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Abstract

The unfolded protein response (UPR), crucial for the maintenance of endoplasmic

reticulum (ER) homeostasis, is tied to the regulation of multiple cellular processes in

pathogenic fungi. Here, we show that Candida albicans relies on an ER-resident pro-

tein, inositol-requiring enzyme 1 (Ire1) for sensing ER stress and activating the UPR.

Compromised Ire1 function impacts cellular processes that are dependent on func-

tional secretory homeostasis, as inferred from transcriptional profiling. Concordantly,

an Ire1-mutant strain exhibits pleiotropic roles in ER stress response, antifungal toler-

ance, cell wall regulation and virulence-related traits. Hac1 is the downstream target

of C. albicans Ire1 as it initiates the unconventional splicing of the 19 bp intron from

HAC1 mRNA during tunicamycin-induced ER stress. Ire1 also activates the UPR in

response to perturbations in cell wall integrity and cell membrane homeostasis in a

manner that does not necessitate the splicing of HAC1 mRNA. Furthermore, the

Ire1-mutant strain is severely defective in hyphal morphogenesis and biofilm forma-

tion as well as in establishing a successful infection in vivo. Together, these findings

demonstrate that C. albicans Ire1 functions to regulate traits that are essential for vir-

ulence and suggest its importance in responding to multiple stresses, thus integrating

various stress signals to maintain ER homeostasis.
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1 | INTRODUCTION

Eukaryotic cells have evolved sophisticated mechanisms to ensure

proper folding of proteins, especially the secretory and transmem-

brane proteins, through processes that largely occur in the endoplas-

mic reticulum (ER). The ER is also the site for other diverse cellular

functions and is implicated in conveying signals to other organelles.

Therefore, ER integrity is crucial for cell homeostasis and necessi-

tates the requirement for adaptive regulatory mechanisms for its

maintenance. The unfolded protein response (UPR) is one such

adaptive mechanism that is activated in response to the presence of

unfolded or misfolded proteins in the ER (Kimata & Kohno, 2011;

Walter & Ron, 2011). Consequentially ‘ER stress’, when created and

if it persists, can lead to metabolic and neurodegenerative disorders

and can cause cancer in humans (Wang & Kaufman, 2012).

ER homeostasis facilitates the fulfilment of cellular secretory

demands and goes hand in hand with the ability of pathogenic fungi

to trigger the UPR during an infection in order to adapt to ER stress

conditions. ER quality control operates in several pathogenic fungi

where it is pivotal in modulating antifungal resistance and virulence

(Krishnan & Askew, 2014). Upon sensing ER stress, fungi activate the

UPR pathway resulting in the activation of a subset of genes that

facilitate cells to regain ER homeostasis (Malhotra & Kaufman, 2007).

The ER-resident transmembrane protein, inositol-requiring enzyme

1 (Ire1), functions as the ER stress sensor in fungi. In Saccharomyces

cerevisiae, Ire1 oligomerizes via its luminal domain upon interaction

with unfolded proteins (Cox, Shamu, & Walter, 1993; Mori, Ma,

Gething, & Sambrook, 1993). Subsequent Ire1 autophosphorylation

facilitates signalling through its cytosolic domain and activates its ribo-

nuclease activity (Korennykh et al., 2009; Lee et al., 2008). This series

of events is then followed by the splicing of an intron in the bZIP tran-

scription factor HAC1 by active Ire1 (Cox & Walter, 1996; Mori,

Kawahara, Yoshida, Yanagi, & Yura, 1996). Functional Hac1 migrates

to the nucleus and activates the expression of UPR target genes such

as those encoding ER-resident chaperones and protein-modifying

enzymes (Travers et al., 2000). The final outcome is the translocation

of the misfolded protein from the ER to the cytosol for proteasome-

mediated degradation by a process referred to as ER-associated deg-

radation (ERAD; Ruggiano, Foresti, & Carvalho, 2014). Autophagy, an

alternative degradative response mechanism, is also activated to

remove the damaged organelles including the ER (Yorimitsu &

Klionsky, 2007).

The activation of the UPR in pathogenic fungi such as Aspergillus

fumigatus (Ire1-Hac1) and Cryptococcus neoformans (Ire1-Hxl1; Hac1

orthologue) occurs in response to various stressors and is initiated by

Ire1-dependent unconventional splicing of an intron in HAC1 mRNA.

Disruption of Ire1 function in these fungi results in increased suscepti-

bility to antifungal drugs that target the cell wall or membrane and

compromises their virulence (Cheon et al., 2011; Feng et al., 2011).

Despite the conservation of the Ire1-Hac1-mediated UPR pathway in

most eukaryotic species, Candida glabrata Ire1 functions independent

of Hac1 to counter ER stress (Miyazaki, Nakayama, Nagayoshi,

Kakeya, & Kohno, 2013). This indicates that Ire1-dependent stress

responsive pathways have diversified significantly in C. glabrata, com-

pared to other fungi.

Candida albicans, a commensal and an opportunistic pathogen, is

the major cause of mucosal and systemic fungal infections in individuals

with compromised immune systems and individuals with dysbiosis of

the microbiota (Polvi, Li, O'Meara, Leach, & Cowen, 2015). During ER

stress, the C. albicans HAC1 mRNA undergoes an unconventional splic-

ing event to remove a 19 bp intron, similar to Hac1 homologues in

other fungi. This splicing event generates a functional Hac1 that acti-

vates UPR target genes to mount an ER stress response in C. albicans

(Wimalasena et al., 2008). As the involvement of Ire1 in this splicing

event remains unexplored, we decided to characterize this key compo-

nent and its contribution to the UPR in C. albicans. Here, we provide

experimental evidence to establish that during tunicamycin-induced ER

stress, the processing of HAC1u (unspliced) mRNA is dependent on

functional Ire1 and that C. albicans is reliant on the canonical

Ire1-Hac1-mediated UPR pathway for ER quality control. Additionally, a

comprehensive analysis of Ire1-mutant phenotypes in this fungus rev-

ealed significant impacts of Ire1 on various physiological processes such

as cell wall maintenance, antifungal resistance, hyphal morphogenesis

and biofilm formation. Accumulated evidence indicates that ER stress

responses are interwoven with fungal pathogenicity in most fungi

(Krishnan & Askew, 2014). In this study, we show that C. albicans also

relies on Ire1-mediated stress responses for its pathogenesis, thus

expanding the link between Ire1-dependent stress responsive pathways

and fungal pathogenesis to C. albicans.

2 | RESULTS

2.1 | Ire1 activity promotes cell survival to various
stresses

Given that the protein structure of Ire1 is most conserved in eukaryotes

including fungal members, we first analysed the C. albicans Ire1 for

sequence conservation with other fungal Ire1 orthologues. For this, we

aligned Ire1 amino acid sequences of C. albicans, CaIre1 (NCBI Acces-

sion No: AOW26437); S. cerevisiae, ScIre1 (NCBI Accession No:

DAA06773); C. glabrata, CgIre1 (NCBI Accession No: CAG59035);

A. fumigatus, AfIre1 (NCBI Accession No: EAL87884) and C. neoformans,

CnIre1 (NCBI Accession No: OXH74833) using Clustal Omega

(Figure S1). CaIre1 shares 51.0% similarity and 35.2% identity with

ScIre1, and 46.3% similarity and 30.1% identity with CgIre1 (EMBOSS

Needle; Figure S1). Sequence alignment results suggest that the core

domain structure of Ire1 is conserved among these fungal species.

CaIre1 consists of an N-terminal hydrophobic signal sequence followed

by an ER-luminal domain, a transmembrane domain, a serine-threonine

protein kinase catalytic domain and a nuclease domain at the C-termi-

nus; these domains are also conserved in Ire1 orthologues (Figure 1a).

The signal sequence at the N-terminus and the ER luminal domain serve

as determinants for the localization of Ire1 to the ER membrane and for

the sensing of unfolded proteins, respectively (Credle, Finer-Moore,

Papa, Stroud, & Walter, 2005; Gardner & Walter, 2011). The
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F IGURE 1 Ire1 is required for various stress responses in C. albicans. (a) Schematic representation of the conserved domain structure of
S. cerevisiae and C. albicans Ire1. ER, endoplasmic reticulum; TM, transmembrane. Arrows indicate the conserved catalytic residues in the
nucleotide-binding pocket of the Ire1 kinase domain. The box indicates 10 amino acid residues with the three highly conserved amino acid
residues (indicated in bold) in the active site of the Ire1 endonuclease domain. (b) qPCR analysis for expression of IRE1 in the indicated strains.
Fold change is calculated by 2−ΔΔCT, normalized to ACT1 (endogenous control). Values are mean ± SD derived from three independent RNA
preparations. (c) For phenotypic comparison, fivefold serial dilutions of cell suspensions of indicated strains were spotted on YEPD plates
supplemented with drugs at specified concentrations. Plates were incubated at 30�C for 48 hr
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transmembrane domain tethers Ire1 to the ER membrane and is shown

to play a key role in sensing alterations in membrane lipid composition

(Halbleib et al., 2017; Tam et al., 2018). The serine-threonine protein

kinase catalytic domain is the most conserved segment of Ire1 that

allows for its autophosphorylation concomitant with the induction of its

nuclease activity (Papa, Zhang, Shokat, & Walter, 2003; Shamu &

Walter, 1996; Sidrauski & Walter, 1997).

Ire1 is classified as an essential gene based on a prior study that

was unable to obtain a null mutant of this gene in C. albicans

(Blankenship, Fanning, Hamaker, & Mitchell, 2010). Therefore, an ire1

diminished expression (ire1 DX) mutant strain was constructed by

deleting one allele of IRE1 and replacing the 50 region of the second

allele with the weakly expressed PGA5 promoter (Woolford

et al., 2016). We generated an ire1 DX complemented strain (ire1 DX

comp) by introducing a wild-type IRE1 allele at the HIS1 locus in the

ire1 DX mutant strain background (Table S1, see Materials and

Methods). RT-PCR and qPCR analyses on the ire1 DX mutant strain

confirmed diminished expression of IRE1, which was restored to wild-

type levels in the ire1 DX comp strain (Figure 1b and Figure S2A), con-

firming successful reconstitution of IRE1 expression.

Next, we analysed the ability of the ire1 DX cells to grow in the

presence of various stressors. Compared to the wild-type and comple-

mented strain, the ire1 DX mutant strain exhibited considerably

increased susceptibility to the cell wall stressors Congo red and

calcofluor white (CFW); the ER stressors tunicamycin, DTT and

2-mercaptoethanol (β-ME) and the azole antifungal drugs fluconazole

and ketoconazole (Figure 1c). We infer that Ire1 is essential for

C. albicans growth in the presence of different stressors. Thereafter,

the ability of various stressors to transcriptionally activate C. albicans

IRE1 was analysed. In S. cerevisiae, the UPR coordinates the synthesis

of proteins as well as lipid components of the ER to ensure proper

biogenesis of this organelle. While the synthesis of ER-resident pro-

teins is regulated by the UPR, membrane lipid synthesis is regulated

by inositol; both inositol depletion and accumulation of misfolded pro-

teins activate S. cerevisiae Ire1 (Cox, Chapman, & Walter, 1997).

Therefore, in addition to the ER stressor (tunicamycin), the cell wall

stressor (CFW) and the azole antifungal drug (fluconazole), we also

included growth medium depleted in inositol (YNB without inositol)

for analysing IRE1 mRNA levels. Wild-type C. albicans cells treated

with these stressors for 1 and 5 hr did not exhibit an increase in IRE1

mRNA levels, compared to the untreated wild type (Figure S2B). This

indicates that stress-dependent activation of Ire1 may largely be

dependent on post-transcriptional/translational modifications, in turn

affecting its oligomeric status, which is a prerequisite for stimulating

its kinase and RNase activities.

2.2 | Transcriptional response to compromised
Ire1 function

In order to determine the global consequences of compromised Ire1

expression in C. albicans, we compared the mRNA profiles of wild-

type and ire1 DX cells grown in YEPD medium. A total of 228 genes

were downregulated and 362 genes were upregulated with expres-

sion fold changes of more than 1.5 and less than −1.5 with p values

≤.05 in the ire1 DX mutant strain compared to the wild-type strain.

The most conserved evident role of Ire1 is its involvement in the ER

stress-induced activation of the UPR pathway in various fungi (Feng

et al., 2011; Jung, So, & Bahn, 2016; Richie et al., 2011). Given the

increased susceptibility of the ire1 DX mutant strain to tunicamycin,

considered to be an indicator of ER stress (Figure 1c), we implicate

C. albicans Ire1 in maintaining ER homeostasis plausibly by activating

the UPR pathway. We therefore reasoned that cellular processes

dependent upon full activation of the UPR pathway could be affected

in the ire1 DX mutant strain. In many fungi, cell wall modulation, syn-

thesis of secretory and transmembrane proteins, translation and ribo-

some biogenesis are reported to be controlled by the ability of the ER

to support secretory homeostasis (Feng et al., 2011; Tanaka

et al., 2018; Wimalasena et al., 2008). Consistently, genes that encode

for transporters such as FET34, FTR1, NAG3, CTP1 and NUP

(Figure 2a) and those that are related to protein synthesis, transport,

translation and ribosome biogenesis (RPL27A, RPL6, RPL42, ECM39

and ZUO1) were among the list of downregulated genes. FET34 and

FTR1 are among the highest downregulated genes that are shown to

be activated in iron-limiting conditions. Both these genes code for the

multicopper ferroxidases that constitute a part of the high affinity iron

uptake system and contribute to hyphal morphogenesis and virulence

(Chen, Pande, French, Tuch, & Noble, 2011; Cheng et al., 2013). As

perturbation in secretory homeostasis also affects cell wall biogenesis

and virulence traits such as hyphal morphogenesis and biofilm forma-

tion (Wimalasena et al., 2008), genes associated with these functional

categories (NAG3, ERG2, FET34 and FTR1, YWP1 and RBE1) also fea-

tured prominently in the top 50 downregulated genes.

Gene ontology (GO) enrichment analysis identified 33 GO terms

that were overrepresented for the downregulated genes in this analy-

sis. The five highest categories of genes that were downregulated

included gene classes associated with response to chemicals and

stress (20%), metabolic processes (14%), regulation of biological pro-

cesses (12%), transporters (9%) and protein synthesis, transport, trans-

lation and ribosome biogenesis (8%). Other significant enriched GO

terms were those involved in cell surface and biofilm formation (6%),

nucleus organization (7%) and filamentous growth (8%; Figure 2b).

The top 50 upregulated gene list comprised of 30 genes that are

uncharaterized with unknown functions (Figure 2a). The topmost

upregulated gene (C2_09880C; orf19.1363) is also an uncharacterized

gene predicted to be induced under weak acid stress and during bio-

film formation (Nobile et al., 2012; Ramsdale et al., 2008). The most

enriched GO term out of a total of 35 tems in the upregulated gene

set was cellular response to chemical/stress/drug (19%; Figure 2c).

The other enriched terms included processes such as protein synthe-

sis (translation and ribosome biogenesis), transport and modification

(17%), various metabolic processess (15%), transport (13%) and

filamentation (6%), followed by cell surface and biofilm formation (6%;

Figure 2c). Several of the proteins encoded by the top 50 upregulated

genes are those that respond to oxidative, pH or nutrition stress

(SOD3, RBR1, AOX2 and SOD5; Figure 2a). These findings indicate that
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F IGURE 2 Genome-wide transcriptional profiling of the ire1 DXmutant strain. (a) Heat map displaying the top 50 upregulated and
downregulated genes with expression fold changes of more than 1.5 and less than −1.5 with p value ≤.05 in ire1 DXmutant strain versus wild
type. Functional categories are represented as the percentage of total genes that were (b) downregulated and (c) upregulated in ire1 DXmutant
strain. (d) Validation of the genome-wide transcriptional data by qPCR in the ire1 DX mutant strain. Fold change is calculated by 2−ΔΔCT,
normalized to ACT1 (endogenous control). Values are mean ± SD derived from three independent RNA preparations
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the upregulation of stress responsive genes occurs in order to com-

pensate for ER stress generated by the compromised expression of

Ire1 in C. albicans. Changes in transcript levels of selected genes were

verified by qPCR analysis (Figure 2d).

Interestingly, levels of expression of a large number of genes

(306 out of the total of 590 diffferentially regulated genes) that are

described in the Candida Genome Database (CGD) as those that are

induced/repressed during biofilm formation in spider medium or on

F IGURE 3 Legend on next page.
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rat catheters were altered in the ire1 DX mutant strain. Aside from

this, another striking observation in our profiling data was the differ-

ential regulation of genes involved in the ergosterol biosynthesis path-

way (ERG1, ERG11, ERG2, ERG24, ERG6 and ERG4). Collectively, these

observations suggest that regulation of cellular processes such as bio-

film formation and sterol homeostasis requires Ire1-dependent

maintanence of secretory homeostasis in C. albicans. Thus, we surmise

that compromised Ire1 function evokes a transcriptional response that

can counteract perturbation in secretory homeostasis. As a result,

complementary signalling networks are impacted that are essential for

operating cellular processes dependent on secretory homeostasis.

Altogether, our transcriptional profiling data suggests that optimal

Ire1 biosynthetic capacities are required for C. albicans to mount a

functional ER homeostatic response to maintain optimum cell/ER

homeostasis.

2.3 | Ire1 mediates the unconventional splicing of
C. albicans HAC1 mRNA to activate the UPR in
response to tunicamycin

Tunicamycin, by inhibiting N-glycosylation, interferes with protein

folding and results in the accumulation of misfolded proteins in the ER

lumen (Guillemette et al., 2011). Consequentially, Ire1 binds to the

unfolded proteins to activate the UPR, a conserved process in all

eukaryotes (Hollien, 2013). Hac1, the only characterized component

of the UPR pathway in C. albicans, is activated after the excision of a

19 bp long intron from its mRNA, in response to tunicamycin-induced

ER stress (Wimalasena et al., 2008). In order to assess the involvement

of Ire1 in this HAC1 mRNA splicing event, we examined the occur-

rence of unconventional splicing of HAC1u (unspliced) mRNA and

expression of its target genes following tunicamycin exposure in spe-

cific strains of interest. HAC1 splicing was monitored by

(a) performing RT-PCR using primers across the HAC1 mRNA intron

followed by analysing the PCR products on an agarose gel and

(b) using TaqMan probes to minimize background errors to obtain

higher efficiency and accuracy during target amplification. The

appearance of two RT-PCR products (unspliced and spliced) in the

wild-type and ire1 DX comp strain, compared to unstressed cells,

where only one product is visible (unspliced), indicated that efficient

splicing of the intron occurred in the tunicamycin-exposed strains

(Figure 3a). The absence of a spliced HAC1 transcript in the ire1 DX

mutant strain suggested that compromised Ire1 expression severely

affected the splicing event, demonstrating the requirement of proper

Ire1 biosynthesis for efficient splicing of the intron from HAC1 mRNA.

Taqman analysis using specific primer-probe pairs for the intron (for

HAC1u pre mRNA) and exon–exon junction (for mature HAC1i mRNA)

was consistent with the results obtained by RT-PCR. We observed a

13-fold induction in spliced HAC1i transcript in the wild-type cells fol-

lowing ER stress, while the induction was compromised (<1.5-fold) in

the ire1 DX mutant strain (Figure 3b).

Next, to evaluate further the role of Hac1 as the downstream

transcription factor of Ire1, we measured the transcript levels of a

subset of Hac1-dependent UPR targets (SEC61, YSY6, KAR2,

orf19.2756 and ERD2) known to be upregulated in response to

tunicamycin-induced ER stress (Thomas et al., 2015; Wimalasena

et al., 2008). Presuming that the absence of the spliced HAC1i tran-

script should be reflected in the impaired activation of Hac1 targets,

we examined the transcript levels of the target genes following

tunicamycin exposure (4.7 μM for 2 hr). On treatment with

tunicamycin, all of the measured UPR marker genes were significantly

upregulated ≥1.5-fold in wild-type cells, whereas their expression was

compromised in the ire1 DX mutant strain (≤1.5-fold induction), corre-

lating well with HAC1i transcript levels in these strains (Figure 3c). This

observation points to the involvement of the Ire1 protein kinase in

activating the UPR in C. albicans via splicing of the atypical intron in

HAC1 mRNA. We, therefore, infer that in the C. albicans UPR signal-

ling pathway, Hac1 is the transcription factor that functions down-

stream of Ire1.

To elucidate the contribution of the protein kinase and nuclease

functions of Ire1 in the context of ER stress in C. albicans, we created

strains with impaired kinase or nuclease functions. In S. cerevisiae, the

kinase and nuclease activities of Ire1 can be segregated by mutating

two catalytic residues (D797N and K799N) in the nucleotide binding

pocket of the Ire1 kinase (Figure 1a and Figure S1). In S. cerevisiae, this

mutated Ire1 loses its ability to phosphorylate but retains its RNase

activity (Rubio et al., 2011). Likewise, the nuclease active site of

S. cerevisiae Ire1, present within 10 conserved amino acid residues of

its endonuclease domain, contains three conserved residues important

for its nuclease activity (Lee et al., 2008). Considering the overall

sequence conservation of these residues in C. albicans Ire1

(Figure S1), we constructed strains expressing kinase-dead (IRE1-KD)

and nuclease-dead (IRE1-ND) versions of Ire1. IRE1-KD contains the

D890N and K892N mutations in the Ire1 kinase domain, whereas

F IGURE 3 Ire1 mediates the processing of HAC1 mRNA in response to ER stress. (a) For HAC1 splicing pattern analysis during endoplasmic
reticulum (ER) stress, cDNA was obtained from the indicated strains after treatment with 4.7 μM tunicamycin for 2 hr. PCR amplification was
done using primers flanking the HAC1 intron, and the product was analysed on a 4% agarose gel. The size difference between the spliced HAC1

(HAC1i) and unspliced HAC1 (HAC1u) isoform is 19 bp. (b) qPCR with TaqMan probe specific for spliced HAC1 (HAC1i) or unspliced HAC1 isoform
(HAC1u) in wild-type and ire1 DXmutant strains. (c) qPCR of HAC1-dependent unfolded protein response target genes in the indicated strains
following tunicamycin treatment. Fold change is calculated by 2−ΔΔCT, normalized to ACT1 (endogenous control). Values are mean ± SD and are
derived from three independent RNA preparations. (d) For phenotypic comparison, fivefold serial dilutions of cell suspensions of the indicated
strains were spotted onto YEPD plates containing indicated ER stressors. Plates were incubated at 30�C for 48 hr. (e) Analysis of HAC1 splicing in
strains containing kinase-dead (IRE1-KD) and nuclease dead (IRE1-ND) version of IRE1. cDNA was obtained from indicated strains after treatment
with 4.7 μM tunicamycin for 2 hr
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F IGURE 4 Legend on next page.
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IRE1-ND contains a 10-amino acid deletion within the Ire1 endonucle-

ase domain (D1161-Y1170; Figure 1a). The contributions of these

domains to ER stress were examined by allowing the constructed

mutant strains to grow in the presence of ER stressors (tunicamycin

or DTT). The growth defect of the ire1 DX mutant strain was restored

in the strain expressing the wild-type IRE1 but not in the strains

expressing the IRE1-KD or IRE1-ND mutations in the ire1 DX mutant

strain (Figure 3d). For further validation, both mutants were analysed

for their abilities to splice the 19 bp intron from HAC1 mRNA after

tunicamycin exposure. In contrast to the presence of the spliced iso-

form of HAC1i mRNA in the wild-type and ire1 DX comp strains, this

isoform was absent in all mutated versions of Ire1 under tunicamycin

conditions (Figure 3e). Taken together, these data point to the indis-

pensability of the kinase and nuclease domains of Ire1 in dealing with

ER stress in C. albicans. We conclude that following tunicamycin expo-

sure, Ire1 protein kinase copes with the load of misfolded proteins

accumulated in the ER by processing HAC1u mRNA in order to acti-

vate the UPR and that the Ire1-Hac1-mediated UPR pathway is evolu-

tionary conserved in C. albicans.

2.4 | Ire1 supports cell wall and cell membrane
homeostasis

C. neoformans cells exposed to fluconazole and CFW activate the

Ire1-dependent UPR pathway, suggesting that the UPR serves as the

core defence mechanism for cell wall- and cell membrane-induced ER

stress. Additionally, deletion of Ire1 and Hac1 results in increased sus-

ceptibility to azole antifungal drugs and cell wall stressors in

C. neoformans and A. fumigatus (Cheon et al., 2011; Feng et al., 2011;

Jung, Kang, & Bahn, 2013). Since the ire1 DX mutant strain exhibited

increased susceptibility to azole antifungals and cell wall stressors

(Figure 1c), we were prompted to evaluate the precise role of Ire1 in

regulating susceptibility to these antifungal drugs. As ER is the site for

ergosterol and lipid biosynthesis, we presumed that a compromised

UPR affecting ER homeostasis and ER-associated processes could be

the underlying basis for the increased susceptibility of the ire1 DX

mutant strain to azole antifungal drugs. In line with this reasoning, our

transcriptional profiling data indicated compromised expression of key

ergosterol biosynthesis genes (ERG24, ERG11 and ERG2) in the ire1

DX mutant strain that resonated well with the decreased transcript

levels of these genes (Figure 2d). We presumed that any perturbation

in this pathway could have a direct effect on membrane stability that

could be exacerbated by fluconazole-induced perturbation in sterol

homeostasis (Abe, Usui, & Hiraki, 2009). To test this possibility, we

examined the response of the ire1 DX mutant strain to compounds

interfering with cell membrane integrity (SDS and amphotericin B).

The increased susceptibility of the ire1 DX mutant strain to these

compounds confirmed the requirement of Ire1 in maintaining mem-

brane stability (Figure 4a). Furthermore, based on this observation, we

asked if C. albicans Ire1 activates the UPR via sensing lipid bilayer

stress. Inositol depletion, by inducing membrane stress, can cause ER

stress without resulting in the accumulation of misfolded proteins in

the ER lumen (Lajoie, Moir, Willis, & Snapp, 2012; Merksamer &

Papa, 2010). Consequentially, membrane stress is sensed by both

mammalian and S. cerevisiae Ire1, resulting in the activation of the

UPR (Halbleib et al., 2017; Volmer & Ron, 2015). To test whether

C. albicans Ire1 responds to membrane stress via HAC1 splicing, we

sought to explore the splicing event in wild-type cells grown for 1 and

5 hr in growth medium lacking inositol. This experiment shows the

occurrence of Ire1-dependent splicing of HAC1 mRNA in wild-type

cells grown in medium containing inositol for 5 hr, indicating that

growth for long durations in this medium may be inducing ER stress

leading to activation of the UPR. In contrast, HAC1 splicing was more

pronounced at 5 hr in medium lacking inositol (Figure 4b), indicating

that Ire1 responds to accumulation of misfolded proteins (Figure 3a)

as well as to membrane stress by initiating the processing of HAC1u

mRNA in C. albicans, albeit at different time points. Thus, it is likely

that Ire1 impacts azole susceptibility via its ability to sense aberrations

in membrane homeostasis.

Given the dependency of cell wall biosynthesis on secretory

homeostasis, both the UPR and ER quality control mechanisms are

essential for maintaining cell wall integrity (Krysan, 2009; Lesage &

Bussey, 2006; Levin, 2011; Scrimale, Didone, de Mesy Bentley, &

Krysan, 2009). Increased susceptibility of the ire1 DX mutant strain to

cell wall-damaging agents (Figure 1c) also pointed to the requirement

of a healthy working UPR for cell wall maintenance in C. albicans. As

previous studies have reported that cell wall defects are remediated

by the addition of an osmotic stabilizer (e.g., sorbitol) in the growth

medium (Chen et al., 2005; Cheon et al., 2011), we analysed our

strains for osmoremedial phenotypes in the presence of sorbitol.

Inclusion of sorbitol rescued the susceptibility of the ire1 DX mutant

strain to cell wall stressors without affecting susceptibility to the ER

stressors, tunicamycin and DTT (Figure 4c). This finding indicates that

ER stress-induced loss of cell viability is not due to an intrinsic cell

wall defect in the ire1 DX mutant strain, and the inability of the

mutant to sustain growth in the presence of cell wall stressors is pri-

marily a consequence of impaired secretory homeostasis due to ER

F IGURE 4 Ire1 impacts cell wall and cell membrane homeostasis in C. albicans. (a) Phenotypic comparison of the indicated strains on YEPD

plates containing membrane perturbing agents, grown at 30�C for 48 h. (b) RT-PCR showing HAC1 splicing (on a 4% agarose gel) in response to
inositol depletion over time. cDNA was obtained from the wild type grown in YNB media (with or without inositol). (c) Phenotypic comparison of
the indicated strains on different cell wall stressors at indicated concentrations, with or without sorbitol. Plates were incubated at 30�C for 48 hr.
(d) Immunoblot showing phosphorylation status of Mkc1 and Cek1 in the indicated strains. Total cell protein was extracted from indicated strains
after treatment with 5 μg ml−1 tunicamycin for 1 hr. (e) RT-PCR showing HAC1 splicing (on a 4% agarose gel) for the wild-type and mkc1Δ/Δ cells
exposed to tunicamycin for 1 hr. (f) Analysis of HAC1 splicing in wild-type cells in response to cell membrane stress (fluconazole) and (g) cell wall
stress (calcofluor white). Tunicamycin-treated cells are used as a control
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stress. Furthermore, compromised expression of Ire1 did not result in

changes in cell wall architecture as assessed by transmission electron

microscopy and cell wall composition analysis (data not shown). Col-

lectively, these results suggest that defective secretory homeostasis is

the basis for increased susceptibility to cell wall stressors in the ire1

DX mutant strain and implicates Ire1 in maintaining cell wall integrity

via its role in maintaining secretory homeostasis in C. albicans.

Given that defects in the cell wall activate the Mkc1 MAPK-

regulated cell wall integrity (CWI) pathway, we decided to explore

whether defects in the Ire1-dependent ER stress response pathway

can impact the CWI pathway. Hence, we decided to analyse the sta-

tus of the CWI pathway in wild-type and ire1 DX mutant cells in the

presence and absence of tunicamycin. The Mkc1 MAPK was constitu-

tively phosphorylated (1.7-fold) in the ire1 DX mutant strain, com-

pared to the wild-type strain (Figure 4d). Tunicamycin treatment

resulted in significantly enhanced levels of phosphorylated Mkc1 in

the ire1 DX mutant strain (2.6-fold), compared to the treated wild-

type strain (Figure 4d). Next, to test if the CWI pathway plays a role in

activating the Ire1-dependent UPR pathway, we monitored the splic-

ing of HAC1 mRNA in the tunicamycin-treated mkc1Δ/Δ (MAPK regu-

lating CWI pathway) mutant strain (Navarro-García, Sánchez, Pla, &

Nombela, 1995). During tunicamycin treatment, HAC1u mRNA was

processed in the mkc1Δ/Δ cells similar to wild-type levels (Figure 4e),

suggesting that the Mkc1 MAPK pathway does not directly regulate

the splicing of HAC1 mRNA during ER stress. These findings indicate

that (a) the absence of Ire1 results in cell wall defects but does not

impair the activation of CWI pathway, (b) ER stress activates both the

Ire1-Hac1-dependent UPR and the CWI pathways and

(c) Ire1-dependent UPR is essential for circumventing cell membrane

and cell wall stress in C. albicans.

The stress-responsive calcineurin pathway is involved in circum-

venting both ER and cell wall stress as the C. albicans calcineurin

mutant (cmp1Δ/Δ) exhibits increased susceptibility to tunicamycin

and cell wall damaging agents (Bader, Bodendorfer, Schröppel, &

Morschhäuser, 2003; Thomas et al., 2015). In order to examine the

effect of the calicneurin pathway in activating the Ire1-dependent

UPR pathway, we analysed the processing of HAC1u mRNA in the

cmp1Δ/Δ cells. We show that the levels of spliced HAC1 mRNA in

tunicamycin-treated cmp1Δ/Δ cells remained similar to the treated

wild-type cells (Figure S4), indicating that, similar to the Mkc1 MAPK

pathway, the calcineurin pathway does not directly regulate the

processing of the HAC1u mRNA in this pathogenic fungus.

Next, we asked whether the role of Ire1 in regulating susceptibil-

ity of C. albicans to azole antifungal drugs and cell wall stressors is

dependent on the activation of the UPR pathway via the unconven-

tional splicing of HAC1 mRNA. To answer this question, we examined

if wild-type cells treated with fluconazole (10 μg ml−1) or CFW

(20 μg ml−1) can activate HAC1 mRNA splicing over time (1, 3 and

5 hr) as this event is considered a hallmark for activation of the UPR.

HAC1u mRNA was not processed at any of the tested time points in

fluconazole- and CFW-treated wild-type cells (Figure 4f,g and

Figure S3). This finding indicates that ER stress induced by azole and

cell wall stressors is essentially different from that induced by

tunicamycin and possibly does not necessitate HAC1 splicing up to

5 hr. It is possible that, unlike tunicamycin, other stressors do not

result in the rapid accumulation of misfolded proteins and hence do

not initiate Ire1-dependent HAC1 splicing at the time points tested.

Overall, these results place Ire1 as the link between protein quality

control and membrane homeostasis for the maintainance of cell wall/

membrane integrity in C. albicans.

2.5 | Ire1 activity impacts virulence traits of
C. albicans

The abilities of C. albicans to (a) adapt to host microenvironments with

different iron content, (b) switch from the yeast to hyphal morphology

and (c) form biofilms on mucosal surfaces are important fungal pro-

cesses for establishing a successful infection in a mammalian host. All

of these virulence traits are supported by an intact Ire1-dependent

secretory pathway (Cheon et al., 2011; Feng et al., 2011; Jung

et al., 2013). During infection in vivo, C. albicans routinely encounters

iron deficiency due to iron sequestration by the host

(Ramanan, 2000). In order to circumvent iron-starved environments,

C. albicans activates the expression of essential iron regulon genes

(Chen & Noble, 2012) that facilitate iron acquisition from the host

(Fourie, Kuloyo, Mochochoko, Albertyn, & Pohl, 2018). Transcriptional

profiling analysis revealed downregulation of genes associated with

maintaining iron homeostasis (FET34, RBT5, FET3 and FRE10), pointing

towards the remodelling of iron-dependent metabolic pathways in the

ire1 DX mutant strain. To this end, we tested the ability of the ire1 DX

mutant strain to grow in iron-limiting medium that contains the iron

chelator bathophenanthroline disulfonate (BPS). The ire1 DX mutant

strain failed to grow on medium containing BPS, while the rec-

onstituted strain restored the growth defect to wild-type levels

(Figure 5a), indicating that functional Ire1 may have a role in facilitat-

ing adaptation of C. albicans to low iron stress.

Considering the differential regulation of genes involved in hyphal

morphogenesis and biofilm formation in the ire1 DX mutant strain

(Figure 2a), we also assessed the contribution of Ire1 in regulating

these important virulence traits. The ability of the ire1 DX mutant

strain to form hyphae compared to the wild-type and complemented

strains was assessed in different filament-inducing medium at 37�C.

The ire1 DX mutant strain exhibited defects in hyphal development in

liquid media as well as on solid surfaces (Figure 5b). Hyphal develop-

ment in the ire1 DX mutant strain was reduced to 1% compared to

71% in the wild-type and ire1 DX comp strains, after 3 hr of growth in

Spider medium with a commensurate increase in pseudohyphal cells

(66%) and budding yeast cells (33%; Figure 5b). The hyphal defect in

the ire1 DX mutant strain was more pronounced after 24 hr as evi-

dent by the presence of a large proportion of yeast cells (Figure 5b). A

similar hyphal defect in the ire1 DX mutant strain was also observed

in all media tested (Figure S5), confirming the impact of Ire1 on hyphal

morphogenesis in C. albicans. These results led us to examine the viru-

lence of the ire1 DX mutant strain in a mouse model of systemic infec-

tion. Even after 15 days post infection, mice infected with the ire1 DX
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mutant strain remained healthy and asymptomatic, while mice

infected with the wild-type and ire1 DX comp strains failed to survive

beyond 7 and 10 days post infection, respectively (Figure 5c).

As the ability to adhere to different surfaces for efficient biofilm

formation is considered a key virulence trait in C. albicans, we tested

the strains of interest for their abilities to adhere to and form biofilms

F IGURE 5 Legend on next page.
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F IGURE 5 Ire1 regulates pathogenicity traits in C. albicans. (a) For phenotypic comparison, indicated strains were spotted on YEPD plates
supplemented with BPS. Plates were incubated at 30�C for 48 hr. (b) Indicated strains were grown in filamentation-inducing Spider medium; in
liquid (upper panels) and on solid surface (lower panel) at 37�C and bud-to-hyphae transition was monitored over time by microscopy. (c) Kaplan–
Meier survival curves showing percent survival of ire1 DX mutant strain in a mouse model of systemic infection. The mice were infected
intravenously with cells (106 cells/mouse) on Day 0 of the experiment, and survival was monitored for 15 days post infection (Log-rank [Mantel-
Cox] test; p = .0004). (d) in vitro biofilm formation for wild type, ire1 DX, and ire1 DX comp in Spider medium after 24 hr of culture growth was
monitored. OD600 readings were measured for adhered biofilms after removal of the medium and normalized to the wild-type strain (OD600 set
to 1.0) and the mean ± SD is shown. The asterisk indicates a significant difference relative to wild type. A two-tailed, unpaired t-test was used to
determine the statistical relevance. ***p < .001. (e) in vivo biofilm formation was assessed by inoculating central venous catheters with the
indicated strains, introduced into rats and incubated for 24 hr. Catheters were removed and visualized by scanning electron microscopy (SEM)

F IGURE 6 Schematic depicting the involvement of Ire1 in circumventing multiple stresses in C. albicans. Accumulation of unfolded proteins in
the endoplasmic reticulum (ER) lumen, caused by tunicamycin-induced ER stress, results in the activation of the canonical unfolded protein

response (UPR) branch via Ire1. This protein kinase also responds to membrane stress, generated by depleting the growth medium of inositol, to
activate the UPR via processing of HAC1umRNA. Ire1 mediates the splicing of pre-mRNA (HAC1u) to mature mRNA (HAC1i) by virtue of its
endoribonuclease activity. The spliced HAC1 synthesizes functional Hac1 protein and activates the UPR target genes for survival during ER stress.
Processing of HAC1u mRNA is not necessitated in response to other stress stimuli such as cell wall and cell membrane stress, though the
involvement of the splicing event at longer time points (beyond 5 hr) cannot be ruled out (indicated by dotted arrows). ER stress also activates
complementary signalling pathways such as the cell wall integrity pathway that may operate directly or indirectly with the Ire1-dependent UPR
pathway to coordinate cellular responses in C. albicans

12 of 19 SIRCAIK ET AL.



on polystyrene plates. The biofilm-forming abilities of the ire1 DX

mutant strain was reduced by �1.5-fold relative to the wild-type

strain (Figure 5d). To assess the ability of the ire1 DX mutant strain to

form biofilms in vivo in a rat central venous catheter biofilm model

system, implanted catheters were inoculated with the strains shown

in Figure 5e, and biofilm formation was visualized after 24 hr by scan-

ning electron microscopy (SEM) (Andes et al., 2004). While the wild-

type and the ire1 DX comp strains formed normal and mature biofilms,

the ire1 DX mutant strain was defective in normal biofilm formation,

evident from the presence of only yeast cells in the catheter lumen

(Figure 5e). These findings demonstrate that Ire1 is required for nor-

mal biofilm development both in vitro and in vivo in C. albicans. Taken

together, these results indicate that several important C. albicans viru-

lence traits are intertwined with the ability of Ire1 to support secre-

tory homeostasis in C. albicans.

3 | DISCUSSION

The UPR regulated by the highly conserved Ire1-Hac1 signalling path-

way allows human fungal pathogens to counteract host-mediated ER

stress during infection. The splicing of a 19 bp intron in the C. albicans

HAC1 mRNA, initiated during ER stress, is essential for its translation

(Wimalasena et al., 2008). While this unconventional splicing event is

known to be dependent on Ire1 in most pathogenic fungi, its depen-

dence on Ire1 in C. albicans remains unexplored. In this study, we

demonstrate the requirement of C. albicans Ire1 in circumventing ER

stress induced by multiple stressors and its influence on several

important virulence traits (Figure 6).

The dependency of Ire1 on Hac1 during ER stress induced by

treatment with tunicamycin is evident based on our findings that

compromising Ire1 function results in (a) growth defects in the pres-

ence of ER stress-inducing agents (tunicamycin and DTT),

(b) abrogated intron splicing from HAC1 mRNA and (c) decreased

expression of Hac1-dependent ER stress response genes (Figures 1c

and 3a–c)). The inability of the ire1 DX mutant strain to grow on ER

stressors and process HAC1u mRNA was rescued by intact IRE1 but

not by the IRE1-KD (kinase dead) or IRE1-ND (nuclease dead)-mutant

versions of Ire1, indicating that both the kinase and nuclease activities

are indispensible in facilitating the capacity of this protein kinase to

counter ER stress (Figure 3d,e). Overall, these results highlight the reli-

ance of C. albicans on the canonical Ire1-Hac1 UPR pathway for ER

stress response and homeostasis.

The UPR is required for the removal of misfolded proteins from

the ER and is also involved in a broad range of cellular processes

related to secretory homeostasis, which can be inferred from our

transcriptome analysis (Figure 2a). The impact of Ire1 on various cellu-

lar processes was supported by our transcriptome data and by the

finding that the ire1 DX mutant strain exhibited growth defect in the

presence of multiple stressors (Figure 1c). Furthermore, the mutant

strain also exhibited changes in the expression of genes encoding pro-

teins that promote virulence-associated processes such as iron assimi-

lation, cell wall biogenesis, hyphal morphogenesis and biofilm

formation (Figure 2). Concordantly, the mutant was impaired in these

same virulence-associated processes (Figure 5). We posit that Ire1

regulates C. albicans pathogenesis by integrating the expression of

virulence-related traits with ER-dependent maintenance of secretory

homeostasis. Thus, our data support the idea that Ire1 plays a role in

mediating multiple cellular processes via its ability to maintain secre-

tory homeostasis in C. albicans.

Ire1-dependent activation of the UPR occurs not only upon the

accumulation of misfolded proteins but also during lipid bilayer

stress. A link between Ire1, lipid homeostasis and UPR activation has

been established in previous studies. In S. cerevisiae, inositol deple-

tion is known to cause perturbations in lipid metabolism that results

in the activation of Ire1-dependent UPR activity via an amphipathic

helix region present within the transmembrane helix of Ire1

(Halbleib et al., 2017; Promlek et al., 2011). In line with this idea,

C. albicans Ire1 also responded to membrane abberations, induced

by inositol depletion, by promoting the splicing of HAC1 mRNA

(Figure 4b). Considering that inositol depletion in S. cerevisiae does

not cause protein damage in the ER lumen (Promlek et al., 2011), we

speculate that activation of the Ire1-dependent UPR pathway in

C. albicans may similarly not be exclusively related to the protein

load in the ER. In the absence of inositol, the slow activation (5 hr

after stimulus onset vs. 1 hr after tunicamycin treatment) of the UPR

could be either due to the presence of residual intracellular inositol

or membrane stress caused by inositol depletion that is not consid-

ered as severe as tunicamycin-induced ER stress (Figure 4b), similar

to the obervations made with the S. cerevisiae Ire1 (Promlek

et al., 2011). Thus, our study reveals a link between lipid homeosta-

sis and the Ire1-dependent UPR pathway in C. albicans. Based on

this finding, we presumed that fluconazole-induced perturbations in

sterol homeostasis may be sufficient to promote the Ire1-dependent

processing of HAC1u mRNA. On the contrary, we observed that flu-

conazole treatment of the wild-type cells did not necessitate the

processing of HAC1u mRNA over time (Figure 4f). Likewise, interfer-

ing with cell wall integrity (calcofluor white treatment) that indirectly

affects membrane homeostasis (Promlek et al., 2011) also did not

necessitate the processing of HAC1u mRNA (Figure 4g). Whether

C. albicans Ire1 responds to these cell wall/membrane stressors in a

completely Hac1-independent manner even at time points that

extend beyond 5 hr is a question that requires further experimental

exploration. Nevertheless, our data show that Ire1 responds to the

accumulation of misfolded proteins as well as membrane stress to

activate the UPR in C. albicans. As the accumulation of misfolded

proteins (resulting from tunicamycin treatment) causes a sudden

increase in the demand for secretion and proper protein folding

machinery, the cell quickly activates Ire1-dependent UPR via HAC1

splicing to allow accelerated recovery of ER homeostasis. On the

other hand, stimuli that generate membrane stress do not result in

an immediate accumulation of misfolded proteins and hence are

slow in activating the UPR and may (as is the case with inositol

depletion) or may not (as is the case with fluconazole or calcofluor

white treatment) be routed through the processing of HAC1u mRNA

in C. albicans. In the latter situations, it is possible that C. albicans
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may resort to the process of regulated Ire1-dependent decay (RIDD)

for controlling the load of misfolded proteins in the ER lumen. RIDD

involves Ire1-mediated selective degradation of ER-associated

mRNAs that results in a reduction of the protein influx and load of

misfolded proteins in the ER (Hollien et al., 2009), a process utilized

by C. glabrata for ER quality control (Miyazaki et al., 2013). Whether

or not C. albicans uses RIDD for ER quality control is an area that

remains unexplored and merits further investigation.

In conclusion, our data demonstrate that the accumulation of

misfolded proteins during tunicamycin-induced acute ER stress

induces the UPR by promoting the splicing of HAC1u mRNA in an

Ire1-dependent manner in C. albicans (Figure 6). Ire1 also markedly

affects cell wall integrity and pathogenesis in C. albicans. The ability of

Ire1 to jointly respond to both membrane and protein homeostasis

enables Ire1 to activate the UPR in response to multiple stressors in

C. albicans. Coping with ER stress also requires activation of comple-

mentary signalling pathways such as the Mkc1 MAPK and calicneurin

pathways that operate in parallel with the Ire1-dependent UPR path-

way in a manner that does not influence the processing of HAC1u

mRNA in C. albicans (Figure 4e and Figures S4 and S6). It is possible

that the ligand-binding pockets of the KEN domain present at the Ire1

dimer interface (Wiseman et al., 2010) facilitate integration of Ire1

with other pathways. Our findings reveal a clear relationship between

Ire1-dependent UPR activity and virulence in this pathogenic fungus,

a common thread among pathogenic fungi. The conservation of the

Ire1-dependent signalling pathway among pathogenic fungi suggests

its potential to be exploited for the design of broad-spectrum antifun-

gal drugs. Future studies focusing on identifying putative differences

between the fungal and mammalian Ire1 are required for identification

of fungal-specific molecules to selectively perturb fungal UPR

pathways.

4 | EXPERIMENTAL PROCEDURES

4.1 | Strain, reagents and growth conditions

Strains, plasmids and oligonucleotides used in this study are listed in

Tables S1–S4. All C. albicans strains were maintained on YEPD

medium (1% yeast extract, 2% bacto peptone, 2% glucose and 2%

agar for solidification). Prototropic transformants were selected on a

synthetic medium (2% dextrose, 1.7% Difco yeast nitrogen base with

ammonium sulfate and auxotrophic supplements). For nourseothricin-

resistant mutants, 200 μg ml−1 of nourseothricin (Werner Bioagents,

Jena, Germany) was added to the YEPD. To obtain nourseothricin-

sensitive transformants, strains were grown in YPM (1% yeast extract,

2% peptone and 2% maltose) for 8 hr and plated on YPM plates con-

taining 25 μg ml−1 nourseothricin for 48 hr. Except for sodium dode-

cyl sulfate (SDS; Biobasic, Inc.) and DTT (SRL), all the supplements and

chemicals; β-mercaptoethanol, tunicamycin, fluconazole, ketocona-

zole, voriconazole, amphotericin B, calcofluor white and congo red

were purchased from Sigma-Aldrich. Caspofungin was obtained from

Merck & Co. Inc., NJ.

4.2 | Strain construction

4.2.1 | Gene disruption and complementation
of IRE1

ire1 DX (CW906)-mutant strain was constructed by Woolford

et al., 2016. The method used for strain construction is briefly

described as follows. A heterozygote deletion was constructed in the

DAY286 background by replacing one allele of IRE1 with the URA3

marker by homologous recombination, and the 50 region of the second

allele was replaced with a constitutive weak promoter, PGA5, to

obtain the ire1 DX (diminished expression)-mutant strain, a strain with

diminished expression of IRE1 (Woolford et al., 2016). ire1 DX comp

strain was constructed by integrating wild-type IRE1 allele in the

mutant strain background as previously described (Ganguly &

Mitchell, 2012). Briefly, the IRE1 wild-type allele was amplified using

complementation primers (Table S3) from genomic DNA of SC5314

1984, including 1,200 bp upstream and 300 bp downstream

sequences of the IRE1 ORF. The complementation primers used are

approximately 80 bp in length and comprise of an adapter sequence

followed by a 45-mer gene-specific sequence to direct in vivo recom-

bination into the plasmid pDDB78 (�7.5 kb) (Spreghini, Davis,

Subaran, Kim, & Mitchell, 2003). The complementing PCR product

was co-transformed along with EcoRI/NotI digested pDDB78 into the

S. cerevisiae BJ2698 strain (his1) to obtain the complementation plas-

mid containing IRE1 called pDDB78-IRE1WT (�12.3 kb). After ampli-

fying in Escherichia coli, pDDB78-IRE1WT and pDDB78 (vector-only

control) were digested with NruI to direct insertion to the his1 locus

of the ire1 DX mutant strain to obtain marker matched HIS1 prototro-

phic strains; SS1 and SS2, respectively. Successful reconstitution of

the gene was confirmed by PCR amplifications performed with

primers IRE1CompIRE1DET-F and IRE1CompHIS1DET-R (Table S3).

Restored gene expression was validated by qPCR using IRE1 specific

primers; qIRE1-F and qIRE1-R (Table S4).

4.2.2 | Site-directed mutagenesis

The deletion mutants for kinase dead (IRE1-KD) and nuclease dead

domains (IRE1-ND) were constructed using two different mutagenic

primer pairs. The plasmid pDDB78-IRE1WT was used as the tem-

plate to generate pDDB78-IRE1KD (kinase dead) and

pDDB78-IRE1ND (nuclease dead) plasmids. The pDDB78-IRE1KD

was generated by mutating two residues in C. albicans Ire1; aspartic

acid (D2668), and lysine (K2674), to asparagines (D890N and

K892N, respectively) using primers IRE1KD-F(2650) and IRE1 KD-R

(2694). Another deletion plasmid, pDDB78-IRE1ND was created by

introducing a 10 residue (D1161-Y1170) internal deletion within the

nuclease domain of Ire1 using primers, IRE1ND-F(3456) and

IRE1ND-R(3529) (Table S3). For PCR amplifications, Phusion DNA

polymerase (New England Biolabs) was used in a 50 μl reaction mix-

ture containing 10 μl of 5X reaction buffer. All amplifications were

done using an Eppendorf Cycler. After an initial denaturation at
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95�C for 5 min, the samples were subjected to 25 cycles of denatur-

ation (95�C, 1 min), annealing (61�C, 1 min) and extension (68�C,

9 min). PCRs were completed with another 9 min of extension.

Obtained mutated plasmid products were digested with DpnI at

37�C for 1 hr and transformed into E. coli for amplification. The plas-

mid was isolated from all AmpR colonies, and restriction site analysis

was performed for verification of the desired mutations in the

obtained mutation plasmids. Mutation plasmids were also subjected

to Sanger sequencing before final transformation in C. albicans. Once

confirmed for the mutation, the plasmid was linearized with Nru1

and transformed into ire1 DX background for HIS1-targeted integra-

tion to obtain strains expressing kinase dead (SS3) or nuclease dead

IRE1 isoforms (SS4).

4.3 | Drug susceptibility assays

All strains of interest were grown on YEPD plates overnight. The cells

were resuspended in 0.9% saline to an OD600 of 0.1. Five microlitre of

four serial dilutions (5 × 103 to 5 × 105 cells) of each strain were spot-

ted on to YEPD plates in presence and absence of various stressors.

Plates were incubated at 30�C, and growth differences were recorded

after 48 hr.

4.4 | Quantitative real-time PCR

C. albicans strains were grown overnight in YEPD, subcultured from a

starting OD600 of 0.3 in fresh YEPD and incubated at 30�C till OD600

reached 1.0. The desired drugs/compounds of interest were added to

the media, and culture was allowed to grow for 1 hr, except for the

qPCR for UPR targets where strains were treated for 2 hr. Cells were

harvested by centrifugation at 4,000 rpm for 5 min at 4�C from

treated and untreated control samples, and total RNA was isolated

using the RNeasymini kit (Qiagen). Extracted RNA was treated with

DNase I (Thermo Scientific) to remove contaminating DNA, and cDNA

was synthesised with a RevertAid H Minus First Strand cDNA synthe-

sis kit (Thermo Scientific) following the manufacturer's protocol. All

real-time PCR reactions were performed in a volume of 25 μl using

Thermo Scientific Maxima SYBR Green mix in a 96-well plate. For rel-

ative quantification of gene expression, the comparative CT method

was used, where the fold change was determined as 2−ΔΔCT

(Schmittgen & Livak, 2008). The qPCR primers used in this study were

designed by Primer Express 3.0 and are listed in Table S4.

4.5 | Determination of HAC1 mRNA splicing

C. albicans cells were treated with tunicamycin for 1 hr, and total RNA

was prepared by following the procedure described above. cDNA was

prepared by using RevertAid H Minus First Strand cDNA synthesis kit

(Thermo Scientific), and HAC1 mRNA splicing was measured by the

following:

1. Reverse transcriptase-PCR (RT-PCR) using HAC1 gene-specific

primers HAC1SP (F) and HAC1SP (R), respectively (Table S4), and

the PCR product was analysed on 4% agarose gel. ACT1 was as an

internal control.

2. qPCR was performed with TaqMan probe specific for spliced

HAC1 (HAC1i) or primers recognizing the unspliced HAC1 (HAC1u)

isoform. TaqMan Universal PCR Master Mix and primer-probe

mixes were obtained from Applied Biosystems by Life Technolo-

gies. ACT1 was used as the internal control, and transcript level of

the gene of interest was normalized to ACT1 levels. Fold changes

are means ± SD and are derived from three independent RNA

preparations.

4.6 | Transcriptional profiling

(a) For RNA isolation, wild-type and mutant strains were grown over-

night in 10 ml of YEPD at 30�C and 200 rpm, subcultured to an

OD600 of 0.3 in 10 ml of YEPD medium and grown till mid-log phase

at 30�C and 200 rpm. RNA was extracted from three biological repli-

cates of both strains using an RNeasyminikit (Qiagen). After testing

the integrity of these RNA samples by Bioanalyzer (Agilent 2100),

microarray experiment was performed. (b) For hybridization, the sam-

ples for gene expression were labelled using Agilent Quick-Amp label-

ing Kit (p/n5190-0442). A total of 500 ng each of total RNA was

reverse transcribed at 40� C using oligo dT primer tagged to a T7

polymerase promoter and converted to double-stranded cDNA. Syn-

thesized double-stranded cDNA was used as a template for cRNA

generation. cRNA was generated by in vitro transcription, and the dye

Cy3 CTP (Agilent) was incorporated during this step. The cDNA syn-

thesis and in vitro transcription steps were carried out at 40�C.

Labelled cRNA was cleaned up using QiagenRNeasy columns (Qiagen,

Cat No: 74106) and quality assessed for yields and specific activity

using the Nanodrop ND-1000. The labelled cRNA sample was frag-

mented at 60�C and hybridized on to a genotypic designed C

albicans_GXP_8X15k (AMADID No: 26377) arrays. Fragmentation of

labelled cRNA and hybridization was done using the gene expression

hybridization kit (Agilent Technologies, In situ Hybridization kit, Part

Number 5190–0404). Hybridization was carried out in Agilent's

Surehyb Chambers at 65�C for 16 hr. The hybridized slides were

washed using Agilent Gene Expression wash buffers (Agilent Technol-

ogies, Part Number 5188-5327) and scanned using the Agilent Micro-

array Scanner (Agilent Technologies, Part Number G2600D). (c) Raw

data extraction from images and subsequent analysis were performed

using Agilent Feature Extraction software and GeneSpring GX Soft-

ware V 13.0, respectively. Normalization of the data was done in

GeneSpring GX using the 75th percentile shift method, and fold

change values were obtained by comparing mutant samples with

respect to specific wild-type samples. Conditional-based hierarchical

clustering was performed to understand the biological variation within

replicate samples. Significant differentially up and down regulated

genes with p-value .05 in the mutant with respect to wild type were

identified. Statistical student t test used to calculate p-value among
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the replicates was calculated based on volcano Plot Algorithm. Heat

maps for the differentially regulated genes were generated using

Genespring GX Software. Gene ontology (GO) analysis was carried

out using the GO Term Finder at the CGD (Candida Genome Data-

base; http://www.candidagenome.org/cgi-bin/GO/goTerm Finder).

Upregulated and downregulated genes were analysed separately. The

microarray data can be accessed under GEO accession number

GSE137822.

4.7 | Protein extraction and immunoblot analysis

For the Mkc1p phosphorylation blot, overnight cultures were diluted in

fresh YEPD media to an OD600 of 0.3 and grown until they reached an

OD600 of 1 at 37�C and 200 rpm. Samples were treated with 5 μg ml−1

tunicamycin for 2 hr before they were recovered. The procedures used

for cell collection, lysis, protein extraction, fractionation by SDS-PAGE

and transfer to nitrocellulose membranes have been previously described

(Martín, Arroyo, Sánchez, Molina, & Nombela, 1993). Anti-phospho-

p44/42 MAP kinase (Thr202/Tyr204) antibody (Anti-p42-44-P) (Cell Sig-

nalling Technology, Inc.) was used to detect dually phosphorylated Mkc1

and Cek1 MAPKs, and polyclonal anti-Mkc1 antibodies were used for

Mkc1 detection (Federico Navarro-García, Eisman, Fiuza, Nombela, &

Pla, 2005). Blot imaging was done by using an Odyssey fluorescence

imager (LI-COR) and quantified using Image Studio Lite (LI-COR).

4.8 | Morphogenesis assays

For filamentation in liquid media, cells from an overnight culture grown in

YEPD were used to subculture from a starting OD600 of 0.3 in fresh

filamentation-inducing media (Spider, Lee and Serum) and incubated for

4–5 hr at 37�C with continuous shaking. Aliquots of the cells were taken

out at 1 hr interval for 24 hr, washed with 1X PBS and observed under

light microscope for changes in filamentation patterns. For filamentation

on solid media, cells from an overnight culture grown in YEPD were

washed and approximately 50–100 cells of each strain were plated on

YEPD +10% serum, Lee and Spider agar plates and incubated at 37�C for

5 days. Colonies were observed after 5 days for filamentation changes.

The plates were photographed by using a Zeiss microscope equipped

with a digital camera to record filamentation patternd in different strains.

4.9 | Virulence assays

Virulence assays were performed following the procedures described

previously (Diez-Orejas et al., 1997; Román, Alonso-Monge,

Miranda, & Pla, 2015). Briefly, C. albicans strains SC5314, ire1 DX and

ire1 DX comp were cultivated overnight in YEPD. Cells were

harvested by low-speed centrifugation followed by washing twice

with phosphate-buffered saline (PBS). 106 yeast cells (in 250 μL PBS)

of each strain were inoculated into the lateral tail vein of BALB/c

mice, and survival was monitored for 15 days. Postmortem analyses

were done with eight animals, and clearance of infection was assessed

by CFU counting as described previously (Diez-Orejas et al., 1997).

4.10 | Biofilm assays

4.10.1 | In vitro biofilm model

In vitro biofilm assays were carried out in Spider medium by growing

the biofilm directly on the bottom of the 96-well polystyrene plates,

as described previously (Fox et al., 2015; Lohse et al., 2017). Briefly,

strains were grown overnight in YEPD at 30�C for 12–14 hr and

diluted to an optical density at OD600 of 0.5 in Spider medium. The

inoculated plate was covered with a breathable film and incubated

at 37�C for 90 min at 250 rpm agitation on an ELMI incubator

(ELMI, Ltd. Riga, Latvia) for initial adhesion of cells. Post adhesion,

the cells were washed with 200 μl of 1X PBS, and 200 μl of fresh

Spider medium was added. The plate was covered with a fresh

breathable film and incubated at 37�C for an additional 24 hr at

250 rpm agitation to allow biofilm formation. Following incubation,

the film and medium were removed, and the OD600 was measured

using a standard plate reader to determine the extent of biofilm for-

mation. A well-containing medium alone was included as contamina-

tion control. Statistical significance (p-values) was calculated using a

Student's one-tailed paired t test. p-values are as follows: *** <.001.

4.10.2 | In vivo C. albicans venous catheter biofilm
model

A jugular vein rat central venous catheter infection model was used

for in vivo biofilm studies, as previously described (Andes et al., 2004).

After 24 hr of C. albicans infection, catheters were removed from the

rat. The distal 2 cm of catheter material was subjected to SEM for

assaying biofilm growth.
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