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Abstract

Quantifying the uncertainty in model parameters and output is a critical component in model-driven decision support systems
or groundwater management. This paper presents a novel algorithmic approach which fuses Markov Chain Monte Carlo
MCMC) and Machine Learning methods to accelerate uncertainty quantification for groundwater flow models. We formulate
he governing mathematical model as a Bayesian inverse problem, considering model parameters as a random process with an
nderlying probability distribution. MCMC allows us to sample from this distribution, but it comes with some limitations: it can
e prohibitively expensive when dealing with costly likelihood functions, subsequent samples are often highly correlated, and
he standard Metropolis–Hastings algorithm suffers from the curse of dimensionality. This paper designs a Metropolis–Hastings
roposal which exploits a deep neural network (DNN) approximation of a groundwater flow model, to significantly accelerate
CMC sampling. We modify a delayed acceptance (DA) model hierarchy, whereby proposals are generated by running short

ubchains using an inexpensive DNN approximation, resulting in a decorrelation of subsequent fine model proposals. Using a
imple adaptive error model, we estimate and correct the bias of the DNN approximation with respect to the posterior distribution
n-the-fly. The approach is tested on two synthetic examples; a isotropic two-dimensional problem, and an anisotropic three-
imensional problem. The results show that the cost of uncertainty quantification can be reduced by up to 50% compared to
ingle-level MCMC, depending on the precomputation cost and accuracy of the employed DNN.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Groundwater flow; Uncertainty quantification; Markov chain Monte Carlo; Surrogate models; Deep neural networks

1. Introduction

Modelling of groundwater flow and transport is an important decision support tool when, for example, estimating
he sustainable yield of an aquifer or remediating groundwater pollution. However, the input parameters for

athematical models of groundwater flow (such as subsurface transmissivity and boundary conditions) are often
mpossible to determine fully or accurately, and are hence subject to various uncertainties. In order to make informed
ecisions, it is of critical importance to decision makers to obtain robust and unbiased estimates of the total model
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uncertainty, which in turn is a product of the uncertainty of these input parameters [1]. A popular way to achieve
this, in relation to groundwater flow or any inverse problem in general, is stochastic or Bayesian modelling [2–4]. In
this context, a probability distribution, the prior, is assigned to the input parameters, in accordance with any readily
available information. Given some real-world measurements corresponding to the model outputs (e.g. sparse spatial
measurements of hydraulic head, Darcy flow or concentration of pollutants), it is possible to reduce the overall
uncertainty and obtain a better representation of the model by conditioning the prior distribution on this data. The
result is a distribution of the model input parameters given data, which is also referred to as the posterior.

Obtaining samples from the posterior distribution directly is not possible for all but the simplest of problems.
A popular approach for generating samples is the Metropolis–Hastings type Markov Chain Monte Carlo (MCMC)
method [5]. Samples are generated by a sequential process. First, given a current sample, a new proposal for the input
parameters is made using a so-called proposal distribution. Evaluating the model with this new set of parameters,
a likelihood is computed — a measure of misfit between the model outputs and the data. The likelihoods of the
proposed and current samples are then compared. Based on this comparison, the proposal is either accepted or
rejected, and the whole process is repeated, generating a Markov chain of probabilistically feasible input parameters.
The key point is that the distribution of samples in the chain converges to the posterior – the distribution of
input parameters given the data [5]. This relatively simple algorithm can lead to extremely expensive Bayesian
computations for three key reasons. First, each step of the chain requires the evaluation of (often) an expensive
mathematical model. Second, the sequential nature of the algorithm means subsequent samples are often highly
correlated — even repeated if a step is rejected. Therefore the chains must often be very long to obtain good
statistics on the distribution of outputs of the model. Third, without special care, the approach does not generally
scale well to large numbers of uncertain input parameters; the so-called curse of dimensionality. Addressing these
scientific challenges is at the heart of modern research in MCMC algorithms. As with this paper there is a particular
focus on developing novel and innovative proposal distributions, which seek to de-correlate adjacent samples and
limit the computational burden of evaluating expensive models.

Broadly in the literature, simple Darcy type models and other variants of the diffusion equation have long been
a popular toy example problems for demonstrating MCMC methodologies in the applied mathematics community
(see e.g. [6–8]). There appears to be much less interest in MCMC in the applied groundwater modelling community.
This may be because of the computational cost of running MCMC on highly parametrised, expensive models, or
the lack of an easy-to-use MCMC software framework, akin to the parameter estimation toolbox PEST [9].

An exciting approach to significantly reduce the computational cost has been proposed in multi-level, multi-
fidelity and Delayed Acceptance (DA) MCMC methods. In each case, to alleviate computational cost, a hierarchy
of models is established, consisting of a fine model and (possibly multiple) coarse, computationally cheap
approximations. Typically, the coarser models are finite element solutions of the PDE on a mesh with a coarser
resolution, but as we show in this paper, can be taken to be any general approximation similar to the multi-fidelity
philosophy [10]. Independent of the approach, the central idea is the same: to obtain significant efficiency gains
by exploiting approximate coarse models to generate ‘good’ proposals cheaply, using additional accept/reject steps
to filter out highly unlikely proposals before evaluating the fine, expensive model. Previous studies of two-stage
approaches include [11] who modelled multi-phase flow with coarse level proposals evaluated by a coarse-mesh
single-phase flow model (an idea that was developed further in [12]), [13] and [14]. We note that the latter of
which, instead of simply using a coarser discretisation, implemented a data-driven polynomial chaos expansion as
a surrogate model. We intend to demonstrate how the development of novel techniques in MCMC and machine
learning can be combined to help realise the potential of MCMC in this field.

In this work, we propose a combination of multiple cutting-edge MCMC techniques to allow for efficient
inversion and uncertainty quantification of groundwater flow. We propose an improved delayed acceptance (DA)
MCMC algorithm, adapted from the approach proposed by [15]. In our case, similarly to multi-level MCMC [7],
proposals are generated by computing a subchain using a Deep Neural Network (DNN) as an approximate model
— leading to cheaply computed, decorrelated proposals passed on to the fine model. For our first example, the
subchain is driven by the preconditioned Crank–Nicolson (pCN) proposal distribution [16] to ensure the proposed
Metropolis–Hastings algorithm is robust with respect to the dimension of the uncertain parameter space. For our
second example, proposals for the subchains are generated using the Adaptive Metropolis (AM) proposal [17],
since the posterior distribution in this case is highly non-spherical and multiple parameters are correlated. Finally,
we propose an enhanced error model, in which the DNN is trained by sampling the prior distribution, yet the bias
of the approximation is adaptively estimated and corrected on-the-fly by testing the approximations against the full

model in an adaptive delayed acceptance setting [18].
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2. Preliminaries

In this section we briefly introduce the forward model, defining the governing equations underpinning ground-
ater flow and their corresponding weak form, enabling us to solve the equations using FEM methods. We then

ormulate our model as a Bayesian inverse problem with random input parameters, effectively resulting in a
tochastic model, which can be accurately characterised by sampling from the posterior distribution of parameters
sing MCMC. The simple Metropolis–Hastings MCMC algorithm is then introduced and extended with the
reconditioned Crank–Nicolson (pCN) and Adaptive Metropolis (AM) transition kernels.

.1. Governing equations for groundwater flow

Consider steady groundwater flow in a confined, inhomogeneous aquifer which occupies the domain Ω with
boundary Γ . Assuming that water is incompressible, the governing equations for groundwater flow can be written
as the scalar elliptic partial differential equation:

− ∇ · (−T (x)∇h(x)) = g(x) for all x ∈ Ω (1)

ubject to boundary conditions on Γ = ΓN ∪ ΓD defined by the constraint equations

h(x) = hD(x) on ΓD and (−T (x)∇h(x)) · n = qN (x) on ΓN . (2)

ere T (x) is the heterogeneous, depth-integrated transmissivity, h(x) is hydraulic head, hD(x) is fixed hydraulic
ead at boundaries with Dirichlet constraints, g(x) is fluid sources and sinks, q(x) is Darcy velocity, qN (x) is
arcy velocity across boundaries with Neumann constraints and ΓD ⊂ ∂Ω and ΓN ⊂ ∂Ω define the boundaries

omprising of Dirichlet and Neumann conditions, respectively. Following standard FEM practice (see e.g. [19]),
q. (1) is converted into weak form by multiplying by an appropriate test function w ∈ H 1(Ω ) and integrating by
arts, so that∫

Ω

∇w · (T (x)∇h) dx +

∫
ΓN

w qN (x) ds =

∫
Ω

w g(x) dx, ∀w ∈ H 1(Ω ), (3)

here H 1(Ω ) is the Hilbert space of weakly differentiable functions on Ω . To approximate the hydraulic head
olution h(x), a finite element space Vτ ⊂ H 1(Ω ) on a finite element mesh Qτ (Ω ). This is defined by a basis of
iecewise linear Lagrange polynomials {φi (x)}M

i=1, associated with each of the M finite element nodes. As a result
3) can be rewritten as a system of sparse linear equations

Ah = b where Ai j =

∫
Ω

∇φi · T (x)∇φ j (x) dx and (4)

bi =

∫
Ω

φi (x) g(x) dx −

∫
ΓN

φi (x)qN (x) ds, (5)

here A ∈ RM×M and b ∈ RM are the global stiffness matrix and load vector, respectively. The vector
:= [h1, h2, . . . , hM ] ∈ RM is the solution vector of hydraulic head at each node within the finite element mesh

o that h(x) =
∑M

i=1 hiφi (x). In our numerical experiments, these equations are solved using the open source
eneral-purpose FEM framework FEniCS [20]. While there are well-established groundwater simulation software
ackages available, such as MODFLOW [21] and FEFLOW [19], FEniCS was chosen because of its flexibility and
ase of integration with other software and analysis codes.

.2. Aquifer transmissivity

The aquifer transmissivity T (x) is not known everywhere on the domain, therefore a typical approach is to model
t as a log-Gaussian random field. There exists extensive literature on modelling groundwater flow transmissivity
sing log-Gaussian random fields (see e.g. [22,23,14]). Whilst this may not always prove a good model, particularly
n cases with highly correlated extreme values and/or preferential flow paths [24,25] as seen when considering faults
nd other discontinuities [26,27], the log-Gaussian distribution remains relevant for modelling transmissivity in a

ange of aquifers [28,29,14].
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Our starting point is a covariance operator with kernel C(x, y), which defines the correlation structure of
he uncertain transmissivity field. For our numerical experiments, we consider the ARD (Automatic Relevance
etermination) squared exponential kernel, a generalisation of the ‘classic’ squared exponential kernel, which allows

or handling directional anisotropy:

C(x, y) = exp

⎛⎝−
1
2

d∑
j=1

(
x j − y j

l j

)2
⎞⎠ , (6)

here d is the spatial dimensionality of the problem and l ∈ Rd is a vector of lengths scales corresponding to each
patial dimension. We emphasise that the covariance kernel is a modelling choice, and that different options are

available, such as the Matern kernel which offers additional control over the smoothness of the field.
In our work, transmissivity was modelled as a discrete log-Gaussian random field expanded in an orthogonal

eigenbasis with k Karhunen–Loève (KL) eigenmodes. To achieve this we construct a covariance matrix C ∈ RM×M ,
here entries are given by Ci j = C(xi , x j ) for each pair of nodal coordinates within the finite element mesh

, j = 1, . . . , M . Once constructed, the largest k eigenvalues {λi }
k
i=1 and associated eigenvectors {ψ i }

k
i=1 of C can

e computed. The transmissivity at the nodes t := [t1, t2, . . . , tM ], is given by

log t = µ+ σΨΛ
1
2 θ , where Λ =

⎡⎢⎢⎢⎣
λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λk

⎤⎥⎥⎥⎦ and Ψ = [ψ1,ψ2, . . . ,ψk], (7)

here µ defines the log of the mean transmissivity field, σ is a scalar parametrising the variance and θ is a vector
f Gaussian random variables such that θ ∼ N (0, Ik) as in [30]. The random field can be interpolated from nodal
alues across Ω , using the shape functions {φi (x)}M

i=1 so that T (x) =
∑M

i=1 tiφi (x).
Truncating the KL eigenmodes at the kth mode limits the amount of small scale features that can be represented.

his, along with interpolating the field, has a smoothing effect on the recovered transmissivity fields, which may
r may not be desirable, depending on the application. Fig. 1 shows some examples of realisations of Gaussian
andom fields with a square exponential kernel, which illustrates the effect of the covariance length scale l and the
umber of admitted KL eigenmodes k. For relatively large length scales l, there is a limit to k, above which adding
igher frequency eigenvalues does not provide any additional information. In this context, the proportion of signal
nergy encompassed by the truncation can be understood as the ratio between the sum of truncated eigenvalues and
he sum of all eigenvalues:

∑k
i=1 λi/

∑M
j=1 λ j .

.3. The Bayesian inverse problem

To setup the Bayesian inverse problem and thereby quantify the uncertainty in the transmissivity field T (x), the
tarting point is to define a statistical model which describes distribution of the mismatch between observations and
odel predictions. The observations are expressed in a single vector dobs ∈ Rm and for a given set of model input

arameters θ , the model’s prediction of the data is defined by the forward map, F(θ ) : Rk
→ Rm . The statistical

odel assumes the connection between model and observations through the relationship

dobs = F(θ ) + ϵ (8)

here we take ϵ ∼ N (0,Σ ϵ) which represents the uncertainty of the connection between model and data, capturing
oth model mis-specification and measurement noise as sources of this uncertainty.

The backbone of a Bayesian approach is Bayes’ theorem, which allows for computing posterior beliefs of model
arameters using both prior beliefs and observations. Bayes’ theorem states that the posterior probability of a
arameter realisation θ given data dobs can be computed as

π (θ |dobs) =
π0(θ )L(dobs|θ )

π (dobs)
(9)

where π (θ |dobs) is referred to as the posterior distribution, L(dobs|θ ) is called the likelihood, π0(θ ) the prior
distribution and

π (dobs) =

∫
π (dobs|θ )dθ =

∫
π0(θ )L(dobs|θ )dθ (10)
Θ Θ

4
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Fig. 1. A selection of Gaussian random process realisations for x ∈ [0, 1]2, with a square exponential kernel using different covariance
length scales l and number of KL eigenmodes k. All displayed realisations were generated using the same appropriately truncated random
vector ξ with identical eigenvectors for each l.

is a normalising constant, sometimes referred to as the evidence. In most cases this integral does not have a
closed-form solution and is infeasible to estimate numerically in most real-world applications, particularly when the
dimension of the unknown parameter space is large and the evaluation of the model (required to compute L(dobs |θ ))
is computationally expensive. A family of methods called Markov Chain Monte Carlo (MCMC) are often employed
to approximate the solution [31]. Importantly MCMC, whilst computationally expensive, allows indirect sampling
from the posterior distribution and avoids the explicit need to estimate (10). Moreover, it can be designed to be
independent of the dimension of the parameter space and has no embedded unquantifiable bias. In this paper we
consider a subclass of MCMC methods called the Metropolis–Hastings [32,33,5] algorithm, which is described in
Algorithm 1. The algorithm generates a Markov chain {θ (n)

}n∈N with a distribution converging to π (dobs |θ ). It is
difficult (often impossible) to sample directly from the posterior, hence at each step, at position θ (i) in the chain, a
proposal is made θ ′ from a simpler known (proposal) distribution q(θ ′

|θ (i)). An accept/reject step then determines
whether the proposal comes from (probabilistically) the posterior distribution or not. This accept/reject step is a
achieved by essentially computing the ratio of the densities of the current state to the proposal. To do this we
exploit Bayes’s Theorem. The key observation in MCMC is that the normalising constant π (dobs) is independent
of θ , and so

π (θ |dobs) ∝ π0(θ )L(dobs|θ ). (11)
Therefore when comparing the ratio of the densities, the normalising constant (since independent of θ ) cancels.

5
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Algorithm 1: Metropolis–Hastings Algorithm

1. Given a parameter realisation θ i and a transition kernel q(θ ′
|θ i ), generate a proposal θ ′.

2. Compute the likelihood ratio between the proposal and the previous realisation:

α = min

{
1,

π0(θ ′)L(dobs|θ
′)

π0(θ (i))L(dobs|θ
(i))

q(θ (i)
|θ ′)

q(θ ′
|θ (i))

}
3. If u ∼ U (0, 1) > α then set θ (i+1)

= θ (i), otherwise, set θ (i+1)
= θ ′.

In our model problem, the prior density of the parameters π0(θ ) represents the available a priori knowledge
bout the transmissivity of the aquifer. From our statistical model (8) we see that our dobs − F(θ ) ∼ N (0,Σ ϵ),
ence

L(dobs|θ ) = exp
(

−
1
2

(F(θ ) − dobs)⊺Σ−1
e (F(θ ) − dobs)

)
. (12)

mportantly we note that for each step of the Metropolis–Hastings algorithms we are required to compute L(dobs |θ
′).

his requires the evaluation of the forward mapping F(θ ′) which can be computationally expensive. Moreover, due
o the sequential nature of MCMC-based approaches, consecutive samples are correlated and hence many samples
re required to obtain good statistics on the outputs.

The proposal distribution q(θ ′
|θ (n)) is the key element which drives the Metropolis–Hastings algorithm and

ontrol the effectiveness of the algorithm. A common choice is a simple random walk, for which qRW(θ ′
|θ (i)) =

(θ (i),Σ ), yet as shown in [34], the basic random walk does not lead to a convergence that is independent of the
nput dimension m. Better choices would be the preconditioned Crank–Nicolson proposal (pCN, [16]), which has
imension independent acceptance probability, or the Adaptive Metropolis algorithm (AM, [17]), which adaptively
ligns the proposal distribution to the posterior during sampling. Moreover, unlike the Metropolis-Adjusted Langevin
lgorithm (MALA), No-U-Turn Sampler (NUTS) and Hamiltonian Monte Carlo, none of these proposals rely on
radient information, which can be infeasible to compute for expensive forward models.

To generate a proposal using the pCN transition kernel, one computes

θ ′
=

√
1 − β2 θ (i)

+ βξ (13)

where ξ is a random sample from the prior distribution, ξ ∼ N (0,Σ ). This expression corresponds to the transition
kernel qpCN(θ ′

|θ (i)) = N (
√

1 − β2θ (i), β2Σ ). Moreover, for the pCN transition kernel, the acceptance probability
simplifies to

α = min
{

1,
L(dobs|θ

′)

L(dobs|θ
(i))

}
following the identity

p0(θ (i))
p0(θ ′)

=
qpCN(θ (i)

|θ ′)

qpCN(θ ′
|θ (i))

(14)

as given in [7]. Additional details of derivation of the pCN proposal are provided in Appendix A.
Similarly, to generate a proposal using the AM transition kernel, we draw a random sample

θ ′
∼ N (θ (i),Σ (i)) (15)

here Σ (i) is an iteratively updated covariance structure

Σ (i)
=

{
Σ (0), if i ≤ i0,

sd Cov(θ (0), θ (1) . . . θ (i)) + sd γ Id , otherwise.

ence, proposals are drawn from a distribution with an initial covariance Σ (0) for a given period i0, af-
er which adaptivity is ‘switched on’, and used for the remaining samples. The adaptive covariance Σ (i)

=

d Cov(θ (0), θ (1) . . . θ (i)) + sd γ Id can be constructed iteratively during sampling using the following recursive
ormula:

Σ (i+1)
=

i − 1
Σ (i)

+
sd (i θ̄

(i−1)
θ̄

(i−1)⊺
− (i + 1)θ̄

(i)
θ̄

(i)⊺
+ θ (i)θ (i)⊺

+ γ Id ) (16)

i i

6
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Fig. 2. Graph showing the structure of a feedforward DNN.

where ·̄ is the arithmetic mean, sd = 2.42/d is a scaling parameter, d is the dimension of the proposal distribution
and γ is a parameter which prevents Σ i from becoming singular [17]. This, on the other hand, corresponds to
the transition kernel qAM(θ ′

|θ (0), θ (1) . . . θ (i)) = N (θ (i),Σ (i)), which is not guaranteed to be ergodic, since it will
depend on the history of the chain. However, the Diminishing Adaptation condition [35] holds, as adaptation will
naturally decrease as sampling progresses.

2.4. Deep neural network

The approximate/surrogate model in our experiments is a feed-forward deep neural network (DNN), a type of
artificial neural network with multiple hidden layers, as implemented in the open-source neural-network library
Keras [36] utilising the Theano backend [37].

Artificial neural networks have previously been successfully applied as fast model proxies in inverse geophysics
roblems. Examples include [38], who used a neural network with two hidden layers for Monte Carlo sampling in
he context of a crosshole traveltime inversion, and [39] who used a neural network with a single hidden layer and
Differential Evolution Adaptive Metropolis sampler for electromagnetic inversion.
The DNN approximates the forward map, accepting a vector of KL coefficients θ ∈ Rk , and returning an

approximation of the vector of approximate model output F̂(θ ) ∈ Rm – in this paper a vector of hydraulic heads
at given sampling points, i.e. F̂(θ ) : Rk

↦→ Rm . Fig. 2 shows the graph of one particular DNN employed in our
experiments.

Each edge in Fig. 2 is equipped with a weight wl
i, j where l is index of the layer that the weight feeds into, i

is the index of nodes in the same layer and j is the index of nodes in the previous layer. These weights can be
arranged in n × m matrices W l for each layer l. Similarly, each node is equipped with a bias bl

i where l is index
of its layer and i is the index of node, and these biases can be arranged in vectors bl . Data is propagated through
the network such that the output yl of a layer l with activation function Al(·) is

yl = Al
(
bl + W l yl−1

)
. (17)

Activation functions A(·) are applied element-wise on their input vectors x so that

A(x) = (A(x1), A(x2) . . . A(xn))⊺

Many different activation functions are available for artificial neural networks, and we here give a short description
of the ones employed in our experiments: the sigmoid and the rectified linear unit (‘ReLU’). The transfer function
of the nodes in the first layer of each DNN was of the type sigmoid:

S(x) =
1

(18)

1 + e−x

7
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squashing the input vector into the interval (0, 1), effectively resulting in a strictly positive output from the first
hidden layer. The remaining hidden layers consisted of nodes with the de facto standard hidden layer activation
function for deep neural networks, the rectified linear unit (‘ReLU’):

R(x) =

{
x, if x > 0,

0, otherwise.

To fit an artificial neural network to a given set of data, the network is initially compiled using random weights
and biases and then trained using a dataset of known inputs and their corresponding outputs. The weights and biases
are updated iteratively during training by way of an appropriate optimisation algorithm and a loss function, and if
appropriately set up, will converge towards a set of optimal values, allowing the DNN to predict the response of
the forward model to some level of accuracy [40]. Our particular DNNs were trained using the mean squared error
(MSE) loss function

MSE =
1
m

m∑
i=1

(hi − ĥi )2

or m output variables, and the RMSprop optimiser, a stochastic, gradient based and adaptive algorithm, suggested
y [41] and widely used for training DNNs.

. Adaptive delayed acceptance proposal using a deep neural network

In this section we describe a modified adaptive delayed acceptance proposal for MCMC, using ideas from multi-
evel MCMC [7]. The general approach generates proposals by running Markov subchains driven by an approximate

odel. In our case this approximation is constructed from a DNN of the forward map F(θ ) trained from offline
amples of the prior distribution. Finally, we show how the approximate map can be corrected online, by adaptively
earning a simple multi-variant Gaussian correction to the outputs of the neural network.

.1. Modified delayed acceptance MCMC

Delayed Acceptance (DA) [15] is a technique that exploits a model hierarchy consisting of an expensive fine
odel and relatively inexpensive coarse approximation. The idea is simple: a proposal is first evaluated (pre-

creened) by an approximate model and immediately discarded if it is rejected. Only if accepted, it is subjected to a
econd accept/reject step using the fine model. In this context, the likelihood of observations given a parameter set
s henceforth denoted L̂(dobs|θ ) when evaluated on the approximate model and remains L(dobs|θ ) when evaluated

on the fine model. This simple screening mechanism cheaply filters out poor proposals, wasting minimal time
evaluating unlikely proposals on the expensive, fine model. Crucially, the coarse model need not evaluate every
parameter, only a subset. The remaining fine parameters can then be sampled prior to the second accept/reject step.
We denote the full parameter set θ , the coarse parameters θ̂ and the fine parameters θ̃ . so that θ = [θ̂ , θ̃ ].

In this paper we extend this approach by not evaluating every accepted approximation proposal with the fine
odel. Instead, a proposal for the fine model is generated by running an approximate subchain until t approximate

roposals have been accepted and only then evaluate using the fine model. We define the required number of
ccepted proposals in the approximate subchains as the offset length. This modified Delayed Acceptance MCMC
lgorithm is described in Algorithm 2 and an illustration of the process is given in Fig. 3.

This way, the autocorrelation of the fine chain is reduced, since proposals are ‘more independent’. This approach
s strongly related to a two-level version of multi-level MCMC. Since the fine model likelihood ratio is corrected by
he inverse of the approximate likelihood ratio in step 6 of Algorithm 2, detailed balance is satisfied, the resulting

arkov Chain is guaranteed to come from the true posterior and there is no loss of accuracy, even if the approximate
odel is severely wrong [15]. To demonstrate that this approach does indeed decrease the autocorrelation in our
ne chain MCMC samples, we compute the Effective Sample Size Ne f f of each MCMC simulation according to

he procedures described in [42].
8
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Fig. 3. Illustration of the principle used to offset fine level samples to reduce autocorrelation. The fine model F is only evaluated using the

full set of proposed parameters θ ′ after a prescribed number t (the offset length) of approximation parameter sets {θ̂
(1)

, θ̂
(2)

, . . . , θ̂
(t)

} have
een evaluated on the approximate model F̂ and accepted into the coarse chain.

Algorithm 2: Modified Delayed Acceptance MCMC

1. Given a realisation of the approximation parameters θ̂
( j)

and the transition kernel q(θ̂
′

|θ̂
( j)

),
generate a proposal for the approximation θ̂

′

.
2. Compute the likelihood ratio on the approximate model between the proposal and the previous

realisation:

α1 = min

{
1,

π0(θ̂
′

)L̂(dobs|θ̂
′

)

π0(θ̂
( j)

)L̂(dobs|θ̂
( j)

)

}
(AM)

α1 = min

{
1,

L̂(dobs|θ̂
′

)

L̂(dobs|θ̂
( j)

)

}
(pCN)

3. If u ∼ U (0, 1) > α1 then set θ̂
( j+1)

= θ̂
( j)

and return to (1); otherwise set θ̂
( j+1)

= θ̂
′

and
continue to (4).

4. If t proposals have been accepted in the approximation subchain, continue to (5), otherwise return
to (1).

5. Given the latest realisation of the entire parameter set θ (i)
= [θ̂

(i)
, θ̃

(i)
] with fine parameters

θ̃
(i)

and the transition kernel q(θ̃
′

|θ̃
(i)

), generate a proposal for the fine parameters θ̃
′

and set
θ ′

:= [θ̂
′

, θ̃
′

].
6. Compute the likelihood ratio on the fine model between the proposal and the previous realisation:

α2 = min

{
1,

π0(θ ′)L(dobs|θ
′)

π0(θ (i))L(dobs|θ
(i))

π0(θ̂
(i)

)L̂(dobs|θ̂
(i)

)

π0(θ̂
′

)L̂(dobs|θ̂
′

)

}
(AM)

α2 = min

{
1,

L(dobs|θ
′)

L(dobs|θ
(i))

L̂(dobs|θ̂
(i)

)

L̂(dobs|θ̂
′

)

}
(pCN)

7. If u ∼ U (0, 1) > α2 then set θ (i+1)
= θ (i), otherwise set θ (i+1)

= θ ′.

3.2. Adaptive correction of the approximate posterior

Whilst in theory the modified delayed acceptance proposal described in Section 3.1 will provide a convergent
etropolis–Hastings algorithm, there are cases in which the rate of convergence will be extremely slow. To

emonstrate this, the left-hand contour plot in Fig. 4 shows an artificially bad example. In this case the approximate
odel (red isolines) poorly captures the target likelihood distribution (blue density); there is a clear offset in the

istributions, and the scale, shape and orientation of the approximate likelihood is incorrect. If using the modified
elayed acceptance algorithm without alteration, it is easy to see that the proposal mechanism would struggle

o traverse the whole of the target distribution, since much of it lies in the tails of the approximate likelihood

9
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Fig. 4. Fine/target likelihood (blue) and approximate likelihood (red). (Left) Original likelihood before correction, (middle) corrected likelihood
by a constant shift µbias and (right) corrected approximate likelihood by multivariate Gaussian. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

distribution. As a result, in practice, we would observe extremely slow convergence to the true posterior; in practice
– at finite computational times – results would contain a significant bias.

An ad hoc way to overcome this is to apply so-called tempering on the statistical model which drives the subchain.
In this technique, the variance of the misfit Σ ϵ on the subchain is artificially inflated to capture the uncertainty in
the approximate model. The issue in adopting this approach is the difficulty in selecting a robust inflation factor for
tempering, particularly in higher dimensions. Furthermore, an isotropic inflation of the approximate posterior will
in general be sub-optimal.

In this paper we instead implement an adaptive enhanced error model (EEM), which overcomes many of these
challenges. Moreover, it is easy to implement and has negligible additional computational cost. Let F̂ denote the
approximate forward map of the fine/target model F . Then, following [43,18], we apply a trick to the statistical
model (8) where we add and subtract the coarse map F̂ . With some rearrangement we obtain the expression

dobs = F(θ ) + ϵ = F(θ ) + F̂(θ ) − F̂(θ ) + ϵ = F̂(θ ) +

(
F(θ ) − F̂(θ )

)
  

:=B(θ)

+ϵ. (19)

ere B(θ ) = F(θ )−F̂(θ ) is the bias associated with the approximation at given parameter values θ . We approximate
his bias using a multivariate Gaussian distribution, i.e. B ∼ N (µbias,Σ bias), and therefore the likelihood function
12) can be rewritten as

L̂(dobs|θ ) = exp
(

−
1
2

(F̂(θ ) + µbias − dobs)⊺(Σ bias + Σ e)−1(F̂(θ ) + µbias − dobs)
)

. (20)

he influence of redefining the likelihood is best demonstrated geometrically, as shown in Fig. 4 (middle and right).
irstly, as shown in Fig. 4 (middle) we can make a better approximation by simply adding a shift of the mean bias
bias to the original approximate model F̂(θ ). This has the effect of aligning the ‘centre of mass’ of each of the
istributions. Secondly, we can learn the covariance structure of the bias. This has the effect of stretching and
otating the approximate distribution to give an even better overall approximation, as shown in Fig. 4 (right). The
nal mismatch between the approximate and target distribution will be driven by the assumption that bias can
e represented by a multivariate Gaussian, although more complex distributions could be constructed using, for
xample, Gaussian process regression. Whilst this is an avenue to explore in the future, any such approach would
urrender the simplicity of this approach, which from the results appears particularly effective.

The idea of using an EEM when dealing with model hierarchies originates from [43], who suggested to use
amples from the prior distribution of parameters to construct the EEM prior to Bayesian inversion, so that

µbias =
1
N

N∑
B(θ (i)) and Σ bias =

1
N − 1

N∑
(B(θ (i)) − µbias)(B(θ (i)) − µbias)

⊺ (21)

i=1 i=1

10
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The estimates for µbias and Σ bias could be obtained by sampling the prior distribution and comparing the
pproximate forward map against the target forward map. This approach has previously been successfully applied
o a geophysical inverse problem by [44], who compared the modelling error for a large number of crosshole
omography models. However, since the model output generated by parameter sets drawn from the prior distribution

ay be biased significantly differently than samples drawn from a (relatively concentrated) posterior distribution, this
pproach may lead to an EEM that poorly represents the model bias associated with the posterior. If the approximate
odel is a good approximation on average, constructing the EEM from the prior distribution would lead to an

nderestimation of the mean and an overestimation of the covariance of the bias, compared to an EEM constructed
rom the posterior. Furthermore, in our example where the approximate model is built from samples from the prior,
t is expected that such an approach would further underestimate both the mean and covariance of the bias, since
he neural network has been explicitly trained to minimise the error with respect to samples from the prior.

Instead of estimating the bias using the prior, the posterior bias can be constructed on-line by iteratively updating
ts mean µbias and covariance Σ bias using coarse/fine solution pairs from the MCMC samples as suggested by [45].
nother similar approach was employed to a Bayesian geophysical problem by [46], who collected model bias

stimates while sampling, and used the bias estimates of the k-nearest-neighbours of each new coarse sample to
onstruct a bias. In this case we select

µbias,i+1 =
1

i + 1

(
iµbias,i + B(θ (i+1))

)
and (22)

Σ bias,i+1 =
i − 1

i
Σ bias,i +

1
i

(B(θ (i+1)) B(θ (i+1))⊺ − µbias,i+1 µ
⊺
bias,i+1) (23)

hile this approach does not in theory guarantee ergodicity of the chain (as is also the case with the Adaptive
etropolis proposal), the bias distribution will converge as the chain progresses and adaptation diminishes, resulting

n a de facto ergodic process after an initial period of high adaptivity. This is a common feature of adaptive MCMC
lgorithms, as discussed in the classic paper on Adaptive Metropolis [17]. Our experiments showed that the bias
istribution did indeed converge for every simulation, and that repeated experiments converged towards the same
osterior bias distribution. Admitting a bias term in the inverse problem further introduces an issue of identifiability,
s highlighted in [47]. Since observations are now modelled as a sum of coarse model output and multiple stochastic
erms, the stochastic terms B ∼ N (µbias,Σ bias) and ϵ ∼ N (0, σ 2In) are generally unidentifiable in the coarse

odel formulation, meaning that the bias B and the data modelling noise ϵ are observationally equivalent, and not
ell-defined.

. Results

In this section, we examine the effectiveness of our proposed strategy on two synthetic groundwater flow
roblems: a two-dimensional problem with an isotropic covariance kernel and a three-dimensional problem with an
nisotropic covariance kernel. For both examples, we begin by outlining the model setup, for which we select a ‘true’
ransmissivity field and a number of fixed observation points. For the first example, the influence of training size
or the DNNs is examined, and the total cost of uncertainty quantification using a selection of DNNs is computed.
or the second example we use a single DNN setup and analyse the resulting posterior marginal distributions and

he quantity of interest. The first example was completed on commodity hardware — an HP Elitebook 840 G5
ith an Intel Xeon E3-1200 quad-core processor, while the second example was completed on a TYAN Thunder
T48T-B7105 GPU server with two Intel Xeon Gold 6252 processors and an NVIDIA RTX 2080Ti GPU.

.1. Example 1: 2D unit square

.1.1. Model setup
This example was conducted on a unit square domain Ω = [0, 1]2, meshed using an unstructured triangular grid

omprising 2,601 degrees of freedom. Dirichlet boundary conditions were imposed on the left and right boundaries
ith hydraulic heads of 1 and 0, respectively. The top and bottom edges impose homogeneous no-flow Neumann
oundary conditions. To avoid committing an inverse crime, the covariance length scales of the ARD squared
xponential kernel was set to l = (0.11, 0.11)⊺ for data generation and l = (0.1, 0.1)⊺ for the forward model used

n sampling. The chosen length scales effectively resulted in an isotropic covariance kernel, equal to the ‘classic’

11
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Fig. 5. “True” transmissivity field, its corresponding solution and sampling points.

Table 1
Neural network layers and activation functions in the model approximation DNNs.

Layer # Nodes Activation functions

DNN1 DNN2 DNN3 DNN4

Input k KL coefficients – – – –
1 4k Sigmoid Sigmoid Sigmoid Sigmoid
2 8k ReLU ReLU – –
3 4k ReLU ReLU ReLU ReLU
Output m datapoints Exponential Linear Exponential Linear

square exponential kernel with l = 0.1. This resulted in a KL decomposition with > 80% of total signal energy
in the 32 largest eigenvalues and > 95% of signal energy in the 64 largest eigenvalues. Hence, 32 modes were
included in the approximate model whilst 64 modes where included in the fine model.

Fig. 5(a) shows the ‘true’ transmissivity field that we attempt to recover through our MCMC methodology and
the modelled, corresponding hydraulic head. Synthetic samples for the likelihood function were extracted at 25
points on a regular grid with a horizontal and vertical spacing of 0.2 m (Fig. 5(b)), and these data were perturbated
with white noise with covariance Σ e = 0.001 Im .

4.1.2. Deep neural network design, training and evaluation
We evaluated a selection of different DNNs to investigate the impact of various network depths and activation

functions on the DNN performance. Table 1 shows the layers of the employed DNNs, the number of nodes in each
layer and their corresponding activation functions. DNN1 and DNN2 had three hidden layers, while DNN3 and
DNN4 had only two, as the ReLU layer with 8k nodes was not included in these networks. The output layer of

NN1 and DNN3 consisted of nodes with an exponential activation function E(x) = ex , resulting in a strictly
positive output. The DNNs with an exponential activation function in the final layer tended overall to lead to the
best performance.

Each DNN was trained on a set of samples from the prior distribution of parameters π0(θ ) = N (0, Ik), in advance
of running the MCMC. Hence, the DNN samples were drawn from a Latin Hypercube [48] in the interval [0, 1] and
transformed to the standard normal distribution using the probit-function, such that θ train ∼ N (0, Ik). The coarse,
32-mode FEM model was then run for every parameter sample, obtaining for each a vector of model outputs at
sampling points given parameters. We trained and tested each DNN on a range of different sample sizes, namely
NDNN = {2000, 4000, 8000, 16000, 32000, 64000}, where NDNN = Ntrain + Ntest , with a 9:1 training/test splitting
atio. Each DNN was then trained for 200 epochs with a batch size of 50 using the rmsprop optimiser [41].
12
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Fig. 6. Testing performance (RMSE) of each DNN against the total sample size (NDNN = Ntrain + Ntest ). Please refer to Table 1 for details
in the structure of each DNN.

Deep Neural Networks performance was compared using the RMSE of their respective testing dataset

RMSE =

√1
n

n∑
i=1

(hi − ĥi )2 (24)

he residual RMSE (24) of each DNN was computed to compare the network designs described in Table 1 and
o investigate the influence of training dataset size on the DNN performance (Fig. 6). As expected, each DNN
erformed better as the number of samples in the training dataset were increased. In comparison, the DNN design
ad much less influence on the testing performance, suggesting that the main driver for constructing an accurate
urrogate model, within the bounds of the examined DNN designs, was the number of training samples. For the
emaining analysis, we chose the network design resulting in the overall lowest RMSE at NDNN = 64000, namely
NN1, and the sample sizes NDNN = {4000, 16000, 64000}.
Further performance analysis consisted of analysing the DNN error e = htrue −hpred for true and predicted heads

htrue and hpred, respectively) for datapoints 0, 8, 16 and 24. (Fig. 7). All error distributions were approximately
aussian, with the errors for the DNN with NDNN = 4000 exhibiting some right skew at sampling point 24. For

ll DNNs, the sampling points closer to the boundaries (at sampling points 0 and 24) had lower errors than those
urther away, since the heads close to the boundaries were more constrained by the model.

.1.3. Uncertainty quantification
For inversion and uncertainty quantification, we chose a multivariate standard normal distribution as the prior

arameter distribution, π0(θ ) = N (0, Ik) and set the error covariance to Σ e = 0.001 Im . While computationally
onvenient, the zero-centred prior in practice favours transmissivity field realisations capable of reproducing the
bserved heads with as little variation as possible. In total, eight different sampling strategies were investigated,
amely single level ‘Vanilla’ MCMC, with no delayed acceptance, no adaptivity, and using only the 64-mode
ne model; DA using three different DNNs trained and tested on NDNN = {4000, 16000, 64000} samples as the

coarse model and the 64-mode model as the fine; and DA with an enhanced error model (DA/EEM) using the
same three DNNs. The offset length t for the DA strategies was manually tuned to achieve an acceptance rate of

∈ [0.2, 0.4]. To investigate the effect of the offset length t independently of other factors, an additional simulation
with NDNN = 64000 and t = 1 was also completed. In this first example, every simulation was completed using
the pCN transition kernel, with β = 0.15. Each MCMC sampling strategy was repeated (n = 32) using randomly

enerated random seeds, to ensure that every starting point would converge towards the same stationary distribution
nd to allow for cross-chain statistics to be computed. Results given in this section pertain to these multi-chain
amples rather than individual MCMC realisations, unless otherwise stated.

Our sampling strategies recovered the ground truth with good accuracy. Fig. 8 shows the mean and variance of
he recovered field from the DA/EEM MCMC using the DNN with N = 64000. All recovered fields exhibit
DNN

13
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Fig. 7. Density plot of the error (e = htrue − hpred) of the testing dataset for DNN1 trained and tested on NDNN = {4000, 16000, 64000}

amples, for sampling points 0, 8, 16 and 24. Bars show density of each bin, while the curve shows Gaussian kernel density estimate.

Table 2
Results for various MCMC sampling strategies, means of multiple chains with n = 32. NDNN is the number
of total samples used to construct the DNN. t is the improved DA offset length. NC/NF is the final length of
the coarse and fine chain, respectively, after subtracting burnin. Acc. rate is the fine chain acceptance rate. Time
(min) is the total running time of the simulation in minutes. Ne f f is the Effective Sample Size.

Strategy NDNN t NC/NF Acc. Rate Time (min) Ne f f

Vanilla – – —/40000 0.33 32.1 85.6
DA 4000 2 85461.9/20000 0.27 16.2 64.5
DA/EEM 4000 2 78853.4/20000 0.31 15.2 79.0
DA 16000 4 172383.1/20000 0.27 18.2 116.3
DA/EEM 16000 4 178978.4/20000 0.30 18.4 143.6
DA 64000 8 336447.5/20000 0.24 30.1 196.5
DA/EEM 64000 8 377524.4/20000 0.30 29.9 235.7
DA/EEM 64000 1 56824.3/20000 0.57 15.3 68.6

higher smoothness than the ground truth, which can be attributed to the relatively low number of sampling points
and their regular distribution on the domain, in combination with the regularisation introduced by the prior. Since the
KL decomposition incorporated > 95% of the signal energy, the truncation would have contributed only marginally
o the smoothing. None of the chains recovered the local peak in transmissivity on the right side of the domain,
ince there was too little data to discover this particular feature. However, this peak is clearly encapsulated by the
osterior variance, as shown in Figs. 8(b) and 8(d).

While the recovered fields indicate that every MCMC sampling strategy converged towards the desired stationary
istribution, they do not reveal the relative efficiency of each strategy. Hence, the Effective Sample Size (Ne f f )

was computed for each MCMC realisation. Every DA sampling strategy produced higher Ne f f than the Vanilla
CN sampler, relative to the simulation time, with a clear correlation between DNN testing performance and Ne f f .
his was mainly because the better performing DNNs allowed for a longer coarse chain offset without diverging.

oreover, utilising the EEM produced even higher Ne f f for every DA chain (Table 2).

14
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i

Fig. 8. Mean and variance (n = 32) of recovered log-transmissivity fields using Vanilla pCN sampler (top) and DA/EEM MCMC with
NDNN = 16000 (bottom). Corresponding plots of every sampling strategy are shown in Figs. B.15–B.21 in Appendix B.

4.1.4. Total cost
Since the DA chains required computation of a significant number of fine model solutions and training of a DNN

n advance of running the chain, the total cost Ctotal of each strategy was computed as

Ctotal =
tfine + ttrain + trun

Ne f f
(25)

where tfine was the time spent on precomputing fine model solution, ttrain was the time spent on training the respective
DNN, trun was the time taken to run the chain and Ne f f was the resulting effective sample size (Fig. 9).

The mean cost of every DA chain was lower than that of the Vanilla pCN chain, with the chains using the
EEM consistently cheaper than their non-EEM counterparts. Moreover, using the EEM reduced the variance of the
cost in repeated experiments, allowing each repetition to produce a consistently high Ne f f . The overall cheapest
inversion was completed using the DNN trained on 16,000 samples using the EEM, reducing the total cost, relative
to the Vanilla pCN MCMC, with 50%. Notice that these results are extremely conservative in the sense that the
entire cost of evaluating every DNN training sample and training the DNN in serial on a CPU was factored into the
cost of every repetition, even though the same DNN was used for all the repetitions within each sampling strategy.
The precomputation cost can be dramatically reduced by evaluating the DNN samples in parallel and utilising
high-performance hardware, such as GPUs, for training the DNN.
15
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Fig. 9. Violinplots showing the total cost Ctotal of each MCMC strategy with n = 32. Points show independent Markov Chains.

4.2. Example 2: 3D rectangular cuboid

4.2.1. Model setup
This example was conducted on a rectangular cuboid domain Ω = [0, 2] × [0, 1] × [0, 0.5] meshed using an

unstructured tetrahedral grid with 10,416 degrees of freedom (Fig. 10). Dirichlet boundary conditions of h = 1
and h = 0 were imposed at x1 = 0 and x1 = 2, respectively. No-flow Neumann conditions were imposed on all
remaining boundaries.

The covariance lengths scales for ARD squared exponential covariance kernel were set to l = (0.55, 0.95, 0.06)⊺

for data generation and l = (0.5, 1.0, 0.05)⊺ for the forward model used in sampling, resulting in a highly anisotropic
random process with high variation in the x3 direction to simulate geological stratification, some variation in the
x1 direction and little variation in the x2 direction (Fig. 10(a)). Like in the first model, the random process was
truncated at 64 KL eigenmodes for the fine model and 32 KL eigenmodes for the coarse model, embodying > 97%
and > 90% of the total signal energy, respectively.

We drew w = 50 sampling well locations randomly using the Maximin Latin Hypercube Design [49], and
samples of hydraulic head were extracted at each well at datums x3 = {0.05, 0.15, 0.25, 0.35, 0.45}, measured from
the bottom of the domain, resulting in m = 250 datapoints in total (Fig. 10(b)). These data were perturbated with
white noise with covariance Σ e = 0.001 Im .

For this example, we first converged the conductivity parameters to the Maximum a posteriori (MAP) estimate
θM AP = arg max

θ

π0(θ )L(dobs|θ ) using gradient descent, since initial MCMC experiments struggled to converge to

the posterior distribution for random initial parameter sets.

4.2.2. Deep neural network design, training and evaluation
Training a DNN to accurately emulate the model response for this setup was challenging, and we found no single

combination of neural network layers and activation functions that would predict the head at every datapoint with
sufficient accuracy. We hypothesise that this limitation could be caused by a strong ill-posedness of the DNN —
for a single neural network, the output dimension greatly exceeded the input dimension, i.e. m ≫ k where m = 250
was the number of datapoints, and k = 32 was the coarse model KL modes. When we instead predicted the heads
at each datapoint datum using a separate DNN, we found that we could utilise largely the same DNN design as
had been employed in the first example. Hence, to predict the head at all datapoints, we utilised five identically
designed but independent DNNs (Fig. 11), each with four hidden layers and activation functions as indicated in
Table 3. Each DNN was trained and tested on a dataset of NDN N = 16000 samples with KL coefficients drawn
from a Latin Hypercube [48] in the interval [0, 1] and transformed to a normal distribution centred on the MAP
estimate of the parameters θ , i.e. θ ∼ N (θ , I ). This was done to increase the density of samples and
M AP train M AP k
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Fig. 10. “True” conductivity field, its corresponding solution and sampling points.

Fig. 11. Layout of the multi-DNN design. Each DNN outputs a vector hx3 vector of w head predictions at datum x3.

thus improve the DNN prediction at and around the MAP point, which ideally equals the mode of the posterior
distribution. The DNNs were then trained for 200 epochs using a batch size of 50, the MSE loss function and the
rmsprop optimiser [41]. Fig. 12 shows performance plots of each DNN for both the training (top) and the testing
(bottom) datasets. While every DNN is clearly moderately biased by the training data, they all performed adequately

with respect to the testing data.
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Fig. 12. Performance of the five DNNs used in the multi-DNN approach, as shown in Fig. 11, with respect to the training dataset (top)
and the testing dataset (bottom).

Table 3
Layers and activation functions in the four DNNs. Each DNN takes all k KL
coefficients as input and predicts the head hx3 at w wells for a given datum.

Layer # Nodes Activation functions

Input k KL coefficients –
1 4k Sigmoid
2 8k ReLU
3 8k ReLU
3 4k ReLU
Output w wells Exponential

4.2.3. Uncertainty quantification
Similarly to the first example, we chose a multivariate standard normal distribution π0(θ ) = N (0, Ik) as the

prior distribution of parameters, and set the error covariance to Σ e = 0.001 Im . Hence, the synthetic head data
from the wells were perturbated with white noise with covariance Σ e. In this example, we utilised the Adaptive
Metropolis (AM) transition kernel for generating proposals. We completed n = 8 independent simulations, each
initialised from a random initial point close to the MAP point θM AP , with a burnin of 1000 and a final sample
size of N = 10,000. The subchains were run with an acceptance delay of t = 2, since longer subchains tended
to diverge, leading to sub-optimal acceptance rates on the fine level. The simulations had a mean acceptance rate
of 0.26, a mean effective sample size (Ne f f ) of 55.2 and a mean autocorrelation length τ = N/Ne f f of 181.0.
The samples of each independent simulation were pruned according to the respective autocorrelation length, and
the remaining samples were pooled together to yield 443 statistically independent samples that were then analysed
further.

Fig. 13 shows the marginal distributions of the six coarsest KL coefficients along with a scatterplot matrix of
all the samples remaining after pruning. All the marginal distributions are approximately Gaussian, and the two-
parameter marginal distributions are mostly elliptical. It is evident that some of these parameters are correlated,
namely parameters (θ0, θ5), (θ1, θ2), (θ1, θ3), (θ1, θ4) and (θ2, θ4). It is worth mentioning that in every independent
simulation, the AM proposal kernel managed to capture these correlations.

Moreover, we analysed the hydraulic head as a function of datum h(x3) along a line in the centre of the domain
x = (1.0, 0.5, x3)⊺. Fig. 14 shows h(x3) of the ground truth, MAP point θM AP , the mean of the n = 8 independent
simulations, and all the samples remaining after pruning. We observe that both the MAP point and the sample
mean are fairly close to the ground truth, albeit exhibiting higher smoothness, particularly between the observation
depths, where the head is essentially allowed to vary freely. It is also clear that the individual samples encapsulate

the ground truth, indicating that the ground truth is indeed contained by posterior distribution.
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Fig. 13. One and two-dimensional posterior marginal distributions (diagonal and lower triangle) and scatterplots (upper triangle) of posterior
samples pruned according to the autocorrelation length of each chain for the largest 5 KL eigenmodes. Please note that the axis scales of
are not equal.

5. Discussion

In this paper, we have demonstrated the use of a novel Markov Chain Monte Carlo methodology which employs
a delayed acceptance (DA) model hierarchy with a deep neural network (DNN) as an approximate model and a
FEM solver as a fine model, and generates proposals using the pCN and AM transition kernels. Results from the
first example clearly indicate that the use of a carefully designed DNN as a model approximation can significantly
reduce the cost of uncertainty quantification, even for DNNs trained on relatively small sample sizes. We have
established that offsetting fine model evaluations in the DA algorithm reduces the autocorrelation of the fine
chain, resulting in a higher effective sample size which, in turn, improves the statistical validity of the results.
In this context, the performance of the DNN is a critical driver when determining a feasible offset length to avoid
divergence of the coarse chain. Hence, if a high effective sample size is required, it may be desirable to invest in
19
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Fig. 14. Hydraulic head as a function of datum h(x3) at x = (1.0, 0.5, x3)⊺. The solid red line shows the hydraulic head of the ground
ruth, the dashed orange line shows the head of the Maximum a posteriori (MAP) point θM AP , the dotted yellow line shows the mean head
f the independent simulations (n = 8) and the thin black lines show the head of 538 statistically independent samples, remaining after
runing according to the autocorrelation length of each chain, n = 443. The vertical dotted lines show the observation depths.

well-performing DNN. Moreover, we have shown that an enhanced error model, which introduces an iteratively-
onstructed bias distribution in the coarse chain likelihood function, further increases the effective sample size
nd decreases the variance of the cost in repeated experiments. Finally, we observed that for the second example,
ven when employing a relatively well-performing model approximation, we had to constrain the offset length of
he subchains rather strongly to achieve optimal acceptance rates. This can be attributed in part to an apparent
on-spherical and correlated posterior distribution, causing the employed proposal kernels to struggle to discover
reas of high posterior probability.

We have demonstrated that relatively simple inverse hydrogeological problems can be solved in reasonable time
n a commonly available personal computer with no GPU-acceleration. This opens the opportunity to apply robust
ncertainty quantification during fieldwork and as a decision-support tool for groundwater surveying campaigns.
e have also demonstrated the applicability of our approach on a larger scale three-dimensional problem, utilising
GPU-accelerated high-performance computer (HPC). Aside from the benefit of using a HPC computer for

ccelerating the fine model evaluations, utilising the GPU allowed for rapidly training and testing multiple different
NN designs to efficiently establish a well performing model approximation. There are other obvious ways to further

ncrease the efficiency of the proposed methodology. For example, construction of the DNNs used as coarse models
omes with the cost of evaluating multiple models from the prior distribution, and, unlike the MCMC sampler, the
rior models are independent and these fine model evaluations can thus be massively parallelised.

Our methodology was demonstrated in the context of two relatively simple groundwater flow problems with
og-Gaussian transmissivity fields parametrised by Karhunen–Loève decompositions. While this model provides a
onvenient computational structure for our purposes, it may not reflect the full scale transmissivity of real-world
quifers, particularly in the presence of geological faults and other heterogeneities, as discussed in [24]. Future
esearch could address this problem through geological layer stratification using the universal cokriging interpolation
ethod suggested in [50], potentially utilising the open-source geological modelling tool GemPy [51], which allows

or simple parametric representation of geological strata. Spatially heterogeneous parameters within each strata could
hen be modelled hierarchically using a low order log-Gaussian random field to account for within-stratum variation,
s demonstrated in [12].
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Appendix A. Preconditioned Crank–Nicolson

The preconditioned Crank–Nicolson (pCN) proposal was developed in [16] and is based on the following
Stochastic Partial Differential Equation (SPDE):

du
ds

= −KLu +
√

2K
db
ds

here L = C−1 is the precision operator for the prior distribution µ0, b is brownian motion with covariance operator
I , and K is a positive operator. This equation can be discretised using the Crank–Nicolson approach to yield

v = u −
1
2
δKL(u + v) +

√
2Kδξ0

or white noise ξ0 and a weight δ ∈ [0, 2]. If we choose K = I , we get the plain Crank–Nicolson (CN) proposal:

(2C + δ I )v = (2C − δ I )u +
√

8δCξ

where ξ ∼ N (0, C). If we instead choose K = C, we get the pCN proposal:

v =

√
1 − β2u + βξ, β =

√
8δ

2 + δ
, β ∈ [0, 1]

This is rewritten, conforming to our previous notation:

θ ′
=

√
1 − β2θ i + βξ

ppendix B. Recovered conductivity fields

See Figs. B.15–B.21.

Fig. B.15. Mean (left) and variance (right) of recovered log-transmissivity for Vanilla pCN.
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Fig. B.16. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 4000.

Fig. B.17. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 4000.

Fig. B.18. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 16000.
22
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Fig. B.19. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 16000.

Fig. B.20. Mean (left) and variance (right) of recovered log-transmissivity for DA, NDN N = 64000.

Fig. B.21. Mean (left) and variance (right) of recovered log-transmissivity for DA/EEM, NDN N = 64000.
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