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Abstract 

The area of karst terrain in China covers 3.63×106 km2, with more than 40% in the southwestern 

region over the Guizhou Plateau. Karst is comprised of exposed carbonate bedrock over 

approximately 1.30×106 km2 of this area which suffers from soil degradation and poor crop yield. 

This paper aims at gaining a better understanding of the environmental controls on crop yield in 

order to enable more sustainable use of natural resources for food production and 

development. More precisely, four kinds of artificial neural network were used to analyze and 

simulate the spatial patterns of crop yield for 7 crop species grown in Guizhou Province, exploring 

the relationships with meteorological, soil, irrigation and fertilization factors. The results of spatial 

classification showed that most regions of high-level crop yield per area and total crop yield are 

located in the central-north area of Guizhou. Moreover, the three artificial neural networks used to 

simulate the spatial patterns of crop yield all demonstrated a good correlation coefficient between 

simulated and true yield. However, the Back Propagation network had the best performance based 

on both accuracy and runtime. Among the 13 influencing factors investigated: temperature (16.4%), 

radiation (15.3%), soil moisture (13.5%), fertilization of N (13.5%) and P (12.4%) had the largest 

contribution to crop yield spatial distribution. These results suggest that neural networks have 

potential application in identifying environmental controls on crop yield and in modelling spatial 

patterns of crop yield, which could enable local stakeholders to realize sustainable development and 

crop production goals. 
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1. Introduction 

Karst landscape covers vast areas of the globe, including over 30% of China. They are characterized 

by exposed carbonate rocks that weather rapidly and are highly susceptible to environmental change 



and natural erosion. In China the karst landscape in the southwest region has experienced rapid and 

intensive alterations to land use and associated ecosystem degradation over the last 50 years (Moore 

et al., 2017; Chen et al., 2018; Li et al., 2018). The intensification of agriculture since the late 20th 

century has led to a rapid deterioration of the soil, reflected in reduced crop production and the rapid 

loss of soil (Green et al., 2019). Under the Grain for Green Program (GGP), millions of hectares of 

farmland have been turned into non-crop vegetation in order to combat “rocky desertification” 

(Cheng et al., 2015). Ensuring both ecological and food security is a top priority for all stakeholders 

in China. 

 

The karst environment has unique characteristics, such as soluble rock, a calcium-rich and alkaline 

nature, soil scarcity, a double-layer structure, and water leakage through cavernous channels that 

rapidly link topsoil to groundwater. These environmental stresses impose an adverse influence on 

the growth of vegetations in the karst region (Yuan, 2001; Tong et al., 2017). Studying the ecosystem 

features of karst benefits from a comprehensive understanding of interactions among different 

element in critical zone (CZ) of this region. CZ observatories (CZOs) have thus been established in 

China’s karst region to gain a holistic understanding of soil formation from bedrock, water transport 

to the groundwater below and beyond, and the interactions with vegetation (Anderson et al., 2008; 

Lin et al., 2011; Banwart et al., 2012; Grant and Dietrich, 2017). This research can not only promote 

the knowledge of CZ processes, but also provides fundamental information that could be applied in 

practice to help local people by applying, adapting and developing decision support tools (DSTs) 

and help to guide practices such as crop production (Davis et al., 2005; Banwart et al., 2013; Menon 

et al., 2014; Rose et al., 2016). 

 

As agriculture is one of the largest drivers of land cover change (Scholes et al., 2018), it provides 

the focus of numerous CZOs across the globe (Guo and Lin, 2016; Kumar et al., 2018). In karst 

regions, food production is critically affected by the environment and is manifested as persistently 

poor and declining crop yield (Wang et al., 2004; Liu, 2006; Zhang et al., 2013). For example, karst 

rocky desertification and serious soil erosion from poor farming practice decreases land productivity 

(Nguyen et al., 1996; Tan et al., 2010; Yan and Cai, 2015). Up to now, the existing models for 

estimation of crop yield mainly contain statistical approaches and process-based models (including 

large scale global gridded crop models), which are not ideally parameterized for the unique and 

heterogeneous properties of karst landscapes (Zhao et al., 2016; Zhao et al., 2017). Process-based 

models have three limitations for their use in the complex karst landscapes. Firstly, the assumptions 

of relevant processes for crop growth varies greatly among different models, leading to different 

parameterization (Rötter et al., 2011). Secondly, the primary focus of most process-based models is 

on the aboveground crop biomass, whereas the belowground processes and soil parameters also play 

an important role in influencing or even controlling crop growth (Folberth et al., 2016), especially 

in karst systems where soil depth is often a limiting factor (Zhang et al., 2020). Lastly, the impact 

of climate change on the environmental factors affecting crop growth need to be included in the 

existing process-based models (Rosenzweig et al., 2014). Statistical approaches also have 

limitations in karst systems, with direct relationships between crop yield and meteorological data 

(or other environmental factors) underpinning predictions (Reynolds et al., 2000; Van Wart et al., 

2013; Wu et al., 2015), however, traditional models cannot tackle groups of different factors and 

crop parameters with non-linear relationships (Prasad et al., 2006; Kogan et al., 2018). In addition, 



the complexity and heterogeneity of karst landscapes, the importance of both sub-surface and 

surface soil and water resources, and the prevalence of small-scale subsistence farming in Guizhou, 

all contribute to limiting the applicability of existing crop models. In recent years, new technology 

such as artificial neural networks (ANNs) have been fast developed, which may provide cost-

effective and comprehensive solutions for better crop yield, environmental management and DSTs 

through their use of non-linear regressions and enabling interaction between different factors (Panda 

et al., 2010; Everingham et al., 2016; Chlingaryan et al., 2018). 

 

In this paper, we address the current limitations of crop modelling for karst landscapes by 

assembling spatial data of crop yield per unit (hereinafter called crop yield or YPA) and its 

influencing factors into artificial neural networks, in order to analyze and simulate the spatial 

patterns of crop yield for 7 crop species in Guizhou Province. It is the first time that multi-factorial 

analysis has been undertaken to simulate and explain spatial patterns of crop yield in this 

environment. The approach is made possible by the application of powerful and novel machine 

learning technology to precisely simulate the spatial patterns of crop yield. Four kinds of artificial 

neural network were used to: (1) detect and classify the spatial patterns of the crop yield in Guizhou 

Province, and (2) to simulate the spatial patterns based on different influencing factors and evaluate 

the factor contribution for each. This research is valuable for further developing powerful DSTs to 

guide land management and farming decisions in karst regions. The approach has also potential to 

be expanded to the research on crops of other complex landscapes in the world. 

 

2. Data and Methods 

2.1 Study Region 

Guizhou is located in southwest of China (Figure 1), with an area of 1.76×105 km2, and has a 

population of 36 million (2018), ranking 19th of all 34 provinces, with GDP (Gross Domestic 

Product) for Guizhou Province in 2018 ranking 25th among Chinese provinces in 2018, according 

to statistical data (NSBC, 2019). Guizhou Province is located at the heart of the East Asia Karst, 

one of the three largest areas of almost unbroken karst in the world (Sweeting, 1993; He et al., 1997). 

About 73% of the total area is underlain by carbonate rocks, and karst landforms are widely 

distributed (Su, 2002). In terms of geomorphology, Guizhou Province contains 87% plateau-

mountains, 10% hills and 3% basins (He et al., 1997). 



 

Figure 1. Location and administrative map and of Guizhou Province and the 9 prefectures 

 

In the study area, the most widely grown food crops are paddy rice, maize, wheat, soybean, and 

potato. According to government statistics, in the past 60 years, the total crop yield of Guizhou has 

increased over threefold, while the crop yield per unit planting area (t/ha) is two times greater than 

60 years ago, and therefore the economy has substantially grown. However, due to environmental 

limitations, the crop yield per unit planting area (t/ha) and income in this region is only 75.6% and 

61.1% of the national average over 2005-2007, respectively (NSBC, 2019). 

 

2.2 Data Resource 

In this study, we selected 7 main crop species that are produced in Guizhou, including five kinds of 

food crop (maize, potato, rice, soybean and wheat) and two commercial crops (rapeseed and 

groundnut). The relative crop specific data for the 7 species were compiled from the datasets of 

Earthstat, which included crop yield data, total harvested area and fertilization rates, alongside 

irrigation data from the MIRCA2000 dataset (Table 1). We also imported nine additional crop yield 

influencing factors including meteorological, topographic (digital elevation model – DEM) and soil 

properties data (Table 1). Prior to analysis, we first unified the spatial resolution of all data resources 

into 5’ by aggregation and resampling (cubic method) and extracted all dataset for year of 2000. 

Table 1. Introduction of data resources (*Crop-specific data) 

Data resource Category Region Temporal Coverage Spatial resolution 

WFDEI Meteorological data Global 1981-2014 0.5° 

GMTED2010 Global Grids DEM Global - 5’ 

HWSD Soil property Global 1995 5’ 

NCEP CPC Soil moisture Global 1948- 0.5° 

MIRCA2000* Irrigation Global Circa 2000 5’ 



Crop area* (Earthstat dataset) Crop area Global Circa 2000 5’ 

Crop production* (Earthstat dataset) Crop yield Global Circa 2000 5’ 

Fertilization rates* (Earthstat dataset) Fertilization Global Circa 2000 5’ 

 

2.2.1 Earthstat Datasets 

EarthStat provides geographic datasets that help solve the grand challenge of feeding a growing 

global population while reducing agriculture’s impact on the environment. EarthStat is a 

collaboration between the Global Landscapes Initiative at the University of Minnesota’s Institute on 

the Environment and the Land Use and Global Environment lab at the University of British 

Columbia. The datasets contain different kinds of agricultural data including harvested area, crop 

yield and fertilization rates (among them we selected the value of nitrogen-N, phosphorous-P, and 

potassium-K). The harvest area data was achieved by combining agricultural inventory data and 

satellite-derived land cover data (Ramankutty et al., 2008). The Earthstat data was produced by 

combining national, state, and county level census statistics with a recently updated global dataset 

of croplands on a 5’ by 5’ latitude/longitude grid. These two kinds of data depict, circa the year 2000, 

the area (harvested) and yield of 175 distinct crops of the world (Monfreda et al., 2008). 

 

2.2.2 Soil Property Data 

The Harmonized World Soil Database (HWSD, version 1.2) is a global soil database framed within 

a Geographic Information System (GIS) and contains up-to-date information on world soil resources 

(Nachtergaele et al., 2009, 2012; Shangguan et al., 2013). It provides a raster databases, with over 

15,000 different soil mapping units, which combines existing regional and national updates of soil 

information worldwide (Batjes and Bridges, 1994; Shi et al., 2004, 2006). In this study, we analyzed 

5 soil properties (soil bulk density, soil organic carbon, pH, soil cation exchange capacity and 

carbonate content), which were greatly proved influential on crop growth, to investigate the 

relationships between soil features and the spatial distribution of crop yield (Letey, 1958). 

 

2.2.3 Meteorological Data 

The European Union Water and Global Change project (http://www.eu-watch.org) provides a 

gridded European Union Water and Global Change-Forcing-Data-ERA-Interim (WFDEI) data 

product (Weedon et al., 2014; Ren et al., 2018). It contains 8 meteorological variables from 1979 

with a spatial resolution of 0.5°. In this study, we selected and calculated the annual average 

temperature and shortwave radiation (for the year of 2000) as influencing factors on crop yield for 

further analysis. 

 

2.2.4 Soil Moisture Data 

For soil moisture, we employed the product released by NOAA’s National Center for Environmental 

Prediction (NCEP) - Climate Prediction Center (CPC), with global spatial coverage at 0.5° 

resolution from 1948 to present (Ibrahim et al., 2015). The monthly dataset consists of a file 

containing monthly averaged soil moisture water height equivalents for the globe from 1948 

onwards. Values are model-calculated and not measured directly. Soil moisture is estimated by a 

one-layer hydrological model (Huang et al., 1996; Van den Dool et al., 2003). We extracted the data 

http://www.eu-watch.org/


for 2000 and calculated the annual average of soil moisture in Guizhou Province. 

 

2.2.5 Irrigation Information  

MIRCA2000 (monthly irrigated and rainfed crop areas around 2000) global dataset shows us the 

monthly irrigated and rainfed crop areas around the year 2000 that distinguishes irrigated and 

rainfed areas for 26 crop classes, among them 21 major crops and the crop groups of pulses, citrus 

crops, fodder grasses, other perennial crops, and other annual crops (Portmann et al., 2010). The 

dataset refers to the period 1998-2002 and has a spatial resolution of 5’ by 5’ (Neumann et al., 2011). 

 

2.2.6 DEM (Digital Elevation Model) 

The U.S. Geological Survey (USGS) and the National Geospatial-Intelligence Agency (NGA) have 

collaborated on the development of a notably enhanced global elevation model named the Global 

Multi-resolution Terrain Elevation Data 2010 (GMTED2010) that replaces GTOPO30 as the 

elevation dataset of choice for global and continental scale applications (Danielson and Gesch, 

2011). The GMTED2010 product suite contains 7 new raster elevation products for each of various 

spatial resolutions and incorporates the current best available global elevation data. The new 

elevation products have been produced using the following aggregation methods: minimum 

elevation, maximum elevation, mean elevation, median elevation, standard deviation of elevation, 

systematic subsample, and breakline emphasis (Carabajal et al., 2011; Athmania and Achour, 2014). 

Slope data was aggregated the variable to different spatial grains using several aggregation 

approaches (including the 5’ resolution we utilized) (Amatulli et al., 2018). 

 

2.3 Four Kinds of Artificial Neural Network 

Herein, we adopted four kinds of ANN including Self-organization Feature Map (SOFM), Back 

Propagation (BP), General Regression Neural Network (GRNN) and Recurrent Neural Network 

(RNN). Among them, SOFM was used to realize unsupervised classification of Guizhou Province 

into high-, medium- and low-level crop yield regions for the 7 crop species. Meanwhile, BP, GRNN 

and RNN were employed to simulate the spatial patterns of crop yield for the 7 species, by inputting 

the different influencing factors introduced above. In addition, we compared the simulation of these 

three networks by evaluating different indices of accuracy and runtime. Details of the networks are 

included in the supplementary material. 

 

Figure 2 shows the process of simulation of crop yield in Guizhou Province. Firstly, we input the 

four groups of influencing factors into the three kinds of ANN (BP, GRNN and RNN). Then we 

randomly assigned the pixels of crop yield into a training group (75% of the total number) and 

validation group (25% of the total number). Secondly, we trained the networks and simulated the 

crop yield for the 7 species, respectively. Lastly, we compared the simulation of the three networks 

by evaluating the indices of accuracy and the runtime of the networks. The indices chosen to 

evaluate the accuracy is R (correlation coefficient between true [observed] value and forecasted 

[simulated] value of the validation group), RMSE (Root Mean Square Error) and RME (Relative 

Mean Error), the latter two of which indicate absolute and relative deviation of the simulation, 

respectively (Equation 1, 2, where T and F represent true value and forecasted value, respectively; 

n is the total number of validation samples). 



                

n 2

i ii 1
(T F )

RMSE=
n

=
−

                (1) 

                  

n

i ii 1
T F

RSE= 100%
n

=
−




             (2) 

 

Figure 2. Process of simulation of crop yield using ANN 

3. Results 

3.1 Distribution of harvested area and agricultural management  

Distribution of harvested area for the 7 species in Guizhou shows spatial variation in different 

prefectures (Figure 3a). Among them, Zunyi and Bijie have the largest total area of the selected 

crops with value of 641,807 (ha) and 586,506 (ha), respectively. Both of them are located in the 

northwestern Guizhou Province. On the contrary, Guiyang, Liupanshui and Anshun have the 

smallest total harvested area, with value of 193,178 (ha), 137,444 (ha) and 193,631 (ha), respectively. 

In terms of different species, maize, rice and wheat have a largest total harvest area in Guizhou, 

which are 653,805 (ha), 754,212 (ha) and 545,407 (ha), respectively, accounting for 22.9%, 26.5% 

and 19.1% of total crop area. However, the proportion of harvested area for each crop species differ 

greatly across different prefectures. For example, the maize area in Bijie is 166,121 (ha), which 

accounts for 28.3% of total area. In contrast, the maize area in Qiandongnan is 52,897 (ha), which 

only accounts for 9.8% of total area. All crop species received fertilizer (N, P and K) application, 

whereas the quantity of irrigation was species dependent (Figure 3b). Rice received the highest 

percentage of irrigated area (monthly mean value 52.2%), while there was no irrigation for rapeseed 

in the study region. From the result of fertilization, we can see the crops which are commonly 

cultivated (including maize, rice and wheat) tend to have higher rate of fertilization. The total 

amount of fertilization for these three species is 204.3 (kg/ha), 224.9 (kg/ha) and 198.4 (kg/ha), 

respectively. Overall, N fertilizer contributed 74.5% of fertilizer use across all crop species, 

followed by P fertilizer (16.5%) and K fertilizer (9.0%). 



 

Figure 3. Harvested area (a), fertilization (b) and irrigation (b) of the 7 selected crop species in 

Guizhou province. Error bars indicates the standard deviation of value among all prefectures 

 

3.2 Relationship between slope and harvested area/yield 

Slope cropland is widely distributed in Guizhou Province. For all of the 7 crop species, most of the 

harvested area is concentrated in the slope region between 7.5° and 20°. Over 85% of harvested 

area is located on the slope larger than 7.5°. Among the 7 species, potato has the largest area with 

the slope larger than 7.5°, which accounts for 92.7% of the total harvest area. The slope of 15° is 

an important threshold for the implementation of the Grain for Green Program in many prefectures, 

with many local governments intending to remove slope cropland above 15° from production, to 

realize the goal of the project. From Figure 4 we can see that this management policy could impact 

on more than a quarter of all cropland, ranging from a minimum of 23.6% for rapeseed to a 

maximum of 30.1% for maize. 



 

Figure 4. Distribution of harvested area along slope gradient (dashed line in each subplot 

indicates the cumulative percentage of harvested area for the area of slope greater than the x axis 

value). 

Herein, we calculated the correlation coefficient between slope and yield per area/harvested area for 

the 7 crop species, based on pixel scale. As shown by figure 5, all cases show a significantly negative 

relationship, illustrating that with increasing slope, both yield and harvest area tend to decrease in 

the study region. Of the 7 species, slope has the greatest impact on the YPA of maize (with a 

significant R of -0.31) and the least impact on the YPA of rice (R = -0.05). However, for the total 

harvested area, the value of rapeseed decreases most distinctly with the increase of slope 

(corresponding R is -0.42), while the harvested area of potato has the least relationship with slope 

(corresponding R is -0.10) among all the crop species. 



 

Figure 5. Linear regression between slope and yield per area (YPA; left panel) and total harvested 

area (right panel) for the 7 crop species (with all linear correlation passing significance test (P < 

0.001), except for YPA and slope of rice (P = 0.03)).  

 

3.3 Classification using SOFM 

We used SOFM to classify Guizhou province into regions with different levels (high-, medium- and 

low- level) of crop production (including crop YPA, and total crop yield multiplied by corresponding 

harvested area; Figure 6) of the 7 species. The regions of high level YPA are mainly located in the 

central area of Guizhou Province, which occupies a large proportion of Guizhou and Tongren 

prefectures, and some of Bijie and Anshun. The prefectures of Qiannan and Qiandongnan have 

relatively large regions of low-level YPA, especially in the southeastern area. Some western and 

southwestern areas of Guizhou also have low-level characteristics. The result of total crop yield also 

shows similar spatial traits with crop YPA. Firstly, most regions of high-level are widely 

concentrated in the middle and northern area of Guizhou. Secondly, some prefectures like Qiannan 

and Qiandongnan also have large proportion of low-level regions, which are mainly located in the 

southern and southeastern area, as well as some other part located in the very eastern and northern 

area. However, different from that of crop YPA which has relatively large clustering of spatial 



distribution, the pixels with one level of total crop yield tend to be more heterogeneously distributed, 

resulting in the fragmentation of different levels in the whole region.  

 

Figure 6. Classifying Guizhou Province spatially into different metrics of crop production: (a) 

crop YPA; (b) total crop yield. 

 

3.4 Simulation of crop yield using three artificial neural networks 

Table 2 exhibits different indices to evaluate the result of three ANNs for simulating crop yield of 

the 7 selected species. We randomly divided the thousands of pixels within Guizhou into two groups 

of training (75%) and validation (25%) and subsequently calculated the indices separately. Overall, 

the three kinds of networks performed well, with the correlation coefficient of R exceeding 0.40 and 

passing the significance test (P < 0.001). However, there are differences among the three networks. 

BP always performs the best, with R ranging from 0.87 (groundnut) to 0.65 (soybean), while GRNN 

and RNN have lower accuracy of the simulation. Specifically, the MRE of GRNN and RNN is 

relatively large, indicating a greater deviation between forecasted value and true value. For example, 

MRE of GRNN and RNN in simulating crop yield of rapeseed is 25.6% and 28.1%, compared to 

17.8% for BP. Meanwhile, the accuracy of simulation for all the three networks is “crop-specific”, 

which means it tends to be easier to simulate the crop yield for some specific species. For example, 

the result of groundnut has the highest R of simulation within each network. On the other hand, if 

we compare the result of validation group and training group, it is obvious that the training group 

always have better accuracy in terms of R, RMSE and MRE. This is because during each iteration, 

the parameters of each network are adjusted based on the performance of simulation in the training 

group, instead of validation group. Lastly, the value of runtime for each network shows the 

efficiency of each simulation. GRNN has the smallest value (less than 1 second in most cases; Table 

2) of runtime while RNN has the largest (all are longer than 1 minute). Although the runtime for BP 

was longer for each simulation than GRNN, the difference was smaller than with RNN (on average 

less than 7 seconds; Table 2). Therefore, based on all the indices of simulation, BP made the best 

balance between accuracy and temporal efficiency. 

Table 2. Results of simulation of crop yield by three artificial neural networks 
  

Validation group Training group Time (s) Total pixel included 
  

R RMSE MRE R RMSE MRE 

BP groundnut 0.87 0.23 11.5% 0.90 0.19 10.1% 12.30 2287 

maize 0.75 0.61 14.2% 0.83 0.52 11.7% 5.84 2301 

potato 0.67 1.90 16.0% 0.72 1.69 14.0% 6.20 2301 

rapeseed 0.80 0.28 17.8% 0.87 0.19 12.3% 5.58 2301 



rice 0.81 0.70 8.9% 0.89 0.49 6.1% 5.38 1250 

soybean 0.65 0.27 16.5% 0.76 0.23 14.4% 5.88 2301 

wheat 0.74 0.26 12.4% 0.79 0.23 11.0% 5.55 2291 

Average 0.76  0.61  13.9% 0.82  0.51  11.4% 6.67  - 

GRNN groundnut 0.71 0.39 23.3% 0.72 0.38 23.4% 1.08 2287 

maize 0.64 0.83 21.3% 0.63 0.83 21.2% 0.36 2301 

potato 0.40 2.52 21.6% 0.38 2.39 21.7% 0.41 2301 

rapeseed 0.65 0.36 25.6% 0.67 0.33 23.8% 0.39 2301 

rice 0.59 1.13 14.6% 0.58 1.01 13.3% 0.19 1250 

soybean 0.46 0.31 21.3% 0.49 0.33 21.1% 0.25 2301 

wheat 0.46 0.35 17.8% 0.46 0.36 19.1% 0.30 2291 

Average 0.56  0.84  20.8% 0.56  0.81  20.5% 0.42  - 

RNN groundnut 0.73 0.32 17.6% 0.89 0.20 11.1% 96.95 2287 

maize 0.64 0.79 19.1% 0.86 0.47 13.9% 106.08 2301 

potato 0.42 2.40 20.8% 0.74 1.66 14.4% 100.75 2301 

rapeseed 0.80 0.39 28.1% 0.89 0.17 27.0% 93.70 2301 

rice 0.43 1.28 15.3% 0.93 0.41 5.4% 60.70 1250 

soybean 0.43 0.35 24.1% 0.80 0.21 14.7% 101.92 2301 

wheat 0.50 0.35 17.3% 0.80 0.23 11.4% 113.98 2291 

Average 0.56  0.84  20.3% 0.84  0.48  14.0% 96.30  - 

*All the value of R (correlation coefficient) with significant test result (P<0.001) 

 

3.5 Factor contribution 

Two methods (see supplementary material) of factor contribution in BP network were analyzed to 

assess the relative weighting of each variable on overall crop yield, both methods reveal similar 

results for the 7 selected crop species (Figure 7). Among the 13 factors, temperature (16.4%), 

radiation (15.3%), soil moisture (13.5%), fertilization of N (13.5%) and P (12.4%) had the largest 

contribution to crop yield, based on the average proportion of the two methods. In contrast, slope, 

irrigation and other soil properties have lower mean proportions of factor contribution, ranging from 

2.1% (slope) to 6.1% (pH). Compared with N and P fertilizer, K fertilizer has a relatively small 

impact on crop yield, with an average proportion of 3.3%. From Figure 7, we can also see there is 

some inter-species difference in terms of crop influencing factors. For example, for rice irrigation 

has the mean contribution of 12.2% on crop yield, compared to 0% contribution for rapeseed yield 

where no irrigation was recorded. 

 



Figure 7. Factor contribution on crop yield of 7 species (by using two methods shown in Equation 

4 and 5 in supplementary material, annotated as (1) and (2)). 

 

4 Discussion 

In late 1990s, the Grain for Green Program was first introduced in China (Song et al., 2015). The 

focus of the project has been on the potential restoration of ecosystem integrity by allowing low-

yielding cropland on slopes greater than 15° to revert to natural vegetation where synthetic nutrient 

input has been withdrawn (Zhang et al., 2015; Wang et al., 2017). However, there has been conflict 

between conservation and food security, with people blaming the policy as one of the main causes 

for the recent surge in grain prices and rising food imports (Xu et al., 2006). Therefore, how to put 

this program into practice rationally is vital important for both environment and stakeholders. In 

this study, the distribution of cropland along elevation gradient, relationship between slope and crop 

yield/area, as well as the spatial region of different yield levels, can all provide an important 

reference in terms of the practice of Grain for Green Program and other land use policy aspects. 

When we carry out the program and other land-use policy, we should consider 1) distribution of 

slope cropland, 2) difference distribution of cropland among species, 3) potential crop yield per unit 

in different regions. Firstly, as the spatial distribution of harvested area is not even across different 

prefectures in Guizhou, some of them like Zunyi and Bijie will be mostly affected by the 

implementation of the policy. Secondly, the percentage of slope cropland larger than 15° is greatest 

for maize, which is also one of the mostly widely cultivated crops in Guizhou. Specifically, 30.1% 

area of maize will be impacted due to the set goal of the policy. Thirdly, from the result of SOFM, 

the distribution of high-level region of crop YPA and total crop yield are not strictly consistent. Thus, 

replacing some croplands with low potential of crop yield (like southern Qianxinan) and developing 

additional croplands with high potential of crop yield (like eastern Tongren) may have more benefits 

in terms of total crop yield. 

 

In the past, some researchers have tried to use statistical approaches to simulate the spatial 

distribution of crop YPA (Drummond et al., 1995; Buchholz et al., 2004). Most of these studies were 

based on field-scale data. Many have relied on vegetation parameters such as NDVI (Normalized 

Difference Vegetation Index) or LAI (Leaf Area Index) as input factors, without adequately 

considering the influence of environmental factors (Doraiswamy et al.. 2004). Compared with 

previous research, this study included more environmental factors to simulate the spatial patterns of 

crop yield and examine their effect by evaluating the results of ANN. Actually, this work imported 

the new idea of critical zone into the study of yield crop from an angle of system science, considering 

multiple elements from underground (soil moisture and soil properties) to vegetation (crops of 7 

species) and atmosphere (meteorological factors), to research the interaction among different 

elements. In our study, we employed three artificial neural networks (BP, GRNN and RNN) to 

conduct the simulation and relevant analyses through the power of machine learning, and the 21 

networks (7*3) combined were built to finish the work. The interrelationship between crop yield 

and the environmental factors can be very complicated, as meteorological, lithological, soil and land 

management factors can all have an impact, most in nonlinear ways (Cassman, 1999; Godfray et al., 

2010). Therefore, ANN can bring their superiority into full play, improving the performance of 

simulation as well as the credibility of factor contribution analysis. Performance varied among the 

networks, with BP having the best accuracy while GRNN having the least time cost. Although RNN 



also had acceptable accuracy, it took much longer to finish the training process. Therefore, although 

the usage of ANN can greatly improve the simulation, consideration in choosing the most 

appropriate network to balance accuracy and time cost is still needed. 

 

In this study, we focused on the spatial distribution of crop yield and their relationship with other 

environmental factors, rather than research on the temporal features of these parameters. Indeed, 

from a temporal perspective, the change in meteorological conditions, or climate, can affect crop 

production through different pathways (Zhang et al., 2004; Poulter et al., 2009; Liang et al., 2019, 

2020). For example, warming during the day can increase or decrease net photosynthesis 

(photosynthesis-respiration), depending on the measured temperature relative to the optimum 

temperature. A warmer temperature at night, however, can raise respiration costs without any 

potential benefit for photosynthesis (Lobell and Gourdji, 2012). Furthermore, a rising temperature, 

along with greater atmospheric CO2, may favour the growth and survival of pests and diseases that 

target agricultural crops (Ziska et al., 2011). In addition, the response of crop yield to climate change 

varies with the spatial distribution pattern of the crop (Leng and Huang, 2017). From a spatial 

perspective, factor contribution indicated that in total 31.7% of crop yield variation was dependent 

on annual average temperature and radiation in the study region. Meanwhile, we also imported soil 

moisture (accounting for 13.5%) instead of rainfall for analysis, as rainfall may not be a direct driven 

factor on vegetation growth (Singh and Sasahara, 1981; Leuschner and Lendzion, 2009). On the 

whole, the climatic conditions provide a basic environmental background for the crop growth, which 

was shown by the significant influence on the spatial patterns of crop yield. 

 

Crops have two special features that are different from natural vegetation. Firstly, most of the crops 

grow in the topsoil, having no direct contact with the rock below. In contrast, natural vegetation, 

particularly in karst regions, can grow in thin soils that would not typically be cultivated for 

agriculture, and sometimes even in thicker soils their roots may penetrate into fissures in weathered 

rock (Kosmas et al., 2000; Stehfest and Bouwman, 2006). Previous research also revealed the 

importance of bedrock on natural vegetation growth (Zhang et al., 2013; Jiang et al., 2020). Besides, 

with natural vegetation, climate is considered the most important determinant of vegetation species 

and distribution at the global scale. In a given region, with no obvious differentiation of climatic 

conditions, geomorphic features and geological substrates may influence the spatial heterogeneity 

of natural vegetation at smaller scales, and this influence has been verified worldwide, especially 

for some lithophytes (Moore and Attwell, 1999; Yetemen et al., 2010; Dasti et al., 2013). Secondly, 

crop growth is greatly influenced by human activities, such as fertilization, irrigation and ploughing. 

All of these management practices have direct impacts on soil, changing its physical and chemical 

properties, potentially affecting processes from deep in the critical zone that are reflected in surface 

vegetation (Sanchez et al., 2002; Tugel et al., 2005; García-Orenes et al., 2010). For example, 

irrigation strategy may be manipulated to offset the impact of insufficient precipitation in a specific 

time period or to address climate change impacts, thus reducing the influence from meteorological 

factors (Schütze and Schmitz, 2010; Da Cunha et al., 2015). This impact of agricultural management 

(including irrigation and fertilization) was also verified by their proportion of factor contribution 

(31.6% combined). As the most applied fertilizer, nitrogen and phosphatic fertilizer (N and P) had 

the biggest impact, accounting for 13.5% and 12.4%, respectively. This function is suggested by 

obvious increase of total phosphorus, potassium and other elements in the soil (Zhang et al., 2007). 



In contrast, soil properties have less total impact on the spatial variation of crop yield (averaging 

21.0% for the 5 factors). Amongst them, pH had the greatest influence (averaging 6.1%), as it can 

impact the edaphic environment by 1) controlling the activity of microorganisms and 2) changing 

the solubility of metals (e.g., the potentially toxicity of Al, Mn, and Cd in soils), as well as the base 

saturation of soil that further restricts the growth of roots (Tyler et al., 1987; Falkengren-Grerup et 

al., 1987; Falkengren-Grerup, 1989).  

 

In natural vegetation, topographical variation has been shown to influence the spatial distribution of 

species in the karst region of southwest China (Zhang et al., 2010). Several studies have suggested 

that soil erosion was very severe in karst areas in southwest China due to the low soil formation rate 

from the carbonate bedrocks, steep sloping topography, high annual precipitation and poor 

vegetation cover (Lin and Zhu, 1999; Yan and Cai, 2015). Sloping cropland is widely distributed in 

the karst region, because of its climatic and geological features. As well as steep slopes, tillage 

practice can also accelerate nutrient and soil loss in the study region, causing the water, nutrient and 

productive capability to be reduced for crop growth (He et al., 1997; Peng and Wang, 2012). 

Therefore, tillage erosion and water erosion are two main factors in the reduction of crop yield on 

slopes, by transfer of soil materials from the upper to lower slope positions, increasing the soil depth 

and nutrients there (Su et al., 2010). However, this influence of topography is constrained by local 

meteorology. For example, with wet weather conditions, the difference of yield in low slope and 

high slope is distinctly larger than that with dry weather conditions (Kravchenko et al., 2000). This 

conclusion was also indicated by our study as karst region captures both humid climate and steep 

topography (Chen et al., 2009). From the results of linear regression, we observed a linear decrease 

in crop yield for all 7 species with increasing slope (P < 0.001). However, the factor contribution 

analysis following ANN suggested that the proportion of influence of slope is only 2.1% on average. 

This phenomenon shows that the impact of slope does not directly act on vegetation, but through 

changing soil water condition, nutrient content or some other elements inside soil. Therefore, when 

considering land use, we should not only focus on slope as the only index, but also include other 

soil variables which have more direct influence on crop growth, in order to achieve the best 

management practices. 

 

In future work using ANN with remote sensing data, additional optimization could be undertaken. 

Firstly, during the training process of the networks, we used default values in most circumstances 

for optimizing hyper-parameters for the number of iterations and hidden nodes, which may affect 

the accuracy of simulation. However, as the difference is relatively small we felt the default settings 

were appropriate with this dataset. Secondly, there are constraints with the available remote sensing 

data. For instance, the time attribute (when the data was collected) and spatial resolution of the data 

sources were different, which may also cause uncertainties in comparative analyses. For instance, 

soil property data was available for 1995, whereas other datasets used in this study were more recent. 

In addition, the unrestricted use of inorganic fertilization and the unique environmental conditions 

of karst soils have induced a great change to the mineralogy of the soil during the past 30 years 

(Richardson and Kumar, 2017), which could impact on the comparability of the soil property data. 

Lastly, the crop yield data could also be influenced by breed improvement. The introduction of 

hybrid maize has improved the yield distinctly over the last decades (Ping et al., 2007; Bai et al., 



2007). However, use of improved crop species varies greatly from county to county inside the 

province and, due to the data availability, this influence by change of breed was unavoidable.  

 

5 Conclusions 

The karst region of southwest China experienced rapid population and economic growth, producing 

many competing demands on the available soil and water resources that supports livelihoods and 

ensures food security. In this study, we utilized four kinds of ANNs to analyze and simulate the 

spatial patterns of crop yield and the relationships with meteorological factors, soil properties, 

irrigation and fertilization in the landscape of Guizhou Province. According to relevant analyses and 

results, we drew the following conclusions in this study: 

1) The negative relationship between crop yield and slope of cropland is distinct. Among all 

species, the yield of maize decreases the fastest with the increase of slope. Meanwhile, maize 

(as a staple crop) has the largest percentage of cropland over 15°, this should be considered with 

the application of Grain for Green Program. 

2) The spatial distribution of crop yield in Guizhou Province is uneven. Most high-level yield 

regions are located in the central-north area of Guizhou, despite some regions with high-level 

yield per area not being spatially consistent with those of total crop yield.  

3) All crop specific artificial neural networks have significant correlation between the forecasted 

crop yield and true value. Among them, BP has the best performance, balancing both accuracy 

and time cost. From the results of factor contribution analysis, temperature, radiation, soil 

moisture, N and P fertilizers have the most impact on crop yield of the selected 7 species. 

By combining analysis of processes occurring in the critical zone (from belowground environment 

to vegetation and atmosphere) with ANN modelling, the study has advanced the potential to improve 

and parameterize other models to simulate crop growth in karst region with high accuracy and 

credibility. Meanwhile, it can help to develop informed decision support tools that could be used to 

guide both regional land-use decisions and local farming practices to enhance crop productivity and 

further deliver societal good through farming practices that are more efficient, less polluting and 

more sustainable for food, land and water.  
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Supplementary Materials: Analyzing and simulating spatial patterns of crop 

yield in Guizhou Province based on artificial neural networks 

 

The four artificial neural networks (ANNs) utilized in our paper are introduced below.  

 

1. SOFM 

A Self-organization Feature Map is a major branch of artificial neural networks, which has self-

organizing and self-learning features (Chen et al., 2014). It is trained by unsupervised learning to 

produce a low-dimensional (typically two-dimensional), discretized representation of the input 

space of the training samples, called a map, and is therefore a method for performing dimensionality 

reduction. The advantage of SOFM is that it can preserve the topological properties of the input 

space by using a neighborhood function (Liu and Song, 2005; Tian et al., 2012). It has been widely 

used in classification and clustering analysis (Lin and Lin, 2006; Zhang et al., 2001).  

 

Figure S1. Structure of SOFM 

The SOFM network (Figure 1) consists of a fully interconnected array of neurons with a topology 



of only two layers; the input layer and the competition layer (Kohonen, 1982). All inputs are 

connected to each node on the network grid, and each grid node is an output node that is only 

connected to adjacent nodes. That is, the input received by each neuron is the same, and each node 

has two weights: 1) weight of the neuron's response to the external input; and 2) weight of the 

connection between the neurons (controlling the magnitude of the interaction between neurons; this 

can be zero). The training process is completed to adjust the weight of each node in the output layer 

until it meets the fixed terminal condition, in order to reflect inputs in lower dimensional space and 

to complete the work of classification. The specific steps of the SOFM are as follows (Kohonen and 

Honkela, 2007): 

(1) The weights in the network are initialized; each weight vector is given an initial value of a small 

random number and each node weight should take a different value. 

(2) A sample x is randomly selected as an input in the sample dataset. 

(3) The best matching unit is selected (completing the process). The weight vector that has the 

greatest similarity to the input vector x is selected as the winning unit, and similarity is judged 

by Euclidean distance, as shown below: 

c i ix W min x W− = −              （1） 

where c represents the winning unit and i is the sequence number for x and the weight vector. 

(4) Weights are updated until the terminal conditions are met, and the function for updating is as 

below: 
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             （2） 

where pi and pc are the positions of the output units of i and c, respectively, while σ is the width 

of the neighborhood function. 

 

2. BP 

Back Propagation (BP) is an algorithm widely used in the training of feedforward neural networks 

for supervised learning (Rumelhan and Hinton, 1986; Rumelhart et al., 1986). It is one of the most 

widely applied neural network models across different research disciplines (Wu et al., 2005). The 

algorithm uses the mean square error and gradient descent algorithm to achieve the correction of 

the network connection weights, and its goal is to minimize the difference between the mean square 

error of the actual output and the regulations output (Zhang and Lu, 2015).  

 

The structure of the BP network includes an input layer, hidden layer and output layer. The 

computational methodology consists of two parts: 1) the forward propagation of information and 2) 

the back propagation of error. In forward propagation, the input information is transmitted from the 

input to the output layer through the hidden layer. Through this process, the state of each layer of 

neurons only affects the state of the next layer of neurons. If the desired output is not obtained at 

the output layer, the error change value of the output layer is calculated and then returned to the 

propagation process. The error signal is transmitted back along the original connection path, through 

the network, to modify the weights of neurons until the desired target is reached (Wu et al., 2005; 

Wu et al., 2011). The different nodes in the network are connected by weights, the activation 

function and bias. The learning algorithm is running until accuracy of the model reaches the target 



level. Each run of the algorithm is described as an epoch and the resultant model can be 

characterized by the number of epochs needed to reach a solution. In this study, we imported one 

hidden layer with 10 nodes and used a Tan-Sigmoid (Equation 3) function and linear function to 

transfer values between the different layers. 
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Up to now, several methods have been raised to estimate the influence of each input variable and its 

contribution to the output in ANNs (Gevrey et al., 2003; Olden et al., 2004). Herein, two methods 

are used to calculate the factor contribution (FC) of each input factor. However, the process of 

normalization needs to be completed beforehand in case of disturbance from the different units. 

Firstly, factor contribution analysis is implemented by using the weights in each node: 

   

10

1

10

1 1

FC( ) , 1,...,

ij j

j

n

ij j

i j

w v

i i n

w v

=

= =



= =






           (4) 

where n is the total number of input factors, and w is the weight of the input layer, while v is the 

weight of the hidden layer. Secondly, both the weights between each node and the variation of the 

input parameters is considered in the factor contribution using the equation: 
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Where σi is the standard deviation of the Xi. 

 

3. GRNN 

General Regression Neural Network was first proposed by Donald F. Specht in 1991, which is one 

kind of Radial Basis Function Neural Network (RBFNN) (Specht, 1991). GRNN has strong 

nonlinear mapping ability, flexible network structure, high fault tolerance and robustness, which is 

suitable for solving nonlinear problems. It also has more advantages in approximation ability and 

learning speed compared with RBFNN, especially when the quantity of sample data is small. In 

addition, GRNN networks can also handle unstable data (Polat and Yıldırım, 2008; Tomandl and 

Schober, 2001). GRNN has similar structure with RBFNN, containing four different layers (input 

layer, pattern layer, summation layer and output layer).  

 

The number of neurons in the input layer is equal to the dimension of the input vector in the learning 

sample. Each neuron is a unit with simple distribution, and the input variables are directly passed to 

the pattern layer. The number of neurons in the pattern layer is equal to the number of learning 

samples n. Each neuron corresponds to a different sample. The transfer function of the neurons in 

the pattern layer is: 
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Accordingly, the output of neuron i is the exponential square of the squared Euclidean distance 



between the input variable and its corresponding sample X. The summation layer calculates the 

weighted sum of all neurons in the pattern layer. The weight between neuron i in the pattern layer 

and the neuron j is element j in output sample Yi. And the transfer function is: 
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The number of neurons in the output layer is equal to the dimension k of the output vector in the 

learning sample. Each neuron divides the output of the summation layer. The output of neuron j 

corresponds to the element j of the estimation result Y (X).  

 

4. RNN 

A Recurrent Neural Network is a class of artificial neural networks which also consist of three layers 

including input layer, hidden layer and output layer (Figure 2). In contrast to traditional feedforward 

neural networks, RNN have self-connected recurrent connections which model the temporal 

evolution (Mikolov et al., 2010; Li et al., 2016). The decision a recurrent net reaches at time step t-

1 affects the decision it will reach one moment later at time step t. Therefore, recurrent networks 

have two sources of input, the present and the recent past, which combine to determine how they 

respond to new data, much as we do in life. And the output response ht of a recurrent hidden layer 

can be formulated as follows: 

           t h xh t hh t 1 hh (W x W h b )−=  + +         (8) 

where Wxh and Whh are mapping matrices from the current inputs xt to the hidden layer h and the 

hidden layer to itself. bh denotes the bias vector. θh is the activation function in the hidden layer. 

 

Figure S2. Structure of RNN 
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