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Abstract 40 

1. The outstanding diversity of Amazonian forests is predicted to be the result of several processes. 41 

While tree lineages have dispersed repeatedly across the Amazon, interactions between plants and 42 

insects may be the principal mechanism structuring the communities at local scales.  43 

2. Using metabolomic and phylogenetic approaches, we investigated the patterns of historical 44 

assembly of plant communities across the Amazon based on the Neotropical genus of trees Inga 45 

(Leguminosae) at four, widely separated sites. 46 

3. Our results show a low degree of phylogenetic structure and a mixing of chemotypes across the 47 

whole Amazon basin, suggesting that although biogeography may play a role, the metacommunity 48 

for any local community in the Amazon is the entire basin. Yet, local communities are assembled 49 

by ecological processes, with the suite of Inga at a given site more divergent in chemical defenses 50 

than expected by chance 51 

4. Synthesis. This is the first study to present metabolomics data for nearly 100 species in a diverse 52 

Neotropical plant clade across the whole Amazonia. Our results demonstrate a role for plant-53 

herbivore interactions in shaping the clade’s community assembly at a local scale, and suggest that 54 

the high alpha diversity in Amazonian tree communities must be due in part to the interactions of 55 

diverse tree lineages with their natural enemies providing a high number of niche dimensions. 56 

 57 

Key-words: Amazon, chemical defenses, community assembly, local scale, metabolomics, Inga, 58 

plant-herbivore interactions, regional scale, tropical rain forests.  59 

 60 
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Resumen 61 

1. La increíble diversidad de los bosques Amazónicos se cree es el resultado de varios procesos. 62 

Aunque los linajes de Inga se han dispersado repetidamente a lo largo de la Amazonía, las 63 

interacciones entre plantas e insectos podrían ser el mecanismo más importante en el ensamblaje 64 

de comunidades a escala local.  65 

2. Usando métodos metabolómicos y filogenéticos, investigamos los patrones históricos de 66 

ensamblaje de comunidades de plantas a lo largo de la Amazonía basándonos en el género 67 

neotropical de árboles Inga (Leguminosae) en cuatro sitios, ampliamente separados. 68 

3. Nuestros resultados demuestran un grado de estructura filogenética y una mezcla de chemotipos 69 

a lo largo de la Amazonía, sugiriendo que aunque la biogeografía juegue un rol, la metacomunidad 70 

para cualquier comunidad regional en la Amazonía es toda la cuenca Amazónica. Comunidades 71 

locales son ensambladas por procesos ecológicos, donde todas las especies de Inga coexistiendo 72 

en un mismo sitio son más divergentes en defensas químicas que al azar. 73 

4. Síntesis. Este es el primer estudio que presenta datos metabolómicos para casi 100 especies de 74 

árboles pertenecientes a un grupo Neotropical diverso a lo largo de su rango de distribución. 75 

Nuestros resultados demuestran un rol para las interacciones entre plantas y herbívoros en el 76 

ensamblaje de la comunidad de este clado a escala local, y sugiere que la alta diversidad alfa en 77 

las comunidades de árboles Amazónicos puede deberse en parte a las interacciones de grupos de 78 

árboles diversos con sus enemigos naturales. 79 

Palabras clave: Amazonía, defensas químicas, ensamblaje de comunidades, escala local, 80 

metabolómica, Inga, interacciones planta-herbívoro, escala regional, bosques tropicales lluviosos.  81 

 82 
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1. Introduction 83 

Amazonian forests are considered one of world's richest plant assemblages, with an estimated 84 

16,000 species of trees for the whole region (ter Steege et al., 2020), and more than 650 woody 85 

species in a single hectare (Valencia et al., 2004). At a regional scale, recent studies have 86 

highlighted the role of dispersal across the Amazon in assembling tree communities (Dexter et al., 87 

2017; Fine et al., 2014). At a local scale, there is still much debate regarding the ecological and 88 

evolutionary mechanisms that determine the co-occurrence of large numbers of species at a site, 89 

many of which are congeners. Some studies argue that niche differentiation may arise through 90 

competition for resources or adaptation to abiotic niches (Chesson, 2000; Kraft, Adler, et al., 2015; 91 

Kraft, Godoy, et al., 2015), while others claim that biotic factors such as natural enemy damage 92 

may facilitate coexistence (Coley & Kursar, 2014). The central premise of the latter is that the 93 

myriad of defenses against herbivores may generate key additional niche axes that allow 94 

coexistence of a greater diversity of species (Levi et al., 2019). 95 

 The idea that the interactions between plants and their insect herbivores may contribute to 96 

the assembly of communities has received considerable recent attention. Specifically, this theory 97 

suggests that specialist pests may play a main role in maintaining the high local diversity of 98 

rainforests by preventing most plant species from becoming abundant (Janzen, 1970; Connell, 99 

1971; Comita et al., 2014). Species do not share herbivores with their nearby neighbors if they 100 

have divergent defences (Becerra, 2007; Endara et al., 2017a), which gives a species the advantage 101 

of reduced damage or “enemy release” (Yguel et al., 2011). This in turn may promote the 102 

coexistence of species that are defensively divergent, increasing local plant species diversity 103 

(Janzen, 1970; Becerra, 2007; Fine et al., 2013; Sedio & Ostling, 2013; Coley & Kursar, 2014; 104 

Salazar et al., 2016a; Salazar et al., 2016b; Forrister et al., 2019). Kursar et al. (2009) reported that 105 
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co-occurring species of Inga in the Peruvian Amazon were more closely related yet differed more 106 

in their defenses than expected by chance. Studies with other genera in the tropics reveal the same 107 

patterns (e.g. Bursera, Ficus, Piper, Protium, Psychotria; Becerra, 1997; Becerra et al., 2009; 108 

Coley & Kursar, 2014; Kursar et al., 2009; Salazar et al., 2018; Sedio, 2013; Wills et al., 2016). 109 

Because plants have many types of defences that can evolve independently from one another 110 

(Endara et al., 2017a), defensive traits may provide a large number of niche dimensions among 111 

which a very large number of co-occurring species might sort in ecological time. Thus, plant-112 

herbivore interactions may be key to understanding the high local diversity in tropical forest 113 

communities.  114 

 Relevant progress towards understanding the local and regional processes that underlie the 115 

assembly of communities has been made in recent years, though largely focused on the 116 

evolutionary attributes of species (phylogenetic history). These studies are based on the premise 117 

that historical species interactions and environmental conditions of communities are reflected in 118 

phylogenies, and that phylogeny is a good proxy for functional trait data that are difficult to obtain 119 

(Mace et al., 2003), especially at the large scale that is necessary for such studies. Yet, if phylogeny 120 

is only a proxy for species traits, and some traits may show low or no phylogenetic signal, an ideal 121 

approach would be to directly compare the explanatory power of traits and phylogeny (Pearse et 122 

al., 2014). Recent advances in analytical techniques have greatly enhanced the potential of 123 

researchers to characterize trait diversity at unprecedented scales. One such exciting new 124 

development is in the area of metabolomics. Specifically, mass spectrometry-based metabolomics 125 

is a powerful tool to characterize the chemical composition of complex biological samples 126 

containing tens to hundreds of individual compounds at the community or macroevolutionary scale 127 

(Sedio et al., 2017). In particular, tandem mass spectrometry (MS/MS) facilitates the structural 128 
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comparison of unknown compounds and their comparison to global databases of known chemical 129 

structures (Treutler et al., 2016; Wang et al., 2016).  130 

 Here, we use metabolomic and phylogenetic approaches to investigate the patterns of 131 

assembly of plant communities across the whole Amazon basin. We focus our study on the 132 

speciose (> 300 species), ecologically important and abundant Neotropical genus of trees, Inga 133 

(Leguminosae). Our previous studies with Inga show that defences diverge rapidly and that 134 

divergent defenses may contribute to coexistence in neighborhoods (~ meters; Kursar et al., 2009). 135 

In this study, we examine community assembly at the regional (the Amazon basin,) and local scale 136 

(within a site, ~ 100 ha) and build on previous work by incorporating a larger number of Inga 137 

species (37 in Kursar et al. 2009 vs. 91 in this study) collected over their entire geographic range, 138 

as well as a more resolved phylogeny and a more comprehensive chemistry dataset. Taken 139 

together, we aim to provide a more robust test of the ideas proposed by Kursar et al. (2009) and to 140 

extend the spatial scale from meters to kilometers.  141 

 At four widely separated sites, we characterize the chemical composition of 91 species, 142 

which represents roughly 1/3 of known Inga species. We follow an untargeted approach that lets 143 

us obtain the entire chemical profile of a species rather than quantifying a subset of metabolites. 144 

In doing so, we can determine how many compounds are produced by each species and how many 145 

compounds are shared between them.  146 

 A critical component of our analyses is to determine the chemical similarity between all 147 

pairwise combinations of Inga species. However, this presents an apple/orange comparison 148 

challenge as few compounds are shared between species. We therefore have developed methods 149 

to account for the fact that two species may have different compounds that are structurally similar 150 

(Coley et al., 2019; Endara et al., 2018; Forrister et al., 2019). We join other ecological researchers 151 
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pioneering metrics to classify chemical structure based on MS/MS spectra in order to quantify 152 

differences between species (Sedio et al., 2018). Our untargeted methods provide data on hundreds 153 

of compounds per species and we can generate a matrix of MS/MS based structural similarity 154 

between every pair of compounds (Wang et al., 2016), which can allow for a calculation of 155 

chemical similarity even when no compounds are shared between a pair of species. This in turn 156 

allows us to better quantify both the chemical similarity among plant populations and to understand 157 

how plant-herbivore interactions may play a role in the assembly of plant communities. 158 

Specifically, we expect a lack of phylogenetic and chemical structure in the assembly of Inga 159 

communities at a regional scale, suggesting that the metacommunity for any regional community 160 

in the Amazon is the entire Amazon basin (Dexter et al., 2017). In contrast, the observation that 161 

the suite of Inga at a given local site are more over-dispersed with respect to defences, would 162 

suggest that local communities are assembled by ecological processes.  163 

 164 

2. Materials and Methods 165 

2.1 Sampling. 166 

We sampled 91 Inga species across the Amazonia between July 2010 and September 2014. 167 

Sampling was focused at four sites (~ 100 ha each) that include a wide range of soils along with a 168 

large fraction of Inga diversity throughout the Amazon (Figure 1). At each site, we sampled all the 169 

known Inga species: Nouragues, French Guiana, 4°N 53°W, with 46 species; Tiputini in the 170 

Yasuní National Park, Ecuador, 0°N, 75°W, 41 species; Los Amigos in Madre de Dios, Peru, 13°S, 171 

70°W, 39 species, and Km 41 near Manaus, Brasil, 2°S, 60°W, 29 species. The four sites are 172 

lowland moist forests with no pronounced dry season. For simplicity in the text, each site will be 173 

referred by the country only.  174 
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At each site, sampling was performed over six months and at the same time of the year. 175 

We focused on expanding leaves of 0.5 – 4 m tall understory saplings, a key stage in the life cycle 176 

of a tree (Green et al., 2014). More than 40 km of trails were walked regularly to search for plants, 177 

and collections are widely separated. We focused our study on the chemical defenses of young 178 

leaves because during this ephemeral stage they receive more than 75% of the herbivore damage 179 

accrued during the lifetime of a leaf (Brenes-Arguedas et al., 2008; Coley & Aide, 1991; Kursar 180 

& Coley, 2003), and the chemistry of expanding leaves has been shown to be very important for 181 

shaping associations between plants and their insect herbivores (Endara et al., 2017a, 2018). 182 

2.2 Phylogenetic reconstruction of Inga 183 

A phylogenetic tree for 165 Inga accessions, including all the taxa sampled at each site, was 184 

reconstructed using a newly generated targeted enrichment (HybSeq) dataset of 810 genes. These 185 

810 loci include those presented in Nicholls et al. 2015, supplemented with a subset of the loci 186 

from Koenen et al. (2020). DNA library preparation, sequencing and the informatics leading to 187 

final sequence alignments follow protocols in Nicholls et al. 2015. We used IQtree 2 (Minh et al., 188 

2020) to infer a phylogenetic tree from the complete dataset of 810 genes. We performed a 189 

partitioned analysis (Chernomor et al., 2016) after inferring the best-partition scheme for the 810 190 

genes and the best substitution model for each partition using ModelFinder module implemented 191 

in IQtree 2 (Kalyaanamoorthy et al., 2017). The resulting phylogenetic tree was subsequently time-192 

calibrated using penalized likelihood implemented in the program treePL (Smith & O’Meara, 193 

2012). We used cross-validation to estimate the best value of the smoothing parameter. We 194 

implemented a secondary calibration point on the crown age of Inga with a minimum age of 6 Ma 195 

and a maximum age of 10 Ma following previous estimates (Pennington et al., 2006; Richardson, 196 



9 
 

2001). Finally, the complete phylogeny was pruned to include only the 91 species for which 197 

chemistry data were available. 198 

2.3 Characterization of leaf defensive chemistry 199 

Secondary metabolites: 200 

For leaf defence analyses, expanding leaves were dried on silica gel at ambient temperature 201 

immediately after collection in the field, and then stored at -20o C. Samples consisted of whole 202 

leaves with little or no damage in order to control for potential defense induction, although 203 

induction is rare in tropical trees like Inga (Bixenmann et al., 2016). The defense metabolome for 204 

each species was determined using untargeted metabolomics methods. Defensive compounds were 205 

extracted from dried leaf samples in the Coley/Kursar lab at the University of Utah using a solution 206 

of (60:40, v/v) ammonium acetate buffered water, pH 4.8:acetonitrile, resulting in 2mL of retained 207 

supernatant from 100mg (+/- 2.5 mg) of sample for chromatographic analysis (Wiggins et al., 208 

2016). Small molecules (50-2000 Da) of intermediate polarity were analyzed using 209 

ultraperformance liquid chromatography (Waters Acquity I-Class, 2.1 x 150mm BEH C18 and 2.1 210 

x 100 mm BEH Amide columns) and mass spectrometry (Waters Xevo G2 QToF) (UPLC-MS) in 211 

negative ionization mode. Additionally, MS/MS spectra were acquired for each species by running 212 

DDA (Data Dependent Acquisition Mode), whereby MS/MS data were collected for all 213 

metabolites that were ionized above a set threshold (Total ion current / TIC of 5000).  214 

L-Tyrosine: 215 

Some Inga species invest in the overexpression of the essential amino acid L-tyrosine as an 216 

effective chemical defense (Coley et al., 2019). Tyrosine is insoluble in our extraction buffer, so a 217 

different protocol was used to determine the percentage of leaf dry weight. Following Lokvam et 218 
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al. (2006), extractable nitrogenous metabolites were extracted from a 5 mg subsample of each leaf 219 

using 1 mL of aqueous acetic acid (pH 3) for 1 h at 85oC. Fifteen microliters of the supernatant 220 

were injected on a 4.6 x 250 mm amino-propyl HPLC column (Microsorb 5u, Varian). Metabolites 221 

were chromatographed using a linear gradient (17–23%) of aqueous acetic acid (pH 3.0) in 222 

acetonitrile over 25 min. Mass of solutes in each injection were measured using an evaporative 223 

light scattering detector (SEDERE S.A., Alfortville, France). Tyrosine concentrations were 224 

determined by reference to a four-point standard curve (0.2–3.0 mg tyrosine/mL, r2=0.99) prepared 225 

from pure tyrosine. 226 

2.4 Data Analysis 227 

We employed a compound based molecular networking approach where we first group related 228 

features into compounds and then we generate 1) a species by compound abundance matrix and 2) 229 

a compound by compound MS/MS cosine similarity matrix. We combine these data into a pairwise 230 

species similarity matrix which accounts for both shared compounds between species and the 231 

MS/MS structural similarity of unshared compounds, following a similar approach to one 232 

developed Sedio et al. (2017).  All scripts from this study are deposited in a github repository 233 

(Forrister & Soule, 2020; https://gitlab.chpc.utah.edu/01327245/evolution_of_inga_chemistry). 234 

Creation of species-by-compound matrix: 235 

Raw UPLC-MS data files were converted to mzXML format using the ‘raw2mzML’ package in 236 

Python (Schmitt, 2016). Converted files were processed by species within each site (accession) 237 

and for MS level 1 peak detection using the XCMS package in R (Smith et al., 2006), which 238 

combined chromatographic features into features based on the mass/charge (m/z) ratio and 239 

retention time (RT) of individual ions. We then grouped features into putative compounds using 240 

https://gitlab.chpc.utah.edu/01327245/evolution_of_inga_chemistry
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CAMERA (Kuhl et al., 2012) which groups features that co-elute and have correlated abundance 241 

traces between scans, identifying likely adducts and related features within compounds. Finally, 242 

we removed from the analysis known contaminants and surfactants, as well as features with an 243 

abundance less than 3x greater than the abundance of that feature in a blank (pure organic solvent). 244 

After initial peak detection, features were aligned across accessions based on kernel density 245 

clustering of m/z and RT, and putative compounds grouped based on the cosine similarity of 246 

aligned feature abundance, resulting in a list of unique compounds across all samples. Here, 247 

abundance is considered the intensity or total ion current (TIC) for each feature. Each sample was 248 

then re-examined for all compounds to avoid data skewing during peak detection by accession. 249 

Finally, in an effort to remove temporal variance in UPLC-MS performance, compound abundance 250 

was normalized by the average abundance of a standard retention-time index run the same day. 251 

This produced a data frame containing the normalized abundance of each compound within each 252 

sample, which was converted to a wide format to create a sample-by-compound matrix where the 253 

normalized abundance of each compound was assigned to a unique row (sample) and column 254 

(compound). In order to create a species-level comparison of compound abundance, all replicates 255 

(minimum of 5) per accession were combined into a single species level chemical profile by 256 

averaging the abundance of each compound across all replicates for a given species. 257 

It is important to note that while we consider our method of grouping features into putative 258 

compounds to be fairly conservative, there remains the possibility of over- or under-splitting 259 

features into distinct compounds, with the former being more common. To address this issue in 260 

our method, the incorporation of MS/MS structural similarity (see Creation of compound-by-261 

compound matrix) of distinct compounds allows the overall chemical similarity of samples (see 262 
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Chemical similarity of Inga species) containing pseudo-replicated compounds to remain 263 

mathematically the same. 264 

Creation of compound-by-compound matrix: 265 

MS compounds (grouped chromatographic features) were matched to their associated MS/MS 266 

spectra based on the mz/RT of the parent ion isolated by DDA. A consensus MS/MS spectrum for 267 

each compound was generated by averaging all scans matched to that compound. A single MS/MS 268 

spectrum for each compound was then submitted to the Global Natural Products Social Molecular 269 

Networking in .mgf format (GNPS; https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp; 270 

Wang et al., 2016) for molecular networking. In R, the resulting network was used to create a 271 

pairwise compound-by-compound similarity matrix based on the similarity of their MS/MS 272 

fragmentation spectra. Here, the shortest through-network path between each compound pair was 273 

calculated, and a similarity score was assigned using the cosine scores along that path: 274 

Eq. 1 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝐴,𝐵 = (∑
1

𝑖
)𝑛

1=

−1
 275 

where n is the number of edges separating compound A and compound B, and i is the cosine score 276 

of the current edge. The score ranges from 0 (completely dissimilar) to 1 (identical). 277 

Compound annotation: 278 

Our analysis yielded 6217 compounds from 91 Inga species and one species in its sister genus, 279 

Zygia mediana (156 accessions including the same species from different sites). In order to 280 

annotate compounds, we performed MS/MS spectral matching to all publicly available datasets in 281 

GNPS as well as in silico fragmentation of the Universal Natural Products Database (Allard et al., 282 

2016; Gu et al., 2013) and our own in-house database built from compounds found in Inga 283 

(Lokvam & Kursar, 2005). We further enumerated the library using in silico combinatorial 284 

chemistry to generate ~75,000 plausible structures using the “scaffold” and “building block” 285 

https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp
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structures within the CLEVER application (Song et al., 2009). These enumeration structures were 286 

chosen based on patterns of biosynthesis that we have observed in Inga. All compounds in this in 287 

silico database were uploaded to GNPS as a spectral library after performing in silico 288 

fragmentation using CFM-ID to predict MS/MS spectra (Allen et al., 2014). We also used 289 

Network-Annotation Propagation (da Silva et al., 2018) to further annotate unknown compounds. 290 

Library hits and in silico prediction suggest that these compounds consist primarily of 291 

phenylpropanoids, flavonoid monomers, flavan3ol polymers, and saponin glycosides, which are 292 

all classes known for their defensive function. These results confirm previous work done 293 

classifying Inga chemistry (Kursar et al., 2009). 294 

Chemical similarity between Inga species: 295 

Following Endara et al. (2018) with some modifications, we estimated chemical similarity between 296 

species using the species-by-compound and compound-by-compound matrices. After creating 297 

these matrices, compounds were grouped into saponins and phenolics based on m/z, RT, and 298 

residual mass defect (RMD), and the species-by-compound matrix was separated based on this 299 

grouping. Abundances in each matrix were then normalized such that total abundance of all 300 

compounds in any given species was equal to 1.0. 301 

 Pairwise similarity for each species pair was calculated by quantifying the degree to which 302 

two species contain compounds that overlap in the molecular network. This includes the degree to 303 

which two species invest in the same compounds (species-by-compound), and the structural 304 

similarity of compounds that are not shared between the two species (compound-by-compound). 305 

These parameters are calculated as follows: 306 
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𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦307 

= 𝑇𝐼𝐶 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑖𝑛 𝑠ℎ𝑎𝑟𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠308 

+ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑢𝑛𝑠ℎ𝑎𝑟𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠 309 

 To calculate the TIC (abundance) overlap in shared compounds, the minimum TIC values 310 

for all compounds that are shared between the two samples are summed. The similarity of unshared 311 

compounds is calculated in a similar manner, by pairing the most similar compounds, taking the 312 

minimum TIC value for those two compounds, and multiplying by the through-network similarity 313 

score. For shared compounds, through-network similarity becomes mathematically obsolete as 314 

similarity for the same compound is always equal to 1. Thus, the overall similarity score results as 315 

a sum of the investment (TIC) in the same or structurally similar defenses between two samples. 316 

 The pairwise similarity calculation for each species pair was repeated separately for 317 

phenolics and for saponins, resulting in a separate pairwise similarity matrix for each compound 318 

class. The similarity matrices from each compound class were combined with tyrosine data to 319 

produce an overall chemical similarity score for each sample pair according to the dry weight 320 

investment in each of the three compound classes. For further details, please review our gitlab 321 

repository (Forrister & Soule, 2020). 322 

Leaf defensive chemistry and phylogenetic signal:  323 

Phylogenetic signal was estimated for the principal coordinates of the chemical similarity matrix 324 

using Blomberg’s K (Blomberg et al., 2003). K is close to zero for traits lacking phylogenetic 325 

signal, but higher than 1 when close relatives are more similar than expected under the Brownian 326 

motion model of character evolution. We used the function phylosignal in the R package picante 327 

v.1.8.2 (Kembel et al., 2020). 328 

Analysis of community assembly: 329 
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We analyzed the assembly of Inga communities both at the local scale and at the level of the 330 

Amazon basin (regional scale, including the whole Amazon basin). Using incidence data 331 

(presence/absence), through a Bayesian approach with generalized linear mixed-effects model 332 

(GLMM) in the R package MCMCglmm v.2.29 (Hadfield, 2019), we determined patterns of 333 

phylogenetic/chemical structure across all the assemblages simultaneously. We partitioned 334 

variance in the Inga species-by-site matrix into the effects of phylogenetic relatedness (termed 335 

phylogenetic effect) and chemical similarity between Inga species (a chemical effect). The 336 

magnitude of the effect of each term is determined by the magnitude of the variance associated 337 

with it. The phylogenetic effect determines the contribution of the main effect of the Inga 338 

phylogeny to the covariance and captures the variation in the Inga co-occurrence data explained 339 

by pairwise phylogenetic distances between Inga species. The chemical effect is the contribution 340 

of the main effect of Inga defensive chemistry to the covariance and captures the variation in the 341 

Inga co-occurrence data explained by the chemical similarity between Inga species. Thus, if the 342 

structuring of the communities is due to phylogenetic sorting, then the phylogenetic effect would 343 

show the greatest variance in the model. In contrast, if the assembly of Inga is mainly due to the 344 

occurrence of species with different chemistry, then the chemical effect would contribute the 345 

greatest to the variance in the model. Because the Inga occurrence data is collected from several 346 

sites across the Amazon basin, rather than consolidate the data across sites, we analyze the site-347 

specific incidence matrices as the geographic region information effect. In the model, this effect is 348 

termed Geographical region (see Table S1). 349 

Phylogeny and chemistry were incorporated into the model as variance-covariance 350 

matrices of relatedness and similarity, respectively, in the random effect structure of the 351 

generalized linear mixed effects model. Region effects were also fitted as random in the model. 352 
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We compared models that included between-site effects (analyses at the level of the whole Amazon 353 

basin, as a random factor) with models that ignored between-site effects to assess patterns within 354 

sites (hence, analyses at small spatial scales). For the analyses, parameter-expanded priors were 355 

used for all variance components. The chain was run for 500,000 iterations with a burn-in of 50,000 356 

and a thinning interval of 450. Because the response variable was incidence data, a Bernoulli error 357 

distribution was applied. 358 

 We also used classic dispersion metrics to determine whether a local Inga assemblage is a 359 

phylogenetically biased subset of the species that could coexist in that assemblage (Pearse et al., 360 

2014). We estimated whether the mean pairwise distance (MPD, mean of the phylogenetic distance 361 

between all the members in a community), and the mean nearest taxon index (MNTD, mean of the 362 

phylogenetic distance between a species and its closest relative or neighbor in the community), 363 

where under- or over-dispersed compared to the null expectation derived from a random assembly 364 

of same-size assemblages from the regional pool (Webb et al., 2002). To assess uncertainty, we 365 

repeated this process 9999 times using the functions ses.mpd and ses.mntd, respectively, in the R 366 

package picante v.1.8.2 (Kembel et al., 2020). 367 

Within-site chemical dissimilarity was estimated following Vleminckx et al. (2018). 368 

Observed dissimilarities between Inga species at each site were compared to the null expectation 369 

of a lack of divergence or convergence for trait expression. For this, the species by compound 370 

matrix (see above under the Chemical similarity between Inga species section) was randomized 371 

by reshuffling the compounds and species equiprobably, preserving differences in the abundance 372 

and presence/absence of compounds among species (Gotelli, 2000). Departure from the null 373 

expectation was estimated as the mean of the difference between the observed and expected 374 

dissimilarities between species at each site. This procedure was repeated 1000 times. A p-value 375 
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was obtained as the proportion of mean values above (over-dispersion) or below (under-376 

dispersion) zero. 377 

 378 

3. Results 379 

Leaf defensive chemistry in Inga shows low phylogenetic signal 380 

We sampled young leaves from a minimum of five individual plants per species per site. A 381 

compound accumulation curve shows that five plants capture on average ~75% of the compounds 382 

encountered if more individuals are sampled (see Figure S1 in Supporting Information).  383 

 We determined chemical similarity between Inga species based on the similarity of 384 

chemical structure and relative abundance of compounds. In general, closely related species of 385 

Inga in the Amazonia tend to have different chemical defenses. Principal coordinates of the 386 

chemical similarity matrix show low phylogenetic signal (PCO1 K = 0.57, P = 0.001; PCO2 K = 387 

0.28, P = 0.06), with estimates of K that are substantially lower than the expected value of 1 under 388 

Brownian motion evolution.  389 

Low geographic signal of phylogeny and chemistry at regional scales 390 

Because phylogeny is a poor predictor for chemistry in Inga, it was possible for us to separate the 391 

effect of chemistry and phylogeny in the analyses. Thus, we investigated the relative role of 392 

phylogeny and chemical defenses against herbivores in the assembly of Inga communities at 393 

different scales. Our community structure models at the regional and local scales incorporating 394 

phylogenetic and chemical effects showed a differential role for both terms. At large spatial scales 395 

(models with between-site information) the phylogenetic effect was larger than the chemical effect, 396 

with 12% of the variation in the incidence of Inga species across the Amazon region attributed 397 

solely to phylogeny, versus 6% attributed to chemistry (Table S1, Fig. 2). In fact, there is little 398 
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regional selectivity based on chemistry, with all sites showing strong overlap in chemical space 399 

(Fig. 3). Geographic information showed a large effect in the model (Table S1).  400 

 401 

Chemistry is more important than phylogeny at structuring local communities 402 

To determine if chemistry or phylogeny influenced the assembly of species co-occurring at a single 403 

site, we fitted community-level structure models at small spatial scales (without between-site 404 

information). There was some phylogenetic sorting, but the chemical effect contributed the 405 

greatest variation, with more than 60% of the Inga occurrence data explained by chemistry (Table 406 

S1, Fig. 2). Thus, at small spatial scales, coexistence of Inga species is mainly due to the 407 

occurrence of species with dissimilar chemical defenses. 408 

 We further evaluated phylogenetic structure within a community by estimating dispersion 409 

metrics and compared the observed values with a null expectation generated by randomly 410 

assembling same-size assemblages from the regional pool. None of the four Amazonian 411 

communities showed phylogenetic structure (Table 1, Fig. 4).  412 

 In contrast, trait dispersion analyses showed significant chemical overdispersion for Inga 413 

communities in the Amazonia. When similarity in all chemical classes was considered, the 414 

chemical distance among all the Inga species within Peru, French Guiana, and Ecuador is 415 

significantly larger than the null expectation (Table 2, Fig. 5). This effect was maintained for 416 

phenolics and for saponins (except for Peru and French Guiana, Table 2). Brazil showed 417 

significantly chemical overdispersion only for saponins (Table 2, Fig. 5).  418 

 419 

4. Discussion 420 
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We have argued that at a regional level, there is essentially no limitation in the dispersal of species 421 

across the Amazon such that the metacommunity for any regional community is the entire Amazon 422 

basin (Dexter et al., 2017). In contrast, interactions between plant and insects could be a principal 423 

mechanism structuring community assembly at a local scale (Coley & Kursar, 2014; Kursar et al., 424 

2009). Results from our analyses are consistent with these hypotheses. At a large scale, we found 425 

a lack of chemical structure in the assembly of Inga communities, with low, but significant 426 

geographic filtering based on ancestry. In contrast, at each of four widely separated sites in the 427 

Amazon, co-occurring species of Inga are more different in defense chemistry than expected by 428 

chance, implying that species with similar defensive traits are less likely to coexist in the same 429 

community. Thus, herbivores may have a key role in niche differentiation of their host plants 430 

promoting local diversity. 431 

 432 

Low geographic signal for phylogeny and chemistry at regional scales. 433 

Consistent with the hypothesis that regional tree communities in the Amazon are influenced by 434 

historical processes of widespread dispersal (Dexter et al., 2017), we found a low signal for 435 

phylogeny and almost no signal for chemistry in the assembly of Inga communities across the 436 

Amazon when between-region information was included (Table S1, Fig. 2). Nevertheless, 437 

geographic region had a large effect in the model, implying that biogeography might play a role in 438 

Inga community assembly at regional level (Table S1). Thus, although Inga lineages have 439 

dispersed repeatedly across the Amazon (Dexter et al., 2017), the detected signal of regional 440 

phylogenetic structure together with the geographic region term effect imply that closely related 441 

species might be co-occurring within some regions, and that there are some differences in the 442 

lineage composition between regions. These differences could be mediated by environmental 443 
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filtering at regional scale, such as the gradient in soils observed across the Amazon Basin 444 

(Tuomisto et al., 2019). For chemistry, the extremely low signal in the assembly of Inga 445 

communities at the regional level (Fig. 2) suggests that local assemblages are drawn from a 446 

metacommunity representing the full chemical space exhibited by the genus (Fig. 3).  447 

 448 

Chemistry not phylogeny structures local communities 449 

In contrast to regional patterns, analyses of community structure at a local scale showed that 450 

chemistry better explained variation in the incidence of Inga at a single site than plant relatedness 451 

(Fig. 2). Thus, defensive chemistry plays a key role in determining which plant species can coexist 452 

in each community at small spatial scales. Analyses with phylogenetic dispersion metrics and 453 

within-site functional similarity agreed with this hypothesis. Although our community 454 

composition models suggest a degree of phylogenetic sorting in species composition (Table S1), 455 

dispersion-trait analyses for the four Inga communities sampled showed no significant 456 

phylogenetic clustering (Table 1, Fig. 4). Meanwhile, the species of Inga that are co-occurring in 457 

Peru, French Guiana, Ecuador and Brazil are more different in their defensive chemistry than 458 

expected by chance (Table 2, Fig. 5). Except for Brazil, this effect was more pronounced for 459 

phenolics than for saponins (Table 2, Fig. 5). Phenolics are the most structurally diverse and 460 

common compound class for the genus Inga (D. Forrister unpubl. results), which is the most 461 

divergent among close relatives (Endara et al., 2015). This suggests that phenolics might be under 462 

stronger selective pressure to diverge among co-occurring species than other defense classes or 463 

that phenol biosynthesis is more easily modified. Given that for Inga, each defense class varies 464 

independently of the others (Endara et al., 2017), defensive chemistry may represent many axes of 465 

trait divergence.  466 
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 Interactions of plant species with their enemies are likely the mechanism responsible for 467 

the co-occurrence of species with divergent chemotypes. Specialist herbivores might be foraging 468 

on species with similar defensive chemotypes. Within a site, this would allow defensively distinct 469 

species to coexist and increase local plant diversity (Sedio & Ostling, 2013). In contrast, species 470 

with similar defenses may share herbivores and suffer greater attack, making it more difficult for 471 

them to colonize or to coexist in the same community. Thus, herbivores might be regulating the 472 

structure of communities through negative-density dependence interactions at scales ranging from 473 

meters to kilometers (Agrawal 2007, Becerra 2007, Lau & Strauss 2007, Forrister et al. 2019), 474 

linking local systems to regional processes (Ricklefs, 2007).  475 

 An essential component of this proposition is that plant defenses influence host choice. 476 

Previously, we found that at a given site, lepidopteran herbivores preferentially feed on subsets of 477 

Inga species with similar defensive profiles and that different families of herbivores chose hosts 478 

based on different defensive traits (Endara et al., 2017). In addition, we have shown that high 479 

chemical similarity and shared herbivore communities are associated with a decrease in survival 480 

and growth for neighboring plants at the 5-10 meter scale (Forrister et al., 2019).  In this study, we 481 

provide evidence that the antagonistic interactions with enemies are playing out across the entire 482 

community, not just spatially proximal neighbors. Thus, the composition of plant species within a 483 

community appears to respond to the entire community of herbivores that could potentially attack 484 

them. 485 

 Because phylogeny is a synthetic measure for phylogenetically conserved traits, the low 486 

phylogenetic structure in Inga at four widely separated communities suggest that other 487 

mechanisms than herbivore pressure might not be contributing as much to their assembly. For 488 

example, phylogenetically conserved traits associated with resource use, pollination and dispersal 489 
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are quite similar across Inga species (Endara et al., 2015; Kursar et al., 2009; Pennington et al., 490 

1997). Thus, it is hard to see how they would provide sufficient niche differentiation to explain the 491 

coexistence of so many species. Alternatively, if we consider the almost infinite number of 492 

possible defense profiles, there could be an enormous number of niches with respect to herbivores 493 

(Coley & Kursar, 2014; Levi et al., 2019; Singer & Stireman, 2005). For Inga, anti-herbivore 494 

defenses fall into at least six different independent axes of defense variation (Endara et al., 2017). 495 

It clearly provides a multidimensional, if not hyperdimensional niche space for coexistence 496 

(Hutchinson, 1957). 497 

 Are there parallels in other tropical regions? Several studies have shown that neighbors 498 

growing within meters of each other differ in defenses, including the genera Eugenia, Ocotea 499 

and Psychotria in Panama (Sedio et al., 2017), Bursera in Mexico (Becerra, 2007), Piper in 500 

Costa Rica (Salazar et al., 2016a,b) and Protium in Peru (Vleminckx et al., 2018). Here we 501 

extend this concept and show that these patterns of defense divergence hold true across a much 502 

larger community of plants, not just immediate neighbors. It is quite striking that these patterns 503 

are consistent even when we included in our analyses the Inga community in Panama, a site with 504 

a different biogeographic history that is isolated from the Amazonian study sites (data not 505 

shown). Similarly, community structure and trait dispersion analyses showed significant 506 

overdispersion of defensive chemistry at the local scale (Fig S2 and S3). Thus, the similarity of 507 

secondary metabolite profiles among species may play a large role in shaping community 508 

assembly beyond the tropical forest in Amazonia. 509 

5. Conclusions  510 

A number of recent, independent studies suggest that herbivore pressure contributes to the high 511 

local plant diversity, or coexistence, that is typical of plant communities in tropical rainforests 512 
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(Becerra, 2007; Forrister et al., 2019; Kursar et al., 2009; Salazar et al., 2016a,b; Sedio et al., 513 

2017; Vleminckx et al., 2018). Our phylogenetic and metabolomic approach provides evidence 514 

for the key role that natural enemies play in the assembly of these local communities. Although 515 

Inga species have dispersed freely across the Amazon, with some recent regional in-situ 516 

speciation events, what seems to determine which species are allowed to coexist within a single 517 

community are natural enemies.  518 

 Our results expand the spatial scale over which negative-density dependence mechanisms 519 

mediate community assembly and bring into play processes related to ecological interactions 520 

between populations at larger spatial scales. The fact that coexistence of closely related species is 521 

allowed by divergence in defensive traits on scales ranging from meters to kilometers brings the 522 

timescale of species sorting and species diversification close to each other (Ricklefs, 2007). This 523 

leads us to hypothesize that herbivore pressure might be one of the drivers of species 524 

diversification. Thus, divergent selection by herbivores could potentially be one of the main 525 

factors behind both the maintenance and the origin of diversity in tropical forests.  526 
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 806 

Tables 807 

Table 1. Results for the phylogenetic community structure analyses for each Inga community 808 

sampled. Marginally significant values are bolded. N= number of taxa in each community. 809 

MPD= mean pairwise distance, MNTD= mean nearest taxon distance. Observed Z= 810 

standardized effect size of mean pairwise distance versus null model. 811 

 812 

Site N Metric Observed Observed Z p-value 

Peru 41 MPD 0.0334 -0.1683 0.471 

MNTD 0.0152 0.5350 0.710 

French 

Guiana 

43 MPD 0.0347 0.5464 0.713 

MNTD 0.0161 1.5045 0.929 

Ecuador 41 MPD 0.0348 0.6032 0.735 

MNTD 0.0163 1.3836 0.913 

Brazil 29 MPD 0.0336 -0.0603 0.535 

MNTD 0.0163 0.0686 0.534 

 813 
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 820 

 821 
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 822 

Table 2. Within-site chemical dissimilarity analyses separated by compound class. Significant 823 

values are bolded. O-E indicates the average difference in observed chemical similarity values 824 

compared to a randomized null model. 825 

Site Compound 

Class O– E 

95% CI 

(lower) 

95% CI 

(upper) p-value 

Peru 

All Chemistry 0.061 0.05300958 0.070 2.20E-16 

Phenolics 0.063 0.05517029 0.072 2.20E-16 

Saponins 

-0.008 

-

0.0180129614 0.000 0.05 

Brazil 

All Chemistry 0.003 -0.009744713 0.016 0.6088 

Phenolics -0.39 -0.3999554 -0.380 2.20E-16 

Saponins 0.04 0.03395981 0.055 2.10E-15 

French 

Guiana 

All Chemistry 0.021 0.01112708 0.031 4.29E-05 

Phenolics 0.150 0.1409909 0.160 2.20E-16 

Saponins -0.119 -0.1288449 -0.110 2.20E-16 

Ecuador 

All Chemistry 0.131 0.1218379 0.140 2.20E-16 

Phenolics 0.248 0.2385003 0.258 2.20E-16 

Saponins 0.070 0.05877019 0.083 2.20E-16 

 826 

Table S1. Proportion of variation in Inga occurrence data attributed to phylogeny and chemistry 827 

effects. Columns contain the posterior modes (with 95% confidence intervals in 828 

parentheses) for the estimates. See Materials and Methods for a description of each term. 829 
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 833 

Figure Captions 834 

Figure 1. Map of study sites at (1) Nouragues, French Guiana, (2) Tiputini, Ecuador, (3) Los 835 

Amigos, Peru, and (4) Manaus, Brazil. Size is weighted by the sample size (n) of Inga trees 836 

present at each site. 837 

Figure 2. Proportion of variation in Inga community assembly explained by phylogeny and 838 

chemistry at the regional (between sites) and local (within sites) scales. Bars represent the 839 

mean +/- the standard error. 840 

Figure 3. Principal Coordinates Analysis (PCoA) of chemical distance between species accessions 841 

(estimated as 1 minus our chemical similarity score). Accessions are colored by site, and 842 

ellipsoids for each site represent the 95% confidence interval around their mean position 843 

in chemical space. 844 

Figure 4. Relationship between the number of Inga species sampled and the mean pairwise 845 

phylogenetic distance (MPD, left), and the mean nearest taxon distance (MNTD, right) in 846 

the Amazon. Solid line represents the null expectation for MPD and MNTD respectively. 847 

Dotted line represents the 95% confidence interval of the null expectation. Sites are 848 

differentiated by shape, and significance is indicated by shading (no fill = non-significant, 849 

grey = p < 0.10). 850 

Figure 5. Within-site chemical similarity analysis. Boxplots represent 1000 bootstrap iterations of 851 

the difference between observed (real data) and expected (null model) chemical similarity 852 

values at each site, separated by compound class. Significance is indicated by asterisks (ns 853 

= non-significant ; * = p < 0.05 ; ** = p < 0.01 ; *** = p < 0.001). All country names 854 

excepting French Guiana (F. G.) are spelled out. 855 



35 
 

Figure S1. Compound accumulation curve calculated using specaccum (method = “random”, 856 

permutations = 100) from the “vegan” package in R on a focal taxon with 22 distinct plant 857 

samples (N65). 122 out of 165, or 73.9% of total compounds are captured with just 5 plants. 858 

Figure S2. Proportion of variation in Inga community assembly explained by phylogeny and 859 

chemistry at the regional (between sites) and local (within sites) scales including Panama 860 

and Amazonia. Bars represent the mean +/- the standard error. 861 

Figure S3. Within-site chemical similarity analysis including Panama and Amazonia. Boxplots 862 

represent 1000 bootstrap iterations of the difference between observed (real data) and 863 

expected (null model) chemical similarity values at each site, separated by compound class. 864 

Significance is indicated by asterisks (ns = non-significant ; * = p < 0.05 ; ** = p < 0.01 ; 865 

*** = p < 0.001). All country names excepting French Guiana (F. G.) are spelled out. 866 
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Figure 1. 880 
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