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Amathematical framework that provides practical guidelines for user adoption is proposed

for fuel cell performance evaluation. By leveraging the mathematical framework, two

measures that describe the average and worst-case performance are presented. To facili-

tate the computation of the performance measures in a practical setting, we model the

distribution of the voltages at different current points as a Gaussian process. Then the

minimum number of samples needed to estimate the performance measures is obtained

using information-theoretic notions. Furthermore, we introduce a sensing algorithm that

finds the current points that are maximally informative about the voltage. Observing the

voltages at the points identified by the proposed algorithm enables the user to estimate the

voltages at the unobserved points. The proposed performance measures and the corre-

sponding results are validated on a fuel cell dataset provided by an industrial user whose

conclusion coincides with the judgement from the fuel cell manufacturer.
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Introduction

Hydrogen is a clean energy source whose combustion only

releases water. As a result, hydrogen energy is an effective

way to reduce carbon emission and achieve a low-carbon

economy [1] or carbon-neutral [2]. Furthermore, hydrogen is

one of the most promising energy carriers for the future [3],

1 kg of hydrogen contains 33.33 kWh of useable energy,

whereas petrol and diesel only hold about 12 kWh [4]. The fuel

cell is the commonly adoptedmedium to convert the chemical

energy of hydrogen into electricity and is used in different

applications, such as vehicles and stationary power genera-

tion. However, the limited durability and reliability of fuel

cells are the main barriers that halt the commercialization of

this clean energy alternative [5]. To overcome these barriers,

fuel cell state monitoring techniques that enable practical

durability and reliability assessment are essential. Aided by

these techniques, the usermonitors the state of the fuel cell in

a real-time manner, which is usually done by sensing the

parameters that indicate the state of the fuel cell at a given

frequency. In this way, the user extracts useful information

about the state of the fuel cell via visualization and data-

driven techniques. This information enables the user to

evaluate the durability and reliability of fuel cells.

The assessment of fuel cell performance is the first and the

most important step to evaluating the durability and reli-

ability of fuel cells. There are various ways for the assessment

but mostly rely on the voltage-current (VeI) curve of the fuel

cell [6,7]. The VeI curve is usually obtained by experimental

approaches [8,9], physical modeling approaches [10,11], and

data-driven approaches [12,13]. The experimental approaches

obtain the voltage at different current points by changing the

operation conditions, such as changing the loads [7], to get the

curve. These approaches provide the VeI curve directly but

also induce high testing costs. The physical modeling ap-

proachesmodel the electrochemical properties of the fuel cell,

such as using the Nernst equation [10] or other equations in

[14], and get the parameters from the physical world. While

the physical models provide a better physical understanding

about the fuel cell, they are usually simplified models of the

underlying complex processes in order to ease the model

derivation, and therefore, their characterization capabilities

are limited. Unlike the two approaches mentioned above, the

data-driven approaches learn the curve from the operating

data of the fuel cell using different learning algorithms, such

as support vector machines [12] and neural networks [13]. The

data-driven approaches enable the estimation and prediction

of the unmeasured operating points, which require a large

amount of operating data to obtain an accurate result [15].

More recently, learning algorithms, such as deep learning al-

gorithms [16], have been proposed but these approaches incur

on high computational complexity.

Data-driven techniques leap over the modeling challenges

posed by complex systems by estimating the main features of

the system from data generated by the system. In addition to

VeI curve modeling tasks, data-driven approaches are also

widely used in different domains of the hydrogen industry,

including hydrogen generation [17,18], hydrogen storage

[19e23], and hydrogen utilization [24e26]. The large amount of
data required by data-driven approaches makes fuel cells an

ideal application to adopt these approaches, as the fuel cell

state monitoring procedures generate large amounts of data

during operation. Data-driven tools are utilized in [27e29] to

control the oxygen excess ratio and maximize the power

generation of the fuel cell and in [30e32] to detect abnormal

operating conditions. Furthermore, in [33e37], data-driven

approaches are used to predict the performance degradation

of the fuel cell, which is mainly described by the degradation

in the VeI curve. The data-driven approaches utilized for

performance evaluation include neural networks [33,35e37],

principle component analysis [34], support vector machine

[38], and other standard statistical learning techniques. In

particular, [35] proposes a sensitivity-based algorithm that

selects sensors based on the fluctuations of the parameters

that describe the state of the fuel cell. However, some of the

parameters chosen by the algorithm in [35] are not easy to

sense and require a lab environment. Also the approaches in

[35e37] define the performance of the fuel cell in a visual and

qualitative manner, without mathematical expressions that

provide a quantitative performance evaluation.

In this paper, we propose a mathematical framework for

the evaluation of fuel cell performance from the user side, and

use machine learning and information-theoretic tools to

facilitate the modeling and estimation of the proposed per-

formance measure. Specifically, we present a mathematical

framework that enables a practical performance evaluation by

the users and devise measures for average and worst-case

performance based on the proposed framework. Since the

performance measures are usually estimated from fuel cell

operation data, the amount of data governs the accuracy of

the estimation. To find the minimum number of samples

needed to get an accurate estimate of the performance, we

model the distribution of the voltages of the fuel cell at

different operating current points as a Gaussian process (GP)

and use rate-distortion theory results to characterize the

minimum number of samples needed. Furthermore, we pro-

pose a sensing strategy to choose the operating current points

that containmore information about the vector of the voltages

by introducing a novel greedy algorithm that outperforms

conventional uniform sensing. By observing the voltages at

the current points chosen by the algorithm, the user can es-

timate the voltages of the unobserved points and estimate the

proposed performance measure.

The main contributions of the paper are listed in the

following.

C We propose a general mathematical framework for

quantitatively characterizing the estimation of fuel cell

VeI curves.

C We provide a model for fuel cells based on GP that

adaptively incorporates data that refine the character-

ization in a flexible manner.

C We propose a novel fuel cell state monitoring technique

that leverages information-theoretic tools for the first

time in this application domain. The proposed sensing

algorithm identifies the sensing points that maximize

the information acquisition using only second order

statistics.
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Mathematical modeling of fuel cell performance

Voltage-current curve for a fuel cell

The efficiency or performance of a fuel cell is usually

measured by the polarization curve, which shows the

change of the potential of the fuel cell when the current

density (load) changes [39e41]. An illustrative example of

the polarization curve is shown in Fig. 1a, in which the

performance or efficiency of the fuel cell 2 is higher than

that of the fuel cell 1 as more power is generated by the fuel

cell 2 per unit area.

A commercial fuel cell provided by themanufacturer to the

users consists usually of several individual fuel cells that the

manufacturer stacks to achieve higher voltage and power.

Since commercial fuel cells are typically manufactured with a

fixed area design that is not configurable by the user, we study

the performance of the VeI curve instead of the polarization

curve. The distinction is illustrated in Fig. 1b, where the hor-

izontal axis is changed from current density to current and the

vertical axis is changed from potential to stack voltage.

Furthermore, the fuel cell manufacturer provides the users

with a typical VeI curve, which shows the performance of the

fuel cell during the initial factory acceptance testing. The user

compares the performance of the fuel cell with the typical VeI

curve to assess the state of the fuel cell product.

The original equipment manufacturer (OEM) is a user that

utilizes fuel cells as the energy source for its electric vehicles.

Fig. 2a and Fig. 2b show the electric vehicle that is designed

and manufactured by the OEM and the fuel cell adopted for

the electric vehicle, respectively, in which the location of the

fuel cell is marked by a red frame. The performance assess-

ment procedure adopted by the OEM is described in the

following. For a given operating current:

C If the corresponding voltage is smaller than the voltage

value obtained from the typical VeI curve, then the

performance of the fuel cell is suboptimal. The lower

the corresponding voltage is, the worse the perfor-

mance of the fuel cell is.
Fig. 1 e An illustrative example of: (a) the polarizatio
C If the corresponding voltage is larger than the voltage

value obtained from the typical VeI curve, then the

performance of the fuel cell is optimal. The fuel cell is

assumed to exhibit an ideal response as long as the

corresponding voltage is larger than the typical value.

In the following, we propose a quantitative framework for

the practical performance measure adopted by the OEM.

Pointwise and functional performance measure

Given an operating current of the fuel cell, the corresponding

voltage of the fuel cell is given by

V ¼ fðiÞ þ Z; (1)

where i2Rþ is a given current point, V2Rþ is the corre-

sponding voltage at this point, Z is the system noise induced

by the sensor and assumed following a Gaussian distribution

Nð0; s2Þ with s2 denoting the variance of the noise, and

f : Rþ/Rþ is the mapping between the current and the

noiseless voltage with Rþ denoting the set of all positive real

numbers. Similarly, the ideal voltage of the fuel cell for a given

operating current is defined as

v+ ¼ f+ðiÞ; (2)

where v+2Rþ is the ideal voltage of the fuel cell and

f+ : Rþ/Rþ is the ideal mapping between the current and the

voltage. Here f+ represents the relation between the current

and the voltage determined by the typical VeI curve, which

characterizes the ideal performance of the fuel cell.

The definition of quantitative performance measures is

arbitrary in nature, as it depends on the importance that is

given to the different features describing the functioning of

the fuel cell. In the following, we state properties that are

desirable for a practical performance measure and proceed to

propose a quantitative measure that allows for an appraising

of the features. We start with the pointwise definition of

performance. Let h : Rþ/½0; L� be the pointwise performance

measure with L2Rþ denoting the maximum of the measure

and v takes values in Rþ, the performance measure should
n curve and (b) the typical voltage-current curve.

https://doi.org/10.1016/j.ijhydene.2021.05.210
https://doi.org/10.1016/j.ijhydene.2021.05.210


Fig. 2 e Electric vehicle designed and manufactured by the OEM. (a) the electric vehicle (b) the fuel cell.
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satisfy the following three properties when we take into ac-

count the practical performance evaluation discussion in the

previous section. Let v;v02Rþ,

C If v � v+, then hðvÞ � L,

C If v > v+, then hðvÞ ¼ L,

C If v � v0 < v+, then hðvÞ � hðv0Þ � L,

which guarantees that

C A voltage that is lower than the ideal value yields a

degraded performance measure, i.e. h � L,

C A voltage that is higher than the ideal value yields a full

performance measure, i.e. h ¼ L,

C For any two voltages that are lower than the ideal

voltage, the higher one yields a higher performance

measure, i.e. hðvÞ � hðv0Þ � L,

respectively. The value of L is tuned according to the practical

requirements of the user. A high value of L implies that h takes

values over a larger interval and yields more precision.

Thus, we propose the pointwise performance measure

given by

hðvÞ ¼ L

 
1� 1

ðv+Þ2ðmaxfv+ � v;0g Þ2
!

(3)

that satisfies the requirements given above, where maxfa;bg
denotes the maximum between a and b, or the elementwise

maximum for multidimensional case. The functional perfor-

mance measure is obtained by extending the pointwise perfor-

mance measure to themultidimensional case, which yields

hmðvÞ ¼ L

 
1� 1

kv+k22
kmaxfv+ � v;0g k22

!
; (4)

where hm : Rm
þ/½0; L� is the functional performance measure,

v ¼ ½vði1Þ;…;vðimÞ�T is the vector of voltages at current point ij,

j 2 {1, …, m}, v+ ¼ ½v+ði1Þ;…; v+ðimÞ�T is the vector of ideal
voltages at the same current points, and 0 is a vector of proper

dimension for which all entries are zero.

It is worth mentioning that the performance measures in

(3) and (4) are not unique and can be defined in different ways.

The definition can be generalized by extending it to the [p

norm. For example, changing the [2 norm into the [1 norm

guarantees that large deviations of voltage from the ideal

voltage are not penalized.

Average and worst-case performance measure

The performance measure for fuel cell efficiency can also be

defined using the pointwise performance measure in (3) for

the average scenario and for the worst-case scenario. The

average performance describes the overall performance of the

fuel cell for different values of the current. Assume that the

current i2I is uniformly distributed over the discrete alpha-

bet I , then the average performance is given by

GðhÞ ¼ 1
jIj
X
i2I

hðvðiÞÞ; (5)

where jI j is the cardinality of I . Specifically for the pointwise

performance measure in (3), the average performance is given

by

GðhÞ ¼ 1
jIj
XjIj
j¼1

L

 
1� 1�

v+ðijÞ
�2�max

�
v+ðijÞ � vðijÞ; 0

��2!
: (6)

Similarly, the worst-case performance measure is defined

as

h ¼ min
i2I

h: (7)

Specifically for the pointwise performance measure in (3), the

worst-case performance for the discrete case is given by

h ¼ min
i2I

L

 
1� 1

ðv+ðiÞÞ2
ðmaxfv+ðiÞ � vðiÞ;0g Þ2

!
: (8)

https://doi.org/10.1016/j.ijhydene.2021.05.210
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Fig. 3 e An example depicting the useable range of a fuel

cell.
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Generalization of performance measure

The pointwise performance measure h in (3) and the func-

tional performance measure hm in (4) are normalized by ðv+Þ2
and kv+k22, respectively. This guarantees that the performance

measures h and hm are confined to the interval between zero

and L. This implies that we assume the voltage value of zero as

the minimum useable voltage for the fuel cell. In practical

settings, the fuel cell may be considered as nonusable when

the voltage is smaller than a certain percent of the ideal value.

For example, Fig. 3 identifies the useable range for a fuel cell

that generates at least 70% of the ideal voltage. This case is

handled by changing the denominator and the nominator of h

and hm as

hg ¼ L

 
1� 1

ðð1� aÞv+Þ2ðmedfv+ � v; ð1� aÞv+; 0g Þ2
!

(9)

and

ðhmÞg ¼ L

 
1� 1

kð1� aÞv+k22
kmedfv+ � v; ð1� aÞv+;0g k22

!
;

(10)

where hg : Rþ/½0; L� is the generalized pointwise performance

measure, ðhmÞg : Rm
þ/½0; L� is the generalized functional per-

formance measure, a 2 [0, 1] is the useable percentage set by

the fuel cell user, and med{a, b, c} denotes the median among

a, b, and c, or elementwise median for multidimensional case.

The generalized performance measure in (9) and (10) can be

further generalized by replacing the useable range with any

minimum useable voltage curve to conform with different

requirements of the user.
Information-theoretic analysis for performance
measure

To calculate the performance measure or the generalized

performance measure, the distribution of the vector of volt-

ages or its estimate based on sample realizations are needed.

However, a perfect estimate of the performance measure

requires infinitely many samples from the distribution [42,

pp. 301]. In this section, we model the distribution of the

vector of voltages using a GP, and provide the minimum

number of voltage samples needed to obtain an estimate of

the performance measure with an arbitrary accuracy. At the

end of this section, we propose a greedy algorithm to select

the current points that maximize the amount of information

about the voltage. By observing the voltages at the chosen

current points, the user is able to get a better estimate of the

voltage at the other current points than with equal spaced

observations.

In the following, we introduce the modeling approach for

the vector of voltages using a GP.

Gaussian process

A GP is a collection of random variables for which any finite

subset of variables have a joint Gaussian distribution [43]. A GP
is completely specified by the mean function m(,) and the

covariance function k(,, ,) given by

mðijÞ ¼ E
�
fðijÞ

�
; (11)

kðij; ikÞ ¼ E
��
fðijÞ�mðijÞ

�ðfðikÞ�mðikÞÞ
�
; (12)

for all j, k 2{1, …, m}. The covariance functions, or kernel

functions, can take various forms, such as the Matern 3/2

kernel given by

k
�
ij; jk

� ¼ s2
f

 
1þ

ffiffiffi
3

p
r
�

s2
l

!
exp

(
�

ffiffiffi
3

p
r
�

s2
l

)
(13)

for all j, k2{1,…,m}, where r
� ¼ jij � ikj is the distance between

ij and ik, and sf and sl are parameters of the kernel.

Describing the GP defined in (11) and (12) into vector form

for Vm, cf. (1), yields

Vm ¼
24 V1

«
Vm

35¼
24 fði1Þ þ Z

«
fðimÞ þ Z

35� NðmV;SVVÞ; (14)

where

mV ¼ ½mði1Þ;…;mðimÞ�T; (15)

SVV ¼ Kði; iÞþs2I¼
24 kði1; i1Þ / kði1; imÞ

« 1 «
kðim; i1Þ / kðim; imÞ

35þs2I; (16)

and I is the identity matrix of proper dimension. Conditioning

the joint Gaussian distribution on the training sample yields

the prediction of VðiÞ given by

VjVm;v; i � N
	
mV;s

2
V



; (17)

where

mV ¼ Kði; iÞ�Kði; iÞ þ s2I
��1
v; (18)

https://doi.org/10.1016/j.ijhydene.2021.05.210
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s2

V
� ¼ kði; iÞ�Kði; iÞ�Kði; iÞ þ s2I

��1
Kði; iÞ; (19)
and v is a realization of Vm.

It is easy to see that learning a GP from the training sam-

ples boils down to the learning of the kernel parameters, e.g.

q ¼ �s; sf ;sl�T for the Matern 3/2 kernel, which is usually ob-

tained by maximizing the logarithm likelihood function via a

gradient-based algorithm [44, Chapter 6.4.3].

Rate distortion results for performance measure

Given the distribution of the voltage in (14), the user is able

to evaluate the performance of the fuel cell. However, the

user has only access to samples of the distribution, rather

than the distribution, when the fuel cell is operating. A

perfect estimate of the performance measure requires

infinitely many samples of the distribution, so the perfor-

mance estimate is never perfect [42, pp.301]. To evaluate

the “goodness” of the performance estimate using a finite

number of samples, a distortion measure is required to

evaluate the difference between the performance and the

estimate. Rate distortion theory provides the minimum

number of samples needed to achieves a particular distor-

tion value.

The rate distortion theory problem is depicted in Fig. 4. The

source is denoted as Vm; the performance measure that is ob-

tainedvia (4) is denotedby the randomvariable hm; the encoder

describes the realizations of hm by an index g (hm)2{1, 2,…, 2R},

and the decoder represents hm by an estimate bhm. Here R is the

number of bits used to represent hm, usually called the rate.

Then for a given distortion measure dðhm; bhmÞ, the problem of

finding the minimum bits needed to achieve an arbitrary

distortion value is given by

RðDÞ ¼ min
E½dðhm ;ĥmÞ��D

R: (20)

Shannon shows in [45] that finding the minimum number of

bits is equivalent to solving the problem given by

RðDÞ ¼ min
E½dðhm ;ĥmÞ��D

Iðhm; bhmÞ (21)

for the asymptotic scenario, where Iðhm; bhmÞ is the mutual infor-

mation between hm and bhm. However, solving the problem in (21)

is quite challenging in general, and closed-form expressions are

usually unavailable, especially for hm defined in (4).

Consider the square error distortion given by

dðhm; bhmÞ ¼ ðhm � bhmÞ2; (22)

which is also the mean square error (MSE) of the estimation,

the following theorem provides an upper bound for a source

with fixed variance and square error distortion case.
Fig. 4 e Graphical description of the rate distortion

problem.
Theorem 1. [46, pp. 5] For the square error distortion in (22), the

rate distortion function of random variable X with variance es2 is

bounded as

RðDÞ � 1
2
log

es2

D
when 0 � D � es2 (23)

or

RðDÞ ¼ 0 when D> es2; (24)

in which the upper bound in (23) is achieved when X follows a

Gaussian distribution.

This theorem states that compared with other sources, the

Gaussian source requires the largest number of bits to

describe it with the same distortion under quadratic cost and

second order constraints. This implies that if the number of

bits allows the Gaussian source to achieve a given distortion,

then samenumber of bits achieves a smaller distortion for any

other source. In the following we will use this insight to

characterize the number of samples needed to describe hm.

Thus, we use the results in Theorem 1 to propose the

following upper bound.

Theorem 2. For the functional performance measure hm defined in

(4) and the square error distortion dðhm;bhmÞ ¼ ðhm � bhmÞ2, the rate
distortion function is upper bounded by

RðDÞ � 1
2
log

s2
hm

D
; when 0 � D � s2

hm
(25)

or is equal to 0 when D � s2
hm
, where s2

hm
is the variance of hm.

Theorem 2 shows that when the number of samples of hm
satisfies

n � 2RðDÞ ¼ 2
1
2 log

s2hm
D ; (26)

then E½ðhm � bhmÞ2� � D. Note that the number of samples

needed to describe hm is equivalent to the number of samples

needed to describe Vm. Thus the number of samples needed

for Vm is also n.

Although the result in Theorem 2 is for the functional

performance measure, it is easy to extend the result to the

generalized performance measure case. Replacing the vari-

ance of hm with the variance of ðhmÞg provides the rate

distortion results for the generalized performance measure

ðhmÞg.
The calculation of the variance for hm is challenging even

when Vm is modelled by a GP. The value of s2hm can be esti-

mated via Monte Carlomethods, i.e. generating realizations of

hm through samples of Vm.

Sensing strategy for voltage vector

The parameters that represent the working state of the fuel

cell are usually observed at a given frequency, which gen-

erates a large amount of fuel cell data and occupies sub-

stantial storage space. For example, there are 85 types of

observations obtained simultaneously for the fuel cells

used by the OEM. In addition to the parameters of the fuel

https://doi.org/10.1016/j.ijhydene.2021.05.210
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cell, some other parameters that describe the state of the

whole vehicle are also acquired simultaneously. While

uniform sampling schemes provide a robust estimation

performance for processes with low correlation between

samples, the multivariate Gaussian structure between

voltage and current points can be exploited to derive

optimal linear observation procedures [47]. Since in our

setting we are limited to sampling voltage and current

pairs, in the following, we propose an algorithm to identify

the current points for which the corresponding voltages

carry more information about the voltage vector. This so-

lution enables the user to acquire and store a reduced

amount of voltage data and to estimate voltage accurately

in the unobserved current points.

The scenario in which the user only observes K state vari-

ables of the vector of voltages ismathematically characterized

by

eVK ¼ HVm þ ZK; (27)

where H2RK�m is given by

H ¼
h
eTa1 ; … ; eTaK

i
; (28)

eVK2RK is the vector of observed elements of Vm, ej is a vector

of proper dimension with value 1 for the j-th entry and

0 elsewhere; and S ¼ fa1;…;aKg is the set of indices of the

observed state variables. The systemnoise ZK is assumed to be

white noise, i.e. ZK � Nð0;s2IÞwith the variance of the noise is

determined by the Gaussian process in (14).

Denoting the vector of unobserved elements by

Vm�K
uo 2Rm�K, then the joint distribution of the observed ele-

ments and the unobserved elements is24 eVK

Vm�K
uo

35� N
��

mðioÞ
mðiuoÞ



;

�
Kðio; ioÞ þ s2I Kðio; iuoÞ

Kðiuo; ioÞ Kðiuo; iuoÞ


�
; (29)

as described by the Gaussian process given in (14), where io ¼
½ia1 ;…; iaK �T2RK is the vector of observed current points and

iuo2Rm�K is the vector of unobserved current points. Condi-

tioning the joint Gaussian distribution on eVK yields the dis-

tribution of Vm�K
uo [48, IV.B.49], which is given by

Vm�K
uo jeVK; io; iuo � Nðmuo;SuoÞ; (30)

where

muo ¼ Kðiuo; ioÞ
�
Kðio; ioÞ þ s2I

��1eVK; (31)

Suo ¼ Kðiuo; iuoÞ�Kðiuo; ioÞ
�
Kðio; ioÞ þ s2I

��1
Kðio; iuoÞ: (32)

The conditional mean of Vm�K
uo , i.e. muo, is exactly the esti-

mator that minimizes the MSE [48, IV.B.50] given by

EeVK

h
EVm�K

uo

h
kVm�K

uo � bVm�K

uo ðeVKÞk22jeVK
i i

; (33)

where bVm�K

uo is the estimate of Vm�K
uo , and the resulting MSE is

given by

EeVK

h
EVm�K

uo

h
kVm�K

uo � muok22jeVK
i i

¼ trðSuoÞ: (34)
Now the problemboils down to finding the K state variables

that convey the maximum information about the state of the

fuel cell. We adopt an information-theoretic framework to

solve this problem, and choose the state variables that hold

more information about voltage. The state variables selection

procedure is cast as the following optimization problem.

max
H

IðeVK;VmÞ (35)

s:t: jSj ¼ K; (36)

where jSj denotes the cardinality of set S, i.e. the number of

elements in S. The optimization problem in (35) and (36) is

challenging due to the combinatorial character of the selec-

tion problem, i.e. there is no efficient algorithm to find the

optimal solution. In the following, we propose a greedy algo-

rithm to address this challenge.

The mutual information objective in (35) is reformulated

using the chain rule of mutual information [42, Theorem 2.5.2]

to yield

IðeVK;VmÞ ¼ IðeV1;…; eVK;V
mÞ (37)

¼
XK
i¼1

IðeVi;V
mjeVi�1; eVi�2;…; eV1Þ: (38)

The proposed greedy algorithm aims to maximize the condi-

tional mutual information at each iteration to maximize the

mutual information IðeVK;VmÞ. Assume that the user observesK

elements of vector Vm and proceeds to select the (K þ 1)-th

element from the unobserved elements to observe. By

observing the (K þ 1)-th element, the mutual information gain

is obtained by the chain rule as

IðeVKþ1;V
mjeVK; eVK�1;…; eV1Þ ¼ IðeT

~a
Vm�K

uo ;Vm�K
uo Þ; (39)

where ea2f1;…;m � Kg.
Given the fact that Vm�K

uo is a Gaussian random variable and

e~a is a linear vector in (27), it holds that

eT
~a
Vm�K

uo � N �eT
~a
muo; e

T
~a
Suoe~a þ s2

�
: (40)

The mutual information between the candidate variable and

the unobserved variables is given by [49, Proposition 2]

IðeT
~a
Vm�K

uo ;Vm�K
uo Þ ¼ 1

2
log

jSuo

��eT
~a
Suoe~a þ s2j
jSj ; (41)

where S is the covariance matrix of the joint distribution of

ðVm�K
uo ; eVKþ1Þ, and is given by

S ¼
"

Suo Suoe~a

eT
~a
Suo eT

~a
Suoe~a þ s2

#
: (42)

Thus, maximizing the mutual information given in the right-

hand side of (39) is equivalent to solving

max
~a

log jeT
~a
Suoe~a þ s2j: (43)

The solution to (43) is obtained by choosing the diagonal

entry of Suo with the largest value. Based on the analysis given
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above, we propose the greedy algorithm in Algorithm 1, in

which 1f,g is the indicator function.
Case study

While the results in the paper are general and apply to fuel

cells or other power sources in general, we validate the

proposed analytical framework by studying the performance

of real fuel cells with data provided by the OEM. The case

study enables us to discuss the insight provided by the nu-

merical results obtained with the proposed framework and

to demonstrate the applicability of our approach. The rated

electrical power of the fuel cell adopted by the OEM is 8.5 kW,

the operating current is between 0 A and 200 A, and the

operating voltage is between 40 V and 80 V. The typical VeI

curve is given in Fig. 1b, which provides the user with a

guideline for determining the performance of the fuel cell.

The dataset from the OEM is been acquired during exper-

iments carried out 118 times, from which 3,000,907 data

points, i.e. fv; ig3;000;907j¼1 , are obtained. The data points are

shown in Fig. 5a, in which the typical VeI curve is also plotted

as comparison. Our main focus is to model the voltage dis-

tribution via the GP and to obtain the minimum number of

samples that are needed to describe the source to achieve a

given distortion. So we use the majority of the dataset to train

the GP and the rest to assess the validity of the obtained GP. To

that end, we separate the complete dataset into two sets, i.e.

the training set and the validation set, which include 297,898

and 3,009 data points.

Performance measure for fuel cell

Fig. 5b shows the pointwise performance measure h defined

in (3) and the worst-case performance h that is defined in (7)

for the dataset when L ¼ 1. Note that changing the value of L

only scales the performance measure, so without loss of

generality, we only show the case that L ¼ 1. It can be seen

that the fuel cell has good average performance for different

currents, except for the performance degradation at 144 A.

This indicates the need to check the condition of the fuel cell

around 144 A. For the worst-case performance, although the

performance is satisfactory, the performance for medium

values of current is worse than the performance for low and

high values of current. Fig. 5c shows the histogram of the

average performance defined in (6) when L ¼ 1. It can be seen
that the fuel cell displaces good overall performance except

for one case. In summary, the fuel cell exhibits good per-

formance overall on the proposed measures, which co-

incides with the assessment of the manufacturer during the

regular check.

The conclusion drawn using the pointwise performance

measure is the same as the one using the generalized per-

formance measure. So in the following we only show the re-

sults for the pointwise performance measure.

Voltage vector modeling via a Gaussian process

As mentioned in the preceding text, the kernel functions for

GP are of various structures to reflect the correlation struc-

ture of the voltages at different current points. After

comparing the performance of several kernel functions on

the training set, we choose the Matern 3/2 kernel given in (13)

in the following, which is the one that induces the least

regression loss.

Fig. 6a shows the performance of the Matern 3/2 kernel on

the training set. As any finite number of a GP have a joint

Gaussian distribution, the marginal distribution of Vm, i.e. the

distribution of each Vi, i 2 [1, …, m], is also a univariate

Gaussian distribution. The 99.7% confidence interval, i.e.

three-sigma interval, of the constructed GP is depicted in

Fig. 6a by the shadowed area. As mentioned in (14), the con-

fidence interval of the GP on the training set incorporates the

uncertainty introduced by the system noise. It can be

observed that the constructed GP has a good performance on

the training set.

As mentioned in the preceding text, our main goal is to

use the structure of the GP to analyze the rate-distortion

function, rather than simply predicting the voltage. We

only show the prediction results on 400 data points in

Fig. 6b, which forms a complete running sequence from the

validation set. Note that the confidence interval of the pre-

diction does not take the variance induced by the system

noise into account. It can be seen that the constructed GP

has good performance on the validation set, except in a few

points whose voltage deviates from the typical value

induced by the typical VeI curve.

Rate distortion results

As stated in Theorem 2, the rate distortion function under

square error distortion is upper bounded by the Gaussian

source with the same variance. To obtain the variance of hm,

we use a Monte Carlo approach to generate 1,258,000 sam-

ples of Vm, which is 1,000 times more samples than the

dimension m.

Fig. 7a shows the rate distortion upper bound in Theorem

2 for the function performance measure hm defined in (4)

when L ¼ 1. It can be seen that the variance of the perfor-

mance measure is small when L ¼ 1. This implies that the

user needs only one sample to achieve a satisfactory esti-

mate for hm, which is much less than the number of bits

required for practical setting. This problem can be reformu-

lated by choosing a larger value for L, such as L ¼ 100,000.

Fig. 7b also shows the rate distortion upper bound in

https://doi.org/10.1016/j.ijhydene.2021.05.210
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Fig. 5 e Performance analysis for the fuel cell dataset: (a) the fuel cell operating data used for the case study, (b) the pointwise

performance measure h and the worst-case performance h for the case study when L ¼ 1, (c) histogram of the average

performance G(h) for the case study when L ¼ 1.

Fig. 6 e The performance of the constructed GP: (a) on the training data set, (b) on a sequence of 400 data points from the

validation set.
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Theorem 2 for the function performance measure hm defined

in (4) when L ¼ 100,000, in which hm induces larger variance.

This suggests that the user needs to choose the value of L carefully
when characterizing the rate distortion results. It is worth

mentioning that the value of L has no effect on the perfor-

mance measure.

https://doi.org/10.1016/j.ijhydene.2021.05.210
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Fig. 7 e Rate distortion upper bound for the function performance measure hm: (a) when L ¼ 1, (b) when L ¼ 100,000.
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Sensing strategy

Fig. 8a shows the performance of Algorithm 1 on the mutual

information objective in (35) and on the scaled MSE (SMSE)

that is obtained from (34) as
Fig. 8 e Performance of Algorithm 1: (a) on the mutual informa

generates the same amount of mutual information when comp

that generates the same value of SMSE when compare with Eq
SMSE ¼ 1
m� K

MSE ¼ 1
m� K

trðSuoÞ: (44)

We scale the MSE by the number of entries in the vector of

unobserved elements, which yields the average MSE induced
tion objective and the SMSE, (b) on the difference in K that

are with Equally space algorithm, (c) on the difference in K

ually space algorithm.
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on each unobservable element. We also compare the perfor-

mance of Algorithm 1with equally spaced sampling, i.e. when

the sampling points are equally distributed along the current

range given by [0 A, 200 A]. It can be seen that the sampling

points chosen by the proposed algorithm contain more in-

formation than the equally spaced sampling case and that the

resulting SMSE of Algorithm 1 is smaller than that of the

equally spaced one. It is worth mentioning that although the

mutual information increases linearly with the number of

observed elements, the SMSE decreases exponentially when

the number of observed elements increases. Also the perfor-

mance gain of Algorithm 1 in SMSE terms is more significant

for large value of K.

Fig. 8b shows the difference between the value of K that

Algorithm 1 requires and equally spaced sampling requires

to acquire the same amount of information. Similarly, Fig. 8c

shows the results for SMSE. Note that the mutual informa-

tion or SMSE generated by Algorithm 1 and the equally

spaced algorithm are regarded as equal when the difference

between mutual information or SMSE is smaller than 0.01.

When the mutual information is high, or the SMSE is low,

Algorithm 1 uses fewer state variables to obtain the same

amount of mutual information or the same SMSE. The

advantage of Algorithm 1 increases as mutual information

increases, or as SMSE decreases.
Conclusion

In this paper, we proposed amathematical framework and the

corresponding measures for the fuel cell performance evalu-

ation from the user side. The minimum number of samples

needed to characterize the performance measure is intro-

duced via rate-distortion theory results. Furthermore, we

propose a sensing strategy to identify the current points that

yield high mutual information between the chosen point and

the voltages. The case study with fuel cell data from the OEM

shows that the performance measure fits with the observa-

tions from themanufacturer. The proposed sensing algorithm

achieves high mutual information and low SMSE simulta-

neously for the case study.

We envision future research addressing two main chal-

lenges. Firstly, the robustness of the proposed approach to

datasets generated in different operation environments, e.g.

end of life performance data, needs further validation, which

hinges on access to different case study data. More impor-

tantly, the generalization of the proposed technique to non-

Gaussian distributions is a non-trivial problem that will have

to be tackled as performance and health models are refined.

The generalization to non-Gaussian distributions will provide

some insight into the fundamental monitoring requirements

for fuel cells that operate under a wide range of conditions.
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