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A B S T R A C T   

Increased emphasis on the natural capital approach in the UK has led to greater demand for methods that link 
economic sectors with elements of natural capital, and that can provide evidence for sustainable management of 
the environment. However, factors describing the supply of benefits, and their links with economic sectors, are 
not well defined. 

This study develops a novel framework that investigates how the combination of different forms of capital 
(natural, financial, social, manufactured or human) provide a potential supply of benefits, and how changes in 
quality or extent of natural capital affects supply. Factors affecting the delivery of benefits are analysed, and 
indicators for each factor are selected. Indicators are ranked and weighted, and benefit supply is represented as a 
novel, composite index. The composite supply index is then linked as an input to a related economic sector. 

This framework is applied for the first time to four benefits from the marine environment in the UK: seafood, 
offshore wind energy, wildlife watching and water sports. The approach is compatible with national accounts, 
natural capital accounts, and established ecosystem service classifications. This study shows how linking eco-
nomic sectors with benefits can provide new evidence in support of marine management.   

1. Introduction 

The importance of integrated assessments for natural capital assets, 
ecosystem services (ES) and the value of environmental benefits has 
been well established (Hooper et al., 2019). Yet, most applications have 
been to terrestrial environments (Liquete et al., 2013), and there are 
significant data gaps which hinder integrative marine natural capital 
assessments. The marine and coastal environment provides unique 
benefits to humans and society. Energy, seafood, raw materials and 
recreational enjoyment are all ways in which it is used and enjoyed by 
humans. Realisation of these benefits relies on both natural and human 
systems, and within these systems, living and non-living elements. 
Benefits from the marine and coastal environment can also contribute to 
the economy. However, pressure from humans is degrading the quality 
and quantity of assets in the natural environment (Millenium Ecosystem 
Assessment, 2005; UK National Ecosystem Assessment, 2011), and the 
complexity of interactions between human and environmental systems 
only increase the difficulties of managing its use. The natural capital 
approach can be used to overcome these difficulties; environmental 

extent and condition are integrated into decision-making, as are the 
inter-dependencies between the environment, economy and society. 
Worldwide efforts have therefore been made to measure natural capital 
assets, monitor ongoing condition, link with ES, and measure benefits 
they can provide. 

Natural capital combines biotic organisms and non-living parts of the 
environment with ecological functioning, environmental processes, land 
mass, air and water (Costanza and Daly, 1992; Mace, 2019; Mortimer 
et al., 2017; Natural Capital Committee, 2014; Office for National Sta-
tistics, 2018a; United Nations, 2014a). Elements of natural capital 
working together supply ES, and produce benefits when combined with 
other forms of capital (i.e. human, social, manufactured, financial) 
(Costanza et al., 2014; Mace, 2019; Natural Capital Committee, 2017). 
Measuring assets is critical for the application of the natural capital 
approach (Natural Capital Committee, 2017) but no universally agreed 
upon methodology exists (Hooper et al., 2019). 

A consistent set of rules and principles is needed for all forms of 
accounting, to prevent related transactions being recorded on different 
bases, at different times or with different values, thus making accounting 
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information less useful (United Nations, 2014a). Approaches to 
measuring environmental assets, changes in the stock of assets, and the 
flow of materials or energy between the economy and the environment, 
are formally defined by the UN’s System of Environmental-Economic 
Accounting Central Framework (SEEA) (United Nations, 2014a). The 
SEEA applies financial accounting principles (i.e. those of the System of 
National Accounts (United Nations, 2009)) to the environment (Dickie 
and Neupauer, 2019). An additional guidance framework, Experimental 
Ecosystem Accounting (EEA), complements the SEEA (United Nations, 
2014b). The EEA includes separate accounts for ecosystem services, 
ecosystem extent, ecosystem condition and monetary assets. Natural 
capital accounts are an extension of ecosystem accounts defined under 
the EEA (Dickie and Neupauer, 2019; United Nations, 2014b). Assets 
defined within natural capital accounting have a wider scope than 
ecosystem assets, in that they also include environmental resources (e.g. 
materials and energy). Natural capital accounting (NCA), developed to 
measure assets and monitor change, record the condition of assets in 
terms of stocks and flows, in both monetary and non-monetary terms but 
the language and structure of NCA follows that of the SEEA, and is 
therefore aligned, and so fits with national accounting principles. 

Marine natural capital accounts have been developed in Australia 
(Australian Bureau of Statistics, 2017), Sweden (Steinbach, 2017), Costa 
Rica (Gutiérrez-Espeleta, 2017), the Netherlands (Ruijs et al., 2018) and 
the UK (Office for National Statistics, 2016a; Thornton et al., 2019). 
However, non-natural capital involved in producing benefits is not 
explicitly identified in the SEEA, EEA or NCA, because their objectives 
are to measure environmental assets, with manufactured and human 
forms of capital already accounted for within the production boundary 
of national accounts. In addition, the capacity to supply cultural services 
cannot be measured in the same manner as, for example, a physical 
‘stock’ of fish. The linkages between natural and other forms of capital 
that are crucial for benefit supply are therefore not reflected in NCA or in 

economic results, and it is difficult to make a link from assets to eco-
nomic production for all types of marine benefits. Initiatives such as 
asset and risk registers, which use indicators to measure the condition of 
assets, have therefore developed alongside, rather than as an integral 
component of, NCA (Hooper et al., 2019). 

Indices complement NCA by specifically acknowledging the contri-
bution all forms of capital to the supply of benefits, and aid under-
standing of ecosystem changes (Hattam et al., 2015). Examples include 
the Ocean Health Index (Halpern et al., 2012), Costa Rica’s Nature Index 
(Barton et al., 2014), and those from Canada (Alam et al., 2016) and the 
USA (Villamagna et al., 2014). Natural capital indicators have been 
particularly established in the United Kingdom (UK) (Ashley et al., 2018; 
Deane and Walker, 2018; McKenna et al., 2019; Scottish Natural Heri-
tage, 2019). As a result of these applications, and the government’s 
commitment to producing indicator sets and NCA (Curnow, 2019; HM 
Government, 2018; Natural Capital Committee, 2019, 2014; Office for 
National Statistics, 2018b, 2018c, 2015; Sunderland et al., 2019; The 
RSPB, 2017; Thornton et al., 2019), the UK was chosen as a case study 
for this research. 

There are still several shortcomings of existing approaches for ma-
rine NCA. Firstly, estimates of natural capital condition at a national 
level refer to provisioning, regulating or cultural services in general 
(Scottish Natural Heritage, 2019; Tillin et al., 2019) or focus on 
marketable products rather than a full complement of ES (Office for 
National Statistics, 2018c, 2015). Secondly, many approaches have 
focussed on terrestrial environments, and as such existing methodolo-
gies are inadequate for marine and coastal environments (Hooper et al., 
2019). In addition, a shortage of marine natural capital valuations 
inhibit the use of ES values to support decision making (Börger et al., 
2014). Indeed, while the Natural Capital Asset Index for Scotland 
included four indicators for the condition of natural capital in coastal 
margin habitats, it has yet to be extended to the marine area (Scottish 

Fig. 1. A composite index for the supply of benefits.  
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Natural Heritage, 2019; Tillin et al., 2019). Thirdly, due to the com-
plexities of measuring and valuing them, the supply of recreation and 
cultural benefits have largely been absent from valuations (Hicks, 2011; 
Luisetti et al., 2014). Despite the development of numerous indices that 
include measures of the environment as aspects of human wellbeing, 
wealth or social progress (European Commission, 2016; Lange et al., 
2018; OECD, 2020; Social Progress Imperative, 2020), such indices are 
not sufficiently detailed to measure the factors of natural capital that are 
critical to realising environmental benefits. Lastly, few studies have 
linked natural capital with benefit supply and economic production. 
Production function methods, that recognise the role of natural re-
sources in the production of goods, can be used to explore how changes 
in benefit supply affect economic output (Barbier, 2007; Cordier et al., 
2014; Guerry et al., 2012; UK National Ecosystem Assessment, 2011). 
Although some studies have linked elements of natural capital to the 
economy (Klinger et al., 2018; Mancini et al., 2017), we find only two 
applications of natural capital integrated with economic production 
(Allan et al., 2019; Ochuodho and Alavalapati, 2016). In fact, there is 
little clarity on how this can be done on a national scale, or how it can be 
tailored to marine natural capital specifically. An approach linking the 
environment with the supply of benefits to economy would therefore 
improve the evidence base for marine NCA (Thornton et al., 2019, p. 
55). 

It is clear to us that a systematic approach is needed. This approach 
would describe the supply of marine benefits through the combination 
of all types of capital, and link them with economic production. This 
study therefore defined the capacity of a system to supply specific 
benefits through a combination of natural and human factors. To the 
authors’ knowledge, this is the first work that attempts to measure 
different environmental benefits by describing them as the product of 
different forms of capital: natural capital as described in environmental 
accounts or NCA, as well as inputs from within the production boundary 
of national accounts. Indicators were chosen for each of the factors and a 
composite index was calculated that described the capacity to supply 
benefits (Section 2). The related economic sectors were identified, and 
the economic contribution of these benefits was estimated. The appli-
cation of this approach was demonstrated with case studies from the UK 
for four marine benefits (Section 3). The implications and limitations of 
this approach are discussed in section 4. 

2. Methodology 

The approach used in this work was based on multi-criteria assess-
ment and composite indicators. It integrated the approaches used by 
three previous works: a composite natural capital index (Scottish Nat-
ural Heritage, 2019), an approach to determining supply-side indicators 
for cultural ES (Tratalos et al., 2016), and a multi-indicator framework 
for cultural benefits (Villamagna et al., 2014). Several major modifica-
tions were then made. Firstly, the marine and coastal environment was 
made a specific focus, as there are few examples of integrative frame-
works in the literature. Secondly, a detailed assessment of individual ES 
was undertaken (i.e. this approach went beyond the high-level cate-
gories of provisioning, cultural or regulatory services), with recreation 
and leisure services sub-divided into specific activities. Finally, it spe-
cifically included a mixture of financial, social, manufactured and 
human capital as well as natural capital. The approach is summarised in 
Fig. 1, and further details of each step are provided in the remainder of 
this section. 

2.1. Define temporal and spatial scales 

The temporal scale over which natural capital and ES are to be 
measured was defined, and set the context for the estimates. Temporal 
scale considered both the relevant time frame for the ES and benefits 
being measured, as well as the availability of economic data. Seasonal 
effects may also be a factor in defining temporal context; commercial 

fisheries may operate in all seasons, while some recreation activities 
occur primarily during the summer months. Most data sources used for 
this work were available annually, with the most recent and complete 
grey literature being from 2018. The estimates focused on changes in 
supply and economic contribution in the short-term in order to 
demonstrate the approach and to maximise the likelihood of available 
indicator data. Results for the case studies were therefore estimated 
annually over five years, from 2013 to 2018. The frequency with which 
data was available for specific indicators is discussed further in Section 
2.4. 

The system boundary within which services were supplied was also 
defined. This was broadly determined in relation to the ES being 
measured and relevant economic results. For example, international 
agreements and other management measures restrict the area of UK 
waters over which fish can be caught. However, a spatial boundary 
based on management or human-related factors does not necessarily 
match the boundary of a particular ecosystem or habitat type (i.e. fish 
prefer certain habitats, and are not restricted to the area over which the 
UK can fish). A well-defined inland boundary was also necessary, 
because some benefits also take place on the coastal margins but rely on 
aspects of marine natural capital in order to take place (e.g. surfing) 
(Eftec, 2015; United Nations, 2014b). Consequently, an approach that 
combined different habitat types with management, economic and leg-
islative boundaries was required. 

Spatial limits therefore combined; the outer limit of the UK Exclusive 
Economic Zone (EEZ) (Hooper et al., 2018) and the landside limit of 
coastal margin habitats based on UK National Ecosystem Assessment 
(2014) habitat classifications. This approach was chosen for its align-
ment with NCA (Office for National Statistics, 2016b), and because 
coastal margin habitats, such as sand dunes and cliffs, are included. 
Although coastal and marine habitats were included here, it was 
important be able to separate them because the coastal margins can be 
used for both marine and terrestrial activities (Natural Capital Com-
mittee, 2019). Marine and coastal margin NCA are also measured 
separately (Office for National Statistics, 2018b, 2016b; Thornton et al., 
2019). One shortcoming of the UKNEA typology is that it includes only 
two littoral habitats, while also combining splash-zone and intertidal 
habitats, which leads to a lack of clarity as to which are marine habitats 
and which are coastal (Hooper et al., 2019). The UKNEA typology was 
used for this study because coastal and marine habitats can be delin-
eated, while acknowledging that a different typology might be more 
appropriate if an analysis was required by habitat type. 

2.2. Define and measure ecosystem services and benefits 

When combined with other forms of capital, ES can provide benefits 
to people. For example, the presence of dolphins is an ES, but wildlife 
watching (which requires other capital inputs) is a benefit. Since the 
intention of this work was to link the environment to the economy, the 
first step was to define and characterise ES. The resulting benefits were 
then defined and linked from ES to production by an economic sector. 

Both abiotic and biotic components of natural capital supply ES 
(Culhane et al., 2018b; Haines-Young and Potschin-Young, 2018), and 
use of the environment for economic production can be extractive or 
non-extractive (den Butter and Hofkes, 1995; Klinger et al., 2018; Ruiz- 
Frau et al., 2015). This categorisation of ES by their biotic or abiotic 
nature and their extractive or non-extractive use was used as the initial 
framework by which to characterise them. Specific ES within these four 
categories were defined using the marine-adapted Common Interna-
tional Classification for Ecosystem Services (CICES) typology (Culhane 
et al., 2018a, 2018b; Haines-Young and Potschin-Young, 2018). Though 
many classification systems for ES have been developed, the CICES 
framework is comprehensive in that it includes both biotic and abiotic 
services, and the work by Culhane et al. (2018a, 2018b) adapted the 
biotic side of the typology specifically for marine ecosystems. 

Recreation and leisure activities have been customarily grouped 
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together as a single service in generic classification frameworks for ES, 
as it is impractical to list the many different recreation activities 
possible. However, the intention of this approach was to identify the 
factors needed for benefits from these services to be delivered, and link 
them with economic production. Therefore, detailed categorisation of 
recreation was required, that matched the same level of disaggregation 
as their related economic sectors. Recreation and leisure services were 
therefore split using the recreation activity types defined by the MMO 
(Marine Management Organisation, 2014, 2012). Marine ES are thus 
defined and categorised in Table 1. Since there was a direct link from the 
services, this classification was also applicable for the resulting benefits. 

The way each benefit was measured was defined, initially in non- 
monetary terms. In most cases, the units of the benefit will be similar, 
if not the same, as those used to measure the ES itself. For example, the 
stock biomass of wild fish (the ES) and the quantity of landed fish har-
vested from that stock (the benefit) can both be measured in tonnes. 
Following Barbier (2007) and Cordier et al. (2014), benefits were then 
identified as inputs to production for relevant economic products. A 
select number of benefits were linked as major inputs to production for 
economic sectors in the UK (Fig. 2) with their UK Standard Industrial 
Classification (SIC) code. The SIC code, synonymous with NACE codes in 
the EU, identifies and categorises economic activities in the UK econ-
omy. For example, participation in water sports could be linked to the 
production of ‘Sports, amusement and recreation services’ in the market 
economy (SIC 93). 

In determining the links between benefits from marine ES and eco-
nomic sectors, both direct and indirect economic contributions were 
considered. For example, tourists may pay for surfing lessons while 
visiting the coast, whereas residents may participate in surfing for free 
because they own their own equipment, but might contribute to the 
economy in other ways while taking a surfing trip (for example, through 
parking payments or food and drink purchase). Marine ES also provide 

non-market benefits that cannot be linked directly to production in the 
economy (for example, the health and wellbeing benefits of recreational 
activities) and these non-market benefits are not considered within this 
study. However, by initially defining non-monetary measures of the 
benefits (e.g. total numbers of participants in surfing) data relevant to 
wider non-market benefits was also captured. 

2.3. Identify factors that describe the flow of benefits 

. The next stage was to identify factors that describe a supply of 
environmental benefits. Factors are defined here as the attributes of 
natural, financial, social, manufactured or human capital that, in com-
bination, lead to the supply of environmental benefits. Factors can 
include habitat types, ecosystem conditions, ecological processes, cli-
matic conditions, geographical features, infrastructure, manufactured 
goods or human behaviours. This definition is approximately equivalent 
to the ‘factors determining supply’ defined in the draft revision of the 
EEA (United Nations Statistics Division, 2020), and is compatible with 
the approach applied in NCA for the UK marine and coastal environment 
(Thornton et al., 2019). For example, the principal natural characteristic 
in the provision of tidal energy is a tidal flow of sufficient strength. In 
addition, human, financial, social and manufactured capital are required 
for any benefits to be realised, which, to continue the tidal energy 
example, include the design, construction and operation of a tidal en-
ergy installation. Here, capacity derived from non-natural forms of 
capital that act as direct inputs necessary for the service to occur, or are 
necessary to realise the benefits, are referred to as human-derived cap-
ital (HDC) (Jones et al., 2016). For example, one form of HDC for the 
production of marine energy is the capacity of the tidal barrage or wave 
energy device. Thus, the factors for the supply of benefits from tidal 
energy are sufficient tidal speed or volume (natural capital) and the 
operational and planned capacity of marine energy installations (HDC). 

The factors of natural capital and HDC required in order to deliver 
specific benefits were identified from peer-reviewed research and grey 
literature. For example, surveys of visitors to beaches (Peña-Alonso 
et al., 2017), coastal environments (Elliott et al., 2018) or other habitats 
(Avila-Foucat et al., 2017; Jobstvogt et al., 2014) are available in the 
ecosystem services literature. Research describing the supply of com-
mercial or recreational fishing are also not uncommon. However, 
identifying factors of supply for some other benefits may be more 
difficult, and literature may need to be sourced more creatively. For 
example, geophysical attributes (Possner and Caldeira, 2017) and 
maintenance (Faulstich et al., 2011) are described in engineering pub-
lications as important factors in the operation of wind turbines, and 
were interpreted in this work as factors of benefit supply. However, data 
was not available for all of these factors (e.g. number of people that take 
part in recreation due to good weather), so a sub-set of measurable 
factors were selected for which data is available, and these were used to 
apply the method outlined below. The factors were linked to indicators 
and form the basis of the composite supply index. 

2.4. Select indicators, collect data and determine indicator weights 

Indicators for each factors were determined through a literature re-
view. Good quality indicators demonstrate a clear cause and effect 
relationship, while being measurable, understandable and linked to 
decision making (Kandziora et al., 2013; Niemeijer and de Groot, 2008). 
For example, fishing yield is an appropriate indicator for benefits from 
provisioning services provided by the marine ecosystem because it can 
be directly linked to human consumption (Maes et al., 2016). 
Conversely, phytoplankton biomass density is unsuitable as an indicator 
for food provision because it is not directly linked to human consump-
tion. However, it does support this ES and therefore indirectly contrib-
utes to the supply of food (Broszeit et al., 2017), and thus provides 
relevant information on the status of the underlying natural capital 
asset. Data availability is also an important factor when selecting 

Table 1 
Marine ecosystem services categorised by extractive and biotic properties. 
Adapted from (Culhane et al., 2018b, 2018a; Haines-Young and Potschin-Young, 
2018; Klinger et al., 2018; Marine Management Organisation, 2014, 2012).   

Extractive Non-extractive 

Biotic Wild caught seafood1 

Seafood from wild plants 
and algae 
Cultured seafood2 

Plants and algal seafood 
from aquaculture 
Biotic raw materials3 

Genetic material 
Biofuels4 

Biotic regulatory & maintenance services6 

Recreation & leisure; 
Angling 
Wildlife watching 
Scuba diving and snorkelling 
Rock-pooling 
Wildfowling 
Other biotic recreation & leisure services 
Cultural, spiritual & historic appreciation 
involving interaction with marine or coastal 
biota 7 

Abiotic Raw materials for 
construction (aggregates) 
Abiotic raw materials5 

Offshore oil and gas 
reserves 
Offshore wind energy 
Tidal and wave energy 

Abiotic regulatory & maintenance services 
Recreation & leisure; 
Beach pastimes and sports 
Coasteering and coastal walking 
Sport on water (paddle sports, sailing, wind- 
surfing, surfing or bodyboarding) 
Motor-boating and recreational boat trips 
Sea swimming 
Other abiotic recreation & leisure services 
Cultural, spiritual & historic appreciation 
involving interaction with marine and 
coastal landscape 

Notes 
1 Seafood from wild animals. 
2 Animal seafood from aquaculture. 
3 Raw materials and materials for agriculture and aquaculture. 
4 Plant, animal and algal based biofuels. 
5 Raw materials for food – e.g. salt, fresh water. 
6 Service numbers 10–23 (Culhane et al., 2018b). 
7 Service numbers 25–33 (Culhane et al., 2018b). 
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indicators. For example, detailed landing data for fish are collected 
regularly, but information about fish stocks (which bring about the 
supply of fish) are compiled at a much higher spatial scale and gathered 
less often. 

Where possible, existing national and international targets were used 
to guide the selection of indicators and to obtain the relevant data 
(Broszeit et al., 2017). For example, the Ocean Health Index and the 
OSPAR Commission monitor indicators relevant to the delivery of ma-
rine ES (Halpern et al., 2012; OSPAR, 2017a). Grey literature was also 
used (e.g. modelling environmental attributes for marine recreation 
(Marine Management Organisation, 2014)). Published economic data 
was used to determine the sectors that use marine ES, and to quantify the 
contribution of that sector to the wider economy. However, sources of 
data are likely to vary in timeliness; weather data can be available 
hourly, while macroeconomic indicators are published quarterly or 
annually in the UK by the Office for National Statistics (ONS). Some 
analyses are published with a lag of up to four years. In practice, there is 
likely to be an iterative process between the choice of indicator and 
assessment of data that is available to support it. 

Each indicator was weighted in terms of importance. The weighting 
of indicators in a composite index should be carefully considered, 
because the resulting index will be highly sensitive to the weights used. 
However, despite the wide application of composite indicators, no 
agreed methodology exists (Nardo et al., 2005). Indicators can be 
selected and weighted in a variety of ways; either informed by a survey, 
by statistical analysis (where relationships between the factors are 
analysed for their relationship with the composite outcome), or by using 
participatory approaches (using expert or stakeholder opinion to link 
factors with the composite outcome) (Alam et al., 2016; Blanc et al., 
2008; Nardo et al., 2005). Weighting derived using survey data or sta-
tistical analysis, such as regression analysis, factor analysis or principal 
component analysis, was preferred because observed data was used to 

relate factors to the outcome. In the absence of data that supports an 
alternative weighting, or if all indicators can be considered equally 
important, they can be given equal weighting. However, equal weight-
ing can obscure an absence of empirical data (Dobbie and Dail, 2013), 
and introduce statistical bias (Blanc et al., 2008). 

In this application, indicators were weighted using principal 
component analysis (PCA) (Gómez-Limón and Riesgo, 2009; Kotzee and 
Reyers, 2016; Nardo et al., 2005), using R Studio (version 1.456) and 
Stata 15 (RStudio, 2019; StataCorp, 2017). The indicators were 
inspected for normality using Lilliefors (Kolmogorov-Smirnov) test, and 
their suitability for PCA were tested using Barlett’s Test and the Kaiser- 
Meyer Olkin (KMO) statistic. The correlation between indicators was 
analysed using a correlation matrix. Components with an eigenvalue 
higher than 1 were retained. Factor loadings were generated for each of 
the indicators on the components, and a Kaiser Varimax rotation was 
used to reduce the number of highly loaded individual variables in the 
analysis (further details given in the Supplementary Material). 

2.5. Calculate composite index and link with economic contribution 

Once data for the indicators for each ES were obtained and the 
weightings determined, the composite ES index was calculated. The 
approach to calculating the composite index was based on guidance 
published by the OECD and the European Commission (Nardo et al., 
2005; OECD, 2008). This study applied normalisation and aggregation 
methods developed for sustainability indices (Gan et al., 2017; Luzzati 
and Gucciardi, 2015), because although there was no similar study 
available for applications to ES or natural capital, the indices for sus-
tainability similarly combine environmental and human-orientated in-
dicators. The methods used to calculate this index are also broadly 
similar to those used to compute the Social Progress Index, in that in-
dicators are first standardised, then weighted using principal component 

Fig. 2. Selected marine benefits as direct inputs to sectors of the marine economy. Source: Stebbings et al (2020). Adapted from Klinger et al. (2018) & Haines-Young 
& Potschin (2010). 
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analysis (PCA) (Social Progress Imperative, 2020; Stern et al., 2020). 
The direction of each indicator was first defined. For example, building 
developments might have an inverse (negative) effect on the supply of 
cultural ES and cause the composite index to decrease, whereas safe 
levels of pollutants might induce a positive effect and cause it to increase 
(Scottish Government, 2019). The indicators were then normalised, to 
convert them to the same unit and scale before they were aggregated 
(Dobbie and Dail, 2013; Luzzati and Gucciardi, 2015). Indicators were 
normalised using the percentage of annual differences over consecutive 
years from a base year (Nardo et al., 2005; Scottish Government, 2019); 
each individual indicator was transformed according to Equation (1), 
with normalised indicator Nt

i , absolute measurement of the indicator itat 
time t and absolute measurement in the base year i0; 

Nt
i =

it − i0

i0 × 100 (1) 

The resulting normalised indicator was dimensionless, and showed 
the annual change for each indicator rather than its absolute value. The 
base year was 2013, except for indicators with high levels of annual 
variability (e.g. weather variables) for which the 20 year average was 
used. In the case of existing international indicators (e.g. OSPAR targets) 
the closest baseline year to 2013 was used. 

Finally, the indices were aggregated. There are two broad ap-
proaches to aggregation for composite indices; (i) compensatory 
methods, where decline of one indicator can be compensated by the 
increase of another so that indicators for different factors can be 
substituted, or (ii) non-compensatory methods where substitution is 
unacceptable (Gan et al., 2017; Nardo et al., 2005). A non-compensatory 
approach was applied, under the assumption that natural capital in-
dicators were non-substitutable. For example, supply of seafood relies 
on stock biomass and fishing pressure, but if stock declines, an increase 
in effort might temporarily maintain supply, but an increase of the 
number of fishing boats cannot compensate for reduced environmental 
capacity in the long term. The indicators were aggregated to form the 
composite supply index St using a method adapted from the non- 
compensatory aggregation function by Pollesch & Dale (2015), given 
in the Supplementary Material. The sensitivity of the composite index to 
the weighting of each indicator was then tested by comparing the results 
under different aggregation scenarios; under equal weighing and under 
compensatory aggregation. 

Resource rent was chosen as the measure of economic contribution 
for benefits supplied by ES. Resource rent measures the gross return on 
an environmental asset based on the gross operating surplus of a related 
industry (United Nations, 2014a). The disaggregated sectors of the 
economy that specifically related to activity within the extent of marine 
and coastal natural capital were used as the basis of the analysis 
(Stebbings et al., 2020). The residual value resource rent was then 
estimated for each related sector using the gross operating surplus from 
published and disaggregated input–output tables, following the 
approach outlined by the ONS (Office for National Statistics, 2018c; 
Thornton et al., 2019). The composite index was reported for each year 
and compared to the resource rent. 

3. Case study 

A case study of four benefits was carried out to explore how they 
might be linked to economic sectors. Four benefits from Table 1 were 
chosen to represent each of the ES categories (biotic, abiotic, extractive, 
and non-extractive). These were, respectively, wild caught sea fish and 
shellfish1, offshore wind energy, wildlife watching and water sports. 
These benefits were chosen as case studies because of their links to 
tourism, fisheries and energy, which represent important sectors in the 

marine economy (Stebbings et al., 2020). 

3.1. Non-monetary measures of benefit flow 

The non-monetary flow of the four benefits is given in Table 2, with 
further details given in the Supplementary Material. 

3.2. Resource rent 

The supply of non-monetary benefits act as inputs to economic sec-
tors, based on those in Fig. 2. Although numerous benefits from ES 
contribute in a minor way to the marine seafood sector, it was assumed 
that seafood, electricity generated from offshore wind, water sports 
participation, and wildlife watching participation provide the most 
significant inputs to production of the marine seafood (SIC 03), offshore 
wind (SIC 35.1), sports services (SIC 93) and tour services (SIC 79) 
sectors respectively. 

The resource rents of the seafood, offshore wind, water sports and 
wildlife watching sectors were estimated by disaggregating them from 
other activities in the economic results. Seafood was disaggregated from 
fisheries and aquaculture, offshore wind from total electricity, water 
sports from sports services, and wildlife watching (in the marine and 
coastal environment) from tours and tour operators. The gross operating 
surplus of these sectors was estimated using the input–output table for 
2013–2015 (Office for National Statistics, 2017a, 2018d, 2019a) and 
used additional sectoral information from the Annual Business Survey 
(Office for National Statistics, 2017b). There were no published 
input–output tables available for 2016 to 2018, so the results were 
estimated using the annual sectoral growth for agriculture, production, 
and services (Office for National Statistics, 2019b, 2019c, 2019d). 
Resource rent was expressed in 2018 real terms using the gross operating 
surplus & mixed income deflator time series (Office for National Sta-
tistics, 2019e). The resource rent for each case study benefit is given in 
Table 3. 

Table 2 
Non-monetary flow of benefits from the marine and coastal environment. 
Source: (Hattam et al., 2015; Mills and Cummins, 2013; Office for National 
Statistics, 2019h; Peña-Alonso et al., 2017; Ryan et al., 2018; Whiteley et al., 
2016; Arkenford, 2018; Arkenford, 2017; Department for Business Energy In-
dustrial Strategy, 2019; Dunne, 2019; ICES, 2019; Marine Management Orga-
nisation, 2019; Office for National Statistics, 2019g; Radford et al., 2019; Sport 
England, 2017; England, 2016; Sport England, 2013; VisitBritain, 2019; Visit-
Britain, 2018a; VisitBritain, 2018b; VisitBritain, 2015)  

Benefit 2013 2014 2015 2016 2017 2018 

Wild caught seafood 
(Thousand tonnes) 

688 818 769 762 788 760 

Offshore wind energy (TWh) 11.5 13.4 17.4 16.4 20.9 26.7 
Water sports (Million days of 

participation) 
36.6 36.6 41.3 44.0 38.6 50.4 

Wildlife watching (Million 
days of participation) 

5.0 12.7 9.3 9.2 8.1 7.2  

Table 3 
Resource rent for selected marine and coastal benefits.  

Resource rent (£m, 2018 
prices) 

2013 2014 2015 2016 2017 2018 

Wild caught seafood 286 309 280 259 263 253 
Offshore wind energy 344 689 921 866 1,075 1,365 
Water sports 193 218 254 253 255 256 
Wildlife watching 60 59 65 65 65 65  

1 Hereafter referred to as ‘seafood’ 
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3.3. Composite index of supply 

3.3.1. Capacity to supply wild caught seafood 
The production of seafood was found to rely upon a number of fac-

tors that relate to natural capital; primary and secondary productivity 
(Eftec, 2015), pelagic and benthic habitat condition (Atkins et al., 2015; 
Eftec, 2015; Villamagna et al., 2014), species biomass (Atkins et al., 
2015; Eftec, 2015), water quality (Eftec, 2015; Villamagna et al., 2014), 
condition of spawning or nursery grounds (Eftec, 2015; Hooper et al., 
2017), and stock quality (Broszeit et al., 2017; Hattam et al., 2015; 
Villamagna et al., 2014). HDC that drive fishing pressure (i.e. the supply 
of seafood) include fishing effort (either vessel capacity or the number of 
fishers), vessel technology, access and the decision to fish as a result of 
the weather (Stephenson et al., 2018). 

A further review of the literature informed the selection of indicators 
that relate to natural factors (Broszeit et al., 2017; Capuzzo et al., 2018; 
DEFRA, 2019a; Hattam et al., 2015; CEFAS, 2019; DEFRA, 2019b; 
DEFRA, 2019c; ICES, 2019; McQuatters-Gollop et al., 2018; OSPAR, 
2017b; Radford et al., 2019). An inverse indicator was used to estimate 
the effect of water quality, i.e. the lower the input of hazardous sub-
stances into the marine environment, the higher the water quality. There 
was insufficient data available on the condition of spawning or nursery 
grounds, so no indicator for this factor was included. Likewise, there was 
insufficient data to populate a time series indicator for benthic habitat 
condition using the available EU Marine Strategy Framework Directive 
(MSFD) indicators, because only one measurement has been made for 
the period 2010–2015. Of the HDC indicators, only fishing effort could 
be estimated, based on the number of fishermen in the UK (Marine 
Management Organisation, 2019). The capacity to supply seafood was 
therefore measured by estimating eight indicators. The factors and in-
dicators, along with their calculated weights, are summarised in Table 4. 

The composite supply index for seafood was then calculated, and is 
shown with resource rent in Fig. 3. 

3.3.2. Capacity to supply offshore wind energy 
Wind speed is a critical requirement for supply of energy, but the 

Table 4 
Factors and indicators defining the capacity to supply seafood.  

Indicators that were not quantified, and hence have no weighting, are shown in italics 

# Type Factors Indicator Weight 

1 Natural Species biomass Main commercial species 
biomass (’000 tonnes). Based on 
MSFD 3.2.1 

4% 

2 Natural Secondary 
production 

Other fish species biomass (’000 
tonnes). Based on MSFD 1.2.1 

4% 

3 Natural Primary 
production 

Variation in PP (gC per m2 per 
year) 

4% 

4 Natural Habitat condition - 
pelagic 

Change in plankton biomass and 
abundance. Based on MSFD 
1.6.1 

13% 

5 Natural Productive 
capacity of 
commercial stock 

Percentage of stocks above 
levels of productive capacity. 
Based on JNCC Biodiversity 
Indicators B2 

53% 

6 Natural Biomass stock 
quality 

Percentage of large fish 
(Exceeding 50 cm). Based on 
MSFD 4.2.1 

5% 

7 Natural Water quality Inverse: Input of hazardous 
substances to the UK marine 
environment, as an index of 
estimated weight of substances 
per year. Based on JNCC 
Biodiversity Indicators B5b 

6% 

8 HDC Fishing effort Number of fishermen in the UK 12% 
9 Natural Habitat condition - 

benthic 
Inverse: Percentage of area with 
physical damage to predominant 
and special benthic habitats. Based 
on MSFD 1.6.1 

* 

10 Natural Nursery and 
spawning grounds 

Condition of nursery and spawning 
grounds for commercial fisheries  

11 HDC Accessibility Amount of fishing habitat that is 
accessible with fishing gear  

12 HDC Weather 
perception 

Decision to fish based on weather 
perception  

13 HDC Vessel technology Proportion of shipping vessels that 
have advanced navigational 
equipment   

Fig. 3. Composite supply index and resource rent for seafood.  
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energy of the wind is not realised without turbine construction and sub- 
marine cable laying, i.e. HDC is crucial in realising the benefits of wind 
energy. Factors and indicators for the supply for offshore wind energy 
were determined from wind energy literature: operational capacity, 
capacity factor, availability, wind quality and wind speed (Faulstich 
et al., 2011; Feng et al., 2010; Miller and Kleidon, 2016; Sedaghat et al., 
2017). Data to measure these indicators were sourced from the UK 
government reports (Department for Business Energy Industrial Strat-
egy, 2019; The Crown Estate, 2019; The Crown Estate, 2018; The Crown 
Estate, 2016; The Crown Estate, 2015). An indicator for wind speed that 
was suitable for energy generation was calculated based on a cut in- 
speed of 2.5 m/s and a cut-out speed of 25 m/s (Sedaghat et al., 
2017), using wind data for the Boulmer weather station on the North 
East coast of England (Met Office, 2019a). This station was chosen for its 
proximity to wind farms in the North Sea, and because the highly 
detailed wind records for the region were otherwise challenging to 
aggregate or average. The effect of reduced energy generation for tur-
bines at high density was not estimated because calculations indicated 
that offshore wind farms were not close to the calculated threshold 
(Miller and Kleidon, 2016). The factors and indicators, and their 
calculated weightings, are summarised in Table 5. 

The composite supply index for offshore wind energy was then 

calculated, and is shown with resource rent in Fig. 4. 

3.3.3. Capacity to supply water sports 
The factors relevant for the supply of wildlife watching activities 

were found to include accessibility, water quality, safety (including 
availability of rescue services), scenic quality, visitor congestion and 
environmental suitability (i.e. water depth, temperature, or wave 
height) (Bujosa et al., 2015; Paker and Vural, 2016; Paracchini et al., 
2014; Peña-Alonso et al., 2017; Portman et al., 2016; Vallecillo et al., 
2019; Villamagna et al., 2014). Data were not available to measure in-
dicators for visitor congestion, environmental suitability to water sports 
or for scenic quality. The remaining 4 indicators were determined from 
the literature and measured using publicly available data (DEFRA, 
2019a; European Environment Agency, 2014, 2015, 2016, 2017, 2018, 
2019; Met Office, 2019b; RNLI, 2015, 2018b, 2018a, 2019). Although 
the weather was found to be an important consideration in nature-based 

Table 5 
Factors and indicators defining the capacity to supply offshore wind energy.  

Indicators that were not quantified, and hence have no weighting, are shown in italics 

# Type Factors Indicator Weight 

1 HDC Operational capacity Capacity of installed offshore 
wind turbines 

39% 

2 HDC Productivity Mean capacity factor for 
operational turbines 

24% 

3 HDC Availability and 
reliability 

Functional availability of 
turbines 

23% 

4 Natural Weather Number of hours of suitable 
wind 

14% 

5 Natural Wind quality and 
congestion 

Reduced wind due to high density 
of turbines   

Fig. 4. Composite supply index and resource rent for offshore wind energy.  

Table 6 
Factors and indicators describing the capacity to supply water sports.  

Indicators that were not quantified, and hence have no weighting, are shown in italics 

# Type Factors Indicator Weight 

1 HDC Access Number of bathing water sites, 
marinas and yacht clubs 

13% 

2 HDC Safety and rescue Number of RNLI launch and 
beach stations 

22% 

3 Natural Bathing water 
quality 

Coastal bathing water quality 24% 

4 Natural Water safety Inverse: Hazardous substances in 
the marine environment 

29% 

5 Natural Adverse weather Inverse: Number of days of gales 
per year 

12% 

6 HDC Visitor congestion Number of visitors per unit area of 
coastal sites  

7 Natural Environmental 
suitability 

Marine environment suitable for 
water sports  

8 Natural Scenic quality Tourism attracted by scenic quality 
of the area   
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tourism (Verbos et al., 2018) and beach tourism (Peña-Alonso et al., 
2017), no specific studies were found to exist on the impact of weather 
on water sports. The effect of good weather was therefore excluded as an 
indicator, but an indicator for the number of days of storms in the UK 
each year was included (Haigh et al., 2016; McCarthy et al., 2016; Met 
Office, 2019b; Muchan et al., 2015; Sibley et al., 2015), based on the 
assumption that high winds would prevent recreation by boat. The 
number of water sports clubs could also have been included, but no data 
was found to support this indicator. The factors and indicators, along 
with their weights, are summarised in Table 6. 

The composite supply index for water sports was then calculated, and 
is shown with the resource rent in Fig. 5. 

3.3.4. Capacity to supply of wildlife watching benefits 
The factors relevant for the supply of wildlife watching activities 

were found to include site accessibility, safety, scenic quality, presence 
of birds and marine megafauna, visitor congestion and environmental 
suitability (in terms of water depth, temperature, or wave height) (Bentz 
et al., 2016; Marine Management Organisation, 2014, 2012; Paker and 
Vural, 2016; Paracchini et al., 2014; Peña-Alonso et al., 2017; Portman 
et al., 2016; Ryan et al., 2018; Villamagna et al., 2014). Indicators for 
wildlife watching were then determined based on the literature (Broszeit 
et al., 2017; DEFRA, 2019d; JNCC, 2020, 2019a, 2019b; Organisation, 
2014; McCarthy et al., 2016; OSPAR, 2017a; Pinn et al., 2018; RAMSAR 
and JNCC, 2015). Although the weather was found to be an important 
consideration in nature-based tourism (Verbos et al., 2018), no specific 
studies were found to exist on the impact of weather perception on 
wildlife watching. Similarly as for water sports, the effect of good 
weather was not included, but an indicator of adverse weather was 
estimated, based on the assumption that high winds would prevent 
wildlife watching trips by boat. 

Of these indicators, data was available to estimate the abundance of 
seabirds, days of adverse weather, marine mammal distribution, number 
of access points with rescue services, and number of cetacean encounters 
in the UK (DEFRA, 2019d; Hammond et al., 2018, 2013; Met Office, 
2019b; Muchan et al., 2015; ORCA, 2018, 2016; OSPAR, 2017a; Pinn 
et al., 2018; RNLI, 2018b, 2018a, 2015, 2019; Russell et al., 2019; Sibley 

et al., 2015; Thompson et al., 2019). A significant data gap was that 
there are an unknown number of wildlife tour operators, and this indi-
cator was excluded. No data was available for the effect of visitor 
congestion, accessibility, or scenic quality, and these were also excluded 
from further analysis. The factors and indicators, along with their 
calculated weights, are given in Table 7. 

The composite supply index wildlife watching was then calculated, 
and is shown with the resource rent in Fig. 6. 

3.4. Sensitivity analysis 

A sensitivity analysis was carried out to investigate the effect of 
different weighting and aggregation methods on the composite supply 
index. The results for each case study compared with both compensatory 
aggregation and equal weighted aggregation are given in Fig. 7. 

Fig. 5. Composite supply index and resource rent for water sports.  

Table 7 
Factors and indicators describing the capacity to supply wildlife watching.  

# Type Factors Indicator Weight 

1 Natural Abundance of 
birdlife 

Abundance and distribution of 
seabirds 

17% 

2 Natural Adverse weather Inverse: Number of days of 
gales 

45% 

3 Natural Abundance of sea 
life 

Abundance and distribution of 
marine mammals 

5% 

4 Natural Environmental 
suitability 

Area of protected marine and 
coastal habitat 

10% 

5 HDC Chance of seeing 
wildlife 

Cetacean sightings over effort 11% 

6 HDC Safety and rescue Number of RNLI launch and 
beach stations 

11% 

7 Natural Scenic quality Tourism attracted by scenic 
quality of the area  

8 HDC Congestion Inverse: Congestion of boats or 
viewing areas  

9 HDC Accessibility Number of wildlife tour operators  

Indicators that were not quantified, and hence have no weighting, are shown in 
italics. 
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Compensatory aggregation of seafood, offshore wind energy and 
water sports produced the same results as for non-compensatory ag-
gregation (7a, 7b & 7c), because the natural elements of the composite 
indicator did not limit the HDC elements. For example, the indicators for 
natural capital on the seafood index (indicators 1 to 7 in Table 4) 
increased between 2014 and 2018, and so did not limit the index result. 
However, had the measures of these indicators decreased over this time 
period, the index would have been limited by this factor. The opposite 
was true for wildlife watching (7d); weather factors and the absence of 
wildlife were not compensated for by HDC elements of benefit supply (e. 
g. the number of access points). Aggregation using equal weighting gave 
very different results depending on the data inputs, which highlighted 
further the problems of an equal weighting approach. Further explana-
tion is given in the Supplementary Material. 

4. Discussion 

4.1. Case study results 

The supply all four of the benefits in this study increased between 
2013 and 2018. As we anticipated, the results are highly sensitive to the 
index weightings and aggregation approaches. Although differing ap-
proaches to weighting and aggregation changed the rate of increased 
supply, the overall trend (i.e. positive) was the same for all aggregation 
approaches. The results for each benefit are now discussed in more 
detail. 

Capacity to supply seafood increased, but the resource rent for sea-
food declined in real terms, despite an increase in the volume of seafood 
being caught. The resource rent for each kilogram of seafood has 
therefore declined from £0.42 in 2013 to £0.33 in 2018. These differ 
from the results reported by CEFAS in the Initial NCA for the marine and 
coastal environment (Thornton et al., 2019), in both trend and magni-
tude. The resource rent estimated in this study was higher than that of 
Thornton et al., and our results show resource rent declining rather than 
increasing. There are two reasons for these differences; Firstly, the 

seafood sector was disaggregated from aquaculture and freshwater 
fisheries and found to have a higher operating surplus than the sector 
average (Office for National Statistics, 2019f), whereas previous ap-
proaches were based upon the fisheries and aquaculture sector as a 
whole. Secondly, additional ‘ecosystem costs’ specific to use of the 
resource had been previously included (Eftec, 2015; Thornton et al., 
2019), but data for these could not be estimated in this application. 

Capacity to supply wind energy increased due to the rapid expansion 
of offshore wind farm construction. The resource rent for offshore wind 
energy similarly increased, to £1,365 million in 2018. This result was 
lower than estimated by CEFAS (Thornton et al., 2019); our study used 
national accounts to estimate the contribution of offshore wind, as 
opposed to company level financial data used by CEFAS. Offshore wind 
energy has not been well defined in the ES literature with research ef-
forts concentrated on the effects that construction of turbines have on 
other services. This is possibly because no biotic element is involved in 
delivery of wind energy. However, abiotic ES provide important bene-
fits, and an approach to quantifying benefits from the marine area 
should not omit those flowing from abiotic resources. This case study 
could be further developed for other renewable energy technologies, 
and used to estimate the feedback effects of energy developments. 

Participation in water sports increased from 37 million days in 2013 
to 50 million days in 2018. The resource rent of this benefit also 
increased, along with the capacity for the benefit to be supplied. 
Combining the results for resource rent and non-monetary flows indi-
cated that on average, water sports participation generated £8 of 
resource rent per person per visit, with little inter-annual variation be-
tween 2013 and 2018. Participation in wildlife watching similarly 
increased: from 60 million days in 2013 to 65 million days in 2018. 
Resource rent for wildlife watching increased over this time but resource 
rent for wildlife watching declined from £12 per person per visit in 2013 
to £9 in 2018. The non-monetary flow and resource rent for these ben-
efits had not been estimated before, and highlights the importance of 
both natural capital and HDC to the realisation of recreation activities. 
However, the composite supply index for wildlife watching omits an 

Fig. 6. Composite supply index and resource rent for wildlife watching.  
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indicator for the number of wildlife tour operators, which is likely to be 
important in describing the supply of benefits, and its omission likely 
made the result less robust. 

It was clear from examining even only four marine benefits that the 
way they are measured and supplied to people varied greatly. For 
example, seafood, a biotic resource that depends on food webs to 
replenish stock, required a number of indicators to represent the con-
dition of the natural system. Other biotic resources that are extracted for 
use, such as kelp, may be represented using similar indicators. In 
contrast, recreational benefits required supporting activities (e.g. rescue 
and lifeguarding) in order for benefits to be supplied. Notably, the 
composite index demonstrated here can describe supply to all (market 
and non-market) users, whereas resource rent can only estimate market 
activity (as it is calculated from gross operating surplus). 

4.2. Limitations and improvements 

The statistical analysis used to calculate indicator weights was based 
on applications to sustainability indices rather than for benefit supply, 
and so was intended to weight indicators according to their variance 
from one another rather than for their importance to the benefit being 
supplied. Although PCA is a well-established method, multivariate 
regression would instead enable a causal relationship between actual 
flow of benefits and the supply factors. This analysis would therefore 
have been significantly improved by using a multivariate regression 
approach to weight the importance of the indicators to benefit supply (i. 
e. identify the variables most appropriate to describe the flow of bene-
fits). However, data availability already limited the estimates within this 
research, and regression analysis would require many more years of data 
in order to be robust. Though used less frequently, participatory 

Fig. 7. Sensitivity analysis for (a) seafood, (b) offshore wind energy, (c) water sports, and (d) wildlife watching.  
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approaches could also have been used to estimate or validate the sta-
tistical weightings. For example, expert panel has been used to deter-
mine weights for a drinking water quality index (Scheili et al., 2020). A 
further limitation of the approach was that although the supply of 
benefits varies seasonally and spatially, adjustments for this was not 
included in the analysis. In addition, data scarcity limited the resulting 
indices. For example, of the HDC factors describing seafood, only the 
number of fishermen could be quantified. Furthermore, if the maximum 
and minimum values were known for each indicator, then the composite 
index could have been normalised with respect to ecological limits 
rather than to a baseline. Finally, the assumption that benefits contrib-
uted as major inputs to production of certain economic sectors may have 
understated or overstated the resource rent for that benefit, because 
other ‘minor’ sectors were ignored. For example, algae could be used in 
terrestrial agriculture as well as in marine aquaculture. The contribution 
of these benefits to other (intermediary) sectors was also ignored and 
understated. For example, seafood products are also used in animal feed, 
but this effect was not estimated. 

Other general improvements to the approach would be to further 
include measures of natural capital asset quality within the indices, 
because the supply of a benefit is dependent not just on quantity but 
quality. For example, the carrying capacity of recreation areas could be 
quantified and its effect on cultural services could be estimated (Gonson 
et al., 2018; Peña-Alonso et al., 2017; Tian et al., 2018). Some ES could 
also have been disaggregated further; recreation activities were split 
from one another, but the contribution of geodiversity to specific abiotic 
ES and benefits would be an important extension (Gordon and Barron, 
2013; Gray, 2011; Gray et al., 2013). Finally, the supply of ES and 
benefits from specific habitats could be measured, similar to the 
approach in Scotland (Scottish Natural Heritage, 2019). This would be 
important because different habitats contribute to different services. 
However, subdividing to habitat at the national scale is too resource 
intensive and currently lacks data of sufficient resolution, so would be 
more appropriate at a regional level. 

5. Conclusion 

This research systematically linked natural capital, human-derived 
capital, ecosystem services benefits and the economy in an ‘end-to- 
end’ supply chain; although a need for such an approach is well docu-
mented, there have been few attempts to do so. Aspects of capital were 
used to estimate the supply of benefits in a way that has not been pre-
viously attempted; an approach of this sort could improve upon existing 
approaches within natural capital accounting (NCA) (Thornton et al., 
2019, p. 55). Our approach explored the factors and indicators required 
for the supply of benefits, rather than focussing on habitat and asset 
extent, and could be scaled to national or local levels. Benefits were also 
identified as inputs to specific sectors in the marine economy, which has 
previously been carried out for the fishing sector, but not for recreation. 
Case studies were specifically drawn from the marine environment, as 
although examples of natural capital indicators exist for terrestrial and 
coastal habitats, no similar approach has been made for the marine area. 
This approach went beyond the current thinking of homogenous cultural 
services, and particularly demonstrated how the capacity to supply 
recreation benefits could be measured in a way that is compatible with 
NCA. It also emphasised the sensitivity of composite indices to indicator 
weightings. This analysis therefore highlighted the knowledge gaps that 
would need to be filled when developing indicator sets, as the UK gov-
ernment intends (DEFRA, 2019e). Use of this method within a wider 
decision tool or indicator set (e.g. NCAI for Scotland (McKenna et al., 
2019; Tillin et al., 2019)) would therefore facilitate broader links with 
NCA. The approach may also be of interest to practitioners of ocean 
accounting, particularly since this approach is still relatively effective 
with limited data, and where data scarcity may otherwise limit the 
establishment of environmental accounts under the SEAA or EEA 
frameworks. The methodology could be extended to other benefits and 

to estimate the feedback effects of one industry upon another. To 
conclude, despite the suggested improvements, we feel the work pre-
sented here contributes to current thinking on the natural capital 
approach. We encourage the development of similar and related 
methods so that decision making tools, particularly in the marine area, 
can be continually improved upon. 
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