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Abstract Grazing eventsmaycreate coexisting attrac-
tors and cause complex dynamics in piecewise-smooth
dynamical systems. This paper studies the control of
grazing-inducedmultistability in a soft impactingoscil-
lator by using the time-delayed feedback control. The
control switches from one of the coexisting attrac-
tors to a desired one to suppress complex dynamics
near grazing events. We use path-following (continua-
tion) techniques for non-smooth dynamical systems to
investigate robustness of the controller and the param-
eter dependence of the controlled system. In particu-
lar, several newly developed computational methods
are used, including a numerical method for analysing
non-smooth delay equations and a method for calcu-
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lating the Lyapunov exponents and the grazing point
estimation.Numerical simulations demonstrate that the
delayed feedback controller is effective, and a proper
selection of the control gain and delay time can simplify
the complex dynamics of the system near grazing.
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1 Introduction

Impacting systems are very common and important
components in many engineering applications, such
as self-propelled capsule systems [1,2], rotor systems
[3,4], energy harvesting [5], mechanical bearings [6],
manufacturing cutting [7], and oil and gas drilling [8–
10]. Impacting systems show many complex nonlin-
ear phenomena, e.g. chaotic motion, multistability, and
grazing and sliding events [11], which can be exploited
during design. For example, Liu et al. [12] and Liao
et al. [13] suggested that the efficiency of the vibro-
impact drilling can be improved by choosing the most
efficient operational mode among possible coexisting
attractors. For the self-propelled capsule system in [1],
Guo et al. validated the mathematical model by com-
paring it with experimental results. Then, the numerical
results obtained from the model were used to optimise
the progression speed and energy efficiency of the cap-
sule prototype. In [14], Páez Chávez et al. studied the
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mathematical model of a Jeffcott rotor within a snubber
ring with anisotropic supports, and the model was used
to predict the onset of impacts between the rotor and
the snubber ring. The present work will study a period-
ically excited system with soft impacts, which can rep-
resent a wide range of mechanical collisions. Here, soft
impact, in contrast to hard impact [15], refers to a col-
lision that has a finite nonzero contact time and the col-
liding body penetrates the base typically modelled as a
one-sided spring. This type of soft impact is a represen-
tative model for mechanical collisions. Its nonlinearity
brings complex phenomena into a system’s dynamics,
such as grazing-induced multistability [16,17].

‘Grazing’ refers to the scenario when the collid-
ing body encounters the impact with zero transver-
sal velocity. Near-by trajectories experience qualita-
tively different forces: some will not impact, others
will have an impact with nonzero transversal veloc-
ity. When an attractor encounters a grazing event, it
may change qualitatively (see, e.g. [18–20]), which is
called a discontinuity-induced (or, short, discontinu-
ous or non-smooth) bifurcation. Nordmark [21] and
Pavlovskaia et al. [22] analyse what dynamics occurs
near grazing events. The textbook [11] classifies graz-
ing bifurcations also for other piecewise-smooth sys-
tems. Their analysis finds coexistence of multistable
attractors, chaotic motions and vulnerable attractors,
which can be easily perturbed by any variations of sys-
tem parameters or any external disturbances. Detec-
tion of grazing events helps predicting the performance
behaviour of an impacting system. For example, Lamba
and Budd [23] studied the grazing bifurcation of an
impacting system through calculating its Lyapunov
exponents (LEs), and the bifurcation was observed as
a jump in LEs. In [21], Normark investigated the graz-
ing bifurcation of a single-degree-of-freedom oscilla-
tor subjected to a rigid amplitude constraint and the
singularities caused by grazing impacts by controlling
a system parameter. Foale and Bishop [24] studied
grazing bifurcations for two different models of the
impact oscillator. They presented numerical evidence
that the observed discontinuous bifurcations were lim-
its of standard bifurcations of smooth dynamical sys-
tems as the impact was hardened. In [25], Dankow-
icz and Zhao studied three different bifurcation scenar-
ios associated with grazing conditions for a periodic
response of an impact microactuator, a discontinuous
jump to an impacting periodic response, a continuous
transition to an impacting chaotic attractor and a dis-

continuous jump to an impacting chaotic attractor, by
using the concept of discontinuity mappings. Further-
more, Ing et al. [16,26] carried out experimental inves-
tigations on different bifurcation scenarios of an impact
oscillator with a one-sided elastic constraint, leading
to smooth (that is, classical) and non-smooth bifur-
cations. In the present work, the same oscillator will
be studied. Our research will focus on how to remove
the complexity of its near-grazing dynamics, ideally
through a non-invasive approach, without affecting its
original dynamics. Specifically, coexisting attractors
caused by grazing events, can be reduced to one of
attractors, through the delay feedback controller, and
without introducing any external attractors, or chang-
ing any existing attractors.

Multistable impact motions may have negative
effects [27], such as degrading efficiency or reducing
service life for the system, which should be avoided.
Control of multistable impact motions, especially the
near-grazing dynamics, has been studied extensively by
many researchers in the past decade. For example, the
linear augmentation feedback control law was adopted
to control switching between coexisting attractors in a
soft impacting system [17]. De Souza et al. used both, a
perturbation method [28] and a feedback damping con-
troller [29], to control chaotic attractors in an impacting
system. Liu et al. [30] proposed an intermittent con-
trol method for non-autonomous dynamical systems to
switch between coexisting attractors. A class of control
strategies was developed by Dankowicz et al. [31–33]
to ensure the persistence of desired attractors near the
grazing bifurcation of an impact oscillator. Veldman
et al. [34] introduced an impulsive control method to
bring a single-degree-of-freedom system froman unde-
sired to a desired attractor.

The present study investigates delayed feedback
control, as introduced by Pyragas [35], for a period-
ically excited system with soft impacts (which we will
simply call impact oscillator). Pyragas-type delayed
feedback control has input u(τ ) of the form

u(τ ) = K (y(τ − τd) − y(τ )),

where y(τ ) is some output of the system, τ is the time
and τd is a time delay. The control’s aim is to achieve
the switching from one of its coexisting attractors to
a target attractor. If τd is equal to the forcing period
and the system with delayed feedback control shows
periodic motion with period τd , the control effort u(τ )

is zero (hence, called non-invasive). Delayed feedback
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control was originally proposed by Pyragas [35] for
controlling chaos. In [36], Pyragas et al. controlled a
chaotic electronic oscillator successfully by using the
time-delayed feedback controller. In [37], a modified
delay feedback control using the act-and-wait concept
was proposed to reduce the dimension of phase space
of the time-delayed feedback systems. Yamasue et al.
[38] used time-delayed feedback control to stabilise
irregular and non-periodic cantilever oscillations in
amplitude modulation atomic force microscopy exper-
iments. In this paper, we will investigate how time-
delayed feedback control suppresses multistability of
the impact oscillator close to grazing. The combina-
tion of soft impacts, grazing and delay requires several
newcomputational techniques for analysing piecewise-
smooth delay differential equations (DDEs). We will
adapt path-following (continuation) methods [39], use
a recently introduced computational method for calcu-
lating LEs in piecewise-smooth DDEs and an accurate
algorithm for computing grazing events [40] in DDEs.

The rest of this paper is organised as follows. Section
2 introduces the mathematical model for a periodically
forced mechanical oscillator subjected to a one-sided
elastic force and some mathematical preliminaries for
delayed feedback control. Section 3 studies the perfor-
mance of the delayed feedback control for controlling
multistability near grazing events in the impact oscil-
lator dynamics. In Sect. 4, the further analysis of the
impact oscillator under the delayed feedback control is
carried out by using path-following methods. Finally,
conclusions are drawn in Sect. 5.

2 Mathematical model and concepts

The impact oscillator shown in Fig. 1 represents a
mechanical system encountering intermittent so-called
soft impacts, which will be used in this work. Soft
impacts occur in mechanical systems when an object
hits an obstacle of negligible mass but non-negligible
stiffness. In Fig. 1, the object is modelled by the block
of massm and the obstacle is modelled by a spring with
one-sided stiffness k2 (a backlash spring). The collision
occurs when the distance g between block and spring
reaches zero. Since during non-impact period the back-
lash spring is relaxed, the forces on the mass depend
continuously on g, and hence on the position y of the
block. However, the spring constants exerted by the
backlash spring are discontinuous, i.e. 0 for g > 0, k2

Fig. 1 Physical model of the soft impact oscillator

for g = 0. Thus, the system can operate under either no
contact or contact mode with the secondary spring at
any time. The nondimensional equations of motion of
the impact oscillator can be written in a compact form
as [26,41]

⎧
⎪⎨

⎪⎩

x ′(τ ) = v(τ),

v′(τ ) = aω2 sin(ωτ) − 2ζv(τ ) − x(τ )

−β(x(τ ) − e)H(x(τ ) − e),

(1)

where H(·) stands for the Heaviside step function, and
x ′ and v′ denote the differentiation with respect to the
nondimensional time τ . We observe that despite the
presence of H the right-hand side of Eq. (1) is contin-
uous in x . This is typical for models with soft impacts
where the point mass encounters a spring when cross-
ing a critical position xcrit (in Eq. (1) xcrit = e). The
variables and parameters of the system can be nondi-
mensionalised as follows

ωn =
√
k1
m

, τ = ωnt, ω = �

ωn
, ζ = c

2mωn
,

x = y

y0
, e = g

y0
, a = A

y0
, β = k2

k1
,

where y0 > 0 is an arbitrary reference distance, ωn is
the natural frequency, ω is the frequency ratio, β is the
stiffness ratio, ζ is the damping ratio, a is the nondi-
mensionalised forcing amplitude, and e is the nondi-
mensionalised gap.

In order to suppress the near-grazing multistability
of the impact oscillator, a delay feedback controller
[36] is applied to system (1) by adding an input u(τ )

to the forcing, such that the new system can be written
as
⎧
⎪⎨

⎪⎩

x ′(τ ) = v(τ),

v′(τ )=(
aω2 sin(ωτ) + u(τ )

) − 2ζv(τ ) − x(τ )

β(x(τ ) − e) − H(x(τ ) − e),

(2)
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where

u(τ ) = K (v(τ − τd) − v(τ)) , τ ≥ 0, (3)

is the time-delayed feedback control. In Eq. (3), K ≥
0 is the control gain, setting the coupling strength
between the impact oscillator output v(τ − τd) − v(τ)

and the control input u(τ ), and τd > 0 is a tunable
time delay (in contrast to a lag introduced by the con-
trol loop, which is assumed to be zero here). Since the
purpose of this present work is to control the system
to a period-1 response, the delay term τd is set to one
period of the external excitation τd = T := 2π/ω.

2.1 Construction of the stroboscopic map

To calculate the LEs, a stroboscopic map needs to be
constructed to obtain a discrete-time system. For the
piecewise-smooth DDEs (2), a constant phase surface
can be defined as

PT
s := {(y, τ ) ∈ R

2 × R
+| τ = τ0 + kT, k ∈ Z

+},
(4)

and the relevant continuous stroboscopic map is

PD : PT
s → PT

s , (5)

which is defined by the semiflow described by the
piecewise-smooth DDE system (2). The two regions
are determined by the Heaviside step function on
their right-hand side of system (2). Since the system’s
dynamics can be described using the stroboscopic map
(5), we use the definition of LEs for discrete-time
dynamical systems.

Definition 2.1 [42] For any initial condition x0 ∈ PT
s ,

let {xm}∞m=0 be the corresponding orbit of the map PD ,
and let λm0 , · · · , λmn be the n largest in modulus eigen-
values of D(PD)m(x0), sorted such that |λm0 | ≥ . . . ≥
|λmn |. The LEs of x0 are
ϑi := lim

m→∞ ln |λmi | 1
m , i = 1, . . . , n (6)

whenever the limit exists for x0 and for all i ≤ n.

2.2 Construction of basins of attraction

Similarly, the relevant continuous stroboscopic map of
the uncontrolled system (1) can be constructed as

P : PT
s → PT

s , (7)

which is defined as a semiflow with two dimensions.
The basin of attraction of a compact invariant subset
A ⊂ M of system (1) is defined as

B(A) := {y ∈ M : (P)τ (y) ∈ A, τ → +∞}, (8)

where the manifold M is two dimensional.
According to the construction of the maps P and

PD , the basin of a compact invariant subset A ⊂ M of
system (2) can be defined as

Bd(A) := {y ∈ M : (PD)τ ◦ P(y) ∈ A for τ → ∞}.
(9)

Thus, by monitoring the evolution of the basin (9)
through varying system parameters and comparing
with the basin (8) for the system (1), multistability in
the system (2) can be observed.

2.3 Construction of the Jacobian matrix

In order to construct the Jacobianmatrix of themap (5),
we write system (2) as a nonlinear DDE of the form

q ′ = f (τ, q, q(τ − τd)) (10)

by inserting Eqs. (3) into (2). For this DDE τ is in P,
where P is an interval of R+ unbounded on the right,
and f : P×R

2×R
2 → R

2 is a piecewise-smooth func-
tionbasedon theHeaviside step function.Take N ∈ Z

+
sufficiently large, and define the grid points τ id := i τd

N ,
i = 0, . . . , N , and yi (τ ) := q(τ − τ id) for all τ ≥ 0,
i = 0, . . . , N , where τd := T . The DDE (10) can be
approximated as a 2(N + 1)-dimensional piecewise-
smooth discretised system, as studied in [43]. Thus,
in detail, for any time interval [τm, τm + τd ], where
τm = τ1+(m−1)T , τ1 = τ0 andm ∈ Z

+, the solution
of DDE (10) can be approximated by N steps of size
h = τd

N by using numerical integration. During each
numerical integration, when the system encounters the
impact event, it switches directly to the relevant func-
tion based on the Heaviside step function, ensuring that
the convergence rate of the modified Euler integration
is O(h) [40]. As a consequence, this convergence rate
can guarantee the accuracy of the following numerical
calculations. If the modified Euler integration formula
[44] gives a single step of size as

y0(τm + h) = y0(τm) + h
2

[
f (τm , y0(τm), y0(τm − hN ))

+ f (τm+1, y0
(τm+1), y0(τm − h(N − 1)))

]
, (11)
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Fig. 2 (Colour online) Bifurcation diagram of the impact oscil-
lator computed for ζ = 0.01, e = 1.28, a = 0.49, β = 28 and
varying frequency of external excitationω. The period-7, period-
4 and period-3 attractors are denoted by green, red and blue dots,
respectively. Additional panels below present the corresponding

periodic orbits and Poincaré sections for ω = 0.845, ω = 0.851,
ω = 0.8513, ω = 0.8528 and ω = 0.8538. The desired attractor
for control purpose, i.e. an unstable period-1 orbit, is shown in
red dashed line. The location of the impact boundary is indicated
by the vertical blue lines
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applying the recursion (11) N + 1 times, we obtain the
discretised the map PD as a map FP : R

2(N+1) →
R
2(N+1), mapping Ym := (yTN (τm), · · · , yT1 (τm), yT0

(τm))T ∈ R
2(N+1) toYm+1 = FP (Ym), whereYm+1 :=

(yTN (τm + τd), · · · , yT1 (τm + τd), yT0 (τm + τd))
T ∈

R
2(N+1). When an arbitrary perturbation δY is applied,

the variational equation for FP can be written as

δYm+1 =
N+1∑

i=1

∂FP(Ym)

∂yi−1(τm)
δyi−1(τm), (12)

where δYm := (δyTN (τm), · · · , δyT1 (τm), δyT0 (τm))T ∈
R
d(N+1) and δyi (τ ) := δy(τ − τ id), i = 0, · · · , N . As

Eq. (12) can be obtained by linearising the variational
equation of the nonlinear differential equation as

d

dτ
δy0(τ ) = ∂ f (τ, y0(τ ), yN (τ ))

∂y0
δy0(τ )

+∂ f (τ, y0(τ ), yN (τ ))

∂yN
δyN (τ ), (13)

using the modified Euler integration formula, Eq. (13)
can be discretised in the same way as Eq. (11). Iter-
ating this process for N + 1 times, the approximation
of Jacobian matrix Jm of the map PD , applied to δYm ,
equals δYm+1, such that Jm can be assembled through
the relation

δYm+1 = JmδYm .

Then, for an arbitrary sufficiently small δ > 0, through
selecting an arbitrary initial separation vector (e.g.
δY1 = (0, · · · , 0, 0, δ)T ) and renormalisation, and cal-
culating the leading LEs of the map PD along approxi-
mate trajectory yi (τm) using Gram-Schmidt orthonor-
malisation and Eq. (6). For a detailed description of the
calculation steps, readers can refer to [40].

3 Numerical investigation of the delay feedback
controller

We start with the bifurcation analysis of near-grazing
dynamics of the impact oscillator without the delayed
feedback control, as given in Eq. (1). Figure 2 shows
the bifurcation diagram of the system (1) with exci-
tation ω ∈ [0.845, 0.854] as the bifurcation parame-
ter. Our calculation was run for 350 cycles of external
excitation, and the data for the first 300 cycles were
omitted to ensure the steady-state response, whereas
the last 50 values of the displacement x at τ = 2nsπ

ω
,

ns ∈ Z
+ were plotted in the bifurcation diagram for

each value of the bifurcation parameter. For the range
ω ∈ [0.851, 0.8512], we find coexisting attractors: one
period-7, one period-4 and one period-3 orbits, shown
as green, red and blue dots, respectively. The additional
panels of Fig. 2 show the continuous-time trajecto-
ries of the orbits and the corresponding discrete orbits
of the stroboscopic map for τ0 = 0. At ω = 0.845
(first row), the system presents a period-1 (blue) and
a period-7 (green) attractors. At ω = 0.8510 (second
row), there are a period-3 (blue), a period-7 (green)
and a period-4 (red) orbits. At ω = 0.8513 (third
row), the system has a period-3 (blue) and a period-
7 (green) responses, which both persist throughout the
entire parameter range. Note that at the rightmost of
this row, we include the unstable period-1 response
(red dashed line), which is the desired target for the
delayed feedback controller to suppress this grazing-
induced complex dynamics. At ω = 0.8528 (fourth
row), a new period-7 response (red) can be observed
coexisting with the period-3 (blue) and the period-7
(green) orbits. At ω = 0.8538 (fifth row), only period-
7 (green) and period-3 (blue) attractors are left. Basins
of attraction of the impact oscillator are presented in
Fig. 3 computed using DYNAMICS-WIN [45] show-
ing the evolution of all these attractors as the frequency
of excitation ω varies.

Since the system has multiple attractors at ω =
0.8528, the delay feedback control (3), u(τ ) =
K (v(τ − τd) − v(τ)) with τd = 2π/ω was applied to
suppress this multistable regime. The period-1 orbit is
stable only for control gains K in a certain range. Fig-
ure 4a shows a bifurcation diagram of the controlled
impact oscillator when varying the bifurcation param-
eter K ∈ [0, 0.8]. Our calculations were run for 80
periods of the external excitation with K = 0 to ensure
that the system (1) settles down to its steady state, and
then switched the controller (3) on and kept the sys-
tem (2) under a particular value of the control gain K
running for 600 periods, whereas the last 80 values of
oscillator’s displacement x at τ = 2nsπ

ω
, ns ∈ Z

+ were
plotted in the bifurcation diagram. Figure 4b shows
the corresponding LE diagram of the controlled impact
oscillator when varying the control parameter K . Like-
wise, the calculations for the LEs were run for 80
periods of external excitation with K = 0 initially,
followed by another 600 periods calculations with a
certain value of K , where the first 200 periods were
omitted to ensure the steady-state response of the con-
trolled oscillator while the remaining 400 periods were
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Fig. 3 (Colour online) Basins of attraction for frequencies ω

highlighted in Fig. 2: a ω = 0.851 with a period-3 (blue dots,
black basin), a period-4 (green dots, red basin) and a period-7
attractors (black dots, white basin), b ω = 0.8513 with a period-
3 (blue dots, black basin) and a period-7 attractors (black dots,

red basin), c ω = 0.8528 with a period-3 (blue dots, red basin), a
period-7 (black dots, white basin) and a new period-7 attractors
(green dots, black basin). The other parameters are ζ = 0.01,
e = 1.28, a = 0.49 and β = 28

Fig. 4 (Colour online) a
Bifurcation diagram and b
the largest LEs of impact
oscillator with the delayed
feedback control for varying
control gain K ∈ [0, 0.8]. c
The maximum
displacement, Max(x), for
varying control gain
K ∈ [0.148, 0.420]. System
parameters are ζ = 0.01,
e = 1.28, a = 0.49, β = 28,
ω = 0.8528 and τd = 2π

ω

(a)

(b)

(c)
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Fig. 5 (Colour online) Basins of attraction of impact oscillator
with delay feedback control, (2)–(3), and different control gains
K : a K = 0.0015 (period-3: green dots with cyan basin, period-
7: red dots with orange basin), b K = 0.04 (period-4: red dots
with orange basin, chaos: purple dots with cyan basin) and c

K = 0.32 (period-1: red dot with orange basin). Additional pan-
els demonstrate the phase trajectories of the impact oscillator.
The location of the impact boundary is denoted by the vertical
blue lines. The other parameters of the system are ζ = 0.01,
e = 1.28, a = 0.49, β = 28 and ω = 0.8528

used to calculate the LEs as studied in Sect. 2.3. It can
be seen from the figures that, when K < 0.148, the
system presents multi-periodic responses. For exam-
ple, when K = 0.0015, the system has a period-3
attractor, which is a small perturbation of the period-
3 attractor in the uncontrolled system (see inset in
Fig. 4a). For K ∈ (0.04, 0.148), we observe some
chaotic motions, as indicated by the positive leading
LEs, shown in Fig. 4b. For K ∈ [0.148, 0.42], the con-
trol stabilises the desired period-1 motion at grazing.
The leading LE is smaller than 0, as expected for stable
periodic motion, for K ∈ [0.148, 0.42]. For K > 0.42,
the desired period-1 motion loses its stability via a
Neimark–Sacker bifurcation and transitions into chaos
via torus breakup. As can be seen from the figure, the
chaotic motions have periodic windows and their cor-
responding LEs are around 0 (see inset in Fig. 4b) indi-
cating that the system was not successfully controlled.
In addition, the maximum displacement, Max(x), for
varying control gain K ∈ [0.148, 0.42] is presented in

Fig. 4c to demonstrate that the desired period-1 orbit
was indeed in the critical state of grazing.

To demonstrate global stability of the delayed feed-
back control strategy for suitable control gains K , we
present the basins of attraction for various control gains
K in Fig. 5. The computation procedure for these basins
is given as follows: From any initial value (x0, v0),
the trajectory of the system (1) at the moment τ0 + T
was calculated, and then was inserted into the system
(2) with a certain value of the control gain K . As the
trajectory converged to an attractor, this initial value
was marked by a specific colour in the phase plane.
As the control gain K is set to its nonzero value only
for τ > T = τd = 2π/ω, the basins of attraction are
subsets of R2, even though the controlled system is a
DDE. In Fig. 5a, there are two coexisting attractors for
K = 0.0015, a period-3 (green dots with cyan basin)
and a period-7 (red dots with orange basin) attractors.
Both attractors are small perturbations of attractors
existing in the uncontrolled system. For K = 0.04,
as shown in Fig. 5b, the system is bistable consisting
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of a period-4 (red dots with orange basin) and chaotic
attractors (purple dots with cyan basin). The basin of
the chaotic attractor is noticeably smaller than the basin
of the period-3 attractor in Fig. 5a. At K = 0.32, the
system is monostable with the desired period-1 attrac-
tor only (see Fig. 5c).

According to the above results, when K ∈
[0.148, 0.42], the delay feedback controller can sta-
bilise the impact oscillator on the target period-1 orbit.
Figure 6 presents the time profiles of displacement of
the system and its external excitation with the control
signal u as a demonstration of controlling from differ-
ent coexisting attractors.As can be seen from thefigure,
the controller was switched on at the 81th period of the
external excitation, and for all the coexisting attractors
at ω = 0.8528, including a period-3 and two period-
7 attractors, the system was successfully driven to the
desired period-1 motion at grazing with one impact per
period of excitation.

4 Path-following study of the delay feedback
controller

In this section, we will investigate the periodically
forced impact oscillator with path-following (continu-
ation) methods, considering the time-delayed feedback
controller introduced previously (see system (2) with
(3)). As mentioned before, this model is a piecewise-
smooth dynamical systemwith delay, for which no spe-
cialised software package for numerical continuation
is available to the best of our knowledge. Therefore,
in order to carry out a detailed path-following study of
the impact oscillator with time-delayed feedback con-
trol we will employ the numerical approach proposed
in [39].

4.1 Defining systems for continuation

The numerical approach presented in [39] is based
on the chain approximation [46] using a higher-order
approximation scheme of the original DDE by intro-
ducing a finite sequence of Taylor expansions as fol-
lows. Let us consider a general DDE of the form

q̇(t) = f (t, q(t), q(t − τd)), (14)

which defines a system of delay differential equations
(DDEs) with constant delay τd > 0, where f : R ×

R
d×R

d → R
d is a sufficiently smooth function. Let us

now take N ∈ N sufficiently large and define the grid
points ti := i τd

N , i = 0, . . . , N . Furthermore, define
ui (t) := q(t − ti ) for all t ≥ 0, i = 0, . . . , N . In this
setting, we obtain via Taylor expansion to orderM with

ui−1(t) = q
(
t −

(
ti − τd

N

))
= ui

(
t + τd

N

)

=
M∑

k=0

1

k!u
(k)
i (t)

( τd

N

)k + O
(( τd

N

)M+1
)

, and

(15)

u̇0(t) = f (t, u0(t), uN (t)), (16)

for all t ≥ 0, i = 1, . . . , N , M ≥ 1. After neglecting
the O-terms, we obtain from (15) a system of dN dif-
ferential equations of orderM . In thisway, a piecewise-
smooth dynamical systemof dimension d with constant
delay can be approximated by a piecewise-smooth sys-
tem of ODEs of dimension d(NM + 1) for large N ,
which then allows the study of the resulting model
in the framework of hybrid dynamical systems [47].
Choosing order M = 2, the defining system for peri-
odic orbits of an impact oscillator with time-delayed
feedback control (2) can be approximated by the fol-
lowing piecewise-smooth system of ODEs [39] on the
interval [0, 1]:

z′(τ ) = f (z(τ ), φ(z(τ ), α), α), where

φ(z, α) =
{
0 if x − e < 0 (no contact),

β(x − e) if x − e ≥ 0 (contact),

z := (x, r, s, u0, . . . , uN , w1, . . . , wN )T ∈ R
2N+4,

α := (ω, a, β, ζ, e, K , τd) ∈ (
R

+
0

)7 (17)

and

f (z, α, φ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

τdu0
r + ωτd s − r

(
r2 + s2

)

s − ωτdr − s
(
r2 + s2

)

τd
(
aω2r + K (uN − u0) − 2ζu0 − x − φ

)

(wi )i=1,...,N(

2N 2
(

ui−1 − ui − 1

N
wi

))

i=1,...,N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(18)

The argument φ of the right-hand side f defines the
no contact and contact operation modes of the impact
oscillator, respectively. In the approximating system
(17), we have introduced a time re-scaling τ ← τ/τd
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Fig. 6 Time profiles of
displacement of the impact
oscillator and the external
excitation including the
control signal u. Grey line
indicates the time when the
delay feedback control was
switched on. Before this
time, the gain K = 0 and
the uncontrolled oscillator is
on its a period-3, b first
period-7 and c second
period-7 attractors. The
parameters of the controlled
impact oscillator are
ζ = 0.01, e = 1.28,
a = 0.49, β = 28,
ω = 0.8528 and K = 0.32

(c)

(b)

(a)

such that the approximation of the history q(τ − t) for
t ∈ [0, τd ] by Taylor expansion (15) is always over
the unit interval, regardless the value of the delay τd .
Furthermore, in the approximating system (17)wehave
that u0(τ ) = v(τ) and

ui (τ ) ≈ v(τ − τi ), for all τ ∈ [0, 1],
τi = i

N
, i = 1, . . . , N . (19)

The approximation of the history of q by ui on the
evenly spaced grid of τi on [0, 1] with order M = 2
is a special case of the pseudospectral approximation
of DDEs by ODEs, as used for bifurcation analysis in
MATCONT by [48]. The spectral approximation from

[48] has no advantage over the low-order approxima-
tion (19) for our problem, because the history segment
is only differentiable once with Lipschitz continuous
derivative, whenever the contact threshold x = e has
been crossed during the previous time interval of length
τd . Thus, the proposed second-order approximation has
the most suitable order M .

In what follows, all numerical continuation results
will be obtained from the approximating model (17)
(with N = 15) via the continuation platform COCO
[49]. Specifically, we will make use of the COCO-
toolbox ‘hspo’, which implements a segment-specific
discretisation strategy in the framework of multi-
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(a) (b)

Fig. 7 (Colour online) a Continuation of period-1 solutions of
the (uncontrolled) impact oscillator (1) with respect to the exci-
tation frequency ω, for the parameter values given in Fig. 2. The
vertical axis presents the time the oscillating mass is in con-
tact with the secondary spring k2 (see Fig. 1). The labels GR1,
PD1 and PD2 stand for grazing and period-doubling bifurca-
tions detected at ω ≈ 0.85061, ω ≈ 0.85113 and ω ≈ 0.91440,

respectively. Solid and dashed branches mark stable and unsta-
ble solutions, respectively. Furthermore, impacting solutions are
represented by the green line, while non-impacting orbits cor-
respond to the red branch (before the grazing bifurcation GR1).
Panel b depicts a phase plot corresponding to the test point P1
(ω = 0.8528), where two periodic solutions coexist, one stable
(in blue, solid line) and one unstable (in black, dashed curve)

segment boundary-value problems, thus allowing the
numerical continuation of periodic solutions for
piecewise-smooth dynamical systems. In this way, a
locus of grazing periodic orbits can be computed by
introducing an extra solution segment with a terminal
point satisfying the condition x ′ = 0, where the mass
velocity becomes zero. Here, a grazing solution can be
detectedvia the auxiliary boundary condition x−e = 0,
and therefore a locus of such orbits can be obtained by
freeing two parameters during the continuation pro-
cess, using the COCO-command ‘coco xchg pars’. On
the other hand, simulations generated via direct numer-
ical integration will be computed for the original DDE
model (2) using theMATLABsolver ‘dde23’, in com-
binationwith its built-in event location routines [50,51]
to detect accurately collisions with the impact bound-
ary x = e.

4.2 Continuation of periodic orbits

We will first investigate the behaviour of the impact
oscillator (1) (without control), considering the dynam-
ical scenario analysed in Fig. 6 as starting point. Fig-
ure 7a shows the periodic response of system (1) with
respect to the excitation frequency ω, showing in the

vertical axis the time the oscillating mass is in contact
with the secondary spring k2 (see Fig. 1). As can be
seen in this bifurcation diagram, low values of ω pro-
duce oscillations of small amplitude, with no contact
with the secondary spring. A critical point, however,
is found at ω ≈ 0.85061, where a grazing bifurcation
(labelled GR1) of limit cycles occurs. Here, the system
presents a periodic solution making tangential contact
with the impact boundary x = e. Shortly after the GR1
point, a period-doubling bifurcation (PD1) is detected
for ω ≈ 0.85113. At this value, the period-1 solution
loses stability and a family of stable period-2 solutions
is born. The unstable period-1 orbit recovers stability at
ω ≈ 0.91440, where another period-doubling bifurca-
tion (PD2) occurs. Using direct numerical integration
we find further attractors of higher period between the
period-doubling points PD1 and PD2, as can be seen in
Fig. 7b (see also Fig. 2). Here, a (stable) period-7 solu-
tion is depicted together with the original (unstable)
period-1 orbit computed at the test point ω = 0.8528
(P1). The purpose of the time-delayed feedback con-
trol is to stabilise this period-1 response, as discussed
before, for the parameterwindowdefinedby the period-
doubling points PD1 and PD2.
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(a)

(b) (c) (d)

Fig. 8 (Colour online) a Two-parameter continuation of the
period-doubling bifurcations found in Fig. 7, with respect to fre-
quencyω and amplitude a of excitation. The intersectionwith the
horizontal line ω = 0.8528 defines the period-doubling points
PD1 and PD2 detected before. Panels b–d display phase plots

corresponding to the test points P1 (ω = 0.72, a = 1.25), P2
(ω = 0.8, a = 0.92) and P3 (ω = 0.9, a = 0.7), respectively.
These panels present the system response without control (in
blue) and with control (in black), using the control parameters
K = 0.32 and τd = 2π

ω

The presence of the stable more complex (period-7)
response in the range between PD1 and PD2 suggests
that the period-doubling bifurcations PD1 and PD2 are
the boundary of a parameter region with more com-
plex system responses in two parameters. We will now
investigate these period-doubling bifurcations by trac-
ing them in two parameters (frequency ω and ampli-
tude a of excitation) via two-parameter continuation.
The result is presented in Fig. 8. We observe that the
bifurcation points PD1 and PD2 belong to the same
branch of period-doubling bifurcations in the two-
parameter plane, bounding the isola plotted in panel (a),

located between the two extremes of ω on this curve
at ω ≈ 0.66708 and ω ≈ 0.91456, which define the
window of existence of this isola. Inside the isola, the
period-1 solution is unstable. The time-delayed feed-
back control stabilises the period-1 response, as veri-
fied at three test points (P1, P2, P3) within the isola,
where the uncontrolled response (in blue, see Fig. 8b–
d) ranges from periodic to chaotic motion, while the
controller in all these cases is able to stabilise the orig-
inal period-1 orbit (in black).

Next, let us investigate the periodic response of the
impact oscillator with time-delayed feedback control
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Fig. 9 (Colour online) Continuation of the periodic response
of the controlled impact oscillator (2) with respect to the con-
trol delay τd , for the parameter values given in Fig. 2, showing
the contact time on the vertical axis. The period-doubling (PD3)

and grazing (GR2) bifurcations are located at τd ≈ 0.47404 and
τd ≈ 1.78922, respectively. Lateral panels present phase por-
traits for different values of the control delay τd

using the approximating system (17) and the contin-
uation platform COCO. For this case, the numerical
continuation of period-1 solutions of the impact oscil-
lator with time-delayed feedback control is shown in
Fig. 9, for the range 0 < τd ≤ 3, using the (unstable)
period-1 orbit shown in Fig. 7b as starting solution. As
expected, a family of unstable period-1 orbits is found
for small time delay τd . This orbit becomes stable at
τd ≈ 0.47404, where a period-doubling bifurcation is
located. As the time delay grows, another bifurcation
(GR2) is found at τd ≈ 1.78922, where the periodic
orbit makes tangential contact with the impact bound-
ary x = e. This point, therefore, defines a boundary
between impacting and non-impacting motion, as can
be seen from the right phase plots in Fig. 9. This numer-
ical investigation indicates that the time-delayed feed-
back controller is able to not only stabilise the desired
period-1 motion but also control impacting regimes in
the system.

Next,wewill carry out a two-parameter continuation
of the detected bifurcations above with respect to the
main control parameters, i.e. the time delay τd and the
control gain K . Figure 10 shows the resulting red and
green curves that represent the two-parameter contin-
uation of the period-doubling and grazing bifurcations
found in Fig. 9. The bifurcation curves divide the two-

dimensional parameter space into three regions. The
first region, to the left of the period-doubling curve,
corresponds to operation points for which the period-1
response is unstable in the controlled system. Crossing
this line from the right produces a supercritical period-
doubling bifurcation, due towhich stable period-2 solu-
tions are created, as the one computed in Fig. 10b,
for the test point P1 (τd = 0.62, K = 0.23). The
region between the period-doubling and grazing curves
provides parameter values producing stable period-1
responses, as discussed before, see for instance the
solution calculated at the test point P2 (τd = 1.3,
K = 0.3), shown in Fig. 10c. The third region, located
to the right of the grazing curve, defines operation
points yielding period-1 non-impacting solutions, sim-
ilar to the test point P3 (τd = 2.1, K = 0.4), see Fig.
10d.

5 Conclusions

This paper presents a numerical study of controlling
grazing-induced multistability in a periodically forced
impacting system by using time-delayed feedback con-
trol. The control aims to switch the system from
undesired coexisting attractors to a desired period-
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(a)

(b) (c) (d)

Fig. 10 (Colour online) a Two-parameter continuation of the
period-doubling and grazing bifurcations found in Fig. 9, with
respect to the control delay τd and control gain K . Panelsb–d dis-

play phase plots corresponding to the test points P1 (τd = 0.62,
K = 0.23), P2 (τd = 1.3, K = 0.3) and P3 (τd = 2.1, K = 0.4),
respectively

1 response, thus suppressing the complex dynamics
caused by grazing or crossing the contact threshold. In
our numerical investigations, we use a newly developed
numerical approach for analysing non-smooth delay
equations, a computational method for calculating the
Lyapunov exponents and a grazing point estimation
algorithm. In addition, path-following (continuation)
techniques for non-smooth dynamical systems were
employed to analyse the bifurcations of the controlled
system dynamics.

In the first part of the numerical study, a scenario
with grazing-induced multistability with coexisting
period-3, period-4 and period-7 attractors was investi-

gated.Basins of attraction reveal the complex dynamics
of the system during grazing events. Apart from these
stable coexisting attractors, an unstable period-1 orbit
exists. This orbitwas used as thedesired attractor for the
systemwith the delayed feedback control. It was found
that the delayed feedback control is effective when its
control parameter is K ∈ [0.148, 0.42], and the system
can be driven to a globally stable period-1 motion with
grazing and one impact per period of excitation. As the
control gain increases (K > 0.42), the controller desta-
bilises the period-1 motion through a Neimark–Sacker
bifurcation and the system can bifurcate to chaos via
torus breakup.
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In the second part of this study, we used continua-
tion techniques for non-smooth dynamical systems to
identify the parameter window defined by two period-
doubling points at where the desired (unstable) period-
1 orbit exists. Then, a two-parameter continuation for
the frequency and the amplitude of excitation was car-
ried out for tracing the period-doubling bifurcation
bounding a region of instability for period-1 orbits. We
further investigated the periodic response of the impact
oscillator when subject to delayed feedback control.
The results show that the control is able to not only
stabilise the desired period-1 motion but also control
impacting regimes in the system. By varying the main
control parameters, the time delay τd and the control
gain K , a two-parameter region between the period-
doubling and grazing curves that produces the desired
stable period-1 responses was obtained.

Acknowledgements This work has been supported by EPSRC
under Grant No. EP/P023983/1. Mr. Zhi Zhang would like
to acknowledge the financial support from the University of
Exeter for his Exeter International Excellence Scholarship.
Prof. Jan Sieber’s research is supported by EPSRC Fellowship
EP/N023544/1 and EPSRC grant EP/V04687X/1.

Data accessibility The datasets generated and analysed during
the current study are available from the corresponding author on
reasonable request.

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest concerning the publication of this manuscript.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Guo,B., Liu,Y.,Birler, R., Prasad, S.: Self-propelled capsule
endoscopy for small-bowel examination: proof-of-concept
andmodel verification. Int. J.Mech. Sci. 174, 105506 (2020)

2. Liu, Y., Pavlovskaia, E., Wiercigroch, M.: Experimental
verification of the vibro-impact capsule model. Nonlinear
Dynam. 83(1–2), 1029–1041 (2016)

3. Páez Chávez, J., Wiercigroch, M.: Bifurcation analysis
of periodic orbits of a non-smooth Jeffcott rotor model.
Commun. Nonlinear Sci. Numer. Simul. 18(9), 2571–2580
(2013)

4. Mora, K., Champneys, A.R., Shaw, A.D., Friswell, M.I.:
Explanation of the onset of bouncing cycles in isotropic rotor
dynamics; a grazing bifurcation analysis. Proc. R. Soc. A
476, 20190549 (2020)

5. Serdukova, L., Kuske, R., Yurchenko, D.: Post-grazing
dynamics of a vibro-impacting energy generator. J. Sound
Vib. 492, 115811 (2021)

6. Lahriri, S., Santos, I. F., Weber, H. I., Hartmann, H.: “On
the nonlinear dynamics of two types of backup bearings-
theoretical and experimental aspects,” Journal of engineer-
ing for gas turbines and power, vol. 134, no. 11, (2012)

7. Yan, Y., Xu, J., Wiercigroch, M.: Basins of attraction of the
bistable region of time-delayed cutting dynamics. Phys. Rev.
E 96(3), 032205 (2017)

8. Pavlovskaia, E., Hendry, D.C., Wiercigroch, M.: Modelling
of high frequency vibro-impact drilling. Int. J. Mech. Sci.
91, 110–119 (2015)

9. Kapitaniak, M., Vaziri Hamaneh, V., Páez Chávez, J., Nan-
dakumar, K., Wiercigroch, M.: Unveiling complexity of
drill-string vibrations: experiments and modelling. Int. J.
Mech. Sci. 101–102, 324–337 (2015)

10. Liu,Y., PáezChávez, J., Rulston,D .S.,Walker, S.: “Numeri-
cal and experimental studies of stick-slip oscillations in drill-
strings,”. Nonlinear Dynam. 90, 2959–2978 (2017)

11. Bernardo, M., Budd, C., Champneys, A .R., Kowalczyk, P.:
Piecewise-smooth dynamical systems: theory and applica-
tions, vol. 163. Springer Science & Business Media, NY
(2008)

12. Liu, Y., Páez Chávez, J., Pavlovskaia, E., Wiercigroch, M.:
Analysis and control of the dynamical response of a higher
order drifting oscillator. Proc. R. Soc. a Math. Phys. Eng.
Sci. 474(210), 20170500 (2018)

13. Liao, M., Liu, Y., Páez Chávez, J., Chong, A., Wiercigroch,
M.: Dynamics of vibro-impact drilling with linear and non-
linear rock models”. Int. J. Mech.Sci. 146–147, 200–210
(2018)

14. Páez Chávez, J., Hamaneh, V.V., Wiercigroch, M.: Mod-
elling and experimental verification of an asymmetric Jef-
fcott rotor with radial clearance. J. Sound Vib. 334, 86–97
(2015)

15. Blazejczyk-Okolewska, B., Czolczynski, K., Kapitaniak, T.:
Hard versus soft impacts in oscillatory systems modeling.
Commun. Nonlinear Sci. Numer. Simulat. 15, 1358–1367
(2010)

16. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.:
Bifurcation analysis of an impact oscillator with a one-sided
elastic constraint near grazing. Phys. D Nonlinear Phenom-
ena 239(6), 312–321 (2010)

17. Liu, Y., Páez Chávez, J.: Controlling coexisting attractors
of an impacting system via linear augmentation. Phys. D
Nonlinear Phenomena 348, 1–11 (2017)

18. Yin, S., Ji, J., Wen, G.: Complex near-grazing dynamics in
impact oscillators. Int. J. Mech. Sci. 156, 106–122 (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Z. Zhang et al.

19. Yin, S., Ji, J., Deng, S., Wen, G.: Degenerate grazing bifur-
cations in a three-degree-of-freedom impact oscillator. Non-
linear Dynam. 97, 525–539 (2019)

20. Yin, S.,Wen, G., Ji, J., Xu, H.: Novel two-parameter dynam-
ics of impact oscillators near degenerate grazing points. Int.
J. Non-Linear Mech. 120, 103403 (2020)

21. Nordmark, A.B.: Non-periodic motion caused by grazing
incidence in an impact oscillator. J. Sound Vib. 145(2), 279–
297 (1991)

22. Pavlovskaia, E., Ing, J.,Wiercigroch,M., Banerjee, S.: Com-
plex dynamics of bilinear oscillator close to grazing. Int. J.
Bifurcat. Chaos 20(11), 3801–3817 (2010)

23. Lamba, H., Budd, C.: Scaling of Lyapunov exponents at
nonsmooth bifurcations. Phys. Rev. E 50(1), 84 (1994)

24. Foale, S., Bishop, S.: Bifurcations in impact oscillations.
Nonlinear Dynam. 6(3), 285–299 (1994)

25. Dankowicz, H., Zhao, X.: Local analysis of co-dimension-
one and co-dimension-two grazing bifurcations in impact
microactuators. Phys. D: Nonlinear Phenomena 202(3–4),
238–257 (2005)

26. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.:
Experimental study of impact oscillator with one-sided elas-
tic constraint. Philos. Trans. R. Soc. AMath. Phys. Eng. Sci.
366(1866), 679–705 (2007)

27. Páez Chávez, J., Pavlovskaia, E., Wiercigroch, M.: “Bifur-
cation analysis of a piecewise-linear impact oscillator with
drift,”. Nonlinear Dynam. 77(1–2), 213–227 (2014)

28. de Souza, S.L., Caldas, I.L.: Controlling chaotic orbits in
mechanical systems with impacts. Chaos Solit. Fract. 19(1),
171–178 (2004)

29. de Souza, S.L., Caldas, I.L., Viana, R.L.: Damping control
law for a chaotic impact oscillator. Chaos Solit. Fract. 32(2),
745–750 (2007)

30. Liu, Y., Wiercigroch, M., Ing, J., Pavlovskaia, E.: Intermit-
tent control of coexisting attractors. Philos. Trans. R. Soc.
A Math. Phys. Eng. Sci. 371(1993), 20120428 (2013)

31. Dankowicz,H., Jerrelind, J.:Control of near-grazingdynam-
ics in impact oscillators. Proc. R. Soc. A Math. Phys. Eng.
Sci. 461(2063), 3365–3380 (2005)

32. Dankowicz, H., Svahn, F.: On the stabilizability of near-
grazing dynamics in impact oscillators. Int. J. Robust Non-
linear Control IFAC-Affiliated J. 17(15), 1405–1429 (2007)

33. Zhao, X., Dankowicz, H.: Unfolding degenerate grazing
dynamics in impact actuators. Nonlinearity 19(2), 399
(2005)

34. Veldman, D. W., Fey, R. H., Zwart, H (2017) Impulsive
steering between coexisting stable periodic solutions with
an application to vibrating plates. J. Computat. Nonlinear
Dynam. 12(1)

35. Pyragas, K.: Continuous control of chaos by self-controlling
feedback. Phys. Lett. A 170(6), 421–428 (1992)
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