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 Abstract— The sensor technology for water quality monitoring 
(WQM) has improved during recent years. The cost-effective 
sensorised tools that can autonomously measure the essential  
physical -chemical and biological (PCB) variables are now readily 
available and are being deployed on buoys, boats and ships. Yet, 
there is a disconnect between the data quality, data gathering and 
data analysis due to the lack of standardized approaches for data 
collection and processing, spatio-temporal variation of key 
parameters in water bodies and new contaminants. Such gaps can 
be bridged with a network of multiparametric sensor systems 
deployed in water bodies using autonomous vehicles such as 
marine robots and aerial vehicles to broaden the data coverage in 
space and time. Further, intelligent algorithms (e. g. artificial 
intelligence (AI)) could be employed for standardised data analysis 
and forecasting. This paper presents a comprehensive review of 
the sensors, deployment and analysis technologies for WQM. A 
network of networked water bodies could enhance the global data 
intercomparability and enable WQM at global scale to address 
global challenges related to food (e.g., aqua/agriculture), drinking 
water, and health (e.g., water borne diseases).  

 
Index Terms—Water quality monitoring, Internet of Things, 

Connected Sensors, Robotics, Sensor Deployment, Intelligent Data 
Analysis.  

I. INTRODUCTION 

HE deterioration of water quality (WQ), caused by 
drivers such as climatic/seasonal changes, global warming, 

human activities or industrial waste is a major global concern. 
Since WQ directly impacts public health and economy, 
monitoring and assessing the quality and the causes of its 
degradation in water bodies has been a priority for governments 
all over the world [1-4]. Traditionally, the WQ is monitored by 
collecting discrete samples at weekly or monthly intervals and 
analysing in laboratory for physico-chemical-biological (PCB) 
parameters to reflect the changes in climatic, geochemical and 
geomorphological conditions and the properties of underlying 
aquifers in riverine systems [5-8]. As the rivers and large water 
bodies exhibit highly dynamic and often non-linear behaviour 
in both time and space, such low-frequency data collection 
makes it difficult to establish linkages between cause and effect 
and develop potential remedy or take timely decisions. 
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Additionally, the outcomes of traditional ‘sample collection and 
lab analysis’ methods could vary substantially due to the time 
gap between sampling and analysis. 

Further, due to climatic changes and human and industrial 
activities, new determinants are regularly added in water 
system. As an example, in January 2014 the Elk River in 
Charleston, USA became contaminated by a leaking storage 
tank containing 4-Methylcyclohexanemethanol, a little-known 
coal-processing chemical, and the contaminated water drawn 
into city’s water supply system left over 300,000 people and 
area businesses without water for several weeks [9]. 
Researchers had little information on how the spilled chemicals 
moved through water, their stability or toxicity, or even how to 
measure them, because the published information was either 
limited or non-existent. So, many more chemical compounds 
are continually added to the list of parameters needed to be 
monitored than the current capability allows. More recently, the 
pandemic has presented similar situation due to the potential 
water-based transmission of coronavirus [10]. Robust strategies 
are required to bridge the knowledge gaps and to generate 
reliable estimates to develop appropriate mitigation measures. 

Over the last decade, the WQ observing technology has risen 
to the challenge of scientists and has provided them with tools 
that identify poor WQ by autonomously measuring the essential 
PCB parameters [11-21]. Sensorised buoys and boats have been 
deployed for data collection and in situ-monitoring [22-28]. 
Likewise, the satellite imagery and time-averaged spatial 
analysis tools have been used for remote water quality 
monitoring (WQM) at regional levels [29]. Despite these 
options becoming more readily available, there is a gap between 
the technology and the end-user and a disconnect between data 
quality, data gathering by autonomous sensors and data 
analysis. The autonomous WQ observing technology could be 
advanced with network of sensors and geographical 
information systems (GIS) and suitable analysis methods to 
obtain water related information in real time [30]. With the 
impact of climate change, sole reliance on historical hydrologic 
patterns is no longer a viable route for forecast. Due to lack of 
standardized approaches for data analysis, and the gaps in the 
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training of technicians and the approaches they use to analyse 
the data, it is also difficult to achieve the global data 
intercomparability. Such issues can be addressed by real-time 
WQM with suitable sensor networks [12, 19, 31-35].  

Sensing in various water environments, particularly in large 
water bodies and underwater, is complex, expensive and 
challenging for a number of reasons. The environment is 
unforgiving for many sensing technologies; many modalities 
readily available in air cannot be used underwater and usually 
require specific packaging; or with limited range and 
sensitivities, the communications are severely affected. For 
instance, electromagnetic (EM) waves do not propagate well in 
water, especially salt-water; corrosion is prevalent, and 
biofouling can present as real challenge in shallow waters. As a 
result, the real-time WQM remains a challenge and methods 
that allow holistic water management, also considering the 
catchment management or the WQM at the source, need greater 
attention. The catchment management or the WQM at the 
source are important as the proportion of nutrients and 
sediments could vary significantly (e.g., during stormy events).  

The sensor technologies that enable accuracy, repeatability, 
reliability and remote communication are vital to meet the 
growing challenges in the WQM. As new requirements for 
remote sensing emerge, there is need to develop multisensory 
systems to simultaneously measure multiple parameters, as well 

their deployment strategies (e.g., using a mobile robots) to 
capture the spatio-temporal variations. The comprehensive 
discussion in this review paper focusses on these challenges and 
their solutions based on smart sensing technologies. It may be 
noted that the sensor based WQM has also been covered in 
some previous review articles [4, 36-45], where the discussion 
is restricted to a measuring a limited set of parameters and the 
real time monitoring using connected sensor network is 
generally not covered. For example, review focussing on 
graphene-based sensors (pH, disinfectants, mercury, lead, 
chromium, etc.,) for WQM [44], various electrochemical 
sensors and mechanisms for monitoring pH and chlorine have 
been reported [46]. Likewise, biosensors for pathogens or 
chemical water contaminants (i.e. faecal pathogens, arsenic, 
and fluoride) [47] and the information and communications 
technology (ICT) [14] have been reviewed. Complementing the 
previous reviews, the holistic discussion in this comprehensive 
review covers the key topics related to connected sensors for 
real-time WQM, as summarised in Fig. 1. These include: (a) 
multiparametric sensory systems, (b) deployment of a network 
of multiparametric sensory systems in water bodies to broaden 
the data coverage in space and time (e. g., using autonomous 
marine robots and aerial vehicles,) and (c) using intelligent 
algorithms (e. g., artificial intelligence (AI)) for standardised 
data analysis and forecasting. By structuring the paper on above 

 
Fig. 1: (left) Various human activities contributing to the deterioration of water quality and the ways for its monitoring, including using 
multiparametric sensor patches or electronic skin (e-Skin), traditional methods of sensor deployment such as using sensorized buoys, and 
advanced deployment using underwater robots or multisensory e-Fish. (right) Key constituents of a holistic WQM system. 
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lines, it is hoped that the reader will be able to identify the 
disconnect between data quality, data gathering and data 
analysis and encouraged to explore innovative solutions. This 
is also a distinguishing feature of this review article. 

This paper is organised as follows: Section II focusses on the 
ways to improve the data quality. To this end, various sensors 
and materials have been discussed. The data quality can also be 
improved by using suitable form factors and therefore flexible 
and disposable sensors are also discussed in section II. Various 
methods for sensor deployment in water bodies are discussed in 
Section III. These include sensor-instrumented buoys or 
moorings, as alternative to traditional ‘sample collection and 
lab analysis’ methods as well as advanced methods such as 
using underwater robots or autonomous aerial vehicles. These 
methods allow the high frequency collection of PCB properties 
of the water. Further, sensors interface with onboard electronics 
of robots and communication between them and the control 
station are also discussed in section III. The packaging methods 
employed for sensors and related components are also 
discussed in this section. Section IV briefly discusses the 
traditional methods data analysis as well as potential use for 
artificial intelligence (AI) in context with analysis and 
prediction of WQ. Future direction and perspectives are 
discussion in Section V, and this is followed by summary of 
conclusions in Section VI. 

II. IMPROVING THE DATA QUALITY 
The WQM is carried out through a range of sensors that 

measure the basic PCB parameters. The quality of data 
collected by these sensors can be influenced by several factors 
such as (i) type of sensors (ii) functional materials used for the 
development of sensors and (iii) number of sensors etc. This 
section discusses these factors with a view to provide an insight 
into what it takes to improve the sensor data quality.  

A. Water Quality Parameters 
A large number of PCB parameters that need to be monitored 

to ascertain the WQ are summarised in Table 1. The acceptable 
concentrations or range of theses parameters depend on the end-
use, for example drinking water (DW), bathing, aquaculture 
(freshwater fish directive or salmonid water regulations), 
ground water, or surface water (SW) for other uses etc. The 
most common parameters that are widely analysed to ascertain 
wate quality are pH, dissolved oxygen (DO), Cl-, Na+, nitrate, 
and dissolved ions [4, 45, 48, 49]. Some of the parameters 
including pH, Cl- ions and temperature are also used for 
monitoring health, food quality or to monitor the quality of air 
[50-57]. For example, spatial variation can be expected in the 
values of pH and Cl- in an area [52] and the sensors that offer 
wide operating range (e.g. pH sensors in the range of 1.5-12) 
could be employed.  

The biological, organic and inorganic toxic pollutants cause 
the variation of concentrations of various parameters in water 
or add new contaminants. For example, several human 
activities and products such as pharmaceuticals (antibiotics, 
hormones, non-steroidal anti-inflammatory drugs), personal 
care products (preservatives, bactericides/disinfectants, and 

sunscreen UV filters), endocrine disruptors (pesticides, 
plasticizer and antimicrobial) herbicides, artificial sweetener, 
etc. add new water pollutants [4, 58, 59]. As discussed in 
previous section, there is always a possibility of the presence of 
new pollutants in water bodies [4, 60, 61]. As an example, 
micro plastics and pathogens need to be monitored to prevent 
loss of life or improve health and wellbeing [10, 61-66]. Few 
recent studies also indicate that presence of coronavirus in 
wastewater from the hospitals, quarantine centres and domestic 
households with positive cases  [64, 65, 67, 68] . The potential 
transmission of SARS-CoV-2 within faecal contaminated rivers 
has been highlighted recently and a similar transmission risk is 
likely to exist from untreated or partially treated wastewater and 
drinking water in regions or countries with poor sanitisation, 
especially if they are experiencing high infection rates [69]. 
Transmission may also be possible to and from susceptible 
riparian animals, or some cetaceans, that have fed from, lived 
around or within, or ingested faecal contaminated water [69]. 
The timely detection of such new contaminants can offer an 
opportunity to develop an early warning system. For example, 
by monitoring the wastewater coming from an area it is possible 
to identify the potential asymptomatic covid cases and prepare 
for the health requirements (e. g. readying the ventilators [70] 
or setting up temporary health centre etc.) in that area. The 
smart connected sensors-based approach is much needed for 
such cases. Further, using multisensory patches could help 
establish the linkages or dependencies between the various 
parameters.  

TABLE I: GENERAL RANGE OF SOME IMPORTANT MARKERS WHICH NEEDS TO 
BE MONITORED FOR WATER QUALITY (SW – SURFACE WATER; DW – 

DRINKING WATER) [3]. 
Parameters SW DW 

Chemical Parameters 
pH 5.5 - 9 6.5 – 9.5  
Dissolved Oxygen (DO) in ppm 0.5 -10 -- 
Sulphate (mg. l-1 SO4) 200 250 
Phosphates (mg. l-1 P2O5) 0.7 -- 
Sodium (mg. l-1 Na) -- 200 
Ammonia (mg. l-1 NH4) 0.005-4 
Fluoride (mg. l-1 F) 1.7 1.5 
Iron (mg. l-1 Fe) 2 1.5 
Chloride (mg. l-1 Cl) 250 250 
Lead (mg. l-1 Pb) 0.05 0.01 
Nitrate (mg. l-1 NO3) 50 50 
Manganese (mg. l-1 Mn) 2 0.05 
Zinc (mg. l-1 Zn) 5 5 
Nickel (mg. l-1 Ni) -- 0.02 
Cyanide (mg. l-1 CN) 0.05 0.05 
Chromium (mg. l-1 Cr) 0.05 0.05 
Arsenic (mg. l-1 As) 0.10 0.01 
Benzene (mg. l-1 compound) -- 0.01 
Boron (mg. l-1 B) 2 1 
Cadmium (mg. l-1 Cd) 0.005 0.05 
Copper (mg. l-1 Cu) 1 2 
Mercury (mg. l-1 Hg) 0.001 0.001 
Selenium (mg. l-1 Se) 0.01 0.01 
Vinyl Chloride (µg. l-1) -- 0.50 

Biological Parameters 
ECH -- 0.0001 
E-Coli (no./100 ml) 10000 0 
Epichlorohydrin (µg. l-1) -- 0.10 

Physical Parameters 
Temperature (ºC) 25  
Turbidity (ppm) 05-10 
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B. Materials for Sensors 
The quality of data generated by the WQM sensors is 

evaluated through their sensitivity, response time, selectivity 
(interference to other ions), hysteresis, drift effect, lifetime, 
stability in various water conditions and biocompatibility etc. 
For example, the ideal sensitivity of potentiometric pH sensors 
should be close to Nernstian response 59.12 mV/pH. Further, 
these sensors have fast response (<1 minute) and negligible 
hysteresis, drift and interference effects. Few pH sensors that 
exhibit above mentioned properties include RuO2 based pH 
sensors [34, 71-74]. As an example, in our previous work we 
observed the of sensitivity 56.11 mV/pH with response time 
<15 s [71]. A summary of the materials  used for the fabrication 
of sensors such as pH, DO, ammonia, nitrate and ions etc. is 
included in Table II. 

Recently, biocompatible and biodegradable materials have 
attracted significant interest [75-77]. The choice of materials 
and eventually the sensor performance, depends on their 
structural properties. For example, nanostructured materials 
exhibit high surface to volume ratio, and hence the fast response 
and high sensitivity [20, 78-80]. In addition, the shape or 
morphology of the nanomaterial could influence the sensor 
performance [81, 82]. The porosity, pore size and grain size of 
the crystals influence on the response time. For example, in a 
work involving the Cu2O-doped RuO2 based pH sensitive 
electrode (SE), it has been shown that the pH sensitivity does 
not vary with the thickness of SE (from ~2.0 to ~5.0 μm) [78], 
but the response time does. The response time was found to 
improve from ~80–120 s (for SE thickness of 2.0 μm) to ~25 s 
(for SE thickness of 5.0 μm) as improved crystallization was 
possible for thicker SEs. Further, the inner active site in the SE 
and developed porosity led to sensors with improved 
performances [78]. A comparison of various influencers of the 
bulk, microstructural and nano-structural properties of the 

electrode is given in Fig. 2. Recently molecule-based sensors 
have also received attention for the fabrication of 
electrochemical and biosensors [83]. The miniaturized sensors 
with fast response have been realized using materials with nano 
or molecular structures [83]. The cost (of both material and 
fabrication), life- time, flexibility are other factors which also 
need to consider in the SE design. As discussed in the following 
sub-section, in a vast majority of the recently reported flexible 
sensors for WQM or other applications such as wearables for 
health monitoring, the micro or nanostructured materials have 
been utilized. With the functionalization of nanomaterials and 
nanoparticles, they could be used in biosensors as the 
recognition elements or the transducers, especially for pathogen 
detection in WQM [84, 85]. The selection of the nanomaterials 
for the fabrication of a biosensor depends on the properties of 
the nanomaterials and their application and as a result several 
types of nanomaterials have been used in the design of 
microbial biosensors [85], as discussed in the following 
subsection. 

C. Sensors for Water Quality Monitoring  
The methodologies that have been employed for monitoring 

various PCB parameters in water include electrochemical, 
physical and optical sensing. Among these, the electrochemical 
sensing is preferred [49, 54] due to several advantages as noted 
in Fig. 3a. Electrochemical and bio sensors offer cost-effective 
route for simultaneous monitoring of PCB parameters using 
multi-sensory patch and are suitable for online monitoring of 
large water bodies such as reservoirs. In electrochemical 
sensing, the conventional glass-based sensors are of limited use 
for online monitoring and their response could be influenced by 
the prevailing pressure and temperature conditions. In this 
regard, the electrochemical solid-state sensors based on metal 
oxides (MOx), polymers or carbon-based materials (based on 
thick/thin film) technology are better and suitable to be used as 
part of wireless sensor networks [54, 83, 86-89]. The qualitative 
analysis of the features and th1/8/22e advantages of the solid 
state based physical, electrochemical and biosensors are 
summarized in Fig. 3b. This includes type of sensors 
(potentiometric, voltammetry, chemi-resistance, capacitive, ion 
sensitive field effect transistors (ISFETs)) and materials used 
for the fabrication. The performance parameters such as 
sensitivity, response time, selectivity may depend on the type 
of fabrication adopted for development of sensors including 
screen printing, chemical deposition, physical deposition, sol 

 
Fig. 2: Comparison (positive and negative) factors of materials for 
sensors fabrication.  

TABLE II: PERFORMANCES OF WQM SENSORS 
Sensor Material Sensitivity Response 

time 
Ref 

pH RuO2 58 mV/pH (2-13) 1-2 s at 23˚C [107] 
DO RuO2 41 mV/decade (0.6-8 

ppm 
8-10 min at 
9˚C 

[107] 

pH Bi2Ru2O7+x + RuO2 58 mV/pH (2-13)  [102] 
DO Bi2Ru2O7+x + RuO2 30.57 mV/decade (0.5- 

8 ppm) 
 [102] 

 
pH RuO2+SnO2 56.5mV/pH(2-12) 5-9 s  [103] 
Nitrite Au 0.98 coefficient 0.5 - 8 

mM range 
 [20] 

Hg2+ MoS2 0.64 µA/ppb (0.1 - 100 
ppb) 

1.8 s [21] 
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gel methods [90] and type of sensors. 
1) Potentiometric and Amperometric sensors: 
It is essential to develop reliable sensors to measure individual 
parameters or multiparametric sensor systems for simultaneous 
detection of multiple analytes. Among different types of sensor 
configurations, the potentiometric sensors, as illustrated in Fig. 
4a [54], are widely used for pH and DO monitoring. The 
potentiometric electrochemical sensors, consisting of sensitive 
and reference electrodes, offer simple and attractive approach 
with their sensitivity measured by Nernstian equations [18, 71]. 
Examples include sensors that use thick film Ag/AgCl/KCl 
based reference electrode (RE), showing excellent long-term 
stability comparable with glass RE and hence suitable for 
applications requiring data collection over long periods [71, 91-
97]. Due to high sensitivity, chemical stability and long 
lifetime, the RuO2 has been used as SE in many pH and DO 
sensors [54, 71, 97]. Using RuO2, the pH sensor (2-13 range; 
sensitivity 58 mV/pH at 23ºC) and DO sensor (0.6 - 8.0 ppm 
log [O2]; -4.71 to -3.59 with sensitivity of -41 mV/decade at pH 
8) have been developed with excellent performances [105, 117. 
The response of these sensors is strongly influenced by the 
temperature of water. When the water temperature is low, the 
sensor shows slow responses. For example, at 9ºC the pH sensor 

shows response time of 8-10 min as compared to 1-2s at high 
temperature (23ºC) [73, 98]. 

Silicon based thin film sensor have been used in several 
applications [52]. Due excellent response consistency, they 
could offer excellent opportunity for WQM. However, one of 
the major issues with these sensors is the lack of compatible RE. 
A vast majority of reported works based on thin film-based 
Ag/AgCl REs show drift [99, 100]. To solve this issue, solid-
state Ag/AgCl electrode could be placed in a mini tank of KCl 
solution for better ion exchange, as done in the case of nitrite 
monitoring sensor [20], and the outcome was a stable potential 
with very small variation of 2 mV. The design of this sensor 
shows potential usefulness for monitoring of analytes such as 
phosphates and ammonium. With further modification of the 
working electrode (WE) it may also be possible to use this 
design for urea and ammonia monitoring. The array of RuO2 
based sensitive electrode has also been used for lower 
measurement errors in microfabricated sensors developed in 
ISFET technology [101]. These sensors show excellent 
performances with a sensitivity of 55.64 mV/pH and low drift 
rate 0.38 mV/h at pH 7 and the array of such sensors could be 
useful for monitoring parameters such as free chlorine, DO, 
dissolved ions, and heavy metals. 

There are many dissolved metal ions in water which are also 
toxic and can cause health risks if their concentration is high, as 
listed in Table I. For example, toxic Hg2+ (as per WHO it should 
be <1ppb) could cause acute poisoning, irreversible 
neurological damage, cancer, and motion disorders that can 
lead to death. Hg2+ could be detected using a molybdenum 
disulfide (MoS2) functionalized AlGaN/GaN high electron 
mobility transistor (HEMT) sensor [21]. The sulphur atoms in 
MoS2 attract the Hg2+, leading to the adsorption of these ions on 
the surface of the MoS2 to form Hg-S complexation. The 
formation of Hg-S reduces the electrons from MoS2 surface and 

 
Fig. 4: (a) Schematic representation of a potentiometric pH sensors 
[54] (b) Image of a nanohybrid paper-based free chlorine monitoring 
sensor with 3D packing and readout ‘Reprinted (adapted) with 
permission from [112]. Copyright (2020) Am. Chemical Soc. 

 
Fig. 3: Comparison of electrochemical, analytical and optical based 
sensors (b) general summary of solid-state sensors including various 
type of devices (sensors). 
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hence increases the drain-source current of the transistor. This 
type of sensor could also be used for other heavy metal ions 
such as Cd2+, Ni2+, Cu2+, Pb2+, Zn2+, and Cr3+ [21]. The heavy 
metal ions can also be monitored using potentiometric or 
amperometric method. 
2) Interdigitated and chemi-resistive based sensor 
To solve the RE related issue with potentiometric sensors, the 
interdigitated electrode (IDE) design has been used in 
conductive/capacitive/impedance and chemi-resistive (two 
electrode) based sensors. Several active electrode materials 
(metal oxides, polymers and carbon) are suitable to be used with 
electrode of IDE based sensors [104-106]. Such IDE based 
sensor are fabricated by using metal oxides, polymers, and 
carbon-based material [79, 107-109]. One the best IDE based 
sensors for WQM reported is the hydrogel (polymer), which is 
shows biocompatibility and low cost for materials and 
fabrication. The electrical properties including conductivity of 
hydrogels change during interaction with analytes [106, 110, 
111]. The miniaturized pH sensor consist of an active electrode 
is hydrogel of polypyrole and polyaniline. The major drawbacks 
of hydrogel-based sensor are their low mechanical strength and 
low lifetime.  

The chemi-resistive sensing is another class of sensors which 
does not require a RE. An example of paper-based chemi-
resistive sensor for real-time monitoring of free chlorine is 
shown in Fig. 4b [112]. This sensor uses nanohybrid ink  based 
on graphene and PEDOT: PSS. The chemi-resistive pH sensors, 
with nanocomposites of single-wall carbon nanotubes 
(SWCNTs) and nafion used for SE, have also been explored for 
WQM using drones with wireless communication capability 
[113]. The nafion layer enhances the performance of the 
flexible sensor by reducing the degradation of electrical 
properties due to the cracking (even breaking) of the SE while 
bending. Further, the results from this type of sensor show that 
the sensitivity could be improved by increasing the number of 
printed layers of SE. Similar configuration could be used for 
online monitoring of conductivity, chloride ion detection and 
temperature sensors. Further, various forms of CNTs could be 
used for improved sensing performance [114]. 
3) Multi-sensors for WQM  
As discussed in Section 2.1, multiple parameters need to be 
monitored in water. In this regard, multiparametric sensors on 
the same substrate is advantageous. As an example, 
multiparametric sensing platform (pH, DO, temperature, 
conductivity, and turbidity sensors) for online WQM [34, 74, 
115]. The first printed multi-sensory patch (pH, DO, 
conductivity and temperature) for WQM showed continuous 
operation for several months in water with <5% and <10% 
errors for pH and DO sensors respectively[116]. A multi-
sensory patch by thick film technology for pH, DO, 
temperature, turbidity and conductivity has also been developed 
with integrated data acquisition, and signal conditioning 
modules [72]. Another example highlighted the performances 
in Table II, is the integrated online monitoring system with pH, 
free chlorine and temperature sensors [86]. In another work, 
emerging pharmaceutical contaminants, and heavy metal were 
also detected, along with pH, chlorine temperature, using multi-

sensory patch [12]. Comparison of the performances of few 
multi-sensory patches reported for WQM is given in Fig. 5. 
4) Biosensor for pathogens monitoring  

In addition to the chemical and dissolved metal ions, the 
detection of bacteria in water is another major challenge. The 
electrochemical transducer are most promising in this case also 
due to their selectivity, high sensitivity, measurability in 
complex and turbid samples, simple structure and 
miniaturization, rapid response, and low cost [137]. 
Electrochemical biosensors cane divided into major four 
categories: (a) impedimetric, (b) conductometric, (c) 
amperometric, and (d) potentiometric [10]. Table III summaries 
the different electrochemical sensors-based detection method 
for food and waterborne bacteria. The nanomaterial based 
sensor approach is attractive in the case of bacteria detection 
due to rapid, inexpensive, and accurate measurement needed for 
food safety and environmental monitoring [138, 139]. The 
distinct physical, chemical, magnetic, sensing, catalytic, 
mechanical, and optical properties of nanomaterials due to high 
surface to volume ratio, reactivity, and high penetrability allow 
the use of variety of advanced nanomaterials to develop sensors 
for microbial detection with improved specificity and 
sensitivity [139, 140]. The gold nanomaterials, also known as 
gold sol (colloid in which solid particles are dispersed in 
continuous liquid phase) are widely used for bacterial detection 
owing to their distinct  physiochemical, optical, and electronic 
features. Additionally, they are biocompatible, easy to 
synthesise and control the physicochemical properties, and easy 
to functionalize with various biological recognition elements 
[141, 142]. Due to similar reasons, the magnetic nanoparticles 
(MNPs) have also attracted considerable interest for application 
in bacteria detection [143, 144]. Other category of materials 
employed in the fabrication of biosensors are the conducting 
polymers (e.g. PEDOT: PSS, polypyrrole) [84, 145]. Different 
recognition elements such as antibodies, enzymes, etc. have 
been used to improve the magnetic, optical, and electronic 
properties of conducting polymers with an aim to design 
inexpensive, simple, sensitive and selective biosensors [84]. 
Due to the mechanical and electrical properties, surface area, 
low-cost, stability over longer periods, and the possibility for 
real-time applications, the carbon-based nanomaterials are also 

 
Fig. 5: Comparison of the performances of multi-sensory patches 
used for online WQM. Patch 1[72], Patch 2 [98], Patch 3 [86]. 
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widely used nanomaterials for biosensor. For example, 
graphene has received great attention via different variants such 
as Graphene quantum dots (GQDs), reduced graphene oxide 
(rGO), graphene oxide and graphene composites [146]. The 
carbon nanotubes (CNTs) (either multiple walls or single wall) 
and fullerenes, are other increasingly used nanomaterials for 
biosensors with enhanced performance due to their interesting 
catalytic, mechanical, and electrical properties [84, 147]. 
Taking the advantages of non-toxicity, biocompatibility, and 
high chemical and physical stability, the silica nanoparticles 
(SiNPS) have also been explored [148, 149]. For example, 
SiNPS with size range of 5–1000 nm have been used in 
electrochemical biosensors for microbial detection [141].  

For rapid detection of water quality parameters, it is 
important to integrate the multiple sensors with readout 
electronics and wireless communication modules. An example 
of the reported architecture for monitoring physical and 
chemical parameters given in Fig. 6 [13]. More details about  
sensor deployment and communication are given in the 
following section. 

III.  IMPROVING THE SENSOR DATA GATHERING  
As discussed in Section I, the outcomes of traditional ‘sample 

collection and lab analysis’ methods could vary substantially 
due to the time gap between sampling and analysis, as well as 
due to the gaps in the training of technicians and the approaches 
they use for the data analysis. As a result, robust strategies have 
been sought from time to time to bridge the knowledge gaps and 
to generate reliable estimates to develop appropriate mitigation 
measures. In this regard, the different methods for deployment 
of autonomous sensors have been explored along with 
development of suitable interface electronics for real-time data 
transmission and communication. This section discusses these 
ways of placement of sensors in space and gathering their data 
at various times.  

A. Sensor Deployment Methods 
The deployment of autonomous sensors installed at select 

locations (based on experience) in the water body (e.g., using 
buoys) have been explored for in-situ analysis. In terms of 

 
Fig. 6: (a) Nitrate monitoring sensors attached to the boat for real time monitoring in river [23]. (b) Architecture for monitoring physical- 
chemical parameters by kinetic energy harvesting and long-range radio links connection to a Cloud server, providing visualization, feedback 
control, and analytics [13]. 

TABLE III: SUMMARY OF THE REPORTED ELECTROCHEMICAL BASED BIOSENSORS FOR FOODBORNE AND WATERBORNE BACTERIA DETECTION 
Transducer  Target  Material  Linear range LOD Ref.  
Amperometric E. coli  Au NPs 10–109 CFU/mL 10 CFU/mL [117] 
Amperometric E.coli O157:H7 3-aminipropyl triethoxysilane (APTES)  1 fM–10 µM 0.8 fM [118] 
Amperometric E.coli O157:H7 core–shell magnetic beads and Au NPs 102–106 CFU/mL 52 CFU/mL [119] 
Amperometric S. aureus SWCNT 102–105 CFU/mL 102 CFU/mL [120] 
Amperometric Listeria monocytogenes MWCNT Fibers 102 to 105 cfu/mL 1.7 ×102 cfu/mL [121] 
Amperometric E.coli O157:H7 Nickel oxide 101 to 107 cells/mL 1 cell/mL [122] 
Conductometric Bacillus subtilis SWCNTs 102–1010 CFU/mL 102 CFU/mL [123] 
Conductometric Escherichia coli magnetic beads 2.5 × 103–2.5 × 108 CFU·mL−1  2.3 × 104 CFU·mL−1  [124] 
Impedimetric E.coli O157:H7 Gold nanofilm 50–500 CFU/mL 50 CFU/mL [125] 
Impedimetric E.coli  Gold print 10–108 CFU/mL 3 × 10 CFU/mL [126] 
Impedimetric E.coli O157:H7 Au NPs 300–105 CFU/mL 100 CFU/mL [127] 
Impedimetric E.coli  Cu3(BTC)2/PANI 2-2 × 108 CFU/mL 2 CFU/mL [128] 
Impedimetric E.coli O157:H7 polypyrrole (PPy) 103 -108 CFU/mL 103 CFU/mL [129] 
Impedimetric Bacillus cereus Au NPs 100 -107 CFU/mL 100 CFU/mL [130] 
Impedimetric S. Typhimurium Au NPs 10-105 CFU⋅mL−1 10 CFU⋅mL−1 [131] 
Potentiometric Salmonella typhimurium PEDOT: PSS 1 - 1.28 × 105 cells mL −1 5 cells mL−1 [132] 
Potentiometric Vibrio alginolyticus Magnetic Beads 10–100 CFU mL−1  10 CFU mL−1 [133] 
Potentiometric Bacillus cereus Polypyrrole 102–105 CFU/mL 102 CFU/mL [134] 
Potentiometric E. coli carbon quantum dots 2.9 cfu/mL to 2.9 × 106 cfu/mL 0.66 cfu/mL [135] 
Potentiometric E. coli O157:H7 ZnO Nanorod Arrays 10 CFU/mL to 105 CFU/mL 1.0 × 102 (CFUs)/mL  [136] 
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technology, instruments such as sensor-instrumented buoys or 
moorings have been considered recently to overcome 
traditional bottlenecks related to WQM shown in Fig. 1. These 
methods allow the high frequency collection of PCB properties 
of the water. Sensor-instrumented buoys in a water column can 
also allow the temporal variations in WQ to be characterised 
and the drivers of these changes in the WQ to be better 
understood. For example, information on biological production 
(via DO measurements) and water column stratification (via 
temperature and salinity measurements) can be easily collected. 
However, the deployment and operation of permanent scientific 
monitoring buoys, as used by national and international 
agencies and harbour authorities, are typically expensive (e.g., 
capital cost of > £0.5–1 million) and thus few of them exist. 
While they provide excellent temporal coverage, the sparse 
spatial coverage in the heterogeneous coastal zones is 
challenging and also this approach is cost prohibitive for small 
to medium sized businesses to purchase and operate [150-153]. 
Cost effective methods that allow capturing spatial and 
temporal variations in WQ are much needed. In this regard, 
sensor networks and advanced sensor deployment techniques 
such as using surface or underwater robotic vehicle or 
autonomous aerial vehicle namely drones, could be useful. 
Such methods have already advanced the monitoring activities 
in areas such as agriculture and given many similarities there is 
no reason why they cannot be tried to WQM. When presented 

with the challenge of sensing in the underwater environment, 
one can envisage multiple requirements and scenarios, all 
requiring different approaches and deployment strategies: At 
one end of the spectrum is large scale, long term  environment 
monitoring.  

In this case, a large number of fixed sensors, able to measure 
environment parameters at regular intervals, when triggered by 
an external signal or based on changes in the environment is 
advisable [154]. For coastal water quality monitoring compact 
and low-cost autonomous sensors are now being used within 
low-cost moorings [155] enabling the potential for widespread 
deployment of such sensors. Fig. 6 shows an example of nitrate 
monitoring sensors attached to the boat to collect data in every 
15s from Iowa and Cedar Rivers [23]. The addition of multi-
sensory nodes on number of travelling or fisheries boats could 
for a network to provide rich information about water quality. 
The deployment of such networks and their retrieval is often 
costly, and some nodes can be lost or damaged. 

The low-cost lightweight autonomous airborne drones or 
unmanned aerial vehicles (UAVs) (<2 kg take-off weight) hold 
great potential for WQM via remote sensing, sensor 
deployment and water sampling as shown in Fig. 1 and Fig. 7a. 
Their potential for environmental and ecological monitoring 
has been identified [156] and they are already being used for 
coastal monitoring [157], while some advances have been made 
with water sampling [158]. However, their routine use for the 

 
Fig. 7: (a) Sensor network deployment and data gathering (b) The Dorado AUV with an onboard water sample collection system 
consisting of 10 1.8 L ‘‘gulpers’’ that can be triggered by the onboard computer. Real-time measurements by the AUVs sensor 
suite can guide physical sample collection decisions (c) Example of coordination between a fixed and mobile sensor network for 
data gathering and harvesting. 
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remote sensing of the water and sensor deployment will require 
characterization of, and improvements in, the on-board 
geolocation accuracy and precision. This is needed to allow the 
drone to know its precise position (in all planes) for optical 
remote sensing and any deploy, return and retrieve applications 
in water regions where no-fixed points of reference exist. The 
relatively short flight times (e. g. due to battery and payloads 
limitations), and distances (often limited by country-specific 
flight rules) means that use of the lightweight drones for water 
quality monitoring will likely be limited to inland waters and 
near-shore estuarine and coastal environments.  

At the other end is the opportunistic or event driven 
monitoring on-demand using a mobile asset such as mobile 
robots, which offer the opportunity to gather data where and 
when required. The sensors modules attached on the string of 
buoy, as mentioned earlier, could provide WQM at various 
depths in a water body but still the information is from a fixed 
location. On other hand, mobile assets such as autonomous 
underwater vehicles (AUVs) with sensory skin could provide 
frequent information from different areas. Getting the right data 
at the right time enables to respond quickly to emergency 
situation, adapt the sensing to the specific task at hand and 
complement environmental models requiring in-situ data to be 
calibrated and validated [159]. In this regard , the deployment 
of sensors by using AUVs, drifters and autonomous surface 
vehicles (ASVs) illustrated in Fig. 1 and Fig. 7b leading to a 
heterogeneous system of fixed and mobile sensor nodes [160], 
is an interesting direction. In this setup, the fixed network can 
be used for environment sensing as well as acoustic localization 
of the mobile assets shown in Fig. 7c. The mobile robot can be 
used to perform denser environmental sensing in specific areas 
of interest, track dynamics phenomena and fronts and be used 
as a ‘data mule’ to gather data from the fixed nodes using short 
range, high bandwidth acoustic or optical channels. 

Equipped with multiple sensors and the interfacing 
electronics, these autonomous robotic nodes could possibly 
connect to the Cloud for real-time WQM. However, the remote 
monitoring in this way can be challenging due to issues such as 
poor connectivity, large power requirements and regular 
maintenance of large number of sensors nodes, as discussed in 
Section 3.3. Furthermore, the sensors nodes experience wide 
variation of ambient conditions (e.g., pressure, temperature) as 
the sensors need to be deployed at different depth levels 
(surface, mid and bottom) to analyse in wide area and this often 
leads to calibration issues, as discussed in Section 3.2. This 
requires designing sensors and electronics for wide operating 
ranges. Dedicated electronic circuit required for such sensors 
interface and is discussed in following. 

B. Electronic interfaces to the sensor 
Distributed multi-sensory nodes/modules envisioned for 

WQM must be functional in adverse environmental condition 
for a long period of time. They can be even more effective if 
they are able to communicate amongst themselves as well as a 
base station. However, the primary operating condition for a 
sensor node is the availability of enough power for front-end 
signal processing and data transmission (to the nearest node). 

The self-contained node is expected to contain active circuits 
that drive the transducer in contact with the environment. This 
drive circuitry is often called Analog Front-End (AFE) and is 
critical in determining the quality of the data collected. 
Traditionally, the analog signal is digitized and processed in a 
digital backend before communicating to an external reader. 
There are multiple design considerations and challenges to 
designing these electronic modules. As explained earlier, the 
electrochemical sensors can be either voltametric, 
potentiometric or conductometric. While both voltametric and 
potentiometric measurements can be 2 or 3 electrode based, 
conductometric measurement is either 2 or 4 electrode based. 
In all these options, there are some basic similarities in 
instrumentation techniques (e.g., the electrodes need to be 
excited with a voltage or a current) that results in the 
measurement of a current or a voltage, which is then amplified 
and filtered before being digitized. In the case of current 
measurement, the first stage is a trans-impedance amplifier that 
converts the current to a voltage, and then the same signal chain 
follows.  

Signal to noise ratio (SNR) is a more obvious choice for 
describing the performance of an analog frontend (AFE) circuit. 
Whereas SNR describes what is actually achieved with a certain 
signal range in mind, dynamic range (DR) can be used to 
describe the performance that is possible to achieve with a 
system. The electrochemical sensors for WQM may have to 
detect harmful toxic concentrations as low as parts per billion 
(ppb) while some atmospheric gases of interest, such as O2, are 
present in concentrations 10 million times larger. Hence, the 
sensors discussed in Section 2 could generate a wide range of 
DC current outputs that the electronic interface should be able 
to measure. This varies from currents at sub-pA level (to 
achieve high sensitivity for scarce target) to μA level (for large 
concentrations) and all ranges in between[161]. Hence, AFEs 
for sensor interface need to have a very wide dynamic range, 
along with sub-pA limit of detection.  

Depending on how the WQM device is deployed and used, 
there could be a very stringent requirement for a power-
management unit (PMU) that drives the AFE. In general, all 
wireless devices would require some sort of PMU to maintain a 
uniform power supply and create the necessary bias 
voltage/currents used in the analog domain. In WQM sensors, 
the need for a high-performance PMU is even more important 
since these devices, by definition, encounter a high degree of 
variation in their operating environment (temperature, pressure, 
humidity, vibration, radiation etc.), which could be often quite 
harsh. The sensitivity of the AFE depends on the quality of the 
available supply and biases. Since the future of WQM devices 
are remote stand-alone modules that continuously monitor the 
surrounding environment, it is expected that these will be either 
battery powered, or RF powered.  

The classical calibration process consists of comparing a 
sensor  in a controlled environment, for example, in a laboratory 
with high-cost instrumentation, where the sensor response is 
measured under different controlled conditions. Contrary to 
lab-based instruments, devices that are deployed in the field 
normally do not go through user-initiated calibration cycle. In 
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most cases, this is not practical and/or desirable. However, 
frequent (re-)calibration is an important requirement for any 
sensor to rule out the possibility of data errors, particularly 
when it is in direct contact with the environment. Ideally, the 
transducer and the interface electronics, both should be 
calibrated independently. Calibration of the electronics can be 
done by disconnecting it from the transducer and connecting it 
to a known signal which is locally generated. This is also 
possible by using a dummy signal chain which is expected to 
behave similarly to the main one. Though the quality of the 
known signal could be a matter of concern as well, the results 
can be extrapolated using some prior knowledge about the 
system. The complete AFE, ADCs, reference sources etc., can 
benefit from such calibrations. Similar to digital processors, 
analog BIST (Built-in-self-test) technique has been adopted in 
complex mixed-signal chipset for some time [162]. Calibration 
including the transducer in the loop is however a much-
complicated procedure. This could be rarely done using a single 
sensor module alone. A network of sensors is necessary for such 
a procedure [163]. The sensor parameters can be self- calibrated 
and adjusted in reference to another sensor of the network, 
whether calibrated with a ground-truth reference node, 
calibrated with respect to already calibrated sensor nodes (e.g., 
distributed calibration, group calibration), or with respect to 
not-calibrated sensor nodes (e.g., blind calibration) [164]. 
Consequently, calibration procedures suitable for sensor placed 
in field conditions have been widely investigated in the past two 
decades and continues to be an important future topic.  

An important specification while designing the electronic 
interface to the transducer is power consumption. The energy 
budget of the sensor node determines several aspects of the 
overall system. In the case of battery-operated devices, it is 
often the primary determinant of the system form-factor (given 
by the battery volume) and lifetime. For energy harvesting 
devices, the power consumption determines the feasibility of 
the implementation itself. However, determining a uniform set 
of specifications for power consumption in water quality 
sensors is a complex task. It depends on a wide variety of topics 
roughly dependent on what is being measured, how often and 
from how far [165]. One of the key problems in such sensor 
networks is the communication protocol being used. Table III 
shows a comparison between different communication 
standards commonly used for such a distributed wireless sensor 
network. While the trade-off between data rate and power 
consumption is obvious, it should be noted that variables being 

monitored in a WQM sensor (e.g., pH, DO, conductivity) rarely 
change at a very fast rate. This factor has resulted in an interest 
in custom integrated wireless sensor nodes that could work on 
a smaller battery or use harvested energy for environmental 
monitoring. Though the design process of such integrated 
circuits is more complex, they can provide a customized 
solution that consumes much lower power and has a 
miniaturized form factor that can be integrated into a wider 
variety of devices [166, 167]. However, these monolithic 
solutions must deal with many design trade-offs depending on 
the application. Fig 8. shows the power consumption trade-offs 
in three major subsections that can be used to determine the 
necessary design specifications. 

C. Communication between sensor networks 
Robust communication protocols are needed for live 

information extraction from the data generated by sensor 
networks. Unfortunately, standard communication based on 
electromagnetic (EM) waves are not an option in water, except 
at very short ranges and at a high energy cost. Optical 
communications are also limited in range to a few meters to a 
few 10s of meters depending on water visibility conditions. In 
practice, the most reliable and widely used communication 
systems is based on acoustics. In this case, the available transfer 
rate is often limited (a few bits/s to a few kbits/s), the acoustic 
bandwidth is narrow (10-20 kHz), and dispersion and multipath 
are prevalent. These limit the options for Code-division 
multiple access (CDMA) and Frequency-division multiple 
access (FDMA) protocols and promote the use of slower Time-
division multiple access (TDMA) approach. However, acoustic 
systems offer the advantage of combining communication and 
ranging, enabling joint localisation of sensor nodes and 
communication network management [168, 169]. They enable 
in-situ monitoring of water parameters such as plankton 
density, water quality and pollutant detection, requiring the 
integration of multiple sensor modalities into a single package, 
including on-board processing to limit the requirements on 
transfer rate and energy. There is obviously a trade-off between 
energy consumed in local processing and spent in transmission. 
However, low power electronics have made significant 
progress and when integrated with modern batteries and energy 
harvesting, they can provide a solution to long term 
deployment. An example of such a system developed in the 
EPSRC funded USMART project is depicted in Fig. 7a. 

IV. SPATIO-TEMPORAL DATA ANALYSIS & PREDICTION  
In depth analytical evaluation of quality assured, water 

quality data depends very much on the purposes of the 

TABLE III: COMPARISON OF WIRELESS COMMUNICATION 
STANDARDS 

Communication 
standard 

Frequency 
Band 

Speed Range Relative 
power 
consumption 

Wi-Fi 2.4 & 
5GHz 

150Mbps ~200m High 

Zigbee 2.4 GHz 250 Kbps ~100m Low 
Bluetooth/BLE 2.4GHz 3Mbps ~100m Very low 
LoRa Sub GHz 250 kbps 10 km Very Low 
SigFox Sub GHz 1kbps >20km Very low 

  
Fig. 8 Power consumption trade-offs for custom integrated 
wireless sensor nodes. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3081772, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

11 

monitoring programme from which the data have been 
extracted. There are many purposes labelled under tasks of 
operation and surveillance, including monitoring to report on 
status (e. g. reporting on water quality to national regulations 
such as the Water Framework Directive), evaluation of the 
effect of an intervention (e. g. upgrade to a wastewater 
treatment works), detection of a change (e. g. as a result of flow 
status), population surveillance (e. g. appearance of illegal 
drugs or covid), or some form of real time or near real time 
decision making (e. g. water abstraction and reuse). Across 
these purposes, the data will have both temporal and spatial 
properties. Thus, the broadest definition of the current 
analytical tools which are widely used, would be spatiotemporal 
models incorporating temporal modelling to evaluate trends 
over time and detect changes, and spatial modelling to evaluate 
trends over space and pinpoint hotspots. 

For the spatial aspects of any catchment or basin network, we 
must consider the spatial/network dependence in the sensor 
locations and hence in the data generated. WQM networks will 
often be designed to provide spatially representative coverage 
but they are also connected sharing the same catchment area 
and linked through directed river flow. Spatial correlation may 
be related to Euclidean distance and river discharge but are 
more commonly connected through river distances and stream 
order. To achieve an understanding of the spatial patterns, 
spatial models must be developed taking into account the 
network structure and in the past decade, there has been 
considerable work to build models that have non-Euclidean 
spatial correlation structures [170-173].  

For the temporal aspect of the network data, the fundamental 
design question concerns the temporal frequency of 
measurement, with many historical networks being dependent 
on physical sampling (often monthly), while newer networks, 
have seen increased resolution to 15 mins and higher 
(determined by the temporal scale of the environmental 
processes). The classic analysis choice in time series modelling 
remains whether to model in the time or frequency domain. In 
the time domain, classical time series models of autoregressive 
or moving average (ARIMA models) have been used but as the 
temporal resolution of monitoring has increased there has been 
more and more research using the frequency domain, where 
wavelets and other transforms have been used [174, 175]. 
Further developments in the modelling of environmental time 
series has come from the application of functional data analysis 
(FDA) methods [176]. In this context, the “data point” becomes 
the time series curve [177, 178] this approach often is 
computationally efficient since it offers substantial data 
dimension reduction. Another important area of analytics 
frequently used in WQM concerns extreme value modelling 
(often using peak over threshold (POT) models). While used 
most commonly in flow modelling, this approach is also of use 
in quality modelling. Recent developments here have seen the 
extension of theory to spatio-temporal extremes [179, 180]. 

Increasingly, there has been much interest in the use of 
algorithmic learning and artificial intelligence (AI) tools 
applied to network data as developed intelligent wireless 
systems routinely generate large volumes of data. Such volumes 

of data have required the adoption and development of new 
analytical methods including machine learning as artificial 
neural networks (with their many variations generally known as 
deep learning methods), as well as support vector machines, 
classification trees, adaptive neuro-fuzzy inference systems, 
etc.[181-183]. Many statistical models like decision trees, non-
hierarchical classification methods, and Bayesian networks 
have become the backbone of machine learning tools. More 
broadly termed as AI methods, these techniques, after being 
properly trained with large data sets, can extract information 
and detect patterns without use of network equations. They are 
computationally fast and efficient, are able to identify structures 

 
Fig. 9: Methodology for an advanced water quality monitoring system.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3081772, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

12 

and dependencies automatically [184, 185] and can operate in 
near or real time. The fundamental principle of such methods is 
to learn from data with less human intervention (in the more 
classical analytical tools, the analyst must prescribe the 
structure and relationships parametrically). This is especially 
important since our knowledge about the ecological and 
environmental processes may be incomplete. Dealing with the 
data volume as well as the different data streams have also 
presented challenges [186]. In this space, there are new 
developments concerning methods to fuse and assimilate 
different data streams [187-189]. By harnessing the power of 
AI algorithms and big data analytics, water utilities can 
maximize information and data available to make better 
decisions while enhancing service delivery and reducing costs 
[190]. In addition, feeding the data generated by social media, 
mobile phones, and the Internet of Things (IoT) directly into AI 
could be new opportunity for WQM. 

V. DISCUSSION AND FUTURE DIRECTIONS 
New connected sensors, at local, regional and global scales, 

offer tremendous environmental monitoring opportunities in 
delivering real time data which will allow our understanding of 
environmental processes to improve. The use of sensor 
networks and internet communications combined with GIS 
tools will be having an important role in the future and can be 
very beneficial to stakeholders in not only efficiently managing 
the water quality but also in water distribution management, 
agriculture and landscaping sectors where it can reduce water 
consumption and wastage. 

A. Sensor integration  
While the opportunities and potentials are great, there remain 

challenges [191]. Design of networks remains an area of 
scientific interest, developing quality assurance procedures to 
detect anomalous observations [192], performance issues (both 
on sensor and in data communications). Integration (and fusion) 
of data streams from different sensors is also an area of 
research. Extensive use of sensing and ICT devices comes with 
new environmental challenges such as increased electronic 
waste. To overcome these challenges, several research steps are 
required as summarised by the flow chart in Fig. 9. This starts 

from identifying the water quality parameters, materials for 
sensors, fabrication of sensors, their integration, deployment 
and finally the analysis. Currently, a fragmented approach is 
taken with many of these steps carried out without strong 
linkages with the others. An integrated or holistic approach will 
go a long way in the direction towards effective WQM and 
could also offer new opportunities for monitoring in other areas 
such as environment, agriculture and healthcare etc. 

B. Sustainable and reusable sensors 
The large number of sensors and associated electronics is 

likely to add to the current issues such as electronic waste, 
which could be addressed by using biodegradable, natural and 
biocompatible materials for sensing electrodes, conducting 
path, substrates and protective layers etc. [75, 193]. The current 
substrates for sensors such as flexible PET, PVC etc. require 
long time to degrades and are potential source of new pollutants 
such as microplastics. The electrodes from costly, scarce and 
highly purified materials such as Pt, Ag, and Au. also need to 
be replaced. In this regard, conducting polymers or degradable 
metals, and carbon-based electrodes are attractive alternatives. 
Currently, metal oxides such as RuO2 are popular material for 
pH sensors as they lead to high performances. However, these 
materials are toxic, in addition being costly and hence 
alternative biocompatible metal oxides need to be explored. To 
reduce the environmental impact of electronic waste, the WQM 
system should promote both disposable and reusable devices. 
For example, for the sensors could be disposable and the 
electronics and communication modules would be designed for 
reusability [57, 194, 195]. In such a design, one of the options 
is to develop electrodes (for SE, RE and conducting path) using 
biocompatible or dissolvable materials (e. g. operational life 
~24 hr.) and reuse the substrate to develop new electrodes given 
in Fig. 10. Likewise, the interface electronics can be reused. The 
controlled degradability of these sensors can be achieved with 
suitable packaging. Such schemes could be easily implemented 
with mobile sensor nodes provided by the autonomous water 
and aerial vehicles, as discussed in Section III. For example, 
electronic skin like multisensory patches in flexible form 
factors could be attached to autonomous vehicle. Some of 
options for SE fabrication include biodegradable conducting 
polymers including PEDOT: PSS or sustainable carbon-based 
electrodes [57, 196, 197]. Printed carbon-based electrodes 
could also be used for RE and CE fabrications, as reported for 
wearable biosensors [198].  

C. Energy autonomous sensors 
For remote quality monitoring the energy autonomy of 

sensor system or network and power management also need 
attention. The recent studies show that the energy autonomy in 
WQ sensors can be addressed by using self-powered system 
such as solar powered sensors [33, 108, 199-201] or 
triboelectric/piezoelectric based sensors. Further new 
renewable solutions such as harnessing wave energy using 
triboelectric nanogenerators (TENG) could be used to power 
the sensors as well as the autonomous vehicles [202-204]. Such 
energy autonomous sensing networks can also be useful for 
monitoring of water quality in fish farms, pollution in river 
water and the drinking water in the pipelines (supply system in 
metropolitan areas) and open water bodies . For example, the 

 
Fig. 10: Schematic representation of reusable multi-sensory patch for 
environment friendly sustainable sensing. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3081772, IEEE Internet of
Things Journal

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

13 

smart networks could be deployed in pipelines using snake-like 
robots, even though it will be more challenging than using UAV 
or UWR in large water bodies. On other hand, the water in 
metropolitan supply pipelines is likely to be treated already and 
hence much lower spatio-temporal variations is expected with 
respect to the open waters. Considering this, the use of sensor 
nodes at fixed location may be sufficient.  

D. Selective sensing material 
Implementation of sensors for WQM need to consider many 

parameters such as: (i) selectivity, (ii) lifetime (iii) low cost (iv) 
environmentally friendly materials and (v) easy integration with 
smart connected network. In potentiometry or an amperometric 
type of sensors the selectivity, stability and lifetime purely 
depend on the type of sensitive electrode. Moreover, in these 
two types of sensors the stability and lifetime also depend on 
the RE. The typical thick or thin film Ag/AgCl based REs show 
stability issues during long measurement time. One way to 
overcome the above issue is to use other type of sensor. For 
example, using the chemi-resistive sensor which do not use RE. 
But the selectivity and power requirement are the major 
challenges in chemi-resistive sensor. Hence, there is a trade-off 
between the type of sensor, the material, the measurement 
method, sensitivity and stability. The development of sensors 
with materials exhibiting excellent ionic and electronic 
conductivity could also offer attractive solution. For example, 
selectivity of Pb free ceramic based perovskite materials could 
be tuned by suitable doping. The thick film based multi-sensing 
electrodes can also help in terms of selective sensing. The major 
advantage of this type of sensor the easy integration. A 
comparative analysis of the thick film-based sensors with other 
methods is shown in Fig. 11.  

Despite the promising performances of individual sensors 
reported in literature, the stability and reliability issues over a 
long time could occur due to material degradation. In this 
regard, frequent calibration along with proper data analysis 
could be helpful. To understand the influence of material 
degradation, the long-term studies, involving electrochemical 
sensors in real condition, are required. Avoiding antifouling 
resistance during sensors deployment is another challenge. To 
this end, suitable packaging or frequent replacement of sensors 

or using sensors made from naturally degradable materials 
could help.  

E. Data handling and Cost effectiveness 
The increasing nutrients, chemical loads and other sediments 

require networked WQM solutions at regional and global scale 
[205-209]. At such scales, the number of sensor and the data 
generated by them could require significant computing 
resources. The modelling or discrete observation routes and the 
sensor network with satellite based monitoring technique with 
data handling in cloud or sending data packet with a suitable 
protocol can help overcome such challenges [210-215]. For 
commercial viability the cost of full sensor system also need 
attention. The cost of connected sensors systems depends on the 
materials, fabrication method, sensor/electronic devices, 
integration strategy and communication technology. If 
deployment using robotic vehicles is needed, then their addition 
costs related to robotic vehicles need to be considered too. The 
cost-benefits of such deployments against the traditional 
sampling and laboratory analysis are an important factor. As an 
example, currently the high cost of traditional sampling and 
laboratory analysis (e.g., in a low-income country such as India 
the marginal cost per test is ~$7.25 [216]) is a major factor that 
is hampering the monitoring of large supplies (e.g., in urban 
settings). Transport and labour together constitute half of this 
cost and as a result a limited number of monitoring centres exist. 
Such costs can be easily reduced by real-time monitoring with 
suitable sensor network. Likewise, a commercially available 
buoy could cost $5K-6K [155]. On other hand, lightweight low-
cost airborne drones (<5kg take-off weight) costs <£3.5K. This 
means, for the same cost of a commercial buoy (which are fixed 
in water bodies), it is possible to gather much richer data by 
deploying sensors using robotic vehicles. The lower costs could 
also improve the compliance with monitoring requirements. 

In relation with the sensors, the cost is influence by the 
materials, fabrication method and integration technology [217]. 
For example, the higher cost of RuO2 based sensitive material 
in pH sensor is a major issue, which is being addressed through 
the use of binary oxides. The binary oxide-based pH sensors 
have been reported with excellent sensitivity. In terms of 
fabrication cost and easy integration, the methods such as low 
temperature co-fired ceramic (LTCC) based pH sensor or 
printed sensor are some of the attractive routes. The pH 
measured by LTCC based sensors is in good agreement with 
sensors using conventional glass pH electrode. In another work 
based on IDE based sensor, the authors observed that the total 
cost of the polymer-based sensors is low ($1) as compared to 
commercial sensors ($250-300) [54], but the pH measurement 
range is also low (6.5 to 9) [54]. The method of fabrication of 
such sensors has significant influence on their cost. In this 
regard, printed electronics technology is attractive as it makes 
it easy to process various materials at low temperatures and 
enables the development of sensors in flexible form factors 
[124]. Recently 3D printing technology for pH sensor has also 
found application for WQM [108-110]. 3D printing-based 
approaches have advantages in terms of low cost and packaging 
[218-221]. The multi-material 3D/4D printing is offering 
interesting opportunities for direct printing of conducting tracks 
and other functional devices on complex shapes [108-110].  

 
Fig. 11: Comparison of various type of electrodes for sensors 
fabrication [54]. 
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VI. CONCLUSION  
The connected sensor technologies for water quality 

monitoring (WQM) could provide the bridging solution for 
current disconnect between data quality, data gathering and data 
analysis and enhance the global data intercomparability. With 
this in view, this article has reviewed key sensing technologies, 
sensor deployment strategies and the emerging methods for 
data analysis. The review evaluated various sensing materials, 
substrates and designs of sensors including multisensory 
patches. For data gathering various components of sensor 
interface electronics and communication system have been 
discussed along with innovative deployment strategies using 
sensorized buoys, drones and underwater robotic vehicles. 
Diverse techniques for data analysis of the sensors are briefly 
discussed along with the potential opportunities for real-time 
water quality monitoring with artificial intelligence. Finally, the 
challenges related to discussed approaches, their solutions and 
potential opportunities enabled by the holistic discussion about 
WQM have been discussed.  

It is noted that ICT provides a unique opportunity for water 
stakeholders to obtain information in near real time about a 
number of physical and environmental variables such as 
temperature, soil moisture levels, rainfall, and others through 
web enabled sensors and communication networks, and can 
thus have accurate information about the situation at hand 
(without physically being there) for their forecasts and 
decisions. The WQM sector will hugely benefit from the sensor 
networks and techniques that being developed for internet of 
things (IoT). Such methods have already advanced the 
monitoring activities in areas such as healthcare, agriculture and 
environment monitoring etc. Given many similarities there is 
no reason why they cannot be tried to WQM. The opportunity 
to obtain real-time WQ parameters in a cost-effective manner is 
a huge gain that these new technological advances offer.  
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