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Abstract
There is much current debate about the way in which the earth’s climate and temperature are
responding to anthropogenic and natural forcing. In this paper we re-assess the current evidence at
the globally averaged level by adopting a generic ‘data-based mechanistic’ modelling strategy that
incorporates statistically efficient parameter estimation. This identifies a low order, differential
equation model that explains how the global average surface temperature variation responds to the
influences of total radiative forcing (TRF). The model response includes a novel, stochastic
oscillatory component with a period of about 55 years (range 51.6–60 years) that appears to be
associated with heat energy interchange between the atmosphere and the ocean. These ‘quasi-cycle’
oscillations, which account for the observed pauses in global temperature increase around 1880,
1940 and 2001, appear to be related to ocean dynamic responses, particularly the Atlantic
multidecadal oscillation. The model explains 90% of the variance in the global average surface
temperature anomaly and yields estimates of the equilibrium climate sensitivity (ECS) (2.29 ◦C
with 5%–95% range 2.11 ◦C to 2.49 ◦C) and the transient climate response (TCR) (1.56 ◦C with
5%–95% range 1.43 ◦C to 1.68 ◦C), both of which are smaller than most previous estimates. When
a high level of uncertainty in the TRF is taken into account, the ECS and TCR estimates are
unchanged but the ranges are increased to 1.43 ◦C to 3.14 ◦C and 0.99 ◦C to 2.16 ◦C, respectively.

1. Introduction

The rapidity of the change in global average surface
temperature anomaly (GTA) and the levels that this
will reach are still in doubt, partly because of uncer-
tainty about the actions that will be taken to allevi-
ate the anthropogenic causes of warming; and partly
because of the uncertainty associated with the mod-
els used to evaluate the dynamic relationship between
the radiative forcing and the GTA. The ultimate
global temperature equilibrium response to a doub-
ling of the atmospheric CO2 concentration above its
pre-industrial concentration (generally taken to be
5.35 loge(2) = 3.7Wm−2 [1]) or equilibriumclimate
sensitivity (ECS), is one of the main climatic meas-
ures of future warming potential [2, 3]. The transient
climate response (TCR) is amore immediatemeasure

of global temperature change, defined as the temper-
ature increase at the instant the atmospheric CO2 has
doubled, following a increase of 1% each year com-
pounded to give a doubling time of 70 years. In con-
trast to the ECS, which is precisely defined in terms of
the estimated model parameters (see later, section 2),
the TCR is more subjective, appearing to derive from
assumptions made by Wanabe et al [4] in 1991.

In a recent assessment of the ECS using a form of
the Hasselman model, with an auto-regressive emer-
gent constraint, Cox et al [3] report an ECS of 2.8 ◦C
with 66% confidence limits of 2.2 ◦C–3.4 ◦C (see
also [5]). Such a large uncertainty range can make
IPCC policy planning based on them rather challen-
ging and can inhibit our ability to establish predictive
capacity for this climate system. Calculations based
on historical data give rise to smaller values of ECS
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than Atmosphere-Ocean General Circulation Mod-
els (AOGCMs) or paleoclimate data. For example, the
review byKnutti et al [6] reports that observationally-
based estimates of ECS (mean 2.51 ◦C) are notably
lower than estimates from AOGCMs and paleocli-
matology data (mean 3.41 ◦C). Current very likely
estimates for TCR fall in the range of 1 ◦C–2.3 ◦C
with mean of 1.7 recently established with emer-
gent constraint methods [5]. The mean TCR for 25
observationally-based studies reported in Knutti et al
[7] is 1.51 ◦C and the 5% and 95% limits of their dis-
tribution are 0.91–2.11. This range is also representat-
ive of those individual studies for which 5% and 95%
limits are recorded. Possible biases in the estimates
obtained by these various approaches are discussed
briefly in section 5.

1.1. Data-based mechanistic (DBM)modelling
The approach to estimating the ECS and TCR val-
ues used in the present paper is quite different from
the methods mentioned above. It is based on pre-
vious research (see e.g. [2, 8–12]) that shows how
models of low dynamic order are able to both emu-
late very closely the behaviour of large climate sim-
ulation models, at the globally-averaged level, and
explain the historical, globally averaged climate data.
In both cases, the estimated model parameters can
then provide estimates of the associated climate para-
meters. This approach exploits a method of dynamic
systems analysis known as DBM modelling (see e.g.
[13–15] and the prior references therein). This is a
general, statistically-based modelling approach that
was originally developed in a dynamic systems and
control setting and applied in hydrology, where it is
now one of the standard approaches to modelling
rainfall-flow behaviour [16]. It has been developed
and used successfully for applications in other areas
of study, from ecology and engineering to macro-
economics (see [13]), as well as climate (see e.g.
[9, 17, 18]).

The DBM modelling approach employs statist-
ically efficient methods of time-series model estim-
ation for continuous-time differential models and
is designed specifically to identify those physically
meaningful dynamic properties of a dynamic system
that are identifiable from time-series data. Such dif-
ferential equation models have a number of advant-
ages, from both scientific and statistical standpoints
[19]. In the context of climate system modelling,
they are of the same general, differential equation
form as those used in the construction of global cli-
mate models, but with a dynamic order identified
objectively from the globally averaged data to cap-
ture the identifiable ‘dominant modes’ [20] of the
observed dynamic behaviour in the globally averaged
system. Most importantly, the main equation in the
DBM model identified in this paper is characterized
by parameters that have immediate physical mean-
ing within the global dynamic system and, as we will

see, it can be compared directly with simple energy-
balance models of the climate system. Finally, the
model accommodates and quantifies the stochastic
nature of the dynamic system, so that the result-
ing uncertainty bounds estimated for ECS and TCR
are easily evaluated and based on the information
that is intrinsic to the data record. Although it has
these advantages, DBM modelling is an approach
that has not been widely deployed in ECS assessment
to date, and so the results presented in the paper
provide fresh insight into the value of these para-
meters and the related mechanisms on which they
depend.

1.2. Globally averaged climate data
The data used for DBM modelling in this paper
are the annual, globally averaged climate data,
shown in figure 1 for the historical period from
1856 to 2015. The GTA in figure 1(a) repres-
ents the changes in the globally averaged sur-
face temperature around a level defined by the
average of the temperature measurements over
the period 1951–1980. The total radiative for-
cing (TRF) in figure 1(b) is the sum of radiat-
ive forcing components due to: CO2 in the atmo-
sphere; volcanic activity; solar variability; and all
other anthropogenic sources (including negative
forcing from aerosols and indirect effects). Taking
year 2005 as illustrative (all values in W m−2), the
TRF = 2.08 which, when solar and volcanic forcings
are subtracted, yields a total anthropogenic forcing of
1.84, made up of:

• Greenhouse gases, Kyoto and Montreal protocol
minor gases= 2.65,

• Direct aerosols (organic and black carbon, SOx,
NOx, biomass burning, mineral clouds) = −0.41,
and

• Miscellaneous forcings (cloud albedo, strato-
spheric and tropospheric ozone, methane oxid-
ation, changes in land use and black carbon on
snow)=−0.39.

As we see later, the sharp negative excursions
are associated with volcanic eruptions that are not
always considered in climate modelling studies
(see e.g. figure SPM.5 in the IPCC 5th Assessment
Report) but prove useful in establishing both the
identifiability and novel structural nature of the DBM
model. The physical mechanisms that affect the rela-
tionship between the TRF and the GTA are inferred
from the constant-parameter DBM model identified
from the data in figure 1. As discussed in the next
section 2, the main climatically meaningful para-
meters derived from the model parameter estimates
are the ECS; the effective heat capacity of the ocean
(EHC); the TCR; and the feedback response time
(FRT or ‘Time Constant’), Tc.
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Figure 1. Global climate data: (a) GTA measurements, from the Carbon Dioxide Information Analysis Center (CDIAC); (b) the
TRF signal and the CO2 component of this total signal, from the Potsdam Institute for Climate Impact Research website; (c) the
AMO series, downloaded from the Physical Sciences Division, Earth System Research Laboratory of NOAA.

2. Estimation of global climate parameters
from observations

Climate modelling normally starts from basic phys-
ical principles, where the standard differential
equation for heat balance is [21]:

C
dT(t)

dt
= F(t)−λT(t) (1)

in which T(t) is the GTA and F(t) is the TRF. For-
cing inputs are offset by various feedbacks, linearly
approximated by λT(t), the climate feedback para-
meter multiplied by surface temperature anomaly.
The out-of-equilibrium imbalance ismeasured by the

heat flux into the ocean, ice and land [6] as C dT(t)
dt ,

where C is a constant EHC per unit area [22–24]. The
rapid and slow thermal response of the oceans is part
of this dynamic behaviour. For the subsequent ana-
lysis, it helps to write equation (1) in the following
form:

dx(t)

dt
=−λ

C
x(t)+

1

C
u(t) (2)

where x(t)=T(t) and u(t)= F(t).
The DBM approach to modelling the energy

balance is quite different because the differential
equation model structure is identified directly and

objectively from the time series data using model
order identification criteria (see chapter 6 in [13]) to
ensure that the model is not over-parameterized and
is fully identifiable from the available data. The para-
meters associated with this identifiedmodel structure
are then estimated usingmaximum likelihood optim-
ization. In this case, the resulting DBM model takes
the following form:

dx1(t)

dt
= a11x1(t)+ b10u(t) (i)

d2x2(t)

dt2
= a21

dx2(t)

dt
s+ a22x2(t)+ b20

du(t− τ)

dt
(ii)

x(t) = x1(t)+ x2(t). (iii)

(3)
Here u(t− τ ) is the TRF delayed by τ years that acts
as an the input to the second differential equation in
the variable x2(t); and x(t) is the simulated determin-
istic output of the model which simply combines the
outputs of the two component equations to produce
the model estimate of the GTA.

Although the model (3) is a continuous-time dif-
ferential equation, the observations related to this are
the discrete-time, annually sampled data in figure 1.
The associated observation equations are represented
as follows:
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Figure 2. The output of the final DBMmodel (red full line) compared with the GTA data. Also shown are the component states
x1(t) (red dash-dot line) and x2(t) (black line), which is raised by 0.7 ◦C for clarity.

y(k) = x(k)+ ξ(k) (i)

ξ(k) = c1ξ(k− 1)+ e(k). (ii)
(4)

Here, the argument ‘k’ indicates the sampling instant
with k= 1 :N, whereN = 160 is the number of annual
samples from 1856 to 2015. The disturbance ξ(k) is
identified as ‘coloured noise’ generated from a zero
mean, serially uncorrelated and normally distributed
series e(k), with variance σ2, by a first order AutoRe-
gressive (AR) model. Correlation analysis confirms
that, as required, the residual series e(k) is both seri-
ally uncorrelated in time and uncorrelated with the
observed TRF input series u(k), with a zero mean,
approximately normal amplitude distribution. It rep-
resents the completely random and irreducible source
of uncertainty in the model.

The optimal estimates of the parameters in
the model equations (3) are obtained using stand-
ard DBM analysis (see [25] for full details of the
analysis), which yields estimates of C= 1/b10 =
31.2 W y m−2 K−1 and λ= Ca11 = a11/b10 =
1.618 Wm−2 K−1. The ECS is obtained by multiply-
ing the steady state gainG= 1

λ = 0.618 by 3.7Wm−2

to yield 2.29 ◦C. The FRT is given by Tc =
C
λ = 19.3

years; and the time delay τ = 17.5 years. An estimate
of the TCR is obtained by simulating the model with
the prescribed input (see section 1), which yields a
value of 1.56 ◦C. This is lower than the 1.7 ◦C estimate
of Nijsse et al [5] but within their estimated 5%–95%
uncertainty range of 1.0 ◦C to 2.3 ◦C. One advantage
of the present analysis, in relation to that of Andrews
and Allen [21], for example, is that we are able to
evaluate the uncertainty in the EHC and λ, or any of

the other parameters. The evaluation of uncertainty
in climate models is, of course, very important and
this is discussed later in section 5.

3. The model response and the dynamic
characteristics of x1(t) and x2(t)

Figure 2 shows the GTA response to the TRF input
(red line) and the two components x1(t) (dash-dot
red line) and x2(t) (black line), generated by theDBM
model (3). The red arrows draw attention towhere the
reductions in x2(t) tend to counteract the increases of
x1(t) and lead to the ‘leveling’ periods in the GTA, the
last one starting around 2000.

Figure 3 shows the response of the estimated
model (3) to a forcing step input of 3.7 W m−2,
where the step is applied after 150 years. Note how
the oscillations in x2(t) are: (i) decaying slightly as
time progresses because there is no further change in
the TRF input to excite them; (ii) have a zero mean
value because x2(t) oscillates continually with similar
positive and negative excursions about x1(t); and (iii)
that this does not affect the underlying x1(t) response,
nor the final equilibrium level of x(t) and the related
estimate of the ECS. This behaviour arises because
equation (3)(ii) is a ‘stochastic oscillator’ which needs
sufficient excitation from the TRF to generate and
sustain its oscillations. Consequently, a slow ramp-up
of the TRF input taking 200 years to go from zero to
3.7 W m−2, without any sharp changes in level, does
not excite the oscillator sufficiently for larger oscil-
lations to be generated (red dashed line in figure 3).
Thismeans that the volcanic eruptions are required to
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Figure 3. DBMmodel response to sharp and slow ramp-step changes of 3.7 W m−2 in the TRF input applied after 150 years.

excite the oscillatory mode and this will not show up
in the absence of volcanic effects, as when forecasting
or performing scenario analysis, unless such perturb-
ations in the TRF are introduced into these exercises
(see section 7 and [25]).

4. The quasi-cycle oscillations of the
state x2(t)

The identification of the oscillatory state x2(t) was not
anticipated and shows the value of theDBMapproach
in uncovering unexpected aspects of the measured
dynamic behaviour [25]. The estimated period of the
oscillations in x2(t) is Pn = 55.3 years, with a 5%–95%
range between 51.6 and 60 years (see section 5). Most
significantly in climatic terms, the recession periods
of this oscillation coincide with and help to explain
the climate shifts (‘pauses’ or ‘leveling’) in the gen-
erally upward trend of the GTA, as we have seen
in figure 2 and which affect the forecasting results,
allowing for the prediction of the ‘leveling’ after 2000
[2]. The importance of an internalmultidecadal oscil-
lation mode, its dominance in the Atlantic and its
global temperature influence, has also been noted by
Knutson et al [26] and Barcikowska et al [27]. The
stochastic oscillations and the leveling periods seen in
the GTA response of our DBM model are consistent
with their conclusions.

The potential importance of quasi-cyclic beha-
viour with a period of around 50–70 years has been
known for some time. For example, Schlesinger and
Ramankutty [28] applied singular spectrum analysis
to four global-mean temperature records and identi-
fied a temperature oscillation with a period of 65–70
years. They conclude that this is the statistical result of
50–88 year oscillations for the North Atlantic Ocean
and its bounding Northern Hemisphere continents.
Furthermore, Bruun et al [29] and Skákala et al [30]
have shown that such a global pentadecadal model
is also a resonance consequence of wave interaction
properties at the ocean basin scale. The Atlantic mul-
tidecadal oscillation (AMO) variable plotted in the
lower panel of figure 1, as well as other multidecadal
oscillatory phenomena measured by climate scient-
ists, could be redolent of complex internal energy
exchange mechanisms that are giving rise to signific-
ant quasi-cyclic behaviour in the ocean-atmosphere
system.

We anticipate that these quasi-cyclic phenomena
are related to the features represented by the oscil-
latory state variable x2(t) and the decomposed struc-
ture of the equation (3)(ii) that can be obtained using
the transfer function (TF) decomposition methods
that are well known in systems and control analysis
(see [25]). This yields the block diagram shown in
figure 4, where the relevant equations are included
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Figure 4. Decomposed negative feedback block diagram of the model for x2(t).

in the two boxes, rather than the standard TF repres-
entations, so that the climatic meaning is clearer to
readers previously unacquainted with the TF meth-
ods of model analysis. The differential equations of
this decomposed model take the form:

C2
dx2
dt

= Fe(t)−λ2x2(t)

dx21
dt

= G2x2(t)

(5)

where x21(t) is the ‘feedback path’ variable and
Fe = u(t− τ)− x21(t) is the difference between the
delayed incoming TRF input and x21(t), which
provides the input to the energy balance equation
in the forward path (cf equation (1)). This is a neg-
ative feedback system where the feedback path con-
sists of a simple integrator with gain G2 that accumu-
lates the changes in the x2(t) component of the GTA.
The estimated parameters in this feedback model are
C2 = 148 Wy m

−2 K−1; λ2 = 1.22 Wm−2 K−1 and
G2= 1.913.

The overall effect of this negative feedback mech-
anism is to create the oscillatory mode of behaviour
that is so important in explaining the subtle oscillat-
ory ‘quasi-cycle’ variations observed in the GTA. In
other words, the combination of the gains and time
constants in the two boxes is creating some form of
heat energy exchange that promotes the oscillatory
nature of the response. The presence of the integrator
in the feedback path suggests that this feedback part
of the system relates to mixing processes that are very
long term. This is consistent with transport processes
that occur slowly in the global oceanic system, which
is accumulating the effects of the changes in the glob-
ally averaged temperature. Thus we can surmise that
this interchange of energy between the atmosphere
and the ocean, and vice-versa, is a physical process
that has helped to sustain the oscillatory movements
in x2(t) and so caused fairly regular, periodic changes
in the GTA over the last 160 years. The features of

the volcanic excitation of the stochastic oscillator we
present here could help explain the empirical finding
of Canty et al [31], where an attenuated volcanic for-
cing linkage with AMO and GTA response has been
noted, with a periodicity of about 65 years.

Considering the above results, we can be reas-
onably confident that the oscillatory state is present
and playing an important part in explaining the
changes in the GTA. Moreover, the decomposition
into the feedback system is a standard procedure that
produces a unique deterministic result; and the inter-
pretation in this decomposed form, with an integ-
rator in the feedback path, makes reasonable phys-
ical sense. On the other hand, while the structure
of this decomposition is well defined, the estimated
parameters that characterize this structure are quite
uncertain (see [25]). As a result, the values of the
parameters in the decomposed system, and any inter-
pretation of them, must be considered with some cir-
cumspection. Clearly, more research is required to
interpret the nature of the heat energy exchanges that
are suggested by the decomposed model.

Finally, it is interesting to note the high correla-
tion between the estimated quasi-cycle and the quasi-
cycle in the AMO series. Schlesinger and Ramankutty
[28] suggest that themost probable cause of the AMO
is an inherent internal oscillation of the atmospheric-
ocean system. This seems a reasonable argument and
so it makes sense to consider how the AMO oscilla-
tions can be modelled in a way that links them with
the internal oscillatory state x2(t). The full details of
this analysis are given in [25] and it will suffice here
to say that x2(t) can be related reasonably well to the
AMO by a second-order model.

5. Uncertainty and climate modelling

The authors of chapter 1 of the 2019 Special IPCC
Report [32] introduce the term ‘deep uncertainty’
as a situation when experts or stakeholders do not
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Table 1.MC simulation results for the Final DBMModel based on 100 000 random realizations defined by the estimated error
covariance matrix. When the TRF is treated as a noisy series, the MC simulation is computationally intensive, requiring parameter
re-optimization for each draw. However, this leads to results similar to those in this table [25].

Parameter (units) Estimate 5% Bound 95% Bound

ECS (◦C) 2.29 2.11 2.49
TCR (◦C) 1.56 1.43 1.68
Tc (y) 19.3 16.5 23.3
Pn (y) 55.3 51.6 60.0
λ (W m−2 K−1) 1.62 1.49 1.75
C (Wy m−2 K−1) 31.2 26.9 37.3

know or cannot agree on: (1) appropriate conceptual
models that describe relationships among key driv-
ing forces in a system; (2) the probability distribu-
tions used to represent uncertainty about key vari-
ables and parameters; and/or, (3) how to weigh and
value desirable alternative outcomes. They point out
that such problems go back at least to the 1979 assess-
ment by the US National Academy of Sciences, com-
monly referred to as the ‘Charney Report’.

One particular problem is the evaluation of
uncertainty in the TRF input, where the uncertainty
is considered as the sum of the uncertainties of
its components, as quantified by the 5 and 95%
uncertainty bounds, defined by ‘line-by-line’ estim-
ates, or ensemble results, obtained from the atmo-
spheric chemistry modules of AOGCMs (as part of
the ACCMIP). With AOGCMs, the bounds on the
GTA are then evaluated from an ensemble of simula-
tionswith, as far as we can ascertain, no attention paid
to possible covariance between these uncertainty val-
ues. Alternatively, with single equation approaches,
such as energy balance models, the associated regres-
sion coefficient variance and residual errors are used,
sometimes employing a Bayesian approach. However,
the currently estimated climate sensitivity values and
range obtained in this manner are likely to be affected
deleteriously because, by focusing on fast feedbacks,
the slowly varying and mostly oceanic component
wrongly features as serial correlation in the error pro-
cesses [32].

In the present paper, uncertainty is handled using
an approach that is well known in the statistics, time
series analysis and dynamic systems analysis. The
estimated uncertainty in the DBMmodel parameters,
as defined by the estimated parametric error covari-
ance matrix, defines the uncertainty in the estimates
of the model parameters and provides the required
information for the Monte Carlo (MC) simulation
analysis used to estimate the climate parameters that
are derived from these (see e.g. [13]). The uncer-
tainties in the climatically important derived para-
meters, as obtained using this analysis, are shown
in table 1, based on the Cholesky factorization of
the estimated covariance matrix. These figures can
be compared with those in table S8.1 of Randall
et al [33], as obtained from MAGICC emulations of
the 18 AOGCMs used in the CMIP3 and used by
Andrews and Allen [34] to calculate time constants.

Based on this table, the means and 5%–95% confid-
ence intervals for the ECS and Tc, respectively, are
2.95 ◦C (2.17 ◦C–3.13 ◦C); and 30.3 years (16.0–
44.7 years) and our DBM model results fall within
these bounds. Van Hateren [12] is one study in the
same spirit as the present one, although with more
assumptions and restrictions. His ECS estimate is
2.0 ◦C (1.5 ◦C–2.5 ◦C) and his TCR estimate is
1.5 ◦C (1.2 ◦C–1.8 ◦C). His intervals are widened
by about 0.4 ◦C based on uncertainty over the value
of forcing for CO2 doubling. Our estimate of EHC
is C= 31.2 Wy m−2 K−1, with a 5%–95% range
of 26.9 to 37.3. This compares with the results of
Knutti et al [6], who provide an estimated EHC of
24 Wy m−2 K−1, and corresponding 5%–95% inter-
val of 6–42Wy m−2 K−1, based on their analysis of 17
CMIP3GCMmodels. In the recent wide-ranging ECS
sensitivity review and assessments of Sherwood et al
[35], they report a baseline ECS 5%–95% range of
2.3 ◦C–4.7 ◦C. Our reported ECS is 2.29 ◦Cwith 5%–
95% range 2.11 ◦C to 2.49 ◦C, which is within their
uncertainty range. As in the deterministic case, the
MC-based estimate of TCR is obtained by repeated
simulation of the DBM model for the prescribed
input (see section 1), yielding 1.56 ◦C (with a 5%–
95% interval of 1.43 ◦C–1.68 ◦C). This estimate is
within the 5%–95% range of 1.0 ◦C–2.3 ◦C recently
established with ‘Emergent Constraint’ methods [5]
but the mean is lower than the 1.7 ◦C they obtain.

The narrow uncertainty bounds shown in table 1
arise because the TRF input used in the DBM model
analysis is that evaluated over the period 1856–2015,
as shown in the middle panel of figure 1, which con-
tains significant effects of volcanic activity that have
been excluded from some studies. It is clear, how-
ever, that any additional uncertainty in the TRF will
lead to increased uncertainty bounds for the para-
meters in table 1 and this needs to be considered.
Using an approach that is well known in the sys-
tems literature, this uncertainty in the TRF input
could be evaluated by optimal fixed interval smooth-
ing estimation of the time variable parameters in
a dynamic harmonic regression (DHR) model; and
this is could then used as the stochastic input in the
MC simulations. However, this leads to the relat-
ively small level of uncertainty in the TRF shown in
the top panel of figure 6, as discussed in the next
section 6.
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Figure 5. The top two panels show the sequential estimates â11(k) and b̂10(k) of the two DBMmodel parameters a11 and b10 in
equation (3)(i). The bottom two panels show the associated sequential estimates of the derived climate parameter estimates
ˆECS(k) and T̂c(k).

Considering the nature of the TRF components
and their methods of measurement, it is not surpris-
ing that there is some debate about the TRF and its
associated uncertainty. Several explicitly calculated
time series of the radiative forcing have appeared in
the climate literature over the twentieth century, for
example those cited in Schwartz [36]. These data sets
are point estimates and cannot be taken together to
estimate a distribution of forcing values. The most
widely agreed distribution is that appearing in the
2013 IPCC Report [37] and so we base our estimates
on the 90% uncertainty range for 2011 that appears
in figure SPM.5 on page 14 of the ‘Summary for
Policy makers’, with a lower bound 1.13 W m−2 and
an upper bound 3.33 W m−2. This is based on the
TRF in 2011 relative to 1750 and so it represents a
considerable level of uncertainty if it is applied uni-
formly over the 160 years of data. In addition, we also
take into account the uncertainty on the estimated
parameters in table 1, which adds 25% more uncer-
tainty to the radiative forcing. In total, this translates
to a total uncertainty range of ±1.38 W m−2 on the
TRF input. When this very high level of uncertainty
is applied, it naturally leads to considerably revised
bounds for the climate parameters estimates in table 1
of 1.43 ◦C–3.14 ◦C for the ECS; and 0.99 ◦C–2.16 ◦C
for the TCR.

Marvel et al [38] conclude that ECS estimated
from historical Atmospheric Model Intercomparison

Project climate model simulations is biased low com-
pared to abrupt 4× CO2 experiments. However, it is
important to note that their estimate is based on sim-
ulation data over the fairly short 1979–2005 period
and not, as in this paper, on the longer globally aver-
aged historical time series from 1856 to 2015. On
the other hand, these historical records are still rel-
atively short and the climate signal is masked by suf-
ficient noise that even optimal statistical estimation is
unlikely to be able to extract robust estimates of very
low frequency components [25]. However, these con-
tribute little to warming in the early decades of a for-
cing response.

The evidence for such long period time constants
is naturally present in simulation model data but
only because these are based, in part, on hypotheses
about the long-term behaviour of the climate that
will naturally affect the resulting ECS estimate. Our
DBMmodelling, on the other hand, is concerned only
with inferences that can be made from time series
that derive from observational data and so it is not
influenced by simulation model construction hypo-
theses. This is not in any way a criticism of large cli-
mate model simulations; it is simply to emphasize the
difference between analysis based on such simulated
data and that based directly on the historical data, as
reported in the present paper. We believe that the res-
ults from both sources are important in any balanced,
model-based assessment of global warming.
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Figure 6. Uncertainty in the TRF and the subsequent responses of x(t), x1(t) and x2(t) in the final DBMmodel, as obtained by
MC analysis based on the estimated uncertainty in the model parameters.

Finally, given the importance attached to the ECS
in climate change research, it is reasonable to ask
whether our estimate of the ECS is well defined
and stable in statistical terms. This can be demon-
strated by considering how well the estimates con-
verge over time using a sequential estimation dia-
gnostic (where the state parameters are re-estimated
at every sampling instant, based on all of the data
up to a given time point: for more details see [13]
and [25]). The top two panels of figure 5 show the
sequentially updated estimates, â11(k) and b̂10(k), of
the two parameters a11 and b10 in equation (3)(i)
over the period 1915–2015, based on data from 1856.
These define estimates of the two climate paramet-
ers EĈS(k) and T̂c(k) shown in the bottom two pan-
els. Note particularly how the sequential estimates
EĈS(k) and T̂c(k) are very volatile up to about 1950
but stabilize thereafter for 65 years. Not surpris-
ingly, the sequential estimates of the other climate

parameters C and λ also stabilize well after 1950. This
stability arises because the accuracy of the data is
improving and the cyclic nature of the more subtle
oceanic response component x2(t), with its natural
period of 55.3 years, becomes identifiable after about
100 years.

6. Stochastic response

The MC analysis also enables us to generate ran-
dom ensemble realizations of the model responses,
from which the uncertainty in these responses can
be evaluated as percentile bounds. The first panel in
figure 6 shows the TRF with its associated 90 per-
centile bounds shown in grey, as estimated by the
DHR model analysis. The second panel shows the
mean response of the DBM model as a black line,
once again with the 90 percentile bounds shown in
grey, and the simulated response of the estimated
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model x̂(t) shown as a red dash-dot line, which is
virtually indistinguishable. The third and lower pan-
els show the mean and 90 percentile bounds for the
two components of x̂(t), i.e. x̂1(t) and x̂2(t), respect-
ively. These results, which are based on MC analysis
using 5000 realizations, show that themodel is statist-
ically well defined and provides a reasonable explan-
ation of the GTA record. The component state x̂1(t)
provides the dominant response to the TRF stimulus;
while the second component state x̂2(t) shows that the
quasi-cyclic component is well defined but withwider
uncertainty bounds that include the effects of some
marginally unstable realizations.

7. Conclusions

A third order differential equation model that
accounts for both dynamic and stochastic responses
can be identified objectively from the globally aver-
age climate data, without any pre-conceptions about
the model structure or parameter values. Following
the DBM modelling approach, however, the iden-
tified model can be interpreted in climatic terms.
The associated re-evaluation of the ECS value and its
range of uncertainty results in a useful improvement
in the accuracy of resolving ECS when compared
to current methods used in the IPCC context, with
an ECS estimate of 2.29 ◦C with a 5%–95% confid-
ence range of 2.11–2.49; and a TCR of 1.56 ◦C with
a 5%–95% range of 1.43 ◦C–1.68 ◦C. When a high
level of uncertainty in the forcing series is taken into
account, however, the confidence range increases to
1.43 ◦C–3.14 ◦C for ECS and 0.99 ◦C–2.16 ◦C for
TCR.

The model shows the globally averaged atmo-
sphere as a parallel connection of two pathways. The
upper pathway describes the dominant first order
relationship between the TRF input and its more dir-
ect effect on the GTA, dominated by the effect of the
anthropogenic increases of CO2. The second pathway
is the less direct pathway, where, after the time delay
of τ = 17.5 years, the TRF enters the negative feed-
back system with an integrator in the feedback path
that, we suggest, represents possible heat exchange
with the ocean, leading to a stochastic oscillatory
mode of dynamic behaviour. This model explains the
changes in the GTA very well and yields estimates
and 5%–95% confidence ranges for the ECS and TCR
and other climatic parameters, as well as the Natural
Period (Pn) of the oscillatory component.

The oscillatory component appears to explain the
‘climate shifts’ discussed, for example, by Swanson
and Tsonis [39] and Essex and Tsonis [40]. It has an
estimated period of 55.3 years, with a 5%–95% con-
fidence range between 51.6 and 60 years. Most signi-
ficantly in physical terms, the recession periods of this
oscillation coincide with, and are used by the model
to explain, the climate shifts (‘pauses’ or ‘leveling’) in
the generally upward trend of the GTA.Moreover, the

period of this oscillatory component is not that differ-
ent from the 62.5 year period of the AMO, to which
it can be related dynamically [25].

The linear model response assessed here is stimu-
lated by the TRF input, which is dependent on car-
bon emissions and natural effects, such as volcanic
activity. The possibility of nonlinearity was investig-
ated but this did not reveal any significant evidence
of nonlinear dynamic behaviour. It seems likely, how-
ever, that the linear-like behaviour is representing the
relatively small perturbations of the climate over the
160-year observational interval and that the underly-
ing system is almost certainly nonlinear. The lightly
damped and regular behaviour of the DBM model’s
oscillatory component x2(t) could alter its character
in the future depending on whether the stochastic
effects become more prominent. Should this occur,
more drastic changes could occur in future if this trig-
gers nonlinear stochastic dynamic effects.

It is always important to evaluate howwell defined
and stable any estimated parameter is in statistical
terms and a sequential estimation diagnostic check
has shown that our re-evaluated ECS estimate of
2.29 ◦C is not only well-defined statistically but also
has been close to a relatively stable level for the past
65 years. We can be reasonably confident, therefore,
that it is statistically well-defined and useful, at least
for short to medium time prediction and emission
management purposes. Of course, the DBM model
described in this paper has been inferred statistic-
ally from the data available when the present study
was initiated and they can change over time. Also,
like any model that has been inferred from a lim-
ited amount of normal operational data, without the
ability to perform planned experiments, it provides
a stimulus for future research. For example, we feel
that further research is required on the possibility of
heat exchange with the ocean using higher temporal
resolution. This should help to establish how global
teleconnection transport across ocean basins and pro-
cesses (ENSO, PDO, NPI) might explain a possible
GTA-AMO relationship.

The DBM approach used in this paper to model
globally averaged climate behaviour provides a new,
low dynamic order, stochastic model, together with
new results that are intended to complement and
extend the findings in recent papers and IPCC reports
[3, 5, 32, 35]. It provides additional information that
we hope will help to enhance the conclusions gener-
ated bymore traditional climatemodels andmethods
of analysis.

Data availability statement

All the time-series data used in this analysis
is freely available for research: http://cdiac.ornl.
gov/trends/temp/jonescru/jones.html; www.pik-
potsdam.de/∼mmalte/rcps/; www.cgd.ucar.edu/cas/
catalog/climind/AMO.html. Themodels in this paper
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have been inferred statistically from the data record
available when the present study was initiated and
they can change over time. The data that support the
findings of this study are available upon reasonable
request from the authors.
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