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A Visualizable Test Problem Generator for
Many-Objective Optimization

Jonathan E. Fieldsend, Member, IEEE, Tinkle Chugh, Richard Allmendinger, Member, IEEE, and Kaisa Miettinen

Abstract—Visualizing the search behavior of a series of points
or populations in their native domain is critical in understanding
biases and attractors in an optimization process. Distance-
based many-objective optimization test problems have been
developed to facilitate visualization of search behavior in a
two-dimensional design space with arbitrarily many objective
functions. Previous works have proposed a few commonly seen
problem characteristics into this problem framework, such as the
definition of disconnected Pareto sets and dominance resistant
regions of the design space. The authors’ previous work has
advanced this research further by providing a problem gen-
erator to automatically create user-defined problem instances
featuring any combination of these problem features as well
as newly introduced ones, such as landscape discontinuities,
varying objective ranges, and neutrality. This work makes a
number of additional contributions including the proposal of
an enhanced, open-source feature-rich problem generator that
can create user-defined problem instances exhibiting a range of
problem features — some of which are newly introduced here or
form extensions of existing features. A comprehensive validation
of the problem generator is also provided using popular multi-
objective optimization algorithms, and some problem generator
settings to create instances exhibiting different challenges for an
optimizer are identified.

Index Terms—Multi-objective test problems, evolutionary op-
timization, benchmarking, test suite, visualization.

I. INTRODUCTION

V ISUALIZING the search behavior of a population-based
multi/many-objective optimizer in its native domain is

a challenging task that is essential in algorithm analysis
and design. To support algorithm designers and practitioners
in the development and selection of effective optimization
algorithms, this work introduces and validates a feature-
rich visualizable test problem generator for population-based
many-objective optimization. Before we put the work into
context with existing literature and describe the generator
in more detail, we will briefly define Pareto optimality and
dominance. These concepts are necessary to understand the
structure of the problem instances.
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For multi- and many-objective optimization problems, with-
out loss of generality, we seek to simultaneously minimize K
objectives: f(x) = (f1(x), . . . , fK(x)), where each objective
depends upon a vector x = (x1, . . . , xN ) of N design (or
decision) variables. These problems may also include equality
and inequality constraints that define X , a feasible design set
in the design space RN . Relatedly, the image of X in the
objective space RK is denoted by Y , and termed the feasible
objective set. When there is more than one objective to be
minimized, solutions may exist for which performance on one
objective cannot be improved without reducing performance
on at least one other. Such solutions are said to be Pareto
optimal. The set of all Pareto optimal solutions is said to form
the Pareto set P , whose image in the objective space is known
as the Pareto front F . F consists of objective vectors and
their components are called objective values. Identifying such
solutions relies on Pareto dominance. A feasible design vector
x is said to dominate another feasible design x′ iff

fk(x) ≤ fk(x
′), k = 1, . . . ,K and f(x) 6= f(x′). (1)

This is often simply denoted as x ≺ x′ rather than f(x) ≺
f(x′). It is useful when examining the properties of an
optimizer to look at the distribution of designs in its approx-
imation of P and F . One should note that Multi-objective
Evolutionary Algorithms (MOEAs) cannot guarantee Pareto
optimality but they generate approximations that are mutually
non-dominated, i.e., no solution dominates any other.

Over the years, numerous performance indicators have been
proposed to measure convergence, spread, and/or distribution
capabilities of a population of solutions searching over a
multi-dimensional objective space (see e.g. [1], [2]). However,
gaining an effective understanding about search bias, trade-offs
and other attractors in the design and objective space relies
primarily on visualizing the movement of the population to the
Pareto set/front. This task becomes particularly informative if
the Pareto set/front is known rather than being approximated
and can be visualized [3]. Unfortunately, this task becomes
more difficult as the dimensions of the design and the objective
space increase.

Various techniques can be found in the literature to visualize
search performance [3]. Scatter plots are a popular choice
for problems with 2 and 3 objectives but suffer from poor
scalability. Beyond 4 objectives/design variables, scatter plot
approaches rely on mapping a higher-dimensional space to a 2
or 3-dimensional space, resulting in a loss of Pareto dominance
relation information between solutions [3]–[5]. Alternatively,
if pair-wise plots i.e., scatter plot matrices are used, the
number of plots required becomes rapidly overwhelming (as
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(K2 −K)/2 plots are needed for K objectives). Approaches
commonly used to visualize the distribution of solutions in
high-dimensional spaces are parallel coordinate plots and
visualizations based on heatmaps potentially coupled with
dimensionality reduction methods (e.g. principal component
analysis) (see e.g. [6] for this). However, also for these
approaches, identifying relationships quickly becomes more
difficult as the dimensionality increases. The set of solutions
to compare also tends to grow with the number of objectives.

A range of multi- and many-objective test problems have
been proposed in the literature to validate and further expand
our understanding of the search behavior of optimization
algorithms for different problem characteristics. Popular prob-
lems in the continuous domain include test suites such as
DTLZ [7], WFG [8], and the BBOB problems [9]. Commonly
used many-objective test problems are, for example, ones
proposed in [10], [11]. Most recently, a proposal for a more
realistic many-objective test suite was made using a coeffi-
cient matrix [12]. Classical discrete problems include multi-
objective knapsack problems [13] and NK-landscapes [14],
while commonly studied permutation problems include multi-
objective traveling salesman problems [15] and flowshop
scheduling [16]. Mixed-integer problems, such as variations
of NK-landscapes [17], have received attention too. Moreover,
the literature includes also many-objective test problems de-
signed to address particular challenges, such as a dynamically
changing fitness landscape [18] or difficult-to-approximate
Pareto front boundaries [19]. Many of these problems are
tunable, such as the dimension of the design/objective space,
rate and degree of dynamic changes, and the shape of the
Pareto front. Nevertheless, they lack the ability to visualize
the movement of the population in its native domain, which
is important to understand search performance [20], [21].

The motivation of distance-based multi- and many-objective
optimization problems [22], [23] is to facilitate visualization
of the search behavior in a multi-dimensional space. Here we
use the acronym DBMOPP as shorthand for a distance-based
multi/many-objective point problem. DBMOPPs are problems
that can have arbitrarily many objectives but inherently have
a two-dimensional design space allowing the Pareto set to
be identified easily by eye. In its standard form, the Pareto
set of a DBMOPP is defined on a regular polygon in a
two-dimensional design space, and the objective functions
represent distances between each of the vertices of the polygon
and a solution (which is a two-dimensional point); these
distances are to be minimized. Thus, the number of objective
functions is equal to the number of vertices of the polygon,
and the solutions inside the polygon are the Pareto optimal
solutions. Visualizing the movement of solutions in this two-
dimensional design space allows for a convenient analysis of
their convergence and distribution towards the Pareto set.

Subsequent work on DBMOPPs extended the concept to
disconnected Pareto sets [24] and different shapes [25], non-
identical disconnected Pareto sets [25], arbitrarily large de-
sign spaces that could be projected back (using orthogonal
projection vectors) to the two-dimensional visualization space
[26], alternative distance metric (Manhattan distance) [27],
[28], dominance resistance regions [29], dynamic variants of

the problem [30], local fronts [31], and different types of
constraints [32]. The authors’ previous work [33] introduced
further extensions to DBMOPPs including landscape discon-
tinuities and varying objective ranges, amongst others.

DBMOPPs can be translated into practical applications, for
example, into location selection problems [25], [34], [35].
Here, the task could be to decide about the location of a
new building (e.g. school), such that it is close to a number
of existing landmarks like a train station, shopping center,
etc. In a DBMOPP, these landmarks would be represented
by the vertices, and the Pareto optimal locations of the new
building(s) would be defined by the relative locations of these
landmarks. In reality, the distances (i.e. the objective functions)
between each of the vertices of the polygon may be substituted
with travel times or the cost to get from one location to another.
It is worth noting that the related concept of line-based-
distance problems was introduced in [36], [37]. However,
our work focuses on point-based formulations (which is also
largely the focus of existing literature). This work makes the
following contributions to the state-of-the-art in DBMOPPs
beyond our earlier work [33]:

1) Extension of a number of existing problem features.
2) Proposal of additional problem characteristics including

hard constraints and non-intersecting performance dis-
connected Pareto sets.

3) An enhanced feature-rich automatic problem instance
generator for creating user-defined problem instances. It
encapsulates all existing features and the newly proposed
characteristics for the Euclidean distance metric.

4) An open-source repository containing object-oriented
MATLAB code for the generator, which includes meth-
ods for the visualization and verification of problem
instances.1

5) A validation of the generator involving (i) different
forms of statistical and visual analysis of the problem
instance space to better understand relationships between
the different problem features and (ii) an investiga-
tion of the search behavior of several popular multi-
and many-objective evolutionary algorithms (MOEAs)
representing different search concepts (NSGA-II [38],
MOEA/D [39], IBEA [40], NSGA-III [41], and random
search). Due to the large number of features embedded
in the generators, the empirical study will be limited to
a representative set of features.

6) Identification of particular problem generator settings
to create problem instances with feature combinations
that pose different challenges to popular multi-objective
optimizers.

We want to emphasize that our focus is not on developing
new algorithms to solve DBMOPPs. Instead, we focus on
the development and validation of a feature-rich DBMOPP
problem generator to encourage take up by the optimization
community and facilitate understanding of the problem in-
stances generated, respectively.

The remainder of this paper proceeds as follows. The
next section provides a description of existing features in

1Available at https://github.com/fieldsend/DBMOPP generator.
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the DBMOPP literature. The existing DBMOPP framework
is extended in Section 3 by introducing a set of new tunable
problem characteristics. Section 4 then introduces a problem
generator capable of automatically creating DBMOPP problem
instances that feature a range of desired characteristics. In
Section 5, we validate the problem generator by producing
and analyzing a large number of problem instances with
different features. We also analyze the performance of popular
MOEAs on these instances, and identify a suite of generator
settings that translate into problem instances that pose different
challenges to these MOEAs. Finally, we conclude and discuss
future research directions in Section 6.

II. VISUALIZABLE EUCLIDEAN DISTANCE-BASED TEST
PROBLEMS

In conventional visualizable distance-based test problems,
we have X ⊆ R2. For point-based formulations in this domain,
there are K sets of attractor vectors defined, where the kth
set, Vk = {v1,k, . . . ,vmk,k} (see illustration in Figure 1), is
used to assign the quality of a putative design vector x ∈ X ,
on the kth objective. Calculation of this objective is usually

fk(x) = min
v∈Vk

(dist(x,v)).

As mk is the number of elements of Vk, i.e. |Vk|, and this
term may vary with each k, it is possible for |Vi| 6= |Vj |.
However, |Vi| ≥ 1 for all i must hold. The distance function
dist(x,v) typically returns the Euclidean distance between
x and v, although alternative metrics have been used in the
literature, such as the Manhattan distance [27], [28].

Until the release of our preliminary generator in [33], DB-
MOPP problems appearing in the literature had been designed
by hand. The use of a generator to automatically construct
DBMOPPs facilitates empirical analysis based on test problem
sampling, rather than just a single suite of limited size (whose
particular configuration may eventually be ‘exploited’ to the
detriment of generalized algorithm design). See e.g. [42] for a
discussion on the use of generators for generalizable results.

A. Glossary of terms

Before we overview the range of properties we can auto-
matically embed in a DBMOPP instance, we will first set out
a glossary of terms, which we use here to help define the
construction process of a DBMOPP, and distinguish between
different DBMOPP features.
• Regions: A contiguous area in the two-dimensional DB-

MOPP design space, whose elements share some property
of interest.

• Local front sets (local non-dominated sets): Region(s)
where the image of the elements in objective space all
define a local Pareto front [43].

• Pareto regions: Region(s) where the image of the ele-
ments in objective space all define elements of a global
Pareto front. These are typically convex polygons in X .

• Attractor regions: Regions whose existence is due to
attractor vectors, i.e. v.

• Region centres: Where a region is constructed as a convex
polygonal shape with attractors on the corners, these

x1

x2

-1 1

-1

1
v1,1

v3,1

v2,1

v1,2

v3,2

v2,2

v1,3

v3,3

v2,3

v1,4

v3,4

v2,4

Fig. 1. Illustration of Pareto regions that together define the Pareto set, Vi =
{v1,i, . . . ,v3,i}, and Rj is defined by the convex hull of {vj,1, . . . ,vj,4}.

are placed on the diameter of circle with a particular
center, denoted the region center. Note that this does
not necessary coincide with the center of the constructed
polygonal shape.

• Penalty regions: Regions where members experience a
penalty on one or more objective values.

• Constraint regions: Regions where members exhibit a soft
or hard constraint violation.

We now outline the process by which the generator dis-
tributes the set Vk as this will be used in the schematic illus-
trations throughout. Consider the illustration in Figure 1 with
three attractor regions Rj= {vj,1, . . . ,vj,4}, which together
define the Pareto set. It is important to distinguish between
the Pareto set (which defines the optimal set of solutions for
the problem), and a Pareto region which is a polygonal shape
in this construction, whose interior members are Pareto set
members, but which might not, by itself, describe the complete
Pareto set. Note that not all Rj will define Pareto regions
— they may alternatively define locally rather than globally
optimal solutions.

Let us consider the simplest distance-based problem for-
mulation using points, where |Vk| = 1 for all k, as shown
in the top left panel of Figure 2 for a K = 4 example. In
our generation procedure, we place circles in the 2D design
space, and place Vk elements on the circumference of a circle
(middle column of Figure 2). The relative angles used to
place the vectors v on circles defining the regions need to
be consistent between them, the circle radii however do not
need to be the same. The region will define elements of a
local or global Pareto set (see the bottom row of panels in
Figure 2), depending on the circle radius used. Such local
configurations of points are our regions Rj — each Rj being
defined by an element from 1 to K of the Vk sets. By placing
fewer than the full complement of K different vectors v
attractors on the circumference, dominance resistance areas
can be induced [29].
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Global and local Pareto sets DBMOPP instance Dominance landscape
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Fig. 2. DBMOPP illustrations. Top row: a 4-objective problem with a single connected Pareto set. Bottom row: a 5-objective problem with a single connected
Pareto set situated in the top right corner of X , and numerous local non-dominated sets. Left-column: Pareto set and locally dominated sets in black. Middle-
column Test problem configuration showing Vk , circles and centers. Right column: Local dominance landscape approximated by sampling X on a 500× 500
grid.

B. Problem instance generator

Given the wide range of features that can be incorporated
in a DBMOPP test problem instance, generating one automat-
ically and ensuring the desired properties are all present is
non-trivial. In [33], we observed that X may be partitioned
into areas concerned with providing instances of each of the
various properties desired. These are largely determined by
sets of points defining the different region types.

The properties of problems generated are directly verifiable.
For instance, finely discretizing the space and commencing
a Pareto local search [44] from a single location in each of
the local front sets will verify they match the problem as
initialized. We additionally provide tools for such verification
in the generator code repository.

C. Placing region centers

We allocate the centers defining each of the regions at
random, but subject to lying at least 4r from the closest next
region for all attractor regions (see [33] for a derivation of
this limit to ensure instances behave as desired). Here, r is the
largest radius employed by any individual attractor region (i.e.
a region defined by elements of the Vk sets). Additionally, all
such region centers must be at least r from the domain bound-
ary. We employ a Monte Carlo circle placement with rejection
sampling for this (as in [33]). For non-attractor regions, i.e.
penalty/constraint regions (which we discuss further in the next
section), these may be placed immediately adjacent to attractor
regions, as they cannot induce Pareto optimal regions if placed
too close (unlike the other region types).

As well as being able to visualize the Pareto set and local
non-dominated sets directly in X , in visualizable problems, we
can also look at the landscape induced by them. One approach
is to view the dominance landscape [45]. These are shown in
the right-most panels of Figure 2. The black regions in the
local dominance landscape are comprised of cells (squares) in
the discretized space, where the center of all eight immediate
neighboring cells (the Moore neighborhood) are mutually non-
dominating with the location at the center of the middle cell.
This denotes a cell as belonging to dominance-neutral region
— i.e. all local moves being mutually non-dominating. These
may be identified by point-based Pareto hill-climbing [46],
but note that a contiguous region of such local optima is
not guaranteed to be composed entirely of members that are
mutually non-dominating (a local Pareto set), as construction
of these relies on a set-based rather than point-based hill-climb
(see e.g. [44]). Instead, the black regions describe a locally
dominance-neutral region, where all local moves estimated at
the discretization used are mutually non-dominating. The gray
regions in the plot are made up of cells which have at least
one dominating neighbor (i.e. lie on a dominance hill-climb
path, rather than the end of a path). All dominating movement
paths from neighbors in gray regions lead to the same local
optima region (i.e. same black region). As such, the gray
regions denote those basin components which lead to the same
dominance-neutral attractor. White regions are comprised of
cells whose neighbors lead to multiple different attractor
regions (and therefore denote boundary regions/saddle-points).

Note the complex interactions in the landscape in the
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TABLE I
AN OVERVIEW OF EXISTING AND NEW FEATURES EMBEDDED IN THE

PROPOSED DBMOPP GENERATOR.

Feature Year Ref. Extended
here

Arbitrarily many objectives 2005 [22]
Disconnected Pareto sets 2010 [24]

Non-identical disconnected Pareto sets 2011 [25] X
Arbitrarily many variables 2014 [26]

Dominance resistance regions 2016 [29]
Time-varying problem settings 2017 [30] X

Local Pareto optimal fronts 2018 [31]
Discontinuous objective functions 2019 [33]

Varying solution density in Pareto sets 2019 [33]
Varying objective scales 2019 [33] X

Neutrality 2019 [33]
Soft constraints (real-valued) 2019 [32] X

Hard constraints 2020 Here
Non-intersecting disconnected Pareto sets 2020 Here

bottom-right panel of Figure 2. The local dominance-neutral
regions include the Pareto set and the regions denoting spec-
ified local fronts from the left panels, but also additional
dominance-neutral regions lying between these have been
induced by the Vk points. These generally have much smaller
basins (and in some cases no basin at all). Note the dominance-
neutral regions in the dominance landscapes shown in the
right panel may be larger than the corresponding Pareto/local
non-dominated regions shown in the left panels of Figure
2. This is because the dominance-neutrality is local to the
neighborhood of each cell in the right-hand side figures,
rather than calculated with respect to every member of the
region (denoting the landscape observed by a local greedy
dominance-based hill-climber).

D. DBMOPP features

We now describe the features enabled in the DBMOPP gen-
erator, and highlight the relevant literature. Table I summarizes
these supported features in the generator.

1) Arbitrarily many objectives: Because there is no limit
on the size of V , the formulation allows a user defined and
effectively unbounded number of objectives in an instance.

2) Disconnected Pareto sets: Disconnected Pareto sets were
introduced in DBMOPP by [24]. In our generator, we can pop-
ulate a problem instance with arbitrarily many disconnected set
regions. These include the following three distinct subtypes.
• Duplicate sets: Regions Rj that have equivalent per-

formance, meaning all Pareto optimal objective vector
combinations are exhibited by Pareto set members in each
region (three such regions are shown in Figure 1).

• Partially overlapping performance sets: Regions Rj that
each describe part of the Pareto front, but can partially
overlap in the mapping through f (i.e. a particular Pareto
optimal objective vector combination may be obtainable
via more than one Rj , see e.g. [25]).

• Non-intersecting performance sets: Newly introduced in
the generator in this work — where the Pareto front
may only be determined by finding all disconnected
Pareto regions, and there is no duplication of performance
between these regions.

Examples of these three types are shown in Figure 3.
3) Arbitrarily large design spaces: Using two orthogonal

projection vectors (π1,π2) forming a basis, as proposed in
[26], a design space of arbitrarily many dimensions may
be projected into a 2-dimensional space, and subsequently
evaluated under f . A design vector z ∈ Z , Z ⊂ RN ,
N > 2, can be mapped to a respective x using N -dimensional
projection vectors (or basis) π1 and π2. After a projection
back into R2, the corresponding x can be evaluated and
visualized:

x =
(z · π1)

||π1||

(
1
0

)
+

(z · π2)

||π2||

(
0
1

)
.

A single N -dimensional space with multiple regions Rj may
be projected via two orthogonal vectors down to 2 dimensions,
but it is also possible to project to multiple different 2-
dimensional spaces, with different orthogonal vector pairs
of the same dimension and evaluate z using each of these
projections. This allows the different regions Rj to be oriented
differently in Z (and therefore be more distant than in the
single projection case) [26].

4) Dominance resistance regions: The typical generation
of a DBMOPP results in all solutions that minimize any
individual objective fk also being Pareto optimal. In [29], re-
gion constructions were introduced which could overcome this
limitation and supply designs which were dominance resistant
[47] (i.e. solutions which were dominated by other designs in
X but with optimal values for some of the objectives when
compared to the objective vectors of Pareto set members).
Specifically, dominance resistance regions have points whose
Vk match those in the Pareto set, but which are described by
at most K − 1 of the points used to define a Pareto region
Rj . This ensures that each solution in a dominance resistance
region is dominated by at least one design in the Pareto set.
This generation process means there are numerous designs in
X whose quality may be optimal under one or more fk, but
when evaluated under f are still located very far from F .

5) Local fronts: Local fronts in multi-objective optimiza-
tion problems act much like local optima in single-objective
problems. As illustrated earlier in Figure 2, these generate
their own local basins of attraction in X . These may be
easily constructed in our framework by using the angles
selected for the placement of the attractor points in the Pareto
region Rj , but applying a larger radius when distributing the
corresponding attractor points for local regions. Note that these
may also be rotated as a group around the circle center defining
each region without affecting their properties (as long as the
regions are placed sufficiently apart, see [33] for more details).

6) Constraints: Beyond box-constraints defining the feasi-
ble design set X , Nojima et al. [32] have recently shown how
more complex constraints may be incorporated in DBMOPPs.
Their work defines four main types of constraint regions:

1) Vertex: A set of vertices are distributed, typically on
the polygon defining the Pareto set region. All locations
within a fixed radius of the vertices are subject to a
constraint violation value, inversely proportional to their
distance from the vertex.
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Fig. 3. Illustration of disconnected Pareto set region types. Regions in light gray are subject to an additive penalty on the objective vectors, which ensures that
they are not Pareto optimal. Left: Duplicate sets — the Pareto front may be described completely on identifying a single region. Middle: Partially overlapping
performance sets — no single disconnected region defines the entire Pareto front, however there is some duplicated performance between regions. Right:
Non-intersecting performance set — the entire Pareto front is only obtainable once all disconnected regions are identified, and there is no duplicated objective
vectors mapped to by f between regions.

2) Center: The circular constraint region is centered on the
Pareto set polygon and covers the polygon entirely. This
has the effect of pushing the feasible Pareto set to the
circumference of the constraint region.

3) Moat: The circular constraint region is centered on the
Pareto set polygon and covers the polygon entirely.
However, it is not applied within the polygon. This
has the effect of placing a ‘moat’ of constrained space
around the Pareto set, which must be traversed if Pareto
optimal designs are to be identified

4) Checker: The design space is gridded, with each alter-
native cell having a constraint vertex centered within it
– effectively generating a checkerboard effect.

We further build on this in our framework allowing constrained
regions of heterogeneous size and area or volume.

We follow the methodology of [32] for incorporating vertex,
center and moat-style soft constraints (and introducing their
hard constraint counterpart). For the checker-style, however,
we introduce a more flexible and heterogeneous region con-
struction, where each of the penalty centers can be placed
arbitrarily as long as their particular radius means they do not
intersect with a Pareto (or local Pareto) region. This means the
number and size of these regions can be chosen so that a given
proportion of X is constraint violating, and the penalty regions
themselves can intersect, making more complex shapes of the
infeasible/constraint-violating design space. We illustrate our
implementation of these four different constraint region types
in Figure 4. Constraint violations are assessed after projection
into X when larger design spaces are employed.

7) Discontinuous objective functions: The use of the sets of
attractor points V in the construction of a DBMOPP results in
smooth objective landscapes. Discontinuities can be introduced
(as outlined in [33]) via penalty regions p. These may be
used to apply a fixed or varying non-zero penalty to one or
more objective values for all locations within the region. The
effect is to also induce discontinuity in the landscape of those
objectives at all locations that lie on the perimeter of the

penalty region — causing a step-change (discontinuity) in the
objective function response at the region boundary.

In [33], we used circular penalty regions defined by a
center (location) and a radius and they were kept spatially
distinct. However, here we permit them to be placed arbitrarily
close (and indeed intersecting) allowing the composition of
complicated and non-convex penalty regions to be formed.

8) Varying solution density in Pareto sets: In [33], we
showed how varying the relative lengths of the orthogonal
projection vectors used to generate arbitrarily large design sets
allows us to vary the density of the solutions mapped back
to the 2D representation in X . This can in turn make some
regions Rj and regions of the Pareto front more difficult to
attain than others.

9) Varying objective scales: In standard formulations of
DBMOPPs, the range of each objective does not vary greatly,
and the minimum of all objectives is 0. As we first outlined
in [33], the objective ranges can easily be shifted to be
arbitrarily wide or narrow, with any maxima and minima via
a multiplication and shift term frescaled

k (x) = ak + bkfk(x).
10) Neutrality: Neutral (flat) regions of the objec-

tive/dominance landscape can be generated using the penalty
region approach detailed in Section II-D7, where instead
of an additive or multiplicative penalty on the objective(s)
associated with designs in the region, a constant value is used
to replace objective values. This has the effect of making all
design vectors in the region express identical objective values
for the set of objectives affected. Neutrality is common in
combinatorial problems, but can also exist in continuous ones,
for instance, the labor cost or time of manufacture may not
change at all between similar engineering designs.

11) Variable difficultly in attaining Pareto regions: Recent
work has explored varying the difficulty of finding Pareto
regions in DBMOPPs [48]. Two routes to this are identified:

1) Ensuring solutions close to one Ri are more likely to
dominate solutions equivalently close to another Rj .
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Fig. 4. Illustration of constraint region types as implemented in the generator. Left to Right: Vertex, Center, Moat and (extended) Checker-type. Light gray
areas denote regions where the constraints are violated.

2) Ensuring there is a varying difficult/complexity in dis-
covering different Ri.

We have not (yet) implemented the objective value modifica-
tions outlined in [48] for the first route, however we note the
second route is achieved naturally through the generator in
instances with N > 2. This is because Ri further away from
the origin in X are mapped to by smaller volumes of Z, and
therefore are more difficult to attain (as density is lower).

III. ILLUSTRATION ON SOME POPULAR MOEAS

We ran four different MOEAs: NSGA-II [38],
MOEA/D [39], IBEA [40] and NSGA-III [41] on problems
with different feature values (lower and upper bounds are
given in Table II). As mentioned earlier, we limit our analysis
here to a representative set of features as opposed to carrying
out a superficial analysis across all features embedded in
the generator. A total of 5,760 problem instances (i.e. 5,760
feature vectors obtained by all combinations of features in
Table II) were used to test and analyze the performances2.
For each feature vector, we used 11 different instances
to consider the stochastic nature of the generator when
realizing an instance with specific properties (similar to NK
landscapes [49]). For instance, a problem with a feature
vector (0,0,2,2,0,0,0) (i.e., each feature set to its lower bound)
was generated 11 times with the generator. All instances
were optimized for 200 generations (experimental settings
are detailed in the supplementary material). In addition to the
four algorithms mentioned above, we applied random search
on all problem instances as a baseline approach; this approach
draws solutions at random from the uniform distribution
spanning the search domain each generation.

To analyze the performances, we used the hypervolume [1]
ratio (i.e., the hypervolume of the obtained non-dominated
solutions/hypervolume of the Pareto front). Furthermore, we
compared different algorithms statistically using the Wilcoxon
pairwise test with a Bonferroni correction. These experiments
can provide insight for (i) selecting an algorithm based on the
known problem characteristics or features, and (ii) designing
problems to test an algorithm developed.

To get insights into the large amount of data in the results,
we clustered the different feature vectors using their cosine

2See supplementary material for details of the derivation of 5,760.

TABLE II
FEATURES, COMPRISING THE FEATURE VECTOR, WITH THEIR LOWER AND

UPPER BOUNDS (LB AND UB, RESPECTIVELY) AND TYPE.

Feature lb ub type
Non-identical Pareto sets 0 1 binary

Varying density 0 1 binary
Number of objectives 2 10 int

Number of variables (dimensions) 2 20 int
Number of disconnected Pareto sets 0 6 int

Number of local fronts 0 6 int
Number of dominance resistance regions 0 6 int

similarity and plotted against the differences in the hyper-
volume ratio in Figure 5. The feature vectors with similar
cosine similarity indicate that they are in the same direction.
Therefore, the problems with similar cosine similarities have
a similar complexity. The difference in the hypervolume ratio
is the sum of differences in the hypervolume of solutions
obtained by all algorithms. A small difference indicates that
all algorithms performed similarly to each other and a large
difference indicates that at least one of the algorithms per-
formed significantly better or worse than the others. A number
of observations can be made from Figure 5:

• The presence of bubbles (feature clusters) with multiple
colors implies that there is no single best algorithm across
the test instances generated. This provides evidence that
the proposed generator is able to produce problem in-
stances of varying (and controllable) complexities.

• Each feature cluster corresponds to only one of three col-
ors (MOEAs), NSGA-II, IBEA or NSGA-III, indicating
that they performed best (in terms of majority vote) across
the problem instances. Although MOEA/D and random
search did not perform best for any feature cluster, there
are individual feature vectors within a feature cluster for
which they outperformed the others.

• The similarity between feature vectors in a cluster is
proportional to the cluster (bubble) size. This is because
a large size cluster has a large variance in feature vectors
compared to a small sized cluster. Moreover, the spread
of the clusters with respect to the differences in the
hypervolume ratio increased with the cosine similarity.
This is because many problem instances contained in
larger clusters (located in the far right of the plot) leads
to more significant differences in algorithm performance.
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Fig. 5. Average cosine similarity between features in a cluster and differences
in hypervolume ratio. The sizes of the bubbles are proportional to the size
of the clusters. The color indicates the best performing algorithm in a cluster
whereby ‘best’ is measured in terms of majority voting.

• IBEA performed the best for low values of the cosine
similarity between features in a cluster with NSGA-
III becoming the superior algorithm beyond a similarity
level of around 0.48. There was a sweet-spot around a
medium similarity level where NSGA-II performed well
too. This observation confirms that the generator can
create problem instances that pose challenges to different
types of algorithms.

To further analyze the relationship between different feature
vectors and algorithm performance, we plotted the differences
in hypervolume ratio with their cosine similarity, and colored
the clusters based on a particular feature as depicted in Figure
6. Keeping in mind the best performing MOEA for different
clusters (Figure 5), we can observe the following trends from
Figure 6:
• NSGA-III tended to perform best for problem instances

with many design variables (top row, fourth column),
many objectives (top row, third column), high varying
density (top row, second column), and no or few domi-
nance resistance regions (bottom row, right column).

• IBEA tended to perform best for problem instances with
many objectives, many local Pareto fronts (bottom row,
middle column), many disconnected Pareto sets (bottom
row, left column), and many dominance resistance re-
gions.

• NSGA-II tended to perform best for problem instances
with many local Pareto fronts.

Some of these observations are less obvious. In particular,
the fact that IBEA and NSGA-II performed better than NSGA-
III for problem instances with many local Pareto fronts is
because local fronts do not lie in the same direction as the
global front in many visualizable test problems instances. This
is in contrast to widely used benchmarking suites, such as
ZDT and DTLZ, where such fronts are ‘lined up’ in decision
space. Therefore, dominance and indicator-based MOEAs had
an advantage over decomposition-based MOEAs when solving
visualizable test problem instances with many local fronts.
Another, perhaps surprising observation, is that dominance-
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Fig. 6. Cosine similarity between features in a cluster and differences
in hypervolume ratio for different features. The sizes of the bubbles are
proportional to the size of the clusters. The color indicates the median feature
value of the feature vectors in a cluster.

based MOEAs were not always performing poorly on prob-
lems with many objectives, highlighting the fact that algorithm
performance is a function of multiple problem features.

As mentioned above, the generator also created problem
instances on which random search outperformed the other
algorithms. Figure 7 shows a parallel coordinate plot of
features values, where this is the case. It can be seen that
the problem instances needed to have non-identical Pareto
sets and many design variables for random search to do well.
Parallel coordinate plots of feature values favorable for the
other algorithms can be found in the supplementary material.

One of the main advantages of using DBMOPPs is that
the search behavior of a population can be visualized in its
native domain. This property is explored in Figure 8, which
shows the trace generation plots of the MOEAs and random
search (columns) for three selected problem instances (rows).
We selected these instances randomly from the cluster on the
extreme left (IBEA performed the best), on the extreme right
(NSGA-III performed the best) and the cluster of features
on which NSGA-II performed the best in Figure 5. The
far-right column shows the local dominance landscape of a
problem instance, and the first column of the figure shows the
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Fig. 7. Features on which random search performed the best, F1 to F7 are features from top to bottom in Table II

DBMOPP instance Random NSGA-II MOEA/D IBEA NSGA-III Dominance landscape
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Colourmap for columns 2-6, early to late optimisation stage:

Fig. 8. Trace generation plots of solutions with different optimisers. The best performed algorithm from top to bottom rows is: IBEA, NSGA-II, and NSGA-III.
The features of different problem matrices are mentioned in parentheses in the order [non-identical Pareto sets, varying density, number of objectives, number
of decision variables, number of disconnected Pareto sets, number of local fronts, number of dominance resistance regions].

distribution of the attractor vectors in X ; the global Pareto
fronts are indicated by the circles with a black cross in the
center (zoom in to spot the circles in the first and second
row).

The problem instance in the first row of Figure 8 has
only two objectives and three design variables but many
(six) disconnected Pareto regions, local fronts and dominance
resistance regions, which makes the problem difficult to
solve. IBEA and random search were able to find most of
the disconnected Pareto regions. However, IBEA was able
to achieve a higher hypervolume than random search. An
important observation is that IBEA was able to outperform
all algorithms used in this work on difficult problems. Similar
results were also observed in [50], where IBEA performed
better than other algorithms. More work (which is out of scope
here) is needed to understand the effectiveness of IBEA on
such difficult problems which induce a complicated dominance
landscape.

The problem instance in the second row of Figure 8 has
many objectives (K=10), disconnected Pareto regions (four)
and dominance resistance regions (six), and few (two) design
variables and local fronts. It can be seen that NSGA-II
was able to find most of the disconnected Pareto regions,
indicating that NSGA-II outperformed the other algorithms in

the presence of many objectives because of the effects of the
other features. (A similar observation was also made in [51].)
The problem instance in the third row has many objectives
(K=10) and design variables (N=20) but no disconnected
Pareto set and none of the other features. NSGA-III was able
to outperform the other algorithms on this problem instance
and found solutions closest to the global front. This pattern is
in alignment with the observation made in Figure 6 (top row,
right column), suggesting that NSGA-III performed best on
DBMOPPs with many design variables.

IV. CONCLUSIONS

Visualizing the search behavior of an evolutionary algorithm
in its native domain, be it in the design or objective space,
is critical to understanding the search biases and attractors a
problem may have. Ultimately, this understanding supports al-
gorithm designers and practitioners in the process of develop-
ing, validating and selecting a suitable optimization algorithm
for the problem at hand. Visualization becomes even more
challenging as the dimension of the search domain increases.
To address this challenge, we have presented, implemented,
made openly available and validated a feature-rich visualiz-
able test problem generator for many-objective optimization.
The generator is based on the concept of distance-based
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multi/many-objective point problems (DBMOPPs), which are
a type of problem that can have arbitrarily many objectives
but inherently have a two-dimensional design space.

This work extends previous work of the authors on DB-
MOPPs by augmenting the generator with novel features
including hard constraints and non-intersecting disconnected
Pareto regions, which have not been considered in the DB-
MOPP literature so far. Furthermore, the generator has also
been extended and includes an extensive range of features
drawn from the DBMOPP literature, and some further feature
extensions (such as hard constraints, and constraint regions
with more complicated shapes).

We have validated the proposed generator by analyzing the
problem instance space in terms of diversity, complexity, and
difficulty for several widely used multi- and many-objective
evolutionary algorithms. Key findings of the analysis are that
the generator is able to produce test problem instances of
different complexity, and that algorithm performance is a
function of several problem features and not only of the
number of objectives (which is mistakenly often assumed for
dominance-based MOEAs). Most importantly, we can identify
‘sweetspots’ in the instance space that are more suitable
for certain types of MOEAs (perhaps surprisingly, including
sweetspots where random search performed best). The last
finding in particular is of great value to practitioners: the suit-
ability of DBMOPPs to model real location selection problems
(as mentioned in the introduction) allows practitioners, such as
local authorities and urban planners, to use their knowledge
about the urban landscape to select a suitable algorithm to
solve the (location selection) problem at hand.

Gaining an understanding of the relationship of all features
incorporated in the proposed generator and their impact on
algorithm performance is a difficult task, and this work has
only scratched the surface in this regard. Future work will
investigate the performance of existing methods for selected
combinations of features (while switching off the other fea-
tures or setting them be non-challenging as informed by this
study), such as constraint-handling strategies combined with
dynamic optimization methods. Insights gained from these
studies are expected to inform the design of more efficient
optimization methods including surrogate-assisted [52] and
other data-driven methods [53], not considered in this work.
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