
Intelligent Edge Caching based on

Federated Deep Learning

Zhengxin Yu

College of Engineering, Mathematics and Physical Sciences

University of Exeter

Submitted by Zhengxin Yu to the University of Exeter

as a thesis for the degree of

Doctor of Philosophy in Computer Science

This thesis is available for Library use on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that

any material that has previously been submitted and approved for the award of a degree by

this or any other University has been acknowledged.

January 2021

Declaration

I certify that all material in this thesis which is not my own work has been identified and that

no material has previously been submitted and approved for the award of a degree by this or

any other University.

Zhengxin Yu

January 2021

Abstract

Caching contents at the edge of network is considered to be a cost-effective solution to

cope with ongoing traffic growth and address the backhaul bottleneck problem in wireless

networks. However, the inherent characteristics of wireless networks, including the high

mobility of users and restricted storage capability of edge nodes, cause many difficulties in the

design of caching schemes. Driven by the recent advancements in Machine Learning (ML),

learning-based proactive caching schemes are able to accurately predict content popularity

and improve cache efficiency, but they need gather and analyse users’ content retrieval

history and personal data, leading to privacy concerns. To address these challenges, this

research mainly focuses on the design of learning-based caching schemes to improve caching

efficiency and protect user privacy in various modern networks, such as Fifth Generation

Mobile Networks (5G), Internet-of-Vehicles (IoV), and Fog Radio Access Networks (F-

RANs).

In modern networks, mobile phones, wearable devices, and autonomous vehicles provide

growing computational power and storage capability. Coupled with the increasing concern

about data privacy protection, the emerging framework of federated learning has been

recognised as a promising framework to efficiently build ML models while protecting user

privacy by keeping data at local devices and fitting ML techniques into the network edges. In

5G, a communication Efficient Federated learning based Proactive content Caching scheme

(EFPC) is proposed to mitigate the privacy risks and reduce communication consumption.

Based upon the federated learning framework, each user locally trains a shared model for

iv

content popularity prediction by using their own data, and only uploads the parameters of

the model to the edge server for aggregation. To further reduce communication costs, the

3LC data compression scheme is used in EFPC to compress the upload parameters of the

model. In F-RANs, a Federated Learning based Cooperative Hierarchical Caching scheme

(FLCH) is designed to maximise the utilisation of available caches with edge node. FLCH

exploits horizontal cooperation between neighbour F-APs and vertical cooperation between

the baseband unit pool and fog access points to cache contents with different degrees of

popularity.

In IoV, a Mobility-aware Proactive edge Caching scheme based on Federated learning

(MPCF) is developed to support mobility of vehicles. This new scheme enables multiple

vehicles to collaboratively learn a global model for predicting content popularity with the

private training data distributed on local vehicles. MPCF also integrates a mobility-aware

cache replacement policy, which allows the network edges to add/evict contents in response

to the real-time mobility patterns and dynamic preferences of vehicles. To ease reliance

on the fixed central server, eliminate the issue of hand-over between RSUs, a peer-to-peer

federated deep learning based proactive caching scheme (PPFC) is proposed. A vehicle

rather than a fixed edge node, acts as a central server to aggregate ML models from nearby

vehicles. A dual-weighted model aggregation scheme is designed to reduce the effect of

straggler vehicles and further improve the global model accuracy.

The proposed caching schemes in this thesis can greatly improve cache performance,

effectively protect users’ privacy and significantly reduce communication costs. The simula-

tion experiments are conducted to evaluate the performance of these caching schemes and

the accuracy of the designed prediction models using real-world datasets.

Acknowledgements

First of all, I would like to express my sincerest gratitude to my supervisor Prof. Geyong

Min for all the support, patient guidance and encouragement he gave me, during my PhD

study and Master study. I have learned a lot from his wisdom, way of thinking, enthusiasm

for work and hard working attitude. Without his guidance and constant feedback, this PhD

would not have been achievable. Apart from his academic support, Prof. Min gives me a lot

of help in life, like a close family member. I really appreciate everything he has done for me

and hope to be a person like him, to be kind, responsible and optimistic.

Many thanks also to my second supervisor Dr. Jia Hu for all his help to my research. His

immense knowledge and insightful comments incentivise me to widen my research from

various perspectives. His guidance helped me in all the time of my research and writing of

this thesis. I also thank to Prof. Zhiwei Zhao for his helpful discussions and comments on

my works.

I would like to thank my lab mates, Dr. Wang Miao, Dr. Haozhe Wang, Dr. Chengqiang

Huang, Dr. Yuan Zuo, Jin Wang, Zheyi Chen and Yang Mi for their help to my PhD study. I

also thank my friends Dr. Yang Yang, Marina Hunter, Chris Hunter, Carina Ivascu, Wanyi

Cui and Luwen Zhang for always standing by my side and encouraging me.

Finally, special thanks to my parents for their love and support throughout my life. With

the company of my parents, who helped me through all the ups and downs of my research.

My mother and father supported me unconditionally and believed in me. I have become a

better person and keep moving forward. Mommy and daddy, I love you with all my heart.

Table of contents

List of Abbreviations x

List of figures xii

List of tables xiv

List of Publications xv

1 Introduction 1

1.1 Motivations and Challenges . 3

1.2 Research Aims and Objectives . 4

1.3 Contributions . 5

1.4 Outline of the Thesis . 7

2 Background and Literature Review 9

2.1 Edge Caching . 9

2.1.1 Multi-access Edge Computing . 9

2.1.2 Fundamentals of Edge Caching 10

2.1.3 Cache Placement . 11

2.1.4 Caching Policy . 11

2.1.5 Cache Replacement . 13

2.2 Artificial Intelligence . 14

Table of contents vii

2.2.1 Machine Learning . 15

2.2.2 Deep Learning . 16

2.3 Federated Learning . 18

2.3.1 The Framework of Federated Learning 18

2.3.2 Unique Characteristics of Federated Learning 20

2.3.3 Federated Learning and its applications in Wireless Networks . . . 20

2.4 Learning-based Edge Caching . 23

2.4.1 Edge Caching with Prior Knowledge of Content Popularity 23

2.4.2 Edge Caching without Prior Knowledge of Content Popularity . . . 24

2.5 Summary . 28

3 Communication-Efficient Federated Learning based Proactive Caching 30

3.1 Introduction . 30

3.2 System Architecture of EFPC . 32

3.3 Communication-Efficient Federated Learning for Edge Caching 34

3.3.1 Communication-Efficient Federated Deep Learning 34

3.3.2 One-Class Collaborative Variational Autoencoder 39

3.4 Experiments and Discussion . 46

3.4.1 Testbed . 46

3.4.2 Performance Evaluation . 47

3.5 Summary . 53

4 Mobility-Aware Proactive Edge Caching for Connected Vehicles 54

4.1 Introduction . 54

4.2 System Architecture . 57

4.3 Mobility-aware Federated Learning for Edge Caching 60

4.3.1 Mobility-aware Federated Deep Learning 61

viii Table of contents

4.3.2 Contextual-aware Adversarial Autoencoders for Prediction 67

4.3.3 Mobility-aware Cache Replacement Policy 71

4.4 Performance Results and Analysis . 75

4.4.1 Simulation Settings and Dataset 75

4.4.2 Performance Evaluation . 75

4.5 Summary . 81

5 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles 82

5.1 Introduction . 82

5.2 System Architecture . 84

5.3 Peer-to-Peer Federated Learning for Edge Caching 87

5.4 Performance Evaluation . 92

5.4.1 Experiment Settings . 92

5.4.2 Experimental Results . 94

5.5 Summary . 98

6 Cooperative Hierarchical Caching in Fog Networks 99

6.1 Introduction . 99

6.2 System Architecture . 102

6.3 Cooperative Hierarchical Edge Caching Scheme 105

6.3.1 Federated Learning for Cooperative Hierarchical Edge Caching . . 106

6.3.2 Stacked Autoencoder with One-Class Collaborative Filtering 107

6.4 Experimental Results . 109

6.5 Summary . 112

7 Conclusions and Future Work 113

7.1 Conclusions . 113

7.2 Future Work . 116

Table of contents ix

7.2.1 Hybrid Caching Scheme . 116

7.2.2 Cooperative and Hierarchical Federated Learning 117

7.2.3 Asynchronous Federated Learning 119

References 121

List of Abbreviations

5G Fifth generation of mobile networks

IoT Internet-of-Things

IoV Internet-of-Vehicles

F-RANs Fog Radio Access Networks

MEC Multi-access Edge Computing

BS Base Station

SBS Small Base Station

MBS Macro Base Station

RSU Roadside Unit

RRH Radio Heads

BBU Baseband unit

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

FL Federated Learning

FIFO First-In-First-Out

LRU Least Recently Used

LFU Least Frequently Used

MRU Most Recently Used

xi

UE User Equipment

List of figures

3.1 Architecture of the EFPC Caching Scheme 32

3.2 Variational Autoencoder . 41

3.3 EFPC Experiment Scenario . 45

3.4 Cache hit ratio vs. Different number of users (MovieLens) 46

3.5 Cache hit ratio vs. Different number of users (Netflix) 46

3.6 EFPC vs. Other reference schemes (MovieLens Dataset) 47

3.7 EFPC vs. Other reference schemes (Netflix Dataset) 48

3.8 Data Compression vs. Without Data Compression 51

3.9 Sparsity vs. Data compression ratio vs. Cache hit ratio 52

4.1 Proactive edge caching for connected vehicles 57

4.2 Mobility-aware Federated Deep Learning 62

4.3 C-AAE model architecture . 68

4.4 Mobility-aware cache replacement policy: Round 1 69

4.5 Mobility-aware cache replacement policy: Round 2 70

4.6 Mobility-aware cache replacement policy: Round 3 70

4.7 Mobility-aware cache replacement policy: Summary 71

4.8 Cache hit ratio with different cache sizes 76

4.9 Cache hit ratio vs Vehicle density . 77

4.10 Cache hit ratio and Training time against Communication rounds 78

4.11 FL training process (27 vehicles) . 79

4.12 FL training process (5 vehicles) . 80

4.13 Mobility-aware cache replacement . 80

5.1 System architecture of PPFC . 85

5.2 Peer-to-peer federated learning . 88

5.3 Collaborative filtering based variational autoencoder 90

5.4 PPFC vs. Other reference schemes (10 vehicles) 94

5.5 PPFC vs. Other reference schemes (5 vehicles) 95

5.6 Vehicle density vs. Training time vs. Cache hit ratio 96

5.7 PPFC vs. RSU caching (10 vehicles) . 96

5.8 PPFC vs. RSU caching (5 vehicles) . 97

6.1 System Architecture of the Federated Learning based Cooperative Hierarchi-

cal Caching for F-RANs. 102

6.2 Federated Learning Process for Edge Caching 103

6.3 Appended Stacked AE with One-Class Collaborative Filtering 107

6.4 One-Class Collaborative Filtering . 108

6.5 Cache hit ratio: N-FLCH vs Reference caching schemes 110

6.6 Cache hit ratio of the FLCH with different cooperative strategies (H-FLCH,

V-FLCH, N-FLCH) . 111

7.1 Hybrid Caching Scheme . 117

7.2 Hierarchical Federated Learning . 118

xiv List of tables

7.3 Asynchronous Federated Learning . 119

List of tables

3.1 Summary of Main Notations . 35

3.2 The comparison of 3LC data compression scheme and no data compression

in data transmission with different sparsity 50

4.1 Notations definition in MPCF . 64

List of Publications

• Z. Yu, J. Hu, G. Min, Z. Zhao and W. Miao, “Mobility-Aware Proactive Edge Caching

for Connected Vehicles using Federated Learning”, IEEE Transactions on Intelligent

Transportation System, 2020, DOI:10.1109/TITS.2020.3017474.

• W. Gao, Z. Zhao, Z. Yu, G. Min, M. Yang and W. Huang, “Edge Computing based

Channel Allocation for Deadline-driven IoT Networks”, IEEE Transactions on Indus-

trial Informatics, vol.16, no.10, pp. 6693-6702, 2020.

• Z. Yu, J. Hu, G. Min, H. Xu, J. Mills,“Peer to Peer Federated Deep Learning based

Proactive Caching for IoV”, IEEE International Conference on Parallel and Distributed

Systems, to appear, 2020 (Invited paper).

• Z. Yu, J. Hu, G. Min, H. Lu, Z. Zhao, H. Wang, N. Georgalas, “Federated Learning

Based Proactive Content Caching in Edge Computing”, in Proc. of GLOBECOM,

2018.

• W. Miao, C. Luo, G. Min, Y. Mi and Z. Yu, “Location-based Robust Beamforming

Design for Cellular-enabled UAV Communications”, IEEE Internet of Things Journal,

2020, DOI: 10.1109/JIOT.2020.3028853.

• H. Lin, J. Hu, J. Ma, L. Xu, Z. Yu, “A Secure Collaborative Spectrum Sensing Strategy

in Cyber-Physical Systems”, IEEE Access, vol.5, pp. 27679-27690, 2017.

xvi List of Publications

• C. Huang, Z. Yu, G. Min, Y. Zuo, K. Pei, Z. Xiang, J. Hu, Y. Wu, “Towards Better

Anomaly Interpretation of Intrusion Detection in Cloud Computing Systems”, IEEE

COMSOC MMTC Communications – Frontiers, 2017.

• Z. Yu, J. Hu, G. Min, J. Mills and J. Wang, “Proactive Content Caching in Mobile

Edge Networks based on Communication-Efficient Federated Deep Learning”, IEEE

Journal on Selected Areas in Communications, 2020, Under review.

• Z. Yu, J. Hu and G. Min, “Federated Deep Learning for Cooperative Hierarchical

Caching in Fog Networks”, IEEE Communications Magazine, 2020, Under review.

• W. Miao, G. Min and Z. Yu, “A Hierarchical and Cooperative Federated Learning

for Aerial 5G and Beyond Networks”, IEEE Wireless Communications, 2020, Under

review

• A. Qi, Z. Zhao, G. Zhao, G. Min, C. Shu and Z. Yu, “Mobility-aware System Deploy-

ment and Management for 5G Edge Computing: A Survey”, IEEE Communications

Surveys and Tutorials, 2020, Under review.

• W. Miao, G. Min, Z. Yu and J. Hu, “Ubiquitous Communication, Computation, Storage

and Intelligence in 6G Networks”, IEEE Journal on Selected Areas in Communications,

2020, Under review.

Chapter 1

Introduction

The proliferation of smart devices and the advancement of wireless communications technolo-

gies have brought us a variety of multimedia applications, including virtual reality/augmented

reality, video on-demand, mobile healthcare and so on, in the Fifth Generation of mobile

networks (5G), Internet-of-Things (IoT), Internet-of-Vehicles (IoV) and Fog Radio Access

Networks (F-RANs). These applications continuously generate a huge amount of mobile

traffic. According to the Cisco Visual Networking Index [1], mobile traffic data is expected

to increase sevenfold from 2017 to 2022, reaching 77.5 exabytes per month. The steep rise

of mobile traffic causes the increase of user latency and places a heavy burden on backhaul

links that connect local base stations and the Internet. However, these emerging applications

require higher network throughput and stricter network, which poses a significant challenge

for traditional wireless networks.

To cope with the massive growth in mobile data traffic and satisfy strict performance

requirements of applications, Multi-access Edge Computing (MEC) [2] has been recognised

as a promising technology by bringing computing and caching capabilities to the edge of

networks. Especially, the network edges are equipped with a number of edge servers to store

contents that may be frequently requested by users. Users can directly fetch a variety of

contents from the edge servers, instead of remote servers in the cloud. In this way, the latency

2 Introduction

for fetching requested contents can be largely reduced and burden on network traffic can

be alleviated. Caching contents at the network edges is referred to as edge caching [3]. In

5G, popular contents can be cached at Base Stations (BSs), e.g. Small Base Stations (SBSs),

Macro Base Stations (MBSs). In IoV, the content can be placed at Roadside Units (RSUs)

and vehicles. In F-RANs, both Remote Radio Heads (RRHs) and Baseband Unit (BBU)

pools can store contents.

Due to the limited cache capacity of the network edges, it is crucial to design a caching

scheme to effectively utilise the cache capacity. The current caching schemes can be generally

classified into reactive caching and proactive caching. Reactive caching uses the observed

request pattern of users to choose contents to be cached, such as First-In-First-Out (FIFO),

Least Recently Used (LRU), and Least Frequently Used (LFU). They rely on static rules

to decide cached contents, which can react fast to changes in recent content access patterns

[4]. In contrast, proactive caching makes use of historical users’ requests, content access

patterns, and geographical or social information of users, etc, to predict content popularity

and then places the predicted popular contents in caches before users’ requests arrive. The

recent breakthroughs in Machine Learning (ML) techniques have been widely used to

forecast content popularity for proactive caching, such as Reinforcement Learning [5],

Transfer Learning [6], and Collaborative Filtering [7], because ML techniques have powerful

capability of handling large amount of data and accurate pattern recognition from these

complex data. This research focuses on the learning-based caching schemes.

This chapter is organised as follows: Section 1.1 is devoted to the motivations and

challenges of this research. The research aims and objectives of this thesis are presented

in Section 1.2. The main contributions of this thesis are shown in Section 1.3. Finally, the

outline of this thesis is provided in Section 1.4.

1.1 Motivations and Challenges 3

1.1 Motivations and Challenges

Edge caching, as an efficient approach to optimise the storage resources, brings popular

contents closer to users, which can reduce service latency and avoid duplicate transmissions

through backhaul links. Some progress has been made in utilising ML techniques for

caching schemes in wireless networks, but learning-based caching schemes still have some

challenging issues to be addressed. For example,

1) Risks to user privacy: Most traditional ML methods are designed for a highly

controlled environment where the distributed users’ data are gathered to train the

learning models. The data generated by applications may involve privacy-sensitive

information of users (e.g., the content retrieval history and geographic information of

users). Therefore, uploading and centralised processing these data may raise privacy

and security concerns.

2) Mobility: Users frequently move from one edge node to another. This means that

the cached contents at one edge node might become obsolete after users move out,

while another edge node does not cache the contents for the incoming users. The

lack of consideration of user mobility may lead to low cache efficiency. Additionally,

in the IoV, vehicles send requests to an RSU/BS and go through its coverage area

quickly, making the caching content easily to be out of date. To improve the cache

performance, the caching scheme should be both context and mobility aware, making

cache decisions based on the content popularity predictions and vehicles’ mobility.

3) Dynamic content popularity: Content popularity is known to be volatile and dynamic

in wireless edge networks. Different users may prefer different contents and their

preferences may change frequently which is influenced by location and time. The

spatial-temporal variability on popularity of contents adds substantial complexity in

4 Introduction

content caching. It is also highly challenging for ML methods to accurately and quickly

predict the content popularity given users’ private data and their content request history.

4) High communication costs: For training these ML models, users need to upload

their data to the central server that performs the training, which will cause large

communication costs.

5) Frequent hand-over: For centralised ML model training, users or vehicles may pass

several BSs/RSUs during the model training or content transmission, due to the small

coverage area of BS/RSU. This may seriously affect the performance of the trained

ML model and degrade the Quality of Service (QoS) and Quality of Experience (QoE)

for users.

6) Utilisation: The redundant contents may store in the cache capacity of edge nodes,

which lacks the global optimization of cache resource utilisation. It is non-trivial to

decide how and where to cache, given the limited cache sizes at the different level of

edge nodes.

7) Scalability: Scalability would be another issue for the centralised training setting. The

number of users/vehicles grow, the amount of data generated by the corresponding

users/vehicles increases. The centralised ML algorithms may find it difficult to handle

such data due to the incurred high computation and communication costs.

1.2 Research Aims and Objectives

Federated Learning (FL) [8], as an emerging framework, fits the ML techniques into the edge

of networks. It enables end nodes (e.g., mobile devices, vehicles and so on) to collaboratively

learn a shared model by aggregating locally-computed model updates while keeping all the

training data on devices. The advantage of FL is the decoupling of the ability to train ML

1.3 Contributions 5

model from the need for directly accessing the raw data. The privacy and security risks can

be significantly reduced. Coupled with FL, the learning-based caching schemes can protect

user privacy. The main objectives of this research are:

• To propose a communication-efficient federated deep learning for proactive caching

schemes with the aim of reducing communication cost and improving caching effi-

ciency.

• To investigate a mobility-aware federated learning framework and design a mobility-

aware caching schemes to support high mobility of users.

• To exploit a peer-to-peer federated learning to ease reliance on the fixed central server,

eliminate the issue of hand-over between RSUs/BSs and achieve lower service latency.

• To develop a cooperative and hierarchical caching scheme based on federated learning

to maximise the utilisation of available caches with edge nodes.

1.3 Contributions

To achieve the above objectives, this research proposes new proactive caching schemes to

improve caching performance and mitigate user privacy risks. The accuracy and effectiveness

of the proposed schemes are demonstrated by extensive experimental results with real-word

datasets. The major contributions of this research are summarised as follows:

• A communication-Efficient Federated deep learning based Proactive content Caching

scheme is developed to improve cache hit ratio1 and reduce communication cost.

A one-class collaborative filtering based variational autoencoder model is designed

and it integrates the model into our FL framework. This model learns deep latent

1Cache hit ratio is used to evaluate the performance of mobile edge caching, which accounts for the ratio of
the requested content stored in the edge server to the number of users’ requests on the cache.

6 Introduction

representations from the recent history and contextual information of users. These

learned representations will be used to accurately predict content popularity for making

proactive caching decisions. This FL framework also introduces a time-driven weighted

model aggregation method to improve the convergence and accuracy of the shared

model by exploiting the previously trained local model. Moreover, the 3LC model

compression algorithm is employed in the proposed FL framework to compress the

model updates in order to further reduce communication costs.

• A mobility aware federated learning scheme for edge caching in vehicular networks is

developed, which can protect users’ privacy, reduce communication costs and support

high mobility of vehicles. This new scheme includes four main components: content

popularity prediction, vehicle selection, model aggregation and cache replacement. It

utilises the context-aware adversarial autoencoder model to predict the popularity of

contents, which turns an AutoEncoder into a generative model by adding the adversarial

network to the AE architecture. It helps to learn deep latent representations from

users’ historical requests and contextual information, and obtain implicit relationships

between users and contents for improving prediction accuracy. Mobility-aware vehicle

selection, model aggregation and cache replacement policies are exploited with the

aim of optimising the caching resource utilisation in VNs. Especially, the decision for

selecting vehicles to participate in the FL training process and the value of weights

for parameter aggregation are dependent on the position and resources of connected

vehicles. It can guarantee that vehicles have enough time for training and the RSU can

aggregate high-quality updates. Meanwhile, the cache replacement policy dynamically

updates the contents at RSU in response to its connected vehicles’ preferences and

predictions of content popularity.

• A peer-to-peer federated learning based proactive caching scheme is proposed for

IoV with vehicles of high mobility. In the proposed scheme, a vehicle rather than a

1.4 Outline of the Thesis 7

fixed edge node, acts as a central server to aggregate ML models from nearby vehicles.

A location and resource-aware vehicle selection scheme is developed in the peer-to-

peer FL framework to enhance the performance of the trained global model, which

ensures that the participating vehicles have enough resources to train the prediction

model, and the server vehicle has enough time to aggregate updated models from

neighbour vehicles. Due to the heterogeneous abilities of vehicles, a dual-weighted

model aggregation scheme is designed to reduce the effect of straggler vehicles, in

order to further improve the accuracy of the trained global model in the designed

peer-to-peer FL.

• A hierarchical cooperative caching architecture is designed for F-RANs to leverage

horizontal cooperation between the Fog Access Points (F-APs) and vertical cooperation

between the BBU pool and F-APs to enhance the overall caching performance and

global cache resource utilisation. The proposed method integrates the appended stacked

autoencoder and one-class collaborative filtering to predict the popularity of contents.

The appended stacked autoencoder is used to extract the hidden representations of users

and contents. Whereas, the one-class collaborative filtering is utilised to effectively

process the input data for a better recommendation of popular contents.

1.4 Outline of the Thesis

The rest of this thesis is organised as follows:

• Chapter 2 introduces the background knowledge of edge caching, artificial intelligence

and federated learning. A detailed literature review on learning-based caching scheme

and federated learning applications in wireless networks are then presented.

8 Introduction

• Chapter 3 presents a communication-Efficient Federated deep learning based Proactive

content Caching scheme (EFPC) to improve cache hit ratio and reduce communication

cost.

• Chapter 4 develops a Mobility-aware Proactive Edge Caching Scheme based on Feder-

ated Learning (MPCF) to support high mobility of vehicles and adapt to the dynamic

content popularity.

• Chapter 5 exploits a peer-to-peer federated learning based proactive caching scheme

(PPFC) for IoV to ease reliance on the fixed central server in RSU and eliminate the

issue of hand-over between RSUs.

• Chapter 6 proposes a federated learning based cooperative hierarchical edge caching

scheme (FLCH) to maximise the utilisation of available caches with edge nodes.

• Chapter 7 concludes the thesis and outlines the future works.

Chapter 2

Background and Literature Review

Caching contents at the edge of networks is considered to be a effective solution to cope with

ongoing traffic growth and address the backhaul bottleneck problem in wireless networks.

Recent advances in Machine Learning (ML) and Federated Learning (FL) facilitate efficient

content caching. This chapter presents a general background knowledge and gives an in-depth

review of the related work of Multi-access Edge Computing (MEC), edge caching, ML and

FL. The rest of this chapter is organised as follows. The background knowledge of MEC,

edge caching, FL and ML is introduced in Section 2.1, 2.2, 2.3 respectively. A detailed

literature review on learning-based content caching scheme is presented in Section 2.4.

2.1 Edge Caching

2.1.1 Multi-access Edge Computing

Emerging applications in wireless networks require low network latency and substantial

network resources (e.g., caching, computation, and communication), which cannot be fulfilled

by the current wireless networks. Multi-access Edge Computing (MEC) has been considered

as a promising paradigm by migrating cloud computation and caching capabilities to the edge

10 Background and Literature Review

nodes of networks to satisfy the diverse requirements of applications, alleviate the traffic on

backhaul links, and reduce service latency. Edge nodes have the capabilities to process and

store data.

2.1.2 Fundamentals of Edge Caching

Caching contents at edge nodes is referred to as edge caching, which has been receiving

significant attentions from both industry and academia in the past few years. By caching

popular contents at edge nodes, requested contents can be obtained within one transmission

hop. In this way, content retrieval latency and backhaul traffic can be significantly reduced.

Contents in wireless networks have the property of asynchronous content reuse that

popular contents are requested by different users for multiple times. It causes the same

contents in remote servers are repeatedly sent to users. Caching contents at edge nodes

enables vehicles to fetch their requested contents within one transmission hop, instead of

from the remote servers in cloud. Popular contents can be cached at edge nodes during during

off-peak hours, whereas the requested contents can be served to users during the peak-time.

Edge caching brings several advantages. Firstly, the service latency of obtaining requested

contents can be largely reduced, because contents are stored at the network edge, closer to

users. Secondly, the backhaul traffic can be significantly alleviated since edge caching avoids

to use transmissions via the backhaul links. Thirdly, energy consumption for transmitting

data from the Internet can also be reduced by edge caching. Fourthly, caching efficiency can

be improved by utilising the information collected from edge nodes, e.g., content popularity,

user preferences, mobility of user and channel state.

The key research issues in edge caching include where, how and what to cache.

2.1 Edge Caching 11

2.1.3 Cache Placement

Cache placement is the answer of where to cache, which involves the selection of caching

locations. In wireless networks, popular contents can be cached at edge nodes, e.g., Macro

Base Stations (MBSs), Small Base Stations (SBSs), relays and User Equipments (UEs). They

have different storage capacities. In fog radio access network (F-RAN), both Baseband Unit

pools (BBU) and Remote Radio Heads (RRHs) can be used to store popular contents. BBU

is the baseband processing unit of telecom systems and RRH is a radio transceiver in a radio

base station. Both of them have storage capacities. Edge nodes in the Internet of Vehicles

(IoV) are roadside units (RSUs) and vehicles.

Mobile devices and vehicles have larger storage capacities, which can be utilised as

cache nodes. The communication among mobile devices and vehicles can through Device-

to-Device (D2D) links, Vehicle-to-Vehicle (V2V) links, etc. Compared to local caching

at mobile devices and vehicles, different sizes of base stations, relays and RSUs provide

relatively higher latency. However, they can cover a larger area and serve more users.

2.1.4 Caching Policy

Caching policy solves the problem of how to cache, which refers to the design of caching

schemes. To improve the caching performance, caching schemes are implemented on

edge nodes by utilising their own storages. Reactive [9] and proactive caching [10] [11]

are introduced in respect of deciding whether to cache contents after or before content

demands happen. Reactive caching schemes decide caching contents after they have been

requested. They use the static rules to decide caching contents, which can react fast to

changes in recent content access patterns. Whereas, proactive caching makes use of historical

users’ demands, content access patterns and users’ geographical or social information to

predict content popularity and then places caching contents before users’ requests arriving

according to prediction. Proactive caching improves caching performance and guarantee QoS

12 Background and Literature Review

requirements by pre-fetching predicted popular contents during off-peak times and serving

predicted popular contents during the peak time.

Centralised and distributed caching [12] are classified according to position of the caching

decisions. Centralised caching makes caching decisions by a central controller. Whereas,

distributed caching utilises their local information to decide caching contents at local caches.

Due to the limited storage at edge nodes, individual caching scheme may result in insufficient

utilization of cache nodes. For example, some caches at edge nodes are overused, while other

edge nodes still have many vacant spaces. To cope with this problem, cooperative caching

scheme [13] [14] [15] is designed by sharing contents with other edge nodes. In this way,

the utilisation rates of all edge nodes can be enhanced by fully using under-utilised caches

at single edge node. The location and the storage capability determine which nodes in the

cooperative caching. Also, the cache efficiency can be improved, because the cache capacity

increases. Coded caching [15] uses the network coding techniques to reduce the number

of transmissions. It firstly aggregates data messages. Then, data is forwarded to the same

destination and separated into different messages. Therefore, network throughput can be

increased and service delay can be reduced. To deal with the uncertainty and movement of

users, probabilistic caching is designed [16]. In probabilistic caching, contents are cached at

different caches with different probabilities.

To decide what to cache, the popularity of content is required. It is the ratio of the number

of requests for a particular requested content over the total number of requests from users

during a period of time in a certain region. Content popularity has a key feature, which is

the asynchronous content reuse property. Only a small number of very popular contents

account for the majority of data traffic. It indicates the probabilities of users requesting

certain contents.

Content popularity can be generally classified into static and dynamic. For static content

popularity, it is usually assumed to follow the Zipf model [17]. However, it cannot reflect the

2.1 Edge Caching 13

real-time content popularity, since the popularity of contents is time-varying and unknown in

advance. In contrast, dynamic content popularity is more realistic and suitable for the wireless

networks. It changes according to the preferences of users. Different vehicular users may

prefer different contents and their preferences may change frequently which is influenced by

location and time. The spatio-temporal variability on popularity of contents adds substantial

complexity in content caching. It is challenging to make caching decisions without the

knowledge of the content popularity. Predicting dynamic content popularity has drawn much

attention and several prediction models have been proposed, e.g., autoencoder [18], transfer

learning [19] [20], LSTM [4], Bayesian [21], and multi-layer perception [10]. These learning-

based forecasting models are carried out by Machine Learning (ML) techniques. The recent

breakthroughs in ML show great potential for making accurate popularity predictions through

learning from experience.

Additionally, the mobility of users affects the popularity of contents, since different users

may prefer different contents. Moreover, various content types in wireless networks (e.g.,

web pages, files, and videos) exhibit more dimensions and different lifetimes with varying

delay requirements. Typically, the lifetime of contents in wireless networks is short. As a

result, the cached content is easy to be out-of-date. Using the outdated contents in caching

schemes, caching performance may degrade. Thus, it is essential to update caching contents

at intervals, replacing the unpopular contents with the popular ones.

2.1.5 Cache Replacement

Conventional caching schemes include First-In-First-Out (FIFO), Least Frequently Used

(LFU), Least Recently Used (LRU), Most recently used (MRU) and their variants, which

are utilised for cache eviction and replacement. FIFO evicts the contents based on the order

they were added, without considering how many times or how often contents were requested

before. In LFU, the least frequently used content in the cache is discarded whenever the

14 Background and Literature Review

cache capacity is full. LRU firstly removes the least recently used content in the cache, when

the limit of cache capacity is reached. In contrast to LRU, MRU discards the most recently

used contents firstly. These conventional caching schemes follow static rules, but they lack

consideration of dynamic content popularity which varies with time.

The variants include Segmented LRU (SLRU), Least frequent recently used (LFRU), Time

aware least recently used (TLRU), and so on. SLRU divides the cache into a probationary

segment and a protected segment. Both segments follow LRU. New contents are firstly stored

in the probationary segment. When a cached content is requested, it will move to the head of

the protected segment. If the cache capacity of the protected segment is full, LFRU pushes

content from the protected segment to the probationary segment. When the probationary

segment overflows, it directly evicts the least recently used contents. LFRU combines the

advantages of LFU and LRU caching schemes. It divides the cache into two parts: privileged

part and unprivileged part. The highly popular contents are cached at the privileged part. The

rule of replacement in privileged follows LRU. New contents insert into unprivileged part

and popular contents are promoted from unprivileged part into privileged partition. TLRU

introduces Time to Use (TTU), which is a time stamp of a content. It indicates the usability

time for the content. The cache contents are updated according to the value of TTU. It

ensures that the short life contents with less popularity are replaced with the new contents.

2.2 Artificial Intelligence

Recent advances in Artificial Intelligence (AI) facilitate efficient edge caching. It is used

to answer what, where and how to cache at the edge/wireless networks, so that the caching

performance can be improved, such as, content popularity prediction, cache decision opti-

mization, and user clustering. In this thesis, I mainly utilise ML and DL to my proposed

methods.

2.2 Artificial Intelligence 15

2.2.1 Machine Learning

The definition of ML is based on algorithms that can learn from data, without relying on

rules-based programming. ML utilises algorithms to parse data, learn from it, and then make

a determination or prediction about something. The aim of ML is to build learning capability

in computer without human intervention or assistance. ML algorithms are categorised as

supervised learning and unsupervised learning. Supervised learning aims to learn a general

rule for mapping inputs to outputs based on the labelled data set. Whereas, unsupervised

learning aims to learn the mapping function based on unlabelled data.

Supervised Learning

Supervised Learning is the task to learn a function which maps a training set of examples

of inputs x to outputs y based on example input-output pairs. In supervised learning, the

training data consists of inputs and the correct paired outputs. During the training process,

the pattern in the data will be studied. After training, new unseen inputs will be put into the

learned algorithm and the label for new inputs will be determined based on prior training

data. The objective of a supervised learning model is to predict the correct label for new

input data. A supervised learning algorithm can be written as follow:

y = f (x) , (2.1)

where y is the predicted output that is determined by a mapping function. A class is assigned

to an input x. The mapping function created by the supervised learning model connects input

features to a predicted output. Supervised learning is used to process and classify data, which

can be grouped into the problems of clustering and classification. The widely used supervised

learning models are K-nearest neighbours, decision trees, support vector machines, random

forest and so on.

16 Background and Literature Review

However, in some cases, the outputs y may be difficult to collect automatically, which

needs to be provided by a human supervisor.

Unsupervised Learning

Unsupervised learning only has input data x (features) without the corresponding output y.

There are no labels in the unsupervised learning. It leaves output y to find structure in its

input x. The goal of unsupervised learning is to discover hidden patterns and learn features

in data. In unsupervised learning algorithms, based on similar attributes, features in data,

and naturally occurring patterns, new input can be classified. Different strategies are used to

divide data into different groups.

Many applications are used in unsupervised learning, such as clustering, anomaly detec-

tion, association mining and latent variable models.

2.2.2 Deep Learning

Deep Learning (DL) is a subset of AI, which imitates the working process of the human

brain to process data and discover patterns in data. DL is inspired by the structure and

function of biological Neural Networks (NNs). It is able to learn from complex data that is

both unlabelled and unstructured data, without human supervision. DL is widely used in

making decisions, translating languages and recognising speech. NN generally consist of

input, hidden, and output layers.

In DL, the neural network is the most important part. NN uses basic components, known

as neurons to perform highly complex, non-linear and parallel computations. In a NN, its

nodes are the equivalent components of the neurons in the human brain. These nodes use

activation functions to perform non-linear computations. The most frequently used activation

functions are the sigmoid and the hyperbolic tangent functions. Simulating the way neurons

2.2 Artificial Intelligence 17

are connected in the human brain, the nodes in a NN are connected to each other by variable

link weights.

A NN has many layers. The first layer is the input layer and the last layer is the output

layer. Layers between the input layer and the output layer are hidden layers. The output

of each layer is the input of the next layer and the output of the last layer is the result. By

changing the number of hidden layers and the number of nodes in each layer, complex

models can be trained to improve the performance of NNs. NNs are widely used in many

applications, such as pattern recognition. The most basic NN generally comprises three

layers: (i) input layer, (ii) hidden layer, and (iii) output layer.

Neural networks with a single hidden layer are generally referred to as shallow NNs. In

contrast, neural networks with multiple hidden layers between the input layer and the output

layer are called deep NNs [17–19]. For a long time, shallow NNs are often used. To process

high-dimensional data and to learn increasingly complex models, deep NNs with more

hidden layers and neurons are needed. However, deep NNs increase the training difficulties

and require more computing resources. In recent years, the development of hardware data

processing capabilities (e.g., GPU and TPU) and the evolved activation functions (e.g., ReLU)

make it possible to train deep NNs [20]. In deep NNs, each layer’s neurons train on a feature

representation based on the previous layer’s output, which is known as feature hierarchy.

The feature hierarchy makes deep NNs capable of handling large high- dimensional datasets.

Compared to other machine learning techniques, deep NNs generally provide much better

performance.

In a feedforward neural network, a weighted and bias-corrected input value is passed

through a non-linear activation function (e.g., ReLu and Softmax functions) to get an output.

A typical DNN contains multiple hidden layers, mapping an input to an output. The objective

of training a DNN is to optimize the weights of the network such that the loss function, i.e.,

difference between the ground truth (the expected output) and model output, is minimized.

18 Background and Literature Review

Normally, the dataset is divided into the training dataset and test dataset. The training dataset

is used as input data for weights optimization. The weights are adjusted through stochastic

gradient descent (SGD) and the weights are updated by the learning rate lr and the loss

function L. The SGD formula is as follows:

W =W − lr
∂L
∂W

(2.2)

∂L
∂W
≈ 1

m ∑
i∈B

∂ li

∂W
(2.3)

Eq. 2.2 presents a mini-batch SGD and Eq. 2.3 achieves the average gradient matrix over

the gradient matrices of B batches. Each batch consists of m training samples, which is a

random subset. The gradient matrices are derived through backpropagation from the input

gradient e. The training iterations are then repeated over many epochs.

The most popular DL models are convolutional neural networks, recurrent neural net-

works, multilayer perceptron, autoencoders and so on.

2.3 Federated Learning

2.3.1 The Framework of Federated Learning

Coupled with recent advancements in machine learning, learning-based proactive caching

schemes are able to accurately predict content popularity and further improve cache efficiency,

but they may need to centrally analyse users’ content retrieval history and personal data,

and model training occurs in powerful cloud servers, leading to privacy concerns. Amid

growing privacy concerns, Federated learning (FL) provides a new framework for fitting ML

techniques into the edge while protecting users’ privacy, since the ubiquity of mobile devices

are equipped with fast processors (including GPUs) and increasing computing capabilities.

2.3 Federated Learning 19

FL trains a shared global ML model under the instruction of a central server from data

scattered at nodes (e.g., mobile devices). The participating devices are typically large in

number. They upload model updates to the central server and keep their training data locally.

These devices are used as the computation nodes to perform a ML model training on their

local data. FL provides distinct advantages compared to learn the ML model in the cloud

central server, since uploading model updates has less privacy-sensitive than uploading data

itself. In FL, the server only stores model updates, not data. Thus, FL can significantly

mitigate the privacy and security risks by limiting the attack surface to only the device,

instead of the cloud. Compared with conventional distributed machine learning, FL adopts

the large number of participating devices, non-i.i.d. data and highly unbalanced data. It

leverages the computational power and data-locality of the large number of mobile devices.

FL is performed by multiple communication rounds and a typical round consists of the

following steps:

1) User Selection: A subset of users are chosen to participate in a training round, according

to the requirements of model training, the features of users and their data distribution, and so

on. (The selection criteria can be calibrated to the need of server, e.g., training efficiency and

effectiveness.)

2) Model Dissemination: Once the participating users are selected, the central server

sends the initial global model to each selected participating users.

3) Distributed Model Learning: Each selected user computes an updated model based on

its local data.

4) User feedback: The updated models are sent from the selected users to the central

sever.

5) Model Aggregation: The central server receives updated models from selected users

and then constructs an improved global ML model by aggregating these updated models,

according to an aggregation mechanism (e.g., FedAvg algorithm).

20 Background and Literature Review

6) Model Update: The central server updates the global ML model and then sends back

to the selected users.

Above steps are repeated until a stable result achieved at the central server.

2.3.2 Unique Characteristics of Federated Learning

1. Slow and unstable communication

Compared with the traditional distributed training in a cloud central server, the com-

munication environment is stable. The information transmission rate is relatively high

with no packet loss. By contrast, the communication environment of FL is slow and

unstable since heterogeneous devices are involved in FL training. As a result, some

participating users may drop out.

2. Massively distributed and heterogeneous devices

A large number of users are involved in FL model training, which have various resource

constraints, such as different computation capabilities, battery status. Additionally,

devices may have different levels of willingness to participate.

3. Unbalanced Data and Non-IID

The amount of local training data at devices can vary, since some users make heavy

usage of some particular applications. Thus, the distribution of training data on any

device cannot represent the whole data distribution.

2.3.3 Federated Learning and its applications in Wireless Networks

Federated Learning is firstly proposed by Google [8], which provides a new approach to

fitting machine learning techniques into the edge. Mcmahan et al. [8] designed the primitive

FL protocol. It performs synchronous optimization in federated settings. Xie et al. [22]

proposed an asynchronous federated learning (FedAsync). The proposed asynchronous

2.3 Federated Learning 21

federated optimization scheme regularizes local optimization and adopts the update of the

global model without blocking. Similar to [22], Sprague et al. [23] exploited an asynchronous

protocol in a geo-spatial application for training a global model asynchronously, which allows

the devices to join halfway. However, the main challenge of asynchronous approaches is that

the server may overwhelm, because the server receives too many local updates from active

users. However, the model convergence can be improved a bit.

For model accuracy, Chen et al. [24] demonstrated that synchronous Stochastic Gradient

Descent (SGD) outperforms asynchronous approaches in the data centre setting. A number

of variants have been proposed to mitigate the deficiencies of FL from different aspects such

as FL communication round efficiency [25] and communication cost [26]. Wang et al. [27]

proposed a control algorithm that adaptively determines the interval of global aggregation

under a given resource budget. To address the inefficiency of FL under poor wireless channel

conditions, Nishio and Yonetani [25] designed a protocol to filter out slow users in MEC

framework, which is based on the estimation of the users work time at the selection stage

and consequently shorten round length. However, their scheme relies on the model accuracy

and does not take the user unreliability into account.

To speed-up the convergence rate of FL, the optimisation mechanisms for traditional

distributed SGD have great potential in FL. Lian et al. [28] proposed a gradient staleness

control to guarantee convergence. Dutta et al. [29] presented a theoretical characterization of

the speed-up offered by asynchronous methods. It analyses the trade-off between the error in

the trained model and the actual training runtime (wallclock time) by considering random

straggler delays. Wang et al. [30] designed an Asynchronous Stochastic Gradient Descent

(ASGD) by adjusting the learning rate based on the staleness of incoming gradients. Smith

et al. [31] proposed a fault and straggler tolerant multi-task learning method to address the

statistical and systems challenges of FL. Chen et al. [24] introduced backup workers to

reduce server waiting time in synchronous stochastic optimization.

22 Background and Literature Review

Most machine learning based caching schemes are designed for a highly controlled

environment by uploading data to the server. It may bring privacy risks to users. To address

the above challenges, FL is an enabling technology, which allows collaborative learning in

the wireless networks. Feng et al. [32] constructed a cooperative communication platform

by adopting the relay network to support model update and trade with the Stackelberg

game model. Wang et al. [33] used deep reinforcement learning to jointly manage the

communication and computation resources. It presented the FL based In-Edge AI framework

to deploy intelligent resource management in the MEC system. Similar to [33], the authors

in [34] proposed a deep reinforcement learning based method to optimise computation

offloading decisions in IoT systems. Qian et al. [35] introduced a privacy-ware service

placement scheme to deploy user-preferred services on edge servers with consideration for

resource constraints in edge cloud. Saputra et al. [36] presented a federated energy demand

learning approach to manage energy resource in charging stations for electric vehicles.

Samarakoon et al.[37] introduced a FL-based method to predict the tail distribution of the

network-wide queue lengths, in order to realise the status of networks. Ye et al. [38] designed

a selective model aggregation method to select participating vehicles by considering the

computation capacity of vehicles and data quality at vehicles. Lu et al. [39] proposed a

hybrid blockchain based asynchronous FL scheme to secure data sharing. Lu et al. [40]

proposed an asynchronous FL scheme in IoV for resource sharing purpose, which also

combines differential techniques into FL to protect the privacy of local updates. Roy et

al. [41] proposed a peer-to-peer decentralized federated learning, without a central server.

However, the above works lack consideration inherent limitations of edge caching in IoV,

such as time-varying content popularity and mobility of users.

2.4 Learning-based Edge Caching 23

2.4 Learning-based Edge Caching

Due to the limited cache storage, it is essential to place the contents that are most likely to be

requested by users in the local cache. Traditional caching schemes [42] update cache contents

based on static rules such as FIFO, LRU and LFU, which are reactive caching. However,

they are not adapted to the dynamically changing content popularity. Recent research has put

in effort to develop proactive content caching schemes based on the popularity of contents.

They can be generally classified into two categories: the cache algorithms with or without

the prior knowledge of content popularity distribution.

2.4.1 Edge Caching with Prior Knowledge of Content Popularity

We start by briefly introducing related work which assumes the content popularity with prior

knowledge. In some cases, the contents request from users are modelled by a Zipf distribution

[17]. With knowing the demand of users, Maddah-Ali et al. [43] exploits the broadcast nature

of the wireless medium by coded caching to improve cache efficiency. The aim of improving

downlink energy efficiency of proactive content caching has been derived in [44] which

supposes the user requests can be predicted. Jiang et al. [45] presented a cooperative content

caching scheme to minimise the average downloading latency by utilising a primal-dual

decomposition method. It can decouple the problem into two level optimization problems

by using the subgradient method. Golrezaei et al. [46] proposed a distributed caching

framework and D2D collaboration to address the increasing demand for video content in

wireless networks. It applies an approximation technique to decide which contents are cached

in which helper, in order to minimise the user’s delay and increase the throughput of the

network. Kang et al. [47] developed a framework for an mobile content delivery networks,

which provides the demanded popular contents to nearby users via D2D communication links.

Poularakis et al. [48] designed a caching paradigm to save energy through the multicast

transmission of identical contents and to support the massive mobile data demand in 5G.

24 Background and Literature Review

Liu et al. [49] proposed a mobility-aware coded caching scheme to optimise throughput

in cellular networks. The work in [50] exploited a coded caching-and-delivery scheme to

explore a trade-off between the transmission cost of base stations, the storage cost of the

small cells and the cost of connecting users to multiple cells. To support seamless mobility,

Siris et al. [51] proposed a distributed proactive caching scheme. It utilises the mobility

information of users to decide the position of caching and employs a congestion pricing

scheme to allocate cache storage. Shanmugam et al. [52] provided the FemtoCaching system

to minimise the delay of user requests by placing the optimal demanded files to the caches.

Chen et al. [53] used a Markov decision process to improve the energy efficiency of proactive

caching.

2.4.2 Edge Caching without Prior Knowledge of Content Popularity

All aforementioned related works suppose that content popularity is known in advance, which

is not true in real networks. Content popularity changes dynamically. Thus, some research

study content popularity prediction by leveraging ML techniques. ML algorithms show

the great potential for making accurate predictions based on the learning experience from

the past. Bastug et al. [7] proposes a caching algorithm for small cell networks based on

collaborative filtering (CF). It provides the estimation of content’s popularity after training

phase by using sparse training data, whereas multi-armed bandit (MAB) as another caching

algorithm learns popularity of files online by firstly observing demands of cached content

and then updating the content of cache at a fixed time[54]. Sengupta et al. [55] proposes

a coded caching scheme, where the base station is based on demand history to estimation

the popularity of files via a combinatorial multi-armed bandit formulation. It combines

the popularity estimation and content placement scheme. Besides, because of different

users contributes content popularity, a contextual MAB algorithm [54] is used to learn the

content’s popularity with considering different users’ information. It is an extended work

2.4 Learning-based Edge Caching 25

of [56] which aggregated context information, such as user density and request file time.

It proposed a contextual multi-armed bandits based algorithm to learn context-dependent

popularity by considering the context information of a single user and diversity of content

popularity among different users. Blasco and Gündüz [57] applied combinatorial multi-

armed bandit to improve cache performance by observing the requests from users and then

updating contents in the cache. Elbamby et al. [5] combined user clustering and content

caching in wireless small cell networks and utilised the reinforcement learning algorithm

to predict content popularity. An adaptive caching scheme was presented in [58] by using

an extreme-learning machine neural network to predict content popularity. Then, it utilises

mixed-integer linear programming to compute where to cache the content and selects the

optimal physical cache sizes in the network. Chen et al. [59] optimised the caching policy

by learning user preference for cache-enabled D2D communications. They first formulate

an optimisation problem to maximise the offloading probability and then utilise a greedy

algorithm to solve this problem. The user request behaviour is modelled by probabilistic

latent semantic analysis and model parameters are predicted by expectation maximisation

algorithm. Bacstuug et al. [6] and Bharath et al. [20] leveraged the transfer learning to

estimate content popularity. Long short-term memory was applied to predict the content

caching in [60]. Doan et al. [61] proposed a caching scheme by predicting the popularity

of videos, according to the extracted features from published videos, and their similarity

between published videos and new videos. An extended work [62] designed a social-aware

caching scheme by using social-awareness to evaluate the frequency of D2D connections. Li

et al. [63] presented a cache content placement and delivery for D2D networks. Echo state

network is used to predict users’ mobility and long short-term memory network is utilised

to content popularity. Thar et al. [64] developed a deep learning based caching framework

to predict video popularity in MEC and then pushed the popular contents to the BSs. Wang

et al. [65] proposed a BS based distributed edge caching to minimise the transmission cost

26 Background and Literature Review

between BSs by utilising Q-learning. Zhu et al. [66] applied deep reinforcement learning to

mobile edge caching, in order to make caching agents adapt to the dynamic and complex

environments. A distributed multi-tier caching scheme was developed in [67], which is based

on deep Q-learning. Jiang et al. [68] exploited reinforcement learning based caching scheme

to minimise download latency for D2D caching. Lei et al. [69] proposed a deep learning

based proactive caching scheme in 5G. A stacked sparse autoEncoder is utilised to extract

hidden features from historical content requests to predict content popularity. Hou et al. [19]

investigated a proactive caching based cooperative caching scheme in MEC to improve user

quality of experience and reduce transmission cost by exploiting transfer learning approach.

Jiang et al. [70] designed a transfer learning based multi-agent reinforcement learning

caching scheme, without the prior knowledge of content popularity. Chuan et al. [71]

presented a common interests based caching scheme to maximise the probability of content

delivery. Bommaraven et al. [72] proposed an active learning based caching scheme for

predicting accurate content popularity.

Edge Caching also has been widely used in the IoV. Edge servers (e.g., BSs and RSUs)

and vehicular users with ample caching capacities can cache popular contents to increase

the agility for service provisioning. A number of recent works [73], [74], [75], [76], [16]

have been reported to investigate the content caching at RSUs in vehicular networks. Hu et

al. [73] proposed a multi-object auction-based method to solve the competition of content

providers caused by the limited storage resources of RSUs. Ding et al. [74] studied three

methods (optimal, sub-optimal and greedy) to allocate contents on RSUs, aiming to minimise

the average downloading time for requested contents. Su et al. [75] designed a cross-

entropy based dynamic content caching scheme to optimise cache resources by utilising

cooperation among RSUs and the request history of vehicles. High movement of vehicles

results in unstable connectivity, and vehicles may not have enough time to download the

entire requested content during the time staying in the area of one edge node. Thus, a

2.4 Learning-based Edge Caching 27

mobility-aware probabilistic caching scheme was applied in [76] by considering the vehicle

trajectories and content service time at the edge node. Mahmood et al. [16] developed a

probabilistic caching scheme to store content chunks at edge nodes by considering both the

historical statistics of achievable data rates and the time of vehicles staying in the area of

edge nodes.

Connected vehicles, equipped with storage resources, can be exploited as caching enti-

ties to cache the popular contents locally, which brings the benefits of utilising their own

resources. Kumar et al. [77] presented a peer-to-peer cooperative caching scheme for data

dissemination that leverages a Markov chain model to share information among multiple

vehicles and uses a probabilistic method to update the existing data. Fang et al. [78] provided

a cooperative caching scheme for cluster-based VNs, which considers both the caching

resource-constrained vehicles and caching status of vehicular clusters in a global view. Deng

et al. [79] presented a distributed probabilistic caching scheme to make caching decisions. In

this scheme, users’ content requests, the importance of vehicles and their movement charac-

teristics are all taken into consideration. A cooperative caching scheme was designed in [80].

It is based on the mobility prediction that estimates the probability of vehicles visiting hot

spot areas. In order to minimise users’ delay, [81] investigated a caching placement in both

vehicular and RSU layers. Zhang et al. [82] developed a mobility-aware cooperative caching

framework, where vehicles are as caching nodes to share contents tasks with BSs. Park et

al. [83] proposed a distributed proactive caching scheme in VNs by distributing contents for

RSUs, based on the movement of vehicles. Ainagar et al. [84] introduced a mobility-aware

proactive caching scheme by taking the effect of the vehicle velocity into account. Chen et

al. [15] introduced a cooperative edge caching scheme for connected vehicles by considering

the different requirements for location-based and popular contents. Gad et al. [85] designed a

hierarchical proactive caching by utilising the storages at vehicles and RSUs to minimise the

vehicle communication latency. Zhang et al. [86] proposed a proactive caching scheme for

28 Background and Literature Review

autonomous vehicles by adopting a non-negative matrix factorization technique to estimate

the preference of users. The contents at video level are stored at the core network nodes,

whereas the chunk level contents are cached at edge nodes.

Ndikumana et al. [10] studied a deep learning based proactive caching scheme by adopt-

ing a Multi-Layer Perceptron (MLP) approach to predict the popularity of contents within

the coverage area of mobile edge computing (MEC) servers, and exploiting a Conventional

Neural Network (CNN) to estimate the age and gender of passengers. Comparing the MLP’s

outputs with CNN’s outputs, the contents which need to be downloaded from MEC servers

to vehicles can be decided. MEC is one of the prospective technologies to enhance the

performance of 5G. It brings the cloud computing and caching capabilities to network edges

(e.g., base stations, access points), thus various tasks can be executed at the edge rather

than remote clouds. A Q-learning based proactive caching scheme was devised in [87] with

the support of a long short-term memory neural network. A deep reinforcement learning

based content caching scheme was exploited in [14] by optimising the content placement

and content delivery to minimise content delivery latency. Zhang et al. [13] designed a

heterogeneous information network-based content caching scheme to reduce network load

and enhance the quality of experience by combining data mining techniques with the features

of IoV. Zhu et al. [88] investigated a deep reinforcement learning based approach to solve the

problem of automatic vehicle control and the selection of proactive caching action. Zhang

et al. [89] presented a proactive caching scheme for vehicular multi-view 3D videos which

utilises deep reinforcement learning to select views set and allocate cache memory.

2.5 Summary

In this chapter, the fundamental knowledge of edge caching has been investigated. Then, a

description of artificial intelligence has been presented. Finally, a comprehensive survey of

2.5 Summary 29

federated learning has been provided. It also indicates the new challenges in edge caching

and federated learning. This research will address these mentioned challenges.

Chapter 3

Communication-Efficient Federated

Learning based Proactive Caching

3.1 Introduction

According to a Cisco forecast report [90], mobile data traffic would increase to 77.5 exabytes

per month by the end of 2022, up from 29 exabytes per month in 2019. To cope with the

massive growth in mobile data traffic, multi-access edge computing (MEC) [2] was proposed

as a promising technology that brings computing and caching capabilities to the edge of

networks (e.g. base stations, edge routers, and access points). Especially, the network edge

are equipped with a number of edge servers to store different contents requested by users.

In this way, the latency for fetching requested contents and network traffic can be largely

reduced, because a variety of contents can be directly fetched from the edge servers. Learning-

based proactive edge caching has received considerable research attention, since Machine

Learning (ML) algorithms have powerful capability of handling large amount of data and

accurate pattern recognition from these complex data. However, utilising ML techniques

for proactive caching in edge networks faces the challenges of user privacy concerns, high

communication costs, scalability and dynamic content popularity.

3.1 Introduction 31

To address the above challenges, Federated Learning (FL) [8], as an emerging ML

paradigm attracting significant interests, plays a key role. It enables mobile devices to

collaboratively learn a shared model by aggregating locally-computed model updates while

keeping all the training data on devices. The advantage of FL is the decoupling of the

ability to train ML model from the need to directly access to the raw data. The privacy and

security risks can be significantly reduced. Therefore, we propose a communication-Efficient

Federated deep learning based Proactive content Caching scheme (EFPC).

The novelty of this chapter can be summarised as follows:

1. We propose a One-Class Collaborative filtering based Variational AutoEncoder (OCC-

VAE) model and integrate the model into our FL framework. This model learns deep

latent representations from the retrieve history and contextual information of users.

These learned representations can be clustered in the latent space and will be used to

accurately predict content popularity for making proactive caching decisions.

2. The FL framework we designed introduces a time-driven weighted model aggregation

method to improve the convergence and accuracy of the shared model by considering

the previously trained local model and currently trained local model. Moreover, the

3LC model compression algorithm is employed in the proposed FL framework to

compress the model updates in order to further reduce communication costs.

3. We evaluate the performance of the EFPC scheme via a MEC-like testbed using

real-world datasets (MovieLens and Netflix). The experimental results show that our

scheme outperforms the reference caching schemes including LRU, LFU, m-ε-Greedy

and Autoenocder based method. Moreover, our scheme can compress the transmitted

model data by up to four-fold without dropping its cache hit ratio.

The rest of this chapter is organised as follows: Section 3.2 describes the system architec-

ture of EFPC. The detailed implementation of the EFPC is presented in Section 3.3. The

32 Communication-Efficient Federated Learning based Proactive Caching

Edge Server

Caching

Uncompressed
Parameters

Weighted
Aggregation

Update
Parameters

!"
!"#

$ #!
#

Download Global Parameters

Compress

Parameters
Collect

Parameters
Upload

Parameters

OCC-VAE
Model

Data

Local Training

Data

No Local Training

Not Participate FL

OCC-VAE
Model

Data

Local Training

Parameters

Missing
UploadCollect

Parameters

Compress

Parameters

Low
H

igh
C

aching C
ontent Popularity

Update

Parameters

Users

(Last FL Communication Round)
Predicted N Popular Contents

Global
Parameters

Sort
Predicted
Contents

Selected
Users &
Calculate
Weights

! "!
"�

Fig. 3.1 Architecture of the EFPC Caching Scheme

performance evaluations are provided in Section 3.4. Finally, Section 3.5 concludes this

chapter.

3.2 System Architecture of EFPC

We consider a MEC platform that consists of a base station (BS) and a set of U users. The

BS is equipped with a cache-enabled edge server and linked to the Internet through a reliable

backhaul link. The edge server in the BS has limited storage, which can store up to N

contents from a content library. A caching decision module is installed at the edge server

to decide how to effectively utilise the limited cache storage. Users equipped with smart

devices are located in the coverage area of the BS, communicating BS via wireless links. If a

user is interested in content that is stored in the BS’s edge server (i.e. a cache hit), the BS

can directly transmit the requested content to the user. In this way, the traffic load on the

backhaul link can be reduced significantly. Otherwise, if the requested content is not cached

in the edge server (i.e. a cache miss), this BS will forward the request to the Internet. The

requested content is then downloaded from the Internet via the backhaul link. To alleviate

3.2 System Architecture of EFPC 33

the backhaul link congestion, reduce the response time of users’ services and maximise the

cache hit ratio, it is essential to place the most popular contents on the edge server.

Caching popular contents on the edge server requires knowledge about content popularity

distribution. However, this is not known in advance because content popularity is subject

to change due to many factors. For instance, the contextual information of users influences

content popularity, e.g. age and gender. The external factors can also affect content popularity,

such as time of the day, day of the week, and locations. Hence, it is necessary to consider

above information to predict future content popularity, but those information contain private

and sensitive information of users. Many users are not willing to upload and share their data

for privacy concerns. Thus, in practice, most existing caching schemes only can access a part

contextual information of users, which affects the results of prediction and further leads to a

low cache hit ratio.

Therefore, we design a new proactive caching scheme, EFPC, based on the emerging

federated learning framework [8] where the training data is kept on users’ own devices. In

this way, it is possible to exploit all contextual information of users to learn future content

popularity effectively while protecting users’ privacy. Fig. 3.1 illustrates the architecture

of the EFPC scheme. In the edge server, a global model is maintained that will be sent to

each connected user. Users are responsible for learning the updates of the global learning

model independently and locally. Then, these model updates are uploaded to the edge server

where all the updates are aggregated to generate a new global model. The global model

we trained is One-Class Collaborative filtering based Variational AutoEncoder (OCC-VAE),

which forecasts the content popularity. One-class collaborative filtering has shown good

performance for processing the input binary data [91]. VAE is able to extract useful features

from data and cluster the data in the latent space that is an abstract multi-dimensional space

containing feature values. Due to the limited communication bandwidth and a large number

of parameters of the proposed OCC-VAE model, the upstream communication of the OCC-

34 Communication-Efficient Federated Learning based Proactive Caching

VAE model from users to the server needs to be compressed. First, the OCC-VAE model is

compressed at users before uploading it. Next, the server receives the compressed models and

then decompresses them. The decompressed models are aggregated and conducted to a new

global OCC-VAE model by using federated averaging. After that, the improved OCC-VAE

model is sent to users again.

According to the predicted content popularity from each user, the N most popular contents

can be downloaded from the remote cloud and then proactively cached at the edge server

in advance. However, the popularity of contents fluctuates, so the cached contents need to

be updated dynamically. We predict the popularity of all contents for several separate time

intervals every day and update the caching contents in the edge server at the same time. The

details about FL, OCC-VAE and 3LC data compression scheme will be described in the next

Section.

3.3 Communication-Efficient Federated Learning for Edge

Caching

In this section, we firstly introduce the communication-efficient FL framework. Next, 3LC

data compression scheme is described to compress the training model in FL. The model we

trained is the OCC-VAE model. Finally, we present the OCC-VAE model to predict content

popularity by extracting hidden features from the information of users and clustering these

information in the latent space. The N predicted popular contents are cached in the edge

server. The list of notations definition used in this chapter is summarised in Table 3.1.

3.3.1 Communication-Efficient Federated Deep Learning

Federated learning (FL) is a decentralised machine learning technique which leverages

distributed users’ data locality and computation capacity to train a high quality shared global

3.3 Communication-Efficient Federated Learning for Edge Caching 35

Table 3.1 Summary of Main Notations

Symbol Definition
U Number of users
u Index of users
C Number of contents
c Index of contents
N Maximum number of caching contents in BS
K Set of selected users for FL training
k Index of selected users for FL training
w Parameters of model
f (w) Loss function
r Number of FL communication rounds
d Total data size among selected users
dk Local data size of the selected user k
Dk Dataset of the selected user k
wr Parameters of model in the rth round
wcomp Compressed model
γ Coefficient variable
tk
r Time of current round for the user k

t ′kr Time of latest update model round for the user k
B Local minibatch size
η Learning rate
E Number of epoches
Win Final calculated model to compress
Wqe Sparsified and quantized model
G, aZR Variables for model compression
X User-by-content request matrix
x Sample from X
Z Latent representation
z Sampled latent variable
â Context of user
p(x) Data distribution
q(z | x) An inference neural network
p(z | x) A generative neural network

36 Communication-Efficient Federated Learning based Proactive Caching

model under the coordination of a central server. The shared global model is learnt by

aggregating locally-computed updates, from a federation of selected users, while preserving

all training data on users’ devices. FL is free from disclosing users’ data that enables a

privacy-preserving training process. This training process iterates between the server and

users. Each iteration is called the server-user communication round. However, the whole

training process is unstable. This is because some users may lack the computational resources,

have poor wireless connection or low amounts of local data. It leads to long training and

loading time, and unfavourable training performance. Therefore, our proposed FL framework

selects high-quality users as the participated users based on their resource conditions for

efficient model training, instead of randomly choosing users.

A server-user communication round in our FL framework includes the following six

steps:

1) Training Request: The server sends the requirement of training the OCC-VAE

model to all users. Users then respond to the server with their current resource information

(e.g. amounts of data, communication bandwidths, computation capabilities, and battery

conditions).

2) User Selection: The server decides which users can participate in the training, accord-

ing to the received information.

3) Model Sharing: The server distributes the global OCC-VAE model to the selected

users.

4) Local Training: Each selected user trains the received OCC-VAE model locally by

using its own data.

5) Model Upload: Each selected user uploads the parameters of its trained OCC-VAE

model to the server.

3.3 Communication-Efficient Federated Learning for Edge Caching 37

6) Model Aggregation: The server aggregates all parameters of the uploaded model with

a time-driven weighted aggregation method to generate a new global model and then updates

the global OCC-VAE model.

The server-users communication rounds repeat the above process until the global OCC-

VAE model reaches a stable cache hit ratio. At each communication round, the mobile

devices use their local data, energy, and CPU resources to train the model. After the trained

FL achieved a stable result, each selected user calculates the popularity of contents based on

the latest obtained global OCC-VAE model and then sends a list of recommended caching

content to the server. The edge server in BS sorts the recommended contents by their counts

and caches the top N contents locally.

In our FL setting, we assume the whole data size of the training dataset is d which is

formed by the training examples over K selected users with C contents. The training goal is

to minimise the following objective of FL [8]:

min
w

f (w) =
1
d

d

∑
i=1

fi(w), (3.1)

where fi (w) = ℓ(ui,ci;w) is the loss function of the prediction on the example (ui,ci) made

with model parameters w. Based on the resource situation of each user, we select K users to

participate in the FL training, where K users are indexed by k. Denote the set of indexes of

training examples on user k is Dk, with dk = |Dk|. Thus, the objective can be re-written as

min
w

f (w) =
K

∑
k=1

dk

d
Fk (w) , where Fk (w) =

1
dk

∑
i∈Dk

fi (w) , (3.2)

Typically, stochastic gradient descent (SGD) is implemented to optimise the OCC-VAE

model. In FL setting, with applying SGD optimisation, each communication round only

calculates a single batch of gradients. It may cause large communication costs, since FL

requires plenty of communication rounds to train a high-quality OCC-VAE model. Therefore,

38 Communication-Efficient Federated Learning based Proactive Caching

we use the federated stochastic gradient descent method (FedSGD) [8] for optimisation.

FedSGD allows each user to iterate multiple rounds and then takes the average of gradients

▽Fk (wr) on its local data at the parameters of model wr in the rth round. These average

gradients are uploaded to the server and then applied to update the global OCC-VAE model.

We assumed that the data distribution of each user is independent and identically distributed.

Additionally, the local dataset in each selected user k is generated from the usage of its device,

such as video demands in daily life. Some users may make the heavy use of some particular

services or applications, which causes the data imbalance problem for the federated training.

To solve this problem, we implement the weighted aggregation method to aggregate the

model in the edge server. The equations of updates of the model and aggregation are given by

wr+1← wr−η

K

∑
k=1

dk

d
▽Fk (wr) , (3.3)

wr+1←
K

∑
k=1

dk

d
wk

r+1, (3.4)

where η is the learning rate. The weighted sum is implemented in the aggregation method.

Weights for parameter aggregation depend on the corresponding user’s data size. More data

on user k accounts for more contributions to update the shared global OCC-VAE model, as

more data may train a more accurate model.

However, in each round, the selected users may be changed. Consequently, the size of the

training data is diverse. The quality of their datasets cannot be guaranteed as well. Therefore,

we improve the aggregation method by introducing the coefficient variable γ , for the trade-off

of model updates. It is a time-driven weighted aggregation method. When aggregating the

model updates from users, the server will consider the previous local model and current local

3.3 Communication-Efficient Federated Learning for Edge Caching 39

model based on their updated time. It can be presented by

wr+1← (1− γ)wr + γ

K

∑
k=1

dk

d
wk

r+1,

γ = (e/2)−(tk
r−t ′kr) ,

(3.5)

where e depicts the effect of time [92]. tk
r represents the time of current round and t ′kr is the

last time of the model was updated. For each FL communication round, the training data is

different, because users may generate new data. The full algorithm is outlined in Algorithm

1.

3.3.2 One-Class Collaborative Variational Autoencoder

The communication cost affects the efficiency of FL training. In general, the number of users

is large in mobile networks, but the communication bandwidth is limited. For example, the

average upload speed of the Internet is 20Mbps [93], which cannot effectively support FL

training with numerous users. The most intrinsic requirement for decreasing the communica-

tion costs of federated learning is to upload as little data as possible without deteriorating the

performance of the shared model. Hence, we employ the 3LC data compression scheme [94]

to compress the upload OCC-VAE model.

3LC is lossy transformation technique, which combines three successive techniques to

compress a matrix of the parameters of the model, Win. These three techniques are 3-value

quantisation with sparsity multiplication, quartic encoding and zero-run encoding, which

balances traffic reduction, accuracy and computation. The level of compression is tuned using

sparsity multiplier s, which is a control knob of 3LC. First, Win is sparsified and quantized to

40 Communication-Efficient Federated Learning based Proactive Caching

Algorithm 1 EFPC: K is the set of selected users, where k ∈ K.
Server Execution:

1: initialise w0
2: for each round r = 1,2,... do:
3: Sr : a set of selected users
4: for each user k ∈ K in parallel do:
5: if k meet requirement of training model then
6: add k to Sr
7: end if
8: end for
9: Get the parameters of the global model wr

10: for each user k ∈ Sr in parallel do:
11: wk

comp← UserUpdate(wr,k)
12: Decompress wk

comp to achieve wk
r+1

13: end for
14: wk

r+1← ∑
K
k=1

dk
d wk

r+1
15: for end
16: Return wr+1

User Execution:
1: Input: X , wr, tk

r , t
′k
r

2: UserUpdate(w,k):
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: Compute parameters with gradient descent:
6: wr+1← wr−η∇l (wr;b)

7: γ ← (e/2)−(t
k
r−t

′k
r)

8: wr+1← (1− γ)wr + γ ∑
|Sr|
k=1

dk
d wk

r+1
9: end for

10: end for
11: Compress w to generate wcomp
12: Return wcomp

3.3 Communication-Efficient Federated Learning for Edge Caching 41

N(0,I)

Inference network Generative Network!

"

hinf

z

hgen

Encoder Decoder

Sample

1 0 1

1 0

0 1

0 1

0.9 0.4 0.2 0.8

0.6 0.8 0.3 0.1

0.3 0.7 0.5 0.4

0.1 0.4 0.6 0.9

Input
Output

X

1 0 0

0 1 0

1 0 1

0 1 1

#X

+

%&Additional Information

Fig. 3.2 Variational Autoencoder

the values {−1,0,1} to produce Wqe:

G = max(|Win|) · s,

Wqe = round(
Win

G
).

(3.6)

Error accumulation buffers is used to correct resulting quantisation errors. Wqe is then

compressed using Quartic Encoding (QE), as it is a matrix of three distinct values which

can be more efficiently encoded with 2 bits per value. In QE, Wqe is flattened and padded

with zeros until its length is a multiple of five [94]. It is split into five parts of equal length.

The 8-bit unsigned integer array, defined as arr, is computed. The input to quartic encoding

is sparse, which contains a large number of zeros. Thus, the final step of 3LC is Zero Run

Encoding (ZRE) that shortens consecutive runs of common bytes by using a variant of

run-length encoding specialized for quartic encoded data. After ZRE, arrZR and G are sent

to the server, where the reverse of the above processes are used to convert arrZR back to

Wqe. The contribution of this method it to combine the strength of sparsification and tensor

quantisation.

42 Communication-Efficient Federated Learning based Proactive Caching

The OCC-VAE is proposed to predict content popularity ahead of time. VAE is a

powerful unsupervised learning method, which aims to learn the data distribution p(x) from

the training set. Moreover, VAE can effectively cluster similar input data together in the

latent space [95], which is naturally suitable for estimating content popularity. An overview

of VAE is depicted in Fig. 3.2. An inference neural network q(z | x) maps the input x to a

distribution (i.e. Gaussian distribution) with estimating the latent variable z. A generative

neural network p(z | x) decodes the sampled latent variable z back into an observed data x.

In our setting, we employ the VAE to learn deep latent representations from user-by-

content request matrix and implicit relationship between users and contents. The user-by-

content request matrix X consists of samples of variable xc
u, where X ∈ NU×C, 1 < u <U

and 1 < c < C. u and c represent the index of users and requested contents, respectively.

The xu =
[
x1

u, ...,x
c
u
]T ∈ NC is a vector with the request number for each content from user u.

Moreover, our proposed caching scheme is the context-aware content caching scheme. The

users’ content retrieval history and context (the personal information of users) are utilised to

learn the context-specific content popularity, hence, the context of user â is appended to X .

However, the value of elements in X in our setting is only 1 or 0. The value of 1 represents

the positive example of the user’s interests. The value of 0 indicates an unknown positive or

negative example. It is impossible for users to request all the contents. Thus, all negative

examples and missing positive examples are mixed which makes it difficult to distinguish

them [96]. For example, if we simply solve the issue by marking all the missing examples as

negative, then the result may be inaccurate. The reason is that the negative examples may be

included in the unknown positive examples. Therefore, we mark the negative examples in

the input matrix X by the random sampling mechanism.

The probability of random sampling is related to the preference of users for contents.

The modelling of random sampling is written as Eq. (3.7). The probability of content c as

3.3 Communication-Efficient Federated Learning for Edge Caching 43

requested by the user u is

Pr(u,c) = r1

C

∑
i=0

xu
i + r2

1

∑
U
j=0 x j

c
, (3.7)

where ∑
C
i=0 xu

i represents the number of contents requested by user u. ∑
U
j=0 x j

c means how

many times that content c has been requested by users. r1,r2 are coefficients.

In general, VAE assumes that for every xu ∈ X , there are one or many settings of the

latent variables zu ∼ p(zu) which causes the model to generate something very similar to xu.

Here, p(zu) is the probability distribution of zu. Mathematically speaking the objective is to

maximise the probability of each xu in the input data under the generative process, which is

formally defined as:

p(xu) =
∫

p(xu | zu) p(zu)dzu. (3.8)

In general, p(xu | zu) is typically parameterised with a highly flexible function approx-

imator such as neural networks. While both prior p(zu) and likelihood p(xu | zu) can be

formulated exactly, the posterior p(zu | xu) =
p(xu,zu)∫

p(xu,zu)dzu
needs an intractable integral over

the latent space. Thus, instead of calculating the posterior p(zu | xu), VAE takes an advantage

of a parametrized variational approximation q(zu | xu) to provide a distribution over the latent

variables that are more likely to produce the input data x. This is done by minimizing the

Kullback-Leibler (KL) divergence between q(zu | xu) and p(zu | xu):

KL [q(zu | xu) ∥ p(zu | xu)] =

Ezu∼q(zu|xu) [log q(zu | xu)− log p(zu | xu)] .

(3.9)

44 Communication-Efficient Federated Learning based Proactive Caching

By applying Bayesian inference to p(zu | xu), we achieve

KL [q(zu | xu) ∥ p(zu | xu)] = Ezu∼q(zu|xu)

[
log

q(zu | xu)p(xu)

p(xu | zu)

]
= Ezu∼q(zu|xu) [log q(zu | xu)]+Ezu∼q(zu|xu) [log p(xu)]

−Ezu∼q(zu|xu) [log p(xu | zu)]−Ezu∼q(zu|xu) [log p(zu)] .

(3.10)

Then, to maximise Ezu∼q(zu|xu) [log p(xu)], Eq. 5.3 can be rewritten as follow:

Ezu∼q(zu|xu) [log p(xu)]−KL [q(zu | xu) ∥ p(zu | xu)] =

Ezu∼q(zu|xu) [log p(xu | zu)]+

Ezu∼q(zu|xu) [log p(zu)− log q(zu | xu)]

= Ezu∼q(zu|xu) [log p(xu | zu)]−KL [q(zu | xu) ∥ p(zu)] .

(3.11)

The lower bound of Ezu∼q(zu|xu) [log p(xu)] is as:

log p(xu)≥Ezu∼q(zu|xu) [log p(xu | zu)]

−KL [q(zu | xu) ∥ p(zu)] .

(3.12)

where the right hand-side is the variational lower bound of VAE. The approximate posterior

q(zu | xu) follows a Gaussian distribution N
(
µ,diag

(
σ2)) where µ is the mean and σ2

is variance, which is represented by a neural network. The generative network p(xu | zu)

and inference network q(zu | xu) are trained by maximising the variational lower bound

with respect to their parameters. The reparameterisation trick [97] zu = µ +σ ⊙ ε can be

implemented to get the unbiased estimate of low variance bound. We suppose the mean

and covariance are µ (xu) and σ (xu), respectively. ε follows N(0, I), the equation can be

3.3 Communication-Efficient Federated Learning for Edge Caching 45

Room 2 Room 3

Room 4 Room 5

Office Building

Room 1

Fig. 3.3 EFPC Experiment Scenario

rewritten as follow:

Eq(zu|xu) [log p(xu | zu)] =

Eε∼N(0,I) [log p(xu | zu = µ +σ ⊙ ε)] ,

(3.13)

where ε is a vector sampled from standard Gaussian variables. With the help of the reparam-

eterisation trick, the inference and generative networks can be trained through end-to-end

backpropagation by SGD.

Therefore, we fed X with incomplete rows (resp. columns) into VAE to learn the latent

representation Z. X can be recovered from Z, where the outputs are a matrix with predicting

the missing entries. The highest score contents in outputs are the caching contents in the

cache-enabled server.

46 Communication-Efficient Federated Learning based Proactive Caching

Fig. 3.4 Cache hit ratio vs. Different number of users (MovieLens)

Fig. 3.5 Cache hit ratio vs. Different number of users (Netflix)

3.4 Experiments and Discussion

In this section, we evaluate our proposed FL based proactive content caching scheme using

two real world datasets and compare its performance to four reference algorithms. We

conduct experiments via a networking testbed with 10 user nodes.

3.4.1 Testbed

The networking testbed consists of one HP Z440 workstation with 64G memory and 10

Raspberry Pi devices (5 Raspberry Pi 3 Model B+ and 5 Raspberry Pi 2). As shown in Fig.

3.3, the workstation and 10 Raspberry Pi devices are located at five different locations in the

office building. This represents a MEC environment we supposed. The workstation as the

edge server is applied to aggregate the parameters of the OCC-VAE model, which is located

in Room 1. All Raspberry Pi devices as mobile users are placed in other four rooms where

the training of the OCC-VAE model is conducted [27]. Keras is employed as the framework

of VAE with tensorflow as backend.

The datasets in our experiments are MovieLens 1M dataset and Netflix prize dataset.

The data in the MovieLens dataset has been collected from the MovieLens website by

3.4 Experiments and Discussion 47

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

C
a
c
h
e
 h

it
 r

a
ti
o

Oracle

EFPC

LFU

m- -greedy

LRU

Random

Fig. 3.6 EFPC vs. Other reference schemes (MovieLens Dataset)

groupLens research [98]. The MovieLens 1M dataset contains about 1 million ratings from

6040 anonymised users on 3883 movies. Each dataset entry consists of UserID, MovieID,

Rating and Timestamp. The user information is also provided in the dataset, which includes

gender, age and occupation. Netflix prize dataset [99] is released by Netflix. It consists of

17770 movies and 488000 users. Due to the limited computation capacity of Raspberry Pi

and the large data size of this dataset, we only use a part of Netflix dataset (7000 movies

and 4000 users) in our experiments. To simulate the process of mobile users’ requests, we

assume that the movie rating process in these two datasets is a content request process of

users in MEC. The rated movies are the requested contents from users.

3.4.2 Performance Evaluation

As mentioned before, we applied the cache hit ratio to evaluate the performance of the

caching scheme. It describes the percentage of users’ requests can be directly transmitted by

the edge server in BS. We compare EFPC with the following caching schemes: 1) Oracle:

Oracle algorithm has prior knowledge about users’ request in the future. It presents the best

48 Communication-Efficient Federated Learning based Proactive Caching

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

C
a
c
h
e
 h

it
 r

a
ti
o

Oracle

EFPC

LFU

m- -greedy

LRU

Random

Fig. 3.7 EFPC vs. Other reference schemes (Netflix Dataset)

cache hit ratio. 2) Random: Random algorithm randomly chooses N contents from the library

to store at cache, which provides the lowest cache hit ratio. 3) m-ε-Greedy: m-ε-Greedy

algorithm is an extension of the simple ε-Greedy algorithm, which is one of the multi-armed

bandit algorithms. With a probability of (1 - ε), m contents with most frequently accessed

will be selected as the caching contents, while with the probability ε (0 < ε < 1), m contents

will be randomly picked from the content library as the caching contents. 4) Least Frequently

Used (LFU): LFU keeps tracking the number of times that a content has been requested and

replaces the caching content based on the historical request frequency of cache content. If a

content has been requested multiple times in the past, the frequency of this requested content

may be higher in the future. LFU evicts the least popular content. 5) Least Recently Used

(LRU): When the caching storage is limited, LRU removes the content based upon the time

of usage. The content will be replaced if it has not been requested for a long time. If the

content has not been requested in the most recent period of time, it may not be requested in

the future as well. 6) AutoEncoder: AutoEncoder, as an unsupervised learning model, trains

an one-hidden layer neural network to reconstruct input data from the latent representation,

which can copy its input to its output.

3.4 Experiments and Discussion 49

We investigate the cache hit ratio against the number of federated communication rounds

with a different number of selected users on two datasets (MovieLens and Netflix). For both

datasets, they exhibits the same trend. For the MovieLens dataset, Fig. 3.4 shows that when

the number of communication round is 50, the cache hit ratio reaches 12.8%, 14.7%, 14.9%

and 15.2% with 25%, 50%, 75%, and 100% selected users who attend to the FL training,

respectively. We observe that more communication rounds are needed to achieve the target

cache hit ratio with fewer users. It is because few users can only provide less data. The target

cache hit ratio 15% can be achieved after 6 rounds, 5 rounds and 3 rounds for 50%, 75%,

and 100% selected users, while 25% selected users participate in the federated optimisation

is unable to reach the target value. The results indicate that the more selected users in FL

deep learning training, the higher quality model will be trained within fewer communication

rounds. If the size of the training data is larger for each selected user, fewer users are needed

to achieve the same cache hit ratio. Additionally, the number of selected users influence the

cache hit ratio. As we can see from Fig. 3.4(a), if only 25% users participate in the federated

optimisation, the highest cache hit ratio is 13% that is lower than the target cache hit ratio.

On the other hand, Fig. 3.5 presents the target cache hit ratio 18% can be obtained after 29

rounds, 5 rounds ,4 rounds and 3 rounds on the Netflix dataset, respectively. It follows a

very similar pattern to MovieLens. Thus, in order to train high quality model, maintaining a

certain number of selected users in the federated optimisation is necessary.

Fig. 3.6 and Fig. 3.7 depict the cache hit ratio for varying cache sizes between 50 and

400 contents. As shown in Fig. 3.6, the overall cache hit ratios of all algorithms rise with

increasing cache size. As expected, Oracle has the perfect prior knowledge about the user

demands in future that gives an upper bound to the other algorithms. Whereas, random

provides the worst cache hit ratio which is the lower bound. The cache performance of our

proposed EFPC and AutoEncoder based caching scheme outperform LFU, m-ε-Greedy and

LRU caching schemes, as they learn the latent relationship between users and contents to

50 Communication-Efficient Federated Learning based Proactive Caching

Table 3.2 The comparison of 3LC data compression scheme and no data compression in data
transmission with different sparsity

Sparsity Data Compression (MB) No Data Compression (MB) Ratio
Data per round Tol Data Data per round Tol Data

1 0.199 0.995 4 16 20.04×
1.1 0.199 0.995 4 16 20.13×
1.2 0.197 0.788 4 12 20.28×
1.3 0.193 0.965 4 16 20.72×
1.4 0.186 0.93 4 16 21.51×
1.5 0.173 0.692 4 16 23.14×
1.6 0.149 0.745 4 12 26.94×
1.7 0.124 0.496 4 12 32.26×
1.8 0.085 0.255 4 12 46.76×
1.9 0.036 0.18 4 16 111.02×
2 0.014 0.056 4 16 279.65×

predict content popularity. The EFPC shows a better performance compared to AutoEncoder,

because EFPC clusters the request of users in the latent space. The results also indicate that

EFPC, Autoencoder, LFU and m-ε-Greedy achieve higher cache hit ratio than LRU and

Random. The reason is that all these four caching schemes make use of historical requests

of users. LFU obtains better performance than m-ε-Greedy, because m-ε-Greedy randomly

chooses the caching content with the probability of ε which may lead to the low cache hit.

Besides, the order of users’ requests influences the cache hit ratio of LRU and LFU caching

scheme as they make caching decision by observing local recent user request patterns. We

evaluate all caching schemes on two datasets (MoviesLens and Netflix). For the Netflix prize

dataset, it exhibits the same trend as MovieLens, which shows an upward trend towards

cache hit ratio with the increasing of cache sizes. The cache hit ratio of EFPC is higher than

LFU, m-ε-Greedy, LRU and Random, but lower than the Oracle. The cache hit ratio for

Netflix dataset is different to MovieLens due to the different content number, user number

and the sparsity of dataset.

3.4 Experiments and Discussion 51

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

C
a
c
h
e
 h

it
 r

a
ti
o

EFPC

EFPC without data compression

Fig. 3.8 Data Compression vs. Without Data Compression

Fig. 3.8 indicates the influence of the data compression method to the cache hit ratio,

since 3LC is a lossy transformation technique. The experiment results compare the impact

of varying cache size on cache hit ratio with data compression method and without data

compression. As we can see from Fig. 3.8, the achieved cache hit ratio for EFPC and EFPC

without data compression are similar. EFPC without data compression slightly outperforms

EFPC. When the cache size is 50, the average cache hit ratio of 10 users with EFPC achieves

15.3%, while EFPC without data compression get the cache hit ratio of 15.6%. For the other

cache sizes, the same trend has been shown. This experiment results demonstrate the 3LC

data compression scheme keeps high accuracy during the OCC-VAE model training.

Fig. 3.9 investigates the relationship between data compression ratio, sparsity multiplier

and cache hit ratio. Sparsity multiplier s represents the compression level of 3LC data

compression scheme. It shows the data compression ratio rises with the increasing sparsity

multiplier value. In the beginning, the data compression ratio grows slowly. When the

sparsity multiplier varies between 1 and 1.6, the data compression ratios are similar, around

52 Communication-Efficient Federated Learning based Proactive Caching

Fig. 3.9 Sparsity vs. Data compression ratio vs. Cache hit ratio

25×. It grows faster and faster when the value of sparsity multiplier is larger than 1.6. It

reveals that a high sparsity multiplier makes a high data compression ratio. Fig. 3.9 also

compares trade-offs between data compression ratio and cache hit ratio. With the increase of

data compression level, the data compression ratio is grown. Meanwhile, the cache hit ratios

are almost the same, but it has a trend of slightly decreasing. When the value of sparsity

multiplier is equal to 2, the cache hit ratio is 16.1% that is lower than the corresponding

result of sparsity multiplier is 1, but the cache performance of the proposed scheme still

outperforms other reference caching schemes.

Table 3.2 further illustrates the 3LC data compression scheme in our proposed caching

scheme reduces the transmission data by reducing the size of transmission data while

preserving a high cache hit ratio. As the results are shown in Table 3.2, without data

compression, the original transmission data is 4 Mbps for each communication round.

After data compression, the size can be reduced from 4 Mbps to 0.19-0.01 Mbps for per

communication round. The total transmission data size decreases from 16 Mbps to 0.099-

3.5 Summary 53

0.056 Mbps without increasing the number of communication round. At the same time, the

data compression ratio can be achieved from 20.04 × to 279.65 ×, but the accuracy of FL

model may decrease.

3.5 Summary

In this chapter, a proactive caching scheme named EFPC based on federated learning

framework for multi-access edge networks is proposed, aiming to improve cache performance,

protect users’ privacy as well as reducing communication costs. We utilise a federated

learning based variational autoencoder approach to estimating content popularity in the

future and then placing the most predicted popular contents to the edge server, to increase

cache hit ratio and reduce the risk of privacy disclosure. Moreover, we employ a 3LC data

compression scheme to effectively decrease the amount of transmission data in federated

learning to further reduce communication costs. We have carried out the experiments via

a networking testbed to verify the effectiveness of our proposed EPAC caching scheme.

Numerical results indicate that EPAC outperforms LRU, LFU and m-ε-Greedy in terms of

the cache hit ratio. The 3LC data compression scheme in our proposed model achieves a data

compression ratio of up to 279× with almost the same cache hit ratio of no data compression.

Chapter 4

Mobility-Aware Proactive Edge Caching

for Connected Vehicles

4.1 Introduction

With the advancement in wireless communications and Internet-of-Things (IoT), self-driving

has been considered as a key enabling technology in Intelligent Transportation Systems

(ITS) to decrease traffic congestion, improve traffic efficiency and enhance road safety [100].

Self-driving vehicles enable a wide range of applications, from infotainment applications

to safety-related applications [101]. These applications may require large computation,

communication and storage resources, and have strict performance requirements on network

bandwidth and response time. Thus, supporting these applications imposes high pressure on

the resource-constrained Vehicular Networks (VNs). Vehicular Edge Computing (VEC) is

recognised as a promising paradigm to satisfy the increasing demands by integrating edge

computing into VNs [101]. VEC allows data to be processed and stored at edge nodes, such

as Roadside Units (RSUs) and Base Stations (BSs).

Caching content at edge nodes enables vehicles to fetch their requested contents within

one transmission hop [102]. It is capable of reducing service latency and alleviating backhaul

4.1 Introduction 55

network burden. Due to the limited storage at edge nodes, the caching schemes need to

identify and cache the popular contents that are interesting to most vehicular users. However,

the high mobility of vehicles and complex vehicular environments cause highly dynamic

content popularity. In this case, the previously requested contents may become obsolete

soon, so the reactive caching scheme cannot satisfy strict performance requirements of

users. Proactive caching predicts content popularity and caches predicted popular contents

before the arrival of user requests. It can pre-fetch the popular contents, even these contents

may have never been requested before. Thus, proactive caching is considered to be more

suitable for the VEC scenarios. In proactive caching, Machine Learning (ML) is a powerful

approach to predict content popularity for efficient caching. Some works focus on learning-

based caching schemes in VNs by utilising reinforcement learning [103], [87], multilayer

perceptron and convolutional neural networks [10], etc.

Although some progresses have been achieved in learning-based proactive caching,

utilising ML techniques for edge caching in VNs still faces the following three challenges:

1) High mobility: Vehicles send requests to an RSU and go through its coverage area quickly,

making the caching content easily to be out of date. To improve the cache performance, the

caching scheme should be both context and mobility aware, making cache decisions based on

the content popularity predictions and vehicles’ mobility. 2) Privacy: Most ML algorithms

train models in a centralised manner where the data generated by multiple vehicles must

be sent to an edge server in RSU for analysis. These generated data may involve personal

sensitive information used for various vehicular applications. Therefore, uploading and

processing these data centrally may raise privacy and security concerns. 3) Scalability:

As the number of connected vehicles grows, data generated by the vehicles increase. The

centralised ML algorithms may find it difficult to handle such data due to the incurred high

computation and communication costs.

56 Mobility-Aware Proactive Edge Caching for Connected Vehicles

A Mobility-aware Proactive Edge Caching Scheme based on Federated Learning (MPCF)

is proposed. MPCF utilises Context-aware Adversarial AutoEncoder (C-AAE) to predict the

content popularity and then caches the predicted popular contents in RSUs. Our proposed

proactive caching scheme is based on the Federated Learning (FL) framework [26]. In

the designed scheme, vehicles collect and store data for local training. A global model

(i.e., C-AAE) is updated at RSU by aggregating the locally trained models. Moreover, a

mobility-aware cache replacement policy is developed to dynamically update cached contents

according to the mobility and position information of vehicles.

The main contributions of this chapter are summarized as follows.

1. We propose a mobility-aware federated learning scheme for edge caching in VNs,

which can protect users’ privacy, reduce communication costs, and support high

mobility of vehicles. This new scheme includes four main components: content

popularity prediction, vehicle selection, model aggregation, and cache replacement.

2. We utilise the C-AAE model to predict the popularity of contents, which adds the

adversarial network to the AutoEnocoder (AE) architecture by turning an AE into a

generative model. It helps to learn deep latent representations from users’ historical

requests and contextual information, and obtain implicit relationships between users

and contents for improving prediction accuracy.

3. We design mobility-aware vehicle selection, model aggregation, and cache replacement

policies with the aim of optimising the caching resource utilisation in VNs. Especially,

the decision for selecting vehicles to participate in the FL training process and the

value of weights for parameter aggregation depend on the current positions and local

resources of connected vehicles. It can ensure that vehicles have enough time for

training and the RSU can aggregate high-quality updated models. Meanwhile, the

cache replacement policy dynamically updates the contents at RSUs in response to the

content requests from their connected vehicles and predictions of content popularity.

4.2 System Architecture 57

Direction

Direction

Internet

BackhaulMBS

RSU
RSU

RSU

MBS

MBS

Fig. 4.1 Proactive edge caching for connected vehicles

4. We numerically evaluate our proposed caching scheme by using real-world datasets

(MovieLens). The experimental results show that our scheme outperforms reference

algorithms for connected vehicles, such as LRU and LFU.

The rest of this chapter is organised as follows: The system architecture of the proposed

cache scheme is presented in Section 4.2. Section 4.3 describes the detailed implementation

of the MPCF. The performance evaluation and analysis of MPCF are provided in Section 4.4.

Section 4.5 concludes this chapter.

4.2 System Architecture

We consider a vehicular network in an urban scenario, consisting of several MBSs, RSUs

and vehicles, as shown in Fig. 6.1. The MBSs are located in different locations at the edge

of VNs. Within the coverage area of an MBS, a set of RSUs S = {S1,S2,S3, ...,Sn} are

58 Mobility-Aware Proactive Edge Caching for Connected Vehicles

placed equidistantly with distance D over both sides of the road, where n is the number

of RSUs. Each RSU serves its connected vehicles. These vehicles are denoted by a set

V = {V1,V2,V3, ...,Vm}, where m is the number of connected vehicles. Vehicles traverse the

coverage areas of several MBSs. The communication among vehicles, RSUs and MBSs

are through wireless links, while MBSs connect to the Internet via a reliable backhaul link.

Both MBSs and RSUs are equipped with cache-enabled edge servers. RSUs are used to

cache contents likely to be requested by the vehicles nearby. MBSs store the lists of cached

contents in connected RSUs and manage their cache resources.

The speeds of vehicles are assumed to be independent and identically distributed, forming

a set U = {U1,U2,U3, ...,Um}. They are generated by a truncated Gaussian distribution.

Compared to the normal Gaussian distribution or a fixed speed, the truncated Gaussian

distribution is more feasible for modelling vehicles’ speed because it limits the scope of

vehicles’ speed to a certain range. This assumption has also been widely used in many

state-of-the-art works of vehicular networks [84], [104], [105]. Vehicles keep their assigned

speeds invariable during each experiment. There is an entrance RSU on each side of the road.

The number of arrived vehicles for entering each entrance during the period t is defined as

Vq (t). It follows a Poisson process with the parameter λ :

P
(
Vq (t) = g

)
=

(λ t)g

g!
e−λ t , (4.1)

where g equals the number of vehicles generated in a period t.

These entered vehicles are interested in a set of popular contents. In the concerned

scenario, each RSU can prefetch up to N contents from the Internet and cache these contents

locally. The moving vehicles can connect to an RSU and send content requests to it, when

vehicles are located within the area of the RSU. If the requested content is available in the

current connected RSU (i.e., a cache hit), the RSU can directly transmit this content to the

4.2 System Architecture 59

vehicle. Otherwise, the RSU has to obtain the requested content from the Internet (i.e., a

cache miss).

Placing the popular caching contents at RSUs can effectively improve cache performance,

which primarily depends on the knowledge of content popularity. The popularity of contents

is influenced by many factors, including the contextual information of vehicular users (e.g.,

age and gender) and the mobility pattern of vehicles. Thus, to enhance the cache performance,

predicting the content popularity and deciding which contents to be cached in RSUs need to

consider the above information.

To address the above challenge, we design a mobility-aware proactive content caching

scheme for connected vehicles using FL. As shown in Fig. 6.1, it is a three-layered architec-

ture. The bottom layer contains vehicles requesting for contents. The middle layer includes

several RSUs equipped with cache-enabled edge servers. The top layer has a cache-enabled

MBS. The multiple connected vehicles in an RSU collaboratively train a shared global learn-

ing model. The RSU firstly disseminates an initial global model to the connected vehicles.

Based on the received model, vehicles utilise their local data to compute an updated model.

Next, each vehicle sends the updates of global model back to the RSU. Finally, the RSU

aggregates the updates from vehicles and builds an updated global model. The above steps

are repeated until a satisfying global model is achieved, which the outputs remain stable. The

learning model in this work is specially developed to predict content popularity by learning

data representation from the data of local vehicles. We rank all contents by their predicted

popularity and select the top N popular contents as caching contents in the RSU. Meanwhile,

the name list of cached contents in each RSU is stored at the MBS.

The federated deep learning model in RSU uses the data from current connected vehicles

to predict the content popularity and prefetches their predicted results in the cache. However,

the high mobility characteristic of vehicles may result in the following situation: Vehicles

send content requests to the current RSU, but trying to fetch the requested contents from

60 Mobility-Aware Proactive Edge Caching for Connected Vehicles

another RSU. Furthermore, due to the small coverage area of the RSU, vehicles may not

have enough time to download the whole requested content. It may pass several RSUs to

obtain the full content. Therefore, a mobility-aware cache replacement policy is developed

to address these issues. Based on the prior knowledge of vehicle trajectories, predicted

content popularity and lists of cached contents in MBS, the MBS dynamically updates the

caching contents of each RSU. This policy enables the predicted contents of vehicles to serve

themselves. In other words, the predicted popular contents can follow their movement. When

the vehicle is going to leave the current RSU and enter to the next RSU, the MBS will cache

the popular contents for the vehicle in the neighbour RSU that it will enter. Due to the similar

locations of these vehicles, cached contents in RSUs have less geographical features. Thus,

the predicted popular contents for each RSU may not vary much, since the similar places

have similar content popularity. In this case, only a small number of contents need to be

replaced during this cache replacement.

4.3 Mobility-aware Federated Learning for Edge Caching

This section elaborates on our proposed caching scheme. We first describe the mobility-aware

federated deep learning framework which includes the connected vehicle selection, federated

training process and weighted aggregation method. Then, we introduce the context-aware

adversarial autoencoders based method to predict the popularity of contents. Finally, with

the prediction of the content popularity and a coarse knowledge of vehicle trajectories for

self-driving vehicles, we explore a mobility-aware replacement cache policy. Table 4.1 lists

the definition of notations in the MPCF.

4.3 Mobility-aware Federated Learning for Edge Caching 61

4.3.1 Mobility-aware Federated Deep Learning

FL facilitates collaborative training of a deep neural network model among vehicles under

the orchestration of a server in RSU by keeping the training data on vehicles. It significantly

mitigates the privacy risk of vehicles and largely reduces communication costs, resulting

from centralised ML [26]. FL is performed by multiple communication rounds (iterations).

Based on the speed and position of vehicles, K vehicles are selected at each communication

round to conduct model training, as shown in Fig. 4.2. The K vehicles are indexed by k.

Then, each vehicle receives a global model from the RSU and trains this model from its local

data. Following the local training at vehicles, the updated weights and gradients are sent back

to the RSU. The RSU aggregates the collected models from vehicles to construct an updated

global model. Finally, according to the predicted content popularity by the updated global

model and the coarse knowledge of vehicle trajectories, the cache replacement strategy will

decide where and which contents to be cached.

The details of our designed FL communication round consists of the following steps:

Vehicle Selection

Due to the small coverage area of an RSU, some vehicles with high-mobility may go though

quickly and cannot finish the FL training. It leads to train an inefficient model and deteriorates

the cache performance [106]. Aggregating high-quality updated models of vehicles on the

RSU server can construct a more accurate global model. Thus, we design a mobility-aware

vehicle selection method to cope with high-mobility training environment. Only the RSU

located at the road entrance is chosen to execute the FL training. A set of its connected

vehicles are selected as nodes performing computation on their local data to update the global

model. The vehicle selecting process will consider the factors of good channel condition,

unmetered wi-fi stable connectivity, sufficient local training data and a long standing time

in the current RSU’s coverage area [25]. Sufficient local training data guarantees to train a

62 Mobility-Aware Proactive Edge Caching for Connected Vehicles

RSU 1

Cache Decision

Model Aggregation
∑

Popular Contents

RSU Server

Updated
Model

Local Dataset

Download
Model

Vehicle Local Training

1 Vehicle Selection

3

5

2 4

D
ow

nl
oa

d
M

od
el

U
pl

oa
d

M
od

el

3

5

Fig. 4.2 Mobility-aware Federated Deep Learning

high-quality model. The standing time is the driving time of the vehicle staying in the area of

RSU. It largely depends on the position and speed of connected vehicles. The long standing

time in the coverage area promises that the training process can be completed and its results

can be delivered.

Uk denotes the speed of the k-th connected vehicle, which is a constant with the minimum

and maximum speed (Umin ≤Uk ≤Umax) in the urban area. We suppose that Uk follows a

truncated Gaussian distribution [84]:

f (Uk) =


e
− 1

2σ2 (Uk−µ)2

√
2πσ2

(
er f

(
Umax−µ

σ
√

2

)
−er f

(
Umin−µ

σ
√

2

)) ,
Umin ≤Uk ≤Umax,

0, otherwise,

(4.2)

where σ2 is the variance and µ (−∞ < µ < ∞) is the mean, er f () is the Gauss error function.

Pk is the position of the k-th vehicle when the FL training starts, which represents the distance

to the entrance. The diameter of coverage area of RSU s is D. Thus, for each vehicle, the

4.3 Mobility-aware Federated Learning for Edge Caching 63

standing time in the coverage area of current RSU is:

T k
standing = (D−Pk)/Uk (4.3)

We assume that the average training time for each communication round is Tround and the

inference time is Tin f . (They depend on the size of dataset and the deep learning model. In

this work, they are sampled from our experiments, instead of estimating inference time.)

As shown in Fig. 4.2, step (1), if the T k
standing > Tround + Tin f , the vehicle will meet the

requirement for standing time and is chosen for FL training.

Model Download

A set of vehicles Kr are selected to participate in FL training for the r-th communication

round. The next step in the typical FL training process is that selected vehicles download

the global model from the RSU and train this model over their own local data, see Fig. 4.2,

step (2). In self-driving scenario, the MBS has a coarse knowledge of vehicle trajectories.

Thus, the MBS allows some vehicles to directly use their own models downloaded from the

previous RSU to participate in the currently FL training. The previous connected RSU of

these vehicles is located next to the current connected RSU with the same driving direction.

Using the previous model brings the benefits to accelerate the training of a global shared

model, as it trains based on a high-quality model and the training time can be greatly saved.

In this way, it also considers preferences of the vehicles connected to the previous RSU. They

may enter the current connected RSU with high probability. Considering the preferences of

future coming vehicles that calculated by the previous RSU can help to train a mobility-aware

model. For other selected vehicles, they perform the typical FL training process. They

download the parameters wr of the global model from the RSU.

64 Mobility-Aware Proactive Edge Caching for Connected Vehicles

Table 4.1 Notations definition in MPCF

Notation Definition
S Set of RSUs
n Number of RSUs
V Set of connected vehicles for the RSU
m Number of connected vehicles
U Set of vehicles’ speed
N Maximum number of caching contents in RSU
λ Rate parameter of Poisson process
K Set of selected vehicles for FL training
k Index of selected vehicles for FL training
H Set of datasets stored in selected vehicles
dk Size of the local dataset in the connected vehicle k
d Size of datasets among connected vehicles
Pk Position of the connected vehicle k
D Diameter of the coverage area of RSU

(Distance between RSUs)
T k

standing Standing time of the connected vehicle k
r Number of FL communication rounds
Tround Average training time for each communication round
Tin f Inference time
w Parameters of model
wr Parameters of model in the rth round
Lk (w) FL loss function of the selected vehicle k
Q Position of RSU
c Number of contents
b Local minibatch size
η Learning rate
D Discriminative model
G Generative model
X User-by-content request matrix
x Sample from X
â Users’ context matrix
X̃ Reconstructed user-by-content request matrix
z Latent code to reconstruct input to output
z′ Real input with the required distribution
p(x) Model distribution
pd (x) Data distribution
p(z) Prior distribution
q(z | x) Encoding distribution
p(x | z) Decoding distribution

4.3 Mobility-aware Federated Learning for Edge Caching 65

FL Model Training

The third step in our proposed FL is to train the model by utilising local data at vehicles,

as shown in Fig. 4.2, step (3). Let H = {H1,H2,H3, ...,Hk} represent the datasets stored

in selected vehicles. Hk represents the local dataset of the k-th vehicle with the length dk,

dk = |Hk|. d is the size of the whole data among the selected vehicles, which can be calculated

by the connected RSU. Each selected vehicle will report their data size to the RSU during

the vehicle selection process. Similar to the typical FL, the goal of our proposed FL is to

minimise the loss function ℓ(w):

min
w

ℓ(w) =
K

∑
k=1

dk

d
Lk (w) where Lk (w) =

1
nk

∑
j∈Hk

ℓ j (w) , (4.4)

where ℓ j (w) is the loss of the prediction on the j-th dataset in H with the parameters of model

w. k is the index of total selected vehicles K. Lk (w) represents the local loss function of

vehicle k. Minimising the weighted average of local loss function Lk (w) is equal to optimise

the loss function ℓ(w) of FL.

Upload Updated Model

As shown in Fig. 4.2, step (4), the fourth step is to upload the local model wk
t+1 from vehicles

to the RSU server. Compared to the computation costs, communication costs dominate in

FL [8]. In order to reduce communication costs and save the upload time, the model can

be compressed before being uploaded to the RSU, as the uplink speed is slower than the

download speed [107].

Weighted Aggregation

After vehicles upload their models, the fifth step is to generate the new global model wr+1

by computing a weighted average of all received local models wk
r+1, as shown in Fig. 4.2,

66 Mobility-Aware Proactive Edge Caching for Connected Vehicles

step (5). The new constructed global model is used for the next training round. r denotes the

communication rounds in FL. Federated Averaging (FedAVG) algorithm is widely applied

in FL. Compared to the typical federated stochastic gradient descent algorithm (FedSGD)

[8], it increases local training epochs as well as decreases mini-batch sizes. In FedSGD,

each vehicle k utilises its own data to locally compute the average gradient ▽Lk (w) on its

global model wr which is downloaded from the RSU. The RSU server then aggregates these

computed gradients by taking a weighted average sum and applies the update gradients:

wr+1← wr−η

K

∑
k=1

dk

d
wk

r+1, (4.5)

where η is the fixed learning rate. In FedAVG, each vehicle adds more computation by

iterating the local updates (wk
r ← wk

r −η▽Lk
(
wk

r
)
) for multiple times before the averaging

step in the RSU server. The optimization strategy will be updated in each iteration. During the

iteration progresses, the optimal strategy will gradually be obtained. The weighted averaging

algorithm is implemented to aggregate the model. Weights for parameter aggregation are

dependent on the position of the connected vehicle, which is γk = Pk/D, and the size of local

training data. Then, we can re-write the aggregate method as

wr+1← wr−η

K

∑
k=1

γk
dk

d
wk

r+1. (4.6)

Selected vehicles with a longer available training time account for more contributions and

are given greater weight in model aggregation.

Additionally, after training a shared global model, each RSU predicts its popular contents

and then sends a list to the MBS. The MBS stores all lists of cached contents for replacing

contents in the future. The above process is repeated. The full algorithm is outlined in

Algorithm 2 and 3.

4.3 Mobility-aware Federated Learning for Edge Caching 67

4.3.2 Contextual-aware Adversarial Autoencoders for Prediction

The model we trained in the above FL framework is the Contextual-aware Adversarial

Autoencoders (C-AAE) model. It is used to predict the popularity of contents for proactive

edge caching purpose. Adversarial Autoencoders (AAE) is a probabilistic AutoEncoder

(AE), combining Generative Adversarial Networks(GANs) and Variational Autoencoders

(VAE) [108]. The architecture of a C-AAE is shown in Fig. 4.3. The top row is an AE. It is

able to learn a latent code z to replicate its input X to its output X̃ in an unsupervised learning

manner [109]. The bottom row is an adversarial network that utilises two neural networks

by pitting one against the other. It is mainly used to distinguish whether the sample draws

from the specified distribution of the user or the sample comes from the latent code z of

the AE. The input matrix consists of content retrieval history by vehicular users, named as

the user-by-content request matrix X . It consists of samples of variable x, where X ∈ Nm×c.

m and c stand for the number of connected vehicles and contents, respectively. Moreover,

which contents will be requested in the future may depend on the vehicular users’ context.

The contextual information of connected vehicular users â is used in our proposed method,

in order to predict the popularity of context-specific contents. â is appended to X . The output

of C-AAE is X̃ , which is the reconstructed inputs filling in prediction values.

C-AAE adds the GAN to the AE architecture by turning an AE into a generative model.

It trains an AE with an adversarial loss, which can adapt the distribution of latent space

to an arbitrary prior. GANs build two neural networks: the generative model G and the

discriminative model D. G uses a vector of random numbers as the inputs and generates the

outputs. D is utilised to differentiate between a sample generated from the G and a sample is

taken from the input data. The min-max game of GAN between a generative model G and a

discriminative model D can be expressed as follows [108]:

min
G

max
D

Ex∼pd(x) [logD(x)]+Ez∼p(z) [log(1−D(G(z)))] . (4.7)

68 Mobility-Aware Proactive Edge Caching for Connected Vehicles

1 0 1

1 0

0 1

0 1

0.9 0.4 0.2 0.8

0.6 0.8 0.3 0.1

0.3 0.7 0.5 0.4

0.1 0.4 0.6 0.9

Input Output

X

1 0 0

0 1 0

1 0 1

0 1 1

!"

+

#$Additional Information

Discriminator D

[0 , 1]

Encoder q (z | x) Decoder p (x | z)

z ~ q (z | x)

Draw samples from z ~ p (z)
z' ~ p (z)

Fig. 4.3 C-AAE model architecture

The reconstruction phase and regularization phase are two phases in the training process

of C-AAE. In the phase of reconstruction, an AE is to update the encoder and encoder

is to minimise reconstruction error of input x. Firstly, z is generated by the generator

network q(z | x), an encoding distribution. Next, z is feed to the decoder and the output x̃ is

reconstructed from z. The loss of reconstruction is calculated between x and x̃. In the phase

of regularization, discriminator D is firstly updated by the adversarial network to distinguish

true prior samples from generated samples. Then, in order to fool the discriminator D, the

generator G is updated. The discriminative network considers the hidden code, which is

distributed as the true prior distribution p(z).

The output is imposed to the encoder by an adversarial network to follow the distribution

of p(z). z can be obtained by the discriminator, while z′ is sampled by p(z). Backpropagation

is applied to adjust the weights of discriminator and the parameters of generator are updated

at the same time. This process is repeated. The generative model is defined by the decoder

of the AE. The imposed prior of p(z) is mapped to the data distribution pd (x). Thus,

the regularisation of C-AAE can be achieved by matching q(z) to p(z), where q(z) is the

4.3 Mobility-aware Federated Learning for Edge Caching 69

MBS

··

RSU 1

Popular contents
lists for each round

MBS Server

C1:

RSU 2 RSU 3

Caching Replacement
C1:

Vehicle Group 1

Caching Replacement
C1:

Caching Replacement
C1:

Direction

Fig. 4.4 Mobility-aware cache replacement policy: Round 1

aggregated posterior and p(z) is the arbitrary prior. The q(z) is given by [108]:

q(z) =
∫

x
q(z | x) pd (x)dx, (4.8)

where p(x) is the model distribution. The loss of the discriminator is

LD =−1
b

b

∑
a=1

log
(
D
(
z′
))

+ log(1−D(z)) , (4.9)

where b is the minibatch size. The adversarial generator we used is

LG =−1
b

b

∑
a=1

log(D(z)) . (4.10)

Additionally, C-AAE is inspired in VAE. VAE is a generative autoencoder, aiming to

learn the data distribution p(x). It attempts to minimize the KL-Divergence between latent

codes distribution and the desired distribution (i.e., Gaussian). A sample from the desired

distribution is feed to the decoder, for reconstructing inputs. VAE can effectively cluster

similar input data in the latent space [95]. However, one drawback of utilising the KL-

70 Mobility-Aware Proactive Edge Caching for Connected Vehicles

MBS

··

RSU 1

Popular contents
lists for each round

MBS Server

C1:

RSU 2 RSU 3

Caching Replacement
C2:

Vehicle Group 2

Caching Replacement
C1:

Caching Replacement
C1:

C2:

Vehicle Group 1 Direction

Fig. 4.5 Mobility-aware cache replacement policy: Round 2

MBS

··

RSU1

Popular contents
lists for each round

MBS Server

RSU2 RSU3

Vehicle Group 3Direction

Caching Replacement
C3:

C1:

Caching Replacement
C2:

Caching Replacement
C1:

Vehicle Group 2

C2:
C3:

Vehicle Group 1

Fig. 4.6 Mobility-aware cache replacement policy: Round 3

divergence in VAE is to handle the functional form of p(z). Instead, AAE provides a more

flexibility way that is to sample from p(z), in order to match latent codes distribution with

the prior. As a result, more distributions can be used as prior for the latent code.

In our design, the input matrix is the user-by-content request matrix X , which is large

and binary. 1 and 0 represent the interested contents for users and uninterested contents,

respectively. We mark the contents that users requested before as the interested contents. In

fact, it is hard to identify the uninterested contents, since unknown contents and uninterested

4.3 Mobility-aware Federated Learning for Edge Caching 71

RSU 1 RSU 2 RSU 3

Round 1 Contents 1 Contents 1 Contents 1

Vehicle Group 1

Round 2 Contents 2 Contents 1 Contents 1

Vehicle Group 2 Vehicle Group 1

Round 3 Contents 3 Contents 2 Contents 1

Vehicle Group 3 Vehicle Group 2 Vehicle Group 1

Fig. 4.7 Mobility-aware cache replacement policy: Summary

contents are mixed in the unrequested contents. Marking all unrequested contents as unin-

terested contents is a bias prediction. Thus, we marked some unknown contents (missing

entries) as 1 by a random sampling mechanism. The probability of random sampling is

related to the preference of users for contents. We utilise the proposed C-AAE model to

predict these missing values. The C-AAE learns the latent code Z from the input matrix X by

clustering data in the latent space. Then, X can be recovered from Z to generate X̃ . X has

incomplete rows and columns. X̃ is a matrix with predicting the missing entries. We rank the

predicted contents and the highest score contents in outputs will be chosen as the caching

contents in the RSU. The complexity of the MPCF algorithm depends on the C-AAE model’s

complexity, which is O(h). h is the size of a hidden layer in the C-AAE model.

4.3.3 Mobility-aware Cache Replacement Policy

As the vehicles move from one RSU to another, the requested contents cached at one RSU

might become obsolete, whereas the other RSUs do not cache these previously requested

contents for the coming vehicles. Such ineffective utilization of cache resources motivates us

72 Mobility-Aware Proactive Edge Caching for Connected Vehicles

to design a mobility-aware cache replacement policy. This policy enables the RSU to replace

its caching contents, in response to the mobility pattern of vehicles.

Fig. 4.4 shows the details of how the process of replacement is carried between RSUs

and vehicles. To unpack the dynamic process, three rounds of the replacement scenarios are

shown in Figs. 4.4 (a), (b) and (c). Fig. 4.4 (d) summarises the activities of each RSU in the

three rounds. Figs. 4.4 (a), (b) and (c) illustrate the interactions amongst three RSUs, groups

of vehicles and one MBS in our proposed design. All RSUs are located within the coverage

area of MBS. RSU1 is different from other RSUs, because it is the only RSU that executes

the training of C-AAE model to predict popularity of contents for its connected vehicles. In

self-driving scenario, MBS holds prior knowledge of its connected vehicles, including speed,

position and destination. MBS has the capacity to calculate the arrival times of vehicles at

each RSU. If the connected vehicles changed their behaviour, they will reset their destination

and MBS will know immediately.

In round 1, Vehicle Group 1 is moving through the area covered by RSU 1. At the same

time, popularity of contents is predicted and a list of predicted popular contents (C1) for

Vehicle Group 1 is instantly sent to MBS. MBS then sends the predicted contents (C1) to

all RSUs to cache. In round 2, new vehicles (i.e., Vehicle Group 2) move into the coverage

area of RSU 1 and Vehicle Group 1 moves to the area covered by RSU 2. MBS then updates

the caching contents for all RSUs. RSU 1 will cache the second round prediction (C2),

RSU 2 and RSU 3 still store C1. In round 3, new vehicles (i.e., Vehicle Group 3) enter the

RSU1’s coverage area. Similar to round 2, RSU 1 replaces caching contents to newly updated

prediction (C3), depending on the requests made by the new vehicles. C2 is cached in RSU 2,

as Vehicle Group 2 moves into the coverage area of RSU 2. RSU 3 still stores C1. Vehicles

continue to move over time. In the fourth round, Vehicle Group 1 will leave the area covered

by the current MBS and enter to the next MBS. Therefore, the current MBS shall remove

C1 from the cache. Due to the small coverage area of each RSU and high speed of vehicles,

4.3 Mobility-aware Federated Learning for Edge Caching 73

the preferences of vehicles may not change from one RSU to another. If it changes, the FL

model in RSU will predict new popular contents quickly according to their preferences.

To sum up, the proposed cache replacement policy aims to effectively update the contents

on RSU in response to its connected vehicles’ prediction results. It is worth noting that the

predict contents (e.g., C1, C2, C3 etc.) can be similar and MBS only needs to replace the

different contents at each round, which effectively reduces the processing time.

Algorithm 2 : Mobility-aware Proactive Edge Caching Scheme based on Federated
Learning (MPCF), M is the set of vehicles connected to the RSU, where m ∈M. S is the set
of RSUs, where s ∈ S; Q is the position of RSU.
RSU Server Execution:

1: Initialise w0
2: for each round r = 1, 2, ... do:
3: Kr: A set of selected vehicles in rth round
4: for each vehicle m ∈M in parallel do:
5: T m

standing =
(
D−Pi

m
)
/Um

6: if T m
standing >Tround +Tin f then

7: add m to Kr
8: end if
9: end for

10: Cr: A set of caching contents in rth round
11: Ck: A set of predicted popular contents from vehicle k
12: for each vehicle k ∈ Kr in parallel do:
13: if Qk

s−1 == Qk
s :

14: Use the previous model wr = wr−1
15: else
16: Download the current global model wr
17: end if else
18: wk

r+1,Ck←VehicleUpdate(wr,k)
19: Add Ck to Cr
20: end for
21: wk

r+1← ∑
K
k=1

dk
d wk

r+1
22: Count Cr
23: Cache Top N contents from Cr
24: CacheReplace(Cr):
25: end for
26: Return wr+1

74 Mobility-Aware Proactive Edge Caching for Connected Vehicles

Algorithm 3 : Mobility-aware Proactive Edge Caching Scheme based on Federated
Learning (MPCF)
Vehicle Execution:

1: Input: X , wr, Pk, D
2: VehicleUpdate(w,k):
3: for each local epoch e = 1, 2, ...do
4: for each batch b do
5: Compute parameters with gradient descent:
6: wk

r+1← wr−η∇l (wr;b)
7: γk = Pk/D
8: wk

r+1← γkwk
r+1

9: end for
10: end for
11: Rank predicted contents Ck
12: Return wk

r+1, Ck

Cache Replacement Execution:
1: CacheReplace(C):
2: for each round r = 1,2,... do:
3: Compare Cr−1 and Cr
4: Update new contents from Cr
5: end for

4.4 Performance Results and Analysis 75

4.4 Performance Results and Analysis

The performance of the proposed MPCF under various environments in VEC is evaluated in

this section.

4.4.1 Simulation Settings and Dataset

We simulate a VEC environment in an urban area consisting of an MBS, 3 RSUs and several

vehicles located within the coverage areas of RSUs. A HP Z440 workstation with 64G

memory is exploited as the MBS to store the lists of cached contents and manage cache

resources. Two HP Z440 workstations, working as RSUs, aggregate the parameters of

C-AAE model and cache the predicted popular contents. The number of vehicles under each

RSU varies from 1 to 100. All vehicles have datasets to conduct local model training. Keras

is employed as the Deep learning framework to implement C-AAE and FL, with TensorFlow

as backend. The dataset we used in our experiments is MovieLens 1M dataset collected from

the MovieLens website [98]. About 1 million ratings are contained in this dataset, which

came from 6040 anonymized users on 3883 movies. The contextual information of users,

e.g. gender, age, address and occupation, is also provided in the dataset. To simulate the

process of vehicular users’ requests, the rated movies are assumed to request contents from

vehicles.

4.4.2 Performance Evaluation

Cache hit ratio is the performance metric we used to evaluate the proposed MPCF, which

measures the effectiveness of a cache in fulfilling content requests. Cache hit ratio is

calculated as follows: Cache hit ratio = cache hits/ (cache hits + cache misses). One cache

hit is captured when the requested content is delivered by the cache, whereas a cache miss is

captured when the requested content is not stored in the cache.

76 Mobility-Aware Proactive Edge Caching for Connected Vehicles

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

C
a
c
h

e
 h

it
 r

a
ti
o

Oracle

MPCF

AutoEncoder

LFU

LRU

Random

Fig. 4.8 Cache hit ratio with different cache sizes

We compare our proposed scheme to the following four baseline caching schemes, as

shown in Figure 4.8.

• Oracle: It has prior knowledge of the exact future content requests from vehicles and

provides the maximum of cache hit ratio.

• Random: The contents stored at cache are randomly selected by the RSU.

• Least Recently Used (LRU): When the limit of cache capacity is reached, it firstly

removes the least recently used content in the cache [9].

• Least Frequently Used (LFU): In LFU, the least frequently used content in the cache is

discarded whenever the cache capacity is full [110].

• AutoEncoder: It is a learning based caching scheme, using AutoEncoder model [109].

Fig. 4.8 depicts the cache hit ratio for varying cache sizes from 50 to 400 contents. The

results demonstrate that our proposed MPCF outperforms other reference caching schemes.

4.4 Performance Results and Analysis 77

 2 5 10 15 20 25 30

Vehicle density

12.5

13

13.5

14

14.5

15

15.5

16

16.5

C
a
c
h
e
 h

it
 r

a
ti
o

Fig. 4.9 Cache hit ratio vs Vehicle density

With the increase of cache size, the cache hit ratios of all caching schemes rise. As expected,

the lowest cache hit ratio is presented by Random. The proposed MPCF and AutoEncoder

outperform LFU, LRU and Random because they learn the latent representations and extract

features from the content request history of connected vehicles to predict precise content

popularity. LFU and LRU follow static rules, but dynamically changing content popularity is

not considered. The MPCF shows a better performance compared to AutoEncoder. It is due

to the fact that MPCF captures useful features from data and clusters the data in the latent

space. Oracle provides the best cache hit ratio, because it has the prior knowledge of content

requests from vehicles in the future.

Fig. 4.9 presents the influence of the vehicle density on the cache hit ratio. The cache

size of RSU is fixed at 50 in this experiment and the density of vehicles varies from 2 to

30 vehicles/km. The results show that the cache hit ratio increases with a grown in vehicle

density. When only two vehicles are moving in the coverage area of RSU, the cache hit ratio

is 13.2%. However, when five vehicles connect to the RSU, the cache hit ratio increases to

78 Mobility-Aware Proactive Edge Caching for Connected Vehicles

0 5 10 15 20 25 30

Communication rounds

0

2

4

6

8

10

12

14

16

18
C

a
c
h
e
 h

it
 r

a
ti
o

0

100

200

300

400

500

600

700

T
ra

in
in

g
 t

im
e
 (

s
)

Fig. 4.10 Cache hit ratio and Training time against Communication rounds

14.4%. Along with more vehicles in the RSU’s coverage area, more computation capacity

and training data are offered by these vehicles. Correspondingly, more accurate prediction of

content popularity can be obtained.

Fig. 4.10 shows the results of cache hit ratio, communication rounds versus training time.

In this experiment, 10 vehicles collaboratively participate in global model training. In the

first round, the cache hit ratio is 14.6 %, while it increases to 14.9% in the second round.

When the communication round is 30, the cache hit ratio achieves above 16%. These show

that the cache hit ratio rises with the increasing communication rounds. It comes with a price

of training time. The training time for one round is about 18 seconds, compared to more

than 600 seconds for 30 rounds. As can be seen in Fig. 4.10, the cache hit ratio changes not

significant after 15 rounds. Thus, considering a trade-off between communication rounds,

training time and cache hit ratio, training FL model for 15 rounds is the best choice to achieve

the optimal cache hit ratio. The optimal cache hit ratio changes based on the context of users

and their requests.

4.4 Performance Results and Analysis 79

0 100 200 300 400 500 600

Training time (s)

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

C
a
c
h

e
 h

it
 r

a
ti
o

FedAVG

MPCF

Fig. 4.11 FL training process (27 vehicles)

Fig. 4.11 and Fig. 4.12 show the difference between typical federated learning training

process (FedAVG) [8] and our proposed federated learning method (MPCF), in respect of

the training time and cache hit ratio. Both methods exhibit the same trend. With longer

training time, more accurate results can be achieved. In particular, after training for a while,

both methods reach a similar cache hit ratio. However, compared with FedAVG in the first

round, MPCF can obtain a higher cache hit ratio. As depicted in Fig. 4.11, when 27 vehicles

participate in the FL training, the cache hit ratio of FedAVG is 14.3%. In comparison,

the cache hit ratio of MPCF is 15.7%. Fig. 4.12 (5 vehicles) also shows that the MPCF

outperforms FedAVG at the beginning in terms of cache hit ratio, while the final results are

similar. In VEC, vehicles are driving at high speed. They go through the coverage area

of RSU quickly and result in the short training time. The results exhibit that the proposed

MPCF can gain a desirable cache hit ratio in a shorter time than FedAVG. For example, Fig.

4.11 depicts the MPCF achieves the target cache hit ratio of 16% within 3 rounds, less than

80 Mobility-Aware Proactive Edge Caching for Connected Vehicles

0 100 200 300 400 500 600

Training time (s)

13

13.5

14

14.5

15

15.5

16

16.5

17
C

a
c
h

e
 h

it
 r

a
ti
o

FedAVG

MPCF

Fig. 4.12 FL training process (5 vehicles)

100 200 300 400

Cache size

0

10

20

30

40

50

C
a
c
h
e
 h

it
 r

a
ti
o

MPCF without cache replacement

MPCF

Fig. 4.13 Mobility-aware cache replacement

60 seconds, while FedAVG needs more than 600 seconds. The reason is that the MPCF is

mobility-aware and thus more suitable to VEC scenarios.

4.5 Summary 81

Fig. 4.13 demonstrates the effectiveness of the mobility-aware cache replacement policy.

We compare the cache hit ratio of MPCF and MPCF without cache replacement. As shown in

Fig. 4.13, the cache hit ratio for MPCF outperforms MPCF without cache replacement policy.

For example, the cache hit ratio of MPCF is around 24.25% when the cache size is 100,

while MPCF without cache replacement policy achieves the cache hit ratio of 22.2%. These

experiment results demonstrate that the proposed mobility-aware cache replacement policy

is able to further enhance the cache performance of FL learning-based caching schemes in

VEC. It can update contents dynamically according to the changes in content requests from

vehicles.

4.5 Summary

In this chapter, we have proposed a new Mobility-aware Proactive edge Caching scheme

on Federated learning, termed MPCF, to improve cache performance and protect vehicles’

privacy. It utilises a context-aware adversarial autoencoder model to estimate content popu-

larity and then places predicted popular contents at the edge of vehicular networks to reduce

latency. To maximise the cache hit ratio, a mobility-aware cache replacement policy is

designed to dynamically update cache contents at RSUs, according to the mobility pattern of

moving vehicles and their predictions of content popularity. Numerical results demonstrate

that MPCF outperforms other baseline caching schemes on cache hit ratio. The FL training

process of MPCF accelerates the training of a global shared model and achieves the optimal

cache hit ratio in a shorter time. Implementing the mobility-aware cache replacement policy

further improves the cache hit ratio.

Chapter 5

Peer-to-Peer Federated Learning based

Edge Caching for Internet-of-Vehicles

5.1 Introduction

To improve road safety and travel comfort, the Internet-of-Vehicles (IoV) has emerged as

a new paradigm for intelligent transportation systems [111]. It supports a wide range of

emerging vehicular applications, such as smart navigation and infotainment [112]. These

applications require low network latency and substantial network resources (e.g., caching,

computation, and communication), which places huge challenges to the IoV. Shifting cloud

computing and storage capabilities to the edge nodes of IoV has been considered as a

promising approach to satisfy the diverse requirements of vehicular applications. Especially,

caching popular contents at edge nodes (e.g., Base Station (BS), Road side unit (RSU),

vehicles) can alleviate the data traffic on backhaul links and reduce service latency.

Due to the limited caching storage at edge nodes, efficient caching schemes that manages

the caching resources is necessary. Recent breakthroughs in Machine Learning (ML) facilitate

many learning-based content caching schemes [13] [10] [15]. ML techniques can effectively

extract hidden features and representations from users’ data to accurately predict content

5.1 Introduction 83

popularity. However, conventional caching schemes cannot be directly applied in IoV,

due to the inherent characteristics of IoV, e.g., the high mobility of vehicles and dynamic

network environment. Additionally, most of the existing learning-based caching schemes

need to centrally analyse users’ data to make caching decisions. This process may cause the

disclosure of users’ privacy. Thus, it is of paramount importance to design a learning-based

caching scheme for IoV that can achieve high caching performance while protecting users’

privacy.

Federated learning (FL) [8] provides a new framework for fitting ML techniques into

the edge while mitigating user privacy risks. It allows a central server to cooperate with

multiple vehicles to jointly train an ML model in the IoV. Vehicles upload parameters of the

trained model to the central server and keep their training data locally. However, if an RSU

is chosen as a central server, vehicles with high speed may pass several RSUs during the

FL training process, since the coverage area of RSU is small. This may seriously affect the

performance of the trained model in FL. To address this challenge, we propose a Peer-to-Peer

Federated learning based proactive Caching scheme (PPFC) that is well suited to the highly

dynamic IoV environments. In PPFC, a vehicle with enough computation, caching and

communication resources can be selected as a central server to aggregate a global model

from peers. Nearby vehicles with the same direction can then connect to this server vehicle to

participate in the FL training. Compared with traditional FL, peer-to-peer FL can eliminate

the issue of hand-over between RSUs, achieve lower latency and adapt to the mobility of

vehicles. PPFC utilises a Collaborative Filtering based Variational AutoEncoder (CF-VAE)

model to predict content popularity based on the contextual information of users for making

smart caching decisions.

The main contributions of the chapter are summarised as follows:

84 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

1. A peer-to-peer federated learning based proactive caching scheme is proposed to adapt

to high mobility of vehicles in IoV. In the proposed scheme, a vehicle rather than a

fixed edge node, acts as a central server to aggregate ML models from nearby vehicles.

2. Due to the heterogeneous abilities of vehicles, a dual-weighted model aggregation

scheme is designed by considering data size and staleness of vehicles to reduce the

effect of straggler vehicles, in order to further improve the accuracy of the trained

global model in the designed peer-to-peer FL.

3. A collaborative filtering based variational autoencoder model is proposed to predict the

popularity of contents by using users’ historical requests and contextual information,

which can learn deep latent representations of users’ characteristics, while preserving

data privacy through the use of FL.

The rest of this chapter is organised as follows. The system architecture of the proposed

cache scheme is presented in Section 5.2. Section 5.3 describes the detailed implementation

of PPFC. The performance evaluation and analysis of PPFC are provided in Section 5.4.

Section 5.5 concludes this chapter.

5.2 System Architecture

The system architecture of the proposed PPFC is shown in Fig. 5.1. A vehicular network is

considered, which consists of a BS, RSUs and vehicles. It is a hierarchical structure. The top

layer is a BS, which links to the Internet through a reliable backhaul link. In the middle layer,

several RSUs are placed equidistantly at the coverage area of the BS. Each RSU connects to

several vehicles that are distributed at the bottom layer. The communication between BS,

RSUs and vehicles are via wireless links. In our design, both RSUs and vehicles have cache

capability, because vehicles are equipped with OBUs and RSUs have cache-able servers.

Users can fetch their requested contents from RSUs and vehicles, instead of the internet

5.2 System Architecture 85

Internet

Backhaul

FL Server

FL Server

Base Station Roadside Unit

Fig. 5.1 System architecture of PPFC

only. When a vehicular user requests a content, it will firstly check its own cache. If the

requested content is stored locally, the vehicle can directly obtain it without any transmission.

If not, this request will broadcast to neighbour vehicles. If the broadcast is responded,

nearby vehicles will send the requested content to the vehicle which requested the content.

Otherwise, the request will be forward to the current connected RSU. If the requested content

is available in the RSU, the RSU can delivery this content to the requested vehicle. If the

requested content is still missing, the vehicle has to request this content from the Internet.

Thus, vehicles fetch contents mainly in the following three ways: Vehicle-to-Vehicle

(V2V) content delivery, Vehicle-to-RSU (V2R) content delivery and Vehicle-to-Internet (V2I)

content delivery. V2V content delivery links two vehicles within distance γ . Vehicle k j will

broadcast its content request firstly. If vehicle ki stores the requested content and responses

for the nearby vehicle k j, vehicle ki can directly deliver the requested content to vehicle k j

through V2V link. RSU is another cache place in our designed PPFC. Vehicles which are

located at the same coverage area of the RSU use the same frequency band. Vehicles fetch

the requested contents from RSU via V2R links. V2I content delivery is the transmission

86 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

between the Internet and vehicles. If the requested contents are missing in both vehicles and

RSUs, it will get from the Internet with V2I transmission. Obtaining contents from vehicles

and RSUs, without asking for the Internet, can significantly ease the network load. Moreover,

users fetch their requested contents from near vehicles which can largely reduce latency.

Due to the limited storage resource of RSUs and vehicles, we assume that a vehicle can

only store up to m contents and an RSU can cache n contents at most. To make full use

of caching storage at RSUs and vehicles, designing a smart caching scheme is essential.

The gain from the caching scheme highly depends on the accuracy of content popularity.

However, content popularity is dynamic and hard to predict. Different vehicular users may

prefer different contents and their preferences may change frequently which are influenced

by location and time. The spatio-temporal variability on the popularity of contents adds

substantial complexity in content caching of IoV. Moreover, the lifetime of contents in IoV is

short. As a result, the cached content can easily become out of date. Thus, according to the

estimated content popularity and the lifetime of contents, updating cached contents regularly

is necessary to the edge caching in IoV.

We design a proactive caching scheme to make caching decision by predicting content

popularity, based on the peer-to-peer federated learning. In typical FL, multiple vehicles

collaboratively train a global model from their site-specific datasets under the instruction of a

central server in the RSU. Instead of sending raw data to the central server in RSU for model

training, vehicles only send parameters of the model to the central server. With the help

of distributed training at vehicles, user privacy can be largely protected. The global model

that trained in FL is a content popularity prediction model, which is utilised to make the

smart caching decision. However, due to the high mobility of the vehicle and short coverage

area of an RSU, vehicles with high-speed cannot complete FL training process within one

RSU’s coverage area. Switching between RSUs happens frequently. If the fixed RSU is

chosen as the central server in FL, computation and communication costs are increased,

5.3 Peer-to-Peer Federated Learning for Edge Caching 87

and the accuracy of prediction is degraded. To adapt the FL framework to the IoV scenario

and address the limitations and conundrums caused by the high mobility of vehicles, the

peer-to-peer FL is proposed, without depending on a central server in an RSU. A vehicle

can be selected as a moving central server of FL. The same direction of vehicles within one

transmission hop are clustered into one group and then execute FL training within this group.

5.3 Peer-to-Peer Federated Learning for Edge Caching

This section describes the details of our proposed proactive content caching scheme. In light

of growing privacy concerns, FL is designed to collaboratively train a global ML model

by using the local data at distributed vehicles. However, in the complex and dynamic IoV

environments, the typical FL faces the challenge of frequently switching connected central

servers and heterogeneous abilities of vehicles. To better fit FL to IoV, we proposed a

peer-to-peer FL, as shown in Fig 5.2. Training a model in peer-to-peer FL is performed by

multiple communication rounds and each communication round r consists of the following

six steps:

1) Location based vehicle selection: To avoid frequently switching connected central

servers for vehicles during the FL training process, the vehicle with sufficient computation

and caching capacity can be selected as a central server. Unlike the server in the fixed RSU

for typical FL, the vehicle server is a moving central server to aggregate models as well

as providing caching contents to other vehicles. The same direction of vehicles with one

transmission hop neighbours are chosen as participating vehicles to be involved in the FL

model training. In self-driving scenario, vehicles will set their destinations before the journey.

Thus, the prior knowledge of vehicle trajectories can be achieved.

2) Model dissemination: Once the server vehicle and participating vehicles K are

selected, the server vehicle initialises the global ML model wr and sends it to the participating

vehicles with the aim of distributed model training at these vehicles.

88 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

Updated
Model

Local Dataset

Download
Model

∑

Fig. 5.2 Peer-to-peer federated learning

3) Learning of distributed prediction model: Each participating vehicle utilises its own

data to train the ML model, which is a Collaborative Filtering based Variational Autoencoder

(CF-VAE) model to predict the content popularity. It is an unsupervised learning algorithm to

copy its input X to its output X̃ , as shown in Fig. 5.3. The X is a user-content rating matrix,

which consists of vehicular users’ historical requests. The â is the matrix of the vehicular

users’ context information. We fed X and â into CF-VAE to learn the hidden representations

Z, respectively. Then, these obtained representations are combined to reconstruct the input

X . X samples variable x. The encoder q(z | x) which is an inference neural network maps x

to a Gaussian distribution and the latent variable z is estimated. The decoder, a generative

neural network p(z | x), decodes z back into x. In the generative process, our objective is to

maximise the probability of each x. It can be defined as:

p(x) =
∫

p(x | z) p(z)dz. (5.1)

5.3 Peer-to-Peer Federated Learning for Edge Caching 89

p(x | z) is parameterised with a function approximator. The likelihood p(x | z) and the

prior p(z) can be formulated, while the posterior p(z | x) requires an intractable integral

over the latent space. The posterior q(z | x) generates a distribution over the latent variables.

Kullback-Leibler divergence can be used to minimise difference between p(z | x) and q(z | x).

It can force the latent space distribution to be Gaussian.

KL [q(z | x) ∥ p(z | x)] =

Ez∼q(z|x) [log q(z | x)− log p(z | x)] .
(5.2)

Applying Bayesian inference we have

KL [q(z | x) ∥ p(z | x)] =

Ez∼q(z|x) [log q(z | x)− log p(z | x)]+ log p(x) .
(5.3)

Then, to minimise KL [q(z | x) ∥ p(z | x)], the Eq. (5.3) can be simplified as the following

form:

log p(x)≥Ez∼q(z|x) [log p(x | z)]

−KL [q(z | x) ∥ p(z)] .
(5.4)

where the right hand-side is the variational lower bound of VAE. The approximate posterior

q(z | x) follows a Gaussian distribution N
(
µ,diag

(
σ2)) where µ is the mean and σ2 is

variance. The generative network p(x | z) and inference network q(z | x) are trained by max-

imising the variational lower bound with respect to their parameters. The reparameterisation

trick z = µ +σ ⊙ ε can be implemented to get the unbiased estimate of low variance bound.

We suppose the mean and covariance are µ (x) and σ (x), respectively. ε follows N(0, I), the

90 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

1 0 1

1 0

0 1

0 1

Input

X

1 0 0

0 1 0

1 0 1

0 1 1

!"Additional Information

Encoder
!

∑

Decoder

0.9 0.4 0.2 0.8

0.6 0.8 0.3 0.1

0.3 0.7 0.5 0.4

0.1 0.4 0.6 0.9

#$

Output

!

∑
Input

Fig. 5.3 Collaborative filtering based variational autoencoder

equation can be rewritten as follow:

Eq(z|x) [log p(x | z)] =

Eε∼N(0,I) [log p(x | z = µ +σ ⊙ ε)] ,

(5.5)

where ε is a vector sampled from standard Gaussian variables. With the help of the reparam-

eterisation trick, the inference and generative networks can be trained through end-to-end

backpropagation by SGD.

Once the local training of CF-VAE at vehicles is completed, the parameters of CF-VAE

are sent back to the server vehicle for model aggregation.

4) Dual-weighted model aggregation: To improve the quality of the global model, the

server vehicle constructs a new version of the global ML model by aggregating updated

models from nearby vehicles with a dual-weighted method. Due to the heterogeneous abilities

of vehicles, vehicles contain different amount of local data and have different learning status.

Vehicles cannot equally contribute to the global model with such large differences. The effect

of straggler vehicles needs to be reduced for the current FL communication round. Therefore,

we introduce a dual-weighted aggregation scheme to solve this problem, which is divided

5.3 Peer-to-Peer Federated Learning for Edge Caching 91

into two parts: data weight and staleness weight [113]. The data weight λD is decided by the

proportion of the local data size dk at a vehicle k to the total data size D of all participating

vehicles. The server vehicle will know the value of dk and D during the vehicle selection.

The data weight of vehicle k is λ k
D = dk

D , where D = ∑
K
k=0 dk, dk = |Dk| and Dk is the set of

training samples on vehicle k. The staleness weight λS is influenced by the uploading time

Tup and downloading time Tdown, which reflects the staleness for the model. The staleness

is calculated as ϕ = Tup−Tdown. It also indicates the computing power of the vehicle. The

stronger computation capability of vehicle spends less time to train the model with smaller

staleness. A smaller weight is given to the vehicle with a larger staleness. The staleness

weight is calculated using the following exponential function [113][92]:

λ
k
S = (e/2)−ϕ . (5.6)

where e is Euler’s number. Thus, the updated model is conducted with the weighted average

sum:

wr+1← wr−
K

∑
k=1

λ
k
Dλ

k
S wk

r+1, (5.7)

After one round of FL training, vehicles overwrite their local parameters to the latest down-

loaded parameters and refresh their dual-weights to prepare the next round FL training

without any communication costs.

5) Model optimisation: To improve the convergence of FL, an adam-based optimisation

[114] is exploited in the server vehicle, which is an extension to stochastic gradient descent.

Based on the local data of server vehicle, the model will be evaluated. The aim of our

92 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

proposed peer-to-peer FL is to minimise the loss function ℓ(w):

min
w

ℓ(w) =
K

∑
k=1

Lk (w) ,

where Lk (w) =
1
dk

∑
i∈Dk

ℓi (w) .
(5.8)

6) Caching decision and model update: Based on the output of the updated model, the

highest m predicted rating scores in X̃ are selected as the caching contents in the vehicle.

The less n popular contents will cache in RSUs. Meanwhile, the server vehicle updates the

global model and this model will be disseminated to all one-hop neighbour vehicles who will

participate in the next FL communication round.

Above steps are repeated until an optimal model is achieved at the server vehicle. The

pseudo-code of PPFC is outlined in Algorithm 4.

5.4 Performance Evaluation

In this section, comprehensive experiments are conducted to evaluate the performance of

PPFC under various IoV environments and compare the PPFC with four baseline caching

schemes with respect to the cache hit ratio.

5.4.1 Experiment Settings

We set up a networking testbed, consisting of 10 Raspberry Pi devices. Each Raspberry

Pi represents a vehicle and has a local dataset to conduct learning-based prediction model

training. The dataset is MovieLens 1M which contains about 1 million ratings from 6000

anonymized users on 3883 contents [98]. This dataset also involves the contextual informa-

tion of users, such as, age, gender and address. Keras and TensorFlow are used to implement

the CF-VAE and FL. The evaluation metric we used to measure the proposed PPFC is cache

5.4 Performance Evaluation 93

Algorithm 4 : The peer-to-peer federated learning based proactive caching scheme, K
is the set of participating vehicles, where k ∈ K. η is the learning rate; E is the number of
epoches. B is the local minibatch size;
Select A Server Vehicle and Participating Vehicles
Server Vehicle Execution:

1: initialise w0
2: for each round r = 1,2,... do:
3: Kr : a set of participating vehicles
4: Get the parameters of the global model wr
5: for each vehicle k ∈ Kr in parallel do:
6: wk

r ← VehicleUpdate(wr,k)
7: end for
8: wk

r+1← wr−∑
K
k=1 λ k

Dλ k
S wk

r+1
9: for end

10: Return wr+1

Participating Vehicle Execution:
1: Input: X , wr
2: VehicleUpdate(w,k):
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: Compute parameters with gradient descent:
6: wr+1← wr−η∇l (wr;b)
7: end for
8: end for
9: Return wr+1

94 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

50 100 150 200 250 300 350 400

Cache size

0

 10

20

30

40

50

60

70

80

90

C
a
c
h

e
 h

it
 r

a
ti
o

Optimal

PPFC

Greedy

MRU

Random

Fig. 5.4 PPFC vs. Other reference schemes (10 vehicles)

hit ratio, which represents the percentage of requested contents from users that enable to

serve from vehicles and RSUs.

5.4.2 Experimental Results

Fig. 5.4 and Fig. 5.5 compare the performance of PPFC with other four reference caching

schemes (Optimal, Greedy, MRU and Random) and show the cache hit ratio for varying cache

sizes from 50 to 400 contents. They also demonstrate the impact of 10 vehicles and 5 vehicles

participating in peer-to-peer FL training on cache hit ratio, respectively. Both figures exhibit

the same trend. The cache hit ratios of all caching schemes increase, with the growth of cache

size. The Optimal reference caching scheme presents the highest cache hit ratio, because it

has a perfect knowledge of future vehicular user demands. Our proposed PPFC outperforms

the other three reference caching schemes, since PPFC predicts the future popular contents

for users by learning hidden features from the request of users and clustering these requests

in the latent space, in order to realise the relationship between users and contents. Greedy

is a simple learning algorithm, caching the m highest previous demanded contents, but it

5.4 Performance Evaluation 95

50 100 150 200 250 300 350 400

Cache size

0

 10

20

30

40

50

60

70

80

90

C
a
c
h

e
 h

it
 r

a
ti
o

Optimal

PPFC

Greedy

MRU

Random

Fig. 5.5 PPFC vs. Other reference schemes (5 vehicles)

does not consider future content popularity. MRU is the third reference caching scheme. It

follows a static rule that firstly discards the most recently used contents. However, it lacks

consideration of dynamically changing content popularity. The random algorithm shows

the lowest cache hit ratio, which randomly selects the m contents to the cache. Comparing

Fig. 5.4 with Fig. 5.5, the cache hit ratio of 10 participating vehicles in the peer-to-peer FL

training is higher than 5 participating vehicles. When the cache size is 50, the cache hit ratio

of 10 participating vehicles is 25.2%, while 5 participating vehicles can only achieve 21%.

Fig. 5.6 investigates the relationship between vehicle density, training time and cache hit

ratio. The vehicle density is varied from 2 to 10 vehicles per/km. The results demonstrate that

when the cache size is 50, the cache hit ratio rises with the increase in vehicle density. When

2 vehicles participate in the peer-to-peer FL, the cache hit ratio is 16.2%. Whereas, the cache

hit ratio will rise to 25.3%, if 10 vehicles attend in FL training. Meanwhile, when the number

of participating vehicles changes from 2 to 10, the training time for per communication round

increases from 3.98 seconds to 16 seconds. It indicates that more accurate prediction can be

achieved if more vehicles participate in the FL training. It is because that more participating

96 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

Fig. 5.6 Vehicle density vs. Training time vs. Cache hit ratio

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

70

75

C
a
c
h
e
 h

it
 r

a
ti
o

RSU Caching

PPFC

Fig. 5.7 PPFC vs. RSU caching (10 vehicles)

vehicles provide more training data and computation capacity. However, it is a trade-off

between the training time, vehicle density and cache hit ratio. As more vehicles attend to the

FL training, the cache hit ratio improves, but the training time takes longer.

5.4 Performance Evaluation 97

50 100 150 200 250 300 350 400

Cache size

0

10

20

30

40

50

60

65

C
a
c
h

e
 h

it
 r

a
ti
o

RSU Caching

PPFC

Fig. 5.8 PPFC vs. RSU caching (5 vehicles)

Fig. 5.7 and Fig. 5.8 depict the effectiveness of vehicle-to-vehicle caching. These

experiments compare the caching performance of traditional RSU caching with the proposed

PPFC that combines vehicle-to-vehicle caching and RSU caching. Fig. 5.7 shows the

cache hit ratio for various cache sizes between 50 and 400 contents, when the number of

participating vehicles in peer-to-peer FL training is set to 10. By contrast, Fig. 5.8 describes

the results of 5 vehicles attending to the FL training. It can be seen from both Fig. 5.7 and

Fig. 5.8, the PPFC demonstrates a better caching performance compared to RSU caching.

When cache size is 50 and 10 vehicles participate in the FL training, the cache hit ratio of

PPFC is 25.3%, while RSU caching can only reach 14.49%. Maintaining the same cache

size, when the number of participating vehicles reduces to 5 vehicles, the cache hit ratio of

PPFC can obtain 21%, but a similar cache hit ratio for RSU caching is achieved. For the other

cache sizes, the same trend has been observed. It indicates vehicle-to-vehicle caching can

improve the cache hit ratio. As the number of participating vehicles increases, more caching

capacity from vehicles are brought, and therefore, the cache hit ratio rises. However, the

caching performance of RSU caching is not affected by the number of participating vehicles.

98 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles

5.5 Summary

In this chapter, we have proposed a new Proactive content Caching scheme on Peer-to-Peer

Federated learning (PPFC) to protect vehicles’ privacy, enhance caching performance and

reduce latency. Due to the mobility of vehicles, a vehicle is selected as a moving central server,

to ease reliance on the fixed central server in RSU and eliminate the issue of frequently hand-

over between RSUs. PPFC utilises a collaborative filtering based variational autoencoder

model by leveraging the user-content interactions in the form of a content request matrix

from vehicles to predict content popularity in the future and pre-fetch predicted popular

contents at vehicles and RSUs to improve caching performance. Numerical results show

that PPFC outperforms other reference caching schemes in terms of cache hit ratio. More

vehicles participating in the peer-to-peer FL training can achieve better caching performance.

Chapter 6

Cooperative Hierarchical Caching in Fog

Networks

6.1 Introduction

Fog radio access networks (F-RANs) have been proposed as a promising network architecture

that is able to support the growing traffic, reduce the service latency and promote content

delivery rate. In the F-RANs, edge nodes, e.g., remote radio heads (RRHs) and Fog Access

Points (F-APs), are capable of local signal processing, distributed caching and cooperative

radio resource management [115]. These distributed caching among edge nodes provide a

great opportunity for content caching in F-RANs. Since some contents are often requested by

different users at different times, placing these popular contents as close as possible to users

at the edge nodes can greatly reduce duplicate data transmission and service latency. As the

cache capacity of edge nodes is limited compared to a huge number of contents, the effective

utilization of the available cache capacity has a profound effect on caching performance.

Cooperative caching is an effective way to optimise the management of cache capacity for

edge nodes as well as maximise the satisfaction of users’ request. For example, Taghizadeh

et al. [116] proposed a cooperative caching strategy, where neighbour mobile users cooperate

100 Cooperative Hierarchical Caching in Fog Networks

with each other for caching contents. A cooperative caching framework in mobile cellular

networks was proposed in [117]. In this framework, evolved NodeBs (eNBs) in 4G and base

stations collaborate to decide the location of caching contents and find out which contents

need to be cached. All the above caching schemes assume that the content requests are

followed by Zipf distribution. In reality, the popularity of contents is highly dynamic and hard

to be accurately modelled. Therefore, it is required to design a learning-based cooperative

caching scheme to learn dynamic content popularity trends so as to adapt caching schemes to

the dynamic environment of F-RANs [118].

Despite many efforts, some key challenges are still faced by the existing learning-based

cooperative caching schemes. 1) Privacy: The majority of the prior works on cooperative

caching schemes are designed for a highly controlled environment, where users need to

upload their data (e.g., content retrieval history and geographic information of users) to a

central server for processing. It brings the risk of privacy for users. 2) Mobility: Users

frequently move from one edge node to another. This means that the cached contents at one

edge node might become obsolete after users move out, while another edge node does not

cache the contents for the incoming users. The lack of consideration of users mobility may

lead to low cache efficiency. 3) Utilisation: The redundant contents may be stored in edge

nodes, which lacks the global optimization of cache resource utilisation. It is non-trivial to

decide how and where to cache, given the limited cache sizes at the different level of edge

nodes.

To tackle the above challenges, this chapter proposes a federated learning based coopera-

tive hierarchical edge caching scheme (FLCH). It enables to make the intelligent decision

for caching contents at the edge while protecting users’ privacy. The FLCH scheme trains a

shared global learning model under the coordination of a central server with training data

distributed over a number of users. Only the parameters of the model are uploaded to the

central server, instead of users’ private data [8]. The FLCH scheme consists of three tiers.

6.1 Introduction 101

The bottom tier contains users equipped with smart devices. The middle tier includes F-APs

with small cache storages. The top tier has a BBU pool with large cache storage that BBUs

are located at the network centre. BBU is a unit to process baseband. The proposed hierarchi-

cal caching architecture achieves the better utilisation of available caches with mobile users,

since the requested contents can be fetched from the local F-AP, neighbour F-APs and BBU.

The major contributions of this work are as follows:

1) A federated learning based caching scheme is proposed to make caching decisions

by analysing the content retrieval history and context information of users. In this caching

scheme, the training data is left locally on the user (e.g., smart devices) and a shared global

model is learnt by aggregating locally-computed updates from users. This approach can

reduce privacy risk significantly.

2) A hierarchical cooperative caching architecture is designed to leverage horizontal

cooperation between the F-APs and vertical cooperation between the BBU pool and F-APs

to enhance the overall caching performance and global cache resource utilisation.

3) The proposed method integrates the appended stacked autoencoder and one-class

collaborative filtering to predict the popularity of contents. The appended stacked autoencoder

is used to extract the hidden representations of users and contents. Whereas, the one-

class collaborative filtering is utilised to effectively process the input data for a better

recommendation of popular contents.

4) The experimental results show that the proposed method outperforms other four

reference algorithms (e.g., m-ε-greedy and thompson sampling) on cache hit ratio by using

real-world dataset. Moreover, the FLCH-based hierarchical caching scheme further improves

caching hit ratio while preserving user privacy.

The remainder of this chapter is structured as follows: Section 6.2 presents the system

architecture of the proposed FLCH caching scheme. The detailed implementation of the

102 Cooperative Hierarchical Caching in Fog Networks

Content Providers
Cloud Layer

BBU BBU

BBU

BBU Pool
BBUCore Network Cache

MBS

Fog Layer

Client Layer

C
on

te
nt

 P
op

ul
ar

ity
Lo

w
H

ig
h

Backhaul

Contents Aggregationà F-AP Caching

F-AP Caching Content Lists

F-AP 1 F-AP N… …

Model Aggregation à Content Popularity

F-UE

Local Training

FronthaulBackhaul

F-AP
F-AP

F-AP

Fig. 6.1 System Architecture of the Federated Learning based Cooperative Hierarchical
Caching for F-RANs.

FLCH is presented in Section 6.3. Section 6.4 provides the performance evaluation of the

FLCH. Finally, Section 6.5 concludes this chapter.

6.2 System Architecture

Fig. 6.1 illustrates the system architecture of our proposed federated learning based edge

caching scheme in F-RANs. The F-RANs integrate fog computing with radio access networks

(RANs), which evolved from cloud radio access networks (C-RANs) [119]. In C-RANs, a

crowd of RRHs are deployed distributively within a particular region and are connected to a

centralised BBU pool via high-bandwidth fronthaul links. RRH is a remote radio transceiver

to connect an operator radio control panel. A BBU pool greatly reduces power consumption

and largely improves resource utilisation, but large data transmission also places a heavy

burden on the fronthaul at the same time, resulting in the high service latency for users.

F-RANs address the above issues of C-RANs through extending caching and computing

6.2 System Architecture 103

B

C

A Download Model

Upload Model

B

Updated
ML Model

Local
Dataset

Downloaded
ML Model

Local TrainingB

Aggregation ∑D Contents Aggregationà Caching
Cache

F-APs Caching Lists Storage

F-AP 1 F-AP N… …

Popular Contents

BBU Caching List Storage

Fig. 6.2 Federated Learning Process for Edge Caching

functions to the edge of the network. For example, F-APs, which evolved from traditional

RRH, are equipped with caches in F-RANs and are able to manage the caches flexibly.

As shown in Fig. 6.1, we consider a three-level User-Fog-Cloud hierarchical structure.

The User level distributes users who are equipped with smart devices (F-UE). The Fog level

consists of two tiers. The upper tier contains a BBU pool, while a Macro Base Station

(MBS) and some F-APs are located in the lower tier. The MBS and F-APs all connect to

the BBU pool. More specifically, the F-APs are connected to the BBU pool via high-speed

fronthaul links. The MBS connects to the BBU pool with a reliable backhaul link. The MBS

is responsible for delivering the overall control signalling and providing seamless coverage

for F-UEs. The Cloud level is the Internet. Content providers are normally located at Cloud

to provide contents to users. In F-RANs, the BBU pool and F-APs are equipped with caches.

We assume that the storage capacity for the BBU and F-APs are up to N and M contents,

respectively, where N ⩾ M.

The primary goal of our work is to take full advantage of distributed caching storages at

the F-RANs. It requires to know content popularity distribution. However, content popularity

is subject to change dynamically due to the mobility of users. Different users prefer different

contents since the preference of users are various. The preference of users may link to

many factors, such as age, gender and occupation. Even the location of connected users,

104 Cooperative Hierarchical Caching in Fog Networks

the connected time of day and the type of connected equipment device also influence the

preference of users and further affect the content popularity. Hence, the popularity of contents

changes according to the fluctuating users and their context. In our designed caching scheme,

the content popularity decides what and where to cache at edge nodes.

Federated learning (FL) is an alternative distributed machine learning approach, which

proposes to train a high-quality model distributively without gathering the data from users.

In our proposed FL based caching scheme, each user associated with an F-AP performs

local training using its own data. The parameters of the training model from these users

are then aggregated at the F-AP to jointly learn a model that is used to predict the local

content popularity, as shown in Fig. 6.1. Based on the predicted content popularity, each

user uploads a list of popular contents to the local F-AP. The F-AP aggregates the lists from

each connected user and constructs an aggregated list of local popular contents that will be

uploaded to the MBS. The M highly popular contents are selected to cache at F-APs, to

provide local caching services to their associated users. By contrast, the BBU pool caches the

N less popular contents. Based on the knowledge of the content popularity from F-APs, the

place of caching (at F-APs or BBU pool) can be decided, as described in the next subsection.

The cache hit ratio is used to evaluate the performance of caching schemes, which

describes the percentage of content requests that can be served by cache. The proposed

FLCH aims to maximise the cache hit ratio by leveraging the vertical cooperation (V-FLCH)

between the BBU pool and F-APs, and the horizontal cooperation (H-FLCH) between the

local F-AP and neighbour F-APs. Users can fetch the requested content not only from the

cache of the local F-AP but also from the neighbour F-APs and the BBU pool. Specifically,

as shown in Fig. 6.1, a user who is located in the coverage area of the F-AP can send the

content request to the local F-AP. The requested content will be firstly searched whether it is

stored in its cache [120]. If so, the requested content would be directly delivered to the user.

Otherwise, the request will be searched in a caching content list for all neighbour F-APs

6.3 Cooperative Hierarchical Edge Caching Scheme 105

maintained. The caching content list of each F-AP is stored at the cache manager in the

MBS. According to the list, if the requested content is cached at any other F-APs, the found

F-AP would transmit the requested content to the user. In this way, the user does not need to

connect the BBU pool to fetch the requested content, which relieves the burden on fronthaul

between the BBU pool and F-APs. If the requested content is not stored in any F-APs, the

local F-AP will send the request to the BBU pool. Upon receiving a request from the F-AP, it

conducts a search to look for the content. If the content can be found in the BBU pool, the

BBU pool delivers the corresponding content to the requesting F-AP via fronthaul link. The

requested content can be provided by caching at either F-APs or the BBU pool, therefore, it

greatly reduces the traffic between the core network and the cloud. However, if the requested

content is neither cached at F-APs nor BBU pool, the request would be forwarded to the

Internet to obtain the content from the source (i.e., content provider) in the cloud.

6.3 Cooperative Hierarchical Edge Caching Scheme

In this section, the details of the proposed federated deep learning models for edge caching are

presented. It consists of three parts: FL, appended stacked autoencoder (aSAE) and one-class

collaborative filtering. FL framework is utilised to train the content popularity model while

protecting users’ privacy. The content popularity model we applied in FL is aSAE, which can

obtain the relationship between users and contents, and find its hidden representations. The

historical requests of users together with their contextual information (e.g., time, location,

age), as the training data for the aSAE, are exploited to learn the popularity of content in order

to make smart caching decisions. The training data is binary where 1 (positive examples)

and 0 (negative examples) represent interested contents and uninterested contents for users,

respectively, but the negative examples are often absent. Marking all missing examples as

the negative examples is a bias prediction. One-class collaborative filtering with a random

sampling mechanism is used to correct this bias.

106 Cooperative Hierarchical Caching in Fog Networks

6.3.1 Federated Learning for Cooperative Hierarchical Edge Caching

For most of the existing learning-based caching schemes, a central server gathers users’

data for the purpose of training. However, some of the users’ data include sensitive and

private information, such as age, gender, locations. Uploading these information to a

central server presents a risk of breaching users’ privacy. FL leverages the local data of

users and computation capacity of their devices to perform distributed training. In the FL

setting, multiple communication rounds are run to achieve a high-quality model. In each

communication round, the F-AP firstly distributes the current model to participating mobile

users. These users compute an update to the current model independently (e.g., taking several

iterations of gradient descent) by using their local data. Next, the model updates from each

participating user is uploaded to the associated F-AP where all updates are aggregated to

generate a new shared global model by the federated average method [8]. The federated

average method we used is a weighted average, where the weight of a user depends on the

data size of user. The value of data size will be sent to the server from users at the beginning

FL communication round. That means a user with more data accounts for more contribution

to the shared global model.

As shown in Fig. 6.2, a FL communication round executes at an F-AP and its associated

users that consists of the following four steps [26]:

Step A: The users who are plugged-in and have good network connection are selected

to participate in the federated communication round. Each of them downloads the

current global model from the associated F-AP.

Step B: Using the local dataset, each participating user computes the updates of the

downloaded global model.

Step C: The calculated model updates are uploaded to the F-AP from participating

users.

6.3 Cooperative Hierarchical Edge Caching Scheme 107

Compressed
representatio
n (code): hEncoder Decoder

Additional information: !"

Original
input: x

Reconstructed
input: z

Fig. 6.3 Appended Stacked AE with One-Class Collaborative Filtering

Step D: The F-AP aggregates all model updates to construct an improved global model.

Compared to the traditional centralised learning approach, the distinct advantage of FL is

to reduce privacy and security risks, since uploading model updates is much more secure

than uploading the data of users. The integrated model of the appended stacked autoencoder

and one-class collaborative filtering (aSAE-CF) is the model we trained in FL. The next

section will provide the details of this proposed aSAE-CF learning model.

6.3.2 Stacked Autoencoder with One-Class Collaborative Filtering

The appended stacked autoencoder (aSAE) [121] is a neural network that attempts to copy

its input to its output, aiming to learn a compressed hidden representation from the input.

Fig. 6.3 shows the structure of the aSAE, mapping the input x to the output z which can be

called as reconstructed input through the compressed representation (code) h. The aSAE

consists of an encoder, a decoder and an additional information part. The function of encoder

is h = f (x), mapping x to h. A decoder describes a reconstruction z = g(h), mapping h to

z. As our proposed cache scheme is a context-aware scheme, it not only utilises the content

retrieval history of users but also considers the context of users to learn the content popularity.

108 Cooperative Hierarchical Caching in Fog Networks

0.9 0.7 0.5 0.1 0.7

0.6 0.2 0.4 0.6 0.1

0.9 0.7 0.5 0.1 0.7

0.6 0.2 0.4 0.6 0.1

0.1 0.5 0.4 0.2 0.9

New Rating Matrix: P*

User information Matrix: A

Input Output

Rating Matrix: P Append

1 0 1 1

1 0

0 1 1

0 1 1 0

1 1 0 1

Fig. 6.4 One-Class Collaborative Filtering

Furthermore, the context information of users â (e.g., gender, age and occupation), as an

additional information, appends to each layer of the stacked autoencoder to form the aSAE

[121], as shown in Fig. 6.3. Additionally, we apply Adam stochastic optimisation method

[122] to optimise aSAE.

As shown in Fig. 6.4, the user-by-content rating matrix P, as the input matrix, is composed

of the requested content history for a user. The rating matrix consists of binary data (1 and 0),

reflecting the request behaviour of the user. The value of 1 indicates that the user requested

this content before (positive example). The value of 0 represents that the user is not interested

in this content (negative example) or the content is unknown to this user (missing example).

However, the missing examples may include some unmarked positive examples, as the user

may be interested in some content without knowing it. Marking the rest of contents as 0

leads to that all negative examples and missing examples are mixed, which makes it difficult

to distinguish them [96].

We use one-class collaborative filtering based random sampling mechanism to mark the

negative examples, instead of marking the rest of the contents as 0. In our cache scheme, we

mark the negative examples in the rating matrix based on a probability related to the request

behaviour of the user. If the user requested a lot of contents before, but he/she never asks

6.4 Experimental Results 109

for one content, then this content may be unpopular and has a high probability of being a

negative example (marked). Additionally, if one content has not been requested by other

users often, it also has a high probability to be marked as a negative example. After the

sampling is completed, the marked negative examples are considered as unpopular contents

for users, while the unmarked examples are regarded as the missing examples. Thus, the input

matrix has 1, 0 values and missing values, while the output matrix P∗ is filled with predicted

ratings for those missing values. Moreover, all context information of users construct a user

information matrix A. Appending the matrix of user information A to each hidden layer can

reduce the sparsity of the input to achieve better accuracy of the content popularity. The

contents with the highest ratings in the output matrix are the contents with high popularity,

which are recommended as caching contents. All the recommended content lists are stored

in the MBS and the F-AP caches the most popular contents. The less popular contents are

stored at the BBU pool. The designed aSAE minimises the reconstruction error between the

input matrix and the output matrix via one-class collaborative filtering, in order to improve

the accuracy of content popularity prediction.

6.4 Experimental Results

In this section, we describe the simulation experiment environment and investigate the

performance of the proposed FLCH caching scheme using real-world datasets. The dataset

we used to evaluate FLCH is MovieLens 1M [98], which is collected by GroupLens Research.

It contains about 1 million ratings of 3883 movies from 6040 users. UserID, MovieID, Rating,

Timestamp and user information (such as gender, age, Zip-code and occupation) are included

in the dataset. In our experiments, MovieLens dataset is divided into 10 users. To be specific,

the dataset for each user consists of 604 users’ data in the MovieLens’ dataset.

We firstly compared FLCH with four reference algorithms which are Oracle, Random,

m-ε-Greedy and Thompson Sampling. We then evaluate the performance of hierarchical

110 Cooperative Hierarchical Caching in Fog Networks

50 100 150 200 250 300 350 400

Cahce Size of F-AP

0

10

20

30

40

50

60

C
a
c
h

e
 H

it
 R

a
ti
o

Oracle

N-FLCH

m-ǫ-greedy

Thompson Sampling

Ramdom

Fig. 6.5 Cache hit ratio: N-FLCH vs Reference caching schemes

caching with cooperation between the BBU pool and F-APs. The four reference algorithms

are described as following:

• Oracle: Oracle algorithm gets the best cache hit ratio, as it has the perfect knowledge

of users’ requests.

• Random: Random algorithm randomly selects the contents to cache.

• m-ε-Greedy: m-ε-Greedy algorithm [123] is one of the multi-armed bandit algorithms.

The contents with the highest m requests will be cached with the probability of (1 - ε),

while the algorithm will randomly choose contents to cache, with the probability ε (0

< ε < 1).

• Thompson Sampling: Thompson Sampling [124] is another multi-armed bandit

algorithm. The contents with the highest reward will be cached, while the reward for

each content follows the beta distribution.

A real scenario is considered in this paper that users have unbalanced data due to their

different activities and behaviours.

6.4 Experimental Results 111

50 100 150 200 250 300 350 400

Cache Size of F-AP

0

10

20

30

40

50

60

70

C
a
c
h

e
 H

it
 R

a
ti
o

H-FLCH

V-FLCH

N-FLCH

Fig. 6.6 Cache hit ratio of the FLCH with different cooperative strategies (H-FLCH, V-FLCH,
N-FLCH)

We investigate the impact of cache size on the cache hit ratio for an F-AP without the

hierarchical cooperative caching (N-FLCH). The cache size of each F-AP varies from 50 to

400 contents. Fig. 6.5 shows that the cache hit ratios of all algorithms rise with the cache

size increasing. Oracle algorithm knows the perfect prior knowledge of users’ requests, so

it gets the best cache hit ratio. By contrast, Random algorithm gives the lowest cache hit

ratio. m-ε-Greedy achieves better performance than Thompson Sampling. It is due to the

fact that m-ε-Greedy studies the past user requests while Thompson Sampling follows the

beta distribution without considering the request history from users. N-FLCH outperforms

m-ε-Greedy and Thompson Sampling. The reason is that N-FLCH considers both the request

history of users and their context information.

Fig. 6.6 reveals that the higher cache hit ratio can be achieved by using the hierarchical

cooperative caching mechanism. N-FLCH only caches contents at F-APs, which gives the

lowest cache hit ratio compared to the hierarchical cooperative caching schemes V-FLCH

and H-FLCH. As shown in Fig. 6.6, the cache hit ratio of H-FLCH is higher than V-FLCH.

In H-FLCH, if the requested content is not stored in the local F-AP, the request will be sent

112 Cooperative Hierarchical Caching in Fog Networks

to neighbour F-APs, which will deliver the content to the requester if found in their caches.

V-FLCH allows a content to be fetched from the BBU cache through cooperation between

BBU and F-APs, which obtains the highest cache hit ratio as expected. When the cache size

of F-APs is 50, the cache hit ratios for N-FLCH, H-FLCH and V-FLCH reach 9%, 23% and

29%, respectively. With the cache size of F-AP increasing to 400, the cache hit ratios of

N-FLCH, H-FLCH and V-FLCH are 41%, 55% and 62%, respectively.

6.5 Summary

In this chapter, a novel federated learning based cooperative hierarchical caching scheme

(FLCH) for F-RANs is proposed. FLCH protects users’ privacy by utilising the emerging

federated learning framework. Through integrating the appended stacked autoencoder

and one-class collaborative filtering, FLCH is able to predict the context-specific content

popularity by utilising users’ request history and their context information. To further enhance

the cache hit ratio and reduce users’ latency, FLCH leverages the vertical and horizontal

cooperations between the BBU pool and F-APs. The experimental results demonstrate that

FLCH achieves higher cache hit ratio than other learning-based caching schemes, including

m-ε-Greedy and Thompson Sampling. Moreover, the proposed hierarchical cooperative

caching mechanism can further improve caching performance. Our work is a valuable step

towards intelligent and secure future networks.

Chapter 7

Conclusions and Future Work

With the increasing complexity of traffic, the proliferation of smart devices, and the diversifi-

cation of user requests, the load accumulation has aggravated the service pressures of the

current wireless networks. Edge caching has been considered as a promising approach to

reduce service latency, alleviate backhaul link congestion and satisfy the strict performance

requirements (e.g., low-latency) of emerging applications. Due to the limited cache capability,

the caching scheme need to be identified. Recent breakthroughs in ML facilitate the learning-

based caching scheme, which can effectively extract hidden features and representations

from users’ data. These can be used to accurately predict content popularity. FL is utilised to

fitting ML into the edge of networks and protect user privacy. In the following, a summary

of the research in this thesis is provided and several directions of future work are presented.

7.1 Conclusions

This thesis has presented new learning-based proactive caching schemes and federated

learning frameworks in 5G, IoV and F-RANs. To be specific, a communication-efficient

federated deep learning for proactive caching scheme is designed to reduce communication

cost in Chapter 3. To support high mobility of users, a mobility-aware caching scheme based

114 Conclusions and Future Work

on federated learning is exploited in Chapter 4. To ease reliance on the fixed central server,

eliminate the issue of hand-over between RSUs, a peer-to-peer federated learning based

caching scheme is described in Chapter 5. To maximise the utilisation of available caches

with edge nodes, a cooperative caching scheme based on federated learning is developed in

Chapter 6. The major achievements in this thesis are summarised as follows:

• A communication Efficient Federated learning based Proactive content Caching scheme

(EFPC) is designed. Based upon the federated learning framework, each user locally

trains a shared model by using their own data, and only uploads the parameters

of the model to the edge server for aggregation. This process can greatly protect

users’ privacy and largely reduce communication costs. In EFPC, we exploit the

one-class collaborative filtering based variational autoencoder model to predict content

popularity and then utilise it to make caching decisions to improve the cache hit ratio.

To further reduce communication costs, the 3LC data compression scheme is used in

EFPC to compress the upload parameters of the model. The performance of EFPC is

evaluated via experiments on a networking testbed with two real-world datasets. The

performance evaluation demonstrates that EFPC outperforms other caching schemes

such as LRU and m-ε greedy on cache hit ratio, and achieves a data compression ratio

up to 20-280×.

• A Mobility-aware Proactive edge Caching scheme based on Federated learning (MPCF)

is exploited. This new scheme enables multiple vehicles to collaboratively learn a

global model for predicting content popularity with the private training data distributed

on local vehicles. MPCF also employs a Context-aware Adversarial AutoEncoder to

predict the highly dynamic content popularity. Besides, MPCF integrates a mobility-

aware cache replacement policy, which allows the network edges to add/evict contents

in response to the mobility patterns and preferences of vehicles. MPCF can greatly

improve cache performance, effectively protect users’ privacy and significantly reduce

7.1 Conclusions 115

communication costs. Experimental results demonstrate that MPCF outperforms other

baseline caching schemes in terms of the cache hit ratio in vehicular edge networks.

• A peer-to-peer federated learning based proactive caching scheme (PPFC) is proposed,

where the global prediction model is trained from data scattered at vehicles to mitigate

the privacy risks. In our proposed scheme, a vehicle acts as a parameter server to aggre-

gate the updated global model from peers, instead of an edge node. A dual-weighted

aggregation scheme is designed to achieve high global model accuracy. Moreover, to

enhance the caching performance, a Collaborative Filtering based Variational AutoEn-

coder model is developed to predict the content popularity. The experimental results

demonstrate that our proposed caching scheme largely outperforms typical baselines,

such as Greedy and Most Recently Used caching.

• A Federated Learning based Cooperative Hierarchical Caching scheme (FLCH) is

developed, which keeps users’ data locally and employs users’ devices to train a

shared learning model for content popularity prediction. FLCH exploits horizontal

cooperation between neighbour F-APs and vertical cooperation between the baseband

unit (BBU) pool and F-APs to cache contents with different degrees of popularity. The

simulation experiments are conducted to evaluate the performance of FLCH using

real-world datasets. The results demonstrate that FLCH outperforms certain learning-

based caching schemes in terms of the cache hit ratio, without aggregating users’ data

centrally. Moreover, the results show the effectiveness of the cooperative hierarchical

caching mechanism for FLCH.

116 Conclusions and Future Work

7.2 Future Work

7.2.1 Hybrid Caching Scheme

The gain from proactive caching highly depends on the accurate estimation of the content

popularity. Unwanted variation always exists during the training process. Moreover, both

noisy data quality and rapid changing circumstance can reduce the accuracy of prediction.

Thus, reducing the prediction errors and limiting the impact of unavoidable ones deserve

researching efforts.

Federated learning based method to predict future request patterns only expect to imple-

ment for limited times per day at a non-peak time, in order to provide convenience to users

and reduce communication costs. Due to the popularity of contents continuously changes and

new popular contents generate, the assumption of content request patterns becomes invalid

over time. Thus, the caching content at the cache should be updated dynamically to response

the sudden changing request patterns during the peak time. Reactive caching is based on the

recent locally observed request pattern to decide which contents need to be cached, which

can react the sudden changing quickly.

An adaptive cache replacement policy should be designed that is interoperable with

traditional reactive cache policy, such as LRU. The designed cache replacement policy is

demonstrated in Fig. 7.1. The caching storage can be separated into two parts. The first part

is the fixed caching area where the cached contents are predicted by the ML based caching

scheme. Knowing content popularity in advance can proactively make decisions for storing

the N popular contents in order. The adaptive replacement policy will not implement in

this area, which avoids to evict the future popular contents. The second part is the flexible

caching area that the replacement policy adapts to update the content, in order to discover

the new popular contents. The priority queue is implemented in flexible area, which follows

the LRU policy to cache and evict the content effectively at set intervals. We consider the

7.2 Future Work 117

M most popular contents

Insert (enqueue) Remove (dequeue)

Fixed area: ML Flexible area: LRU

1 3 6 8 9

Fig. 7.1 Hybrid Caching Scheme

capacity of cache is N contents and a tunable parameter Q is to decide the size of these

two parts. We assume that Q and N−Q represent the fixed area size and flexible area size,

respectively. Using this adaptive method to determine the caching contents would adapt new

popular contents and leverage the predicted contents to increase cache hit ratio. It conducts

an adaptive trade-off between predicted results and recency of users’ requests.

7.2.2 Cooperative and Hierarchical Federated Learning

A hierarchical FL scheme in 5G and Beyond (5GB) system should be developed for con-

ducting machine learning in resource-constraint UAV devices and preserving data privacy.

The traditional machine learning algorithms in 5GB AEC system require the uploading of

data in access devices to the UAV, which may cause privacy issues as the collected data

usually contain the personal behaviour or information. In addition, it is not efficient or even

feasible to store all the data and perform model training on UAV devices as the storage and

computation resources are limited. To address these challenges, we proposed a cooperative

and hierarchical FL scheme as shown in Fig. 7.2, which has the following four stages,

• The first stage: A baseline model is trained in the cloud based on the common dataset,

and then the model compression technologies are used to reduce the complexity of

baseline model to make it deployable on resource constrained end devices, UAV and

edge servers.

118 Conclusions and Future Work
En

d
De

vi
ce

s

Lo
ca

l T
ra

in
in

g

Cl
ou

d Fiber Link

Model Prune

Download Pruned Model

Download ModelUpload Model

Ed
ge

 N
od

es M
EC

 S
er

ve
r

UA
V

Download ModelUpload Model

M
od

el
 A

gg
re

ga
tio

n
UA

V
M

EC

∑
U2X

U2IU2X

∑

M
od

el
 In

it

Pruned mode
dissemination

Fig. 7.2 Hierarchical Federated Learning

• The second stage: After receiving the pruned model, an updated model will be trained

at the end device based on the local dataset, which will be uploaded to UAV through

U2X wireless channel.

• The third stage: With the prune model, similar to end devices, UAV trains a local

model based on the local dataset. Once receiving the models from end devices, UAV

aggregates the received models and the local model and send the aggregated model to

MEC server through U2I link for the global aggregation.

• The fourth step: The MEC server firstly pushes the pruned model to UAV and end

devices through V2I and V2X links. When receiving the updated models from UAVs,

MEC server will aggregates them to generated a global model, which will be sent back

to UAVs through U2I link for the next round model learning.

7.2 Future Work 119

Cl
us
te
r1

⨉

∑

∑

Cluster 1
Model

Cl
us
te
rN

⨉

Cluster N
Model

∑

∑

Global
Model 1∑

Global
Model 1

Global
Model 1

⨉

∑

⨉

∑ Global
Model 2

Cluster 1
Model

Cluster N
Model

Global
Model 2∑

∑

∑

∑

∑ Global
Model 2

…
 …

…
… …

…

C1
C1

C3

C5
C2

C3

C4

C5

C6

C2

C4

C6

Fig. 7.3 Asynchronous Federated Learning

7.2.3 Asynchronous Federated Learning

Mobile devices or vehicles may be offline or lag behind or dropout, due to the heterogeneous

communication and computing capabilities. As a result, the synchronized federated learning

frameworks may be extremely slow. To cope with this challenge, an asynchronous federated

learning framework needs to be designed.

As shown in Fig. 7.3, the asynchronous federated learning consists of three parts. The

first part is hierarchical clustering of local updates. Based on the similarity of users’ local

updates, users will be separated to few clusters. Once separated, the updates in each cluster

will be aggregated firstly in an Asynchronous manner. Each cluster starts to update model

parameters after receiving one to several users’ updates, without waiting for all users in this

cluster to finish. Next, the global model are constructed by aggregating models from all

clusters synchronously. In this way, the influence of users who dropout or lag behind during

the training process can be reduced. Because updates in each cluster are similar. Although

some users fail to upload their updates, others in this cluster upload successfully. The

expected updates still can be achieved. However, if in a cluster, no one uploaded successfully.

120 Conclusions and Future Work

In this situation, this cluster will continue to use the previous aggregated updates to attend

the global aggregation and a hyperparameter will be introduced. It is used to give the lower

weights for global aggregation. The method of aggregation I used is weighted averaging. The

third part in the designed FL is the residual-based parameter transmission. It is like a method

of model compression to reduce the communication costs. I will calculate the similarity

between new calculated updates and the previous one. If they are very close, the new updates

will not upload to the associated cluster. Otherwise, only different part will be uploaded to

the cluster.

References

[1] GMDT Forecast. Cisco visual networking index: global mobile data traffic forecast
update, 2017–2022. Update, 2017:2022, 2019.

[2] Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md Jalil Piran, Mai Le, Long Bao Le,
Won-Joo Hwang, and Zhiguo Ding. A survey of multi-access edge computing in 5G
and beyond: Fundamentals, technology integration, and state-of-the-art. IEEE Access,
2020.

[3] Jingjing Yao, Tao Han, and Nirwan Ansari. On mobile edge caching. IEEE Communi-
cations Surveys & Tutorials, 21(3):2525–2553, 2019.

[4] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-Li Zhang.
Deepcache: A deep learning based framework for content caching. In Proceedings of
the 2018 Workshop on Network Meets AI & ML, pages 48–53. ACM, 2018.

[5] Mohammed S ElBamby, Mehdi Bennis, Walid Saad, and Matti Latva-Aho. Content-
aware user clustering and caching in wireless small cell networks. In IEEE Inter-
national Symposium on Wireless Communications Systems, ISWCS, pages 945–949.
IEEE, 2014.

[6] Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah. A transfer learning approach for
cache-enabled wireless networks. In 2015 13th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 161–166.
IEEE, 2015.

[7] Ejder Bastug, Mehdi Bennis, and Mérouane Debbah. Living on the edge: The role
of proactive caching in 5g wireless networks. IEEE Communications Magazine,
52(8):82–89, 2014.

[8] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al.
Communication-efficient learning of deep networks from decentralized data. Proc. of
2016 AISTATS, pages 1–10.

[9] Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Fast and ex-
act analysis for lru caches. Proceedings of the ACM on Programming Languages,
3(POPL):1–29, 2019.

[10] Anselme Ndikumana, Nguyen H Tran, Ki Tae Kim, Choong Seon Hong, et al. Deep
learning based caching for self-driving cars in multi-access edge computing. IEEE
Transactions on Intelligent Transportation Systems. doi:10.1109/TITS.2020.2976572,
2020.

122 References

[11] Haoye Chai, Supeng Leng, Ming Zeng, and Haoyang Liang. A hierarchical blockchain
aided proactive caching scheme for internet of vehicles. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2019.

[12] Binbin Hu, Luoyang Fang, Xiang Cheng, and Liuqing Yang. In-vehicle caching
(iv-cache) via dynamic distributed storage relay (d2sr) in vehicular networks. IEEE
Transactions on Vehicular Technology, 68(1):843–855, 2018.

[13] Yin Zhang, Ranran Wang, M Shamim Hossain, Mohammed F Alhamid, and Mohsen
Guizani. Heterogeneous information network-based content caching in the internet of
vehicles. IEEE Transactions on Vehicular Technology, 68(10):10216–10226, 2019.

[14] Guanhua Qiao, Supeng Leng, Sabita Maharjan, Yan Zhang, and Nirwan Ansari. Deep
reinforcement learning for cooperative content caching in vehicular edge computing
and networks. IEEE Internet of Things Journal, 7(1):246–257, 2019.

[15] Jiayin Chen, Peng Yang, Feng Lyu, Xuemin Shen, et al. Cooperative edge caching
with location-based and popular contents for vehicular networks. IEEE Transactions
on Vehicular Technology, 2020.

[16] Ahsan Mahmood, Claudio Ettore Casetti, Carla Fabiana Chiasserini, Paolo Giaccone,
and Jérôme Härri. The rich prefetching in edge caches for in-order delivery to
connected cars. IEEE Transactions on Vehicular Technology, 68(1):4–18, 2018.

[17] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and
zipf-like distributions: Evidence and implications. In Eighteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, INFOCOM, volume 1,
pages 126–134. IEEE, 1999.

[18] Shailendra Rathore, Jung Hyun Ryu, Pradip Kumar Sharma, and Jong Hyuk Park.
Deepcachnet: A proactive caching framework based on deep learning in cellular
networks. IEEE Network, 33(3):130–138, 2019.

[19] Tingting Hou, Gang Feng, Shuang Qin, and Wei Jiang. Proactive content caching
by exploiting transfer learning for mobile edge computing. International Journal of
Communication Systems, 31(11):e3706, 2018.

[20] BN Bharath, Kyatsandra G Nagananda, and H Vincent Poor. A learning-based
approach to caching in heterogenous small cell networks. IEEE Transactions on
Communications, 64(4):1674–1686, 2016.

[21] Peng Cheng, Chuan Ma, Ming Ding, Yongjun Hu, Zihuai Lin, Yonghui Li, and Branka
Vucetic. Localized small cell caching: A machine learning approach based on rating
data. IEEE Transactions on Communications, 67(2):1663–1676, 2018.

[22] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous federated optimization.
arXiv preprint arXiv:1903.03934, 2019.

[23] Michael R Sprague, Amir Jalalirad, Marco Scavuzzo, Catalin Capota, Moritz Neun,
Lyman Do, and Michael Kopp. Asynchronous federated learning for geospatial
applications. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 21–28. Springer, 2018.

References 123

[24] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
Revisiting distributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

[25] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with
heterogeneous resources in mobile edge. In Proc. of 2019 ICC, pages 1–7. IEEE,
2019.

[26] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency. NIPS Workshop on Private Multi-Party Machine Learning, 2016.

[27] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya,
Ting He, and Kevin Chan. Adaptive federated learning in resource constrained edge
computing systems. IEEE Journal on Selected Areas in Communications, 37(6):1205–
1221, 2019.

[28] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization. In Advances in Neural Information Processing
Systems, pages 2737–2745, 2015.

[29] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar.
Slow and stale gradients can win the race: Error-runtime trade-offs in distributed sgd.
arXiv preprint arXiv:1803.01113, 2018.

[30] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. Staleness-aware async-sgd for
distributed deep learning. arXiv preprint arXiv:1511.05950, 2015.

[31] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated
multi-task learning. In Advances in Neural Information Processing Systems, pages
4424–4434, 2017.

[32] Shaohan Feng, Dusit Niyato, Ping Wang, Dong In Kim, and Ying-Chang Liang. Joint
service pricing and cooperative relay communication for federated learning. In 2019
International Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 815–820. IEEE, 2019.

[33] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min Chen.
In-edge ai: Intelligentizing mobile edge computing, caching and communication by
federated learning. IEEE Network, 33(5):156–165, 2019.

[34] Jianji Ren, Haichao Wang, Tingting Hou, Shuai Zheng, and Chaosheng Tang. Feder-
ated learning-based computation offloading optimization in edge computing-supported
internet of things. IEEE Access, 7:69194–69201, 2019.

[35] Yongfeng Qian, Long Hu, Jing Chen, Xin Guan, Mohammad Mehedi Hassan, and
Abdulhameed Alelaiwi. Privacy-aware service placement for mobile edge computing
via federated learning. Information Sciences, 505:562–570, 2019.

124 References

[36] Yuris Mulya Saputra, Dinh Thai Hoang, Diep N Nguyen, Eryk Dutkiewicz, Markus Do-
minik Mueck, and Srikathyayani Srikanteswara. Energy demand prediction with fed-
erated learning for electric vehicle networks. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6. IEEE, 2019.

[37] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mérouane Debbah. Distributed
federated learning for ultra-reliable low-latency vehicular communications. IEEE
Transactions on Communications, 68(2):1146–1159, 2019.

[38] Dongdong Ye, Rong Yu, Miao Pan, and Zhu Han. Federated learning in vehicular edge
computing: A selective model aggregation approach. IEEE Access, 8:23920–23935,
2020.

[39] Yunlong Lu, Xiaohong Huang, Ke Zhang, Sabita Maharjan, and Yan Zhang.
Blockchain empowered asynchronous federated learning for secure data sharing in
internet of vehicles. IEEE Transactions on Vehicular Technology, 69(4):4298–4311,
2020.

[40] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang. Differ-
entially private asynchronous federated learning for mobile edge computing in urban
informatics. IEEE Transactions on Industrial Informatics, 16(3):2134–2143, 2019.

[41] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian
Wachinger. Braintorrent: A peer-to-peer environment for decentralized federated
learning. arXiv preprint arXiv:1905.06731, 2019.

[42] Ribel Fares, Brian Romoser, Ziliang Zong, Mais Nijim, and Xiao Qin. Performance
evaluation of traditional caching policies on a large system with petabytes of data. In
IEEE 7th International Conference on Networking, Architecture and Storage, NAS,
pages 227–234. IEEE, 2012.

[43] Mohammad Ali Maddah-Ali and Urs Niesen. Fundamental limits of caching. IEEE
Transactions on Information Theory, 60(5):2856–2867, 2014.

[44] Arif Can Güngör and Deniz Gündüz. Proactive wireless caching at mobile user
devices for energy efficiency. In International Symposium on Wireless Communication
Systems, ISWCS, pages 186–190. IEEE, 2015.

[45] Wei Jiang, Gang Feng, and Shuang Qin. Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks. IEEE Transactions on Mobile
Computing, 16(5):1382–1393, 2016.

[46] Negin Golrezaei, Andreas F Molisch, Alexandros G Dimakis, and Giuseppe Caire.
Femtocaching and device-to-device collaboration: A new architecture for wireless
video distribution. IEEE Communications Magazine, 51(4):142–149, 2013.

[47] Hye J Kang, Kown Y Park, Kumin Cho, and Chung G Kang. Mobile caching policies
for device-to-device (d2d) content delivery networking. In 2014 IEEE conference on
computer communications workshops (INFOCOM WKSHPS), pages 299–304. IEEE,
2014.

References 125

[48] Konstantinos Poularakis, George Iosifidis, Vasilis Sourlas, and Leandros Tassiulas.
Exploiting caching and multicast for 5g wireless networks. IEEE Transactions on
Wireless Communications, 15(4):2995–3007, 2016.

[49] Xinwei Liu, Jiaxin Zhang, Xing Zhang, and Wenbo Wang. Mobility-aware coded
probabilistic caching scheme for mec-enabled small cell networks. IEEE Access,
5:17824–17833, 2017.

[50] Jad Hachem, Nikhil Karamchandani, and Suhas Diggavi. Content caching and delivery
over heterogeneous wireless networks. In IEEE International Conference on Computer
Communications, INFOCOM, pages 756–764. IEEE, 2015.

[51] Vasilios A Siris, Xenofon Vasilakos, and George C Polyzos. Efficient proactive
caching for supporting seamless mobility. arXiv preprint arXiv:1404.4754, 2014.

[52] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis, Andreas F
Molisch, and Giuseppe Caire. Femtocaching: Wireless content delivery through
distributed caching helpers. IEEE Transactions on Information Theory, 59(12):8402–
8413, 2013.

[53] Zhijie Chen, Hoshyar Mohammed, and Wei Chen. Proactive caching for energy-
efficiency in wireless networks: A markov decision process approach. In 2018 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[54] Sabrina Müller, Onur Atan, Mihaela van der Schaar, and Anja Klein. Context-aware
proactive content caching with service differentiation in wireless networks. IEEE
Transactions on Wireless Communications, 16(2):1024–1036, 2017.

[55] Avik Sengupta, SaiDhiraj Amuru, Ravi Tandon, R Michael Buehrer, and T Charles
Clancy. Learning distributed caching strategies in small cell networks. In IEEE
International Symposium on Wireless Communications Systems, ISWCS, pages 917–
921. IEEE, 2014.

[56] Sabrina Müller, Onur Atan, Mihaela van der Schaar, and Anja Klein. Smart caching in
wireless small cell networks via contextual multi-armed bandits. In IEEE International
Conference on Communications, ICC, pages 1–7. IEEE, 2016.

[57] Pol Blasco and Deniz Gunduz. Learning-based optimization of cache content in a
small cell base station. In IEEE International Conference on Communications, ICC,
pages 1897–1903. IEEE, 2014.

[58] SM Shahrear Tanzil, William Hoiles, and Vikram Krishnamurthy. Adaptive scheme
for caching youtube content in a cellular network: Machine learning approach. Ieee
Access, 5:5870–5881, 2017.

[59] Binqiang Chen and Chenyang Yang. Caching policy optimization for d2d communica-
tions by learning user preference. In 2017 IEEE 85th Vehicular Technology Conference
(VTC Spring), pages 1–6. IEEE, 2017.

[60] Milad Hashemi, Kevin Swersky, Jamie A Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. Learning memory access
patterns. arXiv preprint arXiv:1803.02329, 2018.

126 References

[61] Khai Nguyen Doan, Thang Van Nguyen, Tony QS Quek, and Hyundong Shin. Content-
aware proactive caching for backhaul offloading in cellular network. IEEE Transac-
tions on Wireless Communications, 17(5):3128–3140, 2018.

[62] Khai Nguyen Doan, Thang Van Nguyen, Hyundong Shin, and Tony QS Quek. Socially-
aware caching in wireless networks with random d2d communications. IEEE Access,
7:58394–58406, 2019.

[63] Lixin Li, Yang Xu, Jiaying Yin, Wei Liang, Xu Li, Wei Chen, and Zhu Han. Deep
reinforcement learning approaches for content caching in cache-enabled d2d networks.
IEEE Internet of Things Journal, 7(1):544–557, 2019.

[64] Kyi Thar, Nguyen H Tran, Thant Zin Oo, and Choong Seon Hong. Deepmec: Mobile
edge caching using deep learning. IEEE Access, 6:78260–78275, 2018.

[65] Wei Wang, Ruining Lan, Jingxiong Gu, Aiping Huang, Hangguan Shan, and Zhaoyang
Zhang. Edge caching at base stations with device-to-device offloading. IEEE Access,
5:6399–6410, 2017.

[66] Hao Zhu, Yang Cao, Wei Wang, Tao Jiang, and Shi Jin. Deep reinforcement learning
for mobile edge caching: Review, new features, and open issues. IEEE Network,
32(6):50–57, 2018.

[67] Fan Jiang, Zeng Yuan, Changyin Sun, and Junxuan Wang. Deep q-learning-based
content caching with update strategy for fog radio access networks. IEEE Access,
7:97505–97514, 2019.

[68] Wei Jiang, Gang Feng, Shuang Qin, Tak Shing Peter Yum, and Guohong Cao. Multi-
agent reinforcement learning for efficient content caching in mobile d2d networks.
IEEE Transactions on Wireless Communications, 18(3):1610–1622, 2019.

[69] FangYuan Lei, QinYun Dai, Jun Cai, HuiMin Zhao, Xun Liu, and Yan Liu. A proactive
caching strategy based on deep learning in epc of 5g. In International Conference on
Brain Inspired Cognitive Systems, pages 738–747. Springer, 2018.

[70] Wei Jiang, Gang Feng, Shuang Qin, and Ying-Chang Liang. Learning-based coop-
erative content caching policy for mobile edge computing. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2019.

[71] Jianbin Chuan, Li Wang, and Ruqiu Ma. Machine learning based popularity regenera-
tion in caching-enabled wireless networks. In 2019 IEEE 30th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pages
1–6. IEEE, 2019.

[72] Srikanth Bommaraveni, Thang X Vu, Satyanarayana Vuppala, Symeon Chatzinotas,
and Björn Ottersten. Active content popularity learning via query-by-committee for
edge caching. In 2019 53rd Asilomar Conference on Signals, Systems, and Computers,
pages 301–305. IEEE, 2019.

[73] Zhiwen Hu, Zijie Zheng, Tao Wang, Lingyang Song, and Xiaoming Li. Roadside
unit caching: Auction-based storage allocation for multiple content providers. IEEE
Transactions on Wireless Communications, 16(10):6321–6334, 2017.

References 127

[74] Ruizhou Ding, Tianyu Wang, Lingyang Song, Zhu Han, and Jianjun Wu. Roadside-
unit caching in vehicular ad hoc networks for efficient popular content delivery. In
Proc. of 2015 WCNC, pages 1207–1212. IEEE, 2015.

[75] Zhou Su, Yilong Hui, Qichao Xu, Tingting Yang, Jianyi Liu, and Yunjian Jia. An edge
caching scheme to distribute content in vehicular networks. IEEE Transactions on
Vehicular Technology, 67(6):5346–5356, 2018.

[76] Ahsan Mahmood, Claudio Casetti, Carla-Fabiana Chiasserini, Paolo Giaccone, and
J Harri. Mobility-aware edge caching for connected cars. In Proc. of 2016 WONS,
pages 1–8. IEEE, 2016.

[77] Neeraj Kumar and Jong-Hyouk Lee. Peer-to-peer cooperative caching for data dissem-
ination in urban vehicular communications. IEEE Systems Journal, 8(4):1136–1144,
2013.

[78] Sangsha Fang and Pingzhi Fan. A cooperative caching algorithm for cluster-based
vehicular content networks with vehicular caches. In Proc. of 2017 Globecom GC
Wkshps, pages 1–6. IEEE, 2017.

[79] Gang Deng, Liwei Wang, Fengchao Li, and Rere Li. Distributed probabilistic caching
strategy in vanets through named data networking. In Proc. of 2016 INFOCOM
WKSHPS, pages 314–319. IEEE, 2016.

[80] Lin Yao, Ailun Chen, Jing Deng, Jianbang Wang, and Guowei Wu. A cooperative
caching scheme based on mobility prediction in vehicular content centric networks.
IEEE Transactions on Vehicular Technology, 67(6):5435–5444, 2017.

[81] Junchao Ma, Jiahuan Wang, Gang Liu, and Pingzhi Fan. Low latency caching
placement policy for cloud-based vanet with both vehicle caches and rsu caches. In
Proc. of 2017 IEEE Globecom GC Wkshps, pages 1–6. IEEE, 2017.

[82] Ke Zhang, Supeng Leng, Yejun He, Sabita Maharjan, and Yan Zhang. Coopera-
tive content caching in 5g networks with mobile edge computing. IEEE Wireless
Communications, 25(3):80–87, 2018.

[83] Sungjin Park, Seungmin Oh, Youngju Nam, Jaejeong Bang, and Euisin Lee. Mobility-
aware distributed proactive caching in content-centric vehicular networks. In Proc. of
2019 WMNC, pages 175–180. IEEE, 2019.

[84] Yousef AlNagar, Sameh Hosny, and Amr A El-Sherif. Towards mobility-aware
proactive caching for vehicular ad hoc networks. In Proc. of 2019 WCNCW, pages
1–6. IEEE, 2019.

[85] Mohamed E Gad, Sameh Hosny, Bassem Mokhtar, and Amr A El-Sherif. Hierarchical
proactive caching for vehicular ad hoc networks. In 2019 Novel Intelligent and
Leading Emerging Sciences Conference (NILES), volume 1, pages 150–153. IEEE,
2019.

[86] Zhe Zhang, Chung-Horng Lung, Marc St-Hilaire, and Ioannis Lambadaris. Smart
proactive caching: Empower the video delivery for autonomous vehicles in icn-based
networks. IEEE Transactions on Vehicular Technology, 2020.

128 References

[87] Lu Hou, Lei Lei, Kan Zheng, and Xianbin Wang. A Q-learning-based proactive
caching strategy for non-safety related services in vehicular networks. IEEE Internet
of Things Journal, 6(3):4512–4520, 2018.

[88] Zihui Zhu, Zhengming Zhang, Wen Yan, Yongming Huang, and Luxi Yang. Proactive
caching in auto driving scene via deep reinforcement learning. In 2019 11th Interna-
tional Conference on Wireless Communications and Signal Processing (WCSP), pages
1–6. IEEE, 2019.

[89] Zhengming Zhang, Yaoqing Yang, Meng Hua, Chunguo Li, Yongming Huang, and
Luxi Yang. Proactive caching for vehicular multi-view 3d video streaming via deep
reinforcement learning. IEEE Transactions on Wireless Communications, 18(5):2693–
2706, 2019.

[90] Cisco Visual Networking Index. Global mobile data traffic forecast update, 2017–2022
white paper. Cisco: San Jose, CA, USA, 2019.

[91] Gai Li, Zhiqiang Zhang, Liyang Wang, Qiang Chen, and Jincai Pan. One-class
collaborative filtering based on rating prediction and ranking prediction. Knowledge-
Based Systems, 124:46–54, 2017.

[92] Yang Chen, Xiaoyan Sun, and Yaochu Jin. Communication-efficient federated deep
learning with asynchronous model update and temporally weighted aggregation. arXiv
preprint arXiv:1903.07424, 2019.

[93] Aaron Howdle. Best broadband deals by upload speed.

[94] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight
and effective traffic compression for distributed machine learning. arXiv preprint
arXiv:1802.07389, 2018.

[95] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Varia-
tional deep embedding: An unsupervised and generative approach to clustering. arXiv
preprint arXiv:1611.05148, 2016.

[96] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In Proceedings of the 8th IEEE
International Conference on Data Mining, ICDM, pages 502–511. IEEE, 2008.

[97] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[98] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and
context. ACM Transactions on Interactive Intelligent Systems, 5(4):19, 2016.

[99] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, NY, USA., 2007.

[100] Sahil Garg, Kuljeet Kaur, Georges Kaddoum, Syed Hassan Ahmed, and Dushantha
Nalin K Jayakody. SDN-based secure and privacy-preserving scheme for vehicular
networks: A 5G perspective. IEEE Transactions on Vehicular Technology, 68(9):8421–
8434, 2019.

References 129

[101] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Vehicular edge
computing and networking: A survey. arXiv preprint arXiv:1908.06849, 2019.

[102] Siming Wang, Zehang Zhang, Rong Yu, and Yan Zhang. Low-latency caching with
auction game in vehicular edge computing. In Proc. of 2017 ICCC, pages 1–6. IEEE,
2017.

[103] Zhaolong Ning, Kaiyuan Zhang, Xiaojie Wang, Mohammad S Obaidat, Lei Guo,
Xiping Hu, Bin Hu, Yi Guo, Balqies Sadoun, and Ricky YK Kwok. Joint computing
and caching in 5G-envisioned internet of vehicles: A deep reinforcement learning-
based traffic control system. IEEE Transactions on Intelligent Transportation Systems.
doi:10.1109/TITS.2020.2970276, 2020.

[104] Sherif M Abuelenin and Adel Y Abul-Magd. Empirical study of traffic velocity
distribution and its effect on vanets connectivity. In Proc. of 2014 ICCVE, pages
391–395. IEEE, 2014.

[105] Saleh Yousefi, Eitan Altman, Rachid El-Azouzi, and Mahmood Fathy. Analytical
model for connectivity in vehicular ad hoc networks. IEEE Transactions on Vehicular
Technology, 57(6):3341–3356, 2008.

[106] Sahil Garg, Kuljeet Kaur, Syed Hassan Ahmed, Abbas Bradai, Georges Kaddoum, and
Mohammed Atiquzzaman. Mobqos: Mobility-aware and QoS-driven SDN framework
for autonomous vehicles. IEEE Wireless Communications, 26(4):12–20, 2019.

[107] Tom Leighton. Improving performance on the internet. Communications of the ACM,
52(2):44–51, 2009.

[108] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. Adversarial autoencoders. Proc. of ICLR, pages 1–10, 2016.

[109] Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[110] Gerhard Hasslinger, Juho Heikkinen, Konstantinos Ntougias, Frank Hasslinger, and
Oliver Hohlfeld. Optimum caching versus lru and lfu: Comparison and combined
limited look-ahead strategies. In 2018 16th International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pages 1–6. IEEE,
2018.

[111] Chen Chen, Cong Wang, Tie Qiu, Mohammed Atiquzzaman, and Dapeng Oliver
Wu. Caching in vehicular named data networking: Architecture, schemes and future
directions. IEEE Communications Surveys & Tutorials, 2020.

[112] Yueyue Dai, Du Xu, Yunlong Lu, Sabita Maharjan, and Yan Zhang. Deep reinforce-
ment learning for edge caching and content delivery in internet of vehicles. In 2019
IEEE/CIC International Conference on Communications in China (ICCC), pages
134–139. IEEE, 2019.

[113] Xiaofeng Lu, Yuying Liao, Pietro Lio, and Pan Hui. Privacy-preserving asynchronous
federated learning mechanism for edge network computing. IEEE Access, 8:48970–
48981, 2020.

130 References

[114] Ameer Hamza Khan, Xinwei Cao, Shuai Li, Vasilios N Katsikis, and Liefa Liao.
Bas-adam: an adam based approach to improve the performance of beetle antennae
search optimizer. IEEE/CAA Journal of Automatica Sinica, 7(2):461–471, 2020.

[115] Haijun Zhang, Yu Qiu, Xiaoli Chu, Keping Long, and Victor CM Leung. Fog
radio access networks: Mobility management, interference mitigation, and resource
optimization. IEEE Wireless Communications, 24(6):120–127, 2017.

[116] Mahmoud Taghizadeh, Kristopher Micinski, Subir Biswas, Charles Ofria, and Eric
Torng. Distributed cooperative caching in social wireless networks. IEEE Transactions
on Mobile Computing, 12(6):1037–1053, 2013.

[117] Xiaofei Wang, Xiuhua Li, Victor CM Leung, and Panos Nasiopoulos. A framework
of cooperative cell caching for the future mobile networks. In Proceedings of the
48th Hawaii International Conference on System Sciences, HICSS, pages 5404–5413.
IEEE, 2015.

[118] Yuxia Niu, Xiaoqi Qin, and Zhi Zhang. A learning-based cooperative caching strat-
egy in d2d assisted cellular networks. In 2018 24th Asia-Pacific Conference on
Communications (APCC), pages 269–274. IEEE, 2018.

[119] Haijun Zhang, Yu Qiu, Keping Long, George K Karagiannidis, Xianbin Wang, and
Arumugam Nallanathan. Resource allocation in noma-based fog radio access networks.
IEEE Wireless Communications, 25(3):110–115, 2018.

[120] Qiang Li, Wennian Shi, Xiaohu Ge, and Zhisheng Niu. Cooperative edge caching
in software-defined hyper-cellular networks. IEEE Journal on Selected Areas in
Communications, 35(11):2596–2605, 2017.

[121] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi Zhang. A
hybrid collaborative filtering model with deep structure for recommender systems. In
Proceedings of the Association for the Advancement of Artificial Intelligence, AAAI,
pages 1309–1315, 2017.

[122] Diederik P Kingma and Lei Ba. J. adam: a method for stochastic optimization. In
Proceedings of the International Conference on Learning Representations, ICLR,
2015.

[123] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[124] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed
bandit problem. In Proceedings of Conference on Learning Theory, COLT, pages
39–1, 2012.

	Table of contents
	List of Abbreviations
	List of figures
	List of tables
	List of Publications
	1 Introduction
	1.1 Motivations and Challenges
	1.2 Research Aims and Objectives
	1.3 Contributions
	1.4 Outline of the Thesis

	2 Background and Literature Review
	2.1 Edge Caching
	2.1.1 Multi-access Edge Computing
	2.1.2 Fundamentals of Edge Caching
	2.1.3 Cache Placement
	2.1.4 Caching Policy
	2.1.5 Cache Replacement

	2.2 Artificial Intelligence
	2.2.1 Machine Learning
	2.2.2 Deep Learning

	2.3 Federated Learning
	2.3.1 The Framework of Federated Learning
	2.3.2 Unique Characteristics of Federated Learning
	2.3.3 Federated Learning and its applications in Wireless Networks

	2.4 Learning-based Edge Caching
	2.4.1 Edge Caching with Prior Knowledge of Content Popularity
	2.4.2 Edge Caching without Prior Knowledge of Content Popularity

	2.5 Summary

	3 Communication-Efficient Federated Learning based Proactive Caching
	3.1 Introduction
	3.2 System Architecture of EFPC
	3.3 Communication-Efficient Federated Learning for Edge Caching
	3.3.1 Communication-Efficient Federated Deep Learning
	3.3.2 One-Class Collaborative Variational Autoencoder

	3.4 Experiments and Discussion
	3.4.1 Testbed
	3.4.2 Performance Evaluation

	3.5 Summary

	4 Mobility-Aware Proactive Edge Caching for Connected Vehicles
	4.1 Introduction
	4.2 System Architecture
	4.3 Mobility-aware Federated Learning for Edge Caching
	4.3.1 Mobility-aware Federated Deep Learning
	4.3.2 Contextual-aware Adversarial Autoencoders for Prediction
	4.3.3 Mobility-aware Cache Replacement Policy

	4.4 Performance Results and Analysis
	4.4.1 Simulation Settings and Dataset
	4.4.2 Performance Evaluation

	4.5 Summary

	5 Peer-to-Peer Federated Learning based Edge Caching for Internet-of-Vehicles
	5.1 Introduction
	5.2 System Architecture
	5.3 Peer-to-Peer Federated Learning for Edge Caching
	5.4 Performance Evaluation
	5.4.1 Experiment Settings
	5.4.2 Experimental Results

	5.5 Summary

	6 Cooperative Hierarchical Caching in Fog Networks
	6.1 Introduction
	6.2 System Architecture
	6.3 Cooperative Hierarchical Edge Caching Scheme
	6.3.1 Federated Learning for Cooperative Hierarchical Edge Caching
	6.3.2 Stacked Autoencoder with One-Class Collaborative Filtering

	6.4 Experimental Results
	6.5 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Hybrid Caching Scheme
	7.2.2 Cooperative and Hierarchical Federated Learning
	7.2.3 Asynchronous Federated Learning

	References

