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Abstract

The era of atmospheric characterization of terrestrial exoplanets is just around the corner. Modeling prior to
observations is crucial in order to predict the observational challenges and to prepare for the data interpretation.
This paper presents the report of the TRAPPIST Habitable Atmosphere Intercomparison workshop (2020
September 14–16). A review of the climate models and parameterizations of the atmospheric processes on
terrestrial exoplanets, model advancements, and limitations, as well as direction for future model development, was
discussed. We hope that this report will be used as a roadmap for future numerical simulations of exoplanet
atmospheres and maintaining strong connections to the astronomical community.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487)

1. Executive Summary

1.1. Objectives

The primary purpose of the workshop was to bring together a
wide variety of participants in the exoplanet atmospheres
community and beyond (solar system and Earth Sciences) to
discuss 3D general circulation models (sometimes also known

as global climate models, GCMs) in the context of exoplanet
climates and atmospheric characterization. Specifically, the
TRAPPIST Habitable Atmosphere Intercomparison (THAI)
project and workshop focused on the modeling of TRAPPIST-
1e, as it represents perhaps the best candidate for observation
and atmospheric characterization of a terrestrial-size exoplanet
in the habitable zone. The THAI project was used as a vector
for comparisons and discussions between the various GCMs
that are currently commonly used for modeling terrestrial
extrasolar planets. Particular attention was given to key
parameterizations such as surface properties, moist convection,
water clouds, radiative transfer, and non-local thermodynamic
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equilibrium (LTE) processes. Finally we also discussed how
1D models, such as energy balance models (EBMs) or single-
column radiative-convective models, complement 3D models
for exoplanet studies.

1.2. Organization

Due to the COVID-19 pandemic, the THAI workshop was
held virtually, instead of in person, as was originally planned.
The Scientific Organizing Committee (SOC) consisted of
Thomas J. Fauchez, Shawn D. Domagal-Goldman, Ravi
Kumar Kopparapu, Linda Sohl, Martin Turbet, Michael J.
Way, and Eric T. Wolf. The THAI SOC worked with
Knowinnovation (https://knowinnovation.com/), a company
led by Andy Burnett and assisted by Najja Bouldin and John
Cabra, to build the conference website and to organize the live
discussions. Each talk (26 of about 12–15 minutes in length)
was prerecorded by the speakers and uploaded to the
conference website at least a week before the live part of the
workshop (September 14 to 16). The talks are also permanently
available on the NExSS Youtube channel.30 The workshop
attendees were therefore able to watch the presentations in
advance and write questions to the speakers. Live sessions were
limited to three hours per day (9 am to 12 pm EDT) divided
into three parts: (1) questions and answer (Q & A) session
about the prerecorded talks, (2) coffee break in a 2D virtual
reality space, and (3) breakout discussions. Having an
important part of the workshop offline helped to mitigate the
impact of the time zone differences and travel issues, allowing
more people, especially from underrepresented groups, to
attend.

1.3. Main Outcomes

This workshop’s main scientific result is the intercomparison
of four mature 3D GCMs used for simulating terrestrial
climates; this will be presented in three separate papers as part
of a special issue of the Planetary Science Journal. During the
workshop, the intermodel differences in the convection and
cloud parameterizations have been highlighted as key culprits
for disagreements between simulated climates. This necessi-
tates future model development in this area of climate
modeling, particularly given the importance of clouds and
hazes in the observation and characterization of exoplanetary
atmospheres. Furthermore, the dominance of one surface type
or another—e.g., ice, land, or ocean—alters the planetary
albedo that can significantly influence climate and habitability
(Section 4.4). Latitudinal EBM simulations either under-
estimate or overestimate the strong day–night side contrast
for synchronously rotating planets, although a longitudinal
EBM can provide better representation of the temperature
contrast between hemispheres (Section 4.7). A two-column
approach (day and night sides) shows promising results to
capture the globally averaged surface temperature and some
degree of the hemispheric asymmetries. In the various
discussions during the workshop, certain aspects of model
intercomparison and potential areas of improvement were
found to be shared with similar questions of modeling
atmospheres of solar system planets, including Earth. Concerns
were raised over the carbon footprint of GCM simulations
mostly due to the electricity demand of supercomputers.

Performing runs responsibly and optimizing the GCM to
reduce the computational time have been identified as the best
mitigation strategy, and this report also recommends that future
studies that use GCMs evaluate the amount of CO2 emissions
related to the modeling activities and disclose it in the paper.
However, those considerations should not prevent researchers
from performing the numerical experiments required by their
science investigations. Finally, we need to advance aspects of
diversity, inclusivity, belonging, and justice in the field. This
will require multiple efforts at both the individual level and at
the group and community levels. The long-term positives from
such efforts will improve both the community we do our
research within and the products from that community.
This workshop report is structured as follows. In Section 2

we introduce the THAI project and how Earth and solar system
intercomparisons can help us to build meaningful ones for the
exoplanet community. In Section 3 we discuss how GCMs are
crucial to predict and interpret exoplanet observations. We then
review in Section 4 GCM parameterizations for exoplanets,
their limits, and the developments needed. In Section 5 we
show the results of a survey filled by the workshop participants
concerning the future of exoplanet GCMs. We follow in
Section 6 by discussing diversity, equity, and inclusion in the
community. Finally conclusions and perspectives are given in
Section 7.

2. General Discussions about Intercomparisons

In this section we present the THAI project, and we discuss
how current Earth and solar system intercomparisons can help
us to build successful ones for exoplanets.

2.1. GCM Intercomparisons for Earth and beyond

No object in space is more well studied and has as significant
a data set regarding its extant and past state as Earth. Indeed,
much of the understanding of planets in our solar system and
exoplanets has been informed by principles gleaned from the
study of different processes on Earth. This is especially true
when considering the impact of geophysics on the modeling of
exoplanets using GCMs.
The development of GCMs for Earth science studies has

enabled their use for other planets. But, there are also key ways
in which exoplanet GCM simulations can in turn improve our
understanding of the Earth system and its evolution. At a
fundamental level, exoplanet GCM simulations inherently act
as a means of stress testing and phase-space exploration that
can then be applied to Earth-tuned models. Due to the wide
range of conditions that may exist on exoplanets, GCM
simulations are typically run with lower complexity than
leading Earth-tuned models but explore conditions over a wider
phase space that may lie at the limits of the model’s physical
validity. The results from these models can expose minor bugs
or clarify the effects of varying specific parameters that can
potentially feed back to Earth-tuned models and the geophysics
assumptions that underpin them.
The lesser expense of these simpler exoplanet GCM

simulations and their tendency to explore this wider phase
space also has a more direct influence on the understanding of
the effect of certain features of geophysics on Earth.
Simulations that explore the general effects of variations in
bulk geophysical parameters or of external parameters are now
often run for a range of exoplanet parameters or for a broad30 https://www.youtube.com/channel/UCb0gqdGHntaPKxEuvc88Irg
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suite of terrestrial planets (Wolf et al. 2017; Way et al. 2018).
These simulations and their findings can then provide a library
of outcomes and lessons that can be applied to specific
geophysical conditions on simulations of the extant Earth or for
paleo-Earth climate simulations.

In this subsection, we review briefly some of the highlights of
previous Earth, solar system, and exoplanet intercomparisons.

2.1.1. The TRAPPIST Habitable Atmosphere Intercomparison (THAI)

Preliminary results of the THAI intercomparison (Fauchez et al.
2020) have been published. Four atmospheric compositions have
been simulated by the four GCMs (see Appendix A.1). The
simulated atmospheres include two dry (no surface liquid water)
benchmark cases, “Ben1” and “Ben2,” presented by Martin Turbet
(https://www.youtube.com/watch?v=B8a2-G8NmmA), with the
atmospheric compositions of 1 bar of N2, 400 ppm of CO2, and a
pure 1 bar of CO2, respectively, and two moist habitable cases
“Hab1” and “Hab2,” with a global ocean and the same respective
atmospheric compositions, presented by Thomas J. Fauchez
(https://www.youtube.com/watch?v=kYLbp_BrJFs). The over-
all outcome of the Ben1 and Ben2 cases is a good agreement
between the four GCMs in terms of surface and atmospheric fields.
However, we note some differences in the circulation regime,
which manifest a sensitivity of TRAPPIST-1e simulations to GCM
setup due to a combination of planetary parameters, noted, e.g., in
Sergeev et al. (2020). Synthetic transmission spectra have been
produced by the Planetary Spectrum Generator (PSG; Villanueva
et al. 2018), and they are in good agreement between the models as
long as the top of the atmosphere is extended (assuming an
isothermal atmosphere and fixed gas mixing ratio) up to about
100 km (10−7 and 10−10 bar for Ben1 and Ben2, respectively).
Without this extension, the strongest absorption features of CO2

are truncated. Concerning the Hab1 and Hab2 cases, clouds are the
largest source of discrepancies between the models, as expected,
due to differences in convection (Section 4.3), bulk condensation,
cloud microphysics, boundary layer, and other parameterizations,
and their coupling with atmospheric dynamics and radiation.
The altitude and thickness of the cloud deck at the terminators
impact the simulated transmission spectra, leading to about 20%
differences between the models on the number of transits required
to detect those atmospheres with the James Webb Space Telescope
(JWST) at a 5σ confidence level. More details on the Ben1 and
Ben2 simulations, Hab1 and Hab2 simulations, and the impact on
observable transmission spectra and thermal phase curves will be
presented in three follow-up papers. We also welcome other
modeling groups to join THAI at any time. Interest has been
shown from the THOR (Deitrick et al. 2020) and Isca (Vallis et al.
2018) GCM groups that we hope to host and compare results soon,
while the Exeter Exoplanet Theory Group (EETG) will contribute
results from the Unified Model’s (UM) replacement, LFRic
(Adams et al. 2019), in the future.

Once JWST data for TRAPPIST-1e are available, GCM output
will be compared to observational data. We expect such
comparison will lead to a new set of simulations and to further
validation of model performance against terrestrial exoplanet data.
It is important to maintain and improve the level of collaboration
between the exoplanet GCM community (including THAI) and
the observational community. The “TRAPPIST-1 JWST Com-
munity Initiative” (Gillon et al. 2020) is particularly relevant as it
aims to develop a coordinated framework to study TRAPPIST-1

planets with JWST from both the observational and theoretical/
modeling levels.

2.1.2. Model Intercomparisons across Stellar Spectral Types (Yang
et al. 2016, 2019c)

Yang et al. (2016) compared the differences in 1D radiative
transfer calculations among two line-by-line codes (SMART
and LBLRTM), a moderate resolution code (SBART), and four
low-resolution codes that are used in GCMs (CAM3,
CAM4_Wolf, LMD-G, and AM2). Note that CAM4_Wolf
would eventually become ExoCAM; see Appendix A.1.1. The
atmospheric composition was set to 1 bar of N2, 376 ppmv
CO2, and variable H2O. They showed that there are small
differences between the models when the surface temperature is
lower than about 300 K. At higher temperatures, such as
320–360 K, the differences between the models could be tens
of watts per square meter. The source of the differences is
mainly from water vapor radiative transfer calculations in both
shortwave and longwave. The differences are larger for
shortwave than longwave and also for an M-dwarf spectrum
than a solar spectrum. These results suggest that radiative
transfer codes should be verified first (such as the absorption
and continuum behavior of water vapor) before being used in
an exoplanet GCM especially when targeting planets with hot
climates or to estimate the inner edge of the habitable zone.
Notably, an important lesson learned from this study is that the
adequate performance of shortwave radiative transfer for warm
moist atmospheres is contingent upon sufficiently resolving the
near-IR H2O spectral absorption bands and windows, particu-
larly when considering irradiation from M-dwarf stars.
Yang et al. (2019c) compared the differences of 3D GCM

simulation results on a rapidly rotating aqua planet receiving a
G-star spectral energy distribution and on a tidally locked aqua
planet receiving an M-star spectral energy distribution. Several
GCMs were considered, including various versions of CAM,
the LMD-G, and the AM2 GCM (Anderson et al. 2004) They
found a relatively small difference (<8 K) in global mean
surface temperature predicted by various GCM for cloudy
planets orbiting a G star but rather large differences (20–30 K)
for cloudy planets orbiting M stars. These discrepancies are due
to differences in the atmospheric dynamic, clouds, and
radiative transfer. Clouds are the largest difference between
the models. The interactions between radiative transfer (such as
shortwave absorption by water vapor) and atmospheric
circulation can influence the atmospheric relative humidity
and therefore affect the surface temperature.

2.1.3. GCM Intercomparisons for Solar System Planets

Mars—Several GCM intercomparison efforts were arranged
in the Mars atmosphere modeling community as soon as
enough teams could contribute to such a project. They were
organized in advance of two workshops that helped structure
the community just like the 2020 THAI workshop did,
although no official reports were published in the literature.
The first meeting was the “Mars GCM intercomparison
workshop” organized at Oxford University, United Kingdom,
1996 July 22–24. It was later followed by the first “Mars
atmosphere modeling and observations,” which took place in
Granada (Spain) on 2003 January 13–15. In both cases,
instructions were sent to the different teams to prepare
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comparable simulations in advance, and volunteers analyzed
the simulations by comparing the zonal mean fields and the
predicted planetary waves. Radiative transfer models were also
compared for specific test cases (as announced by Harri et al.
2003). These efforts showed that, most of the time, significant
differences could always be attributed to different settings in
the models and that it was difficult to reach profound scientific
conclusions from such organized intercomparisons. Mars GCM
teams later focused on comparing their models with the
numerous observational data sets that became available in the
2000s. Nevertheless, specific intercomparison studies have
continued being conducted to study phenomena or altitude
ranges for which not much observational data are available
(e.g., González-Galindo et al. 2010; Wilson et al. 2014) or to
compare model predictions at a mission landing site (e.g., Kass
et al. 2003; Newman et al. 2020).

Venus and Titan—Similarly, intercomparison campaigns
have been organized in the Titan and Venus GCM commu-
nities, which reached a sufficient stage of development a few
years after the Martian case. In practice, because on Venus and
Titan the problem of superrotation is so striking and
challenging for the GCMs, the most interesting comparisons
actually focused on the behavior of the various dynamical
cores and their ability to simulate superrotation and conserve
angular momentum (Lebonnois et al. 2012, 2013; see also
Section 4.2.1). These studies revealed that various dynamical
cores, which would give very similar results in Earth or Mars
conditions, can predict very different circulation patterns in
Venus-like conditions. Recently, a detailed Titan climate model
intercomparison has been organized, with the motivation of
preparing the planned Dragonfly Titan lander mission (Lora
et al. 2019), like intercomparison studies done for Mars to
prepare for a mission landing. On the basis of the acceptable
agreement between the different models, the authors conclude
that the “low-latitude environment on Titan at this season is
now fairly well constrained,” which is reassuring when
preparing an ambitious mission like Dragonfly.

Snowball Earth—A noticeable GCM intercomparison has
been presented in Abbot et al. (2012) concerning the impact of
clouds in the snowball Earth deglaciation. Six different GCMs
were on board the intercomparison. They found that clouds
could warm a snowball Earth enough to reduce the amount of
CO2 required for deglaciation. But because the amount of
clouds varies from one model to another, the amount of CO2

required differs by one order of magnitude depending on the
model. This intercomparison highlights clouds as an important
source of discrepancies between the GCMs.

2.2. Ideas for Advancing Exoplanet Model Intercomparisons

2.2.1. The Coupled Model Intercomparison Project (CMIP) as a
Guide for “ExoMIPs”

In planning future community-based exoplanet model
intercomparisons (“ExoMIPs”) like the THAI project, it is
useful to consider the 25 yr history of the future Earth-focused
Coupled Model Intercomparison Project (CMIP). This
discussion has been presented at the THAI workshop by
Linda Sohl.

CMIP is perhaps best known now for its contributions to the
periodic assessments issued by the Intergovernmental Panel on
Climate Change (see, e.g., IPCC report 2013, https://www.
ipcc.ch/report/ar5/wg1/), but it began in 1995 as an

independent project of the World Climate Research Program
(WCRP). Over the years, CMIP has grown from an effort to
use simple global coupled ocean–atmosphere GCM experi-
ments, with interactive sea ice and land models, to separate
natural climate variability from human-induced climate change
(Covey et al. 2003), to the exploration of a variety of
sophisticated climate change scenarios, using GCMs with
ever-more complex capabilities that include chemistry and
higher-resolution dynamical interactions (Eyring et al. 2016),
as well as specialized ancillary investigations (e.g., the various
projects under the Paleoclimate Modelling Intercomparison
Project, or PMIP31). The history of the CMIP experience
highlights four key considerations that would benefit any future
exoMIP effort:
Context/Rationale: Establish how the MIP will advance the

state of knowledge and/or the state of the art. CMIPʼs overall
experiment designs are developed as an outgrowth of the
WCRP Grand Challenges,32 which are updated periodically via
community input. These Grand Challenges, which encompass
observational, theoretical, and modeling-based research, are
meant to:

1. Identify the key research questions needing to be
addressed in order to move the field forward in a
substantive way, as well as the barriers to progress (what
do we need to learn next, and what stands in the way?);

2. Define effective and measurable performance metrics
(how will we know we have been successful in achieving
our goals?);

3. Provide storylines that engage a broad interested
audience, from the media and general public to scientists
from other disciplines (how can we attract future talent
and improving interdisciplinary connections?).

Planetary science and astrobiology do not have an internation-
ally defined set of grand challenges as such. However,
documents such as the NASA Astrobiology Strategy33 and
AstRoMap European Astrobiology Roadmap34 outline research
topics of interest for advancing the field, and not surprisingly,
there is overlap that can help narrow the context and rationale
of an exoplanet MIP. An ExoMIP should strive to make
connections with as many of these topics as is plausible:
linking the MIP rationale to broad themes of community-wide
interest is to our advantage in connecting to our fellow
researchers whose focus is on theory, field work, or
observations.
Experiment Design: Encourage broad participation by

planning core experiments with low entry barriers for most
groups, with specialized subprojects as needed. One of the
benefits of MIPs, from a model development standpoint, is that
comparisons across multiple models can illustrate which model
design/parameterization approaches provide the most robust
results. Thus, the more models we can encourage to participate
in a given MIP, the better for the community. The participation
of any one modeling group in an MIP is going to be limited by
three factors: the technical requirements of the MIP (how
intensive is the setup process for the experiments?), the

31 https://pmip.lsce.ipsl.fr/
32 https://www.wcrp-climate.org/grand-challenges/grand-challenges-
overview
33 https://astrobiology.nasa.gov/research/astrobiology-at-nasa/astrobiology-
strategy/
34 https://www.liebertpub.com/doi/full/10.1089/ast.2015.1441
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available resources (how much computing time is available?),
and expertise on hand (are there enough people with the
necessary model knowledge and time to run all the
experiments?).

CMIP has taken the approach of defining a limited set of
required core experiments that are easy to implement (e.g.,
Eyring et al. 2016). This lowers the entry barrier to groups
interested in joining and improves the chances of useful
outcomes beneficial to the community. More complex
scenarios, specialized topics, and extended parameter space
are addressed through related MIPs,35 which attract groups that
have the additional resources, interest, and expertise available.
For an ExoMIP, it is conceivable that a similar design could
focus on global-scale core experiments with simple forcing
changes (stellar insolation, relatively thin atmospheres/
oceans), and some of the related MIPs could engage with
1D/EBM models on details of atmospheric composition/
radiative forcing.

MIP Logistics: Plan realistic schedules for experiment
completion and group analyses/manuscript preparation. Keep-
ing model groups focused and reaching project milestones in a
timely fashion are important for the overall success of an MIP.
CMIP and the related MIPs typically establish these schedules
via community planning workshops, where ideas for experi-
ments and additional “rules of engagement” regarding MIP
participation are also defined in advance. These MIP protocols
should then be published as close to the official start of a MIP
project as possible so that additional groups not involved in the
planning workshops can also make a timely decision to
participate.

Data Sharing: When/how to release experiment results for
broadest impact? On this topic, CMIP and some of the related
MIPs—mainly the PMIP projects—handle data sharing
differently. Because the groups contributing to CMIP are
frequently not entirely the same as researchers conducting
multimodel evaluations of the experiment results, data are
released immediately to the community. In contrast, the
specialized PMIP project experiments are often run and
evaluated by the MIP participants themselves. In the latter
case, a data embargo is often declared until the first group
papers are published, as part of the agreed-upon project
schedule. An ExoMIP might want to consider a similar data
embargo as part of a community agreement not to publish each
otherʼs work prematurely.

Data-sharing logistics are a more complicated issue. No
ExoMIP will have the vast resources currently available to
CMIP for data sharing, so at present any data sharing is likely
to happen on an ad hoc basis. However, it is possible to
develop community standards for what and how data should be
shared. While raw model output and some accompanying post-
processing scripts might provide maximum flexibility to fellow
modelers, model results that have already been postprocessed
into file formats such as netCDF for map views and plain text
for line plots allow the broadest possible audience—from
fellow scientists who are not modelers, to educators and
students—to work with and learn from the output with the help
of free apps.

2.2.2. Planning Workshop Themes for Rocky Exoplanet Model
Intercomparisons

The beginning of the first network of exoplanet model
intercomparison is a great time to address organizational
challenges, and it should be a top priority for the community.
In order to advance intermodel comparisons for exoplanet

study, a first-order requirement is a collaboration workshop for
the community to discuss key issues, especially regarding data
to be shared (and how to share it), which would be very
important for establishing standards and best practices for
intercomparisons going forward. A formal intercomparison
workshop could be organized for roughly one year after the
THAI workshop (fall 2021), which would allow time for
planning the workshop and getting funding support to
encourage participation.
We can expect that an intercomparison workshop would

produce documentation about best practices for model inter-
comparisons and, most importantly, produce a community
consensus on how to share data so that a common repository
(to be identified) would host a comprehensive set of common
diagnostic outputs that are most important for addressing the
science questions asked (e.g., which diagnostic attributes
contribute most to the synthetic spectral signatures of interest
for observational programs?) and yet do not overwhelm
potential users or the repository itself with ancillary diagnos-
tics/large data files.
To compare GCMs, even to one another, we must

necessarily address a range of cases (by bracketing single-
point cases with increasingly complex physics included
sequentially, etc.). This requires a clearly defined question
(e.g., “is this climate sensitive predominantly to clouds or
surface water reservoir effects?”) with the goal of producing
concrete test cases (that is, with an exhaustive list of clearly
stated parameters) and testable predictions so that it is
possible to differentiate possible states. Having a clear, well-
defined question, in conjunction with a concise list of
simulations and deliverables, is necessary to ensure that
requirements for participation can be met within realistically
allocatable work efforts for such projects. Transparency with
respect to set parameters also ensures reproducibility and
provides diagnostic access for future tests and observations.
Future observational modes further constrain important test
deliverables (wavelength coverage and spectral resolution if
spectroscopic, or dynamic/geologic/phenomenological diag-
nostics; spatial scales; arrival times; duration of observation
or mission lifetime, etc.). If the models are too far away from
one another, then how do each of the GCMs motivate those
disparate results, and does this lead to additional testable
predictions?
Given the abundance of “hidden” parameterizations in

models, it can be difficult to assess whether a given model in
a given part of parameter space matches observations for the
“right” reason (e.g., the same physical driver as the primary
control in both the model and the planetary environment)
versus a confluence of other effects. Further intercomparison
work can elucidate some of these factors, but it is unlikely
that they will all become explicit dependencies, even with
additional documentation. Note that potential new observa-
bles outside current capabilities and ones where additional
precision would refine parameter ranges also help to steer
future mission development, which then feeds back into
how close the models are to ground truth. Continued

35 https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/
modelling-wgcm-cmip6-endorsed-mips
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intercomparisons require continued funding, and given the
dependence of adequate documentation, this suggests the
need for clear funding lines for the development of testing
frameworks (either for a single model or as part of a new or
ongoing collaboration), validation, documentation, etc. GCM
model development work is costly, and national laboratories
like NCAR or GISS typically hire software engineers to
support the scientists. The exoclimate community is young,
and the scientists generally lack such support, hampering
progress. Lastly, reducing the model output to a single metric
(e.g., generic climate state or spectral signature produced) is
an additional constraint (metasensitivity?), suggesting that
disagreeing models may “agree” in some diagnostic sense.
This would help to identify additional directions to explore,
such as broadening the parameter space identified initially,
or through secondary observables (diurnal/seasonal varia-
bility, etc.).

Finally, we would also recommend that potential inter-
comparison contributors think beyond the goal of “what does
this planet simulation look like from the observation perspec-
tive?” Three-dimensional GCMs in particular produce a wide
variety of diagnostic outputs that are interesting and relevant to
understanding the potential habitability of a particular world
configuration as well as model performance, but these do not
necessarily produce directly observable results. This is
especially true knowing that some observables that we have
currently identified may be in fact unobservable and that new
ones will eventually be found later. Current modeling should
therefore not be only constrained by the current set of possible
observables.

2.2.3. Discussing and Building the Climates Using Interactive Suites
of Intercomparisons Nested for Exoplanet Studies (CUISINES)

In the upcoming era of JWST, it becomes essential to focus
community effort on benchmarking/comparing/validating the
performance of exoplanet climate models, both with respect to
other models and to observations (when available). As noted in
Section 2.2.1, model intercomparisons have been widely used
for decades by the Earth science community in this way, as a
very valuable means to improve model reliability, mitigate
model dependencies, track down bugs, and provide bench-
marks for new models. While individual intercomparison
projects should have their own clearly defined protocols, the
exoplanet community would benefit also from a metaframe-
work—essentially, a framework for designing model inter-
comparison projects. This metaframework is what we propose
with CUISINES. This framework would be open from 0D to
3D models as well as radiative transfer models and not limited
only to rocky exoplanets. One of the first steps in establishing
this metaframework will be to create a CUISINES committee
and then to prepare a workshop on best practices for
intercomparisons.

At the end of the THAI workshop, two future intercompar-
isons were already discussed: one between EBMs for ice belts
and one between GCMs for cloud-free mini Neptunes (see
Section 2.2.4 below). In the era of JWST, mini Neptunes and
hot Jupiters in particular will require focused modeling efforts
from the community. Other ideas for intercomparisons under
the CUISINES metaframework are welcome.

2.2.4. Moving Beyond Rocky Planets: Envisioning a Mini-Neptune
Model Intercomparison

A future THAI-equivalent GCM intercomparison project for
mini Neptunes has been proposed during a breakout discussion.
Mini Neptunes are the most abundant category of exoplanets
that have been discovered so far and thanks to their larger size
they will be more easily characterized through transmission
spectroscopy with JWST. For now, there is a wide range of
approaches considering mini Neptunes modeling so there is a
significant need for an intercomparison to see what the
differences are when everyone makes the same assumptions
(more important for now than thinking about the more
complicated physics we need to implement). For instance,
aerosols are very challenging to include in mini Neptunes
(Charnay et al. 2015a, 2015b, 2021); therefore, it has been
suggested clear-sky simulations are considered as a start.
Cloudiness has been shown to decrease with decreasing
equilibrium temperature (Crossfield & Kreidberg 2017), which
motivates the case for relatively cold temperatures (K2-18b;
Benneke et al. 2019; Tsiaras et al. 2019; and colder), where less
photochemical haze is expected. Gliese-436b could be a very
good candidate with respect to the amount of data potentially
available and the quality of constraints on the planetary
parameters (Demory et al. 2007; Gillon et al. 2007; Lanotte
et al. 2014; Ehrenreich et al. 2015; Bourrier et al. 2016; dos
Santos et al. 2019, and references therein). Atmospheric
compositions should be limited to common gases expected
for these planets such as hydrogen, helium, water, methane,
and carbon dioxide and surface pressures could range from few
millibars to tens of bars. However, in order to take into account
deep atmosphere effects on the upper atmosphere, which have
been shown to be important for Titan (Lebonnois et al. 2012), it
may require inclusion of pressures up to 10–100 bar which can
subsequently increase the computational time (Wang &
Wordsworth 2020). In a next step, the atmospheric composi-
tions can be refined to include more processes to match with
observations that JWST would have provided. Also, other
models such as EBM and 1D radiative-convective models
could be engaged, too.

3. GCM Simulations to Predict and Interpret Exoplanet
Atmospheric Characterization

The strength of the exoplanet modeling community is in its
close connection between scientists from numerous disparate
fields, including astronomers, climate scientists, planetary
scientists, and geophysicists. Knowledge from all of these
fields should be leveraged when considering exoplanetary
atmospheres, and inputs from each field can be incorporated
into GCM simulations of exoplanetary climates. Due to the
computational expense of GCMs, before conducting large sets
of simulations, we tightly constrain the goals of our simulation
sets. Given the observational limitations that will persist
through the coming decade, from an astronomical perspective
it would be most beneficial to prioritize categories of planets
that are going to be definitively observable in the near future.
We should compile a list of potential targets in the order of
importance—this would help to distribute our computing
resources more efficiently. Model development effort should
then mainly be directed toward the most observable types of
planet. For example, can we observe a Mars-like planet tidally
locked to an M-dwarf star? Or are exo-Venuses our most
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realistic target? Astrobiological implications are an obvious
motivation for simulating exoplanet atmospheres. However, the
characterization of Earth-sized habitable worlds is far more
challenging (and perhaps untenable) compared with the
characterization of sub-Neptunes and larger worlds. One
strategy for constraining habitable zones and habitability may
lie first, paradoxically, in constraining uninhabitable regions in
planet-phase spaces, thus allowing us to eliminate planets from
the list of potentially habitable worlds. In other words, we have
to be able to readily distinguish extreme atmospheric condi-
tions from Earth-like atmospheres.

The simplest answer to what planets and parameter space
will be a target of near-term observations are planets we can
actually observe. Characterization of exoplanets is still
challenging for most planets smaller than large Jupiter-sized
planets, and the ability to characterize smaller planets is one of
the highly anticipated open areas that JWST will explore.
While the highest quality data from JWST with respect to
characterization will be for hot Jupiters, there is still significant
interest in characterizing rocky planets, if feasible, with JWST
and extremely large telescopes (ELTs). The recognition that the
characterization of potentially rocky planets may be the next
frontier that is explored in exoplanet science is what has
motivated much of the recent study of theoretical models of
rocky planets. These theoretical studies of the different
potential environments of rocky exoplanets and their potential
observational signatures are key to ensuring that sufficient
understanding exists for the interpretation of observations of
rocky exoplanets when they are obtainable. In the intermediate
range between Jupiter-sized planets and potentially rocky
Earth-sized planets are the class of planets that may be the next
truly characterizable planets in the near term, the so-called
“mini Neptunes” and “super-Earths.” These terms are meant to
describe the mass and radius regime of these worlds as there is
considerable uncertainty regarding their interior, surface, and
atmospheric properties. However, it is precisely this uncertainty
and the potential to extricate key parameters from observations
of these worlds that make them potentially valuable probes of
planetary formation, evolution, and habitability. Aside from the
abundance of potential targets, super-Earths and small
Neptunes also inhabit a potentially critical region of planetary
parameter space. These planets likely bracket the point at which
runaway accretion of a primary gaseous atmosphere occurs in
the core accretion model (Pollack et al. 1996). Therefore, they
bridge the structures of giant planets with thick hydrogen-/
helium-dominated atmospheres, to terrestrial planets with much
thinner “secondary” atmospheres (Lopez & Fortney 2014), as
well as being in the size range where irradiative evaporation
becomes significant (Owen & Jackson 2012).

The array of observational techniques that will be used to
extricate the properties of these worlds are both those that have
been heavily used in the past and that are in the nascent stages
of being leveraged. For the latter, emission spectroscopy may
be a critical means by which to probe into deeper portions of
the atmosphere, despite the presence of expected clouds and
hazes. Ground-based observations will also be key, particularly
high-resolution spectroscopy—possibly coupled with direct
imaging—that may be diagnostic of composition and other
atmospheric features using some of the large planned near-term
ground-based telescopes (Snellen et al. 2015; Lovis et al.
2017). More familiar data products such as light curves will

continue to be critical as their multiwavelength morphology
will be key to informing and validating climate models.
This connection and feedback between observations and

theoretical work will be key to the near-term interpretation of
exoplanet observations in the context of atmospheric and
surface characterization. Synergies between retrievals and
GCMs will enable the connection of the existing physical
and chemical models to observations in a way that may be able
to elucidate parameters that will be informative regarding
planetary formation and evolution. To facilitate this, there
exists the need for a closer connection between chemistry
models and GCM models (e.g., Chen et al. 2019; Drummond
et al. 2020). In addition to that, there is a need for generalized
condensation schemes (for a broad range of planets from hot
rocky planets to cold gaseous planets and for a variety of
atmospheric compositions). Connections to and integration
with other key modelings, such as modeling of atmospheric
escape and the evolution of planets given different formation
pathways, will also need to be supported. Observations will
drive much of this theoretical work, and both cooler “sub-
Neptunes”/“super-Earths” and hot rocky planets that may be
characterizable by JWST are key.
While connecting simulations to observations is key, another

essential component of exoplanet characterization is the need to
be confident in our models through validation practices such as
intercomparisons like THAI before applying them to under-
stand terrestrial exoplanet observations. The validation prac-
tices will be especially important because modeling of some of
the most favorable near-term observational targets will require
the addition of novel functionality in a number of areas. The
following are just some areas that will likely require model
development in order to appropriately model exoplanets that
are likely to be near-term observational targets:

1. Modeling “sub-Neptunes”/“super-Earths” with extended
atmospheres will require deep atmosphere equations, as
the primitive equations break down due to the thickness
of the atmosphere relative to the planetary radius (Mayne
et al. 2019).

2. The range of atmospheric compositions that will have to
be considered will also expand for planets that are not H2

rich or Earth like or that do not have any representation in
our solar system (Woitke et al. 2021).

3. Updated chemistry schemes that capture nonequilibrium
or photochemistry effects that are likely relevant for these
classes of exoplanets will be required.

4. There is a need for an improved understanding of interior
mixing to get proper boundary conditions for GCMs.

5. There will be a need to be able to run simulations at lower
pressures in order to properly treat photochemical hazes
and other upper atmosphere processes that may affect
observables.

6. Robust parameterizations for convection that can deal
with nondilute condensibles will be required.

Deserving of their own section (i.e., Section 4.6), clouds and
hazes are the elephants in the room for improved understanding
of characterizable exoplanets. Observations of planets in and
outside our solar system indicate that understanding of clouds
and aerosols are required to even have a first-order under-
standing of a planets’ extant state and consequently its
evolution. While modeling of clouds and hazes is inherently
a complexity-rich endeavor that requires trade-offs due to limits
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of understanding or computational complexity, there are some
key needs that will be required in order to accurately
characterize exoplanets in the near term. Understanding the
inherent variability of a planet and determining the level at
which weather and cloud variability changes the continuum
level of observations are important for both interpretation and
planning of observations. The coupling of clouds and
photochemical hazes to dynamics is also important to
determine the impact on transmission, emission and reflection
spectra, and phase curves (relevant for effectively all classes of
planets, as demonstrated by solar system objects). An
additional near-term focus will be the inclusion of coupling
in detailed cloud microphysics codes (e.g., Helling code,
CARMA, and EddySed) to GCMs as has been done for hot
Jupiters (Lines et al. 2018b). The addition of models of
increasing complexity such as these will likely require a model
hierarchy going between simple models and the coupled cloud
microphysical models.

For planets in more extreme temperature regimes, such as
hot rocky planets amenable to JWST characterization, there
will be a need for significant model updates including updated
radiative transfer (RT) schemes and nondilute condensible
development. These worlds will also require 1D models to take
into account surface chemistry due to potential magma oceans.
Finally, additional factors such as gravity waves will require
appropriate parameterizations because their impact in the upper
atmosphere is significant for planets of the solar system (e.g.,
Hoshino et al. 2013; Lott & Guez 2013; Gilli et al. 2020) and
potentially for hot Jupiters (for example, see Watkins &
Cho 2010).

Addressing these questions, we must design our numerical
experiments efficiently. To do large sets of simulations, we can
adopt statistical approaches to cover as much of the parameter
space with as few simulations as possible (e.g., Latin
Hypercube; see Sexton et al. 2019). For example, we can use
a decision tree of specific well-known biosignature parameter
sweeps for each stage of Earth’s history. Parameter space can
be covered efficiently also by relying on the synergy between
EBMs and 3D GCMs following an asynchronous coupling.
Namely, a “rough” climate state can be spun up by a resource-
cheap EBM and then explored in more detail with a resource-
expensive GCM, followed by another spin-up period done with
the EBM, and so on.

We believe the same methodology should be considered for
future coupled atmosphere–ocean simulations of exoplanets, in
which the ocean part requires longer timescales than the
atmosphere. We also discussed the untapped computational
potential of graphical processing units (GPUs), which are
currently underused by the GCM community (e.g., THOR; see
Mendonça et al. 2016; Deitrick et al. 2020). Future GCMs
should ideally be developed agnostic of the machine
architecture (see Adams et al. 2019, for example). Using
GPUs and similar hardware optimized for heavy computations
would help to run large parameter sweeps in less time.

To summarize, there are a lot of necessary planet types to
simulate and a lot of new couplings between the atmosphere
and other processes (e.g., atmosphere–ocean) to explore. Future
model intercomparisons should focus on relatively more
observable atmospheres, keeping a close connection with
observational data. We have to be careful in selecting modeling
targets: on one hand, it is more interesting to run simulations of
exotic (relative to Earth) atmospheres; on the other hand, these

atmospheres are notoriously difficult to simulate with Earth-
tuned codes, leaving very few GCMs being able to join the
intercomparison. Looking in a more distant future (the
following decade perhaps?), a new generation of GCMs should
be developed to be able to simulate such extreme cases as
nondilute, fully collapsible, or non-ideal-gas atmospheres.

4. GCM Parameterizations, Limits, and Development
Needed

4.1. Sensitivity to Numerical Settings and Initial Conditions

4.1.1. Horizontal Numerical Diffusion

Most GCMs require numerical diffusion or a filter that is
applied in addition to the existing terms of the Euler or
primitive equations (Lauritzen et al. 2011, Chapter 13). This
mechanism typically serves two practical purposes, which are
intimately related: providing numerical stability and achieving
a kinetic energy spectrum that is consistent with our under-
standing of turbulent cascades.
In the case of numerical diffusion, diffusivity is generally a

tunable parameter. For Earth GCMs, the diffusivity can be
tuned to achieve a spectral slope that matches empirically
measured values (Nastrom & Gage 1985; Lauritzen et al.
2011). For exoplanets, there is little hope of measuring the
kinetic energy spectrum, but we can use the expectation of a
−3 power law (Charney 1971) or−5/3 power law (Pope 2000;
Cabanes et al. 2020) as guidance.
More specifically, the turbulent cascade causes energy to

build up at the grid scale, well above the level at which
molecular viscosity would act to convert this energy to heat
(see Lauritzen et al. 2011, Figure 13.7). A numerical diffusion
term is thus usually included and selected to have a form that
preferentially diffuses the fields at the smallest scales in the
model by using, for example, iterated Laplacian operators (see,
e.g., Spiga et al. 2020, Appendix A.2). However, selecting the
strength and form of this term is somewhat of an art, as it will
depend on the resolution, time-step size, solver, grid, and
numerous other factors (Lauritzen et al. 2011; Thrastarson &
Cho 2011). Fortunately, most exoplanet observables are
relatively insensitive to the strength of numerical diffusion
(Heng et al. 2011a; Deitrick et al. 2020). Nonetheless, the
exoplanet GCM community should bear in mind that other
properties may be sensitive to ad hoc numerical settings. For
instance, differences have been noted between the GCM
prediction of Titan superrotation possibly due to numerical
diffusion (Newman et al. 2011).

4.1.2. Sponge Layers

One numerical issue deserves further attention: the need for
so-called “sponge layers,” that is, enhanced diffusion or drag
near the model top and/or bottom. This need arises because
GCMs typically use reflecting boundary conditions, allowing
waves (usually gravity waves) to be reflected back into the
model domain. These reflected waves are unphysical and can
amplify and trigger numerical instabilities (Lauritzen et al.
2011). Thus, an additional drag mechanism is often used to
eliminate these reflections. Various types of sponge layer exist,
for example, Rayleigh friction, which directly damps wind
speeds toward zero or another value such as the zonal mean
(see, for example, Mayne et al. 2014b; Mendonça et al. 2018).
This type of sponge is easy to implement but is
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nonconservative (for instance, terrestrial studies by Shaw &
Shepherd 2007 show that sponge layers adversely impact the
angular momentum balance, thus the simulated circulations). It
is instructive to note that some GCM simulations of solar
system gas giants do not employ a sponge layer so as to avoid
altering the angular momentum balance of the atmosphere
(Schneider & Liu 2009; Liu & Schneider 2010; Spiga et al.
2020). Another commonly used sponge layer, which is
conservative in finite-volume formulations, reduces the order
of the numerical diffusion, from (for example) fourth order to
second order (Lauritzen et al. 2011). In either case, it is not
always clear how to tune the strength and size of the sponge
layer, which needs to damp waves without strongly affecting
the general circulation or inducing additional reflections. While
sponge layers have been carefully calibrated for Earth
simulations, the effects of sponge layers and reflected waves
arguably deserve more attention in exoplanet atmospheres.
Indeed, the exact settings required for these various damping
mechanisms are currently unknown, as there is little constraint
from observations, although in cases physically motivated (e.g.,
capturing dissipation from subgrid eddies or emulating the
propagation of waves into space) their main use is for
numerical stability (see Heng et al. 2011b for an example of
the dissipation and maximum wind speed).

4.1.3. Initial Conditions

There has been some debate in the literature on the
sensitivity of hot-Jupiter simulations to initial conditions
(Thrastarson & Cho 2010; Liu & Showman 2013). Other
recent work has hinted at the possibility that zonal wind speeds
on these planets may be sensitive to the initial temperature–
pressure profile used in the deep atmosphere (Sainsbury-
Martinez et al. 2019). More investigation should be done on
initial conditions in exoplanet GCMs, although it is a challenge
to explore many possibilities with such computationally
expensive models.

4.1.4. Conservation Properties

The atmospheres of exoplanets present new territories in
which physical processes may be unfamiliar and poorly
constrained, compared to Earth and other solar system bodies.
Unlike bodies in our solar system, for exoplanets we have little,
if any, spatial information on the atmospheric structure. Thus in
modeling these atmospheres we must utilize any and all
available criteria to ensure physical realism.

The dynamical cores of GCMs are formulated using
conservation laws (e.g., the Euler equations). As such, the
global conservation of properties such as mass, energy, and
angular momentum provides a diagnostic of the model’s
performance and accuracy. Thuburn (2008) provides some
guidance on which properties may be conserved and the
desirable degree of conservation. We reiterate a few of those
concepts here but more details on the dynamical cores will be
given in Section 4.2.

First, as pointed out in Thuburn (2008), while the continuous
forms of the equations of fluid dynamics can be formulated to
conserve all physical properties, the discrete forms of the
equations do not. Choices must be made regarding which
properties to conserve (to numerical precision). One example of
this is the thermodynamic equation (i.e., the first law of
thermodynamics), which can be written in terms of different

variables, such as potential temperature, pressure, internal or
total energy, etc. Many GCMs use potential temperature, which
is convenient for modeling convective processes. This leads to
a conservation law for entropy, whereas sometimes a
conservation law for energy (total or internal) may be preferred
(Satoh 2002). A similar choice must be made in the momentum
equations, as these may be written in terms of linear momenta,
angular momenta, vorticity, etc.
Conservation of mass is particularly important, as noted by

Thuburn (2008), because it affects all other conservation laws,
and should be robust in the absence of significant sources and
sinks (e.g., escape to space or volatile freezeout). In other
words, errors in mass conservation will lead to a cascade of
errors elsewhere.
As we develop GCMs further and explore novel territory,

conservation also provides a critical way to identify coding
errors. In his talk, Russell Deitrick briefly discussed using mass
and angular momentum conservation to identify bugs in the
THOR GCM. Finite-volume models (such as THOR) should
conserve properties naturally to roughly machine precision
because the equations are discretized in flux form—fluxes flow
across boundaries such that control volumes on either side
experience the exact same flux. Model discretized in other
ways (e.g., spectral models) may ensure conservation by use of
“fixers” (see Lauritzen et al. 2011, Chapter 13).

4.1.5. Grid Choice

Traditionally, GCMs have used a latitude–longitude (lat-lon)
spherical grid, which is easy to construct and has operators that
are well known and intuitive. It does, however, suffer from
singularities and resolution clustering due to the convergence
of meridional lines at the poles (Staniforth & Thuburn 2012).
Many models have solved this issue using a combination of
semi-implicit time integration and numerical filters, for
example, the UM.
Another solution is to use an alternative horizontal grid

structure. A comprehensive review of grid types, and their
advantages and disadvantages, is provided in Staniforth &
Thuburn (2012). The most commonly used of these seem to be
the cubed sphere, used in versions of the FMS, for example,
Lin (2004), and the icosahedral grid, used in NICAM (Tomita
& Satoh 2004), THOR (Mendonça et al. 2016), and
DYNAMICO (Dubos et al. 2015). These quasi-uniform grids
succeed in making the resolution more uniform across the
sphere, avoiding numerical complications at polar regions in
the lat-lon grid. These grids also scale very well with a high
number of processors, which is usually not the case for the lat-
lon grid (Staniforth & Thuburn 2012). However, these grids are
a true challenge to work with—the divergence, gradient, and
curl operators must be written using Gaussian integrals on the
icosahedral grid, for example (Tomita & Satoh 2004). Further,
they are not completely uniform and thus still admit the
possibility of grid imprinting, wherein errors build up to a level
that makes the underlying grid visible to the eye (Staniforth &
Thuburn 2012). Also, the core utilization of icosahedral grid is
far below the one of the lat-lon grid. Unfortunately, there is no
known “perfect” grid, so an understanding of the shortcomings
of a particular grid is essential, as is a comparison between
models utilizing different grids.
A further word of caution is warranted here: some models, as

in Dobbs-Dixon & Lin (2008), have avoided numerical issues
with polar regions by omitting them entirely. While some
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features of the resulting simulations may be qualitatively
reasonable, it is likely that the polar regions are particularly
crucial for the circulation of tidally locked exoplanets.

4.2. The Limits of Dynamical Cores for Exoplanets

One of the goals of atmospheric modeling for exoplanets is,
obviously, to unveil and to disentangle the physical processes
underlying the observed properties. Another goal relates
directly to the science of modeling itself: using hydrodynamical
solvers (dynamical cores) and subgrid-scale parameterizations
in the extreme conditions of exoplanetary atmospheres is
interesting because it could illustrate the limitations of
dynamical cores in a two-fold perspective:

1. Exoplanets allow us to explore from a fresh perspective
known limitations of atmospheric modeling encountered in
Earth and solar system planet applications (Section 4.2.1).

2. Exoplanets can be very exotic (when considered from a
solar-system-centered point of view); therefore, new
limitations arise when applying atmospheric numerical
models to these environments (Section 4.2.2).

Before delving into a description of those challenges and
limitations, it is important to note that, despite these challenges,
e.g., studies of hot Jupiters using GCMs have provided
excellent insight, including an almost complete picture of the
acceleration of the zonal flow (e.g., Showman & Polvani 2011;
Debras et al. 2019, 2020; Hammond et al. 2020), departures
from chemical equilibrium caused by 3D dynamical mixing
(e.g., Drummond et al. 2020), and potential trends and
characteristics of clouds (e.g., Lee et al. 2016; Lines et al.
2018b; Parmentier et al. 2020). Hot Jupiters have been targeted
as the main exoplanets to which GCMs have been applied, due
mainly to them being the most observationally constrained
cases as far as exoplanets are concerned.

4.2.1. Known Limitations Considered with a Fresh Perspective

Dissipation and accuracy—When GCMs are used to model
more “extreme” planets, such as hot Jupiters, changes in the
physical conditions can lead to reductions in the stability and
potential accuracy of the simulation results. As discussed,
GCMs rely on several forms of dissipation in the model
(Jablonowski & Williamson 2011) to control subgrid “noise,”
which can lead to model instability. These can take several
forms, from a diffusion of the winds themselves, “filtering”
over polar regions in lat-lon grid GCMs and so-called “sponge”
layers (see Section 4.1.2, paragraph on sponge layers)

Rayleigh drag and closing the angular momentum budget—
The question of the conservation of axial angular momentum is
paramount in atmospheric modeling, as is illustrated for
instance in studies of slow-rotating bodies and gas giants in
the solar system (Lebonnois et al. 2012; Spiga et al. 2020, their
appendix). Dynamical cores are not explicitly formulated to
conserve axial angular momentum, and this can cause spurious
variations of modeled angular momentum that can range from
negligible to major, as was evidenced, e.g., in the case of
exoplanet modeling by Polichtchouk et al. (2014). This
question of angular momentum conservation is all the more
critical in planets without a solid surface: a simple Rayleigh
drag on horizontal winds is used as a bottom boundary
condition in GCM studies of Jupiter and Saturn to emulate the
closing of the angular momentum budget in simulated jets by a

putative magnetic drag at depth (Liu & Schneider 2010; Young
et al. 2019; Spiga et al. 2020). In the simulations of hot
Jupiters, too, Rayleigh drag, used as a simple parameterization
of surface drag on horizontal winds, has been used to capture
the impact of magnetic drag in the deep atmosphere of hot
Jupiters (Perna et al. 2010). However, in a similar fashion as
the above-mentioned dissipation, its main use is for stability as
by dragging the deep atmosphere to immobility where the
radiative timescale is long, or indeed infinite (Iro et al. 2005),
one can remove dependency of the simulated results on the
initial conditions (see Mayne et al. 2014b; Amundsen et al.
2016; Tremblin et al. 2017; Sainsbury-Martinez et al. 2019 for
various discussions on this issue). Early simulations with the
MITGCM demonstrated a loss of global axial angular momen-
tum without this inner boundary drag (Cho et al. 2015), and
similar effects have been found for both UM and THOR.
However, often the angular momentum conservation may vary
with the spatial and temporal resolution adopted for model
simulations; this opens the possibility of obtaining negligible
changes in axial angular momentum with adjustment to the
spatial and temporal resolution of the particular setup. The
cause of the angular momentum conservation issue in
dynamical cores is still not clearly understood.
Thermodynamics—In most of the existing GCMs for

planetary atmospheres, molecular weight gradients, heat
capacity, gravity, etc., are not taken into account. Those
quantities are therefore assumed constant throughout the whole
atmosphere and throughout time. This assumption can have
several effects: when the thickness of the atmosphere becomes
large with respect to the radius (such as for Titan or mini
Neptunes), the mass of a given atmospheric cell should change
through buoyancy, due to the change of gravity. A constant or
variable value of the heat capacity at a constant pressure Cp

would directly impact the stability profile of the atmosphere.
Such effects play on atmospheric dynamics and therefore on
the equilibrium between the different terms of the atmospheric
equations, but are generally assumed to be second-order effects
(except when the variations are really strong). Taking into
account this variability into GCMs would require subsequent
development and time, and this endeavor would benefit both
solar system planets and exoplanets. Preliminary works on how
to take into account variations of Cp with the temperature have
already been presented in Lebonnois et al. (2010) and
Mendonca & Read (2016).

4.2.2. New Limitations, Specific to Exoplanets

Shocks—For some simulations the flow speed can approach,
or exceed, a Mach number of 1, leading to some authors
questioning whether shock-capturing solutions to the continuity
equation are required (Li & Goodman 2010; Fromang et al.
2016). However, as shown by Fromang et al. (2016), shocks
play a minimal role in atmospheres dominated by a large-scale
superrotating jet. As is understood for the solar system’s gas
giants, flows of conductive material in the presence of a
background magnetic field can lead to drag (as mentioned
earlier) and heating through “ohmic dissipation” (see, for
example, Ginzburg & Sari 2016). In hot Jupiters, the outer
layers can become ionized, leading to magnetic drag, and the
deeper layers potentially experience significant enough ohmic
heating to alter the planetary radius. To date, the only simulations
consistently capturing these impacts have been those of Rogers &
Komacek (2014) and Rogers & Showman (2014), which revealed
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that ohmic heating is unlikely to be significant enough, for
reasonable magnetic fields. Magnetic drag, aside from the work of
Rogers & Komacek (2014) and Rogers & Showman (2014), has
otherwise been captured through parameterized drag schemes
(Perna et al. 2010).

Substellar objects—As more and more planets have been
detected and other observable populations identified, either
through discovery or improvements in instrumentation, the use
of GCMs for gas-giant extrasolar objects has widened. Brown
dwarfs, substellar objects that form similarly to stars, share
parameter space with gas-giant planets in terms of bulk
compositions (to some extent) and radii, leading to similarities
in atmospheric circulations in the two kinds of objects
(Showman et al. 2019). Additionally, due to high levels
(relative to Jovian planets) of interior convection, these objects
are self-luminous, and high-signal to noise data is available
(Buenzli et al. 2015). GCMs have been applied to these objects
exploring their flows and additionally the occurrence of clouds
(e.g., Zhang & Showman 2014; Tan & Showman 2021). The
same studies can be applied to young gas-giant planets, with
high interior convection (e.g., directly imaged planets). The
main challenges are in handling the strong interior fluxes from
the convection and the extremely short rotation periods. Work
is beginning on coupling models of the convective interior of
gas-giant planets to atmospheric models to better capture the
interaction between these two regimes. Irradiated brown
dwarfs, with a partner star from either the main sequence or
white dwarf (Casewell et al. 2018), have also recently been
studied using an adapted GCM (Lee et al. 2020). Through
studying this collection of gas-giant objects, from young self-
luminous Jovian exoplanets to older short and long-period
Jovian planets, and isolated or heavily irradiated brown dwarfs,
a complete continuum of atmospheric regimes could be
unraveled.

Adaptations related to exotic thermodynamics and chemistry
—Observations of hot Jupiters have also begun to demarcate
this subclass itself into further categories. In particular, ultra-
hot Jupiters (with temperatures in excess of ∼2500 K) provide
some real advantages while presenting new challenges.
Although the relatively high temperatures result in the
assumption of chemical equilibrium holding over most of the
observable portion of the atmosphere, effects of the high
temperature and photon fluxes, such as thermal and photo-
dissociation, and the resulting H− opacity must be included
(Baxter et al. 2020). Most significantly, these objects span a
temperature range in which hydrogen is present in both
molecular and atomic forms (Bell & Cowan 2018; Tan &
Komacek 2019). The variations this causes in the specific heat
capacity are large enough to mean the standard assumption of a
single value through the atmosphere, made within GCMs, may
become problematic. The resolution of this issue requires a
significant reworking of the dynamical cores developed under
the assumption of constant heat capacity.

Specific challenges for Mini Neptunes—The drive in
instrumentation is pushing toward the detection and character-
ization of smaller radii and longer orbital period planets,
ultimately in the search for potentially habitable planets (the
focus of this workshop). However, the next set of observational
facilities and instruments will likely provide access to the
subclass of planets discussed previously, termed mini Neptunes
or super-Earths. The existing challenges listed in Section 4.2.1
clearly apply to those objects. Nevertheless, for these planets,

initial work has shown that the standard primitive equations of
motion often employed within a GCM may not be valid
(Mayne et al. 2019), and/or elapsed simulation times must be
significantly extended (Wang & Wordsworth 2020). Addition-
ally, as temperatures cool, the role of photochemistry and
condensation may become even more important, but for a range
of species.
As highlighted by Leconte et al. (2017), a background gas

lighter than the condensible gas (for example H2O and H2) can
induce a mean molecular weight gradient that inhibits
convection in the atmosphere. This process is stronger on
giant planets such as mini Neptunes but could be observed on
smaller rocky planets. Therefore, it may be interesting to
explore this phenomenon with 3D simulations.

4.3. Parameterization of Convection in Exoplanet GCMs,
Differences and Limitations

4.3.1. General Considerations

Convection, and moist convection especially, is an important
driver of heat redistribution in planetary atmospheres. By
forming clouds and depending on the boundary layer
processes, moist convection is also a key part of complex
feedback mechanisms in the climate system (e.g., Arakawa
2004). To accurately resolve convective plumes, a numerical
climate model has to have a sufficiently high spatial resolution,
making it extremely computationally expensive and thus
infeasible for long simulations or multiplanet studies. Thus,
all modern exoplanet GCMs rely on parameterizations to
emulate the overall effect of subgrid-scale convective processes
on large-scale atmospheric fields. These parameterizations
always include a number of quasi-empirical parameters, usually
inherited from Earth climate models or validated against
observations and convection-resolving simulations on Earth,
raising the question of their applicability to extraterrestrial
atmospheres.
For Earth’s atmosphere, an assumption of a dilute con-

densible is usually a good approximation (Pierrehumbert 2010).
This is not the case for other planetary atmospheres in the solar
system and beyond: the main condensible species can comprise
a substantial portion of the atmosphere or have thermodynamic
properties such that the convective mass-flux (Ooyama 1971) is
sufficient to affect the large-scale dynamics, like on Pluto
(Bertrand et al. 2018). In such a scheme, the depth of the
convection is constrained by the distance the air, rising in
convective updrafts, penetrates above its level of neutral
buoyancy, and ceases to rise. To simulate these effects
correctly, the LMDG is equipped with a convection para-
meterization accounting for nontrace condensible species
(Pierrehumbert & Ding 2016). It is applicable to a wide range
of atmospheric conditions and is described in Leconte et al.
(2013b).
Whatever the convection parameterization is based on—the

adjustment to reference profiles, subgrid-scale mass-flux, or
other principles—it has to be validated against observations
and convection-resolving simulations. In the absence of in situ
observations for exoplanets, the next best option is to use high-
resolution convection-resolving and cloud-resolving models
(CRMs), which simulate convective processes explicitly.
Targeted limited-area CRM simulations can be used to
benchmark and improve convection parameterizations. For
instance, Abbot (2014) has compared CRM simulations to
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GCM simulations in the case of a snowball Earth and found
that they provide consistent results. This helped to confirm the
hypothesis that clouds could provide a large warming on a
snowball Earth and potentially lead to the deglaciation of the
planet. Two talks at the THAI workshop presented work
paving the way in this direction. Denis Sergeev demonstrated
substantial differences between cloud profiles in a global
coarse-resolution GCM experiment and a limited-area CRM
experiment, conducted using the UK Met Office Unified Model
(Appendix A.1.4) for the THAI Hab1 & Hab2 setups.
Differences in convective cloud cover appear to be model
and planet dependent because the opposite picture has been
found by Maxence Lefèvre, who compared LMD-G GCM
(Appendix A.1.2) to the (Weather Research and Forecasting)
WRF model (see appendix in Skamarock & Klemp 2008) in a
CRM mode for a case of convection on Proxima Centauri b.
Further work will hopefully build on Sergeev’s and Lefèvre’s
CRM simulations to explore convective processes in other
atmospheric and planetary regimes, informing atmospheric
modelers of parameterization biases and caveats.

4.3.2. Transitioning from a Mass-flux Scheme and Convective
Adjustment toward Fully Resolving the Convection: Challenges and

Potential Science Returns

It was a general consensus among the participants that a
flexible convection parameterization based on the mass-flux
approach is the best option for coarse-resolution 3D GCMs,
while the adjustment scheme is usually too crude to represent
convection. A shift toward fully resolved global convection
simulations is not going to happen quickly, but limited-area
CRMs should be used more actively in the exoplanet
atmospheric modeling. As outlined in Section 4.3, one of the
main applications of CRMs is to retune existing convection
parameterizations for different extraterrestrial atmospheres.
Such experiments are routinely performed for Earth weather
and climate prediction models (Rio et al. 2010) and for Mars as
well (Colaïtis et al. 2013), so the exoplanet GCM community
should work closely with meteorologists and Earth model
developers to benefit from their invaluable expertise. In
practical terms, an important and already feasible project is
building an archive of convection-resolving simulations of H2,
N2, CO2-dominated atmospheres, which then can serve as a
standard benchmark suite for coarse-grid global models. This
project can then evolve into an exoplanet CRM model
intercomparison project and find its rightful niche under the
CUISINES umbrella (Section 2.2.3). With a wide grid of CRM
models at hand, certain aspects of convective processes can
then become more tractable, such as whether the structure and
dynamics of convective plumes and precipitation anvils in non-
Earth planetary atmospheres might change. How might they be
influenced by plume size, convective overshoot beyond the
level of neutral buoyancy, and entrainment and detrainment as
timescales of convection change when the composition of the
atmosphere or stellar/planetary parameters (such as stellar
spectrum and planetary gravity) are changed?

In addition, Earth science expertise is valuable for the
development of generalized convection schemes from scratch.
In this case, code developers should strive to make them
flexible, modular, and portable so that it will be relatively easy
to swap one convection parameterization in the GCM for
another. The fact that most convection schemes usually operate
column-wise without communicating with neighboring

columns in a 3D GCM makes the issue of portability easier
to tackle.

4.4. Planetary Surface Parameterizations for Exoplanets and
Their Impact on the Climate

4.4.1. Land

There are many ways in which a continental surface can
affect a planet’s climate, including (but not limited to) surface
albedo, topography, thermal inertia, surface roughness, etc.
Depending on the nature of the land surface, these parameters
could change significantly and thus alter the planet’s climate
(Madden & Kaltenegger 2020).
The most extreme configuration in which continental

surfaces play a major role is “land planets.” Land planets,
sometimes also known as dune planets, are desert rocky planets
with limited surface water (Abe et al. 2011). It is thought that
this type of planet is one of the most probable (along with
water-rich ocean planets) around M stars, as a result of
formation and escape processes (Tian & Ida 2015). These types
of planets have already been studied with 3D GCM simulations
(Abe et al. 2011; Leconte et al. 2013a; Menou 2013; Yang et al.
2014; Kodama et al. 2019; Way & Del Genio 2020) and
specifically applied to the TRAPPIST-1 planets (Wolf et al.
2017; Turbet et al. 2018; Rushby et al. 2020). Rushby et al.
(2020) recently provided a detailed analysis of how surface
type/composition may affect the climates of TRAPPIST-1
assuming they are land planets. This work was also described
in the presentation given by Aomawa Shields.
While the study of continental surfaces of Earth and other

planets of the solar system (in particular Mars, characterized by
its hypercontinental climate) is today our primary source of
information on this matter, characterizing the climate of the
planets of the TRAPPIST-1 system and other nearby planets
(e.g., Proxima b) may provide us with crucial data on how
continental surfaces are operating on alien worlds.

4.4.2. Ocean

Ocean modeling is often overlooked by the exoplanet
community, largely due to the large computational expense
associate with spinning up dynamic ocean models, coupled
with the challenges of observing an ocean on another planet
(e.g., Robinson et al. 2010). Future exoclimate simulations of
terrestrial worlds benefit from the use of a dynamic ocean
component (Way et al. 2018; Yang et al. 2019b) coupled with a
dynamic sea ice model. It has been shown that sea ice drift can
alter the habitable zone limits in various cases (Hu &
Yang 2014; Way et al. 2017, 2018; Del Genio et al. 2019).
Near the inner edge of the habitable zone, Leconte (2018),
Yang et al. (2019b), and Salazar et al. (2020) have shown that
ocean heat transport is not always necessarily critical,
especially when continents are present. Warmer planets
(TS> 300 K) tend to have more homogeneous surface
temperatures and thus ocean currents may not cause a
meaningful net change in ocean–atmosphere heat exchanges.
Yang et al. (2019b, p. 29) show this to be the case and further
state that “...ocean dynamics have almost no effect on the
observational thermal phase curves of planets near the inner
edge of the habitable zone. These results suggest that future
studies of the inner edge may devote computational resources
to atmosphere-only processes such as clouds and radiation.”
However, Yang et al. (2019b) also argue that ocean heat
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transport is critical for the climate and observables for “middle
habitable zone” planets in M-dwarf systems. Still further, Way
et al. (2018) demonstrated that planets with modern Earth-like
land–sea masks show marked differences in mean surface
temperature for fast rotators (spin less than eight Earth sidereal
days) versus slow rotators (see Way et al. 2018; Figure 2) in
their inner edge of the habitable zone studies.

In addition, ocean composition—specifically, ocean salinity
—may affect the fraction of habitable surface area and phase
curves of middle and outer habitable zone worlds (Cullum et al.
2016; Del Genio et al. 2018; Olson et al. 2020). Salinity
(dissolved salt content) is a first-order control on the density of
seawater, and it further modulates the relationship between
temperature and density. Salinity thus influences ocean
stratification, circulation, and heat transport. At the same time,
salinity depresses the freezing point of seawater, potentially
limiting the formation of sea ice in salty oceans with
consequences for surface albedo. In sum, saltier oceans tend
to result in warmer climates. Models that ignore ocean
dynamics cannot currently simulate salinity impacts on OHT
but may include freezing point depression. However, the
relative contribution of heat transport versus freezing point
depression to climate warming, and how the balance of these
effects may differ under different climate states, is not well
understood. It is thus unknown when/if simple hacks such as
adjusting the freezing point of seawater in a model without a
dynamic ocean is a reasonable strategy for simulating the
climates of exoplanets with unknown ocean salinity or whether
the likelihood that exo-oceans differ from Earth’s ocean with
respect to salinity requires the inclusion of a dynamic ocean.

To facilitate future studies, the exoplanet modeling commu-
nity should consider working more closely with oceanogra-
phers. For example, there is a large parameter space of ocean
tidal dissipation to be explored that affects planetary rotation
rates over time (e.g., Green et al. 2019). As mentioned above,
rotation rate has been demonstrated to affect climate. It must
also be stressed that current GCMs used for exoplanetary
studies have serious shortcomings in some cases. First, the
putative thermodynamic oceans (also called q-flux (Miller et al.
1983; Russell et al. 1985) as a heat source “q,” whose values
are generally specified by a control run, is prescribed to
represent seasonal deep water exchange and horizontal ocean
heat transport) used in exoplanet GCMs have generally used
zero horizontal heat transport or highly simplified parameter-
izations (e.g., Edson et al. 2012; Godolt et al. 2015; Kilic et al.
2017). In addition, current GCM dynamic ocean models are
presently highly parameterized for modern-day Earth because
they are the children of Earth parent GCMs. For this reason it is
important to engage more closely with the oceanography
community to better parameterize the current suite of dynamic
oceans used in exoplanetary GCMs.

For ocean planets that have a low density, the ocean depth
can reach tens or even hundreds of kilometers. At the bottom of
the ocean, ice under high pressure may form. For the deep
ocean, the equation of state for seawater is required to be
changed. Moreover, the ocean-bottom ice can influence the
friction and the exchange of heat and materials between the
ocean and the solid planet. Key questions may be answered
using ocean GCMs: How deep is ocean circulation (including
both wind driven and thermal driven), and how does ocean
circulation influence the concentrations of CO2 and other
greenhouse gases in the atmosphere (Checlair et al. 2019)?

Besides seawater oceans, another type that needs to be
investigated are magma oceans. The lowest temperature of a
magma ocean is about 1600 K. The density, viscosity, and
diffusivity of the magma ocean are quite different from that of
Earth’s ocean. However, they may still of the same order. So,
in this respect an Earth ocean GCM may be easily modified to
simulate the circulation of a magma ocean. But, a key process
for the magma ocean is silicate (or other materials) precipita-
tion in the ocean, which acts like vertical convection and can
significantly influence the heat and mass transports in the
ocean.

4.5. Middle and Upper Atmosphere Processes

Humans spend nearly their entire lives in Earth’s tropo-
sphere, handling day-to-day local weather and coping with
climate change. Analogous stratospheric regions, and those
above, constitute our best opportunities to characterize an
exoplanet’s atmosphere and will likely, and should, be a
primary focus in GCM development. The multitude of
planetary GCMs that have been adapted for exoplanets have
seen limited efforts incorporating middle atmosphere effects,
especially coupling transport processes from other regions.
Convection on Earth can lead to the production of high-altitude
clouds (and hazes) and being a source of atmospheric gravity
waves. This represents a prime example of tropospheric–
stratospheric coupling where momentum is transferred from the
lower to the upper atmosphere. While there is work needed on
features and processes that more directly influence the surface
of exoplanets, further understanding and development of
middle (and upper) atmospheric modeling in GCMs offer the
greatest opportunity for scientific advancement in our inter-
pretation of exoplanet observations from the next generation of
telescopes.

4.5.1. Nonequilibrium or Nonconservative Radiative and Dynamical
Effects

Gravity waves—The challenge of current exoplanet GCMs is
to overcome the expense of running simulations with the
necessary horizontal and vertical resolution over a range of
pressures that adequately resolves processes operating over a
variety of spatial and temporal timescales. But if our focus is
data driven, we ought to look at the processes important in
Earth’s (and other worlds’) middle atmospheres. Earth, Venus,
and Titan are all terrestrial worlds with significant superrotation
in their middle atmospheres. Venus’ slow (and counter)
rotation makes it a hallmark case study for tidally locked
exoplanets with substantial atmospheres. It has superrotation in
the equator that is likely driven by the Gierasch–Rossow–
Williams mechanism (Gierasch 1975; Rossow & Williams
1979), where planetary waves from high latitudes can transport
angular momentum toward the equator and spin up super-
rotating jets. Titan too has been observed to have significant
variability in winds at different altitudes spanning from the
stratosphere to the lower thermosphere, and it too is a slow
rotator at roughly 16 days. Earth has an alternating strato-
spheric jet oscillation, known as the quasi-biennial oscillation
(QBO), which is the product of a complex interaction from a
broad spectrum of waves. Stratospheric oscillations are also
found to occur in giant planets of the solar system (Fouchet
et al. 2008) and are a recent focus for climate modeling
(Cosentino et al. 2017; Bardet et al. 2021). The point is that
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their upper atmospheric dynamics are driven by waves not
easily resolved and their effects are mostly missing from
current exoplanet models while potentially having strong
observational effects.

Small-scale or high-frequency gravity waves have a large
role in the upper atmospheric dynamics of terrestrial-size
planets. Not only are they an important source of momentum to
drive the QBO, they also affect midlatitude jet streams, the
semiannual oscillation, and even the Brewer–Dobson circula-
tion (Butchart 2014). They are an efficient means of
transporting energy across latitudes and altitudes and effec-
tively redistribute energy, either mechanical or thermal, away
from its source to other areas until equilibrium or relaxed/
balanced states are reached. Gravity waves try to keep the
upper atmosphere of Earth in dynamical and radiative
equilibrium by dispersing energy spatially over time. Gravity
wave activity is also confirmed in Venus’ and Mars’s middle/
upper atmosphere by several measurements and claimed to
produce the observed variability in density, temperature, and
cloud structure (e.g., Creasey et al. 2006; Garcia et al. 2009;
Altieri et al. 2012). Linear wave theory has allowed
parameterizations of the effects from gravity waves and their
breaking action in Earth-based GCMs for some time. The
typical approach is to assume some characteristics of the
properties of the waves, amplitude or momentum flux,
wavelength, phase speed, etc. that are inputs into the
parameterization that is applied depending on the modeled
local atmospheric environment, with a focus on horizontal and
vertical wind shear and temperature gradients. Nevertheless,
given the lack of systematic observations of gravity waves and
the uncertainty of the source (for instance, on Mars and Venus),
which are necessary to constrain model parameters, our
experience with different GCM configurations let us conclude
that the total zonal wind (i.e., averaged for all local times) value
is very sensitive to many GCM quirks. Zonal wind in the
middle/upper atmosphere can be either positive or negative,
producing different circulation regimes.

Non-LTE effect in the upper atmosphere—The upper
atmospheres of terrestrial-like planets in our solar system
are similar in terms of physical processes, in spite of important
differences in temperature, density, and composition
(Gladstone et al. 2002). A basic property of these upper layers
is the low gas density that is also responsible for situations of
the breakdown of LTE, specific for each molecular species and
each vibrational transition. These non-LTE effects result in
populations of molecular energy states not dictated by
Boltzmann statistics at the local kinetic temperature and occur
when molecular collisions are so infrequent that other
processes (e.g., radiative transfer) become important for the
determination of those states’ number population (Lopez-
Puertas & Taylor 2001). In terrestrial planets, and for the main
molecules and infrared emissions, those layers usually
correspond to their mesosphere and thermosphere. At pressure
layers above about 10−5 mbar, solar EUV heating and thermal
conduction are the main processes controlling the energy
balance, while in the mesosphere (on terrestrial planets between
1 and 10−5 mbar, approximately), absorption and emissions by
atmospheric molecules with active rovibrational bands in the
IR usually play a crucial role on the thermal structure
(Gladstone et al. 2002).

These non-LTE processes have to be considered when
interpreting strongly irradiating exoplanets. CO2 and CO

non-LTE fluorescence is common in telluric atmospheres, but
CO emission has also been detected in Neptune (Fletcher et al.
2010). Furthermore, non-LTE radiative transfer modeling
helped to explain unexpected observed features around 3.3
um on the hot-Jupiter HD 189733b from ground measure-
ments, reported to be CH4 non-LTE emission (Swain et al.
2010; Waldmann et al. 2012). Future detection by JWST,
LUVOIR, together with ground-based measurements of the
upper atmosphere of hot Jupiters by IR spectrographs
(CRIRES/VLT, METIS/E-LTE) will make it possible to test
composition and temperature models of warm and hot Jupiters.
However, it is still challenging for terrestrial exoplanets.
Due to its expected significant effect on exoplanet atmo-

spheric characterization, the improvement of the mid- and
upper atmosphere processes in exoplanet atmospheric models
should therefore be a priority in the era of JWST and ELTs.

4.5.2. Photochemistry in 3D Atmospheres

The transport of photochemically produced gaseous species
and hazes could have a significant impact on the characteriza-
tion of exoplanet atmospheres (Carone et al. 2018). Different
circulation regimes can result in different global distributions of
important atmospheric species such as ozone (Yates et al. 2020;
Chen et al. 2019). The community should first think about what
kind of composition is the most interesting and imperative for
near-term observations (e.g., exo-Venuses). Very large uncer-
tainties remain for many deposition fluxes. For instance, CO
and relatively minor tracers like Cl have an important catalytic
activity for both Venus and Mars but are not accurately
constrained. Along a similar vein, the surface emission fluxes
of various biogenic compounds such as dymethylsulfide
(DMS) are unconstrained, but different assumptions can
dramatically affect their resultant global distributions (Chen
et al. 2018).
Exoplanet observations of many regimes show that clouds

and hazes significantly affect planetary spectra. Current GCMs
provide the spatial mapping of water clouds, which can have
strong effects on transmission spectra and thermal phase curves
(Wolf et al. 2019). However, the majority of GCMs do not
include a self-consistent treatment of photochemical haze. As
an integral part of climate modeling, aerosols need to be
included—either from the ground up (production rates from
chemical networks) or decoupled (aerosols and photochemical
hazes would be separated). For instance, in modeling Titan
(and Titan-like exoplanets; Lora et al. 2018), the production
rate is fixed to reproduce observations, and then the photo-
chemistry is separated. For exoplanets, this would require the
use of very detailed models to capture monomer formation self-
consistently, which will be used in a simple photochemical
model favoring the approach of a lower-resolution model but
with a higher-complexity component. As a follow-up to Chen
et al. (2019), one possibility is through adapting CARMA
(Larson et al. 2015), a state-of-the-art microphysical model that
can be used here to simulate the evolution of hazes. Note that
CARMA is already coupled to ExoCAM with a nominal fractal
aggregate haze model (Wolf & Toon 2010), with funded plans
to use it for studying hazy iterations of the habitable zone
planet TOI-700 d. Haze production rates will be sourced from
offline 1D Atmos calculations (e.g., Arney et al. 2017). Lastly,
the 3D temperature structure of a planet could also be important
for the chemistry itself (exo-/endothermal reactions), even in
the absence of photochemistry.
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It has to be noted that for exoplanet photochemistry, the use
of precalculated photolysis rate tables is much too specific. A
rate table of reasonable size is unlikely to be generic. For an
atmosphere in which we do not know the profile of the species,
we cannot build a coherent table. It is necessary to go through
an online calculation of the photolysis rates that leads to a
reconsideration of the radiative transfer within the GCM.
Because most GCMs use the correlated-k method, it cannot be
used for photolysis calculations. In short, it is necessary to
calculate the photolysis online. However, simulating the
photochemistry and chemistry with 3D models is computa-
tionally very expensive. It may require prior work to reduce the
number of gaseous families, which would depend on the bulk
composition, temperature, and instellation. Such an approach
has been started by Olivia Venot’s group but it is uncertain how
3D transport will affect this optimization, which is performed
in 1D.

Another caveat is that the majority of terrestrial 3D chemical
models are restricted to present-day Earth compositions. This is
due to the fact that these models largely inherited components
from their model supersets originally developed for Earth-
based research. For instance, Chen et al. (2019) adapted the
National Center for Atmospheric Research model (Marsh et al.
2013) by deploying subroutines from ExoCAM with the Whole
Atmosphere Community Climate Model. Thus, another goal is
to extend 3D photochemistry models to nonoxygenated
reducing and weakly oxidized (H2-, N2- and CO2-rich)
atmospheres. Such anoxic conditions dominate the atmospheric
evolution histories of Earth, Mars, Venus, and Titan. This
suggests that anoxic atmospheres are the “default” state of a
planet’s eventual fate in the absence of biological activity. As
shown by previous 1D work (Lincowski et al. 2018), assessing
non-Earth-similar atmospheres is important to gauge the
detectability of photochemical byproducts on the myriad of
potential rocky exoplanet compositions.

While out of the scope of this report, it is important to
mention that star–planet interaction is fundamental to under-
stand a range of key processes (stellar-sourced charged
particles, EUV heating, photodissociation, and photoionization,
etc) that could shape the upper layers of rocky exoplanet
atmospheres. Collaboration with stellar physicists and obser-
vers will be crucial.

4.6. Aerosols in Exoplanet GCMs

4.6.1. Condensible Gases in GCM Simulation for Exoplanets

Characterization of nonwater condensibles is extremely
important for understanding both the atmosphere and surface
processes of other worlds.

In the low-temperature range, gases such as CO2, H2S, and
SO2 can condense (Fray & Schmitt 2009) for planets with
hydrogen-dominated atmospheres and volcanic activity, while
CH4, NH3, and N2 are expected or found for worlds like Venus,
Titan, Pluto, and other solar system moons. This condensation
can have large consequences for the planet’s atmosphere by
removing greenhouse gases, forming clouds, and modifying
surface albedo. For instance, Turbet et al. (2017b) showed that
CO2 condensation can strongly reduce the deglaciation of
terrestrial planets as CO2 condensation leads to the accumula-
tion of surface CO2 ice that can get permanently trapped under
water ice. In the high-temperature range, a variety of
condensibles would potentially be observable by JWST or

future ELTs for highly irradiated exoplanets, but data on
properties (e.g., microphysical properties) of these condensible
species are sorely lacking.
Spectral information would be needed from laboratory

experiments and missions regarding optical properties of exotic
clouds and albedo properties for nonwater condensibles to
improve model response to a broad variety of scenarios.
In addition to acquiring new data, model developments are

needed within GCMs in order to include condensible species
other than water and to precipitate condensibles with appro-
priate albedo and grain-size properties. In this area, the LMD-G
GCM already has extensive capabilities for CO2 condensation
on Mars (e.g., Forget et al. 1998), early Mars (e.g., Forget et al.
2013), and exoplanets (e.g., Wordsworth et al. 2011; Turbet
et al. 2017b); N2 condensation on early Titan (e.g., Charnay
et al. 2014); and N2, CH4 and CO condensation on Pluto (e.g.,
Forget et al. 2017).
Overall, much more data are needed to make significant

progress on the question of condensible species in exoplanet’s
atmospheres and surfaces (in particular, for high-temperature
condensibles), along with potentially complicated and time-
consuming model development. Initial work coupling various
schemes with multiple condensate species has been done
for hot Jupiters (e.g., Lee et al. 2016; Lines et al. 2018a,
2018b, 2019).

4.6.2. Impacts of Aerosol Microphysics in GCM Simulations and
Simulated Spectra

Aerosols are present in every atmosphere of our solar system
planets and moons. Clouds have also been observed in
exoplanet’s atmospheres such as the super-Earth GJ-1214b
(Kreidberg et al. 2014), the gaseous giant WASP-12b
(Wakeford et al. 2017), and WASP-31b (Sing et al. 2016).
Hazes have been observed on WASP-6b (Nikolov et al. 2015)
and HAT-P-12b (Sing et al. 2016). They have not been
observed for terrestrial-size exoplanets yet but simulations
using GCMs and PSG have shown that they dramatically
flatten the transmission spectrum, preventing an exhaustive
atmospheric characterization from space observatories (Fauchez
et al. 2019; Komacek et al. 2020; Suissa et al. 2020).
However, the detailed aerosol microphysics is uncertain for

exoplanet atmospheres. Yet, changes in the microphysical and
optical properties can have a very large impact on the climate
simulation and simulated spectra. To improve our under-
standing of aerosol properties in exoplanet atmospheres, we
need data from the lab but also from JWST and ARIEL. If a
statistical study is performed on such data it may allow us to
discriminate between cloud particles and hazes that differ in
terms of size and microphysical/optical properties. Also, linear
polarization is a powerful tool with which to retrieve cloud
microphysical/optical properties as is performed for Earth
using, for instance, POLDER/PARASOL data (Goloub et al.
2000). Finally, we have to improve our connection with other
communities such as Earth scientists, paleoclimatologists, and
solar system planetary scientists to better share data (remote
sensing + in situ) and methods of applying data to exoplanet
atmospheres.
In addition data modeling studies can also be very helpful.

For instance, a sensitivity study on cloud microphysics can be
performed by varying cloud particle size and amount of cloud
condensation nuclei to simulate their impact on simulated
spectra. Also, modeling work could allow us to better
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understand how spatial heterogeneity (horizontal and vertical
resolution, cloud gap fraction, and overlap) affects both
transmission and reflection spectra. These improvements may
necessitate the inclusion of biological coupling for both haze
(microbial, plant) and fires and therefore to develop computa-
tional physics packages, chemistry packages, and increased
capabilities for capturing spatial and temporal heterogeneity.

More direct collaboration needs to be done with the climate
modelers and observation simulators to bring consistency
between assumptions about radiative transfer. More observa-
tions of Earth transmission spectra are therefore needed, for
example, the Atmospheric Chemistry Experiment—Fourier
Transform Experiment (ACE-FTS) on board the SCISAT-1
satellite provides observation in the 2.2–13.3 μm window.
This emphasizes the benefit of Earth and Planetary Science
synergies.

4.7. Synergy between EBMs, 1D Radiative-convective, and
Photochemical Models with GCMs

4.7.1. EBMs in the THAI Workshop

The HEXTOR energy balance model (EBM) was used to
conduct the THAI scenarios, using both a latitudinal and
longitudinal mode (J. Haqq-Misra & B.P. Hayworth 2021, in
preparation). HEXTOR is a one-dimensional EBM based on
the model by Williams & Kasting (1997). The model is
typically run in a latitudinal mode, which reproduces Earth’s
mean annual climate. The model can also be used to explore
changes in Earth’s climate due to past and future orbital
variations and possible feedback from anthropogenic forcing
(Haqq-Misra 2014). Prior versions of this model have
represented radiative transfer with a basic linear relationship
(Haqq-Misra 2014) or with a polynomial fit of 1D radiative-
convective climate calculations (Williams & Kasting 1997;
Batalha et al. 2016; Haqq-Misra et al. 2016; Hayworth et al.
2020). The current version of HEXTOR attempts to improve
the accuracy of the radiative transfer in the model by using a
lookup table, which conducts a nearest-neighbor interpolation
for outgoing longwave radiation (OLR) and albedo using a
database containing thousands of 1D radiative-convective
climate calculations. This provides an advantage in accuracy
at the cost of added computational expense. During the THAI
workshop, Dr. Haqq-Misra showed that HEXTOR in a
latitudinal configuration either underestimates or overestimates
the global average temperature in the THAI simulations,
because the hemispheric differences between the day and night
sides cannot be represented with a single dimension in latitude;
however, he also showed that HEXTOR can also be configured
as a longitudinal EBM through a coordinate transformation,
which places the substellar point at the north pole and allows
the day-to-night side contrast to be represented more accurately
(Fortney et al. 2010; Koll & Abbot 2015; Checlair et al. 2017,
J. Haqq-Misra & B.P. Hayworth 2021, in preparation).
Longitudinal EBMs, either along the equator like HEXTOR
or with full lat-lon resolution, can provide constraints on
climate across broad parameter spaces or for long time
integrations, which can be useful in identifying specific
problems to study further with GCMs.

VPLanet (Barnes et al. 2020) includes an EBM called POISE
(Planetary Orbit-Influenced Simple EBM), a one-dimensional
seasonal EBM that reproduces Earth’s annual climate as
well as its Milankovitch cycles (see North & Coakley 1979;

Huybers & Tziperman 2008; Deitrick et al. 2018). Though the
model lacks a true longitudinal dimension, each latitude is
divided into a land portion and a water portion, with distinct
heat capacities and albedos, and heat is allowed to flow
between them. Ice can accumulate on land at a constant rate
when temperatures are below 0 °C while melting/ablation
occurs when ice is present and temperatures are above 0 °C.
Sea ice forms when a latitude’s temperature drops below −2 °C
(accounting for salinity) and melts when higher. To account for
ice-sheet flow, bedrock depression, lithospheric rebound, and
ice-sheet height, they employ the formulations from Huybers &
Tziperman (2008). The bedrock depresses and rebounds locally
in response to the changing weight of ice above, always
seeking isostatic equilibrium. POISE is thus a self-consistent
model for ice-sheet growth and retreat due to instantaneous
stellar radiative forcing, orbital elements, and rotational angular
momentum.

4.7.2. 1D Radiative-convective and Photochemical Models in the
THAI Workshop

One-dimensional radiative-convective climate and photo-
chemical models are 1D models representing a vertical
atmospheric column assuming plane-parallel waves in hydro-
static equilibrium. In the photochemical models, the vertical
transport takes into account molecular and eddy diffusion and
are able to represent a complex photochemistry. One-dimen-
sional models have been widely used by the community to
determine the edges of the habitable zone (Kopparapu et al.
2013) and to study the ancient Earth (Arney et al. 2016, 2017)
and various exoplanets (Lincowski et al. 2018; Meadows et al.
2018). In this workshop, THAI simulations with the Atmos 1D
model (Wunderlich et al. 2020) were presented by Andrew
Lincowski following a two-column approach. Dr. Lincowski
has shown that two 1D radiative-convective atmospheric
columns are able to reproduce the day–night temperature
contrast simulated by GCMs while keeping an advantage in
terms of computational time (Lincowski et al. 2021, in
preparation in this focus issue).

4.7.3. Synergy between GCMs, EBMs, and 1D Models

GCMs are very complex models that require significant time
to converge. Lower-dimensional models such as EBMs or 1D
radiative-convective climate and photochemical models, while
ideal to explore large parameter sweeps, lack a representation
of atmospheric dynamics, surface heterogeneity, and clouds.
The computational efficiency of EBMs enables them to
simulate climates on much longer timescales of thousands or
millions of years to explore orbital and rotational effects on
climate (e.g., Spiegel et al. 2009; Deitrick et al. 2018). EBMs
are typically 1D in latitude and solve a single partial differential
equation for surface temperature. Temperature then depends on
incoming stellar flux (instellation), heat diffusion, albedo, and
the outgoing longwave radiation (OLR). The OLR and albedo
are parameterized with simple formulations (North & Coakley
1979; Spiegel et al. 2009; Rose et al. 2017; Palubski et al.
2020), though several studies have made advancements by
fitting polynomials to radiative-convective models (Williams &
Kasting 1997; Haqq-Misra et al. 2016). The chief challenge of
these models comes from the parameterization of atmospheric
dynamics in terms of a heat diffusion term and accuracy in
parameterizing the radiative transfer. For this reason, synergy
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with GCMs is necessary to ensure some measure of accuracy
and predictive power from EBMs.

One-dimensional EBMs and radiative-convective climate
models coupled with photochemical models can explore a very
large parameter space (i.e., star and planet properties,
instellation, rotation and orbital periods, eccentricity, atmo-
spheric properties, etc.) and can identify key points of interest
in the parameter space that 3D models can then investigate. For
instance, 1D models can be used to determine the likely
chemical state as input to a GCM. GCMs can also be used to
determine cloud coverage percentage and dynamical model as
input to 1 and 1.5D models. GCMs can be run with simple
tracer chemistry with haze precursors and 1D photochemical
models can be used to figure out what happens next with haze
formation/chemistry etc. Using both 1D and 3D models
simultaneously would allow one to get a more complete picture
of chemistry, clouds, and observables.

It has also been highlighted during the THAI workshop that
interactions between the atmosphere and interior of terrestrial
planets require more attention than currently given. This would
require improving the collaboration with geologists/geophysi-
cists. Such coupling should probably first be developed in 1D
following a “planet evolution model” approach based on an
asynchronous coupling employing a mixture of (short term)
climate calculations and long-term simulations (for glaciers, but
also longer processes as well).

Finally, it is important to predict in advance, with a hierarchy
of models, what we might see and have the models ready to
interpret the data. Ideally, upstream modeling work should not
be constrained by anticipated observational sensitivity.

5. The Future of Exoplanet GCMs, Results of the Pre-
workshop Survey

Several weeks prior to the workshop, an online survey was
sent to all THAI participants to poll their opinion on what the
field of exoplanet GCMs might look like in the coming
decades. The aim of this exercise was mainly to highlight key
modeling developments that need to be pushed by the
community to move the field forward in the best possible
directions.

A total of 35 participants completed the online survey.
Participants have different levels of career advancement (3
undergraduate students, 4 graduate students, 13 early-career
scientists, 12 midcareer scientists, and 3 senior scientists) and
work in several continents (17 in Europe, 14 in North America,
5 in Asia, and 1 in Oceania). The survey consisted of a dozen
questions, the main results of which are summarized below.

(1) High-resolution simulations: global or local? With the
increase in available computing resources and the need to
simulate atmospheric processes such as convection and clouds
without using empirical parameterizations, high spatial resolu-
tion seems to be an attractive development pathway of the
exoplanet GCM field for the coming decades. It is in fact one of
the main directions of development in the modeling of the
future of Earth’s climate (Stevens et al. 2019). We asked the
survey participants if they thought that the future of very high
spatial resolution simulations for exoplanets was on the side of
global or local simulations (i.e., simulations performed on a
local grid and then used to derive parameterizations of subgrid
processes to be used in low spatial resolution GCM simula-
tions). The results, which are presented in Figure 1, show that
most respondents believe that the hierarchical approach (local

high-resolution simulations to derive subgrid parameterizations
for low-resolution GCM simulations) is the most promising for
the field. It should be noted that several recent works on
exoplanet atmospheric modeling go in this direction (Koll &
Cronin 2017; Zhang et al. 2017; Sergeev et al. 2020; Lefevre
et al. 2021).
(2) Most important processes to be modeled in fully coupled

3D GCMs. As more computing resources become available, it
is becoming increasingly possible to build fully coupled 3D
GCMs, i.e., GCMs that include all processes at play (chemistry,
aerosols, oceans, glaciers, etc.) in/on a planetary atmosphere. It
is by combining all of these processes at the same time—in the
same way that it is done for fully coupled Earth GCMs (Sellar
et al. 2019)—that it will be possible to build virtual planetary
atmospheres that are more and more realistic and therefore able
to interpret the observations. It is in this context that we asked
the survey participants to prioritize the processes for which it is
most important today to focus our efforts. The results, which
are presented in Figure 2, show that most respondents ranked
clouds/hazes and convection as the first and second most
important processes for the field to focus on. This is most likely
because clouds/hazes (and moist convection, which leads to
cloud formation) have been identified as the most serious limit
for probing the composition of exoplanetary atmospheres, in
particular using the transit spectroscopy technique (Fauchez
et al. 2019; Komacek et al. 2020). This interpretation is also
reflected in the results of the open-ended question, “According
to you, which developments should be prioritized to connect
GCM models to ongoing and future observations of exopla-
nets?” The vast majority of those who answered this question
did indeed mention clouds as the top priority for modeling
efforts.
(3) Best strategies to limit the computing time needed to

perform fully coupled 3D GCM simulations. Despite the
increase in available computing resources, some atmospheric
and/or surface processes can be extremely costly in computing
time. We thus asked the survey participants what they felt were
the best strategies to address this issue. The results are
presented in Figure 3. Most respondents believe that the
increase in computing resources will not be sufficient to
address the issue and that instead efforts should be put into
improving the efficiency of numerical codes as well as on
developing new strategies to accelerate the convergence of
models.
(4) Computing language. The effectiveness of GCMs as well

as their usability and their ability to evolve over time depends
on the programming language in which they are written. Most
GCM codes are mainly written in Fortran—the oldest high-
level programming language—and one can thus wonder if
these codes require to be converted to a more modern language,
such as Python. However, the time required to convert these
codes would be tremendous and Fortran remains a very fast
language to perform the GCM calculations. We therefore keep
using them as legacy codes.
We therefore asked the survey participants if they believe

that GCM codes should be converted from Fortran to modern
languages (Figure 4). Opinions were very divided, with a slight
prevalence for negative answers. This issue has also been the
subject of intense debate during the third day of the workshop.
Among the disadvantages of Fortran that have been put

forward:
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Figure 1. Results of the first item of the survey: “Do you think that the future of global climate modeling is...” (1) First possibility (in blue): high (spatial) resolution,
thanks to increased computing resources? (e.g., to simulate explicitly convection processes directly in GCMs) and (2) Second possibility (in black): using a hierarchy
of models ranging from very fine resolutions to global scale? (e.g., to simulate explicitly convection in an idealized box to derive subgrid-scale parameterizations
for GCMs).

Figure 2. Results of the second item of the survey: “Many projects are currently underway to improve the representation of the different processes involved in
exoplanet climate modeling. Can you prioritize the development of these processes in the order you consider appropriate below? (1 is highest priority; 10 is lowest
priority) ——————- For example, choose 1 for convection (1st priority); 2 for continental hydrology (2nd priority); 3 for cloud/hazes microphysics (3rd priority)
... until dynamical core (10th and last priority)”
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1. Fortran is difficult to handle for new generations of
students (accustomed to other modern object-oriented
programming languages, e.g., Python). This may highly
impact the attractiveness of the field, with a risk that these
students and, more generally, scientific and engineering
developers may turn away and/or lose the skills for
sophisticated computer development in Fortran.

2. The community of developers of modern languages (e.g.,
Python) is now much wider, and therefore, there are
many more libraries and contents that GCM codes could
make use of.

And the responses from critics:

1. Once students know one programming language, they
can in principle easily adapt to other languages.

2. Most GCM codes are several hundred thousand lines
long, so in practice it is an excessive amount of work to
convert a GCM code into another computer language.

3. Which language to choose for converting GCM codes?
Python? C? How do you know if these languages will
still be widely used 5, 10, 30 yr from now?

4. Fortran is a very efficient (and evolving) programming
language, e.g., the last version is Fortran 2018. A first
(reasonable) alternative is therefore to modernize the
GCM codes to the most recent versions of Fortran.
Fortran compilers are also highly optimized and fast.

5. Finally, a compromise could be found in using Python (or
a graphic user interface (GUI)) as a wrapper to run a

GCM for which the core code would be in Fortran. Note
that the UM GCM already uses such GUI, but it requires
additional resources and funding to maintain and
update it.

To summarize, the fact that Fortran is used for GCMs is
historical but continues to be justified because it is a compiled
language that has evolved to offer high performance, in
particular for parallel operations on multicore or massively
parallel environments. Alternative compiled languages are C or
C++. Nevertheless, Python is currently the language growing
in popularity to write scientific code in spite of the fact that is it
is not a compiled language and thus much slower than Fortran,
for instance. The runtime performance of Python can be
improved by using precompiled libraries (e.g., numba or
NumPy), but it has not yet been used to develop a GCM.
(5) Machine learning. Machine-learning (ML) techniques

are on the verge of revolutionizing many fields of science,
including astrophysics (e.g., Way et al. 2012; Ivezić et al. 2019)
and exoplanets (e.g., Shallue & Vanderburg 2018; Armstrong
et al. 2021). We thus asked the survey participants if they
believe that ML)/Artificial Intelligence (AI) techniques could
also significantly help atmospheric modeling and if so how.
The results are presented in Figure 5. Opinions are again very
divided, but with a significant peak for people with no
opinions. This is most likely symptomatic of the fact that the
use of ML techniques is a topic that has been very little
discussed in the (exoplanet) atmospheric modeling community
to date. Some survey participants mentioned that ML

Figure 3. Results of the third item of the survey: “Coupled GCMs (with chemistry, clouds, oceans, etc.) can be computationally very expensive. What strategies
should we prioritize to overcome this issue? (1) First possibility (in blue): improving GCM codes to make them less resource intensive. (2) Second possibility (in
black): exploring new strategies (e.g., asynchronous coupling, a convergent suite of simulations, etc.) to accelerate the convergence of GCM simulations. (3) Third
possibility (in red): thanks to Moore’s law, this will not be an issue anymore in the future.”
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techniques can be used to derive better subgrid-scale
parameterization, e.g., of convection. It is an avenue being
currently explored for the modeling of Earth’s climate (see e.g.,
Rasp et al. 2018). These ML techniques could also prove to be
a promising way to connect local 3D high-resolution cloud-
resolving models with 3D low-resolution GCMs, in line with
the first point of the survey.

(6) Environmental impact of numerical simulations. Today’s
and especially tomorrow’s GCM simulations (with the increase
in both the resolution and number of physical and chemical
processes taken into account) are and are likely to be very
energy consuming, with a potentially high environmental
footprint (greenhouse gas emissions, rare-earth metal mining,
etc.). We thus asked the survey participants if they were
concerned about the increasing energy cost and thus the
environmental impact of GCM simulations. The results are
presented in Figure 6. Opinions, which are again quite divided,
were the subject of debate on the last day of the workshop.

One of the preliminary proposals that emerged from this
discussion is to make the environmental impact of our work
more transparent, for example, by stating in our publications
the amount of greenhouse gases (e.g., in CO2 tons equivalent)
that were emitted for the study. As this carbon footprint can
vary by several orders of magnitude from one country to
another (depending on the carbonation level of the electricity
network), from one GCM to another, from one parameteriza-
tion used to another, from low to high resolutions, or depending
on the number of simulations performed, it is very difficult to
know the emissions associated with each study. More
transparency on this subject would raise the community’s

awareness and could ultimately contribute to impacting
environmental policy decisions (e.g., at the level of researchers,
so that they make the most intelligent use of available resources
to avoid waste; at the level of the university in the choice of
computing equipment, energy source of the cluster; at the
national/international level, to encourage the decarbonization
of the electricity networks).
It has also been mentioned that carbon offset strategies could

be budgeted during proposal submission. However, the
efficiency of carbon offset projects (including tree planting)
is highly debated today (e.g., Gates 2021). Finally, it has to be
noted that short and small workshops such as the THAI
workshop are very well suited for remote solutions and would
help mitigate research laboratories’ carbon footprint release by
flying to meetings.
This workshop report therefore recommends GCM users

systematically disclose the amount of CO2 released by running
computer simulations and eventually consider a carbon
mitigation plan. While it has not been actively discussed
during the THAI workshop, it is important to mention here the
access to GCM data postpublication. Discussions among
coauthors generally agree that GCM data should be made
available postpublication, when possible. However, the amount
of GCM data can be very large, which may lead to additional
fees to store them on disks and/or clouds beyond the limit that
is usually allowed for free. It has also been discussed that it is
actually quite rare that data from a published study are
effectively downloaded and used. Therefore, the ratio benefit to
cost of systematically making available GCM data may not
always be relevant. Also, some models are inherently

Figure 4. Results of the fourth item of the survey: “Most of the GCMs are written in Fortran (or C) language. Do you think GCMs should be converted to other
computing languages?”
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proprietary and serve the community better that way than if
they would become open source. Indeed, it requires a lot of
resources and personnel to keep a large and complex code at
the forefront of its field. This is the case for instance of the UM
owned by the UK Met Office. The proprietary license,
however, does not prevent sharing output data and configura-
tion files, which is the case for UM’s contribution to THAI.

6. Creating a Diverse and Inclusive International
Community in the Exoplanet GCM Field

The workshop also included discussions on taking concrete
action to improve aspects of diversity, inclusion, equity,
belonging, and justice that will have long-term implications.
The workshop organizers decided to include such discussions
because of the potential benefits of having a field that is
representative of and open to the diversity of our society. These
issues are inherently cultural in nature; as such, how they are
viewed is a function of the different disciplinary and national
cultures engaged in an interdisciplinary and international
endeavor, such as this workshop. That said, the effects of
discrimination are severe and well documented. A report
recently outlined the barriers to access for women to permanent
astronomy positions in France (Berné & Hilaire 2020). The
American Astronomical Society Task Force on Diversity and
Inclusion in Astronomy Graduate Education has published a
report discussing strategies to improve diversity and fairness in
graduate school education (Rudolph et al. 2019). The US
National Academy of Sciences, Engineering, and Medicine
published a workshop report on the impacts of racism on Black

people in sciences and engineering (National Academies of
Sciences, Engineering, and Medicine 2020), a report on the
impacts of race and ethnicity on health care (Nelson 2002), and
of the prevalence and impacts of sexual harassment across
academia (National Academies of Sciences, Engineering, and
Medicine 2018). They also provided a top-level strategy for
“reducing barriers to scientific excellence” in their Exoplanet
Science Strategy. That report included the finding that
“development and dissemination of concrete recommendations
to improve equity and inclusion and combat discrimination and
harassment would be valuable for building the creative,
interdisciplinary teams needed to maximize progress in
exoplanet science over the coming decades” (Wang et al.
2019, pp. 693–708). If our field can make and follow such
recommendations, it would likely generate improvements to
our work, as suggested by other research; for example,
increased diversity is shown to lead to an improvement in the
productivity and outputs from groups and reorganizations
(Page 2008), and cultures of inclusivity bring about an
improvement of morale and a decrease in conflict (Nishii 2013).
The need for inclusivity also extends to academic and
disciplinary considerations. This research exists at the overlap
between Earth Sciences, astronomy, planetary sciences, and
heliophysics. Incorporating the perspectives of these different
disciplines is critical to success. Similarly, this research
community is global in extent, with teams conducting GCM
simulations in many countries across multiple continents.
Finally, this research faces any workforce challenges that other
work in academics is presented with.

Figure 5. Results of the fifth item of the survey: “Do you think that artificial intelligence (AI) techniques could significantly help atmospheric modeling?”
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Based on this research, the workshop organizers believed
that increasing the field in these ways will increase the variety
of perspectives in our work, which will ultimately serve to
improve the outputs from the community. They considered
ways to ensure the workshop would do this along multiple axes
of diversity, including but not limited to disciplines, institu-
tions, genders, races, ethnicities, sexual orientations, disability
statuses, cognitive diversity, nationalities, political affiliation,
career stages, generations, job ranks, and levels of professional
stability. Each of these aspects of diversity will require
consideration on their own; in turn, action on any of them
will also serve to lessen the negative impacts of discrimination
in other areas. The workshop organizers included such
considerations into the very structure of the meeting. To
ensure accessibility across a global community, working in the
context of a pandemic, they recorded lectures and made them
available for later viewing and created a Slack space for
asynchronous communication. To account for the interdisci-
plinary scope of the meeting, the organizers posted introduc-
tory talks before the start of the meeting to familiarize everyone
with terminology and tools. To prevent harassment, partici-
pants agreed to adhere to a code of conduct that was shared on
the meeting’s home page. And the workshop included
discussions of diversity in the field. One difficult issue was to
determine how to structure these conversations. Originally, this
discussion was scheduled as a “breakout discussion” run in
parallel with scientific/technical breakout discussions. How-
ever, some participants suggested we instead hold this as a

“whole group” discussion so that everyone would be engaged
in the conversation and so that those wanting to work on these
efforts did not have to “trade” discussions of these issues
against technical/research discussions they also wanted to
engage in. In response to this feedback, we dedicated time for
the entire workshop community to discuss these issues, even
though that came at the costs of a disruption to the planned
schedule and less time for the breakout sessions.
Our discussions on diversity were organized around the idea

of appreciative inquiry, where individuals share stories of past
successes. In this case, we discussed “a time when you were
part of a diverse team in early career, which really benefited
from its diversity.” We asked about the environments in which
that success was found to highlight those instances of success.
This discussion highlighted a number of areas of past success;
we relate some of those examples here. In situations where
there was good diversity along one or more axes, it helped
value other areas of diversity as it also nurtures a sense of
inclusivity in the organization. One participant claimed that
leadership played a positive role in groups they had previously
been a part of and that good leadership helped the group
advance their degree of inclusivity in that community. Smaller
group discussions were noted as helpful, as they gave voice to
the perspectives of different backgrounds. In some cases, the
diversity in a group provided extrinsic value, such as when a
TA (teaching assistant) spoke the same languages as students
and helped them learn class material or differing perspectives
produced better results. There was also discussion of open

Figure 6. Results of the sixth item of the survey: “Are you concerned about the increasing energy cost and thus the environmental impact of GCM simulations?”
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recruitment for positions and for selection criteria centered on
underlying skills, not statistics such as GPA or citations.
General strategies that were discussed included training the
next generation of role models, being an ally to people from
underrepresented groups, and acknowledging both the real
progress we have made and the challenges we have yet to
address.

There is a related issue raised at our meeting that our
community must also grapple with: that of equity for
individuals without tenured positions. This group includes
people in non-tenure-track faculty or research roles, as well as
tenure-track faculty who have not yet received tenure. The
community of non-tenured researchers is growing, both in real
terms and as a percentage of our fields. As a result, the
discrepancies in salary, financial security, and privileges in the
workplace are increasing in their impacts on our ability to do
this work (University of Oregon Social Sciences Feminist
Network Research Interest Group 2017; Bourne 2018). The
related stresses have impacts on the morale in our field, and it
reduces the flexibility people have to spend time on these
endeavors, which may not be the ones that lead to promotion.
Additionally, at some institutions these discrepancies can block
access to resources—such as funding for community service
work. In that context, it can create the paradoxical situation
where the people that have the time to conduct intermodel
comparison simulations are the ones that do not have the
funding or the professional stability for that activity. Specifi-
cally, workshop discussions highlighted that GCMs are very
complex tools with generally steep learning curves for
building, running, and modifying the codes. They also
converge after days, weeks, or sometimes months of computa-
tion and can produce GB to TB in output to sort through. While
Earth climate science departments are familiar with these
timescales and expectations, the intersection of climate
modeling with the fast-paced and hypercompetitive environ-
ment of exoplanet science and astronomy can prove challen-
ging in terms of career advancement metrics. In a very
competitive field where scientific productivity as an early-
career scientist is crucial, being a GCM modeler may be
inhibiting, due to the long timescale to produce good and
original science. This is especially true if they are similarly
compared to and evaluated against, for instance, observers that
have a higher rate of publications and discoveries. Like other
aspects of diversity and inclusion, this issue’s impact can
compound other axes of power and privilege and also leave
individuals without the energy and career stability needed to
address other aspects of diversity.

These discussions were short, so the above approaches are a
small subset of what is needed to improve the field. However,
they provide a starting point for the necessary, sustained
discussion on this topic. This will ultimately require thinking
vertically across career stages, to develop a pipeline that allows
people from any background the opportunity to join and
meaningfully contribute to our field. We must then ensure those
various backgrounds are included in our intellectual discus-
sions and work, with the intentional organization of open and
inclusive conversations. We must work to ensure both formal
and informal policies in the field are antidiscriminatory in
nature. And our institutions need to do better to ensure equity
and opportunity for people from all these backgrounds, and for
people from different career stages and levels of job security.

7. Conclusions of the Workshop and Perspectives

The THAI workshop has allowed the exoplanet GCM
community, focused on terrestrial planets, to discuss the role of
GCMs in exoplanet characterization. THAI has been used as a
vector in discussions between the various GCM groups
(ExoCAM, LMD-G, ROCKE-3D, UM, THOR, Isca, etc.).
From the THAI experiment, it is clear that clouds are the largest
source of differences between the models. The average altitude
of clouds and their optical thickness at the terminator affect the
continuum level of the simulated transmission spectra. Various
continuum levels therefore imply different detectability of
molecular absorption lines, thereby impacting predictions of
the detectability of an atmosphere with future space observa-
tories such as JWST. Three papers are currently in preparation
to present the THAI results and will be included within a focus
issue, “Collection of model papers for GCM, EBM, and 1D
models applied to THAI” in the Planetary Science Journal
alongside this workshop report.
The future of exoplanet GCMs will likely require the use of a

hierarchical approach (i.e., simulations performed on a local
grid in order to derive parameterizations of subgrid processes to
be used in low spatial resolution GCM simulations) and will
not necessarily lean toward higher spatial resolutions. In
addition, the workshop participants have identified clouds/
hazes and convection as the first and second most important
processes for the field to focus on in the upcoming years.
GCMs do not have to be used alone—a scientific approach

using a hierarchy of models such as EBMs, 1D radiative-
convective models, and GCMs is the key to progress efficiently
on prediction observation and interpreting data. However,
GCM simulations are computationally expensive and—in a
world where the climate is globally changing—the CO2

emissions released by heavy computing should be controlled
with strategies to reduce these emissions at a community level.
THAI has also demonstrated the utility of intermodel

comparison for exoplanet science. To continue this initiative,
we have proposed the Climates Using Interactive Suites of
Intercomparisons Nested for Exoplanet Studies (CUISINES)
that will host additional intercomparisons among exoplanet
characterization studies in the future. A formal workshop on
best practices for such intercomparisons will be organized in
fall 2021 to optimize the collaboration and science returns of
CUISINES.
If we wish to successfully grow our understanding of Earth

and the worlds beyond our own atmosphere, we need to ensure
the GCM community reaches more diverse audiences. We hope
that implementing Diversity and Inclusion initiatives—such as
bridge programs—will help move the scientific community
forward in a way that brings equitable collaborations in the
coming years.
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Appendix
Appendix Information

A.1. Presentation of the THAI GCMs

In this section we briefly review the four primary 3D climate
models used in the THAI project: ExoCAM, LMD-G,
ROCKE-3D, and UM.

A.1.1. ExoCAM

ExoCAM is an exoplanet branch of the Community Earth
System Model (CESM) version 1.2.1. CESM is provided
publicly by the National Center for Atmospheric Research in
Boulder, CO (http://www.cesm.ucar.edu/models/cesm1.2/),
and ExoCAM is freely available on GitHub (https://github.
com/storyofthewolf/ExoCAM). To use ExoCAM, the user
must first obtain CESM v1.2.1, and then ExoCAM is installed
as a patch on top of the core CESM code. ExoCAM was
developed by E.T. Wolf to facilitate accessible configurations
for exoplanet and planetary modeling and is now used by
several different research groups in the community. The

ExoCAM code package includes model configurations, initial
condition files, source code modifications, and an accompany-
ing flexible correlated-k radiative transfer model, ExoRT
https://github.com/storyofthewolf/ExoRT). ExoRT can be
run coupled to the 3D model or in a standalone 1D mode
and has several supported gas absorption schemes. Typically,
ExoCAM is run utilizing the cloud and convection physics
from the Community Atmosphere Model (CAM) version 4
(Neale et al. 2010), and a finite-volume dynamical core (Lin &
Rood 1996); however, ExoCAM can be configured to leverage
other CESM-supported dynamical cores (e.g., spectral element
cubed sphere) and physics routines as desired (e.g., CAM5,
CARMA). Likewise, ExoCAM is most often run using a
4° × 5° horizontal resolution and 40 vertical atmospheric
layers up to 1 mbar pressures; however, ExoCAM can easily be
run with other supported model resolutions (e.g., Wei et al.
2020) and model tops (e.g., Suissa et al. 2020) with relative
ease. For the THAI simulations, ExoCAM was run with
4° × 5° horizontal resolution, 51 vertical layers extending to
0.01 mbar pressures, configured with CAM4 cloud and
convection physics, and with the ExoRT radiation scheme
originally developed for Archean Earth atmospheres described
in Wolf & Toon (2013). ExoCAM, coupled to ExoRT, has
been used to study a variety of problems including deep
paleoclimates for Earth (Wolf & Toon 2013, 2014), stellar and
CO2-driven moist greenhouse climates (Wolf & Toon 2015;
Wolf et al. 2018), the climate of Earth-like exoplanets around
solar-type stars (Wolf et al. 2017; Adams et al. 2019;
Kang 2019a, 2019b, 2019c), tidally locked exoplanets around
M-dwarf stars (Kopparapu et al. 2017; Komacek & Abbot 2019;
Yang et al. 2019a; Komacek et al. 2019, 2020, 2020; Rushby
et al. 2020; Suissa et al. 2020; Wei et al. 2020; Zhang &
Yang 2020), and Earth-like planets in circumbinary systems
(Wolf et al. 2020).

A.1.2. LMD-G

The LMD-G GCM—or the LMD Generic model—is a 3D
Global Climate Model historically developed at the Laboratoire
de Meteorologie Dynamique (LMD) in Paris, France. The
model originally derives from the LMDz 3D Earth (Hourdin
et al. 2006) and Mars (Forget et al. 1999) Global Climate
Models, but it benefits from the lessons learned by developing
GCMs for most atmospheres in the solar system, where models
can be tested against a wide range of observations (Forget &
Lebonnois 2013). It solves the primitive equations of
geophysical fluid dynamics using a finite-difference dynamical
core on an Arakawa C grid. The LMD-G GCM is equipped
with flexible radiative transfer (based on the correlated-k
method; Wordsworth et al. 2011) and thermodynamics/cloud
microphysics packages with the objective of being able to
simulate any cocktail of atmospheric gases (as long as
spectroscopic data sets are available) and aerosols. In particular
it can account for the condensation of both minor and major
constituents of an atmosphere. Most planetary (planet size,
mass, rotation period, topography, etc.) and stellar parameters
(insolation, input spectrum) can be easily adapted for a wide
range of planets. LMD-G has been used in many climate
studies for the past and future climates of solar system planets
(Forget et al. 2013; Wordsworth et al. 2013; Charnay et al. 2013,
2014; Leconte et al. 2013b; Turbet et al. 2017a, 2017b, 2020)
and exoplanets in a wide range of conditions (Wordsworth
et al. 2011; Leconte et al. 2013a; Charnay et al. 2015a, 2021;
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Bolmont et al. 2016; Turbet et al. 2016). It was specifically
adapted and used for the TRAPPIST-1 planets in Turbet et al.
(2018) and Fauchez et al. (2019). More information on the
model (code, user manual, tools, publications) can be found on
http://www-planets.lmd.jussieu.fr/. Recently, the flexible phy-
sical parameterizations of LMD-G have also been interfaced
with LMD’s next-generation icosahedral dynamical core
DYNAMICO (Dubos et al. 2015), which is particularly suitable
for massively parallel architectures. DYNAMICO has been used
to perform high-resolution simulations of the solar system’s
giant planets (Cabanes et al. 2020; Spiga et al. 2020; Bardet et al.
2021) and carries many promising perspectives for exoplanet
studies (Sainsbury-Martinez et al. 2019).

A.1.3. ROCKE-3D

The Resolving Orbital and Climate Keys of Earth and
Extraterrestrial Environments with Dynamics (ROCKE-3D) is
a GCM developed at NASA Goddard Institute of Space Studies
(GISS) (Way et al. 2017). ROCKE-3D is based on its parent
Earth climate GCM GISS ModelE2 (Schmidt et al. 2014),
which is used for the Coupled Model Intercomparison Project
Phase 6 (CMIP), currently in its sixth version. For the THAI
intercomparison ROCKE-3D version Planet_1.0 was used.
ROCKE-3D Planet_1.0 was run at an atmospheric horizontal
resolution of 4° × 5° with 40 vertical atmospheric layers. The
atmospheric model top was 0.1 mbarc (∼60 km altitude).
Because ROCKE-3D is an extension of its parent Earth model,
it brings along many features of the parent model including
river and underground runoff, ground hydrology for different
soil types, and a dynamic lakes mode where lakes can either
accumulate or dissipate depending upon the competition
between evaporation and precipitation. The Planet_1.0 version
of ROCKE-3D used in the THAI intercomparison is exten-
sively documented in Way et al. (2017), where one can find a
more detailed description of its capabilities, features, and
limitations. One important area where ROCKE-3D differs
from its parent model comes from its use of a completely
different radiative transfer scheme called SOCRATES (see
Appendix A.1.4) which offers far more flexibility than the
default GISS scheme. At the same time, SOCRATES is more
computationally demanding than the default GISS scheme.
Whereas the GISS scheme was designed to be extremely fast, it
is only available for use with modern Earth atmospheric
pressures and gas mixing ratios. ROCKE-3D coupled with
SOCRATES has been used in a variety of climate studies for
solar system planets through time (Way et al. 2016; Del Genio
et al. 2018, 2020; Way & Del Genio 2020) and beyond (Way &
Georgakarakos 2017; Kane et al. 2018; Way et al. 2018;
Aleinov et al. 2019; Colose et al. 2019; Del Genio et al. 2019;
Olson et al. 2020).

A.1.4. UM

The UM has been developed by the UK Met Office and UM
Partnership over the last 30 yr with the aim of being able to use
the same model for both operational weather forecasting and
climate simulation. The UM can be run with a range of
planetary parameters, spatial and temporal resolutions, in
global (Walters et al. 2019) or regional (Bush et al. 2020)
configurations. The UMʼs dynamical core solves the equations
of motion using a semi-implicit, semi-Lagrangian method
(Wood et al. 2014), with variables discretized on an Arakawa C

grid in the horizontal and a staggered height-based terrain-
following Charney–Phillips grid in the vertical. The dynamical
core is capable of solving a range of dynamical equations from
the most simplified primitive equations to those close to the full
nonhydrostatic equations for a compressible fluid (see White
et al. 2005; Mayne et al. 2014b). The UM includes sophisticated
physical parameterizations for subgrid-scale turbulence, con-
vection, water cloud, and precipitation, as well as radiative
transfer, which is solved by the open-source, two-stream,
correlated-k code SOCRATES, accessible at https://code.
metoffice.gov.uk/trac/socrates and surface and subsurface
processes.36 Note that through the SOCRATES radiative
transfer code, the UM is capable of generating synthetic spectra
for any given 3D simulation (e.g., Lines et al. 2018a; Boutle
et al. 2020).
Adaptation and application of the UM to exoplanets have

been led by the Exeter Exoplanet Theory Group (EETG;
exoclimatology.com). The UM was initially benchmarked
against a range of standard Earth-like planet tests (Mayne
et al. 2014a), opening an avenue for studying temperate
extraterrestrial atmospheres. Using the UM, various climate
processes in the atmospheres of tidally locked rocky exoplanets
have been studied, focusing on the impacts of planet
eccentricity and atmospheric composition (Boutle et al.
2017), size and location of a substellar continent (Lewis et al.
2018), treatment of convection (Sergeev et al. 2020), host star
spectrum (Eager et al. 2020), presence of mineral dust (Boutle
et al. 2020), and an interactive ozone cycle (Yates et al. 2020).
The versatility of the UM allowed for its application to a

range of gas-giant atmospheres, primarily H-/He-dominated
hot Jupiters. After a successful adaptation of the radiative
transfer code (Amundsen et al. 2014, 2017), the UM was used
to explore flow structures in hot-Jupiter atmospheres (Mayne
et al. 2017; Debras et al. 2019, 2020) and to demonstrate that
for smaller planets with extended atmospheres (i.e., mini
Neptunes; see Section 4.2), the often used primitive equations
may not accurately capture the atmospheric dynamics (Mayne
et al. 2019). Additionally, a flexible gas-phase chemistry
scheme (Drummond et al. 2016) was coupled to the UM,
allowing for 3D simulations of H-/He-dominated atmospheres
with both equilibrium (Drummond et al. 2018) and kinetic
(Drummond et al. 2020) gas-phase chemistry. To parameterize
clouds in the atmospheres of hot Jupiters, the UM was also
coupled with both a detailed high-temperature microphysics
scheme (Lines et al. 2018a, 2018b) and a steady-state
simplified cloud scheme (Lines et al. 2019).
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