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Abstract— In this paper a fault tolerant sliding mode control
allocation law is proposed. The controller is designed through
a particle swarm optimization method which ensures the closed
loop system is optimal for multiple design objectives - including
robustness to uncertainties in the actuator fault and failure
information. The approach is tested for the control of blended
wing body aircraft’s lateral dynamics.

I. INTRODUCTION

In the open literature, Sliding Mode Control (SMC) and
Control Allocation (CA) is a popular combination for Fault
Tolerant Control (FTC). SMC is a robust control methodol-
ogy which can be designed to guarantee robustness against
an unknown (but bounded) matched uncertainty [1], whereas
CA is a method of reconfiguring the distribution of the
control signal to the physical actuators, independently of
the closed-loop system’s performance [2]. This combination
has been shown to be effective for the FTC of fixed-wing
aircraft [3], [4], quad-copters [5], [6] and automobiles [7]
as well as many other over-actuated systems. In these works
the CA mechanism uses knowledge of any actuator faults
and failures to redistribute the control effort and maintain
the system’s performance. In reality exact knowledge of
actuator faults and failures is difficult to obtain and so only
an approximation of the actuator’s health (generated by a
Fault Detection and Isolation scheme) is available which
introduces uncertainty into the closed-loop system. Several
works, such as [3] and [4], have considered the effects
of this uncertainty on the system’s stability and provide
rigorous bounds on the uncertainty for which stability can
be guaranteed.

Typically the process of control design is a laborious one,
requiring a designer who is knowledgeable, with regards to
the underlying control methodology, to manually tune the
controller gains for a particular system. Not only is this a
time consuming (and potentially expensive) process, but the
resulting controller is not guaranteed to be an optimal choice.
In recent years Multiple Objective Optimisation (MOO) has
gained popularity to help expedite this process. In [8] a
Genetic Algorithm (GA) approach is proposed for the design
of a SMC to control the water levels of two inter-connected
tanks. In this case the objectives of minimising tracking
error, rise-time and overshoot were individually weighted
and conflated into a Single Objective Optimisation (SOO)
problem. A similar approach is taken in [9] where the design
of a decoupled SMC and PID controller is conducted by
using a GA to minimise the magnitude of the system’s
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response, this was then tested on the inverted pendulum
problem. The design of a fuzzy SMC, for the speed control
of an induction machine, is considered in [10] where a GA
is used to minimise the tracking error by manipulating the
fuzzy logic membership functions.

To reduce a MOO problem into a SOO problem requires
careful consideration of the relative weighting for each
objective. This is non-trivial and requires an understanding of
the system. The resulting weighted sum objectives also lose
the physical meaning of its original individual objectives.
Furthermore, solving a SOO only provides a single solution
and therefore fails to give the designer a picture of the
trade offs that occur between individual objectives. Instead
in the following works a Pareto optimal design approach is
used to produce a set of optimal controllers. This provides
a more complete picture of the optimisation problem and
can be used to prevent short sighted decision making. To
design a controller for a Biped Robot, the work in [11]
and [9] generate a Pareto front using the tracking error
and control signal size as optimisation criteria: [11] uses a
GA to design the fuzzy logic membership functions (for a
fuzzy SMC) whilst [9] uses a Particle Swarm Optimisation
(PSO) to design the sliding surface of a conventional SMC.
Three different performance characteristics were optimised
in [12] for an active suspension controller using PSO. A
comparison of multiple MOO algorithms was conducted for
this particular problem in [13] and argued that PSO was the
most effective - therefore, PSO will form the basis of the
optimisation used in this paper.

This paper presents a PSO method for the development of
a fault tolerant sliding mode control allocation design where
the underlying control law is based on the work presented
in [4]. The novelty of this paper is in using an automated
optimisation process to maximise the robustness of the con-
troller against uncertainty in the fault reconstruction, whilst
also minimising the tracking error and the size of the control
signals. The proposed method provides an automatic tuning
tool for a control designer, and provides a wider view of the
multiple objectives allowing for better decision making.

II. PROBLEM STATEMENT

Consider the following system

ẋ(t) = Ax(t) +Bu(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm respectively denote the
system’s state and input. The effects of actuator faults and
failures can be described by introducing the diagonal matrix
W = diag(w1, ..., wm) such that (1) becomes

ẋ(t) = Ax(t) +BWu(t) (2)



where the individual components of W satisfy 0 ≤ wi ≤ 1
and represent the health of the ith actuator. When wi = 0
the ith actuator has completely failed whereas when wi = 1
the actuator is healthy - a value in between these two
extremes represents an actuator fault. Due to the difficulty
of monitoring actuator health, knowledge of W is typically
imperfect. Commonly a Fault Detection and Isolation system
(see for example [14] and [15]) is used to provide an
approximation Ŵ ∈ Rm×m which is related to the true fault
W through

W = (I −∆)Ŵ (3)

where ∆ = diag(δ1, ..., δm) represents the error in the fault
estimation. Substituting (3) into (2) produces the following
faulty uncertain system.

ẋ(t) = Ax(t) +B(I −∆)Ŵu(t) (4)

The problem considered in this paper is one of designing a
feedback control law for u(t) such that the closed-loop sys-
tem is optimally robust to the uncertainty ∆ while ensuring
small tracking errors and minimal control efforts.

III. CONTROL ALLOCATION

The controlled outputs of the system in (4) are given as

y(t) = Cx(t) (5)

where C ∈ Rl×n. Assuming the system is over-actuated m >
l and a reduced order control can be defined. Firstly partition
the B matrix from (4) to achieve the form

B =

[
B1

B2

]
(6)

where B1 ∈ R(n−l)×m and B2 ∈ Rl×m where ‖B1‖ is
‘small’ in comparison to ‖B2‖ and so it can be said that
the B2 channels provide the majority of the control effort -
this may require reordering the system’s state. To simplify
the following design procedure it is assumed that ‖B2‖ = 1
(this is always achievable through scaling the last l states
of the system, see [3]). Using the partitioned matrix (6), the
signal u(t) can be described in terms of a reduced order
‘virtual’ control signal through

u(t) = ŴBT
2 (B2Ŵ

2BT
2 )−1v(t) (7)

Substituting (7) into system (4) yields the ‘virtual’ system

ẋ(t) = Ax(t) +

[
B1

B2

]
(I −∆)B+

2 v(t) (8)

where B+
2 is the right pseudo-inverse of B2 given by

B+
2 = Ŵ 2BT

2 (B2Ŵ
2BT

2 )−1v(t) (9)

In the case of perfect fault estimation, W = Ŵ and ∆ = 0,
it can be verified that (4) reduces to

ẋ(t) = Ax(t) +

[
B1B

+
2

I

]
v(t) (10)

demonstrating that v(t) is perfectly mapped to the bottom l
states of the system when W is known.

IV. SLIDING MODE CONTROL DESIGN

A. Sliding Surface Analysis

Define a coordinate transformation x 7→ x̂ = Trx where

Tr =

[
I −B1B

T
2

0 I

]
(11)

In the new coordinates system equation (8) becomes

˙̂x(t) = Âx̂(t)+

[
B1B

N
2 B

+
2

I

]
v(t)+

[
B1B

N
2 ∆B+

2

B2∆B+
2

]
v(t) (12)

where Â = TrAT
−1
r and

BN
2 = I −BT

2 B2 (13)

Under ‘perfect’ conditions, where W = Ŵ = I and ∆ = 0,
the system in (12) reduces to the following regular form [1]:

˙̂x(t) = Âx̂(t) +

[
0
I

]
︸︷︷︸
B̂v

v(t) (14)

Assuming that the matrix pair (Â,B̂v) is controllable, a
control law for v(t) can be constructed using sliding mode
design principles [1]. Firstly define a switching function

s(t) =
[
M I

] [x̂1(t)
x̂2(t)

]
(15)

where x̂1(1) ∈ R(n−l) and x̂2(t) ∈ Rl are partitions of
x̂(t) and M ∈ Rl×(n−l) represents the design freedom (the
process of choosing M will be discussed later on in the
paper). Define a further change of coordinates as x̂ 7→ x̃ =
Tsx̂ where

Ts =

[
I 0
M I

]
(16)

In the new coordinate system (12) becomes[
˙̂x1(t)
ṡ(t)

]
= Ã

[
x̂1(t)
s(t)

]
+

[
B1B

N
2 (I −∆)B+

2

I −B2∆B+
2

]
v(t) (17)

where

Ã = TsÂT
−1
s =

[
Ã11 Ã12

Ã21 Ã22

]
(18)

and in particular

Ã11 = Â11 + Â12M (19)

It can be verified that if (Â, B̂v) is controllable then so is
(Â11, Â12) and therefore it can be assumed that Ã11 is stable
through the design of M . During an ideal motion s(t) =
ṡ(t) = 0, substituting these values into the bottom partition
of (17) and rearranging for the ‘virtual’ control v(t) yields
the equivalent control needed to maintain sliding

veq(t) = −Ψ−1(t)Ã21x̂1(t) (20)

where

Ψ(t) = I +MB1B
N
2 (I −∆)B+

2 −B2∆B+
2 (21)

Substituting veq(t) for v(t) in the top partition of (17) yields

˙̂x1(t) =
(
Ã11 −B1B

N
2 (I −∆)B+

2 Ψ−1(t)Ã21

)
x̂1(t) (22)



which describes the sliding motion of the top n − l states
of the system. This reduced order system can be further
rewritten as

˙̂x1(t) = Ã11x̂1(t)−B1B
N
2 ũ(t)

ỹ(t) = Ã21x̂1

ũ(t) = (I −∆)B+
2 Ψ−1(t)ỹ(t)

 (23)

where Ψ is defined in (21). The open-loop relationship
between ũ(t) 7→ ỹ(t) in (23) has the following transfer
function

G̃(s) = Ã21(sI − Ã11)−1B1B
N
2 (24)

which is stable (since Ã11 is stable by design) and therefore
has a finite infinity norm which is defined as

γ2 = ‖G̃(s)‖∞ (25)

For the following stability analysis, define the following
norms

γ1 = ‖MB1B
N
2 ‖, γ0 > ‖B+

2 ‖ (26)

where B+
2 is defined in (9).

Remark: Due to the boundedness properties of pseudo-
inverses [16], a finite value of γ0 is guaranteed to exist for
any Ŵ ∈ W whereW is the allowable fault set. In this paper
W is chosen to ensure that for all Ŵ ∈ W , det(B2ŴBT

2 ) 6=
0. To find an appropriate value of γ0, the entire search space
of W is explored using GA.
Proposition 1: For any fault/failure combination Ŵ ∈ W
the sliding motion (22) is stable if the imprecision in the
fault reconstruction satisfies

‖∆‖ ≤ ∆max ≤
1− γ0(γ1 + γ2)

γ0(1 + γ1 + γ2)
(27)

Proof The proof is similar to Proposition 1 in [4].

B. Sliding Mode Control Laws

In this paper the virtual control is chosen to have the
following structure

v(t) = −Ã21x̂1(t)− Ã22s(t)︸ ︷︷ ︸
vl(t)

−ρ(t, x)
s(t)

‖s(t)‖︸ ︷︷ ︸
vn(t)

(28)

where vl(t) and vn(t) respectively represent the linear and
non-linear components of the control law.
Proposition 2: Choosing the scalar function ρ(t, x) in (28)
as any function that satisfies

ρ(t, x) ≥ γ0γ1(1 + ∆max) + γ0∆max)‖vl(t)‖+ η

1− γ0γ1(1 + ∆max)− γ0∆max
(29)

where η is a positive design scalar, guarantees that

s(t)T ṡ(t) ≤ −η‖s(t)‖ (30)

and therefore sliding is guaranteed to happen in a finite time
and is maintained for all subsequent time.

Proof The proof is similar to Proposition 2 in [4].

C. Practical Control Laws

To introduce reference tracking, this paper utilises an
integral action method. This is achieved by augmenting the
system in (8) with the integral action states

ẋr(t) = r̄(t)− Cx(t)︸ ︷︷ ︸
e(t)

(31)

such that x̄(t) = col(xr(t), x(t)). Here r̄(t) is a differen-
tiable reference signal. The new augmented system is given
by

˙̄x(t) = Āx̄(t) + B̄W (t)u(t) +Br r̄(t) (32)

where the system matrices are

Ā =

[
0 −C
0 A

]
B̄ =

[
0
B

]
Br =

[
I
0

]
(33)

Through direct evaluation it can be proven that if (A, B) are
controllable and (A, B, C) has no invariant zeros at, or near,
the origin, the augmented system (Ā, B̄) is controllable [1].
The design of the control law (28) and (7) remain unchanged
with the exception of including an additional term in the
linear component of (28) such that

vl(t) = −Ã21x̂1(t)− Ã22s(t)−MBr r̄(t) (34)

To ensure a continuous control signal, and therefore avoid
‘chattering’ [1], a sigmoidal approximation is used for the
non-linear component in (28) such that

vn = ρ(t, x)
s(t)

‖s(t)‖+ δ
(35)

where δ is a small positive design scalar.
The next section discusses the design problem - in partic-

ular how to select the design matrix M from equation (15).

V. PARTICLE SWARM OPTIMISATION

Consider the following generic MOO problem

min ~f(~q) = [fi(~q), ..., fp(~q)]T

s.t. ~q =
[
q1, ..., qr

]T ∈ Ω
(36)

where the search space Ω is defined as

Ω = {qimin
≤ qi ≤ qimax

for i = 1, ..., r} (37)

where qimin and qimax are bounds on the element qi.
Definition: Consider two potential solutions to (36) de-

noted by ~q1 ∈ Rr and ~q2 ∈ Rr; ~q1 is said to dominate ~q2

if ∀i ∈ {1, ..., p}, fi(~q1) ≤ fi(~q2) ∧ ∃i ∈ {1, ..., p} :
fi(~q1) < fi(~q2) - this relationship is denoted by ~q1 � ~q2.
Conversely if ∃i ∈ {1, ..., p} : fi(~q1) < fi(~q2) ∧ ∃i ∈
{1, ..., p} : fi(~q1) > fi(~q2) then ~q1 and ~q2 are said to be
mutually non-dominating [17].

This section will present a Particle Swarm Optimisation
(PSO) algorithm to find the set of mutually non-dominating
solutions to the optimisation problem (36), this set is com-
monly known as the Pareto front. At the end of this section
a method of utilising this algorithm to design a robust SMC,
as described in the earlier sections, is discussed. To explicitly
calculate a Pareto front for (36) is impractical since it would



require every value of ~q ∈ Ω to be evaluated and then
compared with each other. A more efficient method is to
evaluate a random population of potential solutions (formed
from a sub-set of ~q ∈ Ω) and generate an approximate
Pareto front. An evolutionary algorithm can then be used to
iteratively adjust the population such that the approximated
Pareto front converges to the true Pareto front. The PSO
algorithm achieves this through allowing each member of the
population to travel around the search space Ω. The direction
and speed of travel for each member is influenced by both
the position of members on the current Pareto front, and the
best position found by the individual member.

A. Algorithm

The algorithm presented here is based on the work pre-
sented in [18].

1) Assign values to the following variables:
• Population size: z ∈ Z+

• Grid resolution: h ∈ Z+

• Max Member Velocity: νmax

• Maximum iterations: imax

2) Set i = 0.
3) Randomly generate an initial population

P = {~q1, ..., ~qz}

where each member ~qn ∈ Ω.
4) Randomly assign each member of P a velocity ~νn ∈

Rr where ‖~νn‖ < νmax.
5) Evaluate f(~qn) for every member in P and store the

mutually non-dominating members into the repository
R.

6) Re-evaluate R and remove any dominated members1.
7) Linearly divide the fitness space explored by the cur-

rent repository R into h hypercubes of the same size.
Assign weights to each hypercube based on the number
of members that occupy it. If the nth hypercube is
empty then it is ignored, otherwise the weight can be
calculated as

σn =
10

Number of Members in Cube n

8) For each member ~qn in P , update its best value ~q best
n

according to:
a) If ~q best

n is undefined then let ~q best
n = ~qn.

b) If ~qn � ~q best
n then let ~q best

n = ~qn.
c) Otherwise, do nothing.

9) Compute the new velocity of each member using the
following formula:

~νn = c1~νn + c2(~q best
n − ~qn) + c3(Rn − ~qn) (39)

where Rg represents a random member of the repos-
itory. The index g is chosen by selecting a random
member in a hypercube. The particular hypercube is

1Due to the computational cost, the set R should be restricted to a certain
amount of members. The work in [18] provides a method of approaching
this which aims to maintain population diversity.

selected through a Roulette Wheel search - using the
values σn as a weighting2. The values c1, c2 and c3 are
positive design scalars. In the event that ‖~νn‖ > νmax

then the magnitude of the velocity vector is scaled so
that ‖~νn‖ = νmax.

10) Update the position of each member in P through the
formula:

~qn = ~qn + ~νn

If a members new position falls outside of Ω then set
its new position is set to the point at which it left Ω,
its current velocity is then set to ~νn = −~νn.

11) If i = imax, the maximum iterations has been com-
pleted, stop. Else set i = i + 1 and return to Step 5.

In step 1 the following should be considered when selecting
parameters z, h and νmax. A larger population size z will
lead to greater diversity in P , this may be desirable to
ensure that no search areas are overlooked, but this will
increase the computational cost of the optimisation. Similarly
a larger value of h improves the diversity, through directing
members towards less populated areas, whilst also increasing
the computational cost. The value of h should not be chosen
large enough so that each member has its own hypercube, in
this case the influence of population density when selecting
Rg will be diminished. The value νmax doesn’t particularly
affect the speed of each iteration, but it can effect the speed
of convergence. A smaller value of νmax will enable the
members to exploit more of their local area, whilst a larger
value will promote members to explore further afield. Too
much exploitation of a members locality can lead to a poor
convergence rate, whereas too much exploration can result
in prematurely converging to a false Pareto front.

The parameter c1 in (39) is commonly referred to as
the member’s inertia, whereas the parameters c2 and c3 are
commonly referred to as confidence factors. As with physical
systems, a greater inertia means that it is harder (takes a
longer time) to change the members direction, this means
that the member is influenced less by both their own best
position and Rg . The confidence factors c2 and c3 change
the influence that the members own best position and Rg

respectively have on its velocity. If c2 > c3 then more
exploitation is encouraged whereas c2 < c3 leads to greater
exploration. Commonly in the literature c2 and c3 are chosen
so that c2 = c3 (see for example [13]).

B. Sliding Surface Design

Using the PSO optimisation discussed in the previous sub-
section it is possible to iterate upon controller designs and,
by analysing simulation results, produce a set of optimal
controllers. In this paper a controllers optimality is based
on minimising control effort whilst maximising the tracking
performance and robustness to uncertainty in the fault esti-
mation. To design the sliding surface (and thus the controller

2Note that the more populous a hypercube is, the smaller the weighting σn
associated with it will be. Therefore, the more populous hypercubes have
a smaller chance of being selected during the Roulette Wheel Selection.
This promotes diversity in the population by encouraging exploration of
less populated areas.



A =

 0 0 1 0.074
0.048 −0.023 0.087 −1.004
0 −1.806 −2.803 0.504
0 0.384 −0.171 −0.046

 B =

 0 0 0 0 0 0 0 0
0.005 −0.008 −0.001 −0.001 0.001 0.001 0.008 0.005
0.266 −2.914 −1.513 −1.761 1.761 1.513 2.914 0.266

−0.153 0.222 0.050 0.069 −0.069 −0.050 −0.222 −0.153

 (38)

performance) the matrix M in (15) can be chosen through a
quadratic minimisation process [1] in which the performance
index is optimised subject to a symmetric positive weighting
matrix Q ∈ Rn×n. Consider selecting

Q = diag(~q) (40)

where ~q is defined in (36). For a given Q, solving an
associated Riccatti equation specifies the hyperplane matrix
M . To achieve the three objectives discussed above, consider
the fitness function

~f(~q) =
[
−f∆(~q) fe(~q) fu(~q)

]T
(41)

where the individual components are defined as

f∆(~q) = ∆max (42)

fe(~q) =
1

tmax

l∑
i=1

∫ tmax

0

‖ei(t)‖dt (43)

fu(~q) =
1

tmax

m∑
i=1

∫ tmax

0

‖ui(t)‖dt (44)

where ∆max is defined in (27), tmax denotes the maximum
time used to analyse the system’s response, u(t) is defined
by the sliding mode control allocation law (7) and (28) and
e(t) represents the tracking error as defined in (31). The
expressions ei(t) and ui(t), in (43) and (44), denote the ith

component of the respective vectors. Minimising this cost
function in (41) will maximise the tracking performance and
the controller robustness whilst minimising the control effort
used.

VI. A DESIGN EXAMPLE

A. Model

To demonstrate the effectiveness of the proposed PSO
based tuning, the control of a non-linear Blended Wing
Body’s (BWB’s) lateral dynamics is considered. Due to the
lack of a traditional tailplane the BWB (shown in Figure 1)
has both poor control authority and poor stability character-
istics in the lateral axis - this makes the problem of designing
an appropriate controller difficult. The lateral dynamics can
be described by the following equations

V̇ = W0p− U0r + g cos θ0 sinφ+ CY (x, u)q̄S/m̄

φ̇ = p+ r cosφ tan θ0

ψ̇ = r cosφ sec θ0

ṗ = CM (x, u)bq̄S/Ixx

ṙ = CL(x, u)bq̄S/Izz


(45)

where V denotes the horizontal velocity (ms−1), φ and ψ
respectively denote the roll and yaw angles (rad) which
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Fig. 1. Blended Wing Body aircraft diagram (adapted from [19])

have corresponding rates q and r (rads−1). The values W0,
U0 and θ0 represent the vertical velocity (ms−1), horizontal
velocity (ms−1) and the pitch angle (rad). Since only the
lateral dynamics are considered here these values are con-
sidered to be fixed. The aerodynamic coefficients Ci(x, u)
are functions of the control input u and the system state
x. These are derived from computational analysis using the
Vortex Lattice Method (VLM) TORNADO described in [20].
The aircraft’s weight (Kg) is given by m̄, its wingspan (m)
is given by b, and Ii denotes the moment of inertia (Kgm2)
around a pairing of body axes. The dynamic pressure (Pa)
is denoted by q̄. For more information on the aircraft’s
geometric parameters see [19].

Linearising the dynamics in (45) at a ‘wings-level’ flight
condition at an airspeed of 200ms−1 and an altitude of
3000m, a linear model of the following form can be obtained

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(46)

where the A and B matrices are given in (38) and the output
matrix is chosen as

C =

[
1 0 0 0
0 1 0 0

]
(47)

The system state x(t) and the controlled outputs y(t) are

x(t) =
[
φ β p r

]
T (48)

y(t) =
[
φ β

]
T (49)

where φ, p and r have been previously defined and β is the
side-slip angle (rad). The system’s input u(t) is given by

u(t) =
[
δrl δf1 δf2 δf3 δf4 δf5 δf6 δrr

]T
(50)

where each element corresponds to perturbations (rad) of
the matching rudder and elevon surfaces in Figure 1.



B. Optimisation Results

Using the tuning algorithm in §V, as each member of
the population P is evaluated, a controller is created using
the procedure described in §IV with the linearised model
described in §VI-A. The design freedom M in (15) is chosen
through quadratic minimisation with respect to the weighting
matrix Q, which is defined as a function of ~q ∈ Ω in (40).
In this example qimin

= 1 and qimax
= 75 for all i since

this is considered a region that would normally be manually
explored. The controllers performance is analysed using the
fitness functions in (42)-(44) by simulating the closed loop
performance of the non-linear model. During the simulations
the reference signal r(t) is set to roll the aircraft to 20deg
before returning back to ‘wings-level’ flight (see for example
Figure 3a). For each control design the value of ρ(t, x) and
δ from (35) are set as 2 and 0.025 respectively. A value of
γ0 - defined in (26) - is calculated as 2.86 for the set of
faults where at least one rudder (rl or rr) and one elevon
(f1-f6) have an approximated health of 0.5. The population
size z and the grid resolution h are chosen as 300 and 8000
respectively whilst the maximum velocity νmax is chosen as
5. The weightings c1, c2 and c3, used to evaluate a member’s
new velocity (39), are selected as 0.4, 2 and 2.

The PSO was run using the code adapted from [21] for a
total of 500 iterations (i.e. imax = 500) - through experimen-
tation this proved to be long enough to ensure convergence
without using excessive computation. The resulting Pareto
front is shown in Figure 2 from which 4 controllers are
chosen, these are associated with the members ~q∆, ~qe, ~qu and
~qopt. The members ~q∆, ~qe and ~qu are chosen to represent the
optimal solutions to the respective fitness functions: f∆(~q),
fe(~q) and fu(~q). These represent the extreme points of the
search space explored by the repository R. The member ~qopt
is chosen through the Pareto 80/20 principle and represents
an optimal trade-off between all the objective functions [17].

The Pareto front in Figure 2 demonstrates that the PSO
found a typical optimal control trade off between the func-
tions fu(~q) and fe(~q). The Pareto front also shows no clear
relationship between the robustness of the controller and its
position within the optimal control curve - each controller
has a value of f∆(~q) ∈ [0.2985 0.335]. This has resulted in
a Pareto front that closer resembles a 3D line (see bottom
right of Figure 2) as opposed to a surface plot.

VII. SIMULATION RESULTS

To demonstrate the range of controllers produced by the
PSO, the simulation results associated with the optimal
controllers ~q∆, ~qe, ~qu, and ~qopt during the PSO process
are presented in Figure 3. The controllers ~qe and ~qu are
shown to be polar opposites: ~qe offers the best tracking
performance (at a cost to the size of the control signal)
whilst ~qu offers the smallest control signals (at a cost to
the tracking performance). Looking at the Pareto front in
Figure 2, this is to be expected since they are different ends
of the optimal control curve. The optimal choice ~q∆ may
offer the largest robustness (∆max = 0.335) but has both
poor reference tracking and large control signals - indicating
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Fig. 2. Pareto Front produced by PSO

that choosing a controller just to be as robust as possible is
inadvisable. The optimal trade-off controller ~qopt is shown
to have both good tracking performance (close to ~qe) and
small control signal size (close to ~qu) whilst also having a
robustness close to (~q∆) - ∆max = 0.328 for ~qopt compared
to 0.335 for ~q∆.

Figure 4 shows simulation results of ~qopt undergoing the
same manoeuvre used during the PSO whilst subject to a
series of uncertain faults and failures. In this example W =
diag(1, 0.2, 0, 0.5, 1, 0, 1, 0) and the diagonal elements
of ∆ are chosen as a sinusoidal wave of magnitude 0.328
(∆max for ~qopt), with random frequencies and phase angles
for each input channel. The state response in Figure 4a shows
that the system’s performance remains unchanged despite the
faults and failures. In Figure 4b it can be seen that, during the
fault and failure scenario, the failed actuators f2, f5 and rr
receive none of the control effort, whilst the faulty actuators
f1 and f3 received less of the control effort when compared
to the nominal fault free case. The healthy actuators rl, f4

and f6 are shown to compensate for the loss of the control
effort.

VIII. CONCLUSION

This paper proposed a method of designing a robust fault
tolerant sliding mode controller through the use of a multiple
objective particle swarm optimisation. The optimisation was
shown to provide several different optimal controllers from
which a designer could make an informed decision on. From
the set of controllers an optimal trade-off was selected, this
controller was shown to perform well in the presence of
actuator faults and failures during simulation of a non-linear
blended wing body aircraft.
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