algorithm, which1155

belongs to the category of the evolutionary algorithms. The main difference between1156

SS algorithm and other evolutionary algorithms is that the solution finding process in1157

SS algorithm is based on the deterministic combination of previous solutions Glover1158

(1998). Papatzikou, Stathopoulos (2018) applied SS algorithm and GA to find best com-1159

bination of signal phases for a single intersection. Authors reported that SS algorithm1160

can provide better signal timing plans in terms of the total delay time and the required1161

run time.1162

Cuckoo Search (CS) is another metaheuristic population-based algorithm devel-1163

oped by Yang, Deb (2009) inspired by the lifestyle of the cuckoo. Araghi et al. (2017)1164

applied CS to optimise the performance of adaptive interval type2-fuzzy traffic signal1165

controllers, in which the results revealed the superiority of CS algorithm in comparison1166

to GA and SA algorithms.1167

Imperialist Competitive Algorithm (ICA) developed by Atashpaz-Gargari, Lucas1168

(2007) belongs to the category of socially inspired metaheuristic algorithms, which1169

mimics the imperialistic competition process. Zargari et al. (2018) employed ICA for1170
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signal optimisation of a given area in Tehran, Iran. The authors compared the perfor-1171

mance of ICA and SA algorithms and reported that ICA is able to provide comparable1172

results.1173

4.6 Hybrid metaheuristics1174

Nowadays, hybrid metaheuristic search techniques have gained much attention and1175

been well developed for solving a wide variety of optimisation problems in different1176

areas of science and engineering (Blum et al., 2011; Pellerin et al., 2019). These ap-1177

proaches combine the components of various standard metaheuristic methods in such1178

a way that the newly generated algorithm is expected to perform better than the stan-1179

dard algorithms. In some cases, researchers proposed hybrid metaheuristic methods to1180

solve the signal optimisation problem. For example, Srivastava, Sahana (2017) formu-1181

lated a bi-level model, in which the upper layer is the traffic signal optimisation and the1182

lower layer is the stochastic user equilibrium. Authors suggested a hybrid ACO and1183

GA algorithm to optimise the traffic signals and minimise the total waiting time. Nu-1184

merical results demonstrated that the hybrid model performs remarkably better than1185

the standard ACO and GA methods.1186

Ceylan (2006) developed a hybrid GA with TRANSYT hill-climbing optimisa-1187

tion routine (GATHIC) for signal control by considering the coordination effects. In1188

GATHIC, a decreased search space algorithm (ADESS) is used to reduce CPU time1189

required by GA. Authors reported that GATHIC is more efficient than TRANSYT in1190

providing optimal signal timings with better PI. Li, Schonfeld (2015) developed a hy-1191

brid SA and GA (SA-GA) method for arterial signal timing optimisation under over-1192

saturated traffic conditions. The experimental results showed that the hybrid SA-GA1193

method is more efficient than the standard SA and GA methods in terms of the solu-1194

tion quality. Garcı́a-Ródenas et al. (2019) investigated the performance of hybridised1195

versions of GA and SA with Nelder–Mead (NM) simplex algorithm on the bi-objective1196

signal optimisation problem of Nguyen–Dupuis network with 13 nodes and 23 links.1197

Kai et al. (2014) applied a Collaborative Evolutionary-Swarm Optimisation (CESO)1198

algorithm for real-time signal control, which combines Crowding DE (CDE) algorithm1199

and PSO. Experimental results revealed that CESO performs better than PSO algorithm1200

in terms of the average delay time of all vehicles in various scenarios. Chentoufi, El-1201

laia (2018) suggested a hybrid PSO and TS (PSO-TS) method for adaptive signal timing1202

optimisation. PSO-TS updates the position and velocity of particles by using the infor-1203

mation of best neighbor and based on the best historical position and a tabu list.1204

Bacterial foraging optimisation algorithm (BFOA) is a recently developed meta-1205

heuristic algorithm inspired by the social foraging behaviors of bacteria Das et al.1206

(2009). Liu, Xu (2012) developed a hybrid BFOA and DE algorithm (DEBFA) for signal1207

timing optimisation of some intersections in Guangzhou, China. In DEBFA, authors1208

used DE operators to improve the performance of the BFOA method.1209

Artificial fish swarm algorithm (AFSA) is another swarm intelligence-based meta-1210

heuristic algorithm, which is inspired from the cooperative behavior of fish swarm in1211

finding food sources. Ma, He (2019) hybridised AFSA and GA to optimise signal tim-1212
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ings of Jianning Road with 5 intersections in Lanzhou, China. In genetic-AFSA algo-1213

rithm, the mutation and crossover operators were used to enhance the performance of1214

AFSA.1215

Grey Wolf Optimiser (GWO) and Grasshopper Optimisation Algorithm (GOA) are1216

the recently population-based metaheuristic algorithms, which are inspired by the so-1217

cial behavior of wolves during the hunting process and the behaviour of grasshopper1218

swarms in nature, respectively (Mirjalili et al., 2014; Saremi et al., 2017). Teng et al.1219

(2019) developed grey wolf grasshopper hybrid algorithm (GWGHA) to optimise the1220

cycle times for urban networks of different cities in Taiwan, Spain, and Argentina. In1221

GWGHA, GWO is used to enhance the exploration ability of GOA method.1222

According to the reviewed articles in this area, it can be observed that researchers1223

employed very simple networks with limited number of intersections to evaluate the1224

performance of the hybrid algorithms. However, large-scale transportation networks1225

can be optimised efficiently by taking the advantages of hybrid metaheuristic algo-1226

rithms.1227

5 Publication analysis1228

In this section, a brief analysis on publications related to the signal optimisation us-1229

ing metaheuristics are presented. In this survey, around 170 related references are in-1230

vestigated in which the metaheuristics were used to solve the optimal signal control1231

problem. Figure 2 shows the chronological distribution of the papers in which meta-1232

heuristics are applied to solve the signal optimisation problems. Figure 3 shows clearly1233

the fast growing interest in the application of metaheuristics in this field. In addition,1234

Figure 3 shows the distribution of these publications based on the type of the applied1235

metaheuristic. From Figure 3, it can be seen that most of the published papers in the1236

literature applied GA and PSO as the optimiser to solve the signal optimisation prob-1237

lem.1238

Figure 2: The chronological distribution of related publications to the signal optimisa-
tion using metaheuristics
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Figure 3: The distribution of the publications based on the type of the metaheuristics

6 Conclusions and future research directions1239

In this survey paper, a comprehensive review over the application of metaheuristic ap-1240

proaches to the traffic signal optimisation problems is presented. Regarding the prob-1241

lem formulation, different types of network performance criteria and decision variables1242

were used to define the objective functions. Some studies have considered multiple1243

objectives either aggregated to a single-objective or optimised in parallel using multi-1244

objective optimisation techniques. Based on this survey, available signal optimisation1245

problems can be categorised into single-objective, multi-objective, performance-based,1246

and bi-level optimisations. However, less work has been done in understanding the1247

correlations between different objectives. This understanding is essential for practi-1248

tioners to decide the relative importance of conflicting objectives. Moreover, it is indi-1249

cated that most of the studies adopted the cycle length, green splits, offsets, and phase1250

sequence as the decision variables for the signal timing optimisation problem.1251

According to the presented literature review, there are some new research direc-1252

tions in this field which would benefit from further investigation:1253

• The review has shown that most of the previous work have been focused on the ap-1254
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plication of GA and its variants to solve the signal optimisation problems. There-1255

fore, it may be of interest to investigate the performance of recently developed1256

metaheuristics, such as BBO (Simon, 2008), TLBO (Rao et al., 2011), KH (Gandomi,1257

Alavi, 2012), OIO (Jalili, Husseinzadeh Kashan, 2018), and GSA (Rashedi et al.,1258

2009), in solving traffic signal optimisation problems.1259

• The review has shown that little work has been carried out on the statistical per-1260

formance of the metaheuristics in solving signal optimisation problems, it would1261

be interesting to perform a statistical analysis of various metaheuristics in terms of1262

the best, mean, and worst results. In addition, a set of statistical tests can be carried1263

out to provide a statistically fair performance comparison between the algorithms1264

(Chiarandini et al., 2007).1265

• Most of the signal optimisation approaches presented in the literature are based on1266

a single metaheuristic method. However, the hybrid metaheuristic methods can1267

be more promising than the standard methods. The research on optimum signal1268

timing using hybrid metaheuristics is still in its early days. This should encourage1269

researchers to further develop efficient and effective hybrid metaheuristics to solve1270

signal optimisation problem of large-scale transportation networks.1271

• Application of metaheuristic algorithms to the real-time signal optimisation of1272

large-scale transportation networks can be computationally expensive. As it was1273

recommended in a recent review of bio-inspired computation (Del Ser et al., 2019),1274

the efficiency of the metaheuristics can be enhanced through replacing the orig-1275

inal expensive objective functions by the prediction models built based on Ma-1276

chine Learning (ML) techniques, known as surrogates. Thus, future research will1277

definitely be required to integrate metaheuristics and ML techniques to deal with1278

signal timing of large-scale networks.1279

• According to the No Free Lunch theorem (Wolpert et al., 1997), there is no general1280

metaheuristic approach able to solve different type of problems in an equally effi-1281

cient manner. The performance of the metaheuristics depends on the type of the1282

problem and the properties of the search space. As an alternative approach, Hyper-1283

heuristics, which form an emerging search technology, provide a new approach to1284

overcome the problem of such dependencies in metaheuristics. The learning el-1285

ement of hyper-heuristics are assumed to be problem independent, but domain-1286

specific heuristics can be used to augment the performance on specific problems.1287

The term has been defined to broadly describe the process of using metaheuristics1288

to choose the most appropriate heuristics to solve the problem at hand.1289

• From the literature review, it is demonstrated that different approximate emissions1290

and fuel consumption models have been employed for traffic signal optimisation1291

with the objective functions of the vehicle emissions and fuel consumption. How-1292

ever, the approximate models within the signal optimisation problems can lead to1293

unrealistic signal timing plans. Hence, it seems that the future works should be1294
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focused on the calibration of various emissions and fuel consumption models to a1295

given network.1296

• A description of the various modelling and simulation software for transport net-1297

works is presented. The majority of the simulation software are only available1298

commercially. Most classical simulation models are macroscopic whereas most1299

modern models are microscopic. As per the future research directions for trans-1300

port simulation software, the ability to simulate the large networks with real time1301

data is vital.1302

• The quality of the timing plans obtained from the signal optimisation depends on1303

the accuracy of the traffic flow models. Recently, big data technology has been suc-1304

cessfully applied for the traffic flow predictions in large transportation networks.1305

Therefore, the application of metaheuristics on the big data based signal optimisa-1306

tion would also appear to be an attractive research direction.1307
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Gökçe MA, Öner E, Işık G. Traffic signal optimization with Particle Swarm Optimization for sig-1505

nalized roundabouts // Simulation. 2015. 91, 5. 456–466.1506

Guan Qing, Yang Zhaosheng, Wang Yuan, Hu Jianmeng, Qin Jian. Research on the Coordination Op-1507

timization Method between Traffic Control and Traffic Guidance Based on Genetic Algorithm1508

// 2008 Fourth International Conference on Natural Computation. 6. 2008. 320–325.1509

Guangwei Zhou, Albert Garr, Sherr L David. Optimization of adaptive transit signal priority using1510

parallel genetic algorithm // Tsinghua Science and Technology. 2007. 12, 2. 131–140.1511

Guo Qiangqiang, Li Li, Ban Xuegang Jeff. Urban traffic signal control with connected and automated1512

vehicles: A survey // Transportation research part C: emerging technologies. 2019. 101. 313–1513

334.1514

Hajbabaie Ali, Benekohal Rahim F. Traffic signal timing optimization: Choosing the objective func-1515

tion // Transportation Research Record. 2013. 2355, 1. 10–19.1516

Hajbabaie Ali, Benekohal Rahim F. A program for simultaneous network signal timing optimization1517

and traffic assignment // IEEE Transactions on Intelligent Transportation Systems. 2015. 16,1518

5. 2573–2586.1519

Hale David K, Park Byungkyu Brian, Stevanovic Aleksandar, Su Peng, Ma Jiaqi. Optimality versus1520

run time for isolated signalized intersections // Transportation Research Part C: Emerging1521

Technologies. 2015. 55. 191–202.1522

Hall M.D., Van Vliet D, Willumsen Luis. SATURN—a simulation-assignment model for the evalu-1523

ation of traffic management schemes // Traffic Engineering and Control. 04 1980. 21. 168–176.1524

Hamami Faqih, Akbar Saiful. Optimization and Simulation of Green Light Duration at Intersection1525

with Particle Swarm Optimization and Cellular Automata // 2018 International Conference1526

on Information Technology Systems and Innovation (ICITSI). 2018. 110–114.1527

Han Ke, Sun Yuqi, Liu Hongcheng, Friesz Terry L, Yao Tao. A bi-level model of dynamic traffic1528

signal control with continuum approximation // Transportation Research Part C: Emerging1529

Technologies. 2015. 55. 409–431.1530

He Jiajia, Hou Zaien. Ant colony algorithm for traffic signal timing optimization // Advances in1531

Engineering Software. 2012. 43, 1. 14–18.1532

Hirulkar P, Deshpande R, Bajaj P. Optimization of traffic flow through signalized intersections1533

using PSO // Int J Comput Sci Appl. 2013. 3. 434–437.1534

Holland John H. Genetic algorithms // Scientific american. 1992. 267, 1. 66–73.1535

Horni Andreas, Nagel Kai, Axhausen Kay W. The Multi-Agent Transport Simulation MATSim. 2016.1536

Hu Heng, Liu Henry X. Arterial offset optimization using archived high-resolution traffic signal1537

data // Transportation Research Part C: Emerging Technologies. 2013. 37. 131–144.1538

Hu Ta-Yin, Chen Li-Wen. Traffic signal optimization with greedy randomized tabu search algo-1539

rithm // Journal of Transportation Engineering. 2012. 138, 8. 1040–1050.1540

Evolutionary Computation Volume x, Number x 47



Jalili et al.

Hu Wenbin, Wang Huan, Yan Liping, Du Bo. A swarm intelligent method for traffic light schedul-1541

ing: application to real urban traffic networks // Applied Intelligence. 2016. 44, 1. 208–231.1542

Jahangiri Arash, Afandizadeh Shahriar, Kalantari Navid. The otimization of traffic signal timing for1543

emergency evacuation using the simulated annealing algorithm // Transport. 2011. 26, 2.1544

133–140.1545

Jalili Shahin, Husseinzadeh Kashan Ali. Optimum discrete design of steel tower structures using1546

optics inspired optimization method // The Structural Design of Tall and Special Buildings.1547

2018. 27, 9. e1466.1548

Jalili Shahin, Husseinzadeh Kashan Ali. An optics inspired optimization method for optimal design1549

of truss structures // The Structural Design of Tall and Special Buildings. 2019. 28, 6. e1598.1550

Jalili Shahin, Kashan Ali Husseinzadeh, Hosseinzadeh Yousef. League championship algorithms for1551

optimum design of pin-jointed structures // Journal of Computing in Civil Engineering. 2017.1552

31, 2. 04016048.1553

Jamal Arshad, Rahman Muhammad Tauhidur, Al-Ahmadi Hassan M, Ullah Irfan M, Zahid Muhammad.1554

Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algo-1555

rithms // Sustainability. 2020. 12, 5. 1896.1556

Jia Hongfei, Lin Yu, Luo Qingyu, Li Yongxing, Miao Hongzhi. Multi-objective optimization of urban1557

road intersection signal timing based on particle swarm optimization algorithm // Advances1558

in Mechanical Engineering. 2019. 11, 4. 1687814019842498.1559

Jiao Pengpeng, Li Ruimin, Li Zhihong. Pareto front–based multi-objective real-time traffic signal1560

control model for intersections using particle swarm optimization algorithm // Advances in1561

Mechanical Engineering. 2016. 8, 8. 1687814016666042.1562

Jolovic Dusan, Salgado David, Martin Peter, Aldrete Rafael. Traffic Microsimulation Models Assess-1563

ment – A Case Study of International Port of Entry // Procedia Computer Science. 05 2016.1564

83. 441–448.1565
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