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Abstract

The pituitary gland produces a variety of hormones that regulate other glands and
organs throughout the body to control critical bodily functions including growth,
metabolism and the stress response. Endocrine pituitary cells are electrically ex-
citable: they generate action potentials to regulate their intracellular calcium level
([Ca?T];) and eventually hormone secretion. The interplay between hypothalamic
neurohormones and feedback signals coming from peripheral endocrine glands con-
trols hormone secretion from pituitary cells by regulating the properties of ion chan-
nels and in turn the pattern of electrical activity. Therefore, elucidating the mecha-
nisms underlying hormone secretion involves characterisation of ionic conductances
which govern pituitary cell excitability.

This PhD thesis explores how sodium and potassium leak channels regulate pi-
tuitary cell excitability. Leak channels play an important role in tuning the resting
membrane potential, appropriately maintaining it close to the threshold for gener-
ating action potentials in all pituitary cells. The dynamic clamp electrophysiology
technique was used to virtually vary the conductance of the leak channels, and
evaluate their effect on the pattern of electrical activity and intracellular calcium
concentration in the GH4 lacto-somatotroph cell line as well as in murine primary
pituitary cells. It was found that very small alterations in the conductance of sodium
and potassium leak channels result in substantial changes in the patterns of electri-
cal activity and intracellular calcium oscillations in both GH4 and primary pituitary
cells. Increasing the conductance of sodium leak channels by only a few fractions of
a nanosiemen (nS) enhanced the excitability of pituitary cells significantly. In con-
trast, increasing the conductance of potassium leak channels by comparable values
reduced the excitability and intracellular calcium concentration of the cells.

Despite the crucial role of sodium leak conductance in tuning the resting mem-



brane potential at depolarised levels away from the potassium equilibrium poten-
tial, the molecular identity of this channel in pituitary cells has remained unknown.
One candidate protein channel is the sodium leak channel, non-selective (NALCN).
The NALCN channel is widely expressed in the central nervous system, and has
been characterised as a key modulator of cell excitability in several neuronal pop-
ulations. Hence, in the second stage of my PhD, I constructed a lentiviral vector
to knock down the NALCN channel in murine primary anterior pituitary cells in
culture, and evaluate NALCN’s role in regulating cell excitability and intracellular
calcium concentration using electrophysiology and calcium imaging techniques. I
discovered that: (1) NALCN encodes for sodium leak channel to acutely adjust the
resting membrane potential and sustain intrinsically-regulated spontaneous firing in
endocrine pituitary cells; (2) the NALCN channel is crucial for maintaining spon-
taneous [Ca®T]; oscillations; (3) NALCN mediates the major depolarising inward
leak current in pituitary cells; and (4) as in neurons, extracellular calcium inhibits
NALCN activity in pituitary cells. These discoveries advance our understanding of
how cell excitability and consequently hormone secretion is regulated in endocrine

pituitary cells.
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Chapter 1

Introduction

1.1 Introduction to the pituitary gland and its
hormones

The pituitary gland, also known as a “master gland”, is composed of three dis-
tinct parts: (1) the neurohypophysis or posterior pituitary where the axonal ter-
minals originating from hypothalamic nuclei (paraventricular nucleus and supraop-
tic nucleus) are located; These neurons synthesise vasopressin and oxytocin, and
transport them to the posterior pituitary where they are released into the general
circulation; (2) the intermediate lobe which consists of melanotrophs where the a-
melanocyte stimulating hormone (a-MSH) is synthesised and released; and (3) the
adenohypophysis or anterior pituitary which is a heterogeneous population of cells
comprising the major portion of the entire pituitary gland. The anterior pituitary
is populated with several secretory cell types each of which synthesises and releases
essential hormones that regulate other glands and organs throughout the body to
control critical bodily functions such as growth, metabolism, reproduction and the
stress response (Musumeci et al, 2015). Table 1.1 summarises the main functions of

anterior pituitary cell types and their targets.

1.1.1 Regulation of pituitary hormone secretion

In vivo measurement of pituitary hormone levels across several time points from
numerous animals (e.g. mouse, rat, rhesus monkey, sheep and human) has revealed
an episodic or pulsatile rhythm in the pattern of the hormone secretion (Belchetz
et al, 1978; Clark, 2002; Plotsky and Vale, 1985; Henley et al, 2009; Clarke, 2019).

The observed oscillatory rhythms in the concentration of pituitary hormones in vivo



imply that there are regulatory interactions between different types of molecules,

which give rise to these naturally occurring oscillations. This is because an isolated

hormone or receptor will never generate any oscillations (Goldbeter, 1996). A series

of studies from the 1950s onwards demonstrated that a key player in driving these

ultradian oscillations in pituitary hormones is the pulsatile secretion of stimulatory

and inhibitory factors from neurons of the hypothalamic paraventricular nucleus

(PVN) (Guillemin, 1967; Belchetz et al, 1978; Plotsky and Vale, 1985).

Cell types Hormones
produced

Main targets of
these hormones

Function

Corticotroph ACTH

Thyrotroph TSH

Somatotroph GH

Lactotroph  PRL

Gonadotroph LH, FSH

Adrenal glands
(Adrenal cortex)

Thyroid gland

Liver, muscle, bone

Ovaries, mammary
glands, uterus

Gonads (testes,
ovaries)

Regulating the glucocorticoid &
mineralocorticoid secretion

Regulating T3 and T, secretion
(Controlling metabolism)

Promoting growth and
metabolism

Controls lactation and the se-
cretion of milk, oestrogen and
progesterone

Controlling the secretion of an-
drogens (testosterone, dihy-
drotestosterone), progesterone
and oestrogen

Table 1.1: The list of endocrine anterior pituitary cell types, their hormones,
targets and main functions in mammals.



1.1.2 Hypothalamic regulation of hormone secretion

In 1955, Guillemin and Rosenberg reported that isolated dog and rat anterior pi-
tuitary cells in culture stop secreting adrenocorticotropic hormone (ACTH) 8 days
after their isolation, however the addition of hypothalamic fragments to the culture
restored ACTH secretion (Guillemin and Rosenberg, 1955). During the same pe-
riod, Saffran and Schally confirmed that hypothalamic fragments contain a factor
that controls the secretion of ACTH by the pituitary gland (Saffran and Schally,
1955). These studies led to the discovery of a new peptide molecule initially termed
corticotropin releasing factor (CRF, later known as corticotropin releasing hormone)
originating from the hypothalamus, which controls ACTH secretion from the ante-
rior pituitary gland (Guillemin and Rosenberg, 1955). Further studies showed that
the hypothalamic PVN also produces a number of other stimulatory factors such
as growth-hormone releasing hormone (GHRH), gonadotropin-releasing hormone
(GnRH) and thyrotropin-releasing hormone (TRH), as well as inhibitory factors
including dopamine and somatostatin to regulate hormone release from the ante-
rior pituitary (Guillemin, 1967). Further investigations showed that the episodic
secretion of the hypothalamic factors into the hypophyseal portal vessels drives the
physiological pulsatile secretion from pituitary gland (Belchetz et al, 1978; Clark
2002; Plotsky and Vale, 1985). For instance, in rhesus monkeys bearing hypothala-
mic lesions it was demonstrated that a constant administration of exogenous GnRH
failed to rescue the normal pulsatile pattern of gonadotropin secretion including
luteinizing hormone (LH) and follicle-stimulating hormone (FSH) (Belchetz et al,
1978). In contrast, the intermittent delivery of a synthetic GnRH once per hour
(which is the physiological frequency of LH/FSH secretion in the rhesus monkey)
restored the normal pattern of gonadotropin (FSH and LH) release (Belchetz et al,
1978).

1.1.3 Feedback signals from periphery

Follow-up studies reported that the FSH secretion per se is not reliant on episodic
GnRH input to the pituitary gland. Rather, FSH secretion is dependent on the

negative feedback loop arising from elevated steroid hormones in the periphery (re-



viewed in Clark, 2002). Other studies also confirmed that the observed pulsatile
secretion of growth hormone by the pituitary gland is modulated by both the in-
teraction between the feedforward action of GHRH and somatostatin as well as
negative feedback from peripheral peptides (e.g. IGF-1) (Plotsky and Vale, 1985;
Anderson et al, 2004; Barinaga et al, 1983; Bilezikjian and Vale, 1983; Clark et al,
1988). Similarly, negative feedback by elevated glucocorticoid levels in the periph-
ery inhibits the expression and secretion of corticotropin releasing hormone (CRH)
in the hypothalamus (Tasker and Herman, 2011), and supresses ACTH release and
transcription in pituitary cells (Deng et al, 2015). Further studies also reported the
autocrine and paracrine feedback regulation of hormone secretion in the pituitary
gland (Stojilkovic et al, 2010). Overall, the network of different hormones interact-
ing via positive and negative feedback loops originating from the central nervous
system and periphery leads to the episodic pattern of hormone secretion from pi-
tuitary gland. Figure 1.1 illustrates the key points described in sections 1.1.2 and
1.1.3.
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Figure 1.1: Feedforward and feedback signals originating from brain and
periphery to regulate hormone secretion from pituitary gland.

Episodic secretion of the hypothalamic neurohormones into the hypophyseal portal
vessels drives the physiological pulsatile secretion from pituitary gland. Following
that, the negative feedback induced by elevated peripheral hormone levels inhibits
the expression and secretion of pituitary hormones and the hypothalamic neuro-
hormones. Overall, the network of different hormones interacting via positive and
negative feedback loops originating from the central nervous system and periphery
leads to the episodic pattern of hormone secretion from pituitary gland (the diagram
is adapted from Harrisons Manual of Medicine, 18th Ed, p.1126).



1.1.4 The importance of pulsatile secretion

The fluctuation in hormone levels is a key aspect of normal physiology (Lightman
et al, 2008; Leng and Brown, 1997). The constant exposure of cells to hormones
results in desensitization of receptors and down regulation of processes essential
for secretion, and eventually an inability of cells to respond to hormone signals
(Lightman et al, 2008, Leng and Brown, 1997). In fact, interruption in the pulsatility
of pituitary hormones (and other hormones such as insulin) can cause a number of
psychiatric and metabolic disorders (Young et al, 2007 and 2004; Lightman et al,
2008).

1.2 Cell excitability and hormone secretion

Neurons were the first cells to be found capable of generating electrical activity. It
was then quickly discovered that the most important role of electrical activity in
neurons is signal transmission which happens via the flow of ionic currents. The
ionic charges are spread on the inner and outer surface of the cell membrane thus
making it function as a capacitor. The voltage difference between the intracellular
and extracellular space established by the ionic charges is called the membrane
potential, with the extracellular space acting as the reference point. In neurons,
the application of an electrical signal at any location on the cell membrane can
alter the membrane potential locally and that could be used to conduct the signal.
However, the current flow and signal propagation over extensive distances will decay
due to the gradual loss of currents through the cell membrane unless a driving force
is used to amplify the signal. Although for short distance signalling the current
decay may not be problematic, for long distance signalling, a passive signalling
machinery is not sufficient and an active signalling pathway is required. Thus,
neurons employ complex and interacting voltage-dependent ion channels that can
trigger the explosion of ion influx and efux, defined as an “action potential”, once
the membrane voltage reaches a certain threshold (initially discovered by Emil du
Bois-Reymond, 1848). Using this machinery, the electrical signalling can carry a
message and travel at 100 m/s or more without any decay (Hodgkin, 1937a, Hodgkin
1937b).



In 1975, it was discovered for the first time that endocrine pituitary cells are also
excitable and can generate action potentials in a similar way to neurons (Kidokoro,
1975). This excitability of small spherical endocrine cells which secrete hormones
at a significantly lower rate than neurons releasing neurotransmitters appeared as
an exotic behaviour at first sight and raised questions concerning its physiological
purpose. Before this discovery, Douglas and colleagues were using electrophysiol-
ogy techniques to unravel the molecular cascades of hormone secretion from the
endocrine medullary chromaffin cells in the adrenal gland (Douglas, 1968). They
followed the thought lines of muscle physiologists studying the role of membrane po-
tential and Ca®* in muscle contraction who had previously introduced the concept of
excitation-contraction coupling. This inspired the idea of stimulation-secretion cou-
pling in endocrinology with Ca?" playing the central role (Douglas, 1968). These
discoveries paved the way for researchers studying the role of excitability in en-
docrine pituitary cells. Collectively, their work indicated that the stimulation of
secretion is associated with alterations in membrane potential and that endocrine
anterior pituitary cells generate rapid, coordinated movements of ions across the cell
membrane which leads to reversible changes in the membrane potential called action
potentials (reviewed in Mollard and Schlegel, 1996). Of note, although endocrine
pituitary cells are not perfectly spherical in situ and can emanate some cytoplasmic
processes, these cells approximate this phenotype when isolated n wvitro.

Over the past decades, the use of the patch clamp electrophysiology technique
combined with calcium imaging has provided solid evidence for the modulation of
action potentials by stimulatory and inhibitory factors, which results in the reg-
ulation of [Ca®"]; transients in endocrine pituitary cells (reviewed in Mollard and
Schlegel, 1996). Temporal and spatial [Ca*"|; changes control numerous cellular
functions including secretion, protein synthesis and gene expression over a wide
time scale (milliseconds to hours) in endocrine pituitary cells (reviewed in Mollard
and Schlegel, 1996). For example, spatial distribution of cytosolic Ca®" oscillations
and its distance from large dense-core hormone vesicles regulate the rate of hormone
secretion in pituitary cells (reviewed in Zorec 1996). Further, the amplitude of the
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the Ca?* localisation, gating mode of voltage-gated calcium channels as well as the
driving force during the channel opening, which determines the amount of Ca?*
influx (Parsons et al, 1995). For modulating the activity of various intracellular
calcium-sensitive enzymes such as adenylyl cyclase (Cooper et al, 1995) and for
modification of structural proteins such as depolymerisation of actin (Vitale et al,
1995), global Ca®" alterations over a timescale of seconds is required. Other crucial
cellular activities such as the induction of immediate early gene expression requires
a long (minutes to hours) and constant exposure to cytosolic Ca?*, which is tightly
regulated by the pattern of electrical activity produced by endocrine pituitary cells
(Li et al, 1994 and 1996). The pattern of electrical activity and consequently the
associated cytosolic Ca?" oscillations differs among and within different pituitary
cell types which impacts the pattern of secretion. Many experimental and theoreti-
cal works have shown that both basal and receptor-controlled hormone secretion by
the pituitary gland depends on the excitability of pituitary cells (Leng and Brown,
1997; Stojilkovic et al, 2010; Fletcher et al, 2018).

1.2.1 Pacemaking mechanism

Endocrine pituitary cells express various voltage-gated channels including voltage-
gated calcium, potassium, sodium and chloride channels, and generate action poten-
tials autonomously associated with transients of intracellular Ca?t (Kwiecien and
Hammond, 1998). In the absence of external stimuli, 50 to 75% of pituitary cells
(depending on the preparation) fire action potentials resulting in rhythmic Ca** en-
try through L-type voltage-gated Ca’" channels (Stojilkovic et al, 2010). Initially,
it was speculated that the spontaneous firing in pituitary cells is a consequence of
isolating and dissociating pituitary cells. Ho