
Zhang et al., Sci. Adv. 2021; 7 : eabf8021     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 11

A T M O S P H E R I C  S C I E N C E

Increasing precipitation variability on  
daily-to-multiyear time scales in a warmer world
Wenxia Zhang1, Kalli Furtado2, Peili Wu2, Tianjun Zhou1,3,4*, Robin Chadwick2,5,  
Charline Marzin2, John Rostron2, David Sexton2

The hydrological cycle intensifies under global warming with precipitation increases. How the increased precipi-
tation varies temporally at a given location has vital implications for regional climates and ecosystem services. On 
the basis of ensemble climate model projections under a high-emission scenario, here, we show that approximate-
ly two-thirds of land on Earth will face a “wetter and more variable” hydroclimate on daily to multiyear time scales. 
This means wider swings between wet and dry extremes. Such an amplification of precipitation variability is par-
ticularly prominent over climatologically wet regions, with percentage increases in variability more than twice 
those in mean precipitation. Thermodynamic effects, linked to increased moisture availability, increase precipita-
tion variability uniformly everywhere. It is the dynamic effects (negative) linked to weakened circulation variabili-
ty that make precipitation variability changes strongly region dependent. The increase in precipitation variability 
poses an additional challenge to the climate resilience of infrastructures and human society.

INTRODUCTION
The hydrological cycle is intensifying as the climate warms, with 
global mean precipitation increasing by 1 to 3% per degree rise of 
surface air temperature, in balance with the atmospheric energy 
budget (1, 2). How the increased precipitation varies in space and 
time substantially affects regional climates and human societies (3–5). 
Over large spatial scales, climatologically wet regions will become 
wetter, while dry areas will become drier in the mean state, although 
this paradigm is less relevant to changes on land (2, 6, 7). Mean-
while, extreme precipitation will increase at a rate close to or even 
exceeding the moisture increase rate of 6 to 7%/K as dictated by the 
Clausius-Clapeyron relationship (8–11). The different rates of change 
in the mean and extreme precipitation suggest an altered temporal 
variation of precipitation. To fully understand the hydrological 
response, we need to look at the whole story, i.e., the full intensity 
distribution of precipitation across a range of time scales (12).

The statistical characteristics of precipitation and its future 
changes can be described using a probability density function (PDF) 
with respect to different intensity categories. Figure  1 illustrates 
three typical regimes featuring a monsoon climate (India), a mid- 
latitude continental climate (Europe), and a tropical forest climate 
(the Amazon), from the perturbed physics ensemble (PPE) simula-
tions [(13, 14); see Materials and Methods]. Precipitation PDFs and 
their responses to global warming at different time scales are shown 
for illustration. The width of the PDF indicates—but does not exact-
ly equal—the range of precipitation variability, and an expansion of 
the width suggests an increase in precipitation variability. The first 
regime (as the case in India; Fig. 1A and fig. S1, A to C) shows a shift 
and an extension of the PDF toward heavier precipitation in re-
sponse to global warming. The second regime (as the case in south-
western Europe; Fig. 1B and fig. S1, D to F) is characterized by a 

mean decrease but with increased variability as indicated by a wider 
distribution. The third regime (as the case in Amazonia; Fig. 1C and 
fig. S1, G to I) features decreased and less variable precipitation, as 
indicated by a narrower distribution. The changes in precipitation 
variability, as seen through the widening or narrowing of the distri-
bution, can substantially affect the occurrences and magnitudes of 
extreme events that lie in the tails of distributions (15). An increase 
in precipitation variability indicates wider swings between wet and 
dry conditions, exacerbating the risk of floods and/or droughts and 
possibly leading to rapid transitions between them (3). It is thus 
more difficult for societies to adapt to changes in variability than to 
changes in climate-mean states.

In contrast to the well-demonstrated changes in mean and 
extreme precipitation, changes in precipitation variability are less 
understood. Recent studies have suggested an increase in precipita-
tion variability under future warming globally and in several conti-
nental regions over a range of time scales (3, 16–21). To first order, 
the amplified precipitation variability has been hypothesized to pri-
marily arise from the increasing moisture availability in the warmer 
atmosphere (17, 21). In contrast, the weakening tropical atmospheric 
circulation under warming has been hypothesized to oppose the 
thermodynamic increases in precipitation variability (16,  18). In 
particular, El Niño–Southern Oscillation (ENSO)–related circula-
tion changes have been demonstrated to significantly affect inter-
annual tropical Pacific precipitation variability (22). Nevertheless, a 
clear understanding of the mechanisms driving the increasing 
precipitation variability and how they play out from global to 
regional scales is lacking, prohibiting a comprehensive understanding 
of the hydrological responses to global warming. Thus, here, we 
apply a unified framework to explore the physical mechanisms 
underlying precipitation variability changes across time scales from 
daily to interannual.

RESULTS
Changes in regional precipitation variability under warming
We used a 14-member PPE of fully coupled simulations using the 
state-of-the-art climate model HadGEM3-GC3.05 [(13,  14); see 
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Materials and Methods]. The different model variants—generated 
by perturbing the model parameters controlling key climate processes—
sample a range of uncertainty in regional precipitation responses 
that is comparable to Coupled Model Intercomparison Project Phase 5 

(CMIP5) (14). We considered precipitation variations at typical 
time scales from daily to interannual, including the synoptic (2 to 
10 days), monthly (25 to 35 days), intraseasonal (30 to 80 days), and 
interannual (1 to 8 years) variations. The variability was estimated 

A B C

Fig. 1. Typical regimes of changes in precipitation distribution. (A) Pentad mean precipitation distribution in the Indian monsoon region (wetter and more variable), 
(B) seasonal mean precipitation distribution in southwestern Europe (drier but more variable), and (C) monthly mean precipitation distribution in Amazonia (drier and 
less variable) in the baseline 1900–1959 (blue) and 2040–2099 (pink for raw data and red for detrended data to exclude the influence of long-term trends in distribution). 
Precipitation distributions are calculated over the year and on model grid points before aggregating over the regions with an area weighting. Vertical lines denote clima-
tological mean precipitation. The ensemble medians are shown. Definitions of the regions are shown as magenta boxes in Fig. 5B.
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Fig. 2. Climatological precipitation variability and the relative importance of different time scales. (A) Total precipitation variability in the baseline 1900–1959 (mm/
day). (B) Global area–weighted average precipitation variability, including total variability and variability on different time scales (mm/day). Blue and red curves represent 
model variants and the ensemble median, respectively. Note the logarithmic y axis. (C to F) Synoptic (C), monthly (D), intraseasonal (E), and interannual (F) precipitation 
variability as a percentage of total variability (%). The PPE ensemble medians are shown on the maps along with the zonal means.
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as the standard deviation of the detrended and temporally filtered 
time series [(16, 17); see Materials and Methods]. To investigate the 
response to warming, we compared precipitation variability between 
the first and last 60-year periods of the simulation, i.e., the baseline 
1900–1959 and the projection in 2040–2099 under a high-emission 
scenario of Representative Concentration Pathway (RCP) 8.5.

The PPE ensemble reasonably reproduces the climatological 
mean and variability of precipitation at all time scales (fig. S2), 
which are well within the range of observations from IMERG [Inte-
grated Multi-satellitE Retrievals for GPM; (23)] and GPCP [Global 
Precipitation Climatology Project; (24)] (with a pattern correlation 
exceeding 0.94 with IMERG for all time scales). Climatologically, 
the spatial distribution of precipitation variability resembles that of 
mean precipitation. Wet regions, such as the warm pool, equatorial 
Pacific, and monsoon regions, experience large variability (Fig. 2A). 
Across time scales, the magnitude of precipitation variability is large 
at the short synoptic time scale and small at the long interannual 
time scale (Fig. 2B). To indicate the relative importance of different 
time scales, we show precipitation variability at each time scale as a 
percentage of the total variability (Fig.  2,  C  to  F). There exists a 

distinct latitudinal difference of the relative importance for each 
time scale. The synoptic variability is more prominent in extra-
tropical storm tracks than in other latitudes, monthly and intra-
seasonal variability is more prominent in the tropics (related to 
Madden-Julian Oscillation and monsoon variability) and polar re-
gions (related to snow/ice accumulation and melting) than in other 
latitudes, and interannual variability is more prominent at the equa-
tor (related to ENSO variability) compared to other latitudes. This 
reflects the dominant circulation regimes driving precipitation in 
different regions, which occur on different time scales.

As the climate warms, precipitation variability increases robustly 
over most of the globe, while decreases are confined to some subtropical 
subsidence regions mainly over the ocean (Fig. 3A). The increases in 
precipitation variability are generally stronger at shorter time scales 
in absolute terms (except for the slightly stronger increase in intra-
seasonal than monthly variability) (Fig. 3B and fig. S3). At the re-
gional scale, the relative importance of different time scales in 
precipitation variability changes exhibits a consistent latitudinal 
structure with that in climatological precipitation variability 
(compare red and black curves in Fig. 3, C to F). This suggests the 
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Fig. 3. Changes in precipitation variability and the relative importance of different time scales. (A) Projected changes in total precipitation variability (2040–2099 
relative to 1900–1959) scaled with global mean temperature change (mm day−1 K−1). Stippling (hatching) indicates regions where 80% (100%) of the model variants agree 
on the sign of change. (B) Global area–weighted average changes in precipitation variability, including total variability and variability on different time scales (mm day−1 K−1). 
Blue and red curves represent model variants and the ensemble median, respectively. Note the logarithmic y axis. (C to F) Changes in synoptic (C), monthly (D), intra-
seasonal (E), and interannual (F) precipitation variability as a percentage of the total variability change (%). The ensemble medians are shown on the maps along with the 
zonal means (red for variability changes and black for climatological variability). Note that climatological zonal mean precipitation variability [i.e., the black curve in (A); in 
mm/day] is scaled by 1/10 for clear display. Blue contours on (C) to (F) refer to where the total precipitation variability change equals zero.
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importance of regional circulation regimes in precipitation variability 
changes. Precipitation variability amplifies across all seasons, with 
stronger increases in the local rainy season, such as boreal summer 
in the Northern Hemisphere and boreal winter in the Southern 
Hemisphere (fig. S4).

In terms of percentage changes, the responses in precipitation 
variability are markedly consistent across time scales, in both spatial 
distributions and magnitudes [with pattern correlations of 0.91 to 
0.99 between different time scales for the ensemble medians; 
Fig. 4, A to D; also shown in (16)]. The global mean changes in pre-
cipitation variability are 4.85 to 5.70%/K (ensemble medians for the 
four time scales) with a peak near the equator. This rate is more than 
twice as fast as the increase in mean precipitation (ensemble median 
of 2.32%/K; Fig. 4, E and F).

At the global scale, analogous to the “wet-get-wetter” (2, 6) 
pattern of mean precipitation change, the changes in precipitation 
variability can be approximately described as a “wet-get-more variable” 
pattern. Precipitation variability generally increases over climato-
logically wet regions, where precipitation climatology exceeds 50% 
of the global average (red contours in Fig.  4,  A  to  D). Moreover, 
precipitation variability increases over a wider spatial extent than 

does mean precipitation (Fig. 4, A to E). To assess the applicability 
of the “wet-get-wetter” and “wet-get-more variable” paradigms at the 
regional scale, we compared changes in the mean state and variability 
of precipitation at grid points ranked from the driest to the wettest 
according to their precipitation climatology (Fig.  5A). To reduce 
spatial noise, we applied spatial smoothing first and show the prob-
abilistic distributions of responses (see Materials and Methods). The 
wet-get-more variable paradigm applies well at the regional scale, 
with larger increases in variability expected at wetter locations (red 
in Fig. 5A). In contrast, the wet-get-wetter paradigm, which is ex-
pected from simple thermodynamic scaling, does not hold at the 
regional scale (black in Fig. 5A) (25). The direction of the mean pre-
cipitation change remains uncertain even for the wettest locations. 
This indicates substantial influences of the weakening in Walker 
circulation and spatial shifts in large-scale atmospheric circulations 
[related to, e.g., sea surface warming patterns, changes in land-sea 
temperature contrast, and relative humidity; (2, 7, 25, 26)], which 
can modify and even dominate regional precipitation changes (25). 
This comparison suggests that, at the regional scale, the changes in 
precipitation variability (i.e., the wet-get-more variable paradigm) 
are less uncertain than the mean precipitation changes.
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Fig. 4. Projected changes in precipitation variability. (A to D) Projected changes in precipitation variability at the synoptic (A), monthly (B), intraseasonal (C), and in-
terannual (D) time scales. (E) Projected changes in mean precipitation. Changes are calculated for 2040–2099 relative to the baseline 1900–1959 under per degree of 
global warming (%/K). The ensemble medians are shown. Stippling (hatching) indicates regions where 80% (100%) of the model variants agree on the sign of change. The 
red contours indicate precipitation climatology exceeding 50% of the global average (i.e., 1.6 mm/day for the PPE), as a division of climatologically wet and dry regions. 
(F) Ensemble median zonal-mean changes in precipitation variability across time scales and mean precipitation (%/K). Bars show the global mean changes (ensemble 
median and 10th to 90th percentile spread).

 on A
ugust 4, 2021

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


Zhang et al., Sci. Adv. 2021; 7 : eabf8021     28 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 11

To this end, we can identify different regimes of precipitation 
responses based on the mean state and variability (Fig. 5B). Most of the 
globe (including approximately two-thirds of land) will face a wetter 
and more variable hydroclimate (blue in Fig. 5B). Over most of these 
regions, the percentage increase in precipitation variability is larger 
than the increase in mean precipitation. In the subtropical subsiding 
regions, both the “drier but more variable” and “drier and less variable” 
regimes are projected to occur, each covering ~16% of land. Over 
land, parts of southwestern Europe, southern Africa, central North 
America, and the Indo-China Peninsula will experience a drier but 
more variable hydroclimate, implying increased drought risks and 
less reliable freshwater resources (green in Fig. 5B). In contrast, the 
Mediterranean region and Amazonia are projected to experience a 
substantially weakened hydrological cycle with decreased and less 
variable precipitation (brown in Fig. 5B). A change in precipitation 
toward a wetter but less variable hydroclimate is less likely to occur 
(covering only ~3% of land). This classification of different regimes 

is valuable for regional adaptation planning, as different threats of 
hydrological extremes, water management, agriculture, and ecosystem 
services need to be tackled for different regimes.

Mechanisms driving precipitation variability changes
To understand the physical processes driving the changes in precip-
itation variability, we used moisture budget diagnostics [(6, 22); see 
Materials and Methods]. We show that among all the moisture pro-
cesses, the vertical moisture advection governs precipitation varia-
tions at all time scales, i.e.

   P  f   ≈   (  −   
   m    q  l   ─ g   )    

f
    (1)

where precipitation variations (Pf) can be approximated by the ver-
tical advection of low-level moisture (ql, 925-hPa specific humidity) 
by the mid-tropospheric vertical wind (m, 500-hPa pressure velocity). 
The subscript f denotes variation at a specific time scale. The vertical 
moisture advection reasonably captures precipitation variability in 
the historical climate (figs. S5 and S6), as well as its changes under 
global warming (compare Figs. 4A and 6A, with a pattern correla-
tion of approximately 0.75 for all time scales), particularly over 
climatologically wet regions.

To disentangle the roles of atmospheric moisture and circulation 
changes, i.e., thermodynamics and dynamics (27), we applied ideal-
ized models on the basis of Eq. 1 (see Materials and Methods). Spe-
cifically, the thermodynamic and dynamic contributions to the 
changes in Eq. 1 can be estimated by changing either moisture (ql) 
or circulation (m), respectively, to its future value while keeping 
the other quantity fixed to its baseline value. To first order, in terms 
of the percentage, the thermodynamic effect can be understood as 
the percentage change in the mean moisture availability (    ̄  q  l    ), whereas 
the dynamic effect is linked to the percentage change in the variability 
of vertical motion ([−(m)f]), from simplifications by neglecting 
variations in humidity (see Eqs. 11 to 14 in Materials and Methods). 
The interaction between changes in moisture and circulation, referred 
to as the nonlinear term, is estimated as the residual between the 
total changes in the approximate vertical moisture advection (right-
hand side of Eq. 1) and the thermodynamic and dynamic contribu-
tions estimated above.

The moisture budget processes driving precipitation variability 
changes are highly consistent in spatial patterns across time scales, 
albeit with differences in magnitudes (fig. S7). Here, we interpret the 
contributions of each term to precipitation variability changes, ex-
pressed as the percentage relative to climatological precipitation 
variability (Fig. 6 and figs. S8 and S9). The percentage contributions 
of each term to precipitation variability change are comparable 
across time scales. The thermodynamic effect, due to the increasing 
moisture availability under warming, intensifies precipitation vari-
ability globally with an overall spatially uniform magnitude (~5%/K 
averaged over wet regions; Fig. 6, B and C). In contrast, the dynamic 
effect, which is largely driven by the weakened variability of vertical 
motion, suppresses precipitation variability worldwide by ~3%/K, 
with a few regional exceptions, such as the equatorial Pacific 
(Fig. 6, D and E). Overall, this is consistent with the projected slow-
down of the mean tropical circulation and a widening and poleward 
expansion of the subtropical subsidence zones as atmospheric stability 
increases in the future (2, 26, 28). In the mid to high latitudes, the 
reduced circulation variability is related to the decreased Northern 

A
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Fig. 5. Changes in precipitation variability versus mean precipitation. (A) Changes 
in the synoptic variability (red, left axis) and mean state (gray, right axis) of precip-
itation over the globe ranked from the driest to the wettest (x axis) according to 
baseline precipitation climatology. Changes are calculated for 2040–2099 relative 
to the baseline 1900–1959 under per degree of global warming (mm day−1 K−1). 
The probabilistic distributions of the changes are derived by aggregating neigh-
boring grids, with thick lines and shadings denoting the 50th and 10th to 90th 
percentile changes, respectively (see Materials and Methods). (B) Ratio of synoptic 
precipitation variability change to mean precipitation change, for the ensemble 
median. Stippling (hatching) indicates that at least 80% (100%) of the model variants 
agree on the classification. Magenta boxes (each at 10° × 10°) denote typical re-
gimes of precipitation distribution change used for illustration in Fig. 1. The results 
are qualitatively consistent across time scales, and only those for synoptic vari-
ability are shown.
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Hemisphere storm track activity as a result of the weakened baro-
clinic instability with the reduced meridional temperature gradient 
(29, 30). In contrast to other regions, in the deep tropics, the 
dynamic contribution acts to enhance precipitation variability in 
the central-eastern equatorial Pacific (Fig. 6, D and E), which is in 
agreement with a deepening and narrowing equatorial convection 
zone with enhanced ascent under global warming (28, 31). In the 
equatorial Pacific, the dynamic effects are likely linked to ENSO- 
related circulation changes, which are dominated by the spatially 
nonuniform sea surface warming and structural changes in ENSO- 
related sea surface temperature anomalies; these circulation changes 
intensify precipitation variability over the central-eastern Pacific but 

weaken precipitation variability over the western Pacific (22,  31). 
We highlight that the dynamic effect determines the spatial struc-
ture of precipitation variability changes, including the peak increases 
near the equator and the weak changes in the subtropics (Fig. 6G) 
(18). In addition, the nonlinear term, i.e., covariations of moisture 
and circulation changes, further enhances precipitation variability 
(Fig. 6F). This is because large increases in moisture and updrafts 
tend to co-occur through latent-heating feedbacks in convection. 
The nonlinear term has a positive contribution globally, except over the 
subtropical descending regions, where convection is largely suppressed 
(Fig. 6, F to H). We note that within the warming level projected up 
to the end of the 21st century, precipitation variability and the associated 
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Fig. 6. Moisture processes driving changes in precipitation variability. (A to F) Changes in the variability of vertical moisture advection ( −     m    q  l   _ g   ) (A) at the synoptic time 
scale, and its thermodynamic (TH) (B and C), dynamic (DY) (D and E), and nonlinear components (NL) (F). Each term is normalized by climatological precipitation variabil-
ity and expressed in %/K. (C) and (E) show the theoretical estimates of TH and DY contributions, respectively, by neglecting variations in specific humidity (Eqs. 13 and 14 
in Materials and Methods). The ensemble medians are shown. Stippling (hatching) indicates regions where 80% (100%) of the model variants agree on the sign of change. 
(G) Zonal and (H) global mean changes in the variability of precipitation (P), the vertical moisture advection, its TH, DY, and NL components, and the residual (Res) (%/K). 
TH(t) and DY(t) denote the theoretical estimates of thermodynamics and dynamics [i.e., corresponding to subplots (C) and (E)], respectively. Error bars in (H) denote the 
10th to 90th percentile ensemble spread. Only the climatologically wet regions where the moisture budget approximation applies reasonably are included in the zonal 
and global means [outlined by red contours in (A); see Materials and Methods]. The results of moisture budget analysis are consistent across time scales; only those for 
synoptic variability are shown here (see figs. S8 and S9 for other time scales).
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thermodynamic and dynamic components increase quasi-linearly, 
on average, over the globe with temperature increase (fig. S10).

Of particular importance is how these processes affect the wet 
and dry extremes, which are tightly related to the overall variability. 
Wet extremes are largely amplified by thermodynamics, with 
regional modulations from circulation changes (11, 27). On the 
other hand, the increasing precipitation variability is also associated 
with increasing dry-day frequency and lengthened dry spells pro-
jected over many regions (e.g., over southwestern Europe in Fig. 1B) 
(12, 32). This is thought to be related to enhanced convective inhi-
bition, particularly over land, due to reduced low-level relative 
humidity under warming (33–36).

Intermodel variant uncertainty in precipitation  
variability projections
While precipitation variability is consistently projected to increase 
as the climate warms, the magnitude of the response varies substan-
tially across model variants, particularly over tropical wet regions 
(Fig. 7A). At the global mean scale, the model spread in projected 
precipitation variability changes is predominantly related to the 
simulated climatological precipitation variability, which explains 
approximately 80% of the total intermodel variance (Fig. 7B). The 
intermodel scatter of simulated precipitation variability is further 
linked to that of circulation variability, as demonstrated in Eq. 12 
(Fig. 7C). Hence, models with stronger climatological precipitation 

variability, likely associated with stronger circulation variability, tend 
to project larger increases in precipitation variability in terms of the 
absolute values. The significant intermodel relationship provides a 
potential for constraining projected precipitation variability changes. 
As a first step toward this constraint, specifically, the PPE model 
variants generally underestimate the present-day precipitation vari-
ability at a global scale compared to the IMERG observation (with 
the highest spatial resolution at present) (fig. S11). On the basis of 
the intermodel relationship identified here, this implies a potential 
underestimation of future precipitation variability changes by the 
PPE ensemble. A robust and formal constraint requires thorough 
investigation into the reliability and uncertainty of observed precip-
itation variability, which deserves dedicated research.

In addition to the above leading intermodel uncertainty mode, 
the large projection uncertainty in the tropics is also related to dif-
ferent sea surface warming patterns. For example, the intermodel 
scatter of the zonal gradient of precipitation variability changes be-
tween the central-eastern and western equatorial Pacific is related to 
that of sea surface warming, which is tightly associated with circula-
tion changes (text S1 and fig. S12) (22, 31). The zonal gradient of 
equatorial Pacific sea surface warming can be further traced back to 
different climatological precipitation biases in the tropical western 
Pacific via cloud-radiation feedbacks (fig. S12) (37).

This highlights the influences of climatological model biases and 
sea surface warming patterns on projected precipitation variability 
changes via different circulation responses. In particular, the impli-
cations for regional projections deserve dedicated research, as con-
ducted in previous studies for regional precipitation projections 
(37–39). Thus, circulation changes are the key sources of uncertainty 
in many aspects of precipitation projections, including the mean 
(40–42), extremes (10, 11), and variability associated with processes 
such as sea surface warming patterns and land-sea thermal contrast 
changes (40, 41).

DISCUSSION
The increase in precipitation variability manifests the fact that global 
warming is making our climate more uneven—more extreme on 
both wet and dry conditions. With growing observational evidence 
pointing to increased occurrences of both floods and droughts from 
global to regional scales over the past century, it is necessary to 
examine whether an increase in precipitation variability has already 
emerged and, if so, the possible anthropogenic influence.

The resulting wider swings from one extreme to another will 
challenge the existing climate resilience of infrastructures, human 
society, and ecosystems. This makes climate change adaptation 
more difficult. As precipitation variability is projected to increase 
continuously with global temperature increases, international ac-
tivities to reduce carbon emissions and limit global warming levels 
are urgently needed.

MATERIALS AND METHODS
Observational data
To validate the simulated precipitation variability, daily precipitation 
observations from IMERG [0.1° × 0.1°; (23)] and GPCP [1° × 1°; 
(24)] were used. We compared the present-day mean precipitation 
and precipitation variability over their common period of 2001–2019 
(fig. S2). We note that precipitation intensity statistics, such as variability, 

A

B C

Fig. 7. Intermodel variant uncertainty in projected precipitation variability 
changes. (A) Intermodel variant standard deviation of precipitation variability 
changes (2040–2099 relative to 1900–1959; mm day−1 K−1). (B) Scatterplot of glob-
al mean precipitation variability changes versus climatological precipitation vari-
ability. (C) Scatterplot of global mean climatological precipitation variability versus 
climatological 500 variability. Dots denote individual model variants. Blue lines 
denote linear fits. The intermodel variant correlation is shown at the bottom, with 
asterisks indicating significance at the 0.05 level. The results are qualitatively con-
sistent across time scales, and only those for synoptic variability are shown.
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can be affected by horizontal resolution. For fair comparison, the 
higher-resolution IMERG data were regridded to the lower model 
resolution (N216) via area conservative remapping. The GPCP data 
were analyzed on its original grids. The comparison shows that the 
climatological mean and variability of precipitation simulated by the 
PPE ensemble are well within the range of observational uncertainty 
between IMERG and GPCP (partly related to their different hori-
zontal resolutions; fig. S2).

Model simulations
We used the 14-member PPE simulations conducted with HadGEM3- 
GC3.05 developed by the Met Office Hadley Centre (13, 14). HadGEM3- 
GC3.05 is a state-of-the-art coupled global climate model with a 
high resolution of N216 (60 km in the mid-latitudes) in horizontal 
and 85 levels in vertical. The ensemble members are generated by 
simultaneously perturbing 47 parameters controlling key processes 
in the atmosphere, land, and aerosol model components within 
expert- specified limits. The simulation includes historical simulations 
and RCP 8.5 projections from 1900 to 2099.

The different model variants in the PPE sample a range of un-
certainty in regional precipitation responses that is comparable to 
CMIP5 despite sampling a relatively narrow range of global tem-
perature changes (14). The advantage of using a single model frame-
work is that the members all share a common structural bias so that 
emergent relationships across the PPE tend to be clearer than those 
in a multimodel ensemble, in which structural bias is an extra source 
of uncertainty. Different parameterizations across the PPE variants 
can lead to different precipitation and sea surface temperature biases 
and sea surface warming patterns, which are relevant for precipita-
tion projections. Detailed physical understanding is not allowed in 
CMIP5/6 ensembles because of the unavailability of daily circula-
tion data.

To investigate the response to global warming, we compared 
precipitation variability between the first and last 60-year periods of 
the simulation, i.e., the baseline 1900–1959 and the projection in 
2040–2099, to maximize the signal-to-noise ratio in changes. The 
use of 60-year-long periods ensures sufficient sampling and, hence, 
reliable estimates of variability. The changes are scaled with global 
mean near-surface air temperature changes to eliminate the uncer-
tainty of different warming rates across model variants. As precipi-
tation variability increases quasi-linearly with global warming within 
the level projected up to the end of the 21st century, the scale pro-
vides a reasonable estimate of the response to warming (fig. S10).

Calculation of precipitation variability
We considered precipitation variations at typical time scales, in-
cluding the synoptic variation at 2 to 10 days, the monthly variation 
at 25 to 35 days, the intraseasonal variation at 30 to 80 days, and the 
interannual variation at 1 to 8 years. The climatological annual cycle 
and linear trend were first removed from the time series before ap-
plying a filter according to the typical frequency for specific time 
scales. The variability was then estimated as the standard deviation 
of the filtered time series (16, 17). The total precipitation variability 
was estimated as the standard deviation of the unfiltered time series.

Assessing “wet-get-more variable” at the regional scale
To assess the applicability of the “wet-get-wetter” and “wet-get-more 
variable” paradigms at the regional scale, we compared regional changes 
in mean precipitation and the variability (Fig. 5A). We ranked all 

the grid points globally from the driest to the wettest according to 
their precipitation climatology. To reduce spatial noise, we applied 
spatial smoothing before the sort by regridding to a coarser resolu-
tion (from ~60 to ~360 km; regridding to different resolutions is tested, 
which yields similar results). The changes in the variability and 
mean state of precipitation at each grid point were then sorted on 
the basis of their ranks in climatology. We interpret the changes in a 
probabilistic perspective by aggregating over the neighboring grids 
(301 grid points used here; slightly different aggregations are tested, 
which yield similar results) to derive a probabilistic distribution of 
changes. Then, we show the median change with the 10th to 90th 
percentile ranges (curve and shading in Fig. 5A). We performed the 
analysis for each model variant separately and then show the ensem-
ble median results in Fig. 5A. Hence, the change patterns are exam-
ined in each of the model worlds, taking into account the potential 
differences in the distributions of wet and dry regions among differ-
ent model variants.

For the wet-get-wetter paradigm, in addition to the precipitation- 
based ranks (Fig. 5A), we also examined the paradigm on the basis 
of ranks by precipitation minus evaporation (P − E; figure not 
shown). At the regional scale, the wet-get-wetter paradigm does not 
hold for either P or P − E, largely because of spatial shifts in convec-
tion and convergence in the tropics under future warming (25, 40).

Moisture budget diagnostics
We applied the moisture budget diagnostics to investigate the physical 
processes driving the changes in precipitation variability. It has been 
widely used to diagnose changes in mean and extreme precipitation 
(6, 27). In a climate state, precipitation (P) is balanced by evapora-
tion (E) and vertical (− < ∂pq>) and horizontal (− < V · ∇ q>) moisture 
advection that are related to low-level convergence and horizontal 
winds, respectively

  P − E = − <  ∂  p   q> − <V · ∇ q> +    0    (2)

where q is specific humidity,  is vertical velocity, V is horizontal 
wind vector, 0 is the residual, and  <∙ > =  1 _ g    ∫ p  s    

 p  
t
  
    ∙ dp  denotes vertical 

integral throughout the troposphere. Such a balance also holds at a 
specific time scale

   P  f   −  E  f   = − <  ∂  p   q  >  f   − <V · ∇ q  >  f   +    1    (3)

where the subscript f denotes variation at a specific time scale de-
rived from the filter.

Next, we applied simplifications to the full moisture budget to 
determine the moisture process that dominates the variation of pre-
cipitation and, based on which, to further understand the mecha-
nisms for the projected changes.

First, among the moisture budget terms, the vertical moisture 
advection dominates precipitation variation at all time scales

   P  f   ≈ − <  ∂  p   q  >  f    (4)

It largely captures the phase and magnitude of precipitation 
variation, as supported by the high temporal correlation (or 
explained variance) and low root mean square deviation (RMSD) 
with precipitation (fig. S6). Therefore, the vertical moisture advec-
tion reasonably reproduces the climatological precipitation vari-
ability (fig. S5)
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Equation 4 involves the vertical moisture gradient and the inte-
gration of vertical moisture advection throughout the troposphere. 
It can be simplified by a two-layer model, where the difference in 
moisture in the lower (ql) and upper (qu) troposphere is used to ap-
proximate the vertical gradient of moisture

   P  f   ≈   [  −   
   m  ( q  l   −  q  u  )

 ─ g   ]    
f
    (5)

where m represents the vertical motion at mid-troposphere, which 
is closely related to precipitation. As atmospheric moisture is con-
centrated in the lower troposphere, the right-hand side of Eq. 5 is 
dominated by its lower-level component. Hence, the variation in 
precipitation can be further approximated as that in the vertical ad-
vection of lower-level moisture

   P  f   ≈   (  −   
   m    q  l   ─ g   )    

f
    (6)

Here, m is represented by mid-tropospheric vertical velocity at 
500 hPa and ql is represented by specific humidity at 925 hPa.

In terms of change, the vertical moisture advection reasonably 
reproduces changes in precipitation variability under global warm-
ing (comparing Figs. 4A and 6A)

    
 ∆ σ [ P  f   ] ≈ ∆ σ [    (  −   

 ω  m    q  l   ─ g   )    
f
   ]   = 

    
 σ [    (  −   

 ω  m1    q  l1  
 ─ g   )    

f
   ]   − σ [    (  −   

 ω  m0    q  l0  
 ─ g   )    

f
   ]   

   (7)

where  denotes variability (estimated by standard deviation) 
and ∆ denotes the change between the baseline (1900–1959) and 
future (2040–2099), which are indicated by the subscripts 0 and 1, 
respectively.

We further separated the contributions from thermodynamics, 
dynamics, and nonlinear processes using idealized models. To estimate 
the thermodynamic (TH) contribution, which is related to changes 
in atmospheric moisture only, we change the specific humidity (ql) 
to the future value and keep the circulation (m) as in the baseline. 
The estimated changes in variability with this idealized model rela-
tive to the base period are regarded as the role of thermodynamics

   TH ≈  [    (  −   
   m0    q  l1  

 ─ g   )    
f
   ]   −  [    (  −   

   m0    q  l0  
 ─ g   )    

f
   ]     (8)

Likewise, for the dynamic (DY) contribution, which is due to 
changes in circulation only, we change the vertical velocity (m) to 
the future value and keep the humidity (ql) as in the baseline. Hence, 
the DY contribution is estimated as the changes in variability with 
this configuration relative to the baseline

   DY ≈  [     (   −   
   m1    q  l0  

 ─ g   )    
f
   ]   −  [     (   −   

   m0    q  l0  
 ─ g   )    

f
   ]     (9)

The nonlinear (NL) effect involves interactions between changes 
in humidity and circulation. It is estimated as the residual between 
the full changes in vertical moisture advection and the TH and DY 
contributions estimated from Eqs. 8 and 9

   NL ≈ ∆  [     (  −   
   m    q  l   ─ g   )    

f
   ]   − TH − DY   (10)

To provide a theoretical understanding of the thermodynamic 
and dynamic effects, we investigated the moisture budget in a fur-
ther simplified framework. As the variability in vertical motion is far 
larger than that in humidity, the variation in vertical moisture ad-
vection is largely governed by that in vertical motion. Hence, by ne-
glecting the variation in humidity and its interaction with circulation, 
Eq. 6 can be simplified as follows

   P  f   ≈  (−    m    q  l   / g)  f   ≈ −   
 (   m  )  f     ̄   q  l    ─ g    (11)

where    ̄   q  l     is the climatological mean low-level humidity in a climate 
state. Thus, the variability in precipitation is proportional to that in 
vertical motion ([ − (m)f])

    [ P  f   ] ≈  [  −   
 (   m  )  f     ̄   q  l    ─ g   ]   =   

 [−  (   m  )  f   ]   ̄   q  l    ─ g     (12)

Under this framework, the thermodynamic effect can be estimated 
as    [−  (   m0  )  f  ] _ g  (  ̄   q  l1    −   ̄   q  l0   ) , which is determined by changes in atmospheric 
moisture and climatological circulation variability. The dynamic ef-
fect can be estimated as     ̄   q  l0    _ g   {  [−  (   m1  )  f   ] −  [−  (   m0  )  f   ] } , which is 
determined by changes in circulation variability and climatological 
moisture availability.

The contributions of each term can be expressed as the percentage 
with respect to climatological precipitation variability, which then measures 
the direct contributions to the percentage precipitation variability change. 
The advantage is that the contributions of moisture and circulation 
changes are clearly separated between thermodynamics and dynamics

  TH(t ) ≈   
 {     [ −  (   m0  )  f  ] _ g  (  ̄   q  l1    −   ̄   q  l0    )  }  

  ─────────────  
 {     [ −  (   m0  )  f   ]   ̄   q  l0    _ g   }  

   =   ̄   q  l     (13)

  DY(t ) ≈   
 {      ̄   q  l0    _ g   {  [−  (   m1  )  f   ] −  [−  (   m0  )  f   ] } }  

   ─────────────────  
 {     [ −  (   m0  )  f   ]   ̄   q  l0     _ g   }  

   =  [ −  (   m  )  f  ]  (14)

where TH(t) and DY(t) indicate the theoretical estimations of their 
contributions, respectively, and  denotes a percentage change. To 
first order, the TH effect acts to enhance precipitation variability by 
the rate of background moistening (Eq. 13). The dynamic effect is 
associated with changes in the variability of vertical motion (Eq. 14).

While the simplified model in Eq. 11 has limitations in neglect-
ing the variation in humidity and its interaction with circulation, it 
provides a clear understanding of the thermodynamic and dynamic 
contributions, which are solely related to moisture and circulation 
changes, respectively, in a percentage sense. As all the moisture bud-
get terms are normalized by climatological precipitation variability, 
the percentage contributions of the thermodynamic, dynamic, and 
nonlinear components add up to explain the percentage precipita-
tion variability changes.

To test the validity of this framework, we compared the phase 
and magnitude of variation between precipitation and vertical moisture 
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advection, which were indicated by temporal correlation (or explained 
variance) and RMSD between the filtered time series, respectively. 
Overall, the vertical moisture advection is a reasonable approximation 
of precipitation variation over climatologically wet regions, with an 
explained variance larger than 50% and RMSD less than 80% of the 
climatological precipitation variability (fig. S6). These regions cor-
respond well to the climatologically wet regions with mean precipi-
tation larger than 50% of the global average (see red contours in 
Fig. 6A and fig. S6). In particular, the simplified framework can bet-
ter capture precipitation variability in the tropics than in the mid to 
high latitudes, with higher explained variance and lower RMSD in 
the tropics (fig. S6) (22). The high capability of the framework in the 
tropics has also been shown for annual-mean and seasonal-mean 
diagnosis (40, 41, 43). In subtropical descending regions where con-
vection is largely suppressed, the variation in precipitation is not well 
explained by that in vertical moisture advection. Thereby, the quan-
titative contributions of moisture budget processes are estimated for 
these wet regions only.

One limitation of the moisture budget framework is that it cannot 
distinguish the causality between precipitation and evaporation 
changes. Given the much weaker changes in evaporation variability 
(with a global mean magnitude approximately 10% that of precipi-
tation variability change; figure not shown), its contribution to 
precipitation variability change is believed to be small. Despite the 
aforementioned limitations mainly occurring on regional scales, on 
the global scale and particularly in the tropics, the moisture budget 
framework works reasonably well and explains 82 to 93% of global 
mean precipitation variability changes across different time scales.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/31/eabf8021/DC1
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