
How Bayesian Should Bayesian Optimisation Be?
George De Ath

g.de.ath@exeter.ac.uk
Department of Computer Science

University of Exeter
Exeter, United Kingdom

Richard M. Everson
r.m.everson@exeter.ac.uk

Department of Computer Science
University of Exeter

Exeter, United Kingdom

Jonathan E. Fieldsend
j.e.fieldsend@exeter.ac.uk

Department of Computer Science
University of Exeter

Exeter, United Kingdom

ABSTRACT
Bayesian optimisation (BO) uses probabilistic surrogate models –
usually Gaussian processes (GPs) – for the optimisation of expensive
black-box functions. At each BO iteration, the GP hyperparameters
are fit to previously-evaluated data by maximising the marginal
likelihood. However, this fails to account for uncertainty in the hy-
perparameters themselves, leading to overconfident model predic-
tions. This uncertainty can be accounted for by taking the Bayesian
approach of marginalising out the model hyperparameters. We
investigate whether a fully-Bayesian treatment of the Gaussian pro-
cess hyperparameters in BO (FBBO) leads to improved optimisation
performance. Since an analytic approach is intractable, we compare
FBBO using three approximate inference schemes to the maximum
likelihood approach, using the Expected Improvement (EI) and Up-
per Confidence Bound (UCB) acquisition functions paired with ARD
and isotropic Matérn kernels, across 15 well-known benchmark
problems for 4 observational noise settings. FBBO using EI with an
ARD kernel leads to the best performance in the noise-free setting,
with much less difference between combinations of BO components
when the noise is increased. FBBO leads to over-exploration with
UCB, but is not detrimental with EI. Therefore, we recommend that
FBBO using EI with an ARD kernel as the default choice for BO.
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• Theory of computation→ Gaussian processes; Mathemati-
cal optimization; • Mathematics of computing→ Bayesian
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1 INTRODUCTION
Bayesian optimisation (BO) is a popular sequential approach for
optimising costly or time-consuming black-box functions that have
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no derivative information or closed form [5, 53]. It is a surrogate
model-based approach that employs a probabilistic model built with
previous evaluations. BO comprises of two main steps, which are
repeated until budget exhaustion or convergence. Firstly, a proba-
bilistic surrogate model is constructed, which is typically a Gaussian
process (GP) because of their strength in function approximation
and uncertainty quantification [15, 45, 52]. Secondly, an acquisition
function is optimised to select the next location to expensively
evaluate. Acquisition functions combine the surrogate model’s pre-
dictions and associated uncertainty to strike a balance between
exploiting areas of design space with good predicted values and
exploring locations with high uncertainty in their predicted values.

During the first step of a BO iteration, the surrogate model must
be learned from the data. The predominant strategy in BO is to find
the model hyperparameters that maximise the marginal likelihood,
also known as the model evidence. This point-based estimate is
known as the maximum likelihood (ML) estimate, or, if we also
take into account some prior belief about the model’s hyperparame-
ters, the maximum a posteriori (MAP) estimate. These are normally
found via gradient-based optimisation [1, 17, 33]. However, the mar-
ginal likelihood landscape may contain multiple optima of similar
quality, as well as flat, ridge-like structures on which gradient-based
optimisers may get stuck [60]; a common partial remedy is to take
the best from multiple optimisations from randomly chosen initial
parameters. However, in addition the ML or MAP estimate does
not take into account any uncertainty that exists about the true
hyperparameters, leading to naturally overconfident predictions.

Viewing this from a Bayesian perspective tells us that we need
to marginalise out the hyperparameters of the model; that is, every
possible hyperparameter choice should be weighted by how well
its corresponding model explains the data. Then, we can use the
prediction of these weighted models to take into account the un-
certainty in the hyperparameters. In all but the simplest of cases,
this requires calculation of an intractable integral, so in practise
approximations to the integral are made using methods such as
variational inference [25] and Markov Chain Monte Carlo (MCMC)
[11, 19, 35]. Several works have performed a fully-Bayesian treat-
ment of the hyperparameters in BO, and some advocate for it to
become the prevailing strategy [43, 53]. Yet most works that apply
a fully-Bayesian approach, e.g. [2, 21, 59] only use it because it is
the correct thing to do, without any more justification. Therefore,
in this work, we investigate whether a fully-Bayesian treatment
of the surrogate model’s hyperparameters leads to improved per-
formance in BO. Specifically, we investigate the performance of
BO using two acquisition functions (Expected Improvement (EI)
and Upper Confidence Bound (UCB)), for two different Gaussian
process kernel types (isotropic and ARD), and under four different
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levels of observation noise. These comparisons are made for the tra-
ditional MAP approach and three approximate inference schemes
for a fully-Bayesian treatment.

Our main contributions can be summarised as follows:
(1) We provide the first empirical study of the effect on BO of a

fully-Bayesian treatment of the hyperparameters.
(2) We evaluate different combinations of acquisition function,

GP kernel type, and inference method on fifteen well-known
test functions over a range of dimensions (2 to 10) and for a
range of noise levels.

(3) We show empirically that using the EI with an ARD kernel
and fully-Bayesian inference using MCMC leads to superior
BO performance in the noise-free setting.

(4) We show that a fully-Bayesian treatment of the hyperparam-
eters always leads to (even more) over-exploration with UCB.
However, for EI a fully Bayesian treatment only increases
exploration on higher-dimensional functions with increased
observational noise level.

We begin in Section 2 by reviewing BO and how to perform
fully-Bayesian BO. In Section 3 we review GPs, paying particular
attention to the hyperparameter learning, and follow this up in
Section 4 by reviewing the approximate inference schemes used
in this work. An extensive experimental evaluation is carried out
in Section 5, along with a discussion of the results. We finish with
concluding remarks in Section 6.

2 BAYESIAN OPTIMISATION
Bayesian optimisation (BO), also known as Efficient Global Optimi-
sation, is a surrogate-assisted global search strategy that sequen-
tially samples the problem domain at locations likely to contain
the global optimum. It takes into account both the predictions of
a probabilistic surrogate model, typically a Gaussian process (GP),
and its corresponding uncertainty [24]. It was first proposed by
Kushner [29], and improved and popularised by both Močkus et al.
[37] and Jones et al. [24]. See [5, 15, 52] for comprehensive reviews
of BO. Without loss of generality, we can define the problem of find-
ing a global minimum of an unknown, potentially noise-corrupted
objective function 𝑓 : R𝑑 ↦→ R as

min
x∈X

𝑓 (x), (1)

defined on a compact domain X ⊂ R𝑑 . In BO it is assumed that 𝑓 is
black-box, i.e. it has no (known) closed form and no derivative infor-
mation is available. However, we are able to access the results of its
evaluations 𝑓 (x) at any location x ∈ X. BO is particularly effective
in cases where the evaluation budget is limited due to function
evaluations being expensive in terms of time and/or money. In this
case we wish to optimise 𝑓 in either as few function evaluations as
possible, or as well as possible for a given budget 𝑇 .

Algorithm 1 outlines the standard Bayesian optimisation pro-
cedure. It starts (line 1) by generating 𝑆 initial sample locations
X = {x𝑠 }𝑆𝑠=1 with a space-filling algorithm, such as Latin hypercube
sampling [34]. These are expensively evaluated with the function:
y = {𝑦𝑠 ≜ 𝑓 (x𝑠 )}𝑆𝑠=1. Then, at each BO iteration, a GP model is
usually trained [53] by maximising the log marginal likelihood
log 𝑝 (y |X, 𝜽 ) with respect to the model hyperparameters 𝜽 , which
are usually parameters of the GP kernel, such as a length scale,

Algorithm 1 Standard Bayesian optimisation.
Inputs:
𝑆 : Number of initial samples
𝑇 : Budget on the number of expensive evaluations

Steps:
1: X← SpaceFillingSampling(X, 𝑆) ⊲ Initial samples
2: y← {𝑦𝑠 ≜ 𝑓 (x𝑠 ) }𝑆𝑠=1 ⊲ Expensively evaluate all initial samples
3: for 𝑡 = 𝑆 + 1→ 𝑇 do
4: 𝜽 ← argmax𝜽 log[𝑝 (y |X, 𝜽 )𝑝 (𝜽 ) ] ⊲ MAP estimate
5: x′ ← argmaxx 𝛼 (x | y,X, 𝜽 ) ⊲ Maximise infill criterion
6: 𝑓 ′ ← 𝑓 (x′) ⊲ Expensively evaluate x′
7: X← X ∪ {x′ } ⊲ Augment training data
8: y← y ∪ {𝑓 ′ }
9: return D

and the noise variance assumed to be corrupting the observed
value of 𝑓 (x); see Section 3.3. The marginal likelihood may also
be multiplied by a prior probability of the parameters, 𝑝 (𝜽 ), ex-
pressing a priori beliefs about the parameters. Maximisation of
log[𝑝 (y |X, 𝜽 )𝑝 (𝜽 )] obtains the maximum a posteriori (MAP) esti-
mate of the model hyperparameters (line 4). The choice of where
to evaluate next in BO is determined by an acquisition function
𝛼 (x | y,X, 𝜽 ), also known as an infill criterion, which balances the
exploitation of good regions of the design space found thus far with
the exploration regions where the predictive uncertainty is high.
Acquisition functions are discussed further in the next section. The
location x′ to be expensively evaluated next is selected by max-
imising the acquisition function (line 5), via heuristic search, often
using an evolutionary algorithm or gradient-based methods, which
is possible because the acquisition function is cheap to evaluate. The
selected x′ is then expensively evaluated with 𝑓 , the training data
is augmented, and the process is repeated until budget exhaustion.

2.1 Acquisition Functions
Acquisition functions 𝛼 (x | 𝜽 ) : R𝑑 ↦→ R are measures of qual-
ity that enable us to decide which location x ∈ X is the most
promising, and thus where we should expend our next expensive
evaluation. They are based on the predictive distribution 𝑝 (𝑓 | x, 𝜽 )
of the surrogate model, where the dependence on the observed
expensive evaluations (X, y) are summarised in 𝜽 . Acquisition func-
tions usually depend on both the posterior mean prediction ` (x) =
E𝑝 (𝑓 | x,𝜽 ) [𝑓 (x)] and its associated uncertainty captured by the
variance 𝑣 (x) = V[𝑝 (𝑓 | x, 𝜽 )]. Two of the most popular acquisi-
tion functions are the Expected Improvement (EI) [24] and Upper
Confidence Bound (UCB) [56]. EI measures expected positive im-
provement over the best function value observed so far 𝑓 ★:

𝛼EI (x | 𝜽 ) = E𝑝 (𝑓 | x,𝜽 ) [max(𝑓 ★ − 𝑓 (x), 0)], (2)

which can be expressed analytically as [24]:

𝛼EI (x | 𝜽 ) =
√︁
𝑣 (x) (𝑠Φ(𝑠) + 𝜙 (𝑠)), (3)

where 𝑠 = (𝑓 ★ − ` (x))/
√︁
𝑣 (x) is the predicted improvement nor-

malised by its corresponding uncertainty, and 𝜙 (·) and Φ(·) are
the Gaussian probability density and cumulative density functions
respectively. EI is known to often be too exploitative, resulting in
optimisation runs that can converge prematurely to a local minima
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[3]. Various works have tried to curtail this behaviour by increasing
the amount of exploration. Berk et al. [3], for example, try to do
this by averaging over realisations drawn from surrogate model’s
posterior distribution instead of just using the mean prediction.
Chen et al. [7], like other authors [13, 55], equate the two terms
in EI to exploitation and exploration and up-weight the amount
of the latter accordingly. However, as shown by De Ath et al. [9],
only certain weight combinations allow for this version of EI to be
monotonic in both ` (·) and 𝑣 (·); otherwise it can prefer inferior
solutions, i.e. with a worse predicted value.

UCB is an optimistic strategy that is the weighted sum of the
surrogate model’s posterior mean prediction and its associated
uncertainty:

𝛼UCB (x | y,X, 𝜽 ) = −
(
` (x) −

√︁
𝛽𝑡𝑣 (x)

)
, (4)

where 𝛽𝑡 ≥ 0 is a weight that usually depends on the number of
function evaluations performed thus far and that explicitly controls
the exploration-exploitation trade-off. Setting 𝛽𝑡 is non-trivial: too
small a value and UCB will get stuck in local optima; too large a
value and UCB will become too exploratory, taking too many eval-
uations to converge. The convergence proofs for UCB of Srinivas
et al. [56] rely on a particular schedule for 𝛽𝑡 in which it increases
proportional to the logarithm of 𝑡 , although this scheme has been
shown to be over-exploratory for many practical problems [9].

Other acquisition functions have also been proposed such as
𝜖-greedy methods [9], Probability of Improvement [29], Knowledge
Gradient [51], and various information-theoretic approaches [20,
21, 48, 59]. However, in this work we focus on EI and UCB due to
their popularity.

2.2 Fully-Bayesian Bayesian Optimisation
Interestingly, even though fully-Bayesian approaches for Gaussian
process (GP) modelling have been proposed in the literature for
several decades, e.g. [18, 42], the vast majority of BO works follow
Algorithm 1, i.e. they perform a MAP estimate of the GP hyper-
parameters at each iteration. However, there are some exceptions
to this. Osborne [43] developed a Bayesian approach for global
optimisation along with a novel acquisition function, and showed
that their fully-Bayesian approach outperformed the standard MAP
approach. The hugely influential tutorial of Snoek et al. [53] advo-
cates a fully-Bayesian treatment of the GP hyperparameters and
shows that it is sometimes superior toMAP estimation. Other works
[2, 21, 59] have also performed a fully-Bayesian approach and have
used it to illustrate the effectiveness of their proposed acquisition
functions, rather than specifically recommending it.

In order to carry out a fully-Bayesian treatment of the hyperpa-
rameters in BO, we need to marginalise out the hyperparameters
of the surrogate model, i.e. the acquisition function is averaged
weighted by the posterior probability of the hyperparameters [53]:

𝛼 (x | y,X) =
∫
𝛼 (x | 𝜽 )𝑝 (𝜽 | y,X) 𝑑𝜽 , (5)

where 𝑝 (𝜽 | y,X) is the surrogate model’s posterior hyperparameter
distribution. The integral appearing in (5) is generally intractable,

but it can be approximated via Monte Carlo integration:

𝛼 (x | y,X) ≃ 1
𝑀

𝑀∑︁
𝑚=1

𝛼 (x | 𝜽 (𝑚) ), (6)

where {𝜽 (1) , . . . , 𝜽 (𝑀) } are samples drawn from 𝑝 (𝜽 | y,X) . These
samples can be drawn via an approximate inference method such
as Hamiltonian Monte Carlo or variational inference, both of which
are discussed further in Section 4. We note that the MAP estimate of
the hyperparameters can be regarded as approximating 𝑝 (𝜽 | y,X)
by a delta function that places all the posterior probability mass
at 𝜽𝑀𝐴𝑃 = argmax𝜽 𝑝 (𝜽 | y,X). In using the estimated integrated
acquisition function (6), the uncertainty in the surrogate model
hyperparameters is explicitly taken into account and may therefore
be expected to lead to acquisition of better locations.

3 GAUSSIAN PROCESS SURROGATES
A Gaussian process (GP) defines a prior distribution over functions,
such that any finite number of function values are distributed as
a multivariate Gaussian [45]. In GP regression we aim to learn
a mapping from a collection of inputs X = {x1, . . . , x𝑛} to their
corresponding outputs y = {𝑦1, . . . , 𝑦𝑛}, where the outputs are
often noisy realisations of the underlying function 𝑓 (x) we wish to
model. Assuming that the observations are corrupted with additive
Gaussian noise, 𝑦 = 𝑓 + 𝜖 where 𝜖 ∼ N(0, 𝜎2𝜖 ), the observation
model is defined as 𝑝 (𝑦 | 𝑓 ) = N(𝑦 | 𝑓 , 𝜎2𝜖 ). In GP regression we
place a multivariate Gaussian prior over the latent variables f =
{𝑓1, . . . , 𝑓𝑛}:

𝑝 (f |X, 𝜽 ) ∼ N (0,K), (7)
with a covariance K ∈ R𝑛×𝑛 with 𝐾𝑖 𝑗 = ^ (x𝑖 , x𝑗 | 𝜽 ) and associ-
ated hyperparameters 𝜽 . Here, ^ (·, · | 𝜽 ) is a positive semidefinite
covariance function modelling the covariance between any pair of
locations. For notational simplicity, and without loss of generality,
we take the mean function of the GP to be zero; [10] discusses BO
performance with different choices of mean function.

3.1 Covariance Functions
The covariance function ^ (·, · | 𝜽 ), also known as a kernel (func-
tion), encodes prior beliefs about the characteristics of the modelled
function, such as its smoothness. Kernels are typically stationary,
meaning that they are a function of the distance between the two
inputs, i.e. 𝑟 = |x − x′ |. One of the most frequently used kernels is
the squared exponential (SE) kernel:

^𝑆𝐸 (x, x′ | 𝜽 ) = 𝜎2𝑜 exp
(
−𝑟

2

ℓ2

)
, (8)

with parameters ℓ and signal variance 𝜎2𝑜 defining its characteristic
length-scale and output-scale respectively. Using a SE kernel for
each input dimension with a separate length-scale ℓ𝑖 results in the
SE automatic relevance determination (ARD) kernel:

^𝑆𝐸 (x, x′ | 𝜽 ) = 𝜎2𝑜 exp
(
−

𝑑∑︁
𝑖=1

𝑟2
𝑖

ℓ2
𝑖

)
, (9)

where 𝑟𝑖 = |𝑥𝑖 − 𝑥 ′𝑖 |. Allowing separate length scales for each
dimension allows irrelevant dimensions to be suppressed by placing
priors over them which favour large ℓ𝑖 [32, 39].
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It has been argued [53, 57] that the SE kernel has too strong
smoothness assumptions for the realistic modelling of physical pro-
cesses. Popular alternatives include the Matérn family of covariance
functions [57]. Here we use the Matérn kernel with a = 5/2, as
recommended by Snoek et al. [53]:

^𝑀𝑎𝑡𝑒𝑟𝑛 (x, x′ | 𝜽 ) =𝜎2𝑜
21−a

Γ(a)
(√

2a𝑟
)a
𝐾a

(√
2a𝑟

)
, (10)

where 𝐾a is a modified Bessel function and 𝑟2 =
∑𝑑
𝑖=1 (𝑥𝑖 − 𝑥 ′𝑖 )2/ℓ2𝑖

is the squared distance between x and x′ scaled by the length-scales
ℓ𝑖 which again allows ARD suppression of irrelevant dimensions.
Further information on GP kernels can be found in [12, 45].

3.2 Making Prediction with GPs
Given some noisy observations y at locations X and a covariance
function ^ (·, · | 𝜽 ), predictions about the underlying function 𝑓 can
be made using the GP model. Assuming a Gaussian noise model,
the joint distribution of the observed training values (X, y) function
values at a test location (x′, 𝑓 ′) is[

y
𝑓 ′

] ����X, 𝜽 , 𝜎𝜖 ∼ N
(
0,

[
𝜿 (X,X | 𝜽 ) + 𝜎2𝜖 I 𝜿 (X, x′ | 𝜽 )
𝜿 (X, x′ | 𝜽 )⊤ ^ (x′, x′ | 𝜽 )

] )
, (11)

where the elements of the 𝑛-dimensional vector 𝜿 (X, x′ | 𝜽 ) are
[𝜿 (X, x′ | 𝜽 )]𝑖 = ^ (x𝑖 , x′ | 𝜽 ). Hereafter, the observation noise 𝜎𝜖
is incorporated into 𝜽 so that 𝜽 represents both the kernel hy-
perparameters and the likelihood noise. We also drop the explicit
dependence of the kernel on 𝜽 for ease of exposition.

Conditioning the joint distribution (11) on the observations y
yields the predictive distribution of 𝑓 ′ | x′, y,X, 𝜽 as a Gaussian
distribution:

𝑝 (𝑓 ′ | x′, y,X, 𝜽 ) ∼ N (` (x′), 𝑣 (x′)), (12)

with mean and variance

` (x) = 𝜿 (X, x)⊤ (𝜿 (X,X) + 𝜎2𝜖 I)−1y (13)

𝑣 (x) = ^ (x, x) − 𝜿 (X, x)⊤ (𝜿 (X,X) + 𝜎2𝜖 I)−1𝜿 (X, x) . (14)

However, before the GP can be used to make predictions the ker-
nel hyperparameters and the observational noise must be inferred.

3.3 Learning Hyperparameters
One of the most useful properties of GPs is that we are able to cal-
culate the marginal likelihood 𝑝 (y,X | 𝜽 ) ∝ 𝑝 (y |X, 𝜽 ), otherwise
known as the model evidence [31], of data (X, y) for a particular
model defined by a set of hyperparameters. The marginal likelihood
may be found by direct integration of the product of the likelihood
function of the latent variables f and the GP prior. For numerical
reasons, the log marginal likelihood is normally used instead:

log𝑝 (y |X, 𝜽 ) = − 1
2
y⊤ (𝜿 (X,X) + 𝜎2𝜖 I)−1y

− 1
2
log

��(𝜿 (X,X) + 𝜎2𝜖 I)−1�� − 𝑛2 log 2𝜋.
(15)

The first term in (15) is the data-fit term, i.e. how well the model
predicts the observed targets y, while the second corresponds to
a complexity penality that depends only on the magnitude of the
covariance function, and the third is a normalisation constant.

The predominant strategy in BO for inferring the hyperparam-
eters is to find the value of 𝜽 that maximises the log marginal
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Figure 1: Multi-start gradient-based optimisation of the log
marginal likelihood (15). Starting locations are shown in
white, with optimisation paths shown with red dashed lines
and ending locations shown as red circles. Note how only a
few runs successfully find the likelihood peak at (1, 1).

likelihood (15). In doing so, we find the maximum likelihood (ML)
parameters 𝜽𝑀𝐿 = argmax𝜽 log𝑝 (y |X, 𝜽 ). Predictions can then be
made by using 𝜽𝑀𝐿 in (13) and (14).

However, we often have some prior beliefs about the hyperpa-
rameters. For example, if our observations were standardised to
have zero mean and unit variance, then it would be extremely un-
likely that the likelihood noise would be larger than one because
then the model would predict the majority of the observations as
noise. These beliefs maybe encoded in a prior distribution 𝑝 (𝜽 ),
and can be taken into account in the likelihood evaluation by mul-
tiplying the marginal likelihood by the prior distribution:

𝑝 (𝜽 | y,X) ∝ 𝑝 (y |X, 𝜽 )𝑝 (𝜽 ) . (16)

In practice, the logarithm of 𝑝 (𝜽 ) is added to (15) to arrive at the
log posterior distribution, which is then maximised to find the
maximum a posteriori (MAP) parameters 𝜽𝑀𝐴𝑃 . Note here that
if we a priori believe that all hyperparameter configurations are
equally likely, then 𝜽𝑀𝐴𝑃 ≡ 𝜽𝑀𝐿 .

The optimal hyperparameters, 𝜽𝑀𝐴𝑃 or 𝜽𝑀𝐿 , are normally found
by gradient-based optimisation [1, 17, 33] with multiple restarts,
using e.g. L-BFGS-B [6]. These restarts are needed because the
landscape may contain multiple local maxima [45]. However, the
gradient-based optimisation can be sensitive to the starting loca-
tions because hyperparameters that are weakly identified can give
rise to flat, ridge-like structures [60].

Figure 1 shows nine gradient-based optimisation runs on the
log marginal likelihood (15) as a function of the length-scale ℓ and
output-scale 𝜎𝑜 . Training data was generated by drawing a realisa-
tion from a GP with an Matérn 5/2 kernel having hyperparameters
(ℓ, 𝜎𝑜 , 𝜎𝜖 ) = (1, 1, 0.1). The figure shows the paths taken and final
positions (red circles) by gradient based optimisations starting at
the locations shown as white circles. Note that 𝜎𝜖 was fixed at
𝜎𝜖 = 0.1. Only two of the optimisation runs ended up at a location
close to the maximum, with the other runs failing to get close. The
three runs that started on the left-hand side of the figure illustrate
the flat, ridge-like structures that can occur – in all three cases the
optimiser got stuck in a suboptimal region of almost zero gradient.
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f (x)
Training data

` (x)
2
√
v (x)

Figure 2: Posterior predictive distributions for two GPs, one
fitted with the MAP hyperparameter estimate (upper), and
one with a fully-Bayesian treatment of the hyperparame-
ters via Monte Carlo estimation (lower). Note the increased
amount of uncertainty in the lower GP as the uncertainty in
the hyperparameters has been taken into account.

As illustrated, point-based estimates of the hyperparameters are
subject to high variability, because they may become stuck in lo-
cal minima or on vast plateaux, and do not take into account the
uncertainty in the hyperparameters themselves. Multiple restarts
are often sufficient to avoid local minima and plateaux, but ac-
counting for hyperparameter uncertainty requires a fully-Bayesian
formulation. Given a prior 𝑝 (𝜽 ) expressing beliefs about the hyper-
parameters, the posterior distribution is given by:

𝑝 (𝜽 | y,X) = 𝑝 (y,X | 𝜽 )𝑝 (𝜽 )
𝑝 (y,X) . (17)

As noted above, with the posterior distribution on hand, the ac-
quisition function weighted by the posterior probability of the
hyperparameters can be optimised to find the next location to be
expensively evaluated (cf. (5)). However, it is also often of interest
to find the posterior predictive distribution of the function at x:

𝑝 (𝑓 | x, y,X) =
∫
𝑝 (𝑓 | x, y,X, 𝜽 )𝑝 (𝜽 | y,X)𝑑𝜽 . (18)

The left-hand term of the integrand is a Gaussian (12) and the
right-hand term is the hyperparameter posterior. As illustrated in
Figure 2, performing a fully-Bayesian treatment of the hyperparam-
eters in GP regression leads to increased uncertainty in the model
predictions. This is because we also account for the uncertainty in
the hyperparameters, rather than assuming that the MAP estimate
is correct. Similarly, a fully-Bayesian treatment of Bayesian optimi-
sation accounts for the uncertainty in the hyperparameters when
optimising the acquisition function.

However, as is frequently the case with Bayesian inference, the
integral necessary to evaluate 𝑝 (y,X) is intractable, and we there-
fore turn to approximate methods.

4 APPROXIMATE INFERENCE
Practical fully-Bayesian optimisation requires averaging with re-
spect to the GP hyperparameter distribution. In particular, full
account of the model uncertainty is taken by using the averaged
acquisition function (5). Since this cannot be done analytically, the
averages can be approximated either by simulating draws directly

from the posterior or to approximate the posterior and draw sam-
ples from the approximation; e.g. (6). The former is primarily carried
out by Markov Chain Monte Carlo (MCMC) [19, 35] methods, and
the latter bymany density approximationmethods such as Laplace’s
method, Expectation Propagation [36], and variational inference
[25, 58]. Compared to MCMC, density approximation methods tend
to be much faster and easier to scale to larger amounts of data [4],
but lack the guarantees of producing asymptotically exact samples
from the target density [47]. Here, we consider Hamiltonian Monte
Carlo and variational inference as representative methods from the
two main approximate inference styles.

Monte Carlo estimation in the context of GP modelling has been
carried out by a number of authors [14, 30, 38, 40, 44]. We particu-
larly note Lalchand and Rasmussen [30], who compared the quality
of GP models using Hamiltonian Monte Carlo and variational in-
ference with ML estimates.

4.1 Hamiltonian Monte Carlo
Hamiltonian or Hybrid Monte Carlo [11] (HMC), is an MCMC
method which constructs a Markov chain exploring the target
probability density, ensuring that locations are visited proportional
to their probability. HMC is a promising method for approximate
inference in cases where gradient information is available [44].
It is preferred to the more traditional Metropolis-Hastings (MH)
[19] algorithm because it is able to rapidly explore regions of high
probability by introducing auxiliary momentum variables that are
associated with the parameters of the target density. New proposals
as to where to next move are generated by simulating Hamiltonian
dynamics for a predefined number of steps 𝐿, with the dynamics
themselves simulated using a leap-frog symplectic integrator. At
each iteration of the algorithm, the gradients of the log marginal
likelihood of the target density are required for each of the 𝐿 steps.
In the context of approximate inference for GP regression, this
results in the need to invert the kernel matrix 𝜿 (X,X | 𝜽 ) 𝐿 times,
hence making HMC a costly procedure to carry out. See [40, 41]
for tutorials on HMC and its application to GPs.

Here, we use a self-tuning variant of HMC known as the No-
U-Turn Sampler (NUTS) [22], in which both the path length 𝐿
and integration step size are automatically tuned. This avoids the
additional overhead in manually tuning both parameters each time
inference is performed with different data and is thus of particular
benefit in BO where the quantity of data grows at each iteration.

4.2 Variational Inference
Variational Inference (VI), tries to find a most similar approximate
density to a given probability density function [4]. More formally,
we first assume a parametrisable family Q of approximate densities
that captures features of the target density 𝑝 (𝜽 ). Then, we try to
find𝑞∗ (𝜽 ) ∈ Q that minimises the Kullback-Leibler (KL) divergence
to the target density, 𝑝 (𝜽 | D) for data D:

𝑞∗ (𝜽 ) = argmin
𝑞 (𝜽 ) ∈Q

KL(𝑞(𝜽 ) | | 𝑝 (𝜽 | D)). (19)

Finally, we can approximate the posterior with 𝑞∗ (𝜽 ) and draw
arbitrarily many samples from it to perform approximate inference.
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There any many choices for the family Q of approximation,
although one of the key ideas behind VI is to choose Q to be expres-
sive enough to model the target density well, but simple enough to
allow for efficient optimisation [4]. A few examples include mean-
field (MFVI) and full-rank (FRVI) Gaussian approximations, as well
as the more recent, expressive, and computationally expensive nor-
malising flows [46].

In this work, we focus on MFVI and FRVI because these have
been empirically shown to be suitable for approximating the GP hy-
perparameter posterior distribution [30], while still being relatively
cheap computationally. The mean-field approximation defines 𝑞(𝜽 )
as a product of independent densities. Here we choose 𝑞(𝜽 ) to be a
product of normal densities, one for each hyperparameter:

𝑞(𝜽 ; 𝝃𝑚𝑓 ) = N
(
𝜽 |m, diag(𝝈2)) = 𝐽∏

𝑗=1
N(\ 𝑗 |𝑚 𝑗 , 𝜎

2
𝑗 ), (20)

where 𝝃𝑚𝑓 = (𝑚1, . . . ,𝑚 𝐽 , 𝜔1, . . . , 𝜔 𝐽 ) ∈ R2𝐽 is a vector of uncon-
strained variational parameters, log(𝜎2

𝑗
) = 𝜔 𝑗 and 𝐽 = |𝜽 | is the

number of parameters in the target distribution. Of course, because
this is a diagonal approximation to the true posterior, the mean-field
approximation will not capture correlation between parameters. In
contrast to this, the full-rank Gaussian approximation allows for
cross-covariance terms to be modelled explicitly. To ensure that the
learned covariance 𝚺 is always positive semidefinite, the covariance
matrix is written in terms of its Cholesky factorisation, 𝚺 = LL⊤.
This results in an approximating distribution defined as

𝑞(𝜽 ; 𝝃 𝑓 𝑟 ) = N(𝜽 |m, LL⊤), (21)

where 𝝃 𝑓 𝑟 = (m, L) ∈ R𝐽 +𝐽 ( 𝐽 +1)/2 is the vector of unconstrained
variational parameters.

VI seeks to minimise the KL divergence between the target den-
sity 𝑝 (𝜽 | D), and the approximating distribution 𝑞(𝜽 ). It can be
shown (e.g. [4]) that the KL divergence is minimised by maximising
the variational free energy or evidence lower bound (ELBO),

ELBO(𝑞) = E𝑞 [log𝑝 (𝜽 ,D)] − E𝑞 [log𝑞(𝜽 )] . (22)

Both terms in ELBO are readily computed, although the model-
specific computations required to find the gradient with respect
to the parameters 𝝃 for gradient-based optimisation may be cum-
bersome. More recently, however, the ubiquity of automatic de-
rivative calculations have led to the development of scalable VI
algorithms, namely automatic differentiation VI (ADVI) [28]. ADVI
first transforms the inference problem into one with unconstrained
real-values by, for example, taking the logarithm of parameters that
need to be kept strictly positive. It then recasts the gradient of the
ELBO as an expectation of 𝑞 instead, allowing for the use of Monte
Carlo methods to perform gradient approximation where needed.
Lastly, it reparameterises other gradients in terms of a standard
Gaussian, again allowing for the expectation of a gradient to be
calculated (easier) instead of the gradient of an expectation (hard
to impossible); this is known as the reparameterisation trick [26].

5 EXPERIMENTAL EVALUATION
We now compare the performance of using a fully-Bayesian treat-
ment of the hyperparameters in BO (denoted FBBO), with the stan-
dard approach of using the MAP solution (denoted MAP). The EI,

Table 1: Benchmark functions and dimensionality (𝑑).

Name 𝑑 Name 𝑑

Branin 2 Ackley 5, 10
Eggholder 2 Michalewicz 5, 10
GoldsteinPrice 2 StyblinskiTang 5, 7, 10
SixHumpCamel 2 Hartmann6 6
Hartmann3 3 Rosenbrock 7, 10

and UCB acquisition functions (Section 2.1) are compared for both
MAP and FBBO using direct MCMC, MFVI and FRVI across the 15
well-known benchmark functions listed in Table 11. We investigate
several scenarios to compare FBBO with MAP. Specifically, we con-
sider the noise-free case, where the function of interest is assumed
to not be significantly corrupted by noise; for this we fix 𝜎𝜖 = 10−4.
We also look at the case where the function is corrupted by additive
Gaussian noise for three different levels of noise. Note that, be-
cause the functions in Table 1 are noise-free, we add stochastically
generated noise to their evaluations to simulate a noisy setting.
We modify the functions to have Gaussian additive noise with a
standard deviation that is proportional to the range |𝑓 | of possible
function values. Concretely, we estimate |𝑓 | by evaluating 106 Latin
hypercube samples (LHS) across the function domain, finding the
maximum 𝑓𝑚𝑎𝑥 of these samples, and calculating |𝑓 | = 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 ,
where 𝑓𝑚𝑖𝑛 is the known minimum of the function. Therefore, for
a given 𝜎𝑛 , each function evaluation is a draw from a Gaussian
distribution: 𝑦 = N(𝑓 (x), (𝜎𝑛 |𝑓 |)2) = 𝑓 (x) + N (0, (𝜎𝑛 |𝑓 |)2). We
investigate three noise levels, 𝜎𝑛 ∈ {0.05, 0.1, 0.2}. We also compare
FBBO and MAP using ARD and isotropic kernels, i.e. using one
length-scale for each dimension or using one length-scale for all
dimensions of the problem. One might expect, given the reduc-
tion in the number of hyperparameters in the isotropic case, that
the hyperparameter posterior distribution would be less complex
and therefore less likely to benefit from a fully-Bayesian treatment.
Overall, this results in 8 sets of experiments across the test func-
tions: the noise-free setting and three different amounts of noise,
repeated for the ARD and isotropic kernels.

A zero-mean GP with a Matérn 5/2 kernel (10) was used for all
experiments. At each BO iteration, input variables were rescaled to
reside in [0, 1]𝑑 , and observations were rescaled to have zero-mean
and unit variance prior to GP inference. Relatively uninformative
priors were used, based on BoTorch recommendations [1], for the
three types of hyperparameters: ℓ ∼ Ga(3, 6), 𝜎𝑜 ∼ Ga(2, 0.15), and
𝜎𝜖 ∼ Ga(1.1, 0.05), where Ga(𝑎, 𝑏) is a Gamma distribution with
concentration and rate parameters 𝑎 and 𝑏 respectively. Models
were initially trained on 𝑆 = 2𝑑 observations generated by maximin
LHS and then optimised for a further 200 − 𝑆 function evaluations.
The trade-off 𝛽𝑡 between exploitation and exploration in UCB was
set using Theorem 1 in [56], which implies that 𝛽𝑡 increases log-
arithmically with 𝑡 . Each optimisation run was repeated 51 times
from a different set of LHS samples, and the sets of initial locations
were used for all methods to enable statistical comparison. An odd
number (51) of repeats were chosen to allow for the calculation of
the median fitness value without the need for rounding. For MAP

1Function formulae can be found at: http://www.sfu.ca/~ssurjano/optimization.html.

http://www.sfu.ca/~ssurjano/optimization.html
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Figure 3: EI and UCB optimisation summary. Bar heights
correspond to the number of times that an inference method
is the best or statistically equivalent to the bestmethod across
the 15 functions, for the 4 noise scenarios and 2 kernel types.

estimation, the GP hyperparameters were estimated by maximising
log[𝑝 (y |X, 𝜽 )𝑝 (𝜽 )] using a multi-start strategy with L-BFGS-B
[6] and 10 restarts. In all the approximate fully-Bayesian methods
the acquisition functions were averaged over 𝑀 = 256 posterior
samples (6). HMC/MCMC sampling inference (Section 4.1) was car-
ried out using PyMC3 [50], with 4 chains, discarding the first 2048
samples as burn-in and taking every 50th sample. We note that
this is significantly more than previous works, e.g. [21, 59] only
performed inference every 10 BO iterations, using MCMC to draw
𝑀 = 200 samples, discarding only the first 50 of them, and taking
every 3rd sample. In the non-MCMC BO iterations, the authors
reused the latest set of samples. When carrying out variational in-
ference (Section 4.2), optimisation of the ELBO (22) was undertaken
for a maximum of 40000 steps or until convergence. Finally, GP
models were built using GPyTorch [16] and the resulting acquisi-
tion functions were optimised using BoTorch [1]. Full experimental
results are available in the supplementary material, and all code,
initial locations and optimisation runs are available online2.

Here, we report performance in terms of the logarithm of the
simple regret 𝑅𝑡 , which is the difference between the true minimum
value 𝑓𝑚𝑖𝑛 and the best seen function evaluation up to iteration 𝑡 :
log(𝑅𝑡 ) = log(min{𝑓1, . . . , 𝑓𝑡 } − 𝑓𝑚𝑖𝑛).

5.1 Results and Discussion
Each combination of acquisition function (EI and UCB) and kernel
(isotropic and ARD) were evaluated on the test problems shown in
Table 1, for the four different noise levels (𝜎𝑛 ∈ {0, 0.05, 0.1, 0.2}).

Figure 3 shows, for the EI and UCB acquisition functions and
noise levels, the number of times BO with each inference method
was the best-performing according to a one-sided, paired Wilcoxon
signed-rank test [27] with Holm-bonferroni [23] correction (𝑝 ≥
0.05). As can be seen from the plot, for EI with the isotropic ker-
nel, MAP outperforms the other inference methods. Given that

2https://github.com/georgedeath/how-bayesian-should-BO-be
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Figure 4: Illustrative convergence plots for 3 benchmark prob-
lems for EI using an isotropic (upper) andARDkernel (lower).
Each plot shows the median log simple regret, with shading
representing the interquartile range over 51 runs.

there are only three hyperparameters 𝜽 = (ℓ, 𝜎𝜖 , 𝜎𝑜 ) regardless of
the problem dimensionality 𝑑 , this is not wholly surprising. It is
likely that the hyperparameter posterior distribution (18) quickly
becomes sharply unimodal, particularly given the lack of freedom
in the parameters due the single length-scale. This matches the
observations of Rasmussen and Williams [45], who note that as the
amount of data increases, as it does in BO, that one often finds a
local optimum that is orders of magnitude more probable than any
other, and, indeed, that it becomes more sharply peaked.

Conversely, for EI using an ARD kernel MCMC outperforms
MAP. With ARD there are 2 + 𝑑 hyperparameters, and thus much
more freedom to allow for different, but equally likely, explanations
for the data. This corresponds to a much more diffuse, and poten-
tially more multimodal, posterior density. We note that this does
not conflict with Rasmussen and Williams’s observation because
the curse of dimensionality means that much more data would be
required for one mode to become dominant and sharply-peaked.
Figure 4 shows some illustrative convergence plots using EI with
an isotropic (upper) and ARD kernel (lower).

Figure 3 also shows that for EI, BO with MCMC inference (top
row, red bars) was often statistically significantly better than both
MFVI and FRVI (orange and green bars respectively) on the major-
ity of test problems, kernels, and noise levels. In fact, when MCMC
was equal to or better than MAP, the ordering of the inference
methods was always MCMC ≥ MAP > FRVI > MFVI. This sug-
gests that the posterior hyperparameter distribution is not well
approximated by either VI method. Figure 1 lends weight to this
interpretation because the posterior distribution was boomerang-
shaped, which cannot be well approximated by either the mean
field approximation, in which each parameter is independent, or
the full-rank approximation, which is constrained to be Gaussian.
Note that the greater flexibility of FRVI allows it to perform better
than MFVI. Due to the superiority of MCMC over the variational
methods, we compare MAP with MCMC for the remainder of this
work.

Figure 5 summarises the performance of MAP vs. MCMC for
each combination of acquisition function and kernel (columns),

https://github.com/georgedeath/how-bayesian-should-BO-be
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Figure 5: MAP vs. MCMC summary. The colour of each cell
indicates whether both inference methods were statistically
indistinguishable from one another (white), MAP outper-
formed MCMC (blue) or MCMC outperformed MAP (red).

and test problem (rows). As can be seen from the figure, when
using UCB, MCMC-based inference is almost always worse. We
suspect that the increased uncertainty of the full posterior (MCMC)
leads to increased exploration with an already exploratory acquisi-
tion function, which ultimately hampers convergence. Conversely,
using EI with an isotropic kernel, neither MAP nor MCMC is con-
sistently superior. MCMC is almost always better with ARD when
using EI, probably due to the better representation of the posterior
hyperparameter distribution, which allows better prediction and
exploration of the function being optimised.

In order to investigate whether UCB and EI are really more ex-
ploratory when using MCMC compared with MAP, we calculated
the Euclidean distance between consecutively evaluated locations
in each optimisation run, and found that this is indeed the case
– for plots of the distances see the supplementary material. With
UCB, the distances between consecutive locations are the smallest
for MAP and increase substantially for the other inference meth-
ods. Distances between consecutively evaluated locations for EI,
however, did not follow a similar trend: In the noise-free setting,
there was practically no difference in the behaviour of EI with
MAP or MCMC. Conversely, as the noise level increases, the ap-
proximate inference-based methods become more exploratory than
the MAP estimates, particularly on the higher-dimensional prob-
lems. This indicates that the MAP estimates are sufficient for the
lower-dimensional problems where the hyperparameter posterior
distribution quickly becomes sharply peaked. EI is known to be too
exploitative, and, as discussed in Section 2.1, several works have
tried ad hoc schemes to increase the amount of exploration it per-
forms. Therefore, we argue that if the EI acquisition function is be-
ing used, then taking into account the hyperparameter uncertainty
via a fully-Bayesian treatment of them is essential, particularly in
higher dimensions. Doing so in a principled, Bayesian way leads
to the incorporation of an increased amount of exploration when
needed, and does so without recourse to ad hoc rules.

Finally, we compare the different combinations of acquisition
function, inference method, and kernel type to give some general
advice to practitioners as to which of these BO components should
be used. As shown in the supplementary material, EI with a fully-
Bayesian treatment of the hyperparameters and an ARD kernel
leads to the best performance in the noise-free setting, with EI vastly
outperforming UCB for all combinations of components. However,
as the noise level increases, the picture becomes less clear. UCB
improves its performance in comparison to EI and the methods are
roughly equal for the different noise levels (supplementary material,
Figure 3). EI’s deteriorating performance at higher noise levels may
indicate that the surrogate model is poorer at representing the noisy
function, leading to insufficient exploration. This is in contrast to
the more exploratory UCB, which over-explores in the noise-free
case [3]. It would be interesting to investigate BO strategies for
optimisation in the presence of noise. It is clear that a fully-Bayesian
treatment of the hyperparameters should be avoided with the UCB
acquisition function because the increased level of exploration led
to poor performance for both kernel types across all levels of noise.

6 CONCLUSION
We investigated how a fully-Bayesian treatment of the Gaussian
process hyperparameters affects optimisation performance. With
noise-free evaluations, EI with a MCMC inference and an ARD
kernel was the best combination of evaluated BO components.
However, as the observational noise level increased, there was
less to differentiate between the components. In the case of EI,
MCMC was found to be more effective with an ARD kernel than
an isotropic one. We attribute this to additional flexibility to model
the complex and possibly multi-modal hyperparameter posterior
that is afforded by a kernel that treats different dimensions with
different length scales. MCMC is generally superior to variational
methods (MFVI and FRVI) because the marginal posterior is often
sufficiently complex that it is poorly modelled with the (necessarily
unimodal) mean field or full-rank Gaussian approximations.

We do not recommend the fully-Bayesian approach with UCB
because the additional hyperparameter uncertainty leads to even
greater exploration with the already over-exploratory UCB acquisi-
tion function. However, this is not the case for EI and we, therefore,
recommend the fully-Bayesian treatment of the hyperparameters in
BO using MCMC because it allows for a principled way to increase
exploration without any ad hoc enhancements to EI.

Other important future directions also focus on the modelling
ability of the surrogate. Particular aspects are the non-stationarity
induced as the optimiser converges [e.g. 54] and improving the mod-
elling of functions with degenerate features, such as discontinuities,
using deep GPs [8, 49].
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