Intelligent Edge Caching based on

Federated Deep Learning

Zhengxin Yu

College of Engineering, Mathematics and Physical Sciences

University of Exeter

Submitted by Zhengxin Yu to the University of Exeter
as a thesis for the degree of

Doctor of Philosophy in Computer Science

This thesis is available for Library use on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that
any material that has previously been submitted and approved for the award of a degree by

this or any other University has been acknowledged.

January 2021



Declaration

I certify that all material in this thesis which is not my own work has been identified and that
no material has previously been submitted and approved for the award of a degree by this or

any other University.

Zhengxin Yu
January 2021



Abstract

Caching contents at the edge of network is considered to be a cost-effective solution to
cope with ongoing traffic growth and address the backhaul bottleneck problem in wireless
networks. However, the inherent characteristics of wireless networks, including the high
mobility of users and restricted storage capability of edge nodes, cause many difficulties in the
design of caching schemes. Driven by the recent advancements in Machine Learning (ML),
learning-based proactive caching schemes are able to accurately predict content popularity
and improve cache efficiency, but they need gather and analyse users’ content retrieval
history and personal data, leading to privacy concerns. To address these challenges, this
research mainly focuses on the design of learning-based caching schemes to improve caching
efficiency and protect user privacy in various modern networks, such as Fifth Generation
Mobile Networks (5G), Internet-of-Vehicles (IoV), and Fog Radio Access Networks (F-
RANS).

In modern networks, mobile phones, wearable devices, and autonomous vehicles provide
growing computational power and storage capability. Coupled with the increasing concern
about data privacy protection, the emerging framework of federated learning has been
recognised as a promising framework to efficiently build ML models while protecting user
privacy by keeping data at local devices and fitting ML techniques into the network edges. In
5@G, a communication Efficient Federated learning based Proactive content Caching scheme
(EFPC) is proposed to mitigate the privacy risks and reduce communication consumption.

Based upon the federated learning framework, each user locally trains a shared model for
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content popularity prediction by using their own data, and only uploads the parameters of
the model to the edge server for aggregation. To further reduce communication costs, the
3LC data compression scheme is used in EFPC to compress the upload parameters of the
model. In F-RANSs, a Federated Learning based Cooperative Hierarchical Caching scheme
(FLCH) is designed to maximise the utilisation of available caches with edge node. FLCH
exploits horizontal cooperation between neighbour F-APs and vertical cooperation between
the baseband unit pool and fog access points to cache contents with different degrees of
popularity.

In IoV, a Mobility-aware Proactive edge Caching scheme based on Federated learning
(MPCEF) is developed to support mobility of vehicles. This new scheme enables multiple
vehicles to collaboratively learn a global model for predicting content popularity with the
private training data distributed on local vehicles. MPCF also integrates a mobility-aware
cache replacement policy, which allows the network edges to add/evict contents in response
to the real-time mobility patterns and dynamic preferences of vehicles. To ease reliance
on the fixed central server, eliminate the issue of hand-over between RSUs, a peer-to-peer
federated deep learning based proactive caching scheme (PPFC) is proposed. A vehicle
rather than a fixed edge node, acts as a central server to aggregate ML models from nearby
vehicles. A dual-weighted model aggregation scheme is designed to reduce the effect of
straggler vehicles and further improve the global model accuracy.

The proposed caching schemes in this thesis can greatly improve cache performance,
effectively protect users’ privacy and significantly reduce communication costs. The simula-
tion experiments are conducted to evaluate the performance of these caching schemes and

the accuracy of the designed prediction models using real-world datasets.
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Chapter 1

Introduction

The proliferation of smart devices and the advancement of wireless communications technolo-
gies have brought us a variety of multimedia applications, including virtual reality/augmented
reality, video on-demand, mobile healthcare and so on, in the Fifth Generation of mobile
networks (5G), Internet-of-Things (IoT), Internet-of-Vehicles (IoV) and Fog Radio Access
Networks (F-RANs). These applications continuously generate a huge amount of mobile
traffic. According to the Cisco Visual Networking Index [1], mobile traffic data is expected
to increase sevenfold from 2017 to 2022, reaching 77.5 exabytes per month. The steep rise
of mobile traffic causes the increase of user latency and places a heavy burden on backhaul
links that connect local base stations and the Internet. However, these emerging applications
require higher network throughput and stricter network, which poses a significant challenge
for traditional wireless networks.

To cope with the massive growth in mobile data traffic and satisfy strict performance
requirements of applications, Multi-access Edge Computing (MEC) [2] has been recognised
as a promising technology by bringing computing and caching capabilities to the edge of
networks. Especially, the network edges are equipped with a number of edge servers to store
contents that may be frequently requested by users. Users can directly fetch a variety of

contents from the edge servers, instead of remote servers in the cloud. In this way, the latency
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for fetching requested contents can be largely reduced and burden on network traffic can
be alleviated. Caching contents at the network edges is referred to as edge caching [3]. In
5@, popular contents can be cached at Base Stations (BSs), e.g. Small Base Stations (SBSs),
Macro Base Stations (MBSs). In IoV, the content can be placed at Roadside Units (RSUs)
and vehicles. In F-RANs, both Remote Radio Heads (RRHs) and Baseband Unit (BBU)
pools can store contents.

Due to the limited cache capacity of the network edges, it is crucial to design a caching
scheme to effectively utilise the cache capacity. The current caching schemes can be generally
classified into reactive caching and proactive caching. Reactive caching uses the observed
request pattern of users to choose contents to be cached, such as First-In-First-Out (FIFO),
Least Recently Used (LRU), and Least Frequently Used (LFU). They rely on static rules
to decide cached contents, which can react fast to changes in recent content access patterns
[4]. In contrast, proactive caching makes use of historical users’ requests, content access
patterns, and geographical or social information of users, etc, to predict content popularity
and then places the predicted popular contents in caches before users’ requests arrive. The
recent breakthroughs in Machine Learning (ML) techniques have been widely used to
forecast content popularity for proactive caching, such as Reinforcement Learning [5],
Transfer Learning [6], and Collaborative Filtering [7], because ML techniques have powerful
capability of handling large amount of data and accurate pattern recognition from these
complex data. This research focuses on the learning-based caching schemes.

This chapter is organised as follows: Section 1.1 is devoted to the motivations and
challenges of this research. The research aims and objectives of this thesis are presented
in Section 1.2. The main contributions of this thesis are shown in Section 1.3. Finally, the

outline of this thesis is provided in Section 1.4.
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1.1

Motivations and Challenges

Edge caching, as an efficient approach to optimise the storage resources, brings popular

contents closer to users, which can reduce service latency and avoid duplicate transmissions

through backhaul links. Some progress has been made in utilising ML techniques for

caching schemes in wireless networks, but learning-based caching schemes still have some

challenging issues to be addressed. For example,

1y

2)

3)

Risks to user privacy: Most traditional ML methods are designed for a highly
controlled environment where the distributed users’ data are gathered to train the
learning models. The data generated by applications may involve privacy-sensitive
information of users (e.g., the content retrieval history and geographic information of
users). Therefore, uploading and centralised processing these data may raise privacy

and security concerns.

Mobility: Users frequently move from one edge node to another. This means that
the cached contents at one edge node might become obsolete after users move out,
while another edge node does not cache the contents for the incoming users. The
lack of consideration of user mobility may lead to low cache efficiency. Additionally,
in the IoV, vehicles send requests to an RSU/BS and go through its coverage area
quickly, making the caching content easily to be out of date. To improve the cache
performance, the caching scheme should be both context and mobility aware, making

cache decisions based on the content popularity predictions and vehicles’ mobility.

Dynamic content popularity: Content popularity is known to be volatile and dynamic
in wireless edge networks. Different users may prefer different contents and their
preferences may change frequently which is influenced by location and time. The

spatial-temporal variability on popularity of contents adds substantial complexity in
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content caching. It is also highly challenging for ML methods to accurately and quickly

predict the content popularity given users’ private data and their content request history.

4) High communication costs: For training these ML models, users need to upload
their data to the central server that performs the training, which will cause large

communication costs.

5) Frequent hand-over: For centralised ML model training, users or vehicles may pass
several BSs/RSUs during the model training or content transmission, due to the small
coverage area of BS/RSU. This may seriously affect the performance of the trained
ML model and degrade the Quality of Service (QoS) and Quality of Experience (QoE)

for users.

6) Utilisation: The redundant contents may store in the cache capacity of edge nodes,
which lacks the global optimization of cache resource utilisation. It is non-trivial to
decide how and where to cache, given the limited cache sizes at the different level of

edge nodes.

7) Scalability: Scalability would be another issue for the centralised training setting. The
number of users/vehicles grow, the amount of data generated by the corresponding
users/vehicles increases. The centralised ML algorithms may find it difficult to handle

such data due to the incurred high computation and communication costs.

1.2 Research Aims and Objectives

Federated Learning (FL) [8], as an emerging framework, fits the ML techniques into the edge
of networks. It enables end nodes (e.g., mobile devices, vehicles and so on) to collaboratively
learn a shared model by aggregating locally-computed model updates while keeping all the

training data on devices. The advantage of FL is the decoupling of the ability to train ML
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model from the need for directly accessing the raw data. The privacy and security risks can
be significantly reduced. Coupled with FL, the learning-based caching schemes can protect

user privacy. The main objectives of this research are:

* To propose a communication-efficient federated deep learning for proactive caching
schemes with the aim of reducing communication cost and improving caching effi-

ciency.

* To investigate a mobility-aware federated learning framework and design a mobility-

aware caching schemes to support high mobility of users.

* To exploit a peer-to-peer federated learning to ease reliance on the fixed central server,

eliminate the issue of hand-over between RSUs/BSs and achieve lower service latency.

* To develop a cooperative and hierarchical caching scheme based on federated learning

to maximise the utilisation of available caches with edge nodes.

1.3 Contributions

To achieve the above objectives, this research proposes new proactive caching schemes to
improve caching performance and mitigate user privacy risks. The accuracy and effectiveness
of the proposed schemes are demonstrated by extensive experimental results with real-word

datasets. The major contributions of this research are summarised as follows:

* A communication-Efficient Federated deep learning based Proactive content Caching
scheme is developed to improve cache hit ratio' and reduce communication cost.
A one-class collaborative filtering based variational autoencoder model is designed

and it integrates the model into our FLL framework. This model learns deep latent

ICache hit ratio is used to evaluate the performance of mobile edge caching, which accounts for the ratio of
the requested content stored in the edge server to the number of users’ requests on the cache.
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representations from the recent history and contextual information of users. These
learned representations will be used to accurately predict content popularity for making
proactive caching decisions. This FL framework also introduces a time-driven weighted
model aggregation method to improve the convergence and accuracy of the shared
model by exploiting the previously trained local model. Moreover, the 3LC model
compression algorithm is employed in the proposed FL framework to compress the

model updates in order to further reduce communication costs.

A mobility aware federated learning scheme for edge caching in vehicular networks is
developed, which can protect users’ privacy, reduce communication costs and support
high mobility of vehicles. This new scheme includes four main components: content
popularity prediction, vehicle selection, model aggregation and cache replacement. It
utilises the context-aware adversarial autoencoder model to predict the popularity of
contents, which turns an AutoEncoder into a generative model by adding the adversarial
network to the AE architecture. It helps to learn deep latent representations from
users’ historical requests and contextual information, and obtain implicit relationships
between users and contents for improving prediction accuracy. Mobility-aware vehicle
selection, model aggregation and cache replacement policies are exploited with the
aim of optimising the caching resource utilisation in VNs. Especially, the decision for
selecting vehicles to participate in the FL training process and the value of weights
for parameter aggregation are dependent on the position and resources of connected
vehicles. It can guarantee that vehicles have enough time for training and the RSU can
aggregate high-quality updates. Meanwhile, the cache replacement policy dynamically
updates the contents at RSU in response to its connected vehicles’ preferences and

predictions of content popularity.

A peer-to-peer federated learning based proactive caching scheme is proposed for

IoV with vehicles of high mobility. In the proposed scheme, a vehicle rather than a
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fixed edge node, acts as a central server to aggregate ML models from nearby vehicles.
A location and resource-aware vehicle selection scheme is developed in the peer-to-
peer FL framework to enhance the performance of the trained global model, which
ensures that the participating vehicles have enough resources to train the prediction
model, and the server vehicle has enough time to aggregate updated models from
neighbour vehicles. Due to the heterogeneous abilities of vehicles, a dual-weighted
model aggregation scheme is designed to reduce the effect of straggler vehicles, in
order to further improve the accuracy of the trained global model in the designed

peer-to-peer FL.

* A hierarchical cooperative caching architecture is designed for F-RANS to leverage
horizontal cooperation between the Fog Access Points (F-APs) and vertical cooperation
between the BBU pool and F-APs to enhance the overall caching performance and
global cache resource utilisation. The proposed method integrates the appended stacked
autoencoder and one-class collaborative filtering to predict the popularity of contents.
The appended stacked autoencoder is used to extract the hidden representations of users
and contents. Whereas, the one-class collaborative filtering is utilised to effectively

process the input data for a better recommendation of popular contents.

1.4 QOutline of the Thesis

The rest of this thesis is organised as follows:

 Chapter 2 introduces the background knowledge of edge caching, artificial intelligence
and federated learning. A detailed literature review on learning-based caching scheme

and federated learning applications in wireless networks are then presented.
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» Chapter 3 presents a communication-Efficient Federated deep learning based Proactive
content Caching scheme (EFPC) to improve cache hit ratio and reduce communication

cost.

* Chapter 4 develops a Mobility-aware Proactive Edge Caching Scheme based on Feder-
ated Learning (MPCF) to support high mobility of vehicles and adapt to the dynamic

content popularity.

* Chapter 5 exploits a peer-to-peer federated learning based proactive caching scheme
(PPEC) for IoV to ease reliance on the fixed central server in RSU and eliminate the

1ssue of hand-over between RSUs.

* Chapter 6 proposes a federated learning based cooperative hierarchical edge caching

scheme (FLCH) to maximise the utilisation of available caches with edge nodes.

* Chapter 7 concludes the thesis and outlines the future works.



Chapter 2

Background and Literature Review

Caching contents at the edge of networks is considered to be a effective solution to cope with
ongoing traffic growth and address the backhaul bottleneck problem in wireless networks.
Recent advances in Machine Learning (ML) and Federated Learning (FL) facilitate efficient
content caching. This chapter presents a general background knowledge and gives an in-depth
review of the related work of Multi-access Edge Computing (MEC), edge caching, ML and
FL. The rest of this chapter is organised as follows. The background knowledge of MEC,
edge caching, FL. and ML is introduced in Section 2.1, 2.2, 2.3 respectively. A detailed

literature review on learning-based content caching scheme is presented in Section 2.4.

2.1 Edge Caching

2.1.1 Multi-access Edge Computing

Emerging applications in wireless networks require low network latency and substantial
network resources (e.g., caching, computation, and communication), which cannot be fulfilled
by the current wireless networks. Multi-access Edge Computing (MEC) has been considered

as a promising paradigm by migrating cloud computation and caching capabilities to the edge
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nodes of networks to satisfy the diverse requirements of applications, alleviate the traffic on
backhaul links, and reduce service latency. Edge nodes have the capabilities to process and

store data.

2.1.2 Fundamentals of Edge Caching

Caching contents at edge nodes is referred to as edge caching, which has been receiving
significant attentions from both industry and academia in the past few years. By caching
popular contents at edge nodes, requested contents can be obtained within one transmission
hop. In this way, content retrieval latency and backhaul traffic can be significantly reduced.

Contents in wireless networks have the property of asynchronous content reuse that
popular contents are requested by different users for multiple times. It causes the same
contents in remote servers are repeatedly sent to users. Caching contents at edge nodes
enables vehicles to fetch their requested contents within one transmission hop, instead of
from the remote servers in cloud. Popular contents can be cached at edge nodes during during
off-peak hours, whereas the requested contents can be served to users during the peak-time.

Edge caching brings several advantages. Firstly, the service latency of obtaining requested
contents can be largely reduced, because contents are stored at the network edge, closer to
users. Secondly, the backhaul traffic can be significantly alleviated since edge caching avoids
to use transmissions via the backhaul links. Thirdly, energy consumption for transmitting
data from the Internet can also be reduced by edge caching. Fourthly, caching efficiency can
be improved by utilising the information collected from edge nodes, e.g., content popularity,
user preferences, mobility of user and channel state.

The key research issues in edge caching include where, how and what to cache.
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2.1.3 Cache Placement

Cache placement is the answer of where to cache, which involves the selection of caching
locations. In wireless networks, popular contents can be cached at edge nodes, e.g., Macro
Base Stations (MBSs), Small Base Stations (SBSs), relays and User Equipments (UEs). They
have different storage capacities. In fog radio access network (F-RAN), both Baseband Unit
pools (BBU) and Remote Radio Heads (RRHs) can be used to store popular contents. BBU
is the baseband processing unit of telecom systems and RRH is a radio transceiver in a radio
base station. Both of them have storage capacities. Edge nodes in the Internet of Vehicles
(IoV) are roadside units (RSUs) and vehicles.

Mobile devices and vehicles have larger storage capacities, which can be utilised as
cache nodes. The communication among mobile devices and vehicles can through Device-
to-Device (D2D) links, Vehicle-to-Vehicle (V2V) links, etc. Compared to local caching
at mobile devices and vehicles, different sizes of base stations, relays and RSUs provide

relatively higher latency. However, they can cover a larger area and serve more users.

2.1.4 Caching Policy

Caching policy solves the problem of how to cache, which refers to the design of caching
schemes. To improve the caching performance, caching scheme