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Abstract

In this paper a novel distributed adaptive dual-layer super-twisting sliding mode observer-based scheme is designed
to isolate, reconstruct and mitigate the effects of disturbances and a class of communication attacks affecting both
generator nodes and load nodes in power networks. Voltage phase angles are measured at each node by means of
Phasor Measurement Units (PMUs). Based on this information, an interconnection of adaptive dual-layer super-
twisting sliding mode observers is designed both to estimate frequency deviation in each generator node, and to
perform robust detection and reconstruction of both disturbances and a class of communication attacks. The proposed
estimation scheme exhibits a distributed structure, since it requires only information received from neighbouring
nodes and measurements taken locally in the power network. The novelty of the proposed scheme is its capability
to reconstruct simultaneous disturbances affecting the generator nodes and load nodes, automatically adjusting the
values of the gains of the observers. More precisely, the adaptive gains of the observer obey a recently proposed
dual-layer adaptation law for the super-twisting sliding mode architecture. A disturbance mitigation strategy is also
proposed at each generator node utilising the disturbance estimates. Numerical simulations are discussed to assess the
proposed distributed scheme.

Keywords: Sliding mode; Observers; Power systems; Large-scale-system; State estimation; Fault detection; Fault
isolation.

1. Introduction

The rapid expansion of novel heterogeneous renewable energy based sources, and increasing power demands are
causing new issues and challenges in power systems (Tsai et al., 2017). Phasor Measurement Units (PMUs) have
been recently proposed to provide synchronized faster measurements of real-time voltages and currents (Phadke and
Thorp, 2017). By making use of the measurements gathered from PMUs, it is now possible to design more accurate,
robust and dynamic state estimators (Tebianian and Jeyasurya, 2015), (Rinaldi et al., 2018b), (Pasqualetti et al., 2015).
The timely and accurate isolation and reconstruction of disturbances and attacks can then be exploited to attenuate
their impact on the stability of the power system (Wang and Lu, 2013). Faults can also degrade the performances of
conventional frequency controllers for synchronous generators. A state-of-the-art review of conventional and more
innovative frequency control approaches can be found, for example, in Shayeghi et al. (2009). Perhaps, unsurprisingly,
Proportional Integral (PI) controllers represent the most common approach implemented in practice (Pappachen and
Fathima, 2017). In the literature, relatively few relevant papers have proposed approaches to isolate and reconstruct
disturbances in power grids. In Saoudi and Harmas (2014) an adaptive fuzzy sliding mode-based scheme has been
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employed to stabilise multi-machine power systems in the presence of disturbances, combining a proportional integral
controller with a sliding mode controller. More recently, in Rinaldi et al. (2020), a robust sliding mode observer has
been designed to detect and reconstruct state and output attacks for a linearised differential-algebraic model of a
power network, whilst in Rinaldi et al. (2017), third order sliding mode observers have been proposed to dynamically
reconstruct frequency deviation and power governor variation in a network of thermal power plants subjected to
bounded disturbances. More recently, in Nateghi et al. (2019) secure sliding mode observer-based state estimation has
been proposed to deal with corrupted states and measurements. The proposed approaches revealed to be completely
centralised and applied to the linearised IEEE 14 bus benchmark.

A distributed observer-based adaptive control method has been proposed in Shi and Shen (2017) to achieve leader-
following consensus in multi-agent uncertain systems. More recently, in Shen et al. (2019a) an adaptive fuzzy control
methodology has been conceived to ensure that the tracking error converges to an adjustable small neighbourhood of
the origin. In Shen et al. (2019b) the consensus problem of a class of leader-following systems on undirected graph
with a fixed topology has been addressed via adaptive controllers.

Adaptive sliding mode estimators have been exploited in relatively few relevant works. For example, in Liu et al.
(2014) an adaptive-gain second order sliding mode observer has been employed for multi-cell converters. In Tursini
et al. (2000) an adaptive first order sliding mode observer has been used to estimate the rotor flux component for the
purpose of speed control in induction motors. Similarly, in Li et al. (2005) two sliding-mode observers have been
employed with application to induction motors to make flux and speed estimation robust to parameter variations.

In this paper a novel distributed adaptive dual-layer super-twisting sliding mode observer is presented. The pro-
posed observation approach enables to isolate, reconstruct and mitigate the effects of the disturbances, as well as a
class of communication attacks affecting both generator nodes and load nodes in power networks. The adaptive gains
of the observer are self-tuned in accordance with the dual-layer adaptation algorithm recently introduced Edwards
and Shtessel (2016). If accurate upper bounds on the uncertainties are represented by known nonlinear functions of
the states, the variable gains super-twisting approach in Gonzalez et al. (2011) could be used. Similar to Edwards and
Shtessel (2016) and to Moreno et al. (2016) we assumed very little knowledge of the uncertainties, and the gains of the
super-twisting scheme are functions of an adapting parameter depending on the output observation error. However,
whereas in Moreno et al. (2016) the changing parameter is monotonically increasing until sliding motion is estab-
lished, in our paper the mechanism for adapting the gains is based on the ”dual layer” work of Edwards and Shtessel
(2016) and guarantees that if sliding is lost, in finite time, the gain is sufficiently increased until sliding is restored.
Another beneficial feature of the adopted methodology is that during sliding, the adaptive gain takes as small as pos-
sible value to maintain sliding. Again, similarly to Edwards and Shtessel (2016), in the present paper, the values of
the observer adaptive gains are increasing in a concert prior to achieving the second order sliding mode (2-SM). The
adaptive gain values dynamically respond to the changes in the disturbance profiles and attempt to decrease when the
disturbance decreases.

Main Contribution

The main contribution of the present paper is the design of a distributed scheme based on an adaptive dual-
layer super-twisting sliding mode architecture to perform robust disturbance and communication attack reconstruction
and mitigation in power systems. In the present paper, multiple disturbances and communication attacks affecting
generators and loads are considered. The starting point of the present work can be considered to be Rinaldi et al.
(2018a), but several novelties are provided in contrast to the earlier work:

• The dynamical model for the power system is nonlinear and it comprises frequency-dependent load dynamics
(Zhao et al., 2015), which makes the approach closer to the real practice.

• In our paper the mechanism for adapting the gains is directly the ”dual layer” work of Edwards and Shtessel
(2016) and guarantees that if sliding is broken, in finite time, the gain is sufficiently increased until sliding
is restored. It follows that it is no longer necessary to know a priori a value for the upper-bounds of the
disturbances. During sliding the adaptive gain seeks to take as small as possible a value to maintain sliding.
This helps mitigating chattering and the amplification of noise.
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Table 1: List of Symbols and Variables Used in the Paper.
Symbol Meaning
δi (rad) generator voltage phase angle

∆ωgi (p.u.) generator frequency deviation
ϑi (rad) load voltage phase angle

∆ωli (p.u.) load frequency deviation
Pgi (p.u.) generator input power
Pli (p.u.) load power demand
fgi (p.u.) disturbance acting on a generator
fli (p.u.) disturbance acting on a load

Dgi (p.u.) generator droop control coefficient
Dli (p.u.) load droop control coefficient
Mi (p.u.) generator inertia
Bi j (p.u.) transmission line susceptance

• A class of communication attacks amongst the observers is tackled. Moreover, here it will be shown that a
standard pre-existing Proportional Integral (PI) controller can still be employed (Kundur et al., 1994), suitably
coupled with disturbance compensation.

Numerical simulations, which are based on the IEEE 39 bus power network (Hiskens, 2013), are used to assess
the proposed estimation technique. To the best of the authors’ knowledge, the use of a network of adaptive dual-layer
super-twisting sliding mode observers, applied to isolate and reconstruct multiple disturbances and communication
attacks on generators and/or on loads in power networks, has never been proposed before.

2. Power Network System Description

2.1. Graph Theory Recalls
A power network can be interpreted as a connected and undirected graph G(N ,E), including the set of nodes

N (which are associated with the generators and the loads), and the set of edges E (which represents the power
transmission lines) (Dorfler and Bullo, 2013). The set of node N is partitioned into the set of generators G and the
set of edges L such that N = G ∪L. The weight Bi j (which is the susceptance) characterizes the edge between the
i-th and the j-th node. The set Ni is the neighborhood of the i-th node and can be decomposed into the neighboring
generator nodes setMi, and the neighboring load nodes set Oi, such that Ni =Mi∪Oi.

2.2. Generator Dynamics
The following differential equations describe the dynamics of each generator node (Kundur et al., 1994):

δ̇i = ∆ωgi

Mi∆ω̇gi = Pgi −Dgi∆ωgi −∑ j∈Ni Bi j sin(δi−ϑ j)+ fgi

ygi = δi.
(1)

The reader is referred to Table 1 for the description of the state variables for the generators (δi, ∆ωgi), for the known
input (Pgi) and the model parameters. In (1), the expression −∑ j∈Ni Bi j sin(δi−ϑ j) denotes the total electrical active
power flowing from the i-th generator node to its neighbourhood (Sauer et al., 2017), while fgi is a disturbance that
can act on the i-th generator node. The only output measured by a PMU (Phadke and Thorp, 2017) is the generator
voltage phase angle ygi = δi.

2.3. Load Dynamics
The so-called frequency-dependent load dynamical model is adopted in the present work (Kundur et al., 1994).

Specifically, the following differential-algebraic structure will be used

ϑ̇i = ∆ωli
0 = Pli −Dli∆ωli −∑ j∈Mi Bi j sin(ϑi−δ j)−∑k∈Oi Bik sin(ϑi−ϑk)+ fli
yli = ϑi.

(2)
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The system in equation (2) can be rewritten as a single differential equation:

Dli ϑ̇i = Pli −∑ j∈Mi Bi j sin(ϑi−δ j)−∑k∈Oi Bik sin(ϑi−ϑk)+ fli
yli = ϑi.

(3)

Table 1 describes the state variables for the load (ϑi), the known input
(
Pli

)
and the model parameters. The only

output measurement is the load voltage phase angle yli = ϑi gathered from a PMU.
For both the generator and the load dynamics, the following assumption is imposed:

Assumption 1. It is assumed that:

(A1) The model parameters in (1) and in (3) are assumed to be locally known at the i-th generator and at the i-th
load level, respectively.

(A2) Signal fgi in (1) is a bounded differentiable disturbance. The bounds for the disturbance itself and for its time
derivative are assumed to be finite but unknown. It follows that | fgi | < λ1gi

, | ḟgi | < λ2gi
, where λ1gi

, λ2gi
are

positive unknown constants.

(A3) Signal fli in (3) is a twice bounded differentiable disturbance. The bounds for the disturbance itself and for its
first and second time derivatives are assumed to be finite but unknown. It follows that | fli | < λ1li

, | ḟli | < λ2li
,

and | f̈li |< λ3li
where λ1li

, λ2li
, and λ3li

are positive unknown constants.

3. Adaptive Observers Design

3.1. Generator Observer

The following adaptive super-twisting-like sliding mode observer is proposed to estimate the frequency deviation
in each generator node, exploiting ideas from Rinaldi et al. (2020) and from Edwards and Shtessel (2016)1:

˙̂
δi = −αi(t)

∣∣eδi

∣∣1/2sign
(
eδi

)
−aieδi +∆ω̂gi +Φgi

(
Lgi(t),eδi

)
∆ ˙̂ωgi =

1
Mi

(
Pgi−Dgi∆ω̂gi− ∑

j∈Ni

Bi j sin
(
ygi − yl j

))
−βi(t)sign

(
eδi

)
−a2

i eδi+aiΦgi

(
Lgi(t),eδi

)
−aiαi(t)

∣∣eδi

∣∣1/2sign
(
eδi

)
(4)

ŷgi = δ̂i, (5)

where δ̂i is the estimate of δi, ∆ω̂gi is the estimate of ∆ωgi , eδi , δ̂i− δi, ai , −Dgi/Mi, whilst αi(t) and βi(t) are
time-varying gains. The terms Φgi(·) and Lgi(t) are additional terms driven by the output estimation error and will
be described in the sequel.

Remark 1. In (4), an additional term−aieδi is present compared to the adaptive super-twisting approach in Edwards

and Shtessel (2016), whilst in (4) −a2
i eδi , −aiαi(t)

∣∣eδi

∣∣1/2 sign
(
eδi

)
, and aiΦgi

(
Lgi(t),eδi

)
have been included. The

motivation for these choices is detailed in the sequel. In addition, in contrast to Rinaldi et al. (2020), the observer
exploits measurements of the voltage phase angles yl j from the neighbouring load nodes, gathered by PMUs.

1The time dependence on the variable is reported from this point onwards on the paper only for the time-varying gains of the observers and for
the auxiliary signals for the implementation of the adaptation law.
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By subtracting (4)-(4) from (1), one obtains

ėδi = −αi(t)|eδi |
1/2sign

(
eδi

)
−aieδi + eωi +Φgi

(
Lgi(t),eδi

)
(6)

ėωi = −aiαi(t)
∣∣eδi

∣∣1/2 sign
(
eδi

)
+aiΦgi

(
Lgi(t),eδi

)
+aieωi−βi(t)sign

(
eδi

)
−a2

i eδi−
fgi

Mi
, (7)

where eωi , ∆ω̂gi −∆ωgi . Exploiting ideas from Edwards and Shtessel (2016), the following time-varying gains are
chosen

αi(t) =
√

Lgi(t)α0i (8)

βi(t) = Lgi(t)β0i , (9)

where α0i and β0i are positive constants. The time varying positive gain Lgi(t) is selected as follows

Lgi(t) = l0i + lgi(t), (10)

where l0i is a positive constant and lgi(t) satisfies the adaptation law

l̇gi(t) =−ρgi(t)sign(ϕgi(t)) . (11)

where the quantity ϕgi(t) will be defined later. The additional nonlinear term Φgi(·) is selected as

Φgi

(
Lgi(t),eδi

)
=−

L̇gi(t)
Lgi(t)

eδi . (12)

In (11), the time-varying scalar ρgi(t) is given by

ρgi(t) = r0i + rgi(t), (13)

where r0i is a positive design constant and rgi(t) satisfies

ṙgi(t) = γi
∣∣ϕgi(t)

∣∣ , (14)

where γi is a positive design constant. The signal ϕgi(t) in (11) and (14) is defined as

ϕgi(t) = Lgi(t)−
1

ηiβ0i

∣∣vgi(t)
∣∣− ιgi , (15)

where the constant ηi is chosen such that 0 < ηi < 1/β0i < 1, whilst ιgi satisfies

1
ηiβ0i

∣∣vgi(t)
∣∣+ ιgi

2
>
∣∣vgi(t)

∣∣ (16)

Finally, signal vgi(t) represents an approximation of the equivalent injection associated with the discontinuous signal
βi(t)sign

(
eδi

)
in (4), and is generated from a low-pass filter: here

v̇gi(t) =
1
τi

(
βi(t)sign

(
eδi

)
− vgi(t)

)
, (17)
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where τi is a small positive constant known in advance and selected based on engineering intuition about the system.
By defining the variable eωi = eωi −aieδi , the system of equations (6)-(7) can be rewritten as follows

ėδi = −αi(t)|eδi|
1/2sign

(
eδi

)
+eωi+Φgi

(
Lgi(t),eδi

)
ėωi = aieωi −βi(t)sign

(
eδi

)
−a2

i eδi

−aiαi(t)
∣∣eδi

∣∣1/2 sign
(
eδi

)
−

fgi

Mi
(18)

+aiΦgi

(
Lgi(t),eδi

)
−ai

(
eωi −aieδi

−αi(t)|eδi |
1/2sign

(
eδi

)
+Φgi

(
Lgi(t),eδi

))
After straightforward algebraic manipulations

ėδi = eωi−αi(t)|eδi|
1/2sign

(
eδi

)
+Φgi

(
Lgi(t),eδi

)
ėωi = −βi(t)sign

(
eδi

)
−

fgi

Mi
. (19)

The following two propositions will now be proven:

Proposition 1. Choosing

α0i = 2
√

2β0i (20)

where β0i > 1 and ensuring that

Lgi(t)≥max
{

l0i , | fgi |/Mi
}

(21)

the time-varying gains in (8) and (9) guarantee a a second order sliding mode eδi = ėδi = 0 in (19) in finite time.

PROOF. See Appendix A. 2

Furthermore,

Proposition 2. Provided that | fgi | and | ḟgi | are bounded (Assumption 1), the dual layer adaptation scheme from (11)
and (14) guarantees that

Lgi(t)> | fgi |/Mi (22)

in finite time.

PROOF. See Appendix B. 2

The sliding motion in system (19) is characterised by the conditions eδi = ėδi = 0. The average value vgi of the
discontinuous signal βi(t)sign

(
eδi

)
compensates for the signal − fgi/Mi and therefore during the sliding motion

vgi =−
fgi

Mi
. (23)

An estimation f̂gi for the disturbance fgi is given by

f̂gi =−Mivgi . (24)

Remark 2. A low-pass filter (Edwards and Spurgeon, 1998) (governed by (17)) can be used to extract the signal vgi

from the discontinuous signal βi(t)sign
(
eδi

)
. The choice of the bandwidth of the filter used to estimate the equiva-

lent injection is really important. The bandwidth must be sufficiently large so the key-frequency components of the
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disturbances are captured, but not too large so that possible noise becomes part of the injection signal. Practically
speaking, also the performance and limitations of the software and hardware on which this scheme is implemented
must be taken into account. During the tuning process the signal vgi can be examined, relying on an engineering
intuition, to determine whether it represents a meaningful disturbance based on existing statistics of the disturbances
and bandwidths of the possible uncertainty.

A disturbance isolation procedure can be easily implemented whenever the modulus of f̂gi passes an appropriate
positive small threshold εgi . Specifically{

| f̂gi | ≥ εgi i-th generator node is disturbed
| f̂gi |< εgi no disturbance.

(25)

Remark 3. The proposed distributed estimator for a disturbance in one generator node is totally insensitive to other
simultaneous disturbances in other (generator or load) nodes. This can be understood by considering the dynamical
coupling between the nodes in the power network. This takes place at the voltage phase angle level (see equations (1)
and (3)), which are measured by neighboring PMUs and communicated as stated above.

3.2. Load Observer
Next consider the following adaptive super-twisting sliding mode observer to estimate disturbances in each load

node

˙̂
ϑi =

1
Dli

(
Pli − ∑

j∈Mi

Bi j sin
(
yli − yg j

)
−∑

k∈Oi

Bik sin
(

yli − ylk

))
−λi(t)

∣∣eϑi

∣∣1/2sign
(
eϑi

)
+ψ̂i +Φli

(
Lli ,eϑi

)
˙̂ψi = −µi(t)sign

(
eϑi

)
(26)

ŷli = ϑ̂i,

where ϑ̂i represents the estimate of ϑi, ψ̂i is an auxiliary state variable, eϑi , ϑ̂i−ϑi, λi and µi are time-varying gains,
and the additional term Φli(·) is selected analogously to (12). The observer in (26) receives both the measurements of
the voltage phase angles yg j of the neighbouring generator nodes, and the measurements of the voltage phase angles
ylk of the neighbouring load nodes. By defining the new variable

eψi , ψ̂i−
fli

Dli
, (27)

the error dynamics for the adaptive super-twisting load observer are obtained by subtracting (3) (divided by Dli ) from
(26):

ėϑi = −λi(t)
∣∣eϑi

∣∣1/2sign
(
eϑi

)
+eψi+Φli

(
Lli ,eϑi

)
ėψi = −µi(t)sign

(
eϑi

)
−

ḟli
Dli

. (28)

Analogously to the error dynamics (19), exploiting again Assumption 1, the system in equation (28) is driven to the
origin in a finite time. The sliding motion of the system in (28) is characterised by the conditions eϑi = eψi = 0. Since
eψi is steered to zero in a finite time, exploiting its definition in (27), which holds for any time instant, it is apparent
that the condition

f̂li = Dliψ̂i (29)

holds in a finite time. From (29) it is apparent that an estimate f̂li of the load disturbance fli can be obtained.
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Distributed
Adaptive STO

in (4)-(5)

Decentralised
Adaptive STO

in (35)

-

         in (34)

       in (37)

     in (38)

Figure 1: A schematic of the distributed adaptive Super Twisting Observer (STO) in equations (4)-(4), suitably coupled with the additional decen-
tralized STO in (34), for the purpose of disturbance reconstruction in presence of the communication attack mgi (t).

Remark 4. In contrast to Remark 2, the low-pass filter is not required to reconstruct the load disturbance, since the
signal ψ̂i is continuous.

Analogously to (25), the following (practical) criteria for local load disturbance isolation can be adopted{
| f̂li | ≥ εli i-th load node is disturbed
| f̂li |< εli no disturbance,

(30)

where εli is an appropriate positive small threshold.

4. Communication Attack Reconstruction

In this section, a class of attacks is assumed to potentially take place at the adaptive super-twisting observers level.
More precisely, it is assumed that each observer receives corrupted measurements gathered from the neighbouring
nodes and an the effect of the disturbance is cancelled throughout an injection of an attack signal. It will be shown
that these kinds of attacks can be isolated and reconstructed by introducing an additional decentralized adaptive super-
twisting observer for each node of the power network.

4.1. Generator Observer Communication Attacks Reconstruction

Suppose that each adaptive super-twisting-like sliding mode observer for the generator in the form of (4)-(4)
receives the corrupted measurements gathered by the neighbouring nodes and an attack cancelling the effect of the
disturbance in its matched channel. This means that signal mgi , defined as

mgi ,
fgi +∑ j∈Ni Bi j sin

(
ygi − yl j

)
Mi

, (31)

will be included in equation (4). By making use of (31), the corrupted observer error dynamics (19) become

ėδi = eωi−αi(t)|eδi|
1/2sign

(
eδi

)
+Φgi

(
Lgi(t),eδi

)
ėωi = −βi(t)sign

(
eδi

)
+

∑ j∈Ni Bi j sin(δi−ϑ j)

Mi
. (32)

The effect of the bounded disturbance mgi appears in the matched channel of the system (32), which converges to the
origin in a finite time as proved in Section 3. Moreover, equation (23) becomes

vgi =
∑ j∈Ni Bi j sin(δi−ϑ j)

Mi
. (33)

From (33) it is no longer possible to reconstruct the generator disturbance fgi , since its effect has been cancelled by
(31). In order to solve this issue, an additional decentralised adaptive-super-twisting-like sliding mode observer for
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each generator node is introduced:

˙̃
δi = −α̃i(t)

∣∣ẽδi

∣∣1/2sign
(
ẽδi

)
−aiẽδi +∆ω̃gi + Φ̃gi

(
L̃gi(t), ẽδi

)
∆ ˙̃ωgi =

1
Mi

(
Pgi−Dgi∆ω̃gi

)
−β̃i(t)sign

(
ẽδi

)
−a2

i ẽδi+aiΦ̃gi

(
L̃gi(t), ẽδi

)
−aiα̃i

∣∣ẽδi

∣∣1/2 sign
(
ẽδi

)
(34)

ỹgi = δ̃i,

where δ̃i denotes now an additional estimate of δi, ∆ω̃gi denotes an additional estimate of ∆ωgi , ẽδi , δ̃i− δi, while
α̃i, β̃i, and Φ̃gi(·) are selected as in Section 3. Exploiting the ideas in Section 3, the error dynamics for the i-th
decentralized observer are given by

˙̃eδi = ẽωi − α̃i(t)ẽδi |
1/2sign

(
ẽδi

)
+ Φ̃gi

(
L̃gi(t), ẽδi

)
˙̃eωi = −β̃i(t)sign

(
ẽδi

)
−

fgi

Mi
(35)

+
∑ j∈Ni Bi j sin(δi−ϑ j)

Mi
,

which converge to the origin in a finite time as previously. Now the average value ṽgi of the discontinuous signal
β̃i(t)sign

(
ẽδi

)
satisfies

ṽgi =
− fgi +∑ j∈Ni Bi j sin(δi−ϑ j)

Mi
. (36)

By making use of both (33) and (36) and exploiting basic algebraic relations, an estimate f̂gi for fgi can be obtained
as follows.

f̂gi = Mi
(
vgi − ṽgi

)
. (37)

Figure 1 shows a schematic of the proposed solution to tackle communication attacks for the generator observers.

4.2. Load Observer Communication Attack Reconstruction

The same ideas applied in Section 4.1 will be now used to reconstruct communication attacks at the level of each
load observer. Since the procedure is similar to Section 4.1, only a sketch will be provided. Suppose that each super-
twisting-like sliding mode observer for the load in the form of (26) receives the corrupted measurements gathered by
the neighbouring (generator and load) nodes and the effect of the load disturbance is cancelled by an attack signal.
This means that

Ωi , ∑
j∈Mi

Bi j sin
(

yli − yg j

)
+ ∑

k∈Oi

Bik sin
(

yli − ylk

)
mli =

fli +Ωi

Dli
(38)

Following the same procedure presented in Section 4.1, an estimate for the load disturbance can be obtained as

f̂li = Di
2

(
ψ̃i− ψ̂i

)
. (39)

where ψ̃i is the additional variable of the decentralised observer analogous to ψ̂i.
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5. Disturbance Mitigation for Generator Nodes

In this section, the distributed disturbance isolation and reconstruction scheme proposed in Section 3 will be
applied to mitigate the effect of the disturbances associated with the generator nodes. It is stated that a PI controller
has been designed to stabilise each i-th disturbance-free generator node. The aim of the proposed approach is to
mitigate the impact of generator disturbances by making use of both the pre-existing PI controller and the estimate of
the generator disturbance. Specifically, consider that the generator input power Pgi (the control input) is the output of
a standard PI controller as follows:

Pgi = KPi∆ω̂gi +KIi

∫ t

0
∆ω̂gi(τ)dτ, (40)

where KPi and KIi are respectively the proportional and the integral gain, which have been tuned (by following standard
rules, for example as in Kundur et al. (1994)), to asymptotically steer to zero the frequency deviation in each i-th
disturbance-free generator node. The control input in (40) is modified as follows:

Pgi = Pgi − f̂gi , (41)

in which the disturbance estimate f̂gi is added. It is assumed in the present approach that the expression for Pgi in (41)
holds only after the attainment of the sliding motion in the system in equations (6)-(7), which takes place in a finite
time. The resulting controlled generator dynamics are given by

δ̇i = ∆ωgi

Mi∆ω̇gi = KPi∆ω̂gi +KIi
∫ t

0 ∆ω̂gi(τ)dτ

−∑ j∈Ni Bi j sin(δi−ϑ j)

−Dgi∆ωgi + fgi − f̂gi

ygi = δi.

(42)

According to the developments in Section 3, it is apparent that the effect of the generator disturbances is compensated,
since f̂gi asymptotically tends to fgi . Therefore, in the presence of the disturbance mitigation strategy in (41), the pre-
existing PI controller gains can still be employed. As a result, ∆ωgi asymptotically tends to zero.

Remark 5. The adopted distributed disturbance mitigation strategy acts on each generator node only after the finite
time convergence of the error dynamics in (19) to the origin. During this transient, which only takes place when the
sliding mode is lost, i.e. conceptually only once at the initial onset of the disturbance action, the so-called primary
load-frequency control (whose control signal is equal to−Dgi∆ωgi ) ensures that, in spite of the presence of a bounded
disturbance, the frequency deviation remains bounded (Kundur et al., 1994).

6. Simulation Results

In this section, the performance of the proposed scheme is evaluated by using the IEEE 39 bus benchmark
(Hiskens, 2013), (Moeini et al., 2015). This power network, which has been used in other relevant works for as-
sessment purposes, is composed of 10 generator nodes and 29 load buses, as shown in the schematic in Figure 2.

The power network with the estimation scheme has been simulated in a Matlab-Simulink R2018a environment,
using the integration method Ode1 (Euler method) with a fixed integration step size equal to τEuler = 10−4 seconds.
This choice of the sampling time is also acceptable from a practical perspective, as illustrated in (Gungor et al.,
2012), where the latency ranges for the wide-area monitoring schemes for smart power systems have been presented.
The filter time constant τi in (17) is chosen equal to 0.01 seconds. This tuning is compatible with the selected
numerical Matlab solver Ode1 (Euler method), which is characterised by the fixed integration step size τEuler. It yields
τi >> τEuler, which is acceptable from the software implementation viewpoint of the proposed observers. The power
network is at steady state for 0 < t < 1 seconds, which means that the power generation is equal to the consumption
amongst the nodes At the time instant t = 1 seconds, a disturbance of 30 MW affects the 2-nd generator node, whilst
at the time instant t = 2 seconds, a disturbance of 33 MW acts on the 4-th, 12-th, and 20-th load node. Note that these
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Figure 2: A schematic of the IEEE 39 bus power network comprising 10 generator nodes and 29 load nodes.
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kinds of disturbances can be considered in practice as unregulated generations and consumptions in power systems.
The proposed distributed estimation scheme displays the following features:

• As shown in Figure 3-(h), it is possible to dynamically track the evolution of the frequency deviation of each
generator node, both at steady state and during the transient due to the disturbances.

• A transient can be noted during the first seconds, which is due to the reaching of the sliding motion, (see Figure
3-(h)).

• The proposed scheme displays the capability of tracking both the generator disturbance and load disturbance,
(Figure 3-(c) and Figure 3-(f)).

• The input power at each generator node is regulated according to (41) in a decentralised fashion, by using the
local estimate of the frequency deviation and the local generator disturbance reconstruction. From Figure 3-
(i) it is possible to note that that all the 10 generator input powers increase, thus asymptotically bringing the
frequency deviation back to zero in each generator.

• The adaptive gains for all the observer automatically increase and decrease to deal with the magnitude of the
disturbances/attacks while avoiding the gain overestimation, as shown in Figure 3-(a), (b), (d), and (e).

7. Conclusions

In the paper an adaptive distributed estimation scheme has been presented capable of isolating and reconstructing
simultaneous disturbances and attacks affecting power networks. Relying on a local exchange of information about
the system, it has been possible to design a network of adaptive super-twisting sliding mode observers connected
in a distributed fashion. The time-varying gains of the observer are tuned according to a recently proposed dual-
layer adaptation law for the super-twisting sliding mode architecture. A disturbance mitigation strategy has been also
proposed at each generator node utilising the disturbance estimates. Numerical simulations have been included to
assess the performance of the proposed distributed scheme.

Appendix A. Proof of Proposition 1

Consider a candidate Lyapunov function for the system in (19) of the form

V (t,eδi ,eωi) = p1iLgi(t)|eδi | (A.1)

+2p2iLgi(t)
1/2eωisign(eδi)|eδi |

1/2 + p3ie
2
ωi

where p1i , p3i > 0 and p2
2i
< p1i p3i . Employing the notation

xi = col(x1i ,x2i) := col(Lgi(t)
1/2sign(eδi)|eδi |

1/2,eωi) (A.2)

The Lyapunov function V (t,eδi ,eωi) in (A.1) can be written as V = xT
i Pixi where the symmetric positive definite matrix

Pi =

[
p1i p2i

p2i p3i

]
(A.3)

Since Lgi(t) is bounded and Lgi(t)> l0i > 0, then exploiting the positivity of Pi implies V (t,eδi ,eωi) is positive definite
with respect to (eδi ,eωi), continuous and radially unbounded. The expression for the time derivative V̇ will now be
obtained in terms of (x1i ,x2i), which therefore requires expressions for ẋ1i and ẋ2i . From (19), for eδi , 0, x1i from
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(A.2) satisfies

ẋ1i =

√
Lgi(t)

2|eδi |1/2

(
−αi(t)sign(eδi)|eδi |

1/2 + eωi +Φgi(·)
)

+
L̇gi(t)

2
√

Lgi(t)
sign(eδi)|eδi |

1/2

= − αi(t)
2|eδi |1/2 x1i +

√
Lgi(t)

2|eδi |1/2 eωi +

√
Lgi(t)

2|eδi |1/2 Φgi(·)

+
L̇gi(t)

2
√

Lgi(t)
sign(eδi)|eδi |

1/2

= − αi(t)
2|eδi |1/2 x1i +

√
Lgi(t)

2|eδi |1/2 x2i (A.4)

since by the definition of Φgi(·) in (12)√
Lgi(t)

2|eδi |1/2 Φgi(·)+
L̇gi(t)

2
√

Lgi(t)
sign(eδi)|eδi |

1/2 = 0 (A.5)

Furthermore when eδi , 0, x2i from (A.2) satisfies

ẋ2i =
1

|eδi |1/2

(
−βi(t)sign(eδi)|eδi |

1/2−|eδi |
1/2 fgi

Mi

)
=

√
Lgi(t)
|eδi |1/2

(
− βi(t)

Lgi(t)
x1i − f̃i

)
(A.6)

where the (re-defined) uncertainty in (A.6) is given by

f̃i =
|eδi |

1/2√
Lgi(t)

fgi

Mi
(A.7)

Since |x1i |=
√

Lgi(t)|eδi |
1/2 it follows from (A.7) that the re-defined uncertainty satisfies

| f̃i| ≤
| fgi/Mi|
Lgi(t)

|x1i | (A.8)

Since by assumption | fgi/Mi| < Lgi(t), it follows that | f̃i| ≤ |x1i | i.e the uncertainty f̃i lies in the sector [ −1 1 ].
Using the definitions of αi(t) and βi(t) in (8)-(9) it follows that (A.4) and (A.6) can be written in concise form as

ẋi =
Lgi(t)
|x1i |

(
A0ixi−B0i f̃i

)
, x1i , 0 (A.9)

where

A0i =

[
− 1

2 α0i
1
2

−β0i 0

]
B0i =

[
0
1

]
(A.10)

Therefore along any solution of (19), when eδi , 0,

V̇ =
Lgi(t)
|x1i |

(
xT

i (PiA0i +AT
0i

P)xi−2xT
i PiB0i f̃i

)
(A.11)
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where xi is defined in (A.2). Applying Young’s inequality to (A.11) yields

V̇ ≤
Lgi(t)
|x1i |

(
xT

i (PiA0i +AT
0i

Pi +PiB0iB
T
0i

Pi)xi + | f̃i|2
)

(A.12)

It follows the state component x1i =C0ixi, if C0i =
[

1 0
]
. Then since | f̃i| ≤ |x1i |, it follows from (A.12) that

V̇ ≤
Lgi(t)
|x1i |

(
xT

i (PiA0i +AT
0i

Pi +PiB0iB
T
0i

Pi)xi + |x1i |
2
)

=
Lgi(t)
|x1i |

xT
i

(
PiA0i +AT

0i
Pi +PiB0iB

T
0i

P+CT
0i

C0i

)
xi

≤ −ε0i

Lgi(t)
|x1i |

V (A.13)

It follows from Rayleigh’s inequality that V > λmin(Pi)‖xi‖2 > λmin(Pi)|x1i |2 and therefore
√

V >
√

λmin(Pi)|x1i |

Since by definition Lgi(t)> l0i where l0i is a positive scalar, from (A.13)

V̇ ≤−ε0i

Lgi(t)
|x1i |

V ≤−ε0i l0iV
|x1i |

≤ −κi
√

V (A.14)

where the positive scalar κi = ε0i l0i

√
λmin(Pi). It follows from the arguments above that along the solution of (19),

whenever eδi , 0, V̇ ≤ −κi
√

V . The function V defined in (A.1) is continuous and differentiable except on the set
S = {(eδi ,eωi) : eδi = 0}. The trajectories of (19) cannot stay on S since any point in this set takes the form (0,eωi)
where eωi , 0, and from (19), ė1 = eωi , 0. Consequently V is a continuous decreasing function and therefore from
the ‘Lyapunov’ result for differential inclusions (Deimling, 2011), the equilibrium point (eδi ,eωi) = (0,0) is reached
in finite time. Substituting for eδi = eωi = 0 in (19) it follows that ė1 = 0 in finite time. 2

Appendix B. Proof of Proposition 2

Define a new variable

ei(t) = qia1i/(ηiβ0i)− rgi(t) (B.1)

where the scalar qi > 1 and represents a safety margin to guarantee | d
dt |(vgi(t))|| < qia1i , where a1i is a positive

unknown constant representing the upper-bound for | ḟgi |/Mi . From the definition of ei(t) and the expression for ṙgi(t)
from (14), it follows that

ėi(t) =−ṙgi(t) =−γi
∣∣ϕgi(t)

∣∣ (B.2)

Arguing as in Utkin and Poznyak (2013) the variable ϕgi(t) from (15) evolves according to

ϕ̇gi(t) = l̇gi(t)−
1

ηiβ0i

d
dt
|vgi(t)| (B.3)

Consequently from (11)

ϕ̇gi(t) =−(r0i +qia1i/(ηiβ0i)− ei(t))︸                                ︷︷                                ︸
ρgi (t)

sign(ϕgi(t))−1/(ηiβ0i)φgi (B.4)
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where φgi(t) =
d
dt |vgi(t)| and |φgi(t)| < qia1i where qi > 1. The dynamical system formed from the variables ϕgi(t)

and ei(t), evolving according to (B.2) and (B.4), will now be analysed using the Lyapunov function candidate

V (ϕgi(t),ei(t)) =
1
2

ϕ
2
gi
(t)+

1
2γi

e2
i (t) (B.5)

From (B.4) it follows that

ϕ̇gi(t)ϕgi(t) ≤ ϕgi l̇gi(t)+ |ϕgi(t)|
qia1i

ηiβ0i

=−r0i |ϕgi(t)|− rgi(t)|ϕgi(t)|+ |ϕgi(t)|
qia1i

ηiβ0i

=−r0i |ϕgi(t)|+ ei(t)|ϕgi(t)| (B.6)

from the definition of ei(t) in (B.1). Therefore the derivative of (B.5) along the trajectories of ϕgi(t) and ei(t) satisfies

V̇ ≤ −r0i |ϕgi(t)|+ |ϕgi(t)|ei(t)− 1
γi

ei(t)ṙgi(t)

= −r0i |ϕgi(t)|+ |ϕgi(t)|ei(t)−|ϕgi(t)|ei(t)

= −r0i |ϕgi(t)| (B.7)

Since V̇ ≤ 0, and V (ϕgi(t),ei(t)) is radially unbounded, it follows that both ei(t) and ϕgi(t) remain bounded. Conse-
quently since rgi(t)= qia1i/(ηiβ0i)−ei(t) it follows that rgi(t) remains bounded since ei(t) is bounded. Likewise since
|Lgi(t)| ≤ |ϕgi(t)|+qia1i/(ηiβ0)+ ιgi and ϕgi(t) is bounded, the gain Lgi(t) remains bounded. Since ei(t) and ϕgi(t)
remain bounded, from (B.4), the derivative ϕ̇gi(t) remains bounded and therefore ϕgi(t) is absolutely continuous. It
follows from (B.7) that

r0i

∫ t

0
|ϕgi(t)|dt ≤V (0)−V (t)<V (0)

where |ϕgi(t)| is absolutely continuous. Therefore from Barbalat’s Lemma, ϕgi(t)→ 0 as t→ ∞. Consequently there
exists a finite time t0 such that |ϕgi(t)| ≤ ιgi/2 for all time t > t0 (where ιgi is from the definition of ϕgi(t) in (15).
From the definition of ϕgi in (15) it follows

|ϕgi(t)|=
∣∣Lgi(t)−

1
ηiβ0i

|vgi(t)|− ιgi

∣∣< ιgi/2

and thus
Lgi(t)−

1
ηiβ0i

|vgi(t)|− ιgi >−ιgi/2

Since by definition ηiβ0i < 1, it follows the gain Lgi(t) satisfies

Lgi(t)>
1

ηiβ0i

|vgi(t)|+
ιgi

2
> |vgi(t)|= | fgi/Mi| (B.8)

From (B.8) it follows that the claim in the proposition statement is proved. 2
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