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Abstract 
This thesis uses neural networks and deep learning to address practical, real-

world problems in the mining sector. The main focus is on developing novel 

applications in the area of object detection from remotely sensed data. This 

area has many potential mining applications and is an important part of moving 

towards data driven strategic decision making across the mining sector. The 

scientific contributions of this research are twofold; firstly, each of the three case 

studies demonstrate new applications which couple remote sensing and neural 

network based technologies for improved data driven decision making. 

Secondly, the thesis presents a framework to guide implementation of these 

technologies in the mining sector, providing a guide for researchers and 

professionals undertaking further studies of this type. 

The first case study builds a fully connected neural network method to locate 

supporting rock bolts from 3D laser scan data. This method combines input 

features from the remote sensing and mobile robotics research communities, 

generating accuracy scores up to 22% higher than those found using either 

feature set in isolation. The neural network approach also is compared to the 

widely used random forest classifier and is shown to outperform this classifier 

on the test datasets. Additionally, the algorithms’ performance is enhanced by 

adding a confusion class to the training data and by grouping the output 

predictions using density based spatial clustering. The method is tested on two 

datasets, gathered using different laser scanners, in different types of 

underground mines which have different rock bolting patterns. In both cases the 

method is found to be highly capable of detecting the rock bolts with recall 

scores of 0.87-0.96. 

The second case study investigates modern deep learning for LiDAR data. 

Here, multiple transfer learning strategies and LiDAR data representations are 

examined for the task of identifying historic mining remains. A transfer learning 

approach based on a Lunar crater detection model is used, due to the task 

similarities between both the underlying data structures and the geometries of 

the objects to be detected.  The relationship between dataset resolution and 

detection accuracy is also examined, with the results showing that the approach 

is capable of detecting pits and shafts to a high degree of accuracy with 
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precision and recall scores between 0.80-0.92, provided the input data is of 

sufficient quality and resolution. Alongside resolution, different LiDAR data 

representations are explored, showing that the precision-recall balance varies 

depending on the input LiDAR data representation. 

The third case study creates a deep convolutional neural network model to 

detect artisanal scale mining from multispectral satellite data. This model is 

trained from initialisation without transfer learning and demonstrates that 

accurate multispectral models can be built from a smaller training dataset when 

appropriate design and data augmentation strategies are adopted. Alongside 

the deep learning model, novel mosaicing algorithms are developed both to 

improve cloud cover penetration and to decrease noise in the final prediction 

maps. When applied to the study area, the results from this model provide 

valuable information about the expansion, migration and forest encroachment of 

artisanal scale mining in southwestern Ghana over the last four years. 

Finally, this thesis presents an implementation framework for these neural 

network based object detection models, to generalise the findings from this 

research to new mining sector deep learning tasks. This framework can be used 

to identify applications which would benefit from neural network approaches; to 

build the models; and to apply these algorithms in a real world environment. 

The case study chapters confirm that the neural network models are capable of 

interpreting remotely sensed data to a high degree of accuracy on real world 

mining problems, while the framework guides the development of new models 

to solve a wide range of related challenges. 
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 Introduction 
1.1 Motivation  
Mining is a critical global sector, as all objects used by societies are made from 

materials that are mined, extracted or grown. However, the world’s easily 

accessible high-grade orebodies are becoming depleted, leaving only lower 

grade, deeper and more remotely situated deposits for future exploitation 

(Valenta et al., 2018). Unlike almost all other industries, mining cannot be 

moved; it must be located where the resource is regardless of security or 

topographic concerns. Other current challenges include market volatility, 

geopolitical risk, legal limits on natural resource use, shareholder activism and 

increased public scrutiny (Maennling and Toledano, 2019). To rise to these 

challenges, the mining sector must adapt to changing technologies for 

increased productivity and safety. Increasing digitisation can lead to better 

decision making based on more current, accurate data.  

In recent years, remote sensing data capture systems have advanced rapidly 

and are now capable of generating ever greater quantities of data at 

unprecedented levels of detail. In 2020, human analysts cannot physically 

examine the volumes of data being generated from systems such as earth 

observation satellites, national Light Detection and Ranging (LiDAR) campaigns 

and autonomous vehicles’ sensors. However, neural network based machine 

learning algorithms for Artificial Intelligence (AI) have been evolving even faster, 

fuelled by an exponential increase in computing power over the last decade. 

These advanced algorithms may offer a solution to manage and interpret these 

large volumes of remotely sensed data. This thesis will investigate how these 

dual technological advances could be adapted and leveraged by the mining 

industry. 
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1.2 Aims and objectives 
The aim of this thesis is to investigate how different remote sensing data 

formats commonly used in mining can be processed using neural network 

pipelines to improve strategic analysis of large datasets.  

To deliver this aim, the research objectives are: 

1. To create a framework for identifying, developing and applying deep 
learning algorithms to mining sector remote sensing data. 
 

2. Use this framework to design and implement algorithms for detection in: 
 

a. underground mine environments using 3D laser scan data 
 

b. regional landscapes using aerial LiDAR. 
 

c. national scale analysis from multispectral satellite imagery. 
 

 

1.3 Methodology 
To achieve these objectives this thesis first introduces the main concepts of 

remote sensing data capture systems, underlying data structures and neural 

network based algorithms. The literature review also investigates how these 

topics are currently utilised in the mining sector; together with how other 

industries are leveraging these technologies in similar circumstances. The 

literature review identifies that the most important factor for methodology design 

is the remote sensing data type. Therefore, the research plan was developed to 

demonstrate how neural networks can be applied to a wide range of data types 

for mining sector tasks, using case studies to develop methodologies for data 

analysis and associated interpretation. 

Each case study, written as separate chapters, identifies a promising mining 

sector task for each data type, before designing and implementing a neural 

network based solution appropriate to the data type, scale and use case for the 

task. The individual methodologies developed for each task are described within 

the relevant chapters. The datasets used in Chapters 4 and 5 were generated 

from publicly available open source data, while the datasets used in Chapter 3 

are from archive Camborne School of Mines data and an industry sponsored 
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data capture exercise. By applying the techniques to real world datasets, the 

challenges, benefits and accuracies of these technologies can be better 

understood. 

1.4 Thesis structure 
This thesis consists of seven chapters, including the introduction (Chapter 1) 

and the conclusion (Chapter 7). The main content chapters are as follows: 

• Chapter 2 presents the literature review. This chapter begins with an 

overview of the topics of remote sensing and deep learning, alongside a 

review of integrations of these technologies. 

 

• Chapter 3 describes a method for automatically detecting rock bolts from 

3D laser scan data to generate as-built reports on installed bolting 

patterns. 

 

• Chapter 4 details an application to detect historic mining pits from aerial 

LiDAR datasets. Next, the pit locations are used to infer mineralisation 

trends across historic mining areas. 

 

• Chapter 5 sets out a novel method to detect small scale mining from 

satellite imagery, achieved by building and training a deep learning 

model based on multispectral imagery. 

 

• Chapter 6 integrates the knowledge gained from the three case studies 

into a framework for applying these technologies to other mining sector 

tasks. 

 

1.5 Contribution 
This thesis aims to demonstrate how neural network based machine learning 

combined with remote sensing can be used to solve real world mining sector 

challenges. The research projects carried out in this PhD make contributions to 

knowledge both individually and collectively.  
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Individually, each project delivers new knowledge about how to design, 

implement and test effective neural network based methodologies for different 

types of remotely sensed mining datasets. Additionally, the datasets of detected 

objects generated by each case studies’ research can be used for further 

investigation in their respective areas. Each of the case studies have been 

published as peer reviewed journal papers over the course of this research, 

demonstrating their academic contribution to knowledge in the field of remote 

sensing and artificial intelligence, in various deployment areas such as 

underground and surface mining operations.  

Collectively, the knowledge gained from all the projects contributes to the 

creation of a framework for applied neural network and deep learning research 

in the mining sector. The implementation framework and the varied real world 

applications showcased in this research contribute practical knowledge to a 

wide range of stakeholders across the mining sector, from remote sensing 

professionals to mine managers. A greater awareness of the possibilities of 

these new technologies by mining stakeholders provides a solid foundation for 

further technology and policy research.
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 Literature review 
2.1 Introduction 
In the last decade, the mining sector has undergone unprecedented changes. 

Maennling and Toledano (2019) identified seven trends shaping the modern 

mining industry. These include access to new resources, developing new 

mining workforces, social contracts to operate, exploiting big data, new methods 

of financing mining, world geopolitics and transitions to low carbon economies. 

Technological drivers such as automation, remote sensing systems and big 

data analytics will be crucial for enabling agile adaptations by the mining sector. 

Over the full mining lifecycle, these technologies generate or process vast 

amounts of data, which will need new methods of big data processing to 

harness their benefits. Adapting knowledge from the technology, automotive 

and space sectors will aid progress in implementing these technologies in the 

mining sector. 

Alongside technological changes, mining policies are also changing. Mining 

often has a negative public image, exacerbating the difficulties involved with 

gaining social license to operate (Prno and Scott Slocombe, 2012). Maintaining 

a social license to operate in a local community is becoming ever more critical. 

The push towards automation has led to decreasing amounts of local 

employment; this can mean the local community is left with more environmental 

concerns than financial gains (Prno and Scott Slocombe, 2012), leading to 

protests and sometimes the abandonment of projects. To address these 

concerns, stricter environmental regulations have been developed, particularly 

around emissions, water usage, tailings and mine closure (Tuokuu et al., 2019). 

Rehabilitation of end of life projects is a major issue; if closure bonds are 

insufficient, mines can be left in perpetual ‘care and maintenance’ status or 

abandoned without sufficient environmental protections (Ashby et al., 2016). 

Additionally, older mining regions were often not adequately rehabilitated, as 

the understanding of the impacts of mine abandonment was not fully 

appreciated for many centuries (CIRIA, 2019). In many developing countries, 

managing their growing Artisanal Scale Mining (ASM) sector is also a concern, 

where a balance must be found between livelihoods and environmental 

damages (Hilson and Gatsinzi, 2014). Figure 2-1 maps the connections in the 
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mining sector to these future drivers of change (Maennling and Toledano, 

2019). 

 

Figure 2-1: Mapping the connections in mining, World Economic Forum (Maennling and Toledano, 2019). 

In response to these changes, the mining industry has seen legislative and 

technological reform in recent years. Many mining companies are now exploring 

how technology can be used to reduce costs, improve safety and environmental 

conditions. One such area that has experienced a significant advancement is 

remotely sensed data, applied to applications such as geotechnical analysis 

(Lato et al., 2009) and stockpile monitoring (Tong et al., 2015). Using remotely 

captured data reduces human exposure to hazardous environments; however, 

much of the data processing has been largely manual. Remote sensing 

datasets combined with deep learning algorithms could be leveraged to aid both 

the technological and social challenges facing the mining sector today.  
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This literature review first introduces remote sensing technologies and data 

types, before giving an overview of deep learning theory. The final section 

examines existing mining sector applications that leverage these technologies, 

alongside potential compatible applications from other sectors. The aim of this 

chapter is to give a broad overview of the technologies used in this research 

and an introduction to the breadth of applications which are currently utilising 

these technologies. To minimise duplication, references which are specific to 

the applications developed in the case studies are not discussed here, as they 

are included in the relevant chapter’s introductory sections. 

2.2 Remote sensing technology 
Remote sensing is the broad scientific field concerned with acquiring 

information about an object without direct contact. By convention, the term 

remote sensing is commonly used to refer to geographic observations made 

from airborne and spaceborne platforms (Weng, 2012), while the terms high 

definition surveying (Frei et al., 2004) and close range photogrammetry 

(Luhmann et al., 2014) are more typically used to refer to observations made 

from a terrestrial platform. In this thesis, all types of spatial data collected 

remotely from terrestrial, aerial or orbital platforms will be collectively referred to 

as remote sensing data. In contrast to traditional land surveying methods, 

remote sensing systems of all types generate large volumes of data.  

Remote sensing systems can be classified into two types, depending on 

whether they provide the energy source used for sensing the remote object 

themselves. Passive remote sensing systems record energy either emitted from 

the sun and reflected by the object or emitted by the object itself, while active 

remote sensing systems emit their own energy and measure the time it takes 

for this to travel to the object of interest and return to the sensor (Weng, 2012). 

Remote sensing systems all use electromagnetic (EM) radiation as their energy 

source. Electromagnetic radiation is formed of coupled electric and magnetic 

fields which travel in waves through a vacuum at the speed of light. EM waves 

are defined by their wavelength and frequency, which are inversely related 

because the speed of light is constant (Weng, 2012). Whilst EM radiation exists 

along a continuous spectrum, man-made categorisations are used to 

differentiate between the different regions (Weng, 2012). The regions used in 
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remote sensing are most conveniently described by a logarithmic plot such as 

that shown in Figure 2-2, as their wavelengths span multiple orders of 

magnitude (Lillesand et al., 2015).  

 

Figure 2-2: Electromagnetic spectrum, with inset showing visible light range (Sapling Learning, 2015). 

The hardware used in remote sensing systems varies depending on whether it 

is a passive or active sensing system. Hardware systems also vary depending 

on the scale and accuracy required.  

2.2.1 Passive remote sensing systems 
Historically, passive remote sensing systems (cameras) used light sensitive 

photographic film to record a scene. Since 2010, modern systems using digital 

sensors have almost entirely replaced film (Lillesand et al., 2015). Digital 

systems use an array of either charge-coupled device (CCD) or complementary 

metal oxide semiconductor (CMOS) detectors which generate an electrical 

charge when exposed to EM energy (Jensen, 2007). The magnitude of the 

charge corresponds to the magnitude of the energy hitting the detector 

(McGlone et al., 2004). To split the observed EM radiation into discrete bands, 

filters or beamsplitters are used to ensure each detector cell receives radiation 

only from a specific band (Weng, 2012). Standard consumer cameras, small 

scientific cameras, drone mounted cameras and most aerial photogrammetric 

cameras primarily use a rectangular array of detectors with RGB (Red Green 
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Blue) filters, arranged in a Bayer filter mosaic (Bayer, 1975). These types of 

cameras are rarely designed to capture more than four EM bands.  

Some aerial photogrammetric cameras, along with most spaceborne cameras 

utilise a different hardware design, made up of multiple lines of detectors 

sensitive to many different bands (Weng, 2012). These are either ‘across-track’ 

systems, where a rotating mirror deflects light from side to side, perpendicular 

to the platform’s direction of travel, or ‘along-track’ systems, where an entire line 

of detectors is exposed at once (Jensen, 2007). Across-track systems are 

optically simpler and have been used on older remote sensing satellite systems 

such as the Landsat series (Williams et al., 2006), whilst more modern 

spaceborne systems such as Spot, QuickBird and the Sentinel-2 Multispectral 

Imager (MSI) use along track technology (Berger et al., 2012; Chevrel et al., 

1981; Toutin and Cheng, 2002). Figure 2-3 shows the principles of a number of 

different passive remote sensing systems (Jensen, 2007). For a thorough 

overview of modern digital photographic hardware within the context of remote 

sensing, including advanced topics such as thermal infrared, passive 

microwave and hyperspectral systems not covered in this thesis, see Lillesand 

et al. (2015) Chapters 2 & 4 and Weng (2012) Chapter 6. 
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Figure 2-3: Illustration of different passive remote sensing systems used to collect aerial photography, 
multispectral and hyperspectral imagery (Jensen, 2007). 

2.2.2 Active remote sensing systems 
Active remote sensing systems refer to any sensing technology which emits its 

own measuring wave energy. The energy pulse must travel in both directions 

and because the speed of light is known the distance to the object can be 

calculated using half of the roundtrip travel time1 (Weng, 2012). Active systems 

do not use sunlight; therefore, they can measure at any time of day, allowing 

greater collection time flexibility (Dong and Chen, 2017). The most commonly 

 
1 Outside of a vacuum, atmospheric corrections must also be applied (Beraldin et al., 2010). 
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used active remote sensing systems are Radio Detection And Ranging (Radar) 

which measures using microwaves and Light Detection And Ranging (LiDAR) 

which uses shorter visible or near infrared wavelengths of light (Weng, 2012). 

The longer wavelengths used in Radar permit it to penetrate clouds, allowing 

reliable monitoring and guaranteed revisit times (Jensen, 2007). However, 

processing radar data into intelligible images is challenging, with experienced 

operators required for interpretation (Yumus and Ozkazanc, 2019). Radar data 

can be collected at different wavelengths and polarisations and is usually 

collected at a slanted angle in relation to the ground (Weng, 2012). Radar 

interferograms are generated by differentiating phase signals from two or more 

acquisitions; these interferograms allow small differences in topography to be 

observed (Jensen, 2007).  

LiDAR systems use lasers, which are focused beams of coherent light (Weng, 

2012). These can be used to measure the distance to an object, either by 

emitting a laser pulse and timing how long it takes for the pulse to reflect from 

the object of interest and back to the detector, or by modulating the phase of the 

emitted beam and measuring the phase offset on return (Beraldin et al., 2010). 

There are multiple types of laser ranging measurement technologies used in the 

surveying and mapping industries. Hardware systems include 3D terrestrial 

laser scanners, mobile mapping scanners and aerial LiDAR systems. Industrial 

processing and metrology also use laser measurement systems; these 

industries primarily use methods based on triangulation, structured light and 

interferometry (Beraldin et al., 2010). Due to the very close ranges and delicate 

calibrations involved with these types of measurement they are not considered 

further in this thesis.  

Surveying and mapping grade laser measuring is carried out using either the 

time of flight of individual pulses or by continuous phase differencing (Beraldin 

et al., 2010). Time of flight systems calculate range ρ as follows in Equation (2-

1) (Beraldin et al., 2010): 

 𝜌𝜌 =  
𝑐𝑐
𝑛𝑛
𝜏𝜏
2

 
(2-1) 

Where: ρ = range, c = speed of light in a vacuum, n = refractive index of air and 

τ = round trip time.  
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As time of flight systems use discrete pulses, the entire field of view is scanned 

one point at a time, using a beam deflecting system to change the angle of the 

emitted pulse (Beraldin et al., 2010).  Traditionally, time of flight instruments 

have been slower than their phase based counterparts, with the number of 

points per second limited by the fact that another pulse cannot be emitted until 

the previous echo arrives (Beraldin et al., 2010). However, the new Leica P-

Series scanners can record up to 1 million points a second, by combining time 

of flight principles with full waveform digitising (Walsh, 2015).  

Phase differencing systems measure by modulating the emitted incoherent 

laser light, then measuring the phase difference between the emitted and 

received waveforms as a time delay. The waveform can be modulated by 

sinusoidal modulation, amplitude modulation using phase difference, frequency 

modulation using beat frequencies, phase coded compression and chaotic 

LiDAR based on chaotic waveforms from a semiconductor laser (Beraldin et al., 

2010). The phase difference can be related to the time delay t using Equation 

(2-2) (Beraldin et al., 2010): 

 𝑡𝑡 =
∆𝜙𝜙

2𝜋𝜋.𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 

 (2-2) 

Where ∆φ = phase difference and fmodulated = modulation frequency 

Time delay t can then be related to the distance equation where the range ρ is 

given by Equation (2-3): 

 
𝜌𝜌 =

(𝑐𝑐. 𝑡𝑡)
2

=
𝑐𝑐

4.𝜋𝜋
.

∆𝜙𝜙
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 
(2-3) 

Time of flight systems have a longer range, as it is difficult to generate the 

continuous waves required for the phase differencing method at a high enough 

energy over long distances. The phase differencing method has historically 

provided higher accuracies at shorter ranges and faster collection speeds 

(Beraldin et al., 2010), although results from González-Jorge et al. (2018) 

indicate that the measurement method used in the newer generation of 

scanners is no longer a primary determiner of accuracy.  

Laser measuring systems which are designed to be mounted on static platforms 

are known as Terrestrial Laser Scanners (TLS). These surveying scanners 
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generate a full 360° scan by deflecting the laser beam along both the vertical 

axis (using a rotating mirror) and the horizontal axis (by rotating the entire 

instrument) (Beraldin et al., 2010). A schematic of a Leica C10 TLS is shown in 

Figure 2-4. 

 

Figure 2-4: Schematic of a Leica C10 terrestrial laser scanner (Walsh, 2016). 

Laser measuring systems can also be mounted on moving platforms such as 

vehicles. These systems are used for both mobile mapping applications and as 

an environment sensor for autonomous driving applications. The laser scanner 

typically only rotates on one axis (a 2D scanner), with the third dimension 

provided by the vehicle’s forward motion (Puente et al., 2013). Systems 

designed for mobile mapping generally have two laser scanners mounted at the 

back of the vehicle for a more detailed field of view, while systems designed for 

autonomous vehicles generally have a primary laser scanner mounted at the 

highest point on the vehicle, as shown in Figure 2-5. 

To measure ranges from a moving platform, the laser scanner must be 

precisely coupled to other sensors to determine the platform’s precise location 

at all points in time (Puente et al., 2013). These sensors can include Global 

Navigation Satellite System (GNSS) sensors for absolute positioning, Inertial 

Measuring Unit (IMU) sensors for orientation and motion detection and distance 

measuring instruments (DMI) as a check on wheeled systems (Puente et al., 

2013). These sensors are combined using a Kalman filter (Kalman, 1960) to 
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provide an estimation of the sensing platform’s location. Once the location of 

the laser scanner’s centre is known, the ranges can be calculated using the 

relevant equations (2-1) or (2-2 & 2-3) (Beraldin et al., 2010). For a thorough 

review of modern mobile mapping systems see Puente et al. (2013).  

 
Figure 2-5: Mobile mapping (left) and autonomous driving (right) mobile laser scanning systems. Base 
images (Teledyne Optech, 2020 and  Korosec, 2019). 

Laser measuring systems can also be mounted on aircraft to survey terrain from 

above. These systems are known as aerial LiDAR (Dong and Chen, 2017). The 

measurement principals are similar to the vehicle mounted mobile mapping 

systems, comprising of a 2D laser scanner moving forwards on a platform 

whose position is determined from GNSS and IMU sensors (Beraldin et al., 

2010). Aerial LiDAR systems almost always use the time of flight measurement 

techniques due to the longer distances involved. Unlike most TLS systems, 

aerial LiDAR systems generally record multiple returns or even the full 

waveforms of the returned laser pulse (Beraldin et al., 2010). This allows 

measurement of more complex land cover such as forests as returns can be 

recorded for both the canopy and the ground. The differences between 

waveform recording systems are shown in Figure 2-6. 
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Figure 2-6: Illustration of the differences between multiple discrete pulses (a), full waveform (b) and digitised 
waveform (c) (Beraldin et al., 2010). 

Along with the range from the scanner to the object, laser scanning systems 

also record the intensity of the returned pulse. Intensity values provide a 

valuable additional visual dimension to laser scan data. However, intensity 

values can pose difficulties for interpretation as they can be influenced by many 

factors, including distance from the scanner, incidence angle, wetness of 

surface and roughness of surface (Xu et al., 2018).  

In order to develop applications across the wide range of sensing systems and 

scales, this thesis examines both active and passive remote sensing systems 

based on terrestrial, aerial and orbital platforms.   
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2.3 Data structures 
The passive and active remote sensing technologies described in Section 2.2 

generate large volumes of spatial data in differing structures depending on the 

sensing technology. The data structure is the greatest determiner of the type of 

deep learning that can be performed; therefore, it is essential to understand 

these data structures and to know which sensors are capable of generating 

which structures. Broadly, the data structures generated from remote sensing 

technologies can be divided into 2D images, structured 2.5D height or depth 

grids, structured 3D data and full unstructured 3D point clouds.   

2.3.1 2D image data structures 
The primary output data type from passive remote sensing systems are digital 

images, which are grids of stored numbers, where each number/location pair is 

called a pixel (Weng, 2012). This data is considered structured data, as it exists 

in a regular matrix structure with no irregular spaces. A monochrome image 

contains only one brightness value per pixel and takes the form of a H x W x 1 

matrix where H is the image height in pixels and W is the image width. Images 

with only one value per pixel location are single channel images. A true or 

natural colour composite image has three channels, corresponding to the red, 

green and blue (RGB) bands of the visible light spectrum, as shown in Figure 

2-7. It takes the form of a H x W x 3 matrix (Jensen, 2007). This same three 

channel structure can be used to store false colour composite images, where 

the near infrared band is mapped to the red channel, red light is mapped to the 

green channel and green light is mapped to the blue channel (Weng, 2012).  
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Figure 2-7: Example of a three band true colour image (Humboldt State University, 2019). 

Images with more than three bands are not easily visualised by human eyes or 

computer monitors; however, arbitrary numbers of bands can be stored digitally 

in a H x W x N matrix where N is the number of channels (Jacobson and Gupta, 

2005). These images are generally known as multispectral images if they 

contain 3 - 20 discrete channels, and hyperspectral images if they have many 

more channels, usually numbering in the hundreds and the sensor measures 

continuous spectral ranges without gaps (Giannoni et al., 2018). Hyperspectral 

image matrices are known as hyperspectral cubes (Lillesand et al., 2015). 

Whilst multispectral and hyperspectral data structures have many spectral 

dimensions, they can be classed as 2D data structures as they measure the 

scene in only the x and y spatial dimensions. Figure 2-8 illustrates the 

differences between multispectral and hyperspectral data types. 
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Figure 2-8: Difference between multispectral and hyperspectral data (Giannoni et al., 2018). 

2.3.2 2.5D and 3D data structures 
Unlike images, 3D datasets can have many different structures, primarily 

related to the sensing technology used for acquisition and also related to the 

desired final dataset function and whether or not it is true 3D data or 2.5D data. 
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2.3.2.1 Indirect 3D 
The image data structures described in 2.3.1 measure the scene in two spatial 

dimensions, with no height or depth information.2 This third spatial dimension 

can be generated either using the principles of photogrammetry, described in 

multiple textbooks (Lillesand et al., 2015; Linder, 2014) or by active remote 

sensing technologies such as LiDAR (Vosselman and Maas, 2010). With the 

exception of determining limited height information from the displacement of tall 

objects in aerial scenes, adding a third dimension from images requires 

obtaining multiple overlapping images of the scene (Weng, 2012).  

The simplest method to generate 2.5D or 3D information is stereo 

photogrammetry. Stereo camera systems construct a model of the environment 

using a known baseline between two camera centres to reconstruct geometry 

(Luhmann et al., 2014). This is achieved by measuring the offset between left 

and right images (Luhmann et al., 2014). Stereo imaging systems are 

computationally simple and can be built using very small cameras, which makes 

them ideal for mobile robotics applications such as NASA’s Curiosity rover 

(Grotzinger et al., 2012). Data generated from stereo vision systems is chiefly 

structured as 2.5D data, as there is only one third dimensional value recorded 

per pixel (Luhmann et al., 2014). 2.5D data maintains a structured grid format, 

with the height information saved either as an additional channel or separated 

out into a supplementary single channel image.  

Indirect 3D information can also be obtained from combining multiple images. 

Downwards facing aerial photogrammetry uses a technique known as bundle 

block adjustment described in Aber et al. (2010), while multi-view terrestrial and 

drone based photogrammetry uses a technique known as Structure from Motion 

(SfM) described in a geoscience context by Carrivick et al. (2016). Conceptually 

these techniques are similar, where matches are made between points common 

to multiple images. These matched points are first used to locate the camera 

positions in space, before using the changes in camera position and the 

resulting shifts in image coordinates to reconstruct the geometry of the scene 

(Lillesand et al., 2015). SfM approaches need more computing power and 

 
2 By convention, height refers to adding another scene dimension to downwards facing airborne 
or spaceborne imagery, while depth refers to adding another scene dimension to forward facing 
terrestrial imagery.  
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higher resolution sensors than stereo vision systems and are popular for drone 

based photogrammetric surveys (Carrivick et al., 2016).  

Of the indirect 3D techniques, only SfM is commonly used to produce true 3D 

data, where multiple third dimensional values are possible at every 2D location 

point. True 3D data such as this is most often represented as point clouds 

rather than gridded structures, these are described in more detail in the 

following section. Figure 2-9 helps to illustrate how SfM algorithms work, by 

showing the multiple 2D images that are oriented and projected to create a 3D 

model. 

 

Figure 2-9: Screenshot from SfM software package showing how a model is built up from multiple 2D views 
of the same object (Humboldt State University, 2019). 

2.3.2.2 Direct 3D 
The primary data output from laser based active remote sensing systems is 3D 

point clouds. These are unordered sets of 3D coordinates, containing X, Y and 

Z values (Vosselman and Klein, 2010). This data format is considered true 3D 

as a single X, Y location can have multiple Z values, allowing tunnels and 

bridges to be recorded. An important property of 3D point clouds is that they are 

permutation invariant (Cherabier et al., 2016); therefore, the order of the points 

in the file does not change the point cloud itself. Alongside the coordinate 

information, other data can also be stored for each point, such as the intensity 

of the laser return and RGB information if the laser scanner has an integrated 

camera (Vosselman and Klein, 2010). Intensity data can add valuable 
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information about the scene, particularly underground where dust and uneven 

lighting can cause difficulties with image interpretation.  

3D point clouds are unstructured data, which can prove challenging for 

computers to store and process (Vo et al., 2015; Xie et al., 2020). Point clouds 

can be converted to a structured format by voxelization, where 3D pixels known 

as voxels (Foley et al., 1990) are used to store the data representation. 

Voxelization simplifies the data by adding uniform structure but can also 

increase the dataset size (Gebhardt et al., 2009). Point clouds are by nature a 

sparse data representation. If using a gridded voxelization method the majority 

of the voxels will be empty; however, empty voxels take up the same amount of 

storage space as voxels which encode details of the scene (Gebhardt et al., 

2009). Variations such as sparse voxelization and octree representations can 

mitigate this issue (Gebhardt et al., 2009; Xie et al., 2020). 

The point clouds acquired from airborne LiDAR systems do not generally 

contain multiple Z values other than those related to multiple return systems, as 

discussed in Section 2.2.2. This is because the sensing platform has a fixed 

downwards facing field of view. This characteristic allows these point clouds to 

be converted to a simple and memory efficient 2.5D gridded structure known as 

a Digital Elevation Model (DEM) (Briese, 2010). DEMs can be generated using 

only the returns most likely to be ground points (by taking the last recorded 

laser return alongside other post-processing rules) to create a bare earth Digital 

Terrain Model (DTM) or they can be generated using the first return to creating 

a Digital Surface Model (DSM) (Briese, 2010). DSMs contain all ground surface 

objects regardless of category. 

2.3.3 Data structures summary 
The structure of the data is the primary factor for choosing an appropriate 

machine learning algorithm, with different data structures being more or less 

suited as input to different types of machine learning models. Because the data 

structure has such a powerful effect on the algorithm choice, the case studies in 

this thesis are organised around each of the three core data types: true 3D 

(Chapter 3), structured 2.5D (Chapter 4) and multi-band 2D (Chapter 5).   
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2.4 Deep learning 
Machine learning is the discipline of computer science concerned with teaching 

computers to learn without explicitly programming them (Samuel, 1959). Instead 

of hard coding rules to enable computers to solve problems, machine learning 

allows the computer to acquire its own knowledge about the problem by 

extracting patterns from the input data (Goodfellow et al., 2016). The success of 

classic machine learning algorithms depends on the representation of the input 

data, known as features. Handcrafting these features allows for high accuracy 

results; however, the process is time consuming and relies on expert human 

knowledge combined with trial and error (Goodfellow et al., 2016). Deep 

learning is a subset of machine learning and examines how an algorithm can 

learn both the complex representations and the underlying data patterns. This is 

achieved by using many connected simple representations to model high level 

abstract features (Goodfellow et al., 2016). Figure 2-10 shows how rule-based 

systems, classic machine learning and deep learning relate to each other.  

 
Figure 2-10: Differences between rule-based systems, classic machine learning and deep learning. Orange 
boxes indicate components that learn from data without human guidance. Image adapted from (Goodfellow 
et al., 2016).  

Machine learning systems can learn either from labelled examples or by 

determining patterns in unlabelled data; these techniques are known 

respectively as supervised and unsupervised learning. Supervised learning 
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methods can be divided into classification (if the result to be determined is 

categorical) or regression (if the result to be determined is continuous). 

Supervised learning is the most common method of machine learning (LeCun et 

al., 2015) and is the method explored by the different algorithms used in this 

thesis. Supervised learning can encompass both classic machine learning 

algorithms such as random forests (Breiman, 2001) and advanced modern 

deep learning algorithms such as convolutional neural networks. Unsupervised 

learning methods encompass clustering algorithms and dimensionality 

reduction algorithms such as principal component analysis. Other methods of 

learning include semi-supervised learning, where a small amount of labelled 

data is used in conjunction with large amounts of unlabelled data (Chapelle and 

Zien, 2005) and reinforcement learning, where autonomous machine agents 

learn the parameters of a task via trial and error (Kaelbling et al., 1996). 

2.4.1 History of deep learning 
The theories which underpin modern deep learning can be traced back to the 

1940s where computational models to mimic biological learning were developed 

(McCulloch and Pitts, 1943), evolving into the perceptron (Rosenblatt, 1958). A 

perceptron is the building block of an artificial neural network, also known as a 

Multi-Layer Perceptron (MLP) and was the first model which could learn its own 

weights w for the function f(x,w) = x1w1 + … + xnwn (Goodfellow et al., 2016). 

However, a single perceptron could only learn linearly separable functions and 

computing technology in the 1960s was insufficient to iterate across multiple 

perceptrons. These shortcomings were publicised in Minsky & Papert (1969), 

leading to a slowdown in neural network research until the 1980s. At this time, 

the emerging field of parallel distributed processing (Rumelhart and McClelland, 

1986) generated a resurgence in interest, alongside the revisiting by Rumelhart 

et al. (1986) of the technique of backpropagation for training neural networks. A 

model type known as a convolutional neural network, designed for image 

processing tasks also emerged in this period (Fukushima, 1988; LeCun et al., 

1989a). Backpropagation provided an answer to the question of how to train a 

deep neural network; however, it was still computationally too expensive for the 

hardware available at the time, leading to the true capabilities of the algorithms 

developed in the 1980s to remain untapped for nearly twenty years (Goodfellow 

et al., 2016). 
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Modern deep learning can be considered to have emerged with a paper by 

Hinton et al. (2006) which demonstrated that a deep belief network could be 

trained effectively by a strategy known as greedy layer-wise pre-training 

(Goodfellow et al., 2016). Bengio & LeCun (2007) discussed how this strategy 

was successful on many types of deep neural networks and emphasised the 

importance of depth for generalisation on complex artificial intelligence tasks. 

The modern successes of deep learning can be attributed both to these 

improved architectures and  to the increases in training dataset size and the 

sophistication of computer infrastructures (Goodfellow et al., 2016). Training 

dataset sizes have increased from 60,000 for the MNIST dataset (Lecun et al., 

1998) to over 14 million for the ImageNet dataset (Deng et al., 2009). The 

invention of Graphical Processing Units (GPUs) in the early 2000s allowed far 

faster parallelized processing of simple matrix operations, leading to a 

significant increase in the speed, accuracy and usability of deep learning 

models (Cireşan et al., 2010; Raina et al., 2009). 

2.4.2 Multi-layer perceptron 
Before describing modern deep learning architectures such as convolutional 

neural networks it is beneficial to understand the foundational artificial neural 

network known as a multi-layer perceptron (MLP).3 Neural networks can be 

thought of as function approximators; however, a single neuron can solve 

problems only where the solutions are linearly separable (Goodfellow et al., 

2016). This limitation is removed when multiple neurons are connected 

together, allowing extremely complex functions to be modelled. Indeed, the 

universal approximation theorem (Hornik, 1991) states that a feed-forward 

neural network with only a single hidden layer containing a finite number of 

neurons can approximate arbitrary continuous functions. Any neural network 

containing more than two hidden layers can technically be considered ‘deep’; 

however, it is more common to use the term ‘deep learning’ to refer to the 

 
3 Whilst these networks are named multi-layer perceptrons, the neurons used are normally 
sigmoid neurons rather than perceptron neurons. This is because they use a function with a 
calculable slope instead of the step function used in the original perceptron research (Nielsen, 
2015). In this research the terms Fully Connected Neural Network and Multi-Layer Perceptron 
are used interchangeably to refer to modern implementations of the traditional fully connected 
neural network architecture regardless of activation function used. 
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modern architectures which are more complex than a simple fully connected 

neural network.  

2.4.2.1 Structure 
A schematic of a single neuron is shown in Figure 2-11. It contains multiple 

inputs connected via multiplicative weights to an activation function which 

outputs a result. The activation function takes the summation of the weighted 

inputs and transforms it to a fixed range, usually between 0 and 1 (Géron, 

2017). Each neuron also contains a bias or threshold term. This is a real 

number which determines how sensitive the neuron is. The magnitude of the 

weights determines the relative importance each input plays in producing the 

final result. The very first artificial neuron (perceptron) used a step function for 

the activation function (Rosenblatt, 1958), which would only output binary 

values, creating difficulties for training. This has now been replaced by functions 

with differentiable gradients such as the sigmoid, tan-h and Rectified Linear Unit 

(ReLU) functions. 

 
Figure 2-11: Structure of a single perceptron.  

Moving on from a single neuron, an MLP is made up of multiple linked neurons 

arranged in layers. MLPs contain an input layer, an output layer and one or 

more hidden layers. A simple MLP is a fully connected architecture, where 

every neuron in each layer is connected to every neuron in the layers before 

and after it, as shown in Figure 2-12. 
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Figure 2-12: Structure of a fully connected artificial neural network 

2.4.2.2 Training 
A simple MLP is a supervised machine learning model which learns from 

labelled training examples. At the start of training, the weights for each neuron 

are randomly initialised and when the first training example is input to the model 

the resulting output will be incorrect, as the model has yet to learn to 

approximate the relationships between the inputs and the outputs. The model’s 

performance can be measured using a cost function, a simple example of which 

is the quadratic cost function, as described by Nielsen (2015) in Equation (2-4): 

 𝐶𝐶(𝑤𝑤, 𝑏𝑏) =  
1

2𝑛𝑛
�‖𝑦𝑦(𝑥𝑥) − 𝑎𝑎‖2
𝑥𝑥

 
(2-4) 

where w is the weights, b is the biases, n is the number of training inputs, a is 

the vector of outputs and x is the vector of inputs. It can be seen that the cost 

function becomes smallest when the computed function y(x) is closest to the 

labelled output a (Nielsen, 2015).  

To minimise this cost, a mathematical technique called gradient descent by 

backpropagation is used to obtain the gradient of the cost function C and then 

move the values of w and b a small step in the downhill direction, incrementally 

decreasing C. The gradient of the cost function is computed by backpropagation 

(Rumelhart et al., 1986) which enables the partial derivatives of every weight to 
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be calculated using the chain rule, one layer at a time starting with the final 

layer and working backwards. Nielsen (2015) gives a clearly worked example of 

the mathematical derivation of gradient descent via backpropagation and 

Goodfellow et al. (2016) provide further derivation details. The magnitude of the 

downhill step taken at each iteration is known as the learning rate and is 

conventionally denoted as α. 

Equation 2-4 shows the cost function as an average of the costs of each 

individual training example. One way to achieve this is to compute the gradient 

for every training example and then compute the average to determine the 

update to the weights; however, this can be very slow when the number of 

training examples is high and the network will take a very long time to learn. A 

more efficient method is to take randomly extracted mini-batches of the training 

data and compute the gradients over these, with the assumption that the mini-

batch is reasonably representative of the entire training dataset. The model 

weights are then updated after each mini-batch has been calculated and the 

model is able to learn faster, without increasing the learning rate parameter α. 

This technique is known as stochastic gradient descent. Section 2.4.6 describes 

the practical aspects of training a deep learning model in more detail. 

2.4.2.3 Towards deep learning 
The type of fully connected neural network described above works well when 

the data inputs (features) are either naturally well suited to statistical machine 

learning or when adequate human generated feature extractors have been 

designed. Simple MLP models have been shown to outperform other classic 

machine learning algorithms such as random forests and support vector 

machines in applications such as generating landslide susceptibility maps (Tien 

Bui et al., 2016), detecting clouds in images (Taravat et al., 2015), classifying 

volcano-seismic events (Titos et al., 2018) and recognising document 

sentiments (Moraes et al., 2013). However, the differences in performance 

between the MLP and the other machine learning models are relatively small 

and in multiple studies the MLP model did not achieve the highest performance 

(Caruana and Niculescu-Mizil, 2006, Balabin et al., 2010, Weinmann et al., 

2015). No simple MLP displays the paradigm shifting accuracies achieved by 

modern deep learning architectures such as Krizhevsky et al. (2012) and Hinton 

et al. (2012).  
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The success of models such as AlexNet (Krizhevsky et al., 2012) is due to their 

architecture, which allows them to leverage the spatial information present in 

structured data such as images. These architectures are known as 

Convolutional Neural Networks (CNNs).  LeCun et al. (2015) define four key 

ideas that allow CNNs to leverage the properties of natural patterns: local 

connections, shared weights, pooling, and the use of many layers. By using 

spatial connectivity to model local pixel connections it is possible to share the 

model’s weights across neighbouring patches, eliminating the need for every 

pixel and neuron to be fully connected. Consequently, model size is greatly 

reduced allowing very deep models to be trained. Other modern deep learning 

architectures include recurrent neural networks, recursive neural networks, 

deep generative models and structured probabilistic models. These types of 

deep learning are not examined in this research; see Goodfellow et al. (2016) 

for more details on these types of models. 

2.4.3 Convolutional neural networks 
The deep learning models used in this research are all variants of CNNs. CNNs 

are loosely inspired by the mammal visual cortex (Hubel and Wiesel, 1959, 

Hubel and Wiesel, 1968) where neurons have a small local receptive field, only 

reacting to patterns within limited regions of the visual field. Different collections 

of neurons react to different patterns and different sizes of receptive field. 

Larger receptive fields react to more complex patterns which are combinations 

of the lower level patterns (Géron, 2017). This biological architecture inspired 

Fukushima (1988) to create the Neocognitron, refined by Lecun et al. (1998) 

into the first recognisable CNN model, LeNet-5.  

In a CNN, the local receptive field can be thought of as a small sliding window 

which moves over the entire input image one stride at a time. Each region of 

pixels covered by the local receptive field at each time is connected to a single 

neuron in the first hidden layer, as shown in Figure 2-13. Each neuron in the 

first hidden layer uses the same weights and bias from the local receptive field; 

therefore, the first hidden layer will show activations in the presence of the 

same pattern, just in different positions in the input image. This solves the 

problem of location invariance, i.e., a dog is still a dog whether it is the upper 

left or lower right corner of an image.  
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Figure 2-13: CNN stride and local receptive field. The yellow neurons represent the local receptive field and 
the stride in this example is 1. Image and caption adapted from Nielsen (2015). 

This operation is also known as feature mapping, as it detects features in the 

input image and maps them to the hidden layers. CNNs are so named as the 

filtering operation used by the feature mapping is a discrete convolution4 

(LeCun et al., 2015). Each filter can detect only one type of pattern, for example 

a vertical edge; therefore, each convolutional layer is made up of multiple 

stacked feature maps designed to detect multiple types of patterns. A 

convolution layer increases the size of the output image along its 3rd dimension, 

as shown in Figure 2-14. After the convolutions, an activation function such as 

ReLU is applied to the feature maps to regularise the results. 

 
4 In the context of deep learning both true convolutions and cross-correlations (convolutions 
without the kernel flip operation) are by convention known as convolution operations 
(Goodfellow et al., 2016). 
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Figure 2-14: Multiple feature mapping. The process illustrated in Figure 2-13 generates a single dimension 
of the first hidden layer, additional filters generate additional dimensions. Image and caption adapted from 
Nielsen (2015). 

As the convolution layer increases the input size, another operation known as 

pooling is used to simplify and reduce the resulting feature maps. Pooling is 

essentially a downsampling operation, reducing the size of the feature maps but 

maintaining the overall picture of what parts of the feature map have been 

activated. Typically pooling uses the max-pooling operation, where each group 

of pixels (for example in a 4 x 4 region) is replaced with the single highest value 

from that region, as shown in Figure 2-15. 

 
Figure 2-15: Illustration of maxpooling operation. Note: for clarity, this example shows only one of the hidden 
layer’s multiple dimensions. Image adapted from Nielsen (2015). 
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Modern CNNs usually have multiple rounds of convolution and pooling layers, 

when visualising the stages, it is helpful to think of the images as 3D cubes, 

similar to the hyperspectral cubes described in Section 2.3.1. Each convolution 

layer increases the number of image channels and each pooling layer 

decreases the spatial resolution, as shown in Figure 2-16.  

 
Figure 2-16: Example changes to image sizes throughout a CNN architecture. The images become spatially 
lower in resolution, but their number of dimensions increases as they move further into the model.  

It can be seen that as we move deeper into the network the layers become 

spatially smaller but capable of ever more abstract representations of the input 

data. A fascinating paper by Zeiler & Fergus (2014) allows further 

understanding of how CNNs ‘see’; some of the results from their deconvolution 

model are shown in Figure 2-17.  

 
Figure 2-17: Visualisation of the features in the first two layers of a fully trained CNN, from Visualising and 
understanding CNNs (Zeiler and Fergus, 2014). For details on the visualisation method used to deconvolute 
and project the samples to pixel space see Zeiler and Fergus (2014). 

2.4.4 Image processing tasks 
There are five main meta-tasks which image processing CNNs are generally 

designed to solve. These are classification, semantic segmentation, 
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classification with localisation, object detection, and instance segmentation, 

illustrated in Figure 2-18. The last part of the CNN architecture depends on the 

type of task which it has been designed for. 

 
Figure 2-18: Examples of different image processing tasks (Li et al., 2020) 

Classification is when the goal is to determine what type of object is depicted in 

the image. Classification is the simplest of the tasks, as the model does not 

need to know where the object is in the image, merely whether the image 

shows for example a cat or a dog. Generally, multiple labels are not supported 

in classification problems and benchmark datasets. The early ImageNet 

competitions were based on classification (Deng et al., 2009, Krizhevsky et al., 

2012); however, they have since moved on to the more challenging tasks of 

object detection and localisation (Russakovsky et al., 2015).  

To perform classification, the deepest convolutional and max pooling layer pair 

are followed by a small number of fully connected layers. These fully connected 

layers are identical to the simple MLP discussed above (Géron, 2017). In this 

way, it is possible to envision how a CNN grew from an MLP, where instead of 

inputting a feature representation of individual pixel brightnesses with no 

context (a poor feature representation), a strong feature representation is 

learned by the network itself. It is also possible to imagine the classic machine 

learning workflow in this context, where a human with expert knowledge of a 

task could hand design MLP input features which are more appropriate than the 

raw pixel values; however, this is both more time consuming and less robust 

than using a CNN to learn the representations itself.  

Adding localisation to the classification task requires the model not only to 

classify the image but also to produce a single bounding box around the object. 
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For the classification and localisation task the assumption is made that each 

image only contains one object, if multiple objects are to be located it instead 

becomes an object detection task. This task is solved by using the same 

architecture as for classification, but along with the fully connected path leading 

to predicted category labels an additional fully connected path is used to 

calculate the bounding box location as a regression problem. In this architecture 

both paths are trained simultaneously using different loss functions, known as a 

multi-task loss problem.  

If multiple objects are to be classified and located the task becomes known as 

object detection. In this task each image can have a differing number of objects 

of differing classes and the number of instances is unknown. There are two 

main approaches used to solve the object detection task, R-CNNs and single 

shot detectors. The original R-CNN paper by Girshick et al. (2014) proposed a 

method to detect objects by first detecting regions of interest using the image 

processing algorithm selective search (Uijlings et al., 2013) then applying 

classification CNN architectures to each region of interest. This method was 

later improved first by placing the convolutional feature mapping stage before 

the region proposal algorithm (Girshick, 2015) and later by replacing the 

selective search region proposals with a deep learning based region proposal 

network (Ren et al., 2017). The learning process for R-CNNs is complex, as the 

model must balance several multi-task loss objectives.  
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Figure 2-19: Faster R-CNN family of architectures, adapted from Ghosh et al. (2019).  

Single shot detector methods do not use a region proposal network and solve 

for the object locations with one large feedforward network. To avoid searching 

near infinite potential sliding windows, these methods divide the input image 

into a discrete grid and solves for multiple bounding box shapes and 

classification confidence simultaneously (Redmon et al., 2016, Liu et al., 2016). 

In general, R-CNN methods are more accurate but single shot detectors are 

faster (Huang et al., 2017). Figure 2-19 shows the development of the R-CNN 

architecture and Figure 2-20 shows the principles of the single pass object 

detection method used by Redmon et al. (2016). 
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Figure 2-20: Principle of the YOLO single pass object detector (Redmon et al., 2016). The model  
simultaneously learns the bounding box locations, confidence and class probabilities. 

A fundamentally different image processing task that can be solved by CNNs is 

semantic segmentation. This task involves determining a category label for 

every pixel in an image. Semantic segmentation does not differentiate objects 

or instances within an image, only pixel classes. Semantic segmentation could 

be solved using large fully convolutional networks with no pooling layers; 

however, computation would be costly if the images did not decrease spatially 

as they increase in depth. A solution is to use an architecture that progressively 

downsamples the input image (in the same way as a classification CNN) to 

capture the high level image understanding, before upsampling the deep 

feature maps in order to generate pixelwise labels at the same resolution as the 

original input image (Shelhamer et al., 2017). Cross-entropy loss is used to 

determine the loss across every pixel in the final layer, with no fully connected 

layers. The original paper by Long et al. (2015) used only one upconvolution 

layer, architectures such as SegNet (Badrinarayanan et al., 2017) and U-Net 

(Ronneberger et al., 2015) have a more symmetrical encoder-decoder structure 

where the number of upsampling layers is similar to the number of 

downsampling pooling layers. Greater precision in final resampled 

segmentation mask can be obtained by carrying information straight across 

from the corresponding downsampling layers, either by copying the pooling 
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indices (Badrinarayanan et al., 2017) or by using skip connections between 

corresponding resolution layers (Ronneberger et al., 2015). Figure 2-21 shows 

the architectures of the three discussed semantic segmentation networks, a 

review of over 30 semantic segmentation architectures is given in Garcia-Garcia 

et al. (2018). 

 
Figure 2-21: Architectures of different semantic segmentation CNNs: a) original fully convolutional network 
(Shelhamer et al., 2017), b) SegNet (Badrinarayanan et al., 2017) and c) U-net (Ronneberger et al., 2015). 

The most complex image processing task is instance segmentation, which 

requires elements of all the other tasks. In instance segmentation, all individual 
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objects must be detected and every pixel comprising those objects must be 

labelled individually. He et al. (2017) proposed a modified version of Faster R-

CNN (Ren et al., 2017) with an added branch which computes semantic 

segmentation within the regions of interest using a fully convolutional network. 

Solving these image processing tasks using deep learning is an extremely fast-

growing field of research, with new architectures emerging rapidly across all 

tasks. To stay abreast of current developments it is recommended to monitor 

the leaderboards of the benchmark datasets such as Microsoft’s COCO dataset 

(Lin et al., 2014) or the autonomous driving KITTI dataset (Geiger et al., 2013).  

2.4.5 Deep learning for point clouds 
Thus far, the deep learning methods discussed in this literature review are 

designed to work with images; however, the fundamental CNN building blocks 

can be used on 1D, 2D or 3D structured data types (LeCun et al., 2015). When 

dealing with 3D point clouds, the difficulty arises from their unstructured nature, 

as discussed in Section 2.3.2. Point clouds are not arranged in a gridded 

structure and are instead unordered lists of 3D cartesian coordinates; therefore, 

any model must be permutation invariant to address these characteristics. 

Additional difficulties arise from the size of the datasets, both in density of points 

and spatial extent. The primary tasks associated with point cloud processing are 

segmentation and semantic segmentation, Xie et al. (2020) give a review of the 

historical and state of the art approaches for solving these tasks. Segmentation 

involves dividing the point cloud into local objects based on geometric 

similarities; these methods do not usually use machine learning and limited 

semantic information is associated with the segmented sections (Xie et al., 

2020). Segmentation algorithms can be a useful preprocessing step to improve 

the performance of machine learning models (Zhang et al., 2013, Vosselman et 

al., 2017).  

Point cloud semantic segmentation can be carried out using either classic 

machine learning or modern deep learning. The classic approach can be 

divided into either point-based models or statistical context models. The point-

based approach uses information about the point and its neighbours to 

generate a descriptive feature vector which is then used as input to some form 

of supervised classifier. Whilst not the first use of this method, Weinmann et al. 
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(2015) has become the definitive reference for this technique, due to its clear 

description of the methodology and thorough examination of relevant 

parameters. Figure 2-22 shows the main stages of this method. The 

advantages of this technique include a strong consideration for a point’s 

neighbourhood and an understandable and repeatable supervised machine 

learning element. The disadvantages are the lack of overall context leading to 

noisy results, along with the time consuming nature of creating handcrafted 

features (Xie et al., 2020).  

 
Figure 2-22: Classic point cloud semantic segmentation method (Weinmann et al., 2015a). 

Statistical context models address some of these issues, using Markov random 

fields (Geman and Geman, 1984) or conditional random fields (Lafferty et al., 

2004) to model dependencies across different ranges. These methods can be 

employed either as a standalone method (Niemeyer et al., 2014) or applied to 

the results from the point-based methods (Landrieu et al., 2017a). Landrieu, 

Raguet, et al. (2017) showed that applying graphical models after pointwise 

classification improved on the accuracies obtainable by either method in 

isolation. 

Since 2015, point cloud segmentation has attracted the interest of deep learning 

research (Xie et al., 2020). As described previously, point cloud data cannot be 

easily ingested by CNN models; therefore, the first strategies involved modifying 

the data rather than the fundamental CNN models. Su et al. (2015) proposed 

generating multiple 2D views of the 3D data to feed into a standard CNN, 

Boulch et al. (2018) extended this multi-view strategy to larger scenes by 

meshing the point cloud prior to generating the 2D views. Another method of 

modifying to point cloud is voxelization, described in Section 2.3.2. Once 

voxelized, point clouds can be processed using 3D convolutions in the same 

way as images are processed using 2D convolutions. VoxNet (Maturana and 

Scherer, 2015), VoxelNet (Zhou and Tuzel, 2018) and SEGCloud (Tchapmi et 

al., 2017) are examples of voxel based 3D CNNs, with the SEGCloud 
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architecture shown in Figure 2-23. SEGCloud achieved leading results in 2017 

on the semantic segmentation benchmark dataset (Tchapmi et al., 2017); 

however, like all voxel-based models it suffers from high computation cost due 

to the need to store unoccupied voxels.  

 
Figure 2-23: SEGCloud 3D CNN model architecture (Tchapmi et al., 2017). 

PointNet (Cherabier et al., 2016) pioneered an entirely new approach to deep 

learning on pointcloud data by removing the convolutions, instead using max 

pooling as symmetric functions to solve the permutation invariance problem, 

combined with shared MLPs for spatial encoding and learned transformation 

matrices. The initial PointNet did not use local point context, which was added 

in the follow up model PointNet++ (Qi et al., 2017). Many other architectures 

either modify PointNet directly or reuse some of its intuitions (Bello et al., 2020).  

A different approach is taken by Landrieu & Simonovsky (2018), where 

superpoint graphs are used to geometrically partition a pointcloud before 

applying a deep learning model which combines PointNets and graph 

convolutions. At the time of its publication, this method substantially improved 

on the state of the art on the benchmark Semantic3D dataset; however, it has 

since been overtaken by ever newer, faster and more accurate methods. As 

with deep learning for image processing, the field is evolving at an incredibly 

rapid pace; the results tables of the benchmark datasets such as Semantic3D 

(Hackel et al., 2017a), SemanticKITTI (Behley et al., 2019) and S3DIS (Armeni 

et al., 2017) are the best place to keep abreast of current developments. Figure 

2-24 graphs the results from the Semantic3D benchmark’s Reduced-8 dataset 

over time, with papers discussed in this literature review highlighted. It can be 

seen that each discussed paper represented a move forwards in achievable 

accuracy at each time. 
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Figure 2-24: Graph of results on the Semantic3D’s Reduced-8 dataset over time. Labels are added to 
highlight papers discussed in this literature review.   

The current leaders on the two Semantic3D datasets5 are ConvPoint (Boulch, 

2019) and RandLA-Net (Hu et al., 2020). ConvPoint replaces the discrete 

convolutions used by grid based CNNs with a continuous convolutional kernel; 

this adaption allows unstructured point cloud data to be processed by a model 

with a very similar architecture to successful 2D CNNs (Boulch, 2019). RandLA-

Net greatly improves processing speed by using random point sampling 

combined with local feature aggregators and does not use any pre or post 

processing operations (Hu et al., 2020). In a real world trial by the Alan Turing 

Institute it was found that whilst the KPConv method (Thomas et al., 2019) 

provided the most accurate results on the Birmingham test dataset, the training 

took over two weeks. RandLA-Net on the other hand achieved near comparable 

results with only a few hours of training (Data Study Group Team, 2020).  

  

 
5 The Semantic3D benchmark has two test sets named Semantic-8 and Reduced-8. The 
Reduced-8 dataset has been downsampled to 0.01m. 
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2.4.6 Practical deep learning 
Sections 2.4.2 to 2.4.5 have introduced the basic theory of deep learning on 

images and point clouds. The design of cutting-edge architectures is primarily 

the preserve of mathematics and computer science; from an engineering 

perspective the priority must be given to practical implementation of these 

models. Historically deep networks were notoriously difficult to train; however, 

with larger training dataset sizes and more powerful hardware it has become 

more straightforward to apply these models to real world problems (Goodfellow 

et al., 2016). This section discusses several important practical elements of 

deep learning implementation in a general context, specific implementation 

details for the models developed in this thesis are given within their relevant 

chapters. 

2.4.6.1 Generating training data 
The type of learning examined in this thesis is supervised learning, therefore, 

the model must have access to a series of labelled examples to learn from, 

known as the training dataset. Goodfellow et al. (2016) offer a rule of thumb, 

that a supervised deep learning algorithm will achieve reasonable performance 

with > 5,000 training examples and will approach or surpass human level 

performance when provided with > 10 million examples. These training 

examples are primarily hand labelled by humans and are consequently very 

costly to create. There are several existing datasets with millions of labelled 

examples; these are used by researchers designing deep learning algorithms. 

For applied research, there is a choice between adapting models trained using 

these large datasets or creating new application specific training datasets. 

Adapting models trained on other datasets or trained for other problems is 

known as transfer learning and is discussed in more detail in Chapter 4. 

2.4.6.2 Data augmentation 
If a new training dataset must be generated from scratch, there are several 

techniques which can be used to increase the size of the dataset. Data 

augmentation is where multiple training examples can be generated from a 

single labelled instance, for example by mirroring or rotating both the source 

image and its label or by changing the pixel values with a filter, as shown in 

Figure 2-25. Augmentation generally improves performance on smaller 
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datasets, such as those found in medical imaging or remote sensing, though it 

cannot correct for missing instances in the original dataset (Shorten and 

Khoshgoftaar, 2019).  

 
Figure 2-25: Image augmentation examples (MXNet, 2020). 

Data augmentation is itself a large and evolving field, with recent advances 

utilising deep learning methods to design augmentations based on neural style 

transfers. Shorten & Khoshgoftaar (2019) provide a review and a framework for 

categorising the many currently used types of data augmentation for deep 

learning. 

2.4.6.3 Dataset structure 
Once the labelled data has been generated it must be divided into samples 

which will be used for training and samples used for evaluating the model’s 

performance. There are usually two evaluation sets, the cross-validation set and 

the final test set. The cross-validation set is the dataset used to assess the 

model’s performance during development, it can be used during training to 

monitor overfitting and can be used to examine how changes to the model 

hyperparameters affect the results. Another strategy, common with smaller 

traditional machine learning classifies is n-fold cross validation. In this strategy 

instead of a separate cross-validation dataset the training set is divided into n 

segments and the model is trained n times, with a different segment acting as 

the cross-validation set each time. This is a robust way of evaluating the 

performance on a more varied validation dataset, but becomes impractical with 

larger deep learning models which take several days to train. Overfitting is a 

well-known issue in supervised machine learning, where the model becomes 
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too good at the training data at the expense of its generalisation ability (Géron, 

2017), illustrated by Figure 2-26.   

 
Figure 2-26: Illustration of how simple 2D data can be under or over fit. 

A primary symptom of overfitting is a large gap between performance on the 

training data versus the validation data. Figure 2-27 shows typical accuracy 

curves for a model during training. Initially both training and validation accuracy 

is low as the model is yet to learn about the relationships between the data and 

the labels. As the model trains the performance improves on both sets, with 

training set performance usually above validation set performance as it is easier 

to make predictions on familiar data. If the model begins to overfit, the 

difference between the training and validation set accuracies increases. 

Overfitting can be minimised by a suite of regularisation techniques, discussed 

further in Section 2.4.6.5. 



64 
 

 
Figure 2-27: Typical accuracy curves for training and validation datasets, plotted against the number of 
epochs the model has been training for.  

As the validation dataset is used to inform choices for model parameters, it is 

not truly unseen data and if extensive hyperparameter tuning is carried out, the 

model can begin to overfit on the validation set too. This is because design 

choices are made with the aim of increasing accuracy on this validation set. For 

this reason, a third set known as the test or hold out set is used to gain a 

measure of the model’s performance on truly unseen data. This dataset is used 

only at the very end of a project and the results on this dataset are what is 

reported in publications and machine learning competitions. Traditionally, 

datasets were split into roughly 60% for training, 20% for validation and 20% for 

testing; however, with the advent of deeper models trained on larger datasets 

the modern splits can be closer to 98% for training and 1% each for validation 

and testing (Ng, 2017). 

2.4.6.4 Hyperparameter tuning 
Hyperparameters refer to the values in a neural network that are set by the 

operator rather than learned by the model. Choosing appropriate 

hyperparameters is a crucial step in creating successful deep learning models. 

Hyperparameters can refer to architecture settings such as the model depth and 

number of hidden units per layer and they can also refer to training options such 

as the learning rate and the mini-batch sizes. The hyperparameters to be tuned 
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depend on the machine learning model used; specific hyperparameters relevant 

to the models used in this research will be introduced in the model development 

sections of each chapter.  

Hyperparameters can be selected either manually or automatically. Intuition and 

experience play a large part in selecting appropriate hyperparameters manually, 

whereas large amounts of raw computing power are required to select them 

automatically. A compromise can be to use domain expertise to narrow the 

search area before running multiple automatic tests. Some hyperparameters 

are continuous (learning rate), some are discrete (number of hidden layer units) 

and some are binary (normalisation on/off). Hyperparameter tuning can be 

considered an optimisation problem, where the objective is to find the optimum 

value for the hyperparameters which minimises model generalisation error 

(Goodfellow et al., 2016).  

2.4.6.5 Regularisation 
The idea of effective capacity is useful when considering model training. A deep 

learning algorithm’s effective capacity is its ability to model complexity; good 

performance is achieved when its effective capacity is appropriate for the 

complexity of the task and the size of the available training data (Goodfellow et 

al., 2016). If it has more effective capacity than needed, it will tend to overfit. 

Overfitting can be minimised either by obtaining more training data, decreasing 

the complexity of the architecture or by regularisation. There are multiple 

regularisation strategies used in practice, the most common of which are weight 

decay, dropout and early stopping.  

Weight decay, also known as L2 regularisation penalises model complexity by 

adding a regularisation term which multiplies the weight updates by a number 

smaller than 1, according to Equation 2-5 (Géron, 2017): 

 
𝐽𝐽(𝜃𝜃)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐽𝐽(𝜃𝜃) +  𝛼𝛼

1
2
�𝜃𝜃𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (2-5) 

where J(θ) is the generic cost function and α is the hyperparameter controlling 

the amount of L2 regularisation required. If we consider w to be the vector of the 

feature weights θ1 to θn then the second part of Equation 2-5 becomes 1
2

(‖𝑤𝑤‖2)2  
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which is the L2 norm of the weight vector (Géron, 2017). L2 normalisation 

diminishes the sizes of some of the weights which makes the model behave 

similarly to a smaller model, reducing overfitting tendencies.  

Dropout regularisation minimises overfitting by randomly eliminating nodes in 

the network. For every training example, different nodes are eliminated 

according to a pre-set probability. If the model makes multiple passes through 

the training data it is important that different nodes are dropped each time the 

same training example is passed through. Dropout is only used during training, 

not during validation or testing. Dropout minimises overfitting for two reasons. 

Firstly, it reduces the effective size of the model on each iteration and secondly 

it reduces reliance on individual features as they may be randomly eliminated, 

forcing the model to spread the weights more evenly (Ng, 2017).  

Early stopping is a simple form of regularisation where the training is stopped at 

the highest validation accuracy score; before the training and validation scores 

diverge. A typical early stopping point is shown by the dotted line on Figure 

2-27. A downside of early stopping is it couples the cost optimisation and 

reduces overfitting objectives making it difficult to examine either independently 

(Ng, 2017).  Data augmentation, as discussed in Section 2.4.6.2 can also be 

considered a regularisation strategy as it contributes to minimising overfitting 

tendencies. In general, overfitting is only a problem when using small datasets, 

as it is essentially the inability of the model to differentiate between signal and 

noise in the training samples. When the training dataset gets sufficiently large, 

the model is able to determine the noise element itself.  

2.4.6.6 Imbalanced classes 
Many detection tasks contain highly imbalanced classes, which if unaddressed 

will lead to the model predicting only the majority class result. Imbalanced 

classes are generally addressed in two ways. Firstly, the input data can be 

resampled to increase the percentage of the minority class, either by 

downsampling the majority class or upsampling the minority class. Secondly, 

the loss function can be weighted to force the model to focus more on mistakes 

made on the smaller classes. the data 
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2.4.6.7 Software and hardware 
There are many powerful open source and commercial libraries available for 

designing and running deep learning models. A selection of the most popular 

tools and libraries are detailed in Table 2-1. 

Table 2-1: Common machine learning libraries. This list is not comprehensive, only a snapshot of the most 
commonly encountered libraries. See https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software 
for a full list. 

Name Programming 
Language Comments Reference 

Scikit-learn Python 
Traditional machine learning not 
deep learning, many algorithms 
implemented. 

(Pedregosa et al., 2011) 

MATLAB 
Deep 
Learning 
Toolbox 

MATLAB 
Not open source but allows fast 
prototyping with easy to use 
functions. 

(The MathWorks, 2020) 

TensorFlow Python, C++, 
CUDA 

Deep learning library developed 
by Google. (Abadi et al., 2016) 

PyTorch Python 
Based on the Torch library and 
primarily developed by Facebook 
AI Research. 

(Paszke et al., 2019) 

Keras Python 
High level library designed to be 
run on top of other libraries such 
as TensorFlow or PyTorch. 

(Chollet, 2015) 

Most software libraries run on Windows, Linux and macOS; however, newly 

released code is usually designed on Linux operations systems. As the code 

matures, edited Windows versions become available; this lag can be a 

challenge when developing applications based on the cutting-edge algorithms, if 

constrained to Windows machines.  

Past progress in deep learning has been inextricably linked to available 

hardware (LeCun, 2019). Algorithm research and development is primarily 

carried out on High Performance computing (HPC) clusters as performance and 

flexibility are the primary concerns (LeCun, 2019). Applied research, using 

transfer learning or smaller specialised models can generally be carried out on 

the higher end of consumer workstations. Commercial inference6 applications 

such as Facebook’s image recognition CNNs are mostly carried out on data 

centre servers (LeCun, 2019). Demand for mobile, robotic and vehicle based 

 
6 Inference is where only the prediction stage is running, using a well understood pre-trained 
models 

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
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systems is accelerating development of extremely low power application 

specific integrated circuits (LeCun, 2019). 
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2.5 Remote sensing and machine learning in mining  
Over the last decade, numerous mining specific remote sensing applications 

have been developed. Primarily these have involved human interpretation of the 

datasets, without the addition of machine learning algorithms. Recently, several 

applications utilising machine learning to analyse mining sector remote sensing 

data have been developed. This section of the literature review is structured as 

follows: firstly, an overview of the non-machine learning remote sensing based 

mining applications is given, followed by a review of the emerging integrated 

machine learning and remote sensing mining applications. Lastly, promising 

machine learning and remote sensing integrations found outside the mining 

sector are examined. 

2.5.1 Non-machine learning remote sensing in the mining 
sector  

Remote sensing technologies are used in many areas of the mining sector, from 

individual mine sites to government departments. In this section, remote 

sensing applications are grouped by the location of their sensing platform into 

the categories of terrestrial, aerial and orbital. This categorisation is effective as 

other attributes such as data format, scale of survey and stakeholders correlate 

well with each category. For consistency, this categorisation is also used across 

each of the three case studies in this thesis. 

2.5.1.1 Terrestrial 
Applications using terrestrial based remote sensing platforms are at an 

individual mine site scale and usually take the form of true 3D data. The 

innovations in this space are pushed by research institutions, equipment 

manufacturers and the mine sites themselves. Geotechnical applications make 

up a sizable part of terrestrial remote sensing research in mining and civil 

engineering. Of primary interest to mining is the study of rock mass 

characterisation from remote sensing data, both on surface (Lato et al., 2009, 

Sturzenegger and Stead, 2009, Coggan et al., 2007, Monsalve et al., 2019) and 

underground (Chen et al., 2018, Mcquillan, 2013, Fekete and Diederichs, 2013). 

Additionally, Fekete et al. (2010) give an overview of the range of underground 

operational and geotechnical applications that can benefit from 3D geodata, 

including calculation of shotcrete thickness, rock reinforcement bolt spacing, 
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leakage regions, rockmass characterisation and geometrical discontinuity 

characterisation. Terrestrial platforms have also been used for slope stability 

applications including rockfall analysis (Rosser et al., 2007, Abellán et al., 

2010). 

Due to lighting limitations, underground applications primarily favour laser 

scanning over close range photogrammetry, although some photogrammetric 

methods are successful for tunnel inspection, a review of these is given in 

(Attard et al., 2018). Tunnel inspection can also be carried out using laser 

scanning (Gikas, 2012, Xu et al., 2018, Tan et al., 2016), with a review of 

multiple tunnelling applications given in (W. Wang et al., 2014). Laser scanning 

also has been successfully used for measuring the precise underground 

environment of cross sections (Ganić et al., 2011), shafts (van der Merwe and 

Andersen, 2013) and areas where accidents have occurred (Eyre et al., 2015). 

Furthermore, investigations of mobile mapping for underground applications 

have been reported in Eyre et al. (2016) and Bissir et al. (2008). 

Moving away from using remote sensing data for its more traditional purposes 

of supporting engineering through mapping, new applications have emerged 

using stereo cameras for rope shovel pose estimation (Lin et al., 2013), haul 

truck pose estimation (Borthwick, 2009) and other applications which support 

the move towards automated vehicles in mining (Frimpong et al., 2007, Ruff, 

2004). Laser scanners have also been used to aid underground autonomous 

navigation (Bissir et al., 2008, Wu et al., 2018). 

2.5.1.2 Aerial 
The aerial category includes data captured from Unmanned Aerial Vehicles 

(UAVs) and manned aircraft. Due to payload size limitations, large format aerial 

photography and LiDAR campaigns are generally carried out from manned 

aircraft, while UAVs are used to generate SfM point clouds using smaller format 

cameras.  UAVs are lower cost and require less personnel to pilot (Simic Milas 

et al., 2018), allowing faster revisit times in dynamic environments such as open 

pits. Lee & Choi (2016) provide a review of UAV applications in the mining 

industry, concluding that topographic surveying of pit benches and stockpiles is 

the largest primary use of UAV surveying (Tien Bui et al., 2018, Xiang et al., 

2018, Q. Wang et al., 2014, Cryderman et al., 2014). Other UAV applications of 
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interest include measuring fracture orientations (McLeod et al., 2013), virtual 

structural analysis (Sayab et al., 2018), blast fragmentation (Bamford et al., 

2017), hyperspectral monitoring of acid mine drainage (Jackisch et al., 2018), 

geological investigations (Kirsch et al., 2018), underground coal fires (Wang et 

al., 2015) and monitoring tailings subsidence (Rauhala et al., 2017). 

LiDAR surveys are used for subsidence monitoring (Froese and Mei, 2008, Yu 

et al., 2011, Palamara et al., 2007), deformation monitoring (Hu and Wu, 2016) 

and rock mass characterisation (Gigli and Casagli, 2011). Other uses of 

airborne remote sensing data include studying legacy mine sites for reclamation 

(Maxwell et al., 2014), radiation mapping (Martin et al., 2015), monitoring 

restoration success (Moudrý et al., 2019, Padró et al., 2019) and documenting 

historic mining activities (Hanke et al., 2009, Fernández-Lozano et al., 2015). 

2.5.1.3 Orbital 
Orbital data is sensed from spaceborne platforms such as satellites. This type 

of data covers large areas and is primarily used by the mining sector to analyse 

land use changes related to mining. Spaceborne data is usually 2D and is often 

multispectral or hyperspectral. Common Ground Sampling Distances (GSD) for 

optical remote sensing satellite sensors range from sub 1m for the newest 

generation of Very High Resolution (VHR) sensors (Fu et al., 2020), to several 

hundred meters for the earlier multispectral sensors (Justice and Townshend, 

2002). The mining sector applications include a large number of studies 

assessing the environmental impacts of mining, comprehensively reviewed in 

Werner et al. (2019). Other applications include hyperspectral geological 

analysis (van der Meer et al., 2012), mine subsidence (Wright & Stow, 1999, 

Demirel et al., 2011) and mine reclamation (Karan et al., 2016). 

2.5.2 Machine learning and remote sensing in the mining sector 
The integration of machine learning and particularly deep learning applied to 

mining sector remote sensing data is a newly emerging research area. Many of 

the contributions are driven by commercial entities and as such have minimal 

published references. The applications reviewed here are those currently in use 

in the mining sector but not directly examined in this thesis. Existing work 

directly related to the applications developed in this thesis are covered in the 

introductory sections to the relevant chapters. 
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2.5.2.1 Prospecting and exploration 
The most mature area is geological prospecting and exploration. Many 

traditional machine learning algorithms such as random forests and support 

vector machines have been applied to tasks such as prospectivity modelling 

(Yeomans, 2018), lithological classification (Bressan et al., 2020; Cracknell and 

Reading, 2014; Yu et al., 2012), bedrock mapping (Hood et al., 2019) and 

mineral prospectivity mapping (Rodriguez-Galiano et al., 2015). Deep learning 

research to date has been primarily concerned with mineral prospectivity 

mapping (Sun et al., 2020; Xiong et al., 2018; Xiong and Zuo, 2020; Zuo et al., 

2019); however, other applications such as surficial geology mapping (Latifovic 

et al., 2018), lineament interpretation (Naprstek, 2020) and close range rock 

identification (Liu et al., 2020) have also been examined. Whilst not strictly 

related to remote sensing data, other interesting geological applications based 

on deep learning algorithms have been used to analyse scanning electron 

microscope images (Chen et al., 2020) and thin sections (Pires de Lima et al., 

2020). Alongside the academic work mentioned above, many commercial 

applications are being developed in the AI for prospecting sector, most notably 

by Goldspot Discoveries (Holmes, 2019), Earth AI (Barich, 2019) and the IBM 

joint venture Goldcorp (Moore, 2019).  

2.5.2.2 Fragmentation analysis 
Another area which has seen research interest is fragmentation analysis. 

Bespoke machine learning algorithms developed by Thurley and Ng (2008) 

demonstrated that it is possible to automatically classify broken material from 

laser scan data, either on conveyors (Onederra et al., 2015a), from rock piles in 

an open pit mine (Thurley, 2013, Onederra et al., 2015) or from underground 

draw points (Campbell and Thurley, 2017). MotionMetrics, a Canadian mining 

technology company, have extended this concept using deep learning with 

imagery to develop their PortaMetrics automated rock segmentation system 

(Azmin et al., 2016, Ramezani et al., 2017). Another commercial fragmentation 

analysis technique is proposed by Petra (Stewart, 2018), where laser scan data 

is classified using the eigenvalue based traditional machine learning algorithms 

described in Weinmann et al. (2015). Shao et al. (2020) uses a CNN algorithm 

to detect large coal blockages on a conveyor.  
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2.5.2.3 Automation 
Autonomous technologies rely heavily on deep learning algorithms, for tasks 

such as object detection, hazard avoidance and vehicle localisation. Most 

mining sector research in this area is carried out by the large equipment 

manufacturers such as Caterpillar, Komatsu and Sandvik (Marshall et al., 2016) 

and the precise implementation details are not publicly available. However, the 

techniques used for autonomous surface haul trucks can be considered broadly 

similar to those employed by the automotive industry (Price et al., 2020), with 

the main differences relating to the scale of the vehicles and the harshness of 

the environment. For the automotive industry, Grigorescu et al. (2020) provide a 

thorough review of how different deep learning algorithms are applied in this 

sector.  

In other areas of mine automation, Somua-Gyimah et al. (2019) propose a deep 

learning based vision system to classify terrain and recognise objects in an 

automated dragline excavation scenario. MotionMetrics have built on their 

fragmentation solution (described in Section 2.5.2.2) to develop an intelligent 

shovel bucket monitoring system, combining fragmentation analysis, missing 

tooth detection, tooth wear monitoring and foreign object detection (Shariati et 

al., 2019). A review of other emerging AI frontiers in mining is given by Ali and 

Frimpong (2020). 

2.5.2.4 Environmental management 
The increase in availability of high-resolution satellites has enabled 

governments and regional stakeholders to monitor land cover and land use 

changes related to mining at an unprecedented level of detail. Primarily these 

applications use traditional machine learning approaches to classify land use, 

with an extensive review given by (Chen et al., 2017). A broader review of how 

the impacts of mining can be studied using recent advances in remote sensing 

is given by Werner et al. (2019). Whilst not limited to machine learning and 

classification studies, this review gives a valuable overview of the different 

monitoring and impact assessment applications. Studies using deep learning 

algorithms are more scarce, though several interesting applications have been 

published in the last few years. Ferreira et al. (2020) developed a unique 

tailings dam detection benchmark dataset for Brazil before using it to test 

multiple CNN classifiers. Balaniuk et al. (2020) also apply CNN algorithms to 
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the problem of tailing dam detection. Maxwell et al. (2020) demonstrate a 

method using Mask R-CNN to identify geomorphological features associated 

with mountaintop removal coal mining and Chowdhary et al. (2019) use a U-Net 

based CNN to detect coal stockpiles. 

2.5.3 Integrated applications outside the mining sector 
Most of the deep learning based applications discussed in the previous section 

have been created by taking work carried out in the broader remote sensing 

and computer vision domains and adapting it for mining specific use cases. This 

section will briefly describe some of the other applications which could be of 

interest to the mining sector. Deep learning for general remotely sensed data, 

particularly VHR imagery has seen a large amount of research attention in 

recent years, with extensive reviews of the topic given in Ball et al. (2017) and 

Zhu et al. (2017). Figure 2-28 illustrates the research topics of the papers 

reviewed by Ball et al. (2017) as a word cloud, scaled according to the number 

of papers reviewed. Whilst not exhaustive, it is a useful way to visualise the 

breadth of applications and see how they could be relevant to the mining sector. 
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Figure 2-28: Word cloud depicting the research topics which integrate remote sensing and deep learning 
reviewed by Ball et al. (2017). Word size is indicative of the number of studies reviewed.  

It is easy to see the possible parallels with mining related challenges from the 

applications such as vehicle and ship tracking (Chen et al., 2014, Tang et al., 

2015, Konoplich et al., 2016), off road driving (Procopio et al., 2009, Hadsell et 

al., 2009, Alamiyan-Harandi et al., 2020) and human detection (Ouyang and 

Wang, 2012, Tomè et al., 2016). However, other more general topics such as 
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change detection, semantic segmentation, object detection and land use 

classification could also be applied to mining sector data.  

2.6 Conclusion 
This literature review firstly has provided an introduction to passive and active 

remote sensing systems and the 2D and 3D data structures associated with 

these technologies. Next it has provided a theoretical background and review of 

major developments within the broad field of deep learning, with a focus on 

image processing tasks. A review of state of the art for using deep learning on 

point clouds is also given in this section. The deep learning section concludes 

with a review of the practical considerations required for successfully training 

algorithms of this type. Finally, this chapter examines how remote sensing and 

deep learning technologies, both separately and combined, are currently being 

used in the mining sector for a diverse range of applications and indicates 

where there could be further scope for adapting algorithms from other sectors to 

mining specific problems. 

As this literature review shows, the breadth of applications across the wider 

scientific community for the integration of remote sensing and deep learning 

algorithms is large. Almost all of the applications shown in Figure 2-28 could be 

adapted for mining specific data; however, for this thesis, potential applications 

have been developed with the goal of demonstrating the broadest applicability 

of these new technologies. With this in mind, three applications have been 

developed based on each of the fundamental remotely sensed data types 

discussed in Section 2.3. These applications are aimed at different groups of 

stakeholders, as the benefits from integrating deep learning and remote sensing 

technologies vary depending on the end user, from equipment manufacturers 

using these new technologies to gain a market edge, to mine sites increasing 

productivity via increased automation, to governments gaining a better 

understanding of the environmental impacts of mining in their jurisdictions.  
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 Using machine learning techniques to detect objects in 
3D point clouds 
Chapter overview 
This chapter investigates how machine learning can be used with full 3D 

terrestrial laser scanner data for underground mining applications. Underground 

mining applications were chosen as the focus area for this chapter in order to 

fully exploit the nature of true 3D point clouds. The focus of the application 

developed in this chapter is the location of supporting rock bolts; however, 

similar techniques could be applied to a range of underground point cloud 

identification tasks such as hazard detection, pipe identification and as an input 

to route planning algorithms. 

This chapter is primarily based on the paper ‘A machine learning approach 
for the detection of supporting rock bolts from laser scan data in an 
underground mine’, published in the journal Tunnelling and Underground 

Space Technology7. Additionally, this chapter contains the results from testing 

using a modern production mine dataset and it also includes the development of 

a bolt density assessment technique for pattern bolted mines. 

3.1 Introduction  
Rock reinforcement is a crucial element of underground construction. When 

operating with any underground excavation, an understanding of the rock mass 

characteristics as an engineering material is critical in ensuring that risks from 

tunnel collapse are mitigated through the use of ground control methods. 

Installation of rock bolts is the most widely used form of ground support (Li, 

2017). The design of such a system is site dependent and based on the 

mechanical behaviour of the rock mass, the in-situ stress field and induced 

stress from the excavation (Hoek and Brown, 1982). In low stress conditions, 

compression of the ground is needed to ensure loose blocks do not fall. This 

can be achieved either by using spot bolting of discrete blocks or by a 

systematic bolting pattern. Spot bolting is carried out where needed without 

 
7 The candidate is the first author of this paper and the authorship contribution statement is as 
follows: Jane Gallwey: Methodology, writing (original draft & revisions), investigation, code 
development. Matthew Eyre: Conceptualization, writing (review & editing), supervision. John 
Coggan:  Project administration, writing (review & editing), supervision. 
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following a set spacing, whereas systematic patterns are used to add a 

compression arch to the rock mass, reducing the potential for unravelling. 

Schach et al. (1979) show that an increase in bolt spacing leads to less 

interaction of neighbouring bolts, reducing the size of the compression zone to a 

point at which the bolts no longer provide a wide coverage leading to potential 

fall of ground. To ensure the required level of compressive cover is produced, it 

is important that correct installation of bolt patterns is carried out. Reconciliation 

of installed bolts is therefore an important part of the ground management 

process to ensure safe working underground.  

There is no published literature on the current methods of documenting rock 

bolt installation; these are usually hand sketch based and not comprehensive 

(Öberg, 2013) due to the large volume of bolts that have to be recorded and the 

difficulty and time-consuming nature of manually surveying such data, along 

with the associated human error for this type of repetitive task. Another difficulty 

is that in many applications the entire surface is covered with shotcrete after 

installation, rendering the exact locations of the rock bolts unknown or 

challenging to discern after shotcrete installation (Öberg, 2013). Automatically 

detecting and recording the 3D coordinates of rock bolts either retrospectively 

or at installation would allow for greater quality assurance and quality control, 

providing a detailed record of exactly where rock bolts have been installed. 

These records also would be critical in a fall of ground situation, where the 

exact bolting configuration that was installed prior to the incident must be 

determined to verify the workings were adequately supported. Advancements in 

remote sensing techniques and machine learning algorithms could allow this 

bolting pattern information to be obtained. However, currently the mining sector 

is not fully utilising these new technologies despite being well placed to employ 

them due to a widespread adoption of laser scanners and other high resolution 

surveying technologies both onboard vehicles and as standalone survey 

technologies (Body, 2014). 

To date, image based photogrammetric systems for automatically inspecting 

civil engineering tunnels have been the primary research focus in this area. A 

review of these techniques is given in Attard et al. (2018) and successful 

implementations for crack detection by Huang et al. (2018) and moisture mark 

detection by Zhao et al. (2020), demonstrating the power of remote sensing and 
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machine learning for underground infrastructure management. However, 

passive remote sensing methods such as those used in the above referenced 

studies can be problematic underground, particularly in mines, due to 

challenges from uneven illumination and dust (Gikas, 2012). Active systems 

such as laser scanning can circumvent these issues, by measuring using 

multiple high speed laser pulses emitted from the instrument itself therefore 

removing the need for external illumination (Eyre et al., 2016). The data 

obtained from a laser scanner is in the form of a 3D point cloud which records 

the X, Y, Z coordinates of the reflected point in 3D. Most scanners also record 

the intensity of the laser return and some also use cameras to store an RGB 

colour value for each point. The primary issue with laser scanners compared to 

cameras is the size of the data collected and the subsequent difficulty in 

efficiently processing it. The raw output from the laser scanner is a large 

unordered set of 3D coordinates with no semantic knowledge of the object they 

are surveying. This 3D point cloud data is currently used by mines directly for 

surveying tasks such as change detection, geometric analysis and as-built to 

design comparison (van der Merwe and Andersen, 2013). In order for this data 

to be utilised in a wider range of applications such as automated machines, 

mine information databases and infrastructure monitoring a level of semantic 

information needs to be added to the data, along with a reduction in the dataset 

size. 

The most directly applicable prior work on this topic is by Martínez-Sánchez et 

al. (2016). In their work they built and trained an autoencoder based model to 

detect not only the rock bolts from laser scan data, but also their orientations 

and the shotcrete thickness. Their work achieved a bolt detection rate of 91% 

showing that geometric neighbourhood based machine learning algorithms 

have great potential to solve this engineering and monitoring problem. However, 

their dataset consisted of clean, generally planar shotcreted surfaces with 

minimal confusion objects.  

Laser scanners also have been used in tunnel inspection (Tan et al., 2016; Xu 

et al., 2018) however, these studies have used the laser scan data to generate 

intensity images rather than detecting objects from the 3D point cloud data. 

These methods are successful in infrastructure tunnelling projects where the 

tunnels are relatively empty and the images can be generated using a fixed 
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perspective distance; however, these methods are unlikely to work in mines as 

there are many confusion objects present at varying distances from the 

scanner. Soilán et al. (2019) give a full review of the use of laser scanners for 

infrastructure monitoring.  

Whilst there is minimal published work on detecting discrete objects in an 

underground environment from laser scanned data, automatically generating an 

understanding of a scene from point cloud data has been the topic of much 

research in recent years. Most application oriented work in this field focuses on 

either identifying roadside objects and road characteristics from surface mobile 

laser scan data (Balado et al., 2018; Lehtomaki et al., 2016; Soilán et al., 2017; 

Yang et al., 2013) or on ground cover classification from aerial LiDAR data 

(Blomley et al., 2016; Niemeyer et al., 2014; Rau et al., 2015). Properties of 

these types of surface scenes, such as proliferation of regular vertical objects in 

streetscapes and a mostly fixed view angle in aerial LiDAR can be leveraged to 

aid in detecting these types of objects, unlike in the underground environment. 

Underground terrestrial and mobile laser scan data is complex as it is true 3D 

data, with the possibility of multiple points sharing the same XY location but 

possessing different Z values. Approaches used for identification of discrete 

objects on roads, such as  Weinmann et al. (2017) for trees and Lehtomäki et 

al. (2010) for poles can be considered the closest neighbours, and techniques 

from these studies can be adapted to the problem of identifying underground 

features or objects with regard to the particular properties of the underground 

environment.  

These close research applications use variations on the classical point cloud 

machine learning method, described in section 2.4.5 of this thesis. Other less 

common methods include directly classifying using Markov networks (Agrawal 

et al., 2009; Anguelov et al., 2005; Triebel et al., 2006), spectral hashing 

(Behley et al., 2010) and most recently, approaches using deep learning. For 

this application, the classical approach similar to Weinmann et al. (2017) was 

selected, allowing a low computational burden which is more appropriate for 

time critical applications such as those deployed on underground vehicles and 

equipment. Whilst deep learning approaches have shown impressive results 

(Cherabier et al., 2016; Maturana and Scherer, 2015; Riegler et al., 2017), the 

additional model complexity, computational power, training time and the size of 
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the training data required for successful deployment make these methods less 

attractive for an efficient vehicle-based solution.  

This chapter will describe an automated approach for rock bolt identification 

from laser scan data using machine learning, based on the classical point cloud 

semantic segmentation but implemented using a more extensive set of features 

from both the robotics and remote sensing communities, alongside adaptations 

for the geometry of underground environments. The machine learning element 

of the research compares a random forest, which was the highest scoring 

classifier in the literature, with the fully connected neural network model 

developed in this research. Following the classification, the bolt objects are 

extracted via clustering and centroid generation.  

3.2 Datasets 
A large amount of labelled data is required to train a machine learning classifier 

to detect objects. As there are no available datasets of labelled laser scanned 

rock bolts, two datasets were collected and annotated specifically for this study.  

3.2.1 Cornwall dataset 
The primary dataset used in this research was collected from a 250m section of 

underground workings from a currently disused small tin and copper mine. This 

is a good training area, as the slaty nature of the country rock manifests itself as 

a fair to poor quality rock mass, resulting in extensive spot bolting based on 

observations of potential block fallouts. The area of interest was surveyed using 

a terrestrial laser scanning workflow. The scanner was mounted on a static 

tripod to perform a scan, next the scanner was moved to a position 

approximately 12m further down the tunnel and another scan was taken. This 

process was repeated for 25 scans. The individual scans were registered 

together to make a unified dataset in the point cloud processing software Leica 

Cyclone. The hardware used was a Leica C10 laser scanner, as used in other 

underground studies such as Ganić et al. (2011), S. Chen et al. (2018) and 

Long et al. (2018). This instrument has a specified accuracy of ± 6mm per point 

(Long et al., 2018) and the scan resolution at the chosen setting provides a 

point spacing of 5mm at 5m from the scanner, allowing small variation in tunnel 

geometry to be captured. The scanner was set to record only laser intensities 

not optical imagery values. This is due to the poor illumination in the mine and 
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the additional time required to take photographs with the inbuilt camera. The 

final dataset is representative of real world underground scan data, containing 

laser noise, occlusions and many objects that are neither tunnel nor bolt and it 

has not been manually cleaned and simplified for improved machine learning 

results. A sample of the data is shown in Figure 3-1.  

 

Figure 3-1: A view of the underground data. Many challenging objects are present including pipes, 
brackets, ventilation bagging and electrical boxes. The colour scheme is taken from the strength of the 
laser return. 

3.2.2 Production mine dataset 
To further assess the effectiveness of the method, an additional dataset was 

surveyed in a large modern zinc and lead mine. This mine is primarily 

shotcreted before or after bolting and the majority of the rock bolting in this mine 

is installed to conform to a pattern rather than the spot bolting seen in the first 

dataset. This dataset was surveyed with the Leica BLK360, a lower resolution 

and lower cost laser scanner. This was chosen to more closely resemble the 

datasets which might be obtained from mobile mapping systems onboard 

mining machines. The scans were surveyed at the medium resolution setting, 

providing an approximate point spacing of 12mm at 10m from the scanner. This 

second dataset was not measured as one contiguous block, instead multiple 

scans were taken throughout different areas of the mine and registered area by 

area, with the areas shown in Figure 3-3. 

3.2.3 Pre-processing 
To generate the training data, the rock bolt points were manually separated 

from all other points and given the class label 1 ‘bolt’. All other objects were 

labelled 0 ‘not-bolt’, including confusion objects such as pipes, brackets and 

ventilation bagging, alongside the hanging wall, side wall and foot wall surfaces. 

The Cornish dataset was then split into sections for training, cross-validation 

and testing, as shown in Figure 3-2. The production mine dataset was not in 

one contiguous section, the different sub areas used for training and testing are 
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shown in Figure 3-3. Four fold cross-validation, as described in Section 2.4.6.3 

was used instead of reserving a dedicated cross validation sub-area. In both 

figures the grey areas are unused and have been reserved for future algorithm 

testing.  

 

Figure 3-2: Tunnel showing the areas for training (blue), cross-validation (green) and testing (red) from the 
Cornaish dataset.  

 

Figure 3-3: Production mine dataset areas. Four fold cross-validation was used instead of a dedicated 
cross validation dataset.  

Before the point cloud dataset features can be generated a number of 

preprocessing steps are carried out, using the open source software 

CloudCompare (Girardeau-Montaut, 2016).  Firstly, the point clouds are shifted 

from their real-world coordinates to a position near the origin to avoid potential 

precision loss from processing very large numbers. Next, denoising is carried 

out using CloudCompare’s noise filter tool, this works similarly to a low pass 

image filter. This tool removes points which are further than a set factor of their 

neighbours reprojection error onto a plane, where the plane itself is fitted to all 

points within a specified radius (Girardeau-Montaut, 2016). The denoising 

settings used a radius of 10cm and a relative error factor of 1, the relative error 

factor of 1 is standard for clouds without excessive range noise and the 10cm 

value was chosen as it is 10 times the final required cloud spacing. The final 

step in the base dataset creation is density reduction. Point clouds acquired 

from laser scanners have a large variation in density due to many factors 
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including an object’s distance from the scanner, the scan angle, overlap 

between neighbouring scans and occlusions. Whilst it is difficult to create new 

points in areas of low density, it is straightforward to remove points in areas of 

high density using resampling techniques. For this application, the point cloud 

was spatially resampled to a density of 1 point per cm maximum. Figure 3-4 

shows the distribution of point densities on a section of the Cornish dataset 

before and after resampling.  

 

Figure 3-4: A section of the training data showing the density before (left) and after (right) spatial 
resampling. The density is measured as the number of points per square meter of tunnel surface. The 
graphs below each image show the range of data densities. 

The resampling algorithm also reduced the total number of points by ~40%. As 

shown in Figure 3-4, the density range is now closer to a normal distribution, but 

still not constant across the point cloud. This is because a constant density is 

undesirable for real world data, as there will always be areas of low sampling 

due to occlusions, however, if the majority of the cloud is downsampled to 

match the lowest density much of the useful detail can be lost. 

3.3 Methods 
The workflow for detecting bolts from the laser scanned point cloud dataset has 

three primary components: feature descriptor creation, machine learning 

classification and object creation. An overview of the processing workflow is 

shown in Figure 3-5. 
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Figure 3-5: Methodology diagram outlining the pipeline used for the task of identification of rock bolts from 
the laser scan data.  

3.3.1 Feature creation 
Single laser scanned points are not adequate descriptors of the data they 

represent, as they contain only 3D cartesian coordinates and an intensity value. 

In isolation, this information is insufficient to describe what type of object this 

point belongs to; therefore, the point cloud data must be encoded in a way that 



86 
 

allows a machine learning algorithm to differentiate between object types. This 

can be achieved by describing each point in relation to the geometry of its 

neighbouring points, these descriptors are known as features. The most popular 

features in the remote sensing community are based on the eigenvalues of the 

point neighbourhood. Early work by Pauly et al. (2003) and Vandapel et al. 

(2004) introduced the concept, which was extended by Jutzi and Gross (2009) 

and Weinmann et al. (2015b). The other common features are proposed by 

Rusu (2010) and implemented in Point Cloud Library (PCL)(Rusu and Cousins, 

2011). This approach computes a Fast Point Feature Histogram (FPFH) based 

on the angular variations between the normals of the points using a Darboux 

frame (Rusu et al., 2009).  

For choosing a point neighbourhood, the dimensions of the object to be 

detected and the spacing of points in the point cloud determine the optimum 

value. A typical mechanically anchored rock bolt measures 16cm across the 

faceplate. Computing the number of neighbours per point over the resampled 

point cloud using an 8cm radius found the mean number of neighbours to be 

close to 100, therefore, this is a suitable neighbourhood size to adequately 

capture the geometry of a rock bolt. Once the neighbourhoods have been 

defined, descriptive features can be constructed for each point using its 

neighbours.  

Two types of feature sets are calculated for each point in the cloud. The first are 

the ‘Geometric’ features, described fully in Weinmann (2016). These include 

simple 2D and 3D properties of the neighbourhood (density, vertical difference, 

minimum bounding box), eigenvalue based features which describe the local 

shape properties of the neighbourhood and 2D accumulation map based 

features, an overview of each individual feature is given in Table 1. These 

features were calculated using python code adapted from the MATLAB script 

published by Weinmann et al. (2015a). The 2D accumulation map features have 

the highest processing overhead and also are potentially less descriptive for an 

underground scenario where the hanging wall and footwall share the same XY 

coordinates, to investigate, the feature sets were generated both with and 

without these features. The geometric feature set is powerful as it is 

understandable and can be easily visualised, Figure 3-6 shows a small section 

of hanging wall with the points coloured by the magnitude of different features. It 
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can be seen that certain features are intuitively better at differentiating between 

‘bolts’ and ‘not-bolts’ for a human interpreter; however, some of the less obvious 

features may still be strong descriptors as they can help to separate between 

false positives and true positives. As can be seen in Figure 3-6 (a) the areas of 

high curvature change clearly correspond to rock bolt locations, whereas in 3-6 

(b) the 3D density appears to be more related to the distance from the scanner 

than the bolt location, indicating that is probably not a particularly effective 

feature for locating rock bolts. The omnivariance feature shown in Figure 3-6 (c) 

is high for the bolts but also high for other areas of discontinuities, especially 

visible in the vertical lines near the centre of the image, whereas in 3-6 (d) it can 

be seen that the verticality feature, despite does not spotting rock bolts has high 

values in the same areas of non-bolt discontinuities that were highlighted in 3-6 

(c).  
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Figure 3-6:  A section of hanging wall showing each point coloured by its feature value. Features shown 
are (a) change of curvature, (b) point density, (c) omnivariance and (d) verticality. All scales are relative, 
and the colour scheme banding runs from blue (lowest) to red (highest) with white as the median value. 

The second type of features used are the fast point feature histogram features 

(FPFH) proposed by Rusu (2010). This type of feature representation uses the 

relationships between the points in the neighbourhood and their normal vectors 

to describe the local geometry around the point. This is calculated for each pair 

of points by defining a fixed Darboux coordinate frame at one point and using it 

to compute the three angles which define the difference between the normal 
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vectors. The complexity is then reduced by not computing the same 

neighbourhood pairs for multiple points and instead using a weighting scheme. 

Finally, the values are binned into a 33 bin histogram. Full derivation of the 

FPFH is found in Rusu (2009). This step was implemented in C++ with the Point 

Cloud Library (Rusu and Cousins, 2011). 

As the intensity data adds further valuable information about the object, 

especially underground (Xu et al., 2018), two additional features; the intensity of 

the point itself and the average intensity of the neighbourhood are computed 

and added to the feature set. As all sets of features are computed individually 

for each point using the same set K number of neighbours the geometric, FPFH 

and intensity features can be concatenated, along with the X, Y, Z data for the 

point and the true class label. The result is a 65-dimensional vector describing 

the local geometry in a way that can be statistically interpreted by the machine 

learning classifiers in the next stage, shown in Table 3-1 overleaf.
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Table 3-1: Composition of the generated 65 dimensional vector including equations, where k = number of 
neighbours and λn = eigenvalue n. Eigenvalue equations shown are adapted from Weinmann (2016). For 
brevity, each FPFH value is not shown as they are numbered elements from the same histogram.  

No Name Description Equation 
1 X X coordinate of point n/a 
2 Y Y coordinate of point n/a 
3 Z Z coordinate of point n/a 
4 Label Point label n/a 
5 Intensity Reflectance intensity of point n/a 

6 Linearity How much variance can be explained by 
only the largest eigenvalue (𝝀𝝀𝟏𝟏 −  𝝀𝝀𝟐𝟐) 𝝀𝝀𝟏𝟏⁄  

7 Planarity How much variance can be explained by 
the two largest eigenvalues (𝝀𝝀𝟐𝟐 −  𝝀𝝀𝟑𝟑) 𝝀𝝀𝟏𝟏⁄  

8 Scattering How much neighbourhood variance can be 
explained by the smallest eigenvalue 𝝀𝝀𝟑𝟑 𝝀𝝀𝟏𝟏⁄  

9 Omnivariance Volumetric point distribution �(𝝀𝝀𝟏𝟏.𝝀𝝀𝟐𝟐.𝝀𝝀𝟑𝟑)𝟑𝟑  
10 Anisotropy Directional dependence  (𝝀𝝀𝟏𝟏 −  𝝀𝝀𝟑𝟑) 𝝀𝝀𝟏𝟏⁄  

11 Eigenentropy Order/disorder 
−𝝀𝝀𝟏𝟏 𝐥𝐥𝐥𝐥(𝝀𝝀𝟏𝟏)
− 𝝀𝝀𝟐𝟐 𝐥𝐥𝐥𝐥(𝝀𝝀𝟐𝟐)  
− 𝝀𝝀𝟑𝟑 𝐥𝐥𝐥𝐥(𝝀𝝀𝟑𝟑) 

12 Sum EVs 3D Sum of eigenvalues 𝝀𝝀𝟏𝟏 + 𝝀𝝀𝟐𝟐 + 𝝀𝝀𝟑𝟑 

13 Curvature 
change Local change in curvature  𝝀𝝀𝟑𝟑 (𝝀𝝀𝟏𝟏 + 𝝀𝝀𝟐𝟐 + 𝝀𝝀𝟑𝟑)⁄  

14 Z values Absolute height of point 𝒁𝒁 
15 KNN radius 3D Size of the neighbourhood sphere 𝒓𝒓𝒌𝒌𝒌𝒌𝒌𝒌−𝟑𝟑𝟑𝟑 
16 Density 3D Points per m3 𝒌𝒌 + 𝟏𝟏 (𝟒𝟒 𝟑𝟑.𝝅𝝅. 𝒓𝒓𝒌𝒌𝒌𝒌𝒌𝒌−𝟑𝟑𝟑𝟑𝟑𝟑 )⁄⁄  

17 Verticality The difference from vertical of the Z 
component of the normal vector  𝟏𝟏 −  𝒏𝒏𝒛𝒛 

18 Change in Z Maximum height difference 𝒁𝒁𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒁𝒁𝒎𝒎𝒎𝒎𝒎𝒎 
19 STD of Z Standard deviation of heights 𝝈𝝈𝒁𝒁,𝒌𝒌𝒌𝒌𝒌𝒌−𝟑𝟑𝟑𝟑 
20 KNN radius 2D Size of the neighbourhood circle 𝒓𝒓𝒌𝒌𝒌𝒌𝒌𝒌−𝟐𝟐𝟐𝟐 
21 Density 2D Points per m2 𝒌𝒌 + 𝟏𝟏 𝝅𝝅. 𝒓𝒓𝒌𝒌𝒌𝒌𝒌𝒌−𝟐𝟐𝟐𝟐𝟐𝟐⁄  

22 Sum EVs 2D Sum of eigenvalues from 2D structural 
tensor 𝝀𝝀𝟏𝟏−𝟐𝟐𝟐𝟐 + 𝝀𝝀𝟐𝟐−𝟐𝟐𝟐𝟐 

23 EV ratio 2D Ratio of the 2D eigenvalues 𝝀𝝀𝟐𝟐−𝟐𝟐𝟐𝟐/𝝀𝝀𝟏𝟏−𝟐𝟐𝟐𝟐 
24 2D map  Frequency accumulation map n/a 
25 D_Z Change in Z in accumulation map n/a 

26 Std_Z Standard deviation of Z in accumulation 
map n/a 

27 EV3d-1 First 3D eigenvalue 𝝀𝝀𝟏𝟏 
28 EV3D-2 Second 3D eigenvalue 𝝀𝝀𝟐𝟐 
29 EV3D-3 Third 3D eigenvalue 𝝀𝝀𝟑𝟑 
30 EV2D-1 First 2D eigenvalue 𝝀𝝀𝟏𝟏−𝟐𝟐𝟐𝟐 
31 EV2D-2 Second 2D eigenvalue 𝝀𝝀𝟐𝟐−𝟐𝟐𝟐𝟐 

32 Mean_I Mean intensity �
(𝒊𝒊𝟏𝟏 + 𝒊𝒊𝟐𝟐 … + 𝒊𝒊𝒌𝒌)

𝒌𝒌
 

33 FPFH1 FPFH value from bin number 1 n/a 
- - - - - - - - - - 
65 FPFH33 FPFH value from bin number 33 n/a 
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3.3.2 Classification 
Once the data has been transformed into meaningful features it can be 

classified into categories using a variety of machine learning techniques. 

However, prior to classifier training several pre-processing steps must be 

carried out to improve the machine interpretability of the data. For the problem 

of finding rock bolts, the classifier is trained on large hand-labelled datasets 

where less than 1% of the observed points are rock bolts. If this data were 

directly used for training, even if the classifier always predicted ‘not-bolt’ it would 

achieve 99% accuracy. Of the several possible methods of class rebalancing 

discussed in section 2.4.6, the one chosen for this study is down-sampling the 

majority class. Empirical testing on the cross-validation data found a full 

downsampling (99% reduction) to match the minority class is not as effective as 

a less severe 80% reduction of the majority class. After downsampling, each 

feature is standardised by removing the mean and scaling to unit variance. The 

final classifier inputs are now a collection of m vectors of dimension n where m 

corresponds to the number of laser scanned points and n is the number of 

features in the feature set. 

For learning the point representations, Weinmann et al. (2015a) tested many of 

the most popular types of classifiers including instance based, rule based, 

probabilistic, max-margin, ensemble and a simple neural network. They found 

that the ensemble method random forest performed best, which was the 

method also chosen by Chehata et al. (2009), Niemeyer et al. (2014), Landrieu 

et al. (2017b) and Hackel et al. (2017b). For our study, a preliminary test was 

carried out using multiple machine learning classifiers including Random 

Forests (RF), Multi-Layer Perceptron (MLP), Support Vector Machines (SVM), 

Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA) and 

Naive Bayes (NB), results shown in Table 3-2. The Linear and Quadratic 

Discriminant Analyses, along with the Naive Bayes proved unable to effectively 

classify the bolt points and were not considered further. When comparing the 

remaining three classifiers, the Random Forest produced higher accuracies on 

the minority bolt class than the Support Vector Machines; these results agree 

with those found by Bassier et al. (2019), Kogut and Weistock (2019) and 

Weinmann et al. (2015a). However, the MLP outperformed both the SVM and 

the RF, this is in contrast to the results observed by Bassier et al. (2019) and 
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Weinmann et al. (2015a). It is hypothesised that this difference may be due to 

the larger number of hyperparameters required to produce a stable result from 

the MLP classifier, as discussed by Nygren and Jasinski (2016). Based on this 

initial testing, the classifiers chosen for this work were the Random Forest and 

the MLP. The Random Forest was chosen as it is one of the highest performing 

classifiers in the literature and has been proven to be capable of achieving 

robust high accuracy classifications for problems of this type. The MLP was 

chosen as it showed the best performance in the initial tests and indicated 

strong generalisation potential when paired with appropriate hyperparameters.  

Table 3-2: Results from the preliminary classifier testing 

Classifier Precision Recall F1 
NB 0.08 0.97 0.14 
QDA 0.25 0.94 0.40 
LDA 0.48 0.79 0.60 
SVM 0.81 0.60 0.69 
RF 0.87 0.79 0.83 
MLP 0.82 0.83 0.83 

A random forest is a powerful machine learning algorithm based on a 

randomised forest of decision trees (Breiman, 2001). It has a low number of 

hyperparameters to tune and is resilient to noise in the data, making it an 

appropriate choice for remote sensing applications (Pal, 2005). An additional 

benefit of the random forest classifier is the ability to output a feature 

importance ranking, allowing for the relative contribution of individual features to 

the final prediction result to be observed (Strobl et al., 2008). The second 

classifier, an MLP or fully connected neural network, is a node-based 

architecture which can approximate complex functions by learning weights for 

every node by a process known as backpropagation (Hecht-Nielsen, 1992). 

Recent advances in processing power and vast dataset sizes have led to deep 

learning networks many hundreds of layers deep performing increasingly 

complex tasks (LeCun et al., 2015).  

The structure chosen for the neural network used in this research is informed by 

the concept of effective capacity. A deep learning algorithm’s effective capacity 

is its ability to model complexity; good performance is achieved when its 

effective capacity is appropriate for the complexity of the task and the size of 

the available training data (Goodfellow et al., 2016). If it has more effective 
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capacity than needed, it will tend to overfit. The task of finding bolt points from 

multi-dimensional feature vectors requires a relatively small effective capacity, 

as there are limited generalisation requirements. Combined with the small 

bespoke training set, an appropriate starting point for the structure was defined 

as containing no more than three hidden layers with no more than 40 nodes in 

each layer. Empirical testing was then carried out using a variety of values 

within this parameter space; stable, effective performance was obtained when 

the network contained two hidden layers with between 20-30 nodes in the first 

layer and 5-10 in the second layer. The final chosen structure contained 25 

nodes in the first hidden layer and 5 nodes in the second hidden layer. 

To decrease processing time, a Principal Component Analysis (PCA) 

dimensionality reduction (Wold et al., 1987) is performed on the data prior to 

input, reducing the features from 65 to 40 whilst maintaining 99.4% of the 

variance. These 40 features are then used as the input to the neural network 

and are joined to every neuron in the first hidden layer by a weight, with the 

value of the neuron being the weighted sum of all the features, transformed by 

the non-linear ReLU function. The second hidden layer has the same structure, 

with every neuron in each layer connected by weights, and the final output is a 

binary (‘bolt’ or ‘not-bolt’) decision. The network learns by backpropagation 

using the L-BFGS solver. Both classifications were carried out using the Scikit-

learn libraries in Python (Pedregosa et al., 2011).  

During model training, suitable values for hyperparameters of the classifiers 

were determined using a dual strategy. Firstly, a randomised search of the 

probable value space was carried out, using the Scikit-learn model selection 

tool ‘RandomisedSearchCV’ (Pedregosa et al., 2011).  Taking the results of this 

search, empirical testing was then carried out above and below the best random 

search values to determine the exact hyperparameters choice. This 

hyperparameter tuning was carried out on the cross-validation section of the 

dataset via two-fold cross-validation. For the random forest, it was found that 

only the ‘number of estimators’ hyperparameter affected the results to any 

appreciable degree. Therefore, to ease repeatability, the random forest 

hyperparameters were all kept at the Scikit-learn default values except for the 

‘number of estimators’ hyperparameter which was changed to 200.  
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The neural network hyperparameters examined included the solver, the 

activation function and the L2 regularisation term. There was no appreciable 

difference in accuracy observed from using different solvers, however, the 

LBFGS converged faster and required fewer additional hyperparameters. Figure 

3-7 shows the results from the empirical testing of the L2 regularisation term 

and activation function, showing that the best accuracies are obtained with an 

L2-regularisation term of 1e-4 and the ReLU activation function. 

 

Figure 3-7: Results from the neural network manual hyperparameter tuning. 

3.3.3 Object creation 
The type of machine learning used in this research acts on the features derived 

for each individual point in the cloud. Because there is no spatial connectivity, 

they suffer from noise due to isolated misclassified points. In the processing 

pipeline, after the point wise classification, the resulting point cloud is split using 

the predicted values and the points that have been labelled as ‘not-bolt’ are now 

discarded, greatly reducing the dataset size. The remaining cloud now contains 

all the correctly predicted bolt points and the falsely predicted non-bolt points. 

From visual examination of this remaining cloud, it can be seen that the point 

cluster separation is good, with adequate empty space visible between the 

clusters of predicted points.  

Cloud segmentation was carried out using DBSCAN (Density-Based Spatial 

Clustering of Applications with Noise). This algorithm finds core samples and 

generates clusters from high density areas adjacent to them, allowing for 
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clusters of any shape (Ester et al., 1996; Schubert et al., 2017). The maximum 

distance between neighbourhood samples parameter (ε) was set to 5cm and 

the minimum cluster size was set to 10 points. The ε value was chosen based 

on the heuristic proposed by Ester et al. (1996) of a suitable value being 

approximately the distance to the 4th nearest neighbour, in this case 5cm for the 

1cm resampled point cloud. The minimum cluster size was set to 10 points; as 

the ground truth bolt clusters contained between 20-400 points a number set at 

50% of the sparsest bolt cluster was a suitable choice of parameter. The 

Euclidean distance metric was used as the inputs were coordinates in 3D space 

and the K-D tree algorithm was used to compute the neighbours as the data 

dimensionality is low. 

The next processing step was to calculate the centroid of each cluster to use as 

the predicted bolt location. The final step was to export these cluster centroids 

as a X, Y, Z file of only a few kilobytes that can be easily shared with machines 

and surveyors. This clustering greatly reduces the algorithm’s sensitivity to 

misclassifications in the individual points. Provided at least 10 points from a bolt 

have been classified correctly the bolt will be detected, reducing missed 

detections.  

3.3.4 Generating additional value 
To further demonstrate the applications of automated recognition algorithms an 

additional post processing workflow was developed to generate bolting quality 

assurance reports. This was carried out by performing a nearest neighbours 

search on the extracted centroids to determine how many other bolts are within 

a user defined distance of each bolt; bolts with very few neighbours can then be 

flagged as requiring further investigation from the geotechnical team to 

determine whether sufficient bolting has been carried out in that area. Figure 

3-8 shows the results of the nearest neighbour search on the production mine 

test dataset. Text reports detailing the bolt location and the distances to the 

nearest k neighbouring bolts can also be produced. If these reports could be 

linked to the rock bolting machine’s own records this would provide 

comprehensive reporting on the as-built bolting pattern installed in the mine. 

Other potential applications could include recording spot bolting locations for 
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geotechnical reference and for linking the onboard hole information recorded by 

bolting machines to real world coordinates from georeferenced laser scans. 

 

Figure 3-8: A visualisation of the bolt density reporting. The red bolts have less than 1 other bolt within 1.5 
meters and have been flagged for further inspection.  

3.4 Results 
The performance of the proposed methodology was assessed on both the raw 

point prediction accuracy and also on the number of bolts correctly detected. 

The metrics used for evaluation are precision and recall and F1 score. These 

metrics are derived from the relationships between True Positives (correctly 

detected pixels), False Positives (incorrectly detected pixels) and False 

Negatives (undetected pixels). These metrics were chosen as others such as 

the overall accuracy are inadequate in cases such as this, where large class 

imbalances are present in the data. The precision is defined as the measure of 

what proportion of the positive predictions are correct; it is the number of True 

Positives divided by the number of True Positives and False Positives. The 

recall is a measure of what proportion of actual positives were correctly 

identified; it is defined as the number of True Positives divided by the number of 

True Positives plus False Negatives. The F1 score is the harmonic mean of the 

precision and recall.  
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3.4.1 Cornwall mine results 
The first experiment, carried out using the Cornish dataset, tested which set of 

point feature descriptors provided the most accurate results. It compared the full 

geometric feature set proposed by Weinmann (2016) consisting of 26 features, 

a reduced version of this feature set with the accumulation map features 

removed (23 features), the FPFH features (33 bin histogram), the combined 

feature sets (59 features) and finally the combined features plus the intensity 

features (61 features). Table 3-3 shows the results of the feature set 

comparison on both classifiers, with the F1 score used as the performance 

metric. For this test, the PCA reduction was not carried out on the neural 

network dataset to more clearly isolate the effect that feature sets have on the 

results. The random forest classifier also outputted the feature importance 

rankings, shown in Figure 3-11 and discussed in Section 5. As the combined 

features with intensity achieved the highest accuracy, this was the feature set 

used for the final model which was applied to the unseen test data.  

Table 3-3: F1 scores for differing feature sets evaluated on the Cornish mine dataset. The reduced 
geometric features refer to the set with the 3 highest computation time features (accumulation maps) 
removed. 

Feature set 
Geometric 
features 
full 

Geometric 
features 
reduced 

FPFH 
features 

Combined 
features 

Combined 
features and 
intensity 

No. features 26 23 33 59 61 
Neural network 0.42 0.41 0.51 0.63 0.64 
Random forest 0.49 0.43 0.37 0.56 0.58 

Once the feature set choice was finalised, the per point prediction results were 

examined against the human generated ones for the Cornish test data, totalling 

almost 1.5 million point predictions. These results are given in Table 3-4. Figure 

3-9 gives a graphical view of the neural network’s point prediction results. In this 

figure the footwall has been removed and the viewing angle is directly vertical 

towards the hanging wall. The predicted bolt points are shown in red and the 

overlaid white squares show the true bolt locations. Where that the red points 

do not have a corresponding white square overlay indicates incorrect objects 

classified as bolts, and any white squares without corresponding red points 

indicate missed bolts. 
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Table 3-4: Results from the point-wise classifiers on the Cornish test dataset. 

Neural network Predict not-bolt Predict bolt  Precision 0.59 
Not-bolt 1471791 6586  Recall 0.70 
Bolt 4071 9370  F1 score 0.64 
      
Random forest Predict not-bolt Predict bolt  Precision 0.72 
Not-bolt 1475540 2837  Recall 0.38 
Bolt 6809 6632  F1 score 0.58 

 

 

Figure 3-9: Graphical view of the neural network point cloud classification. The red points are those that 
the classifier predicts are bolts and the white boxes indicate the actual bolt locations. 

As can be seen in Table 3-4, the results, whilst overall positive still contain 

many misclassified points. To investigate whether the DBSCAN clustering can 

extract individual bolt object locations to a greater degree of accuracy, the 

extracted centroids were overlaid with the 101 true bolt centroids and the 

number of true positives, false positives and false negatives were counted. For 

this test, the bolt was classed as detected if the human generated and machine 

generated centroids were within the nominal bolt faceplate radius size of 8cm of 

each other. These results are given in Table 3-5. 

Table 3-5: Results of bolt detection algorithm on the Cornish test dataset. 

Neural network Predict Not Bolt Predict Bolt    
Not Bolt n/a 6      Precision 0.94 
Bolt 13 88    Recall 0.87 
   F1 0.90 
     
Random forest Predict Not Bolt Predict Bolt    
Not Bolt n/a 3 Precision 0.95 
Bolt 46    55     Recall 0.54 
   F1 0.69 

3.4.2 Production mine results 
To test the approach developed in this chapter in a new environment, the data 

from the modern production mine was run through the same pipeline as the 

Cornish dataset. As the extended eigen features are not optimised to be 
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deployed in the mining cycle without impacting production constraints, this test 

used only the reduced geometric feature set of 23 features, combined with the 

33 FPFH features. Four scenes (of 2-4 scans each) were used for training and 

a 5th scene was used to assess the performance. To address the many 

confusion objects present in the scans which might not be captured by the 

majority resampling, during the 4 fold cross validation the confusion ‘not-bolt’ 

objects were extracted from each of the training datasets. These were then 

combined into an additional ‘confusion’ point cloud which was added to the 

training data without resampling. The pointwise results are given in Table 3-5 

and the object based results in Table 3-7. Figure 3-10 displays an example of 

the predicted results.  

Table 3-6: Results from the point-wise classifiers in the production test dataset. 

Neural network Predict not-bolt Predict bolt  Precision 0.61 
Not-bolt 2253747 10624  Recall 0.78 
Bolt 4748 16402  F1 score 0.68 
      
Random forest Predict not-bolt Predict bolt  Precision 0.76 
Not-bolt 2260288 4083  Recall 0.60 
Bolt 8536 12614  F1 score 0.67 

 

Table 3-7: Results from the bolt detection algorithm on the production test dataset. 

Neural network Predict not-bolt Predict bolt  Precision 0.83 
Not-bolt n/a 35  Recall 0.96 
Bolt 7 170  F1 score 0.89 
      
Random forest Predict not-bolt Predict bolt  Precision 0.89 
Not-bolt n/a 17  Recall 0.80 
Bolt 35 142  F1 score 0.84 
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Figure 3-10: Results from the production mine test dataset. Clear bolt detections are visible, with only 
small amounts of noise present at the rim of the vent bagging and along the pipe hanging wall strop.  

 

3.5 Discussion 
The feature set test shows that the combined feature sets are more effective 

than either the geometric or FPFH based feature sets applied separately. Using 

only the geometric feature set, the random forest outperforms the neural 

network; this agrees with the results obtained by Weinmann et al. (2015a) using 

the same feature types. Using FPFHs the random forest scores relatively 

poorly, though the combination does still improve on the score recorded from 

just the geometric feature set. These results infer that the addition of the FPFH 

features does contribute to the overall accuracy of the random forest, but that 

they are less important than the geometric features. To examine the feature 

contributions further, the feature importances were calculated using the Gini 

importance method. This technique measures how much the Gini impurity is 

reduced when using a particular feature, averaged across all trees in the forest 

(Géron, 2017). The feature importances are then normalised so that the sum of 

all importances equals one. Figure 3-11 graphs the feature importances across 

the classification vector, this shows that the more important features are 

primarily from the geometric set, though several from the FPFH set also score 

highly. The highest ranked features (above 0.05) are scattering, absolute 

height, mean intensity and anisotropy.  
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Figure 3-11: Graph showing the individual feature importances for the random forest classifier. The green 
box indicates the geometric and eigenvalue based features and the amber box indicates the FPFH 
features. For details on feature numbers see Table 1. 
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The neural network classifier cannot output a feature importance ranking; 

however, from examining the results it appears that the neural network is 

utilising more of the FPFH set features, as this was the highest non-combined 

score for all classifier and feature set combinations. The intensity features 

provided an improvement of 0.02 to both classifiers’ scores; these intensity 

features are some of the simplest to compute and are therefore a strong 

addition to the feature sets.  

The point-wise results are positive despite outlier misclassifications. This is due 

to the challenging dataset and the many confusion objects presenting geometry 

similar to a bolt object. Most importantly, they contain enough positively 

identified points to enable the DBSCAN algorithm to detect the actual bolt 

objects, as demonstrated by the precision scores of 0.87-0.96. Primarily, the 

incorrectly identified bolt points (false positives) occurred as isolated points, 

allowing them to be easily removed by the clustering operation. Only rarely (< 

10% of Cornish dataset bolt detections), as in the instance of pipe mounting 

steelwork which closely resembles a bolt, did the algorithm misclassify enough 

points in close proximity to create a false positive cluster, as seen in Figure 

3-12, where the cluster inside the red box is large enough to make it through the 

DBSCAN stage. The isolated incorrect points visible on the hanging wall in 

Figure 3-12 will all be removed by the DBSCAN process.  

 

Figure 3-12: Instance of misclassified cluster of points by the random forest classifier. Blue points are 
predicted not-bolt, green points are predicted bolt and the red box indicates a piece of pipe mounting 
bracket incorrectly classified as a bolt.  
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At the object extraction stage, as both classifiers had only a few false positives, 

these were manually checked in the original highest resolution scan data to 

determine if there was in fact a bolt present at that location which had been 

missed at the labelling stage. From this examination, it appeared that the neural 

network correctly identified 5 bolts from the Cornish dataset and 7 bolts from the 

production dataset which were badly scanned and highly obscured, leading 

them to be not picked up by the human operator at the dataset creation stage. 

This demonstrates the value of machine learning technologies for automated 

quality assurance and quality control as in these difficult cases the neural 

network surpassed the human inspector. The Cornish testing dataset was then 

used to estimate the level of label noise present in the training datasets. The 

test dataset label noise was ~5% at the cluster/object level (5 missed out of 101 

total) and ~3% at the individual point level (471 missed out of 13,912 total). The 

figures are expected to be far lower for the training dataset as the mislabelled 

points are all in the ‘not bolt’ class, which has been randomly resampled to 

contain only 20% of its original points. Neural networks and random forests 

have been shown to be highly robust to label noise below 10% (Folleco et al. 

2009, Pelletier et al. 2017), therefore, the small number of mislabelled points in 

the training dataset is not expected to have has a meaningful impact on the 

classifier training. Comparing the human result to the neural network, the 

human is still superior with a precision of 1 and a recall of 0.95; however, in a 

real world inspection case, the human takes much longer to identify the bolts, 

suffers from fatigue and still cannot detect every bolt. Figure 3-13 (a) and (b) 

show an example of a bolt missed by the human operator but found by the 

neural network and Figure 3-13 (c) shows an actual incorrect detection by the 

neural network.  

The false negatives from the neural network also were examined, and it was 

found that in the Cornish dataset 10 out of the 11 missed detections were low 

bolts on the sidewall. From this, we can infer that the Z values and the relatively 

few sidewall bolts compared to roof bolts in the training data are influencing the 

model’s decision making. The production dataset contained many more sidewall 

bolts for training and subsequently there were very few missed bolts, the recall 

value of 0.96 demonstrates that when furnished with representative training 

data the model can detect almost all bolts.  
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Figure 3-13: Examination of false negatives and false positives. (a) shows the false negative bolt zoomed 
and extracted to a specific angle and (b) shows how the false negative appears to a human in the full 
tunnel dataset. (c) shows a sharp discontinuity (false positive) that has been mistaken for a bolt by the 
classifier. 

 

3.6 Summary 
This chapter described a methodology to automatically detect supporting rock 

bolts from laser scan data. After the scans have been extracted from the 

instrument, the workflow is implemented entirely with open source software. 

The methodology is customised to the underground environment and improves 

upon previously published surface applications by utilising a larger feature set 

and robust clustering algorithms to address the challenges from noise, 

confusion objects and multiple Z values present in a typical underground mine 

environment.  

The neural network classifier produced the strongest point-wise classification 

results, allowing the DBSCAN clustering algorithm to successfully locate the 

candidate bolt objects. Further work extended this approach to other mining 

datasets gathered with lower cost 3D laser scanners more closely resembling 

machine mounted scanners, verifying that the method presented here is 

suitable for a wide range of sensors and mining types. 

An additional processing algorithm developed in this chapter used the bolt 

location output files to verify that bolting patterns that have been installed to 

specification and a technique to locate a machine based on bolter patterns has 

been demonstrated. Applications such as this offer mining companies valuable 

opportunities to embrace new technologies for improved productivity and safety 

in a digitally connected world. 
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  Analysis of legacy mining landscapes from 
LiDAR data using deep transfer learning 

Chapter overview 
This chapter investigates how deep transfer learning can be applied to LiDAR 

data to automatically detect landscape signatures such as legacy mine shafts. 

These signatures can then be used to provide landscape insights, as a target 

for further investigation or as a proxy to infer other landscape features. This 

chapter develops techniques that can be used with 2.5D gridded LiDAR data at 

a range of resolutions. The research underpinning this chapter comes from 

three projects. The first project (4.3) arose from a research collaboration with 

Cornwall Consultants, financed by the Cornwall Aerospace Innovation fund. 

This project examines the different mining landscape signatures that can be 

detected in LiDAR data and explores how advanced visualisation techniques 

can be applied to enhance these signatures.  

The second project (4.4) investigates how a deep convolutional neural network 

originally designed to detect craters on the moon can be repurposed through 

transfer learning to detect historic mine workings on Dartmoor. This research 

formed the core of the paper ‘Bringing Lunar LiDAR Back Down to Earth: 
Mapping Our Industrial Heritage Through Deep Transfer Learning’ 
published in the journal Remote Sensing8. The final project in this chapter (4.5) 

is adapted from further work with the Dartmoor dataset, using automated fitting 

algorithms to infer mineralisation trends. This work has been published as a 

conference paper ‘Using Deep Learning and Hough Transformations to 
Infer Mineralised Veins from Lidar Data over Historic Mining Areas’ in the 

International Society of Photogrammetry and Remote Sensing (ISPRS) 

Archives9. 

 
8 The candidate is the first author of this paper and the authorship contribution statement is as 
follows: Jane Gallwey: Conceptualisation, investigation, methodology, writing (original draft & 
revisions), software, validation. Matthew Tonkins: Software. Matthew Eyre: Conceptualization, 
writing (review & editing), supervision. John Coggan:  Project administration, writing (review & 
editing), supervision. 
9 This article was first authored by the candidate who wrote 80% of the paper, the 20% of the 
paper concerning geological information was written by the second author. The paper was 
revised based on co-author, supervisor and reviewer comments.  



106 
 

4.1 Introduction 
Across the UK, there is a long history of mining and it is estimated that over 

15% of land can be considered within mining areas (CIRIA, 2019). Mining 

creates significant changes to a landscape, the scale of which are determined 

by the mine size, mining type and commodity type. After a mine ceases 

production, over time, these changes become less visible as the landscape 

revegetates and features such as small spoil heaps erode. Until 1872, there 

was no requirement to record mine plans or secure workings, leading to large 

areas of land in the UK harbouring unrecorded historic mine workings (CIRIA, 

2019). These workings create potential risks from subsidence, slope instability, 

fault reactivation and egress of mine water and gas. They also present a hazard 

to members of the public, particularly in areas such as West Cornwall and 

Dartmoor that today have extensive recreational usage. Remote sensing data 

can be used to rediscover these sites, helping to manage the risk of the mining 

legacy, alongside providing potential mineralogical information to future 

developers and adding to an area’s historic record.  

Some of the past mining landscape features are visible in aerial imagery; 

however, others are more subtle and are better observed as topographic 

changes in LiDAR datasets. There has been little published work on using 

LiDAR for identifying mining related landscape signatures. Work by Mcdonald 

(2011 & 2013) uses LiDAR for visualising abandoned coalfields in Ohio; 

however, the LiDAR data is only used as a hillshaded background layer, without 

any further post processing and manipulation. However, there is a large body of 

literature for using LiDAR to detect archaeological landscape signatures and 

many parallels can be drawn between these two tasks. Primarily, both are 

searching for small relative differences in 3D terrain which would indicate 

unnatural features; indeed many archaeological studies include mines as one of 

the features which they are attempting to locate using LiDAR (Fonte et al., 

2014; Historic England, 2018).  

Technological advances in LiDAR processing can be used to aid historic mining 

detection in two ways. Firstly, advanced methods of data visualisation and 

representation pioneered by the archaeological community can be used to 

enhance the data for human or machine interpretation, and secondly, new deep 
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learning and transfer learning algorithms can be used to automatically or semi-

automatically search landscapes to detect signatures of interest. The three 

projects presented in this chapter examine many aspects of the current state of 

the art in LiDAR data analysis in relation to historic mining landscapes. These 

include multiple data representations, automated detection models and inferred 

analysis from automated detections.  

4.2 Datasets 
Across England there are several publicly available LiDAR datasets which could 

be used for mining signature detection. The Environment Agency oversees the 

dissemination of these datasets through the Department for Environment, Food 

and Rural Affairs (DEFRA) data services portal10, however, the datasets 

themselves have been collected by multiple parties for diverse projects. Figure 

4-1 shows the availability of different scales of data across England. The 

highest resolution data is 0.25m with limited coverage, followed by 0.5m across 

some larger areas and 1m datasets with almost complete coverage. The 

Environment Agency has pledged full coverage of England at 1m resolution by 

202011 (Winter, 2017). 

 

Figure 4-1: Environmental Agency LiDAR coverage across England at 25cm (left), 50cm (middle) and 1m 
(right).  

The most extensive dataset covering the mining regions of the South West of 

England was collected as part of the Tellus South West project in 2014. This 

 
10 Available at https://environment.data.gov.uk/DefraDataDownload/?Mode=survey  
11 Now delayed to 2022 

https://environment.data.gov.uk/DefraDataDownload/?Mode=survey
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data has a resolution of approximately 1 point per meter (PPM) and a vertical 

accuracy of 25cm. It is supplied as either a DSM or DTM in raster format with a 

grid size of 1m. The data collection was funded by the Natural Environment 

Research Council and the full dataset is managed by the British Geological 

Survey (BGS) and the Centre for Ecology and Hydrology as an open access 

dataset (Yeomans, 2017), alongside being made available through the DEFRA 

portal.  

Many of the mining remains prevalent across the landscape of the South West 

are small and obscured by thick vegetation, making detection from a coarse 1m 

dataset such as Tellus challenging. To investigate whether higher resolution 

data would improve performance, sample areas from the 0.5m and 0.25m scale 

datasets were also examined. The 0.5m dataset covers the mining areas of 

Dartmoor and was flown in 2009, the 0.25m dataset covers the Grassington 

mines of Yorkshire and was flown in 2012. Across all scales, the DSM was 

chosen in preference to the filtered DTM due to concerns that the filtering 

algorithms used to produce the DTM can excessively smooth small features 

(Haslam and Howard, 2017).   

4.2.1 St Just area 
The Cornish test area used for the visual landscape signature analysis and 

initially trialled for the deep learning algorithms is the area around the 

Balleswidden Mine of St Just, West Penwith, Cornwall. This mine was one of 

the largest in the district in the 1800s with more than 10 major shafts providing 

access to extensive underground workings. Rowe and Foster (1887) recorded 

that it produced 11,828 tons of black tin between 1837 and 1873. Underground 

activity ceased in 1877, however, large sections of the waste tips were removed 

and reprocessed between 1913-1916, further modifying the landscape in this 

area (Dines, 1988) 
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Figure 4-2: Overview map of the St Just mining test area. 

 

4.2.2 Dartmoor area 
The primary study area for the deep learning section of this research is 

Dartmoor National Park, an upland area of moorland studded with exposed 

granite hilltops known as tors. The ground cover is primarily low vegetation, 

including heather, bracken, gorse, fern and marsh grasses. Tin and copper 

mining on Dartmoor has taken place almost continuously from the 12th to the 

20th centuries and the remains are pervasive and visually striking throughout the 

landscape (Newman, 2010). Three areas of concentrated historic mining activity 

were used to develop this deep learning model; these are shown in Figure 4-3. 

The different colours in Figure 4-3 refer to the distribution of training, validation 

and testing data.  
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Figure 4-3: Overview of the Dartmoor dataset. Grey areas represent training data (14 tiles), the purple tile 
shows the cross validation area and the orange tile shows the test area. Coordinate system British 
National Grid, image data © Environment Agency 2015 & Getmapping Plc. Basemap © ESRI 2019 

The training and validation areas include in the north the old Birch Tor Mine 

(1726-1928) (Dines, 1988) and in the south the former Whiteworks Mine. It is 

believed that the Whiteworks area was being mined as early as 1180 although 

the mine was expanded substantially around 1790 towards the beginning of the 

industrial revolution when the demand for tin increased (Dines, 1988). The mine 

was owned by the wealthy Tavistock mining entrepreneur Moses Bawden and 

operated for just under 100 years until 1880, briefly reopening in early 1900 

before finally closing for good by 1914 (Hamilton Jenkin, 1974). The test area 

for Dartmoor is the site of Hexworthy Mine (1891-1912). This is an interesting 

site as it displays remains from multiple eras of mining; from the early 

unrecorded openworkings, through traditional 19th century mining to semi-

modern 20th century workings (Richardson, 1992). The mine operated 

productively until the call up for men in 1914, during the war it was placed in 

care and maintenance before a large storm in 1920 destroyed the waterwheel 

flume, causing the underground workings to flood (Hamilton Jenkin, 1974). 
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4.2.3 Yorkshire area 
A further testing area for the deep learning model was selected in the Yorkshire 

Dales National Park more than 500km from Dartmoor to examine the model’s 

ability to generalise to new locations, mine types and data resolutions. This test 

area is part of the site of the former Grassington Moor lead mine and is shown 

in Figure 4-4. The first known exploitation of lead at Grassington was by the 4th 

Earl of Cumberland in the early 17th century, although it is thought that some 

primitive extraction and smelting had taken place earlier. The early exploitation 

involved the digging of shallow shafts along the vein. The first mill to process 

the Grassington lead ore was the Low Mill built in 1605. The test area covers 

the western part of the Yarnbury mine, including Tomkins, Barretts and Good 

Hope shafts (Northern Mine Research Society, 1980).  

 

Figure 4-4: Yorkshire test area. Basemap © ESRI 2019. 

 

4.3 Advanced visualisations – project one 
In its simplest form, raster LiDAR data is a pixel coordinate and an elevation 

value for each cell. If these elevations are normalised to the range 0-255 an 8-

bit greyscale image can be produced; however, these images often lack 
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contrast and can be difficult to discern landscape signatures from. There are 

many advanced visualisation processing techniques used by archaeologists 

that can improve the interpretability of LiDAR data; an excellent reference for 

these is the document ‘Airborne Laser Scanning Raster Data Visualisation: A 

Guide to Good Practice” (Kokalj and Hesse, 2017). This section gives an 

overview of the main types of advanced visualisations relevant to historic mining 

hazard identification, along with examples of each visualisation generated for 

the mining test area. Figure 4-5 shows a satellite image of this test area, 

overlaid with many types of historic mining features identified by Cornwall 

Consultants from their existing database. This area was chosen as it contains 

known lodes, shafts and pits which are visible to some degree on the LiDAR 

data.  

 

Figure 4-5: Overview of the Balleswidden Mine demonstration area showing some of the visible mining 
landscape features.  

The visualisations shown here are performed on the freely available Tellus 1m 

dataset described in Section 4.2, following the workflows described in Kokalj 

and Hesse (2017). This dataset was chosen as the UK has broad coverage at a 

1m resolution level, allowing methods developed in this project to be applied 

nationwide. Throughout this section, it can be seen that many of the features 
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that show up in the various LiDAR visualisations can be attributed to old field 

boundaries, unmarked paths and other non-mining related causes. For 

interpretation tasks carried out by a human, the LiDAR data is examined in 

conjunction with other datasets in order to identify any LiDAR abnormalities that 

cannot be attributed to other causes. 

4.3.1 Techniques and discussions 
The LiDAR representation which most closely resembles how a human eye 

perceives relief is known as hillshading, shown in Figure 4-6a. It is created by 

virtually illuminating the scene from a defined azimuth angle and sun elevation. 

Any features facing towards the light will be illuminated, while features facing 

away will be shadowed. To accentuate faint features in flat terrain a very low 

sun angle can be used as seen in Figure 4-6b. From examining the hillshades 

of the mining area manually it can be seen that whilst they provide an easily 

interpretable view of the landscape the mining features are not particularly 

prominent. 

A potential issue with all single illumination source hillshades is that features 

parallel to the light source will not be discernible and that features facing away 

from the light may be too deeply shadowed to interpret. A method to negate this 

is to create composite multi-directional hillshades by combining multiple sun 

angle hillshades into a single image using 3 different hillshades mapped to the 

RGB channels to generate a colour composite image, shown in Figure 4-7a. 

Another method of visualising the results of multiple hillshades is Principal 

Component Analysis; because each different view is of the same scene, the 

results are highly correlated and the first 3 principal components can be 

mapped to the RGB channels to produce a false colour image showing the 

three primary variances between the multiple hillshades (Kokalj and Hesse, 

2017), as displayed in Figure 4-7b. 
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Figure 4-6: Hillshading from differing sun angles. Both images are shaded from a 315 degree azimuth, a) 
from a 35 degree sun angle and b) from a 5 degree sun angle.  
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Figure 4-7: a) shows a multidirectional RGB false colour hillshade, where the 315 degree azimuth is mapped 
to red, the 0 degree azimuth is mapped to green and the 45 degree azimuth is mapped to blue. b) shows 
the alternative principal component hillshading taken from 16 azimuth directions and mapped to RGB for the 
three largest principal components.  

Moving on from hillshading and its variations, another classic method to 

conceptualise a surface is from its slope. This is the rate of change between 

each grid cell and is not linked to which direction it faces. It is a powerful and 

intuitive way to visualise topographical variations. Another visualisation 
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technique related to slope is surface accessibility, which is computed by 

calculating the largest size sphere that can be placed at every pixel without 

being intersected by neighbouring topography. This technique is particularly 

effective at highlighting pits and variations along slopes such as terraces and 

depressions but is weak at detecting small changes along mainly flat terrain 

(Kokalj and Hesse, 2017). Figure 4-8 displays the slope, where it can be seen 

that the larger mineshafts are particularly prominent however, smaller shafts are 

less well defined. Surface accessibility is shown in Figure 4-9, as this landscape 

is not on a significant slope this representation does not appear to aid 

interpretation of mining features in this case, however, changes in surface 

texture related to vegetation cover appear highlighted. Similar in some ways to 

surface accessibility, Sky View Factor (SVF) is a representation of the portion of 

the sky visible from each point in the image and is displayed in Figure 4-10. A 

ridge would have a SVF close to 1 (for a full view) whereas a ditch would have a 

SVF close to 0 (for a mainly obstructed view). 

 

Figure 4-8: Slope representation of the test site. The three largest shafts a), b) and c) are well defined, with 
the coning around the collars providing a strong signature.  
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Figure 4-9: Surface accessibility. Vegetation differences are well defined, with a) corresponding to thicker 
ground vegetation, b) coarse grass and c) cultivated fields. 

Another visualisation strategy which examines the view angles from each point 

is openness. Openness is calculated by measuring the angular size of a sphere 

either looking up or down from every pixel (Doneus, 2013). It is calculated as 

either a positive or a negative openness value. As it is calculated in relation to 

the terrain rather than the sky, features on slopes appear the same as features 

on horizontal ground. This can make the images harder to interpret manually 

but may allow it to be a strong input to machine learning algorithms, as features 

are displayed independent to the angle of terrain (Doneus, 2013). Negative 

openness is not the inverse of positive openness and highlights deep features 

instead of protruding features. For the test area little difference was observed in 

the results from positive and negative openness, with positive openness shown 

in Figure 4-11. Both the sky view and openness methods are very good at 

enhancing the appearance of smaller less well defined pits and indicate strong 

potential for automated mining feature signature detection.  
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Figure 4-10: Sky view factor. Very small pits shown highlighted by a) and b) are picked up using this 
visualisation technique. 

 

Figure 4-11: Positive openness. The NW-SE orientation of the lodes is readily apparent due to the clear 
depictions of the connected smaller pits. 
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Another technique based on the angles of terrain around a point is local 

dominance, which measures how dominant an observer standing on a point 

would appear, as seen from surrounding areas (Kokalj and Hesse, 2017). This 

technique is particularly useful for very subtle relief features, as shown in Figure 

4-12, where the faint pits in the centre of the area and even the field topography 

are visible. 

 

Figure 4-12: Local dominance. Faint mining remains are visible at locations a) and b), whereas c) shows 
the faint topography within one of the fields.  

Two further advanced visualisation strategies borrowed from archaeology are of 

interest for detecting mining landscape signatures, there are local relief models 

and multi-scale integral invariants (Kokalj and Hesse, 2017). A Local Relief 

Model (LRM) is a representation where the major features of the landscape 

have been removed by a process of detrending. These models are created by 

first smoothing a DEM so that small features are removed. The smoothed DEM 

is then compared to the original DEM and areas that are the same in both 

models are extracted to build the new smoothed DEM. This is finally subtracted 

from the original to produce the LRM. The LRM enhances small relative 

changes in the landscape such as those from mining features. Figure 4-13 

shows an LRM model which accentuates the elevation changes within the 
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fields. A weakness of the LRM representation is the difficulty in determining 

whether a variation is positive or negative, for example a trench or bank will 

appear similar (Doneus, 2013), in Figure 4-13 the LRM has been overlaid semi-

transparently over a standard hillshade to minimise this issue.  

 

Figure 4-13: Simplified LRM overlaid with a hillshaded model for better depth visualisation. Very faint remains 
can be seen at a), b) shows the clear multi-pit delineation c) shows the large shaft. 

Multi-scale integral invariant visualisation is a technique adapted from methods 

used to enhance readability of ancient cuneiform tablets (Kokalj and Hesse, 

2017). This method allows small variations in surface texture to be accentuated; 

in Figure 4-14 the faint paths across the landscape can be seen and the 

definition of the faint pits in the centre of the area is particularly clear.  
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Figure 4-14: Multi-scale integral invariants showing powerful visualisation of indistinct features. 

4.3.2 Visualisation summary 
The techniques evaluated in this section demonstrate the wide range of ways 

that a simple grid of measured elevation values can be visualised. The 

hillshaded models were clearest for human interpretation but lacked detail in the 

more complex and less defined areas. Of the view angle based methods, the 

openness technique most clearly delineated the complex interconnected pits 

and therefore allowed the lode directions to be inferred. Very faint pit remains 

were most clearly in the multi-scale integral invariant method, whilst the local 

relief model when combined with a simple hillshade provided a strong overall 

landscape view. This section has qualitatively evaluated these representations 

in relation to the ease in which human eyes can perceive landscape signatures; 

the following sections will address how deep learning techniques can generate 

their own representations of LiDAR data through convolutional filters, allowing 

specific landscape signatures to be detected. 
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4.4 Detection using deep transfer learning – project two 
Building on the visualisation algorithms to aid human interpretation, new 

detection algorithms can be designed which can allow a computer to identify 

features from LiDAR data in an automated or semi-automated manner. As 

discussed in Section 4.1 the majority of the published work in this area comes 

from the field of archaeology as there has been no prior work published on 

using LiDAR data for mining hazard identification.  

Early methods for semi-automated archaeological site identification used 

template matching (where a predefined template is passed over the scene) or 

rule-based methods (where rules are applied to determine an object’s 

category). Successful applications of template matching are described by Trier 

in (2009a) and (2009b). Other proposed methods utilise GEographic Object-

Based Image Analysis (GEOBIA), examples of these are described in Sevara et 

al. (2016) and Freeland et al. (2016). These types of techniques require prior 

knowledge of the shape and size of the object to be identified and perform well 

on relatively simple geometries but are less effective at generalizing to unseen 

or partially occluded examples (Trier et al., 2016). This is because these 

methods are responding to pre-programmed definitions of the object to be 

detected rather than ‘taught’ about the object features.  

Machine learning algorithms can provide better results on more complex 

datasets; recently, very high accuracies have been obtained by combining an 

advanced visualisation technique based on topographic deviation at multiple 

scales with a random forest machine learning classifier to identify Neolithic 

burial mounds (Guyot et al., 2018). In particular, convolutional neural networks 

(CNNs) have been shown to be capable of solving diverse and complex 

problems such as visual image question answering (Gao et al., 2015) and real 

time object detection for over 9000 categories (Redmon and Farhadi, 2017). 

Considerable research has been carried out in the broader remote sensing 

community as to how to design and modify similar systems for aerial remote 

sensing tasks. Primarily this work has involved VHR images as the input to the 

CNN, either building their own network architecture (Sun et al., 2018) or 

modifying and fine tuning existing computer vision models (Cheng et al., 2016; 

Ren et al., 2018). Nogueira et al. (2017) give an overview of the advantages 
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and disadvantages of these approaches, concluding that fine tuning an existing 

trained model provides the best results, however, the lack of an appropriate 

training datasets makes it very difficult to develop a model. Borrowing a similar 

model and transferring it to the problem at hand is one possible solution 

(Razavian et al., 2014). 

The primary balance that must be addressed when choosing an approach is the 

applicability of the model versus the availability of training data. If training data 

and computing power allow, the ideal scenario is to design and train a model 

from scratch for the required task using the specific data that is required. 

However, available training datasets for remote sensing data are small and 

usually not representative of a wide range of environments. Conversely, 

labelled training datasets in the computer vision community are vast: ImageNet 

has over 14 million labelled images in 20,000 object categories (Deng et al., 

2009) and models trained on these large datasets tend to be less prone to 

overfitting and can generalise well compared to ones trained on small datasets 

(Nogueira et al., 2017). However, there are differences in the type of objects 

they have been trained to detect. For example, in computer vision the objects 

tend to take up more of the frame and can appear at very different scales, but 

generally not in many different rotations, whereas for aerial data the scale is 

relatively constant, but the object can have many rotations (Ren et al., 2018). 

When using a pretrained model to generalise to images created from a LiDAR 

DEM the problem is exacerbated, as most existing models have been trained 

on three channel RGB images and not one channel depth images. This, along 

with the differing ways that objects appear in a LiDAR DEM versus imagery, can 

make transfer learning with LiDAR data challenging (Ball et al., 2017).  

Two published studies have used CNNs with LiDAR data to identify 

archaeological objects, with promising results. Trier et al. (2019) found strong 

positive identifications on one dataset but on their second dataset, which 

contained more varied objects, their results were less conclusive. Verschoof-

van der Vaart and Lambers (2019) employed a similar methodology using 

variously trained versions of the same pretrained deep learning model to detect 

multiple classes of archaeological objects, achieving accuracy scores 

comparable or surpassing those obtained by the other machine learning 

methods.  In both studies a transfer learning technique was used, with the 
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essential methodology involving the generation of a local relief model (Hesse, 

2010) from the LiDAR data and then either converting this generated single 

channel image into a conventional three channel image stack by triplicating the 

greyscale channel (Trier et al., 2019) or by modifying the input layer of the CNN 

(Verschoof-van der Vaart and Lambers, 2019). Both studies used models that 

had been trained on RGB images of terrestrial scenes such as ImageNet. A 

recommendation from both studies was to use a model pretrained on data more 

similar to LiDAR data in the future; however, obtaining such models was 

determined to be challenging.  

Outside of archaeology and even outside of terrestrial remote sensing, large 

planet scale digital DEM datasets exist from sources such as the Lunar 

Reconnaissance Orbiter (Zuber et al., 2010) and the Mars Global Surveyor 

(Albee et al., 2001). Several studies have built and trained CNNs to detect 

craters from these datasets (Palafox et al., 2017; Silburt et al., 2019; Wang et 

al., 2018). These models are designed to be highly receptive to elevation 

changes and to roughly circular patterns observed in single channel DEM 

images.  This makes them a good fit for the problem of mineshaft detection.  An 

example of this type of model was built by Silburt et al. (2019), based on the U-

net semantic segmentation model, itself originally designed for medical image 

segmentation (Ronneberger et al., 2015).  This model, named DeepMoon12  

was trained on 30,000 labelled images randomly extracted over the entire 

surface of the moon combined with the existing catalogues of moon craters.  

This is a larger and more robust training data set than those available for other 

LiDAR remote sensing applications, providing a possible solution for the 

problem of finding applicable transfer learning datasets.  

4.4.1 Pre-processing 
All three datasets covering the full range of scales were examined in the 

detection study. The 0.5m Dartmoor dataset was used for training the model 

which was subsequently tested on the 0.5m Dartmoor dataset, the 1m St Just 

dataset and the 0.25m Yorkshire dataset. The St Just and Yorkshire datasets 

 
12 Available at https://github.com/silburt/DeepMoon.git 

https://github.com/silburt/DeepMoon.git
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were not used for training as they do not contain enough representative 

samples to form a large training dataset. 

In all cases, the objects to be detected are trial pits, shallow pit workings and 

shaft heads. Examples of these are shown in Figure 2. Trial pits are dug whilst 

prospecting for tin lodes. They are usually 2-3m in diameter, of limited depth (up 

to 1m) and are often silted, water filled and reedy (Newman, 2010). Shallow pit 

workings are comprised of alignments of deeper pits which are dug to below the 

soil overburden and mined downwards from there; however, these are not 

underground mines and there is no lateral development between the pits. The 

depth of these types of workings would be limited by the ability of the 

surrounding side-walls to remain intact before collapsing, which is usually less 

than 3m. These workings present as conical depressions often accompanied by 

a ring of spoil material, crescentic on the downhill side in sloping ground 

(Newman, 2010). The final category are shafts for true underground mines. 

These have mainly been capped or backfilled in Dartmoor for public safety; 

however, evidence may remain in the form of large conical pits or straight 

openings. Site inspections may reveal a collar of finished material lining the 

inside of the shaft, but this is generally not visible from aerial surveys. 

 

Figure 4-15. Examples of the historic mining objects found in this study displayed on a 315° azimuth 35° sun 
elevation hillshaded visualization created in ArcGIS from the 05m resolution Dartmoor dataset. Base DSM 
© Environment Agency 2015 
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The raw DSM data for each area was imported into ArcGIS Pro (ESRI, 2019) 

along with several other interpretive layers such as historical maps and aerial 

images to create a GIS of the study area. Other GIS software could be used for 

this step, but ArcGIS Pro was chosen as it has a function for automatic 

exporting of image tiles and training labels, crucial for the later steps of the 

workflow. The additional GIS layers were only used to add context to the 

dataset to aid the human operator. To generate training and validation datasets, 

a desktop survey was carried out to identify features resembling mining pits. 

The test area datasets were created in the same way, but in order to validate 

the performance of the model every feature in the test set was later confirmed 

with a ground survey. This survey involved visiting the test sites with two 

reference maps, one containing the predictions and one containing the human 

generated pit locations from the desktop survey. Using these maps in 

conjunction with a handheld GNSS for site orientation the true existence of pits 

shown on the maps was confirmed or rejected. The pits were not recorded with 

the GNSS as in many cases it is not safe to access the ground directly above 

suspected shafts. A schematic of the methodology is shown in Figure 4-16, 

precise processing steps for reproducibility are given in Appendix B. 
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Figure 4-16. Methodology process diagram.  

For the model inputs, image tiles of 256x256 pixels were exported along with 

the pit locations as .xml labels to create image segmentation masks. The 

overlap between tiles was set to 52% to ensure no pits were split by tile seams. 

To preserve the fine detail in the DSM image, the image tiles first were exported 

as 16-bit float images with the values corresponding to the actual ground 

elevation of the data within that tile. Each tile was then individually rescaled to 

greyscale values between 0-1 maintaining its original distribution before finally 

being converted to an 8-bit integer format. To enhance contrast the image tiles 

were further rescaled linearly prior to model input. This rescaling strategy was 

appropriate to this dataset as no tiles contained large elevation changes such 

as cliffs. The image tile preparation process is shown in Figure 4-17. For the 

training and validation datasets, only image tiles which contain mining pits were 

exported. These datasets are stored in hdf5 format with the image names used 

as the database key. Table 4-1 shows the dataset splits, number of pits and pit 

instances per dataset, along with the minimum, mean and maximum pits per 
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image tile. The pit instances are greater than the number of pits as some pits 

are present on more than one image tile due to the >50% overlap between tiles. 

Table 4-1: Dartmoor and Yorkshire dataset statistics 

Dataset Image tiles Pit ground Pit 
instances 

Minimum Mean Maximum 

Train 542 1568 3649 1 5.96 59 
Cross-validate 71 254 423 1 5.96 33 
Test Dartmoor 196 193 654 1 5.74 24 
Test Yorkshire 900 1721 n/a n/a n/a n/a 

1 Only pits within a section of the dataset were ground truthed as shown in Figure 4-24. 

 

Figure 4-17. Overview of image preprocessing pipeline. (a) shows a selection of original individual pixel 
values, (b) shows the same pixels rescales between 0 and 1. (c) shows the conversion to greyscale.(d) 
shows the pixel values after linearly rescaling by tile range. 

As discussed in Section 4.3, other visualisations of LiDAR data have been 

shown to aid in identification of archaeological features by humans. To test 

whether this holds true for machines, a SLRM model and both positive and 

negative openness models were generated from the original exported tiles 

using the Relief Visualization Toolbox (Kokalj and Hesse, 2017). As openness 

is calculated in relation to terrain rather than the sky, features on slopes appear 

the same as features on horizontal ground (Doneus, 2013). This is a valuable 

property for the Dartmoor data as most of the features are situated in rolling 

moorland terrain. Figure 4-18 illustrates the different visualisation types 

generated for this study. 
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Figure 4-18. Illustration of the different advanced visualisations created from the original LiDAR DSM. Base 
DSM © Environment Agency 2015, visualisations created using the Relief Visualisation Toolbox 

. 

4.4.2 Deep learning model 
The type of model used in this research is a variant of an Artificial Neural 

Network (ANN) known as a Convolutional Neural Network (CNN), described in 

Chapter 2. Initially, an object detection pipeline using the Inception model 

(Szegedy et al., 2016) pretrained on the Common Objects in Context dataset 

(Lin et al., 2014) was trialled. The preliminary results from this method showed 

some correct detections but there appeared to be many mining pits not detected 

by the model even after 100,000 training epochs. Images from this initial 

method are shown in Figure 4-19. It is suspected that the mining pits detection 

task is simply too different from the original task to achieve optimum results. 

These initial tests showed a detection rate of less than 40%, this result, along 

with the recommendations from Trier et al. (2019) motivated a search for a 

transfer learning candidate model that resembles more closely the task at hand 

instead of continuing to refine the Inception model. 

After exploring alternative options such as the Kitti dataset (Geiger et al., 2013), 

the exact model chosen for this research is a version of the U-net model 

designed by Ronneberger et al. (2015) and modified by Silburt et al. (2019). 

The U-net model is an encoder-decoder (see Badrinarayanan et al. (2017)) 

model with a near symmetrical architecture, designed for biomedical image 

segmentation. It has no final fully connected layer, replacing it with a 1x1 
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convolutional layer with a sigmoidal activation function to output pixelwise class 

probabilities, thus reducing the number of hyperparameters to tune and making 

it more suitable for small numbers of training data. The original U-net achieved 

significant accuracy improvements over the next best architecture in the 

International Symposium on Biomedical Imaging’s cell tracking challenge 

despite the training set only containing 35 images (Ronneberger et al., 2015). 

Biomedical image analysis shares many challenges with remote sensing LiDAR 

analysis such as small training sample sizes, single channel images and high 

resolution data. Therefore, it is more applicable to use a model such as U-net 

rather than one of the models designed for large datasets of natural images, as 

shown in Figure 4-19. The U-Net architecture is described in more detail in 

Chapter 5, Section 5.2.4. 

 

Figure 4-19. Examples of the input data to different pretrained models. (a) is an example from the Common 
Objects in Context (COCO) (Lin et al., 2014) (b) and (c) show the results from an object detector pre-trained 
using the COCO dataset. (d) shows the type of microscopy data which the U-net architecture was designed 
to segment (Ronneberger et al., 2015) and (e) shows data from the lunar DSM which was used to pre-train 
the model used in this research (Silburt et al., 2019). (f) shows the DSM data used in this project. Base DSM 
in (b), (c) and (f) © Environment Agency 2015. 

4.4.3 Transfer learning 
Nogueira et al. (2017) found that for remote sensing problems with limited 

training data, a transfer learning strategy achieved the most accurate results 

across all tested datasets. In transfer learning, instead of initialising the model 

weights from scratch, the weights from another model trained for many epochs 

on a larger dataset are used. One transfer learning strategy involves removing 

the last layer of the network and replacing it with a layer to classify the objects 
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of interest, this is required if the final classification categories are different. 

Another approach is to fine tune a model by adding new training examples 

whilst keeping the final output layer the same. All the model weights can be 

updated, or the lower layers can be frozen and only the weights in the upper 

layers are updated. For this research, as the classification is the same 

geometrically if ‘crater’ is substituted for ‘pit’ a fine-tuning strategy was 

employed with all weights unfrozen. As this study utilises a pre-existing model, 

the same software Python (Python 2019), TensorFlow (Abadi et al., 2016) and 

Keras (Chollet, 2015) used by the creators of the original DeepMoon model 

(Silburt et al., 2019) are used throughout. All of these packages are industry 

standard and available free from their respective websites. 

4.4.4 Model training 
In a neural network the hyperparameters can be used to control overfitting; for 

the DeepMoon model, the hyperparameters include weight regularisations for 

the convolutional layers, dropout layers, filter size, model depth, and learning 

rate. Full details on these hyperparameters and complete model design can be 

found in (Silburt et al., 2019). These hyperparameters were chosen after a 

cross validation check using 60 models, where the hyperparameters were 

chosen randomly from across their standard ranges. To avoid overfitting on the 

small project dataset used in this research the hyperparameters chosen in 

Silburt et al. (2019) have been maintained here, with only minimal fine tuning 

training. Silbert’s base model was trained for 4 epochs (where one epoch 

equals a full pass through the entire training set). As the lunar dataset contained 

30,000 images this training totalled 120,000 training examples. A standard 

learning rate of 10-4 was found to deliver the best results (Silburt et al., 2019). 

The additional training for transferring the model to its terrestrial context 

involved 4 more epochs of 520 images, totalling 2,080 new training examples. 

The number of fine-tuning epochs was varied to determine the most effective 

fine-tuning strategy, discussed further in Section 4.4.6.1. To further control 

overfitting, data augmentation is carried out between epochs. In this process all 

input images are randomly flipped, rotated and shifted prior to model input.  
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4.4.5 Post-processing 
Once the model is trained and verified against the cross validation dataset, 

individual image tiles to be tested are inputted to the model and probability 

masks are outputted as .tif files. Using the same naming convention for both 

input and output files results in correct translation into the original coordinate 

system. Using ArcGIS, all output probability masks are then mosaiced into one 

continuous raster covering the entire test area.  

For qualitative visual analysis and map creation, a graduated stretch symbology 

where solid colour depicts probabilities of 1 and fully transparent depicts 

probabilities of 0 is used for maximum readability. This visualisation scheme 

maintains information on the confidence of the prediction and allows for the 

more subtle workings of the model to remain visible. This enhances the model’s 

readability in comparison to a yes/no response as it symbolises uncertainty in 

the model, allowing an archaeological prospector more freedom to interpret the 

results using human reasoning. To quantitatively determine the rate of true 

positives, false negatives and false positives in order to report accuracy metrics, 

a new binary mask layer was created containing only pixels with prediction 

probabilities above 0.5. These pixels were then vectorised, merged and filled to 

create a vector layer of predicted pits to use in spatial queries. A comparison of 

these post processing methods is shown in Figure 4-20. It can be seen in 

Figure 4-20 (c) that there are some incomplete rings, this is because some 

detections are made up of a mixture of pixels above and below 0.4 probability. 

This further supports the decision to use the full masks rather than the 

instances for interpretation where possible. 

 

Figure 4-20. Comparison of qualitative and quantitative results representations. (a) shows the ground truth 
locations of a section of very shallow (30-50cm depth) mining pits in the Hexworthy test area. (b) shows the 
model’s predicted results depicted with a graduated transparency colour scale representing model 
confidence and (c) shows a binary mask where all prediction pixels above 0.4 are assigned as ‘pit’ and all 
others are discarded. DSM © Environment Agency 2015. 
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4.4.6 Results  
During training binary cross-entropy was used as the loss metric as it is the 

standard loss metric used for problems of this type. For the Dartmoor dataset 

the training loss began at approximately 0.02 for the DSM and between 0.03-

0.04 for the other visualisation types, reducing to an average of 0.0146 for all 

data types after four epochs. There was negligible variation in the loss by 

visualisation type. The cross validation loss remained within 0.005 of the 

training loss for each epoch with the average cross validation loss 0.0145 after 

four epochs. However, during human examination of the output masks it was 

observed that because the model is attempting to lower the global loss over 

every pixel, the numeric values output from the TensorFlow console did not fully 

describe the real effectiveness of the model for detecting pit objects. This is 

suspected to be due to the fact that the model loss is a pixel based loss function 

rather than an object based one. Figure 4-21a displays the losses per epoch; 

showing that whilst the cross validation loss continues to decrease after four 

epochs, when compared to the F1 score shown in Figure 4-21b it can be seen 

that the real detection accuracy degrades after four epochs.  

4.4.6.1 Cross validation results 
In light of this, a much smaller human cross validation was carried out on five 

sample tiles from the cross validation dataset. These tiles were chosen after 

inspecting all tiles in the validation dataset as good representative examples to 

assess each model’s performance at both ends of the difficulty spectrum, from 

simple cases with several well defined pits to complex cases with multiple ill-

defined and overlapping pits or pits within larger trenches. To determine the 

optimal fine-tuning strategy, the number of epochs for which the model was 

retrained was varied and the results were examined by counting the detection 

instances over these tiles. 

For each model and each tile, the number of true positives (correctly detected 

pits), false negatives (undetected pits) and false positives (detections which do 

not correspond to true pits) were counted. From these numbers the precision 

(the proportion of the model’s pit predictions that were correct) and the recall 

(the proportion of actual pits that were detected) were calculated. The F1 score 
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(harmonic mean of precision and recall) was also calculated, as it is a useful 

single valued accuracy metric for a detection problem of this kind (formulas 

defined in Table 4-2). Due to the variability of deep learning model 

convergence, training will not produce identical results every time, to account 

for this each test was run three times and averaged. Figure 4-21b shows how 

the precision, recall and F1 scores vary as the number of fine-tuning epochs is 

increased. It should be noted that this figure shows accuracy metrics over only 

5 tiles from the validation dataset, chosen for their difficulty to evaluate model 

generalisation ability. Therefore, it does not represent the general performance  

obtained by the model on the test datasets (Table 4-2). It can be seen that the 

best results are found after three to four epochs of training. The degradation of 

accuracy after four epochs could correspond to overfitting; because each epoch 

trains the model using the same 520 test images, albeit augmented differently 

each time. As another test, the DeepMoon model was also run directly on the 

Dartmoor data without any fine-tuning training, this gave detection rates of 

approximately 40% with a bias towards large pits more similar in appearance to 

impact craters. 

Once the optimal amount of fine tuning was determined, the four advanced 

visualisation types were tested against the same five sample images. Each of 

the visualisation types depicted previously in Figure 4-18 were used as the 

training data input for fine tuning the model. Using the knowledge from the 

previous validation test, the models were trained for four epochs; as before, 

each test was run three times and averaged. Longer training runs of eight 

epochs were also tested. This is to account for the possibility that due to the 

greater difference between some of the visualisation styles and the model’s 

original lunar DSM training data more epochs might be required to obtain strong 

results. However, these tests displayed the same behaviour as that shown in 

Figure 4-21b. It can be seen from Figure 4-21c that whilst the precision is high 

for all four data representations, the recall and therefore the F1 score is poorer 

for the advanced visualisations.  
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Figure 4-21.  Accuracy metrics by training epochs (a) and by visualisation type (b), both evaluated on sample 
tiles from the validation dataset. Note: this figure shows accuracy metrics over only 5 tiles from the validation 
dataset chosen for their difficulty to evaluate model generalisation ability. Therefore, it does not represent 
the accuracy obtained by the model on the test datasets.  

4.4.6.2 Test area results 
The cross-validation results informed the development of the final model, which 

was then evaluated on the final unseen test datasets. The model was primarily 

evaluated on a 1km2 tile of LiDAR data in Dartmoor approximately 20km away 



136 
 

from the training area. Two additional tests were carried out on the Yorkshire 

dataset more than 500km away from the training data and on the original St 

Just area used in the visualisation section. The quantitative results obtained 

from the Dartmoor and Yorkshire datasets are summarised in Table 2. For all 

results the highest performing model from the Dartmoor validation dataset was 

used for the predictions. It must be noted that these results have been 

calculated from the binary results mask. Of the missed detections 23 out of the 

38 in Dartmoor and 17 out of 30 in Yorkshire are still visibly predicted in the full 

transparency results layer. This is because they fall below the 0.5 probability 

threshold used in the binary masking operation, thereby removing them from 

the count. Quantitative results were not measured for the St Just data as there 

were too many confusion objects and pits that were uncertain to the human 

digitiser. The model predictions for the St Just data are shown in Figure 4-22, 

for performance reference this figure can be compared with the visualisation 

results in Figure 4-6 to Figure 4-14. 

 

Figure 4-22: St Just area deep learning algorithm qualitative results. 

Table 4-2: Full results from Dartmoor and Yorkshire test datasets 

Test Area True 
Positives 

False 
Positives 

False 
Negatives 

Precision1 Recall2 F13 

Dartmoor 155 37 38 0.81 0.80 0.81 
Yorkshire 142 13 30 0.92 0.83 0.87 

1 Precision = True Positives / (True Positives + False Positives) 
2 Recall = True Positives / (True Positives + False Negatives) 
3 F1 = 2 * ((Precision * Recall) / (Precision + Recall)) 
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4.4.7 Discussion 
The cross-validation results from the different types of LiDAR visualisations 

indicated that the model performed better when trained on the raw 8-bit DSM 

height values rather than any of the advanced visualisations. It is suspected that 

whilst these visualisations are effective for human interpretation of LiDAR data 

(Kokalj and Somrak, 2019) and also effective for more traditional machine 

learning techniques (Guyot et al., 2018), because deep CNNs learn their own 

feature representations during training, it is not desirable to artificially alter the 

data representation prior to input. However, it also must be taken into account 

that the CNN chosen in this study was pretrained on 8-bit DSM height values, 

thereby introducing a bias towards this representation. To fully test which LiDAR 

visualisation is best suited for CNNs in future, would require a robust CNN 

trained from scratch on multiple differently visualised representations of the 

same data; however, such a model has not been made publicly available from 

any known sources at this time. To attempt to test this theory with the existing 

datasets experiments were carried out to create a model from scratch using the 

DeepMoon architecture and the Dartmoor training data with different 

visualisations. However, no meaningful results were obtained from any 

visualisation, presumably due to the limited size of the training dataset.  

The SLRM and openness visualisations are included in this study as discussion 

points, to observe how the predictions vary and to provide stimulation for future 

work including that presented in the final project of this chapter. An example of 

the predictions on a single challenging tile for each visualisation type is shown 

in Figure 4-23. It can be seen that the predictions from the raw DSM are the 

most sensitive, resulting in the least amount of missed detections, and is the 

only visualisation type that picks up the isolated pit in the lower right corner. The 

confusion areas of low probability are easily filtered out by setting a probability 

threshold of 0.5 in the post-processing steps, as discussed in Section 2.6. 
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Figure 4-23. Results from a single image tile for each of the different visualisation predictions. 1Hillshade 
used for display purposes only and not processed by the CNN model. Coordinate system arbitrary pixel 
based. 

The final test area results demonstrate that the model is highly effective with the 

correct detections greatly outnumbering the missed and false detections, 

displaying strong precision and recall simultaneously. Figure 4-24 shows the full 

transparency results overlaid on the Dartmoor and Yorkshire test datasets. This 

figure shows that the model is highly capable of discerning mining pits and is 

not overwhelmed by false positives. It also demonstrates that even if individual 

detections might not always be correct the greater trends in the landscape are 

very clearly reproduced by the model. From a management perspective, these 

automatically generated maps clearly delineate the extents and key structures 

of these historic mining sites, with limited confusion areas due to model 

assumptions and landscape morphology. Recorded precision scores in LiDAR 

based deep learning applications range from 0.12 (Trier et al., 2019), through 

0.62 (Trier et al., 2016) to 0.90 (Verschoof-van der Vaart and Lambers, 2019). 

While these scores are not directly comparable as each study has used a 

different dataset and detection object, the precision scores of 0.81 and 0.90 

obtained in this research can be considered state of the art at this point in time. 
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Figure 4-24. Results overlaid on hillshaded LiDAR. (a) and (b) are from the Dartmoor Hexworthy mine test 
area, Ordnance Survey grid tile SX6570. (a) shows the true mining hole locations in blue and (b) shows the 
model’s predicted mining hole locations in magenta. (c) and (d) show the results from the Yorkshire Yarnbury 
mine test area, Ordnance Survey grid tile SE0166. (c) shows the true mining hole locations in blue and (d) 
shows the model’s predicted mining hole locations in magenta. Coordinate system British National Grid, 
DSM © Environment Agency 2015. 

In Figure 4-24 (a & b) small confusion areas can be seen around the ends of 

larger openworked trenches. This is due to the fact that the model is making 

predictions on cropped image tiles; if only the end of the trench is visible in the 
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tile, the model’s strong generalisation ability works against it and it will predict a 

semi-circular occluded hole. As the tiles have 52% overlap these false positives 

are typically removed by the raster mosaic post processing step, however, due 

to anomalies in position and tile overlap, some remain. 

The St Just and Yorkshire tests as shown in Figure 4-22 and Figure 4-24 (c & d) 

were carried out to examine the model’s ability to generalise to different types of 

mines and different resolution data. In the St Just test area, whilst the algorithm 

did detect some of the pits and shafts, the low resolution of the LiDAR dataset 

and the many different buildings and taller vegetation types present in this area 

posed difficulties. For cases such as this where the data and ground conditions 

are suboptimal for automated algorithms the resulting map could still be used by 

a human to add interpretive information in conjunction with the other 

visualisation types discussed in Section 4.3. 

For the Yorkshire dataset, the model surpassed its previous performance on the 

original Dartmoor dataset, as shown in Table 4-2. As described in Section 4.2 

the Yorkshire LiDAR DSM is twice the resolution of the Dartmoor data. 

However, during the ground truthing exercise it was found to contain more 

confusion objects such as building remains, stone lined trenches and drainage 

culverts. The model was capable of discriminating between building foundation 

remains and excavated platforms from mining pits and made only two false 

positive detections in these areas. This is an extremely positive result and 

indicates the model is doing more than just looking for unnatural changes in 

ground elevation and is searching instead for areas that contain the features 

which it was trained on. 

Of the false detections on this dataset, one drainage culvert was mistaken for a 

hole, but the geometry was such that it was only discernible as a culvert from a 

side view under the road unafforded to the LiDAR data. This is a limitation of all 

overhead remotely sensed data and is not specific to a deep learning model. 

Two trenches were misidentified as pits but only where dense vegetation 

masked their linearity causing them to appear as circular depressions on the 

LiDAR.  
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For all sites, the site verification visits revealed that many of the detected pits 

would be difficult to locate either on foot or from aerial photography as they are 

faint, shallow and reed-filled. Whilst ground truthing, many pits were near-

invisible until the surveyor was within a few meters of the model’s predicted 

location; as well, whilst traversing the sites to verify the predictions, no isolated 

pits were seen that were missed by the model, all missed detections were within 

larger excavations that had caused confusion. Figure 4-25 shows a photograph 

taken looking north from the Hexworthy site, aligned with the same view from 

the LiDAR model overlaid with aerial imagery and predicted hole locations.  

 

Figure 4-25. Ground level view of the Hexworthy historic mine site. (a) is a photograph taken during the 
verification survey, (b) shows the same scene in a hillshaded DSM, (c) includes OSGB 2010 aerial imagery 
and (d) includes the model’s predictions. DSM and aerial imagery © Environment Agency 2015 & Digimap 
Getmapping Plc.  

The results from the different resolution tests indicate that this model is able to 

generalise to new sites provided the resolution is equal to or higher than the 

training dataset. From these tests it appears that dataset resolution is strongly 

correlated with classification accuracy. These tests also show that despite being 

trained on one resolution of data the model is capable of being applied at a 

different higher resolution without the need for additional training, greatly 

increasing its applicability for varying quality and resolution general purpose 

LiDAR datasets. This is crucial as most LiDAR is not flown specifically for 

historic mining hazard detection purposes; therefore, detection algorithms must 
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be capable of working with varying accuracy and resolution datasets gathered 

by many agencies for diverse reasons. It is not certain whether the poorer 

performance on the 1m dataset was attributable more to the dataset resolution 

or the dataset quality. A current LiDAR campaign to re-survey the South West 

to a higher quality 1m resolution is ongoing (Environment Agency, 2020), once 

complete this new dataset could be tested with the model to determine whether 

satisfactory results can be obtained from higher quality 1m datasets. 

The mining pit detection model created here can be rapidly run on any LiDAR 

DSM suspected of containing remains of historic mining activity; the 

approximate time to process a 1km tile including manual ArcGIS post-

processing is 5 minutes. This pipeline could be easily automated further, as this 

research has been concerned with the ultimate performance of the deep 

learning model the periphery workflow has not yet been streamlined. As an 

output, simple GIS point layers (with their accuracy specifications of ± 20%) can 

be supplied to the land managers such as Dartmoor National Park and 

Yorkshire Dales National Park. These results are usable directly by the land 

managers to rapidly inform future decisions about safety, preservation and 

management.  

4.4.8 Deep transfer learning summary 
The transfer learning model developed in this research shows strong, 

repeatable results for the task of detecting historic mining pits. It is a novel 

application of knowledge from the disparate but related field of planetary remote 

sensing, achieving state of the art results on its allocated task. It is capable of 

differentiating between natural depressions and manmade ones, even in areas 

of occlusion and erosion. This is due to the close resemblance between the 

data on which the base model was pretrained and the data for the problem at 

hand. Other strengths of this model are its ability to output full pixelwise 

segmented confidence masks for any size and resolution data, alongside this 

workflow’s integration with existing ArcGIS tools where possible to ensure ease 

of use and repeatability.  

This model can run on large swathes of LiDAR data extremely quickly and 

produces meaningful results which will aid management of large scale historic 

mining landscapes. The model is also valuable for detecting outlying smaller 
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pits away from the main shafts and mineral veins.  These are often unrecorded 

remains of earlier prospecting and information on their location can add to 

understanding of a site’s exploitation history along with management of 

associated site hazards. It is envisaged that this model would be run as a first 

step in the prospecting process, vastly reducing the areas to be analysed in fine 

detail in a desktop search or fieldwork survey by a human analyst. With a false 

positive rate of less than 20% it does not overwhelm the analyst with incorrect 

predictions, providing an effective tool for preliminary site investigation and 

allowing confidence in the use of the model. The workflow and model presented 

here will allow the scale and magnitude of sites to be rapidly analysed, 

underpinning better management of historic mining areas. 
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4.5 Lineament detection – project three 
The deep learning model and data processing techniques developed in the 

previous project can additionally form the foundation for further mining and 

geological applications. This project described in this final section demonstrates 

a lineament inference tool which builds upon the deep learning model 

developed in Section 4.4. Detection of geological lineaments is a significant part 

of regional geological analysis, providing information on local geological 

structures. Lineaments are a broad category of features, corresponding to 

mappable linear surface features which may represent a subsurface 

phenomenon (O’Leary et al., 1976). Traditionally, lineaments were digitised 

manually from airborne and spaceborne optical imagery or airborne geophysics, 

however, these methods  are time consuming, subjective and potentially 

unreliable (Masoud and Koike, 2017). Alongside the time and subjectivity 

issues, in many climates direct  fault mapping is also challenged by a lack of 

exposed surface rocks across large geographical extents (Yeomans et al., 

2019). To address these issues, much research has been focused on 

developing semi-automatic methods for lineament detection, from early 

methods using potential field data (Blakely and Simpson, 1986) to modern 

MATLAB based toolboxes (e.g. TecLines; Rahnama and Gloaguen, 2014). 

Semi-automated methods historically have had difficulties with roads and field 

boundaries, along with vegetation obscuring the ground surface in optical 

imagery. Using LiDAR data instead of optical data can overcome some of these 

issues, as shown in Grebby et al. (2012).  

In many areas of the world, particularly in post-industrialised nations, the marks 

of historic mining activity are still visible on the landscape. Rather than using the 

natural geomorphology to map the structural geology to infer the mineralisation, 

it may also be possible to infer the mineralisation directly from the mining 

remains. Furthermore, in some cases data on mine workings and mineralised 

structures may be lost, therefore, methods such as this can add value. This 

method could also be used to search along strike for potential shafts that may 

have been covered or undetected.  

Primarily, semi-automatic lineament detection approaches follow a processing 

workflow of data representation, image enhancement, edge extraction and edge 
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connection (Masoud and Koike, 2017; Šilhavý et al., 2016). The input data 

format can be an image from an optical multispectral satellite sensor (Rahnama 

and Gloaguen, 2014; Soto-Pinto et al., 2013), a multiview hillshade from a 

Digital Elevation Model (DEM) (Masoud and Koike, 2017; Šilhavý et al., 2016), 

a principal curvature image generated from a DEM (Bonetto et al., 2015) or a tilt 

derivative image generated from airborne geophysics and LiDAR data 

(Middleton et al., 2015; Yeomans et al., 2019). The input image is then pre-

processed to improve its characteristics for edge detection. The techniques 

used here vary based on the input raster type. Linear features are detected 

using either object-based image analysis (Middleton et al., 2015; Yeomans et 

al., 2019), Canny edge detectors (Mallast et al., 2011), Random Sample 

Consensus (RANSAC) algorithm (Bonetto et al., 2015) or variants of the Hough 

Transform. The Hough transform is an image processing method for detecting 

lines, originally proposed by Hough (1962) and described in the context of 

lineament detection by Wang and Howarth (1990). It is robust to line gaps and 

noise, making it the algorithm of choice for lineament detection in many 

geological toolboxes such as ADALGEO (Soto-Pinto et al., 2013) and TecLines 

(Rahnama and Gloaguen, 2014). In general, following the line extraction, the 

approaches employ some form of post-processing to improve segment 

connectivity and reduce noise. Historic mine workings can cause problems with 

traditional semi-automated methods due to the anthropogenic modification of 

the land surface and their lack of linearly connected features. Therefore, the use 

of a deep learning based method is useful to hone the lineament detection.  

4.5.1 Methods  
The Dartmoor dataset was chosen to be used for these lineament inference 

experiments, as it is the most extensive LiDAR dataset examined in this thesis. 

Geologically, Dartmoor National Park is underlain by the Dartmoor Granite 

pluton and is the largest granite pluton exposed at surface (650 km2) within the 

Early Permian Cornubian Batholith (Scrivener, 2006). The granite is 

characterised by its peraluminous geochemistry and K-feldspar megacrysts 

(Simons et al., 2016). The area is variably mineralised and southern Dartmoor 

is known for tin veins of “black tin” or cassiterite (Dines, 1988). The test area for 

this study is focussed over the Hexworthy Mine (an amalgamation of Hootens 

Wheals and Hensroost mines) where the main vein structures trend 



146 
 

approximately NNW and subordinate veins course ESE-WNW (Dines, 1988). 

The area shows demonstrable surface workings and provides an ideal case 

study site. 

The pipeline proposed in this research contains two modules, the first module 

detects mining pits using deep learning and the second module fits 

mineralisation trends to these detections using a Hough transform. Figure 4-26 

shows the processing pipeline.  Module 1 is identical to the workflow described 

previously in this chapter in Section 4.4 and will not be re-examined here. The 

only methodological difference is that for the purpose of geological line fitting it 

is hypothesised that precision should take precedence over recall, as noise 

from false positives may have greater negative impact than missed detections. 

To test this theory, the positive openness representation model and the DSM 

representation models were selected for further processing. As shown in Figure 

4-21 the positive openness model has the highest precision and the second 

highest recall, whereas the DSM model has the second highest precision and 

the highest recall. The DSM model also exhibits a higher overall F1 score. The 

lower scoring representations of SLRM and negative openness were not 

processed further. As described previously, the outputs from the deep learning 

model are a binary mask image of pit probabilities for every 256 x 256 image 

tile. These individual image patch masks are then merged back into a single 

raster layer by taking the mean values. This allows every ground metre to be 

predicted twice, improving model robustness. This mosaicing is the final step in 

Module 1.  
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Figure 4-26: Processing workflow diagram showing both the deep learning pit detection module and the line 
fitting module.  

The full area mask forms the input to Module 2 for the geological line fitting 

algorithm. In this module the merged raster layer is pre-processed in Python 

using OpenCV (Bradski, 2000) to improve its characteristics for line fitting. A 

thresholding algorithm is applied to maintain only the pixels with a probability 

above 0.6 of belonging to the pit class. This removes some of the artefacts at 

image boundaries and also limits the amount of incorrect predictions and noise 

shown in the image. As it is easier to fit lines to dots rather than rings, the 
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background is filled with white using a simple flood filling algorithm, which 

colours all connected pixels with the specified new colour. This step removes 

the rings leaving just the centres. For the final pre-processing step, the image is 

inverted back to a black background to maintain consistency. These pre-

processing steps are shown in Figure 4-27. 

 

Figure 4-27: Image pre-processing to optimise the prediction result mask prior to the line fitting operation 

To fit the lines, an interactive Hough transform program was created to allow 

the user to control the parameters of the transformation whilst viewing the fitted 

lines. This allows for suitable settings for the Gaussian blur filter, the edge 

enhancement filter and the Hough transform itself to be varied and their effects 

visualised. The Hough transform is sensitive to the specific geometry of an 

dataset, therefore, rather than set the parameters for the test dataset based on 

empirical assessment for each test image, as described in Rahnama and 

Gloaguen (2014) the interactive step allows the method to be easily used with 

multiple datasets of varying properties. This choice introduces compromises 

related to higher subjectivity and lower automation; however, it improves 

generalisation and usability at the proof of concept stage. As can be seen in 

Figure 4-28, the essential trends do not change despite different settings, only 
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the number and density of the extracted segments. This allows the user to 

adjust the detection to noise ratio appropriately. 

 

Figure 4-28: Sample of the interactive Hough transform program showing settings that are (a) too low, (b) 
suitable and (c) too high 

After visually appropriate settings are chosen, the lines are converted from 

image to map coordinates and exported as georeferenced coordinate pairs. The 

lines can then be imported into a GIS software package for further visualisation 

and analysis such as bearing calculations.  

4.5.2 Results and discussion 
To evaluate the results of the line fitting module, the angles of the polylines 

generated from the Hough transform for both data representations were 

compared to those published in Yeomans et al. (2019), shown in Figure 4-29. 

The general trends show good agreement; however, direct comparison is 

challenging due to the differing scales of the datasets. The lineaments 

generated by Yeomans et al. (2019) are for the entire south west of England 

while those generated here are only for a 16 km2 area of Dartmoor National 
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Park. It can be seen that the DSM shows clearer correlations with the 

lineaments extracted in Yeomans et al. (2019). 

 

Figure 4-29: Comparison of half rose plots showing dominant ESE trends. (a) shows regional polyline angles 
observed by Yeomans et al. (2019), (b) shows polyline angles from lines fitted in this study using the model 
trained on the DSM representation and (c) shows the polyline angles from lines fitted using the positive 
openness representation. 

Alongside the lineaments from Yeomans et al. (2019), the generated lines were 

also compared to those provided by the British Geological Survey (BGS) in their 

1:50,000 linear geology vector map layer (BGS, 2016), shown in Figure 4-30.  
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Figure 4-30: Results showing the British Geological Survey’s 1:50,000 linear geology layer compared to (a) 
manually digitised high resolution lines and (b) the lines generated by the automated algorithm. Geological 
Map Data BGS 2020, base DSM © Environment Agency 2009 
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Again, the differing data scales proved challenging, with scale related 

imprecisions noticeable in the BGS data when viewed at 1:5,000 due to a 

resolution of 50m at 1mm line thickness. Figure 4-30a shows the BGS data 

alongside higher resolution probable mineral vein locations, digitised manually 

from the LiDAR data. It can be seen that several smaller linear features are not 

present on the BGS layer, along with a deviation in angle on the southern end 

of the main north-south vein. Figure 4-30b shows the automatically extracted 

lines from the positive openness representation plotted against the BGS data. It 

can be seen that the general trends are positive, with the algorithm picking up 

several line angles more precisely than the 1:50,000 layer, but that it does not 

extend far enough in many instances. For the additional mineral vein locations 

inferred in Figure 4-30a, two were picked up by the algorithm, and two were 

missed. It is hypothesised that as the algorithm is fitting lines to densities of 

detected pits, the shorter line segments are due to the CNN not detecting a 

large enough cluster of points at the extremities of the lines, leading to missed 

sections. This can be attributed to the lower recall of the positive openness 

predictions. Another factor is that neither CNN model was not trained to detect 

trenches that do not contain pits; the two missed east-west veins are primarily 

trenches containing very few pits, likely the cause of the missed line detections. 

Figure 4-30c shows the results from the lines automatically extracted using the 

predictions from the DSM representation. There are many more detected lines 

and the result appears noisier than that shown in Figure 4-30b, though the more 

southerly missed east-west trench has been picked up. 

4.5.3 Lineament detection summary 
The geological lines generated using this technique correlate with the trends of 

the well-known lineaments in the Dartmoor area, both those semi-automatically 

extracted from LiDAR data by Yeomans et al. (2019) (Figure 4-29) and those 

published by the British Geological Survey (BGS) in their 1:50,000 mapping 

products (BGS, 2016)(Figure 4-30). The results using the positive openness 

representation provide cleaner results when viewed on a map, however, the 

results from the DSM representation are more successful at detecting missed 

lines at high resolutions and show greater directional agreement on the half-

rose plot. Further work to incorporate trench identification into the deep learning 

model would improve detection accuracy, alongside further refinements of the 
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Hough transform parameter selection process. This preliminary work 

demonstrates that the lines produced from this technique can aid geological 

interpretation in regions of historic mining activity, particularly where records 

have been lost or are incomplete.  
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4.6 Summary 
The three projects which make up the research in this chapter examined 

different but interconnected ways that LiDAR data can be used to add to the 

knowledge of a legacy mining environment. LiDAR is particularly useful for 

detecting landscape signatures which may be overgrown or eroded, making 

them difficult to distinguish with optical imagery. The first project introduced the 

concept of multiple data visualisations and investigated how these can be used 

to aid human interpretation and to extract additional details from the gridded 

LiDAR elevation values. Eleven different visualisation representations were 

generated for an area featuring many of the typical Cornish historic mining 

landscape features and the strengths and weaknesses of each representation 

type were observed.  

The second project developed a deep transfer learning method for successfully 

detecting trial pits, shallow workings and shafts. This method was trialled on 

multiple LiDAR datasets of different resolutions and landscape types. This 

project revealed that the deep transfer learning technique was highly capable of 

detecting these mining remains from 0.5m and 0.25m LiDAR datasets; 

however, the accuracy was notably reduced when using the 1m dataset. This 

result highlights the importance of good quality high resolution datasets for 

future deep learning projects. 

The final project explored how further subsurface geological knowledge can be 

inferred from the results of the deep learning model. This project demonstrates 

that the value of deep learning models does not end with object identification, 

but rather is one step on the path towards intelligent landscape modelling both 

on surface and underground.  

Overall, the results from these interconnected projects demonstrate that LiDAR 

data can be used to aid understanding of past mining landscapes, both by 

enhancement for human interpretation and by applying automated detection 

techniques. These techniques can be used to rediscover sites, monitor legacy 

risks, add information for geological exploration and expand the historic record. 

With the increasing global availability of high resolution LiDAR datasets, the 

methods described here have wide ranging applicability for many countries with 

poorly documented legacy mine sites. 
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 Using satellite imagery and deep convolutional 
neural networks to detect land cover changes  
Chapter overview 
This chapter investigates how deep learning models can be created for 

multispectral satellite imagery where no suitable transfer learning model can be 

found. The application focused on in this chapter is detecting Artisanal Scale 

Mining (ASM) in Ghana from Sentinel-2 multispectral satellite imagery. This 

chapter develops techniques for modifying CNN architectures to ingest an 

arbitrary number of image channels and could be used for many multispectral 

and hyperspectral applications. This chapter is based on the paper ‘A Sentinel-
2 based Multispectral Convolutional Neural Network for Detecting 
Artisanal Small-scale Mining in Ghana: Applying Deep Learning to 
Shallow Mining’ published in the journal Remote Sensing and Environment13. 

In addition to the development of the deep learning model, this chapter also 

investigates how the results from this model can be used to monitor small scale 

mining land use changes across the study area.  

5.1 Introduction  
Artisanal and small-scale mining (ASM) is a rapidly expanding source of 

livelihood for many in the Global South, particularly in rural areas. It is estimated 

that over 40 million people are directly working in ASM across 80 countries, with 

a further 150 million people dependent on ASM indirectly (Intergovernmental 

Forum on Mining Minerals Metals and Sustainable Development, 2017). ASM 

activities can be considered to exist on a spectrum of formality (McQuilken and 

Garvin, 2016), from highly illegal mining either within nature preserves (Boadi et 

al., 2016) to fully licensed, environmentally compliant and formalised small-

scale mining (Hilson, 2002). 

Whilst ASM generates vital socioeconomic benefits for communities and 

countries it is also associated with environmental and social problems such as 

 
13 The candidate is the first author of this paper and the authorship contribution statement is as 
follows: Jane Gallwey: Methodology, Conceptualization, Software, Investigation, Writing – 
Original Draft, Visualization. Carlo Robiati: Investigation, Conceptualization, Validation, Data 
Curation. John Coggan: Supervision, Project Administration, Resources. Declan Vogt: 
Supervision, Writing – Review and Editing. Matthew Eyre: Conceptualization, Writing – Review 
and Editing, Supervision, Resources. 
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land degradation, deforestation, water pollution, illegal immigration, low worker 

safety and child labour (Corbett et al., 2017; Hilson, 2002; Intergovernmental 

Forum on Mining Minerals Metals and Sustainable Development, 2017).  The 

excavation of ground for mining causes widespread deforestation and leaves 

dangerous unstable pits that fill with standing water, creating breeding grounds 

for malarial mosquitoes (Bansah et al., 2018). The unregulated mineral 

processing also leads to heavy metal pollution, especially increased mercury 

levels (Bansah et al., 2018; Telmer and Stapper, 2007).  

Appropriate management of ASM activities is critical, with its benefits directly 

linked to 9 of the 17 United Nations Sustainable Development Goals (Hilson 

and Maconachie, 2020). However, effective ASM management is inhibited by 

factors such as the informal and undocumented nature of the sector, legacy of 

inappropriate policies, limited government resources and the remote locations 

of mine sites (Corbett et al., 2017; Hilson and Gatsinzi, 2014). Detailed, 

accurate and inexpensive geoinformation about ASM activities would aid 

legislative pathways by providing rapid mapping resources to support small 

scale licensing claims, one of the major barriers to effective legislation 

(McQuilken and Garvin, 2016). These datasets would also support the timely 

tackling of environmental problems by focusing enforcement and remediation 

efforts where they are most needed.  

Remote sensing data sourced from earth observation satellites could generate 

this geoinformation, although in the past their applicability for mapping ASM 

activity has been hindered by the resolution of the sensors and the accuracy of 

the classification techniques (Asner et al., 2013). Landsat and MODIS, the most 

prominent satellite imagers of the 1990s and 2000s, have resolutions of 30m 

and 250m respectively, making identification of the often small ASM alluvial 

mine workings problematic as workings can cover less than half a pixel, even at 

Landsat resolution. ASM activity visible from space is primarily surface mining, 

usually alluvial in nature and presenting as ribbons of clustered pits (Snapir et 

al., 2017). They are normally located on or near watercourses, along with dry 

pits and bare earth waste piles (Owusu-Nimo et al., 2018), ranging in size from 

less than half a hectare to several hundred hectares for the larger clusters.  
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The past five years have seen the launch of advanced satellite imaging systems 

with greatly increased spatial resolutions. These include the European Space 

Agency’s (ESA) Sentinel-2 platform (Berger et al., 2012) which provides 

multispectral imagery with 10m resolution in four visible and near infrared bands 

and 20m resolution in four further infrared bands (Drusch et al., 2012; European 

Space Agency, 2015). Spectrally, the alluvial workings are highly reflective in 

the near infrared bands between 700nm and 875nm and display the greatest 

contrast from vegetation, rooftops and open ground in the short-wave infrared 

bands between 1600nm and 2500nm.     

Delineating ASM related deforestation is a subset of Land Use/Land Cover 

(LULC) mapping. The most common approach to LULC mapping performs 

pixel-based classification based on the spectral signatures of the classes of 

interest, utilising machine learning classifiers. Pixel based classifiers have been 

used for mapping ASM activity in Ghana (Boakye et al., 2020; Kusimi, 2008; 

Obodai et al., 2019), Burkina Faso (Leroux et al., 2018) and Brazil (Lobo et al., 

2018). The reported omission/commission errors range from 8-40% for the 

mining class, indicating a large variability in the accuracy of this method 

(Boakye et al., 2020; Obodai et al., 2019).  

A subset of pixel-based methods, used primarily in deforestation studies, 

leverages spectral mixture analysis to detect sub pixel changes. Multiple studies 

have used this technique to detect ASM related deforestation (Asner et al., 

2013; Asner and Tupayachi, 2016; Caballero Espejo et al., 2018). Typical 

omission and commission errors from these methods are in the region of 10-

25% (Asner and Tupayachi, 2016; Caballero Espejo et al., 2018), with some 

difficulties encountered in correctly classifying the water pools within the alluvial 

mine sites (Caballero Espejo et al., 2018). The greatest weakness of the pixel-

based classifiers is their lack of spatial context. Each pixel is considered 

individually, leading to a ‘speckled’ effect in the resulting classification maps 

(Blaschke et al., 2014) which can be mitigated to some degree by 

postprocessing but not wholly removed (Kelly et al., 2011).  

Object based approaches attempt to address this lack of spatial context by first 

segmenting the image into regions based on spectral similarity then classifying 

the regions rather than the individual pixels (Blaschke et al., 2014). These 
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approaches have seen relatively little application for detecting ASM, but a 

successful implementation for general rainforest LULC change analysis 

(including mining) is found in Souza-Filho et al. (2018) with 

commission/omission errors in the range of 10-30%. However, finding adequate 

parameters for the initial object segmentation can be labour intensive and relies 

on good domain knowledge (Nuijten et al., 2019). All methods to date have 

required a significant level of human input, including feature and segmentation 

parameter design, manual cluster selection and manual relabelling of incorrect 

pixels.   

Outside the field of traditional remote sensing, techniques from computer 

science could provide a solution: since 2010, advances in the available 

processing power of Graphics Processing Units (GPUs) have allowed a type of 

deep artificial neural network known as a Convolutional Neural Network (CNN) 

(LeCun et al., 1989b) to emerge dominant for most image processing tasks (Gu 

et al., 2018). CNNs are inspired by biological visual cortexes and work by 

adaptively and automatically learning spatial dependencies and hierarchies of 

features from gridded data. They can approximate highly nonlinear functions 

whilst maintaining spatial connectivity between pixels (Goodfellow et al., 2016).  

Considerable research has been carried out in the broader remote sensing 

community as to how to modify CNNs for LULC tasks; a review is given in Ball 

et al. (2017). The main identified challenges to adoption were found to be the 

limited availability of large amounts of pre-labelled training data and the multiple 

channels found in multispectral and hyperspectral imaging systems (Nogueira 

et al., 2017; Signoroni et al., 2019). Deep learning based LULC applications 

have been successfully implemented using Sentinel-2 data, but the images are 

most commonly clipped to contain only the first three or four bands, as seen in 

Kroupi et al. (2019) and Wurm et al. (2019), to maintain compatibility with non-

multispectral deep learning models. Very few studies have modified deep 

learning models to ingest true multispectral data, with Kemker et al. (2018) 

describing the most comprehensive and promising study to date. Their method 

tested two different deep architectures for learning 18 class segmentations on 8 

channel images, including testing pretraining with synthetic imagery. Their 

approach achieved high per class accuracies on the larger classes from their 

dataset; however, some smaller classes proved more challenging, although 
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their proposed method significantly outperformed their other tested methods on 

those classes. No published work has described the application of true 

multispectral deep learning for classifying ASM and deforestation. 

LULC mapping allows delineation of ASM activity, but to extend from 

delineation to monitoring, the model must include a temporal change detection 

element. Post-classification change detection is the method used by most ASM 

mapping studies to date (Asner and Tupayachi, 2016; Boakye et al., 2020; 

Kusimi, 2008), but it is sensitive to the errors in the original classification maps 

and can produce imprecise results especially for smaller land cover classes 

such as mining or urban. The improvements in classification accuracy 

achievable by using a CNN could circumvent the weaknesses of post-

classification change detection methods and lead to simple and effective 

change mapping. 

By bringing together recent advances in deep learning and satellite sensor 

technology, this chapter proposes a new method to automatically map the 

extent of alluvial ASM activities at a hitherto unprecedented level of accuracy 

and detail for minimal cost, allowing for effective ASM monitoring. The 

objectives of this chapter are to: i) design a multispectral CNN model capable of 

distinguishing between mining, built/developed and vegetation land use classes 

from freely available Sentinel-2 imagery, ii) benchmark the model’s performance 

against other classification methods, iii) demonstrate the performance of this 

model for mining area detection across a large spatial and temporal range of 

images, with minimal human input and iv) provide maps which could be used to 

analyse the impacts of ASM policies over the studied time period. The novel 

contributions of this chapter include: the development of a multispectral deep 

learning model which is significantly more accurate than existing techniques for 

detecting ASM, a full processing pipeline for monitoring ASM and urbanisation 

via spatial and temporal mosaicing, and the production of a large scale dataset 

showing the extent and expansion of ASM in the Ghanaian case study area 

from 2015-2019.   

5.2 Methods 
This research work for this chapter built a multispectral CNN designed to detect 

mining and built environments from Sentinel-2 satellite data. Alongside this, 
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several traditional pixel-based machine learning classifiers were employed to 

benchmark the CNN method against current practices. Investigation was then 

carried out to assess how the design of the CNN impacts performance across 

multiple validation patches. Once the model design was finalised, an area of 

more than 6 million hectares was analysed over 4 years, with a temporal 

sampling of once per year. To improve the classification reliability of the yearly 

maps, ensemble methods using probability averaging were used to generate 

the most probable class from multiple images per season. 

5.2.1 Case study area 
Ghana was chosen as the case study area as it is at the front line of the 

ongoing land use changes happening throughout mineral endowed areas of the 

Global South. Ghanaian rainforest is being deforested at the world’s fastest 

rate, with over 60% more forest lost in 2018 than 2017, initially reported by 

Global Forest Watch (Weisse and Goldman, 2019) and verified using Sentinel-2 

data by Dekker (2019). This is due to mining, agriculture, logging, fires, and 

urban expansion (Boadi et al., 2016).  

Alongside deforestation, ecological issues arising from Artisanal Scale Gold 

Mining (ASGM) in Ghana include mercury, arsenic and other heavy metal 

contaminations, decreased water quality and land disturbances (Rajaee et al., 

2015). Ghana’s economy is heavily reliant on gold and cocoa exports, which 

often compete for the same land (Snapir et al., 2017). Mining comprised 35% of 

all national exports in 2014, of which 65% came from large scale mines and 

35% from ASM (McQuilken and Garvin, 2016). This is one of the highest 

percentages attributable to ASM worldwide, largely related to the influx of 

Chinese miners since the mid-2000s, bringing with them heavy machinery and 

causing an accelerated rate of land degradation (Botchwey et al., 2019).  

Government policy towards ASM has been varied. Initially Ghana was a global 

leader in ASM formalisation with the Small-Scale Gold Mining Law in 1989 

(McQuilken and Garvin, 2016); however, the licensing process was 

bureaucratically challenging and precluded access to the system for most 

poverty driven artisanal miners, propelling the sector into increasing informality 

(Hilson, 2001). To address the issues associated with ASM, in 2013 the 

government set up a National Task Force to curb operations; however, it was 
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perceived by many as a façade to placate the media and the public (Hilson et 

al., 2014). All small-scale mining including legal operations was banned in April 

2017 as part of the Task Force’s Operation Vanguard (Botchwey et al., 2019; 

Ministry of Lands and Natural Resources, 2019), with the ban partially lifted in 

December 2018 (Bansah et al., 2018).  

The study area boundary chosen is the Ghanaian territory corresponding to the 

Precambrian West African Craton (Labou et al., 2020), shown in Figure 5-1. 

This area covers the major gold belts of Ghana and corresponds to all of the 

Western and Central provinces and large parts of the Brong Ahafo, Ashanti and 

Eastern Regions. Additionally, the area contains the ten districts inspected by 

Owusu-Nimo et al. (2018) in a fieldwork based study, allowing results from our 

model to be examined within the context of existing ground truth data. The 

findings from Owusu-Nimo et al. (2018) can provide valuable supplementary 

information for interrogating the results of our model, despite the scales and 

study types not being directly comparable. 

 

Figure 5-1:  Overview map of study area, Sentinel-2 tile coverage and training data boundary. Righthand 
sub-image shows the ten districts common to the Owusu-Nimo et al. (2018) study. 

5.2.2 Datasets 
The imagery chosen for this research was sourced from the ESA’s Sentinel-2 

MultiSpectral Instrument (MSI). This platform was selected because: i) it offers 

spatial resolutions of 10m or 20m per pixel (depending on band) in the visible 
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and infrared, adequate to detect most alluvial mining sites; ii) at these spatial 

resolutions it provides ten spectral bands, ranging from 490nm to 2200nm, 

delivering sufficient spectral resolution, particularly in the short wave infrared 

range; iii) it is ‘future-proof’ with operation planned until 2025 with potential for 

extension to 2030; and most importantly iv) it is open access data (European 

Space Agency, 2015; van der Meer et al., 2014). Forkuor et al. (2020) state that 

open access satellite data can be valuable in assisting data-scarce developing 

countries to measure progress towards Sustainable Development Goal targets. 

Whilst other sensors such as Planet’s PlanetScope satellites offer faster revisit 

times and higher spatial resolutions, as explored by Shendryk et al. (2019), it 

was deemed important to avoid potentially costly commitments to private 

companies when designing a tool to be used for sustainable development 

purposes.  This, alongside its higher spectral resolution informed our choice of 

Sentinel-2 data.  

The Sentinel-2 data was downloaded as 100km x 100km UTM registered 

orthorectified tiles, known as ‘granules’ in the Sentinel-2 nomenclature 

(European Space Agency, 2015) in either L1C (top of atmosphere) or L2A 

(bottom of atmosphere) formats. The total study area partially or wholly 

intersected 13 different tile footprints. Between three and five granules 

containing less than 20% cloud coverage were downloaded for every dry 

season in Ghana (November - March), hereafter known as the temporal period. 

Three tile footprints intersected the study area by less than 4%. To reduce 

dataset size only one granule per temporal period was downloaded for these 

areas, as it was possible to manually select a granule with completely clear 

skies over the small area of interest. In total 211 granules were downloaded, 

details of which can be found in supplementary file S1. The ESA command line 

program sen2cor was used to convert the L1C tiles to L2A (Gascon et al., 

2017). The six bands with spatial resolutions of 20m were upsampled to 10m 

using bicubic interpolation (Vaiopoulos and Karantzalos, 2016). For clarity, 

pixels corresponding to lakes, known large scale mining operations and a 5km 

buffer along the Atlantic coast were manually masked out and do not contribute 

further to the analysis.  

To provide training data to the model, a 30km x 45km area centred at 2°12'W 

5°55'N in the Western province was digitised, the location is shown in Figure 
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5-2. This area has high mining activity, helping to mitigate the issues arising 

from imbalanced classes, where results can be biased due to the larger number 

of examples in one class in relation to another (Peng et al., 2019; Shendryk et 

al., 2019; Wurm et al., 2019).  Initially, the Sentinel-2 granule from the 23rd of 

January 2016 was manually digitised into the three macroclasses of mines, built 

areas14 and vegetation. This granule was chosen as it was the earliest cloud 

free granule available, allowing high resolution RGB imagery (0.31-0.5m pixel 

size) imaged by DigitalGlobe’s WorldView satellites in 2015 to be used for 

additional reference (DigitalGlobe, 2015). In the Sentinel-2 imagery, the visibility 

of mines and settlements generally was sufficient to allow confident human 

digitisation; where confusion areas occurred the higher resolution imagery was 

consulted, with due consideration given to the temporal shift between the 

datasets. The initial 2016 digitisation was used as a starting point for digitising 

two further training tiles covering the same geographic area but imaged in on 

the 11th of February and the 2nd of April 2019. These additional temporal tiles 

were included to obtain training examples under differing radiometric and 

atmospheric conditions, improving the final model’s generalisation ability. 

Training area labels were digitised by one operator and checked by another. 

This check indicated high reliability of generated labels, with only small areas 

and class boundaries displaying disagreements, mainly arising from the 

subjective nature of delineating precise mine boundaries. When generating the 

training boundaries, the emphasis was placed on delineating land use rather 

than pixel level land class, therefore, small patches of vegetation within mined 

areas were included in the mining class rather than the vegetation class. This 

strategy more closely represents the actual land area degraded by mining and 

also generates smoother class boundaries for later interpretation. 

For validation, two 5km x 5km areas were digitised using the same 

methodology. Validation Tile A was generated to the north of the training area 

using the same 2016 granule, while Validation Tile B was generated from a 

2018 granule not used for training. Figure 5-2 shows the training and validation 

areas. These two validation tiles allow performance to be examined under both 

known and unknown radiometric conditions. For testing, eight additional 5km x 

 
14 The built class includes areas of bare earth along roads and around buildings but does not 
generally include fallow fields unless contiguous with other dwellings. 
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5km tiles were generated using the same workflow. Three of these tiles were 

extracted from the same larger 2016 Sentinel-2 granule used for training; these 

make up the known radiometric test set. Another three were extracted from 

different years and locations within the study area, these make up the unseen 

Ghana test set. Lastly, two tiles, from Suriname and Indonesia, were created to 

investigate the model’s global generalisation ability. All tiles are representative 

of the type of mining landscape found across the region, containing clear 

examples of all classes and minimal cloud occlusion.  Full details of the test tiles 

are found in Appendix C-1. 

 

Figure 5-2: Locations of the manually digitised training and validation areas. Dates refer to the acquisition 
date of the imagery, the training area boundary is identical for all years, the offset is used to indicate 
temporal change. 

The contiguous training and validation coverages were then converted to a 

patch-based structure, similar to that described by Wang et al. (2019). This 

structure was chosen for its ability to ingest large scenes in a memory efficient 

manner, whilst decreasing overfitting tendencies. From the full labelled training 

scene of 9,000 x 4,500 pixels, 16,000 images of size 256 x 256 pixels were 

randomly extracted. During training, these images were augmented with 

random X and Y reflections and random rotations from 0° to 90° every epoch. 

From this augmentation and patching strategy, it is possible to feed the model 
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480,000 individual training patches generated from the initial 9,000 x 4,500 

reference image, leading to robust generalisation from limited human annotated 

source data. 

5.2.3 Cloud removal 
In areas of the tropics where much of the world’s ASM activities are located, it is 

not uncommon to obtain only one completely cloud free image per year, despite 

weekly satellite revisit times. The area of southern Ghana chosen for this study 

is one of the cloudiest regions of the world (Coulter et al., 2016); therefore, 

utilising partially cloudy images is essential for any robust ASM monitoring 

system. Sentinel-2 software comes with in-built cloud removal tools; however, 

these are based on the high water reflectance of clouds in certain bands 

(European Space Agency, 2019) which also occur in alluvial ASM ponds. When 

tested, the Sentinel-2 cloud removal tools were unable to distinguish between 

clouds and ASM, removing large areas of valid pixels.  To replace the Sentinel-

2 cloud removal tool, pixels exceeding a set reflectance threshold in all three of 

the visible wavelength bands were masked out, as the main differentiable 

feature between the clouds and the ponds is their hue in the visual spectrum. 

This method was effective on the majority of the isolated cumulus clouds found 

during the dry season. Cloud edge boundaries and high cirrus clouds were not 

removed by this technique but eliminated later in the ensemble averaging stage, 

allowing potential detections to be made under light cloud obscuration. Figure 

5-3 shows a comparison of the different cloud removal techniques on a typical 

cloudy Sentinel-2 image. 

 

Figure 5-3: Comparison of cloud removal techniques over a sample cloudy image tile (a) using Sentinel-
Toolbox (b) and our novel removal strategy (c). 
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5.2.4 Model development 
The model chosen for this research is a type of U-Net, a successful encoder-

decoder network designed by Ronneberger et al. (2015) for biomedical image 

segmentation. It has an encoder path consisting of multiple convolutions, ReLU 

activations and maxpooling operations, followed by a decoder path which 

upsamples the lower level stacks with the aid of skip connections from the 

higher resolution layers, combined with further convolutions and ReLU 

activations. It has been proven to be a highly effective architecture, particularly 

for problems with limited training data (Ronneberger et al., 2015) and has been 

the model of choice for multiple remote sensing applications (Iglovikov et al., 

2017; Peng et al., 2019; Zhao et al., 2019). The implementation used here is 

adapted from a multispectral U-Net available online15 in MATLAB format 

(MathWorks, 2019). Our version, which is modified to ingest Sentinel-2 data is 

illustrated in Figure 5-4. The model was created and trained with MATLAB on a 

desktop computer with a single NVIDIA Titan X GPU and 64 GB of RAM. Using 

this hardware setup, training time was approximately 16 hours. 

 

Figure 5-4: Schematic of the U-Net architecture used for the model. The input is a 10 channel multispectral 
image of 256 x 256 pixels and the outputs include: a 1 channel prediction mask, a 1 channel prediction 
probability layer for the highest class probability and a 3 channel prediction probability layer for all classes, 
all at the same resolution as the input image. 

 
15https://uk.mathworks.com/help/images/multispectral-semantic-segmentation-using-deep-
learning.html  
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Due to the small training set size, strong regularisation strategies were 

employed to minimise overfitting. Alongside the data augmentation discussed in 

Section 5.2.2, two 50% dropout layers (Srivastava et al., 2014) were added, one 

at the end of the encoder path and another at the model’s midpoint.  Stochastic 

Gradient Descent with Momentum (SGDM) was chosen as the optimiser as it 

has been shown to provide better generalisation abilities than adaptive 

optimisation methods (Wilson et al., 2017). The momentum hyperparameter 

was fixed at 0.9; this value is typical and effective in practice (Géron, 2017; 

Goodfellow et al., 2016; Hinton, 2012). Further hyperparameters were 

determined by training multiple models; during training the validation patch loss 

was monitored and after training a manual inspection of the output prediction 

masks for the two validation tiles was carried out. An adaptive learning rate was 

used, initiated at 5e-2 and reduced by a factor of 10 every 10 epochs. This was 

chosen iteratively by examining loss curves during training. Weight decay was 

set to 1e-4. Increasing this value to 5e-4 did not improve model performance. 

With the hardware configuration described above, it was found that a field of 

view of 256 x 256 and a mini-batch size of 16 fitted into memory and provided 

high quality results. Neither increasing the field of view to 512 x 512 nor 

increasing the mini-batch size to 128 improved model accuracy, with both 

requiring longer training times. The mini-batches were shuffled after each epoch 

to increase convergence and improve accuracy (Bengio, 2012). Automated 

early stopping was not used, however, human monitoring of validation loss 

during training showed a divergence in training versus validation accuracy after 

30 epochs; therefore, the number of training epochs was set to 30, using the 

principals described in Chapter 2, Section 2.4.6.4.  

Loss was calculated using binary cross-entropy, as used in the original U-Net 

implementation (Ronneberger et al., 2015). As the dataset contains highly 

unbalanced classes, experiments were carried out to obtain the best class 

weighting strategy for the loss function. Initially, inverse proportional weighting 

was trialled (Huang et al., 2016); however, this resulted in undue importance 

being given to minimising omission errors in the rarer classes, resulting in 

notably decreased accuracy. Halving the weight of the majority vegetation class 

provided the most balanced results and was the strategy used for the final 

trained model.  
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5.2.5 Pixel based method comparison 
To compare the results obtained from the U-Net model, benchmarking was 

carried out against several pixel-based machine learning classifiers. The first 

classifier tested is Spectral Angle Mapping (SAM), implemented in the 

Supervised Classification Plugin (SCP) (Congedo, 2016) of the opensource 

QGIS software. Processing was carried out using the 2016 training data 

following the workflows described in Congedo (2016), Boakye et al. (2019) and 

Obodai et al. (2019). Alongside the SCP workflow, another experiment was 

undertaken to determine whether stronger machine learning classifiers such as 

a Multi-Layer Perceptron (MLP) or a Random Forest (Breiman, 2001) were 

better able to model the pixelwise relationships between the spectral 

reflectances and the land cover classes.  

To test this hypothesis, MLP and Random Forest classifiers were built with the 

Scikit-learn libraries in Python (Pedregosa et al., 2011). The MLP used is a 

simple shallow model with two fully connected hidden layers of 10 and 5 nodes 

respectively, ReLU activations, an adaptive learning rate and Adam solver. For 

the Random Forest classifier, 100 trees were used for the model. For both 

these models, class rebalancing was carried out to reduce the vegetation class 

to five times the mining class. A hyperparameter search was undertaken using 

4 fold cross-validation on the training data; however, negligible differences were 

observed. Processing involved unrolling each image into a single n x m vector 

for input to the classifiers, where: n = image width x image height, m = 10. Post-

classification, the prediction masks were reshaped back to the original image 

dimensions to assess their accuracy against the human generated masks.  

5.2.6 Post processing 
Following the CNN model prediction stage, a result stacking strategy was 

developed to combine predictions across temporal periods. Ensemble methods 

such as stacking have been shown to improve the performance of most 

machine learning classifiers with the greatest gains inversely proportional to 

model correlation (Dietterich, 2000). Prediction stacking was also necessary for 

this application in order to mosaic together multiple partially cloud-occluded 

prediction maps. The U-Net model was modified to output both the 

classifications from the final layer and the per class prediction probabilities from 
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the softmax layer. In Figure 5-5, (a) shows the Sentinel-2 RGB data as a 

reference, (b) the single predicted class labels, (c) the model’s confidence in its 

predictions and (d) the prediction probabilities for every class mapped to the 

RGB colour channels. As there are only three land cover classes for this 

application, added value was gained by mapping the per class probabilities to 

each of the colour channels, allowing intuitive visual interrogation of the model’s 

predictions.  This probability visualisation map goes some way towards 

addressing a criticism often levelled at deep learning models that they are a 

‘black box’ solution that does not reveal the processes which led to the results.  

The probability mapping provides insights into how the model thinks and why it 

makes mistakes.  Muddied colours represent areas of confusion, where the 

model has predicted similar probabilities for multiple classes, as seen in Figure 

5-5 (d). 

 
Figure 5-5: Model outputs showing a) the Sentinel-2 RGB data as a reference, b) the single predicted 
class labels, c) the model’s confidence in its predictions and d) the prediction probabilities for every class 
mapped to the RGB colour channels. 

Whilst the simplest model ensemble would combine the final classified images 

for each temporal period, utilising the full prediction probability images allows 

greater weight to be given to the more confident predictions. The models were 

combined as shown in Equations 5-1 to 5-2. For a dataset of l number of 

images, each with 3 probability classes mapped to the channels r, g, b and 

pixels i, j as follows: 
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Where valid(i,j) = number of valid pixels at location (i, j) across dataset l. 

The final pixel class is determined by averaging the probabilities from each 

prediction image per class over every pixel, then taking the class with the 

highest mean probability score. Null values from occluded pixels did not 

contribute to the averages. This method rewards predictions with high 

confidence and minimises the contribution of pixels with high confusion. It is 

particularly effective at removing noise around the boundaries of clouds, as the 

confused pixel is only present in one of the temporal period images. After this 

temporal ensembling, the image tiles are geographically mosaiced using the 

maximum class value in overlap areas to prioritise vegetation and minimise 

clouds. The final model outputs are four images of predicted class probabilities 

over the entire study area, corresponding to each dry season of the study 

period (winter 2015/16 – winter 2018/19). 

5.2.7 ASM monitoring 
From the prediction maps, several datasets were generated to further the 

geospatial understanding of ASM patterns in Ghana. Firstly, yearly change 

maps are generated by subtracting the overall prediction maps using a simple 

integer change mapping schema, detailed in Appendix C-3.  Secondly, to 

visualise the mining related changes across the entire study area, a kernel 

density heatmap was generated showing the density of new ASM pixels 

(100m2) per square kilometre for each year. Lastly, to study how illegal mining 

is encroaching on Ghana’s forest reserves, the total number of new mining 

pixels detected inside or adjacent to protected forests over the course of the 

study was calculated. The geospatial data for the forest reserve boundaries was 

sourced from the Ghana Open Data Initiative portal (Forestry Commission, 

2010). 

5.2.8 Model evaluation  
Accuracy assessment techniques from both the computer vision and remote 

sensing communities were used to evaluate the model. Pixel masks commonly 
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used in computer vision applications were used in the first two assessments. 

These assessments compared the raw prediction masks output by the model to 

a manually digitised reference mask. The first assessment used tiles extracted 

from the same larger 2016 Sentinel-2 granule used for model training, as the 

SCP classification methodology is not designed to generalise to different 

satellite images acquired on different days due to the changes in radiometric 

values (Congedo, 2016). Validation Tile A was used by all classifiers for model 

tuning, Test Tiles B-D are fully unseen. All classifiers in the first test were 

trained on only the 2016 training dataset. For the second assessment, three 

further test tiles from within the Ghanaian case study area but acquired in 

different years were used, along with two international test tiles chosen to 

investigate the model’s global applicability to other spectrally similar ASM sites. 

The classifiers used in the second assessment were trained on both the 2016 

and 2019 training datasets.  

The metrics used for evaluating these assessments are mean class accuracy, 

mine class accuracy, mean class Intersection Over Union (IoU) and mine class 

IoU. These metrics are derived from the relationships between True Positives 

(correctly detected pixels, TP), False Positives (incorrectly detected pixels, FP) 

and False Negatives (undetected pixels, FN). Mean class accuracy is defined 

as the mean of the per class accuracy, where the per class accuracy is the 

number of true positives per class divided by the total number of pixels per 

class (Equations 5-4 and 5-5).  

 

Mean class accuracy, though intuitive, can create misleading results, especially 

in the presence of many false positives. The IoU score is a robust and 

commonly used metric for semantic segmentation problems as it provides a 

statistical accuracy metric which penalises both false positives and false 

negatives. Each class IoU is calculated as the number of true positives divided 

by the number of true positives, false positives, and false negatives, shown in 

Equation 5-6. The mean class IoU is the average of the IoU scores for each 

class. 
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These pixel level assessments are standard in computer science image 

segmentation problems and provide a challenging test of the model’s abilities. 

However, they are not directly comparable to the point based stratified random 

sampling accuracy assessments described in Olofsson et al. (2014) and used in 

related remote sensing works such as Snapir et al. (2017), Obodai et al. (2019) 

and Espejo et al. (2018). In order to more closely compare our CNN method to 

prior work, a third assessment, based on stratified random sampling, was 

carried out over the entire study area for each year using the post processed 

prediction maps. The sample points were chosen according to Equation 5-7 

(Cochran, 1977) described in Olofsson et al. (2014):  

 
where N = total number of pixels, S(O) is the standard error of desired accuracy 

estimate, Wi is the proportional area of each class and Si is the standard 

deviation of each class, calculated from the user’s accuracy Ui as Ui as 𝑆𝑆𝑖𝑖 =

 �𝑈𝑈𝑖𝑖(1 − 𝑈𝑈𝑖𝑖). Using the formula from Equation (5-7) and a desired standard 

error of 0.01 gives a suggested value of 509 sample points. For point class 

allocation, the points were divided into 50% for the largest class and 25% each 

for the smaller classes, giving totals of 254, 127 and 127. These numbers were 

increased to 300, 150 and 150 to allow for loss due to falling within masked 

areas and pixels which were unidentifiable to a human from the available 

Sentinel-2 data. All 600 points were manually compared against the 

corresponding year’s Sentinel-2 RGB images for every temporal epoch of the 

study. Higher resolution data was consulted when available for the precise 

temporal period. The metrics used to report the results from this accuracy 

assessment are overall accuracy, class accuracy, commission errors and 

omission errors.  

5.3 Results 
5.3.1 Accuracy assessments 
The first assessment compares the results from the initial CNN model against 

three other machine learning classification methods. The test tiles for this 
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assessment are radiometrically similar to the training data as they are extracted 

from the same larger Sentinel-2 granule. The results from this assessment are 

shown in Table 5-1. The second assessment evaluates the model’s 

generalisation ability against radiometrically unseen test data from both within 

the study area and from ASM operations in Suriname and Indonesia. The 

results from the second assessment are shown in Table 5-2 and Figure 5-6. 

The SAM classifier was not included in the second assessment as the SCP 

workflow is not designed for processing radiometrically unseen granules.  

Table 5-1: Results from the first assessment. This assessment evaluated the results from each classifier on 
the radiometrically similar test tiles. Full explanation of accuracy metrics is provided in Section 5.2.8. 

  Mean Class 
Accuracy 

Mine Class 
Accuracy 

Mean          
IoU 

Mine Class 
IoU 

Spectral Angle Mapping     
Validation Tile A  0.71 0.82 0.65 0.73 
Test Tile B 0.67 0.75 0.62 0.68 
Test Tile C 0.69 0.73 0.63 0.64 
Test Tile D 0.75 0.75 0.66 0.56 
Average 0.72 0.79 0.65 0.68 
Random Forest     
Validation Tile A 0.87 0.90 0.67 0.63 
Test Tile B 0.85 0.93 0.81 0.86 
Test Tile C 0.85 0.90 0.73 0.73 
Test Tile D 0.88 0.85 0.75 0.63 
Average 0.86 0.90 0.74 0.71 
Multi-Layer Perceptron     
Validation Tile A 0.86 0.89 0.67 0.64 
Test Tile B 0.84 0.93 0.80 0.87 
Test Tile C 0.86 0.90 0.75 0.75 
Test Tile D 0.88 0.85 0.76 0.67 
Average 0.86 0.89 0.75 0.73 
Convolutional Neural 
Network 

    

Validation Tile A 0.92 0.93 0.88 0.89 
Test Tile B 0.93 0.95 0.89 0.90 
Test Tile C 0.92 0.95 0.86 0.88 
Test Tile D 0.94 0.91 0.83 0.78 
Average 0.93 0.94 0.87 0.86 
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Table 5-2: Results from the second assessment. This assessment evaluated the results from each classifier 
on the radiometrically unseen test tiles. All test tiles are from the different granules than those used for 
training. Full explanation of accuracy metrics is provided in Section 2.8. 

  Mean Class 
Accuracy 

Mine Class 
Accuracy 

Mean          
IoU 

Mine Class 
IoU 

Random Forest     
Eastern                       2017/03/28    0.72 0.97 0.49 0.31 
Kumasi                      2017/01/27    0.82 0.79 0.75 0.73 
Obuasi  2019/01/22    0.70 0.70 0.60 0.65 
Ghana Average 0.75 0.82 0.61 0.56 
Surinam 2019/12/01    0.65 0.53 0.52 0.50 
Indonesia 2019/09/04    0.65 0.58 0.49 0.53 
Multi-Layer Perceptron     
Eastern                       2017/03/28    0.78 0.96 0.56 0.36 
Kumasi                      2017/01/27    0.83 0.80 0.76 0.75 
Obuasi  2019/01/22    0.78 0.96 0.58 0.61 
Ghana Average 0.80 0.91 0.63 0.57 
Surinam 2019/12/01    0.67 0.55 0.53 0.51 
Indonesia 2019/09/04    0.66 0.43 0.44 0.40 
Convolutional Neural 
Network 

    

Eastern                       2017/03/28    0.92 0.96 0.86 0.83 
Kumasi                      2017/01/27    0.94 0.97 0.83 0.78 
Obuasi  2019/01/22    0.87 0.96 0.79 0.84 
Ghana Average 0.91 0.96 0.83 0.82 
Surinam 2019/12/01    0.73 0.83 0.61 0.71 
Indonesia 2019/09/04    0.84 0.82 0.57 0.70 
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Figure 5-6: Qualitative view of the results from assessment two. Reference information for all five unseen 
test tiles is displayed alongside the corresponding prediction masks from the various machine learning 
classifiers.   

The first two accuracy assessments (Table 5-1 and Table 5-2) were carried out 

using the raw prediction results from the CNN model on small individual test 

tiles, allowing the prediction results to be compared to the labels generated by 

an operator from a single Sentinel-2 reference image for every pixel. To 

evaluate the performance over the entire nationwide study area for each 

temporal period, a third accuracy assessment was carried out, this time based 

on point based random sampling. This assessment used the post processed 

class prediction maps, as described in Section 5.2.8. The results assessment 

three are given in Table 5-3. The class accuracies obtained here are higher 

than the class accuracies from the pixelwise assessments, due to both the 

probability voting at the ensembling stage and the lower chances of the 

randomly sampled points coinciding with confusion areas along class 

boundaries.  
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Table 5-3: Confusion matrices and accuracy metrics for the results from the point based stratified random 
sampling assessment. The metrics used are class accuracy, overall accuracy, omission error and 
commission error. 

Winter 2015-16  
Predicted Class 

Accuracy 
Omission 
Error 

Commission 
Error Mines Built Vegetation 

Tr
ue

 Mines 117 1 0 0.99 1% 6% 
Built 2 126 1 0.98 2% 13% 
Veg 5 18 299 0.93 7% 0% 

     Overall Accuracy 0.95 

Winter 2016-17 Predicted Class 
Accuracy 

Omission 
Error 

Commission 
Error Mines Built Vegetation 

Tr
ue

 Mines 107 0 2 0.98 2% 4% 
Built 4 119 5 0.93 7% 3% 
Veg 0 4 327 0.99 1% 2% 

     Overall Accuracy 0.97 

Winter 2017-18 Predicted Class 
Accuracy 

Omission 
Error 

Commission 
Error Mines Built Vegetation 

Tr
ue

 Mines 101 2 4 0.94 6% 0% 
Built 0 125 3 0.98 2% 5% 
Veg 0 4 331 0.99 1% 2% 

     Overall Accuracy 0.98 

Winter 2018-19 Predicted Class 
Accuracy 

Omission 
Error 

Commission 
Error Mines Built Vegetation 

Tr
ue

 Mines 107 0 0 1.00 0% 2% 
Built 1 122 7 0.94 6% 2% 
Veg 1 3 329 0.99 1% 2% 

     Overall Accuracy 0.98 
 

5.3.2 Applied results 
The results obtained in Section 5.3.1 demonstrate that the CNN model is 

reliably able to locate ASM activity from the Sentinel-2 data to a very high 

degree of accuracy. Using the full classified area prediction maps and change 

maps as described in Section 5.2.7, the extents and changes in ASM activities 

are mapped over time. Figure 5-7 shows the overall land use classes across the 

whole study area at the start of the study period in winter 2015-16, with insets 

from the district of Wassa Amenfi East, one of the districts of highest ASM 

concentrations. The insets show the changes during 2016 alongside the 

baseline values. The largest scale inset clearly shows the increase in ASM 

activities both from expansion of existing operations and creation of new ones. 

Built areas have also increased around the mines, likely due to workforce 

migration. Figure 5-8 plots the changes in land use categories over the four 

years of the study. Mining areas increased in 2016 and 2018 but decreased in 

2017, built areas increased except in 2016, and vegetation declined steadily 

each year. 
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Figure 5-7: Prediction map results displayed for the first year of the study period. The main image shows 
the full study area at the end of the first temporal period. The upper sub-image shows the district of Wassa 
Amenfi East with both the winter 2015-16 baseline data and the 2016 changes. The lower sub-image 
displays a close-up of some of the changes within Wassa Amenfi East detected during 2016. 

 

Figure 5-8: Total land cover changes per class observed over the entire study area. Y-axis scale is 
constant between sub-graphs. 
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To examine the changes in ASM activity in more detail, the total mined area and 

the yearly mined area changes were computed for ten districts in the Western 

region. These districts were chosen as they correspond with those studied by 

Owusu-Nimo et al. (2018), allowing our results to be viewed within the context 

of their work. The total mined areas and the changes in mined areas are plotted 

in Figure 5-9, showing a substantial increase in mining in 2016, followed by a 

decrease across most areas in 2017, followed by a final smaller increase in 

2018.  

 

Figure 5-9: Cumulative mined area changes a) and yearly mined area changes b) measured across ten 
Western districts. 

The kernel density heatmap, shown in Figure 5-10, allows observation of the 

distribution of new ASM pixels each year. It can be seen that in 2016 the 

greatest focus was in the Western Region, with other hotspots around Accra, 

due to sand mining and stone quarrying. In 2017 there is an overall decrease, 

alongside a general migration north-eastward into the Ashanti Region from the 

Western Region. There was also an increase in the northern Dormaa districts of 
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Brong Ahafo. In 2018 the intensity resumes in the Western district though at a 

lower level than seen in 2016. Figure 5-11 indicates the effect that ASM is 

having on Ghana’s protected forests. This shows the locations of all the forest 

reserves within the study area. The different colours refer to the hectares of new 

mining detected within their borders from 2015-2019. The inset shows the 

yearly mining expansion in the most affected reserve of Upper Wassaw. 
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Figure 5-10: Kernel density heatmap showing the concentrations of new ASM activity over the study area 
over the four years.  
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Figure 5-11: Maps showing the hectares of mining within Ghana’s national protected forests. The inset 
shows expansion within the Upper Wassaw reserve. Forest reserve boundaries from Forestry Commission 
(2010), background GMTED2010 from U.S. Geological Survey. 

 

5.4 Discussion 
The results from the series of accuracy assessments demonstrate that using a 

CNN is a highly effective method for detecting ASM and its related 

deforestation. The CNN model substantially outperforms the other machine 

learning classifiers when both false negative and false positives are considered 

(Table 5-1 and Table 5-2) and does not suffer from the pixel level noise 

associated with the other methods (Figure 5-6). The CNN is particularly strong 

at generalisation; the mean IoU score of the CNN changes from 0.87 for the 

radiometrically similar data to 0.83 for the radiometrically unseen data. In 

comparison, the mean IoU drops from 0.75 to 0.63 for the MLP and 0.74 to 0.61 

for the Random Forest when moving to the unseen granules. It is likely that the 

greater generalisation ability observed from the CNN is due to its knowledge of 

pixel context; even under differing radiometric conditions the patterns between 

the spectral signatures of adjacent pixels can be recognised. The results from 

the two global test tiles show promise for generalising to alluvial ASM sites 

globally, despite different vegetation types and mining styles. This indicates that 

the model could be applied successfully in other countries with the addition of 

appropriate local training data.  
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The stratified random sampling assessment (Table 5-3) confirms the high 

accuracy of the classification maps, with omission and commission errors 

consistently below 8% except for a solitary instance. These errors are lower 

than others previously reported in the literature. It is suspected that the single 

high commission error of 13% for the built class in 2015-16 is due to the El Nino 

related drought in the furthest north region of the study area during that year 

(Owusu et al., 2019). This resulted in image granules with areas of drought 

affected fields, which the model was not exposed to during training. These were 

misclassified as built areas due to their similarity to dirt roads and bare earth 

around dwellings. If those northern points are removed, the commission error 

drops to 5%, in line with the other results.  

During this assessment it was found that the model predicted some sand mining 

and quarrying as the mining class, despite not being exposed to these land use 

classes in training. Only one sampling point from the assessment fell within this 

confusion area; for clarity, this point was removed from the error matrix table as 

it is not obvious whether it should be considered a correct or incorrect class for 

this point. Another anomaly detected from visual inspection of the prediction 

maps is that polluted rivers with a high sediment load are classified as mines; 

this is due to having only three possible land use classes in the model. Under 

this categorisation scheme, polluted rivers most closely resemble alluvial mines 

and are therefore categorised as such. Whilst the sand mining, drought and the 

waterway anomalies can be considered errors, they also show that the model is 

successfully learning from what it has been taught: both land cover types have 

been assigned to the most similar class based on the extent of the model’s prior 

knowledge. Future studies could incorporate these rarer classes into the 

training data to avoid such anomalies; however, machine learning algorithms 

will always be susceptible to new classes that arise after training has been 

carried out. 

The distribution and magnitude of ASM activities observed across the selected 

Western districts (Figure 5-9) broadly follow those observed during site visits by 

Owusu-Nimo et al. (2018). The districts of greatest activity are primarily in 

agreement, with the only substantial difference found in the district of Tarkwa 

Nsuaem. This is likely due to both the large number of underground illegal 

mining operations in this district that are not visible to satellite monitoring 
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systems and also because a large portion of the illegal mining observed by 

Owusu-Nimo et al. (2018) was within or adjacent to Tarkwa Gold Fields large 

scale mine which has been masked from this study’s results. This agreement 

between the results from the CNN model and the results from a fieldwork-based 

study are another indicator that the model is capable of correctly detecting 

ASM. 

The trends observed over the entire study area (Figure 5-8) and the selected 

Western districts (Figure 5-9) show that whilst mining is increasing overall there 

was a marked decrease in 2017. This corresponds to the launch of the 

government’s Operation Vanguard (See Section 5.1). This decrease can also 

be seen in Figure 5-10, where the greatest hotspots from the Tarkwa area in 

2016 show significant dispersal by 2017. The Upper Pra and Birim Rivers also 

show minimal new ASM activity in 2017, though the Dormaa area in Brong 

Ahafo Region shows an increase, possibly due to migration of miners from 

areas of higher enforcement elsewhere. From analysis of the intersection of 

illegal mining activities and Ghana’s protected forest reserves (Figure 5-11) it is 

clear that significant areas of natural rainforest are either at risk from mining or 

have already been destroyed. In total, over 3,500 hectares of forest preserve 

had been deforested by mining in the final land cover map from winter 2018-19. 

Upper Wassaw is the most affected reserve, with 1,300 hectares of mining 

deforestation; this is more than 11% of its total area.  

The applied results from Section 3.2 give a snapshot of the potential 

applications for which stakeholders could use this model. These datasets also 

could be used for other applications such as improving the formalisation 

pathways for small-scale miners, a vital part of improving ASM management as 

described in Bansah et al. (2018). They also could be used to verify licenses 

when combined with a layer detailing the locations of licensed small-scale 

mines. Additionally, the prediction maps could be used to measure progress 

towards sustainable development targets such as the Reducing Emissions from 

Deforestation and Degradation target (REDD+). These potential benefits to the 

formalisation process are amplified by significant savings in terms of capital and 

workforce resources.  
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Moving from research to implementation, it is envisioned that the method 

described here could be re-coded with fully open-source libraries and a user 

interface to create a software package accessible to GIS professionals 

worldwide. Generating training and validation patches is straightforward and 

can be carried out locally by a GIS technician. The workflow is heavily front-

loaded in terms of human and computing resources. The initial model training 

requires deep learning knowledge and a high-powered computer; however, 

after this stage the processing of large area prediction maps can be 

accomplished in a single step by a local GIS technician using a standard 

workstation. A relatively small manually digitised training area of 140,000 

hectares can be used to create a model capable of making predictions on a 

national scale, provided the essential spectral morphologies remain consistent. 

Most importantly, the resulting model is capable of making generalised 

predictions on any past or future image from the same sensor, eliminating the 

need to retrain the classifier for new images, a major time cost for traditional 

methods. Furthermore, as it uses open source satellite data, there is zero data 

purchasing cost, making it an attractive alternative to drone-based methods, 

particularly in its ability to cover very large areas.  

5.5 Summary 
This study explored the recommendations from Espejo et al. (2018) that higher 

resolution imagery and artificial intelligence-based methods would be the key to 

reducing misclassifications and improving the accuracy of automated methods 

of ASM detection. Utilising powerful deep convolutional neural networks and 

high-resolution Sentinel-2 data it was possible to robustly learn the spatial and 

spectral characteristics of alluvial small-scale mining. This research developed 

the first published multispectral CNN model for this task. It is highly capable of 

detecting both mined and built areas from Sentinel-2 open source multispectral 

satellite imagery, alongside clearly distinguishing between the two categories, a 

task that has proved problematic in the past (Snapir et al., 2017).  

The CNN model has been subjected to a series of accuracy assessments to 

evaluate its abilities. The performance of the model is state of the art, 

surpassing previously published accuracy figures. The model is able to 

generalise well, with minimal accuracy loss observed between seen and unseen 



185 
 

radiometric data. The future incorporation of additional training data from 

varying climates and land use classes could be used to further extend its 

generalisation abilities. The model is robust to radiometric noise and accurately 

follows the boundaries of the mined areas, whilst also reducing the issues 

arising from extensive cloud cover. The processing pipeline developed here 

rapidly evaluated an area of over 6 million hectares, proving that this 

methodology can be scaled up to national level for countries to remotely map 

and monitor small-scale mining.  

The datasets produced in this study show how using CNN satellite-based 

monitoring could provide governments with rapid and detailed knowledge of 

small-scale mining changes within their jurisdictions. The temporal resolution 

achievable is dependent on cloud cover, with near real-time weekly updates 

possible during the dry season. Improved understanding of the spatiotemporal 

patterns of small-scale mining could be used to track the effectiveness of a 

range of mitigation strategies employed across different districts. In the 

Ghanaian study area, these results show a clear link between the establishment 

of the anti-illegal mining taskforce Operation Vanguard and a decrease in 

mining activities in 2017. The datasets also enable monitoring of mining-related 

deforestation within Ghana’s protected forests, allowing stakeholders to identify 

the reserves most at risk and to prioritise conservation. As well as acting as a 

deterrent for illegal mining, the methodology also has potential benefits in 

supporting environmentally sound small-scale mining, by identifying sites with 

good practices and earmarking them for support. Overall, the methodology has 

been shown to provide accessible, accurate and inexpensive data on ASM 

regionally, which can be used to create more sustainable mining practices. 
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 Discussion and integration 
This chapter brings together the knowledge gained from the three case studies 

into an overall implementation framework of recommendations for applying 

neural network based object detection techniques to mining sector remote 

sensing data, illustrated in Figure 6-1. The framework is made up of three parts: 

identifying promising applications, developing deep learning models and 

practical aspects of applying these models to real mining sector problems. After 

examining the framework, this chapter discusses the scope of this research and 

situates it within the larger scientific area of remote sensing and artificial 

intelligence. It then looks to the future, economically and scientifically, 

concluding with recommendations for further research.  

Although each Chapter provides a tangible and effective neural network based 

model for specific cases, the primary aim of this research is to provide a 

structure to guide further researchers, both academic and industrial in their 

application of these emerging algorithms for their own challenges. By choosing 

to focus on three very different examples, this thesis investigates both the 

similarities and differences found when applying these approaches to different 

data structures, scales, tasks and end users. 
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Figure 6-1: Implementation framework key stages. 
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6.1 Identifying applications 
The first section of the framework addresses how to identify specific mining 

sector challenges for which neural network based object detection may be able 

to provide effective solutions. These algorithms are a tool, and like all tools they 

are not the solution to every problem. The early key to successful projects is 

identifying the types of problems which can most likely benefit from these tools, 

and conversely, the types of problems which are better suited to other 

approaches or are not yet solvable with current technologies (Goodfellow et al., 

2016). A final consideration at this stage is that this field is moving extremely 

quickly. In some cases, tasks which the framework indicates cannot be 

effectively solved today may be achievable in the near future. Therefore, it is 

advisable to record the conditions which make a task impractical and return to 

the task if these conditions change. 

6.1.1 Machine learning type 
As discussed in Chapter 2, neural network based object detectors are only one 

branch of a large family of machine learning and deep learning techniques. 

Figure 6-2 proposes a flowchart for guiding algorithm choice, this chart is not 

intended to be exhaustive or concrete; rather it provides an indicator of how the 

areas of machine learning and deep learning explored in this research are 

situated within the wider field. The family of algorithms explored in this research 

(MLPs and CNNs) are underlined in bold. For simplicity, in this chapter the term 

‘object detection’ is used collectively to refer to the image processing tasks of 

detection, classification and segmentation; for the full task definitions see 

Section 2.4.4. 
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Figure 6-2: Broad overview of machine learning algorithm types. All research carried out in this thesis is 
situated within the orange ‘Classification’ box and are shown in underlined bold type. Grey boxes indicate 
algorithms that are not fully attributable to either category. 

Within the broad area of machine learning classification, there is a further 

consideration as to whether traditional machine learning or deep learning is the 

most appropriate technique. In general, deep learning has stronger 

generalisation abilities for more complex problems; however, deep learning 

algorithms require larger amounts of training data and computing power, 

making them unsuitable for certain applications such as low power real time 

learning. Additionally, deep learning algorithms are not yet mature for 

specialised data types such as 3D point clouds, as discussed in section 2.4.5. 

Figure 6-3 provides an indicator of how the task characteristics can influence 

this choice. In this thesis, the applications developed in Chapters 4 and 5 use 

CNN deep learning algorithms. The application in Chapter 3 uses a neural 

network with handcrafted features; this architecture can be considered halfway 

between traditional machine learning and deep learning, as it contains the 

multiple hidden layers found in deep learning models but does not perform full 

end to end feature detection and classification. Collectively, the algorithms used 

in this thesis are henceforth referred to as neural network approaches. 
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Figure 6-3: Task characteristics and their applicability for either traditional machine learning or deep 
learning. 

6.1.2 Task type 
Primarily, this research identified that ‘needle in a haystack’ type object 

detection tasks are well suited to a neural network approach. To extrapolate the 

metaphor, for a human to find a needle in a haystack is a proverbially 

impossible task. However, for a human to find a needle in 10 stalks of hay is not 

particularly difficult; the challenge of the task lies in the enormity of it. At their 

current stage of development, many of these algorithms are not superior to 

humans at a given task when faced with real world imperfect data; their strength 

lies in their processing speed and that they never lose their attention span. 

Therefore, tasks which were hitherto impossible due to their scale are 

particularly promising for neural network solutions.  

Additionally, applications will have higher added value if the object to be located 

is not recorded on any existing mapping. In these situations, creating an initial 

fully human annotated database would be exorbitantly time intensive, thus 

negating any possible cost benefit from the further analysis of the data. Such is 

the case for all three applications developed in this thesis; whilst there is clear 

demonstrable value in recording the locations of underground rock bolts, 

historic mining workings and artisanal gold mines, the scale of these tasks and 

the lack of existing records made them impractical at sitewide, regional or 

national scales respectively, unless addressed with automated tools.  
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In general, when determining the suitability of these approaches for any given 

task, if the problem to be solved involves finding a large number of individually 

identifiable discrete objects in a very large dataset, then neural networks are 

expected to be an appropriate tool. For example, in addition to the three 

applications explored in this thesis, other likely successful applications would 

include locating roadway potholes, deforestation, traffic cones, coal stockpiles 

or tailings dams. Identifying tasks which can be readily automated is the first 

step towards designing effective neural network solutions. 

6.1.3 Training data availability 
If the task appears to be a good fit for automated detection, the next step is to 

examine in more detail the availability of the datasets required to train the 

model. The primary limitation for these types of algorithms is training dataset 

size. Complex supervised machine learning algorithms need a very large 

amount of training data in order to learn how to model the correct answers from 

the input data provided. In the case of deep learning methods such as CNNs, 

more complex tasks can be solved by deeper architectures, which in turn 

require larger amounts of training data (Szegedy et al., 2015). 

In the case of mining sector problems, often no pre-existing training dataset 

exists; in these cases, the training data must be labelled manually or adapted 

from additional sources such as geological maps. The volume of training data 

required for a successful application depends on the complexity of the model 

architecture and whether a transfer learning strategy is applied. If a similar 

problem can be identified from another domain, transfer learning can be used to 

reduce the amount of new training data needed (Zhuang et al., 2021). However, 

transfer learning can be unsuccessful if a sufficiently similar previously 

published algorithm is not found (Zhuang et al., 2021). In this case, the full 

model must be initialised and trained from random weights, requiring more 

training data and training time to converge successfully.  

If it is not possible to generate the required quantities of training data by human 

annotation, semi-supervised deep learning methods can be employed. 

However, these can be more complex to train due to issues such as 

confirmation bias arising from the semi-supervised pseudo-labelling (Arazo et 

al., 2020). Other techniques use deep Generative Adversarial Networks (GANs) 
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to teach an algorithm how to approximate its own labelled examples (Kumar et 

al., 2017), however, these techniques are still emerging and were shown to not 

yet outperform transfer learning methods by Majurski et al. (2019). Due to the 

large training data requirements of deep learning models, traditional machine 

learning algorithms such as support vector machines, random forests and 

shallow fully connected neural networks are likely to be a better choice for 

applications where it is not possible to obtain large numbers of training 

examples (Liu et al., 2017). 

The research carried out in Chapters 4 and 5 allows a comparison to be drawn 

between the amount of training data required for successful implementation for 

both random initialisation and transfer learning strategies, due to the similar U-

Net architectures used in both chapters. It was found that successful results 

when creating an entirely new model could be obtained with 16,000 unique 

training examples, increased with augmentation to 480,000 examples (Section 

5.2.2). In comparison, when fine tuning a similar model using transfer learning, 

successful results were obtained with 520 training examples, increased with 

augmentation to 2,080 examples (Section 4.4.4).  

These results showcase the advantages of transfer learning and indicate how it 

can reduce the demand on human resources caused by training dataset 

generation. To aid in identifying potential transfer learning models, it is 

beneficial to think of the required task not by its specifics but by its data 

characteristics. This strategy led to the identification of the successful Lunar 

LiDAR model in Chapter 4. In this case, whilst the specific applications and 

even scientific fields were very different, the input data structure and the 

geometric characteristics of the objects to be detected were very similar.  

6.1.4 Dataset considerations 
The structure of the remote sensing data also plays an important part in 

identifying the machine learning strategy required and the type of algorithm to 

use. The vast majority of existing image processing deep learning research has 

been carried out on standard colour photographs (Tajbakhsh et al., 2020). All 

data types studied in this research differed from this data type to some degree; 

however, the most significant difference is in whether or not the data is in a 2D 

gridded format.  Data in this format can be easily read by standard CNN 



193 
 

architectures, which are designed for image processing and are capable of 

successfully solving complex problems in this domain (Hoeser and Kuenzer, 

2020). Some adaptations are needed for the remote sensing data types used in 

this research, detailed in Chapter 4 for single channel LiDAR and Chapter 5 for 

multichannel satellite imagery; however, the essential mathematics of the 

algorithms remain unchanged. Conversely, 3D point clouds are unstructured 3D 

data and cannot be used with traditional CNN algorithms. Modern deep learning 

solutions are emerging for this data type (Bello et al., 2020) and are expected to 

mature in the next few years; however, until this comes to pass handcrafted 

feature selection methods combined with fully connected neural networks are 

an effective choice, as described in Xie et al. (2020) and demonstrated in 

Chapter 3 of this thesis. 

Another consideration is the appropriateness of the dataset to the task. Most 

importantly, the sensor must be capable of acquiring data at a high enough 

resolution to clearly identify the object of interest and also to differentiate it from 

the background data. This thesis developed applications for data at 1cm 

(Chapter 3), 50cm (Chapter 4) and 10m (Chapter 5) spatial resolutions, each 

appropriate to the particular case studies’ application. Chapter 4 also examined 

25cm and 1m data, finding that while increasing the resolution produced 

improved results using the 50cm trained algorithm, decreasing the resolution 

caused the algorithm’s accuracy to degrade considerably. Additionally, the 

sensor and data type should be appropriate to the type of object to be detected, 

for example multispectral imagery for vegetation health and LiDAR for 

topographic variations. The multichannel U-Net architecture developed in 

Chapter 5 could be used with fused multisource data such as LiDAR and aerial 

imagery, however, consideration must be given to the balance between 

increasing model complexity and increasing discrimination capabilities. For 

example, in Chapter 4, the mining remains to be detected are not significantly 

visible in colour aerial imagery; therefore, adding three more channels to the 

input data would add considerably to the model complexity while contributing 

little to the detection challenge.  

Alongside data resolution and applicability of data type, another factor in 

successful automated detection tasks is data quality. CNN architectures are 

capable of performing well on noisy datasets (Borodinov et al., 2019; Howarth 
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et al., 2019); however, transfer learning from a low noise initial training dataset 

to a noisy fine tuning dataset can considerably degrade accuracy (Rodner et al., 

2016). To mitigate against this, noise can be added to the training dataset in a 

similar way to the pre-training augmentations described in Section 2.4.6.2. 

Deep learning techniques are also a powerful method for denoising data (Jain 

and Seung, 2008); for very noisy applications, a multi stage deep learning 

pipeline could be explored with an initial denoising CNN followed by an object 

detection CNN. 

6.2 Developing workflows 
This section of the framework is concerned with how to build effective machine 

learning models for mining related remote sensing data. The type of model to 

be built depends on the data and problem type identified by the first stage of the 

framework, and also depends on whether or not a suitable transfer learning 

dataset can be found.  

6.2.1 Programming language 
For building a model, there exists a large choice of language libraries capable of 

implementing neural network based machine learning algorithms. The choice 

will depend on the user’s own fluency, the type of problem to be solved and 

whether a suitable transfer learning model exists. If transfer learning is to be 

applied it is generally recommended to use the same language and libraries 

that were used to build the original model. If the model is being generated from 

initialisation, popular libraries would be Python (with Scikit-learn, TensorFlow or 

Keras libraries) or Matlab with the Deep Learning Toolbox. For a full overview 

and comparison of current deep learning libraries and languages see Table 2-1 

in Section 2.4.6.7. 

The conclusions and recommendations from this research in respect to 

implementation libraries are as follows. For the traditional feature-based 

machine learning such as random forests and fully connected neural networks 

used in Chapter 3, Scikit-learn with Python is a robust, easy to use library with 

well documented examples and a mature codebase. The modular design allows 

pipelines to be built with interchangeable components, enabling very flexible 

workflows to be developed. However, Scikit-learn is not designed for deep 

learning beyond fully connected multi-layer perceptrons.  
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For modern deep learning, Python with TensorFlow and/or Keras provides 

some of the most powerful modern deep learning tools for building applications. 

It is highly customisable, fully open source and is the implementation of choice 

for the majority of published deep learning research, particularly in the computer 

science domain (Chollet, 2017). As an alternative to Python, MATLAB’s deep 

learning toolboxes have been expanded rapidly over the last three years and 

offer a solid platform for research scale deep learning projects. MATLAB’s built-

in data handling functions simplify training data organisation, augmentation and 

input, allowing for rapid prototyping.  

6.2.2 Model architecture and strategy 
For development strategy, if a suitable transfer learning model can be found, it 

is recommended to use it as a starting point, both to save time spent generating 

training data and also to begin from an architecture which has been proven to 

work well on a similar problem. If no transfer learning model can be found, the 

choice of architecture is determined by the data structure, training dataset size, 

task complexity and final output required. A common theme regardless of the 

model architecture used is the need for context to support general inference. 

Individual pixels or point cloud points are not descriptive enough to predict an 

object or category without information from their neighbouring pixels or points. 

This context is added either though the convolutional filter in the 2D CNNs in 

Chapters 4 and 5 or by using a point neighbourhood as shown in Chapter 3. 

Further information on contextual elements of model architectures is found in 

Sections 2.4.3 and 2.4.5. 

Reviewing the literature for tasks with similar characteristics can provide a good 

starting point for selecting an architecture. For image based segmentation tasks 

with limited training data, U-Nets have been proven to be a reliable choice both 

in Chapters 4 and 5 of this research and in other literature published during the 

research period, for applications such as detection of coal stockpiles 

(Chowdhary et al., 2019), building footprint extraction (Schuegraf and Bittner, 

2019) and retinal vessel segmentation (Wang et al., 2019). Architectures will 

continue to evolve, an adapted U-Net (U-Net++) provided excellent results in 

Peng et al. (2019) for satellite based change detection. In a current deep 

learning context U-Nets are a relatively old architecture, many newer 
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architectures now outperform them on the computer science benchmark 

datasets. However, they are still a dependable choice when the training dataset 

is small. More experimentation is needed to determine how well the very deep 

architectures used extensively in the computer science community perform 

when used with far smaller training datasets, with an excellent review of how 

computer science architectures are applied in earth observation given in Hoeser 

and Kuenzer (2020).  

6.2.3 Training data creation 
Once a strategy, software library and basic architecture have been chosen, the 

training data must be generated. The research carried out in this thesis showed 

that in all 3 cases good results could be obtained with less than 40 hours of 

human labelling time; however, the applications developed here were either 

single class or small multiclass problems with reasonably heterogeneous 

datasets. More complex or varied problems would likely require larger amounts 

of training data (Burkov, 2019). To determine if the training dataset size is 

adequate for the problem to be solved, it is necessary to first examine whether 

the test dataset performance is much lower than the training dataset 

performance. If this is the case, it can be inferred that the model has not fully 

learned the parameters of the problem from the provided training data 

(Goodfellow et al., 2016). This indicates that either the complexity of the model 

has to be decreased, or the training dataset size has to be increased. The 

choice depends on the cost and feasibility of gathering more data (Goodfellow 

et al., 2016). Additionally, if the training data instances are not varied enough 

the model will not accurately represent the problem and will fail to generalise to 

other slightly different instances (Géron, 2017). However, if the training data is 

highly varied without a sufficient number of examples for each object, the model 

will struggle to identify the essential characteristics of the object which it has 

been tasked to find and may not perform well. The training dataset should 

therefore encompass the expected variability across the scene (Géron, 2017). 

Section 3.5 discussed the significance of labelling errors in the training data in 

the context of the Cornish bolt detection dataset. At the scale required for these 

applications, incorrectly labelled training data below 10% had no appreciable 

effect on the accuracy of the model (Folleco et al., 2008; Pelletier et al., 2017). 
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In contrast, imbalanced classes did greatly affect the accuracy of the final model 

and must be addressed early in the workflow development stage. Multiple 

actions can be taken to mitigate against this. The easiest is to choose a training 

area where the rare class to be detected is abundant. Next, the training 

samples need to be rebalanced to an appropriate level for the detection task. As 

discussed in Section 3.3.2, the optimal class rebalancing strategy may not be 

50:50. Determining the best class ratio is generally achieved empirically by 

monitoring the results on the cross validation dataset as the class ratio is varied.  

Augmentation is used to increase the size of image based training datasets. 

This consists of randomly rotating, flipping and scaling the input image to 

decrease overfitting tendencies, as described in Section 2.4.6.2. Augmentation 

was used successfully in Chapters 4 and 5; however, the point cloud data from 

Chapter 3 was not augmented. This was because it is more complex to 

generate valid 3D augmented data due to the importance of real world position 

and orientation. In this case augmentation was not needed as the dataset was 

sufficiently large for the scope of the problem. 

6.2.4 Training 
Several techniques were implemented in this research which allowed the 

models to be trained successfully on standard high powered workstations 

without the need for supercomputing clusters. PC specifications and model 

characteristics are given in Table 6-1. The substantial processing speed 

improvement enabled through transfer learning can be clearly seen in the 

difference between training times for the two U-net models. 

Table 6-1: Computing specifications and selected model characteristics. 

Algorithm Chapter Transfer 
Learning RAM GPU Training time 

(approx.) 

Multi-layer perceptron 3 No 32GB NVIDIA GTX960 10016 minutes 

Single-channel U-Net 4 Yes 32GB NVIDIA GTX960 12 minutes 

Multi-channel U-Net 5 No 64GB NVIDIA Titan X 960 minutes 

 
16 Total algorithm run time. 90 minutes for feature creation, 10 minutes for training the MLP. 
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The models developed in Chapters 3 and 4 were trained on the candidate’s 

office PC. The model developed in Chapter 5 required more processing power 

as it was a full deep learning model trained from initialisation. This model was 

trained on the department’s high powered modelling workstation. The Chapter 5 

model would have trained on the smaller PC; however, training time would have 

increased from ~16hrs to ~100 hours. Mini batching with shuffling between 

epochs was used for both deep learning models (Sections 4.4.4 & 5.2.4). The 

input image size and the convolution filter size were also empirically set to 

values which would fit in memory. 

In this research, hyperparameters were set empirically, by taking literature 

values for the model in question as a starting point and then changing them one 

by one whilst observing the changes to the results on the cross validation 

dataset. Alternative methods for hyperparameter choices are outlined in Section 

2.4.6.4.  While observing the cross validation dataset, it was found that 

monitoring only the numeric results from the cross validation dataset did not 

give a full picture of how the model was training and the validity of the 

hyperparameter choices. Human qualitative interpretation of the results on the 

cross validation data was a valuable tool in understanding some of the black 

box type behaviours of the models. For this, several cross validation image tiles 

which were deemed to be ‘difficult’ were manually examined after each time the 

model was trained. This gives an insight into how hyperparameter choice 

affects the final results and what types of mistakes can be attributed to which 

incorrect setting.  

6.2.5 Assessing results 
The accuracy metric chosen also has an impact on how the model learns, how 

it is adjusted and how the results are understood. Different metrics are 

appropriate for different applications, though most are based on some 

combination of the numbers of true positives, false positives and false 

negatives. Overall accuracy is a poor metric unless the classes are well 

balanced (Chollet, 2017). Chapters 3 and 4 used the metrics precision, recall, 

and F1, while Chapter 5 used per class accuracy, intersection over union and 

omission-commission errors. Depending on the final application, different 
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metrics can be prioritised during hyperparameter tuning. Generally, there is a 

precision-recall trade-off, where improving one decreases the other.  

The same model architecture can be trained in different ways for different 

applications, as implemented in Chapter 4. The primary application to detect 

historic mining pits in Section 4.4 required a balanced precision and recall 

model, while for the geological mineralisation fitting application from Section 4.5 

it was preferable to maximise precision over recall, as for that application, noise 

was more detrimental than missed holes. The different LiDAR data 

representations gave different results with the precision and recall values and 

ratios changing depending on the visualisation type, as shown in Figure 4-21 

and Figure 4-23. Based on these results, the model trained on the raw DSM 

representation was used for the historic pit detection application as it had the 

most balanced precision and recall, while the model trained on the positive 

openness representation was used for the mineralisation line fitting application. 

Another training data strategy for improving results is to use a confusion 

dataset, as described in Section 3.5. This ensures the model can focus on its 

mistakes before encountering the final unseen test data. A confusion dataset 

can be generated by carrying out multi-fold cross-validation and saving only the 

misclassified points from each fold to a separate confusion dataset. This 

dataset can then be used as an additional training data file with either a higher 

weight or lower resampling, depending on the application’s training strategy. 

6.2.6 Power of consensus 
The last item to consider when developing workflows is whether to add an 

ensembling or clustering post processing stage. Ensembling improves the 

results and acts as a noise canceller, minimising the effects of random incorrect 

predictions. As described in Section 4.4, machine learning methods are good at 

predicting broad trends but can have errors at an individual instance level. 

Ensembling multiple predictions therefore makes the final output more robust. In 

this thesis, Chapter 4 used mean value ensembling and Chapter 5 used a novel 

ensembling technique based on prediction confidence developed in this 

research and described in Section 5.2.6.  
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Clustering works on the same principle as ensembling in that it uses the power 

of majority to remove noise and improve the confidence of predictions. 

Clustering is powerful for 3D point cloud data types as the locations of the 

predicted points in 3D space can be clustered using their real valued distances. 

In Chapter 3, DBSCAN clustering was used to separate candidate bolt points 

from general noise, allowing the data to be fed to the algorithm in its uncleaned 

state, with all confusion objects often present in an underground mine left in the 

data. This greatly increases the real world applicability of this algorithm, as it 

can work directly on the raw point cloud in an automated manner, without 

requiring human data cleansing preprocessing.  

6.3 Practical model application  
This final part of the framework is concerned with applying the models identified 

and developed in the previous sections. In the field of deep learning this stage 

is known as inference, which is where the trained model makes predictions on 

entirely new data in a real world environment. This section describes some 

universal considerations and good practice guidelines that have been observed 

during this research, regardless of the application end goal and the model 

architecture.  

6.3.1 Data management 
Both in training and inference these models rely on large datasets; therefore, 

appropriate data management strategies must be in place at all stages of a 

project (Munappy et al., 2019). For example, the Ghanaian application ingested 

168 GB of Sentinel-2 data and produced 63 GB of prediction results; if extended 

to yearly monitoring this figure would grow by 25% each year, creating a 

challenge for organisation and storage. Another aspect of good data 

management is maintaining the separation of the training, validation and testing 

datasets, ensuring the model is not biased by viewing the final test dataset 

during development (Chollet, 2017). As the test dataset can only be used once, 

it is recommended to separate out several potential test areas after labelling 

and reserve the unused ones for future research. 
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6.3.2 Divergence between training data and inference data 
Another consideration is the range and variability of the training data in relation 

to the inference data. For example, the model trained for ASM detection in 

Chapter 5 was only trained using examples of alluvial ASM in a tropical area. At 

the inference stage, the model made incorrect predictions in the far northeast of 

the study area where the landscape changed from tropical rainforest to 

savannah. To address these types of issues, the model could either be 

retrained using a large dataset of both tropical and savannah examples, or a 

new arid landscape model could be trained and the application areas split 

depending on their climate type with a different model applied to each one.  

6.3.3 Code packaging 
All models and applications developed in this PhD were written in prototyping 

code which has not yet been optimised for professional or commercial use. With 

code optimisation, the training and inference times would reduce, and the ease 

of use would be improved. With further code optimisation and GUI 

development, the inference stage of all 3 applications could be deployed for use 

by non-programmers for each respective real world application.  

6.3.4 Human oversight 
The final consideration when applying these models to real world mining data is 

that the models are not infallible and should not be followed blindly. After 

deployment, continuing random spot checks are recommended, alongside more 

thorough monitoring whenever conditions in the inference dataset change, for 

example if a new satellite sensor comes online or a new study region is added 

to the area. In many cases, the generalisation ability of these models is 

adequate to adapt to new (albeit similar) sensors or study regions; however, the 

results should be subject to greater scrutiny when conditions change, to 

determine whether the change remains within the capabilities of the existing 

model. It is also recommended to query and be mindful of the potential biases in 

the model, as any biases present in the training data will persist within the final 

model (Alvi et al., 2019). Retraining or fine tuning as new data and knowledge 

becomes available is recommended to maintain the integrity of the model over 

longer timescales.  



202 
 

6.4 Framework summary 
The first section of the framework identified the conditions which lead to 

successful machine learning remote sensing projects. Prior to commencing 

model development, the precise task must be defined, the existence of training 

datasets must be determined, and the data structure and quality must be 

ascertained. The second section describes developing the models, including 

choosing an implementation library, training the model and deciding an 

evaluation protocol. This section also describes some techniques for improving 

the end prediction accuracy, valuable for real world industrial projects. The final 

section details some practitioner guidelines for applying these models to real 

environments post development. 

6.5 Scope and future recommendations 
The framework described in Sections 6.1 - 6.4 demonstrates how a thorough 

approach to identifying, developing and applying deep learning and remote 

sensing technologies ensures optimal use in mining contexts. This PhD 

showcased multiple areas of the mining sector where deep learning and remote 

sensing can be successfully applied. The three publications based on the case 

studies of this research deliver new knowledge and techniques in and of 

themselves and also can be used to establish how similar data types and 

mining problems can benefit from this approach in future. The triple application 

structure was chosen to best demonstrate the breadth of potential for neural 

networks to solve mining sector tasks. The types of machine learning tasks 

addressed in this work are all classic computer vision problems such as 

detection, location and segmentation. Other more specialised tasks such as 

time series analysis and unsupervised deep learning were deemed outside the 

scope of this research.  

As discussed in Section 2.4, deep learning algorithm development is 

proceeding at an unprecedented speed. The framework proposed in this thesis 

for solving mining sector object detection challenges is capable of adapting to 

future algorithm developments, as it is a general framework and does not 

depend on any one specific algorithm or technique. This thesis chose 

algorithms which have reached a proven level of maturity and stability over the 

last 5 years. This has enabled the research to focus on the adaptation of these 
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technologies to new mining sector challenges, rather than troubleshooting 

newly released code which might be updated or reissued regularly. As other 

algorithms mature, the model architectures used in this thesis can be replaced 

when newer models stabilise, whilst maintaining the foundational framework 

and adaptations learned from this research.  

Looking to the future, several areas of interest for further research were 

identified during the course of this project. These range from harnessing 

technological improvements to further investigation of phenomena observed in 

this research, as discussed in the following sections.  

6.5.1 Deep learning for point clouds 
At the beginning of this PhD research in 2017, deep learning for unstructured 

3D point cloud data was in its infancy, with the seminal PointNet paper 

published in July of 2017. Over the last 3 years this area has advanced rapidly 

(Bello et al., 2020) as discussed in Section 2.4.5 of the literature review. These 

algorithms are now approaching the preferred level of stability to be 

implemented in real world applications. Future research for underground 

applications such as the bolt detector developed in Chapter 3 will undoubtedly 

leverage these new technologies.  

6.5.2 Multiple LiDAR data representations 
When using LiDAR data for model input in Chapter 4, different representations 

such as positive and negative openness and simplified local relief models gave 

different results, indicating that this form of ‘image enhancement’ had an impact 

on how the model made predictions. As this chapter used transfer learning, it 

was not possible to separate whether this result was due to inherent differences 

in how the models learned or whether it was due to similarities or differences 

between the data type of the originally trained dataset and the new fine tuning 

dataset. To fully examine this phenomenon, it would be first necessary to create 

a training dataset large enough to train a model from initialisation. Without the 

bias introduced by the LiDAR representation of the transfer learning dataset, it 

would be possible to determine which representations were more effective on 

different dataset types by training and testing multiple models from initialisation. 

An interesting area for future research would involve determining which LiDAR 
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data representation out of the many described in Section 4.3 would provide the 

best results when used with different CNN architectures.  

6.5.3 Multi-biome ASM models 
As previously discussed, the ASM detection model built in Chapter 5 was 

trained only on alluvial ASM from tropical areas, as that is the primary type of 

ASM found in the study area. The model developed in this research could be 

expanded to multiple ASM and landscape types, allowing it to be applied 

globally for effective low cost ASM monitoring. Further research is needed to 

determine whether multiple models combined with geographic area 

categorisation or one large model trained on many landscapes and ASM types 

would be the best solution.  

6.5.4 Hyperspectral models for mining pollution 
While carrying out the ASM project it was hypothesised that vegetation indices 

such as Red Edge and Normalised Difference Vegetation Index (NDVI) could 

be generated from the satellite data and used to further identify ASM related 

pollution in not yet deforested areas. NDVIs have been used in previous non 

deep learning based land cover studies in the region (Abdoulatif et al., 2019; 

Barenblitt et al., 2020; Basommi et al., 2015), primarily as a land cover 

classification input for already deforested areas. After some initial 

experimentation it was found that vegetation changes in close proximity to 

deforested pools were indistinguishable to a human analyst.  

Hyperspectral sensors with a greater spectral resolution could potentially be 

capable of detecting these changes; however, it was not possible to acquire a 

high resolution hyperspectral dataset over the area of interest. Future research 

could investigate if hyperspectral data can detect ASM at an earlier stage or 

detect the downstream effects of it. If successful, this could be combined with 

CNN models similar to those developed in this research to detect both pollution 

and ASM deforestation. 

6.6 The future of deep learning for mining 
Advances in the broader fields of AI and automation are continuing at an 

extremely rapid rate both within the mining industry and the larger tech industry. 

Currently, AI methods such as deep learning can be used for specific tasks; 
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however, the future goal is artificial general intelligence and real time decision 

making. Equipment manufacturers are edging closer to the fully autonomous 

mine, with advances such as Sandvik’s self-routing loader (Wired Magazine, 

2020) and Orica and Epiroc’s first steps towards an autonomous explosives 

delivery system  

(Valler and Andersson, 2020). The solution to automated real time intelligence 

in a dynamic environment will likely arise from the self-driving cars of Google 

and Uber. Adaption of these technologies to mining will be easier, as mining 

environments are more controlled with less scope for random interactions 

between humans and machines. Deep learning could be used by machines to 

make complex semantically labelled models of their environments, allowing 

higher level autonomous onboard risk assessments and decision making. As 

labelled digital mining datasets grow, more complex deep learning models can 

be trained to in turn solve more complex tasks.  

Moving out from a mine site scale, ever greater volumes of satellite remote 

sensing data can be used to monitor the environmental impact of mining even in 

difficult to reach locations. A recent study counted millions of individual trees in 

the Sahara (Brandt et al., 2020), leading to a Nature op-ed proposing that every 

tree on earth could be mapped by satellites in the not too distant future (Hanan 

and Anchang, 2020). Technologies such as this would allow for rapid mapping 

of mining related deforestation at a hitherto unprecedented scale. Technologies 

such as this can influence policy, as they enable countries’ commitments to 

programmes such as the United Nations’ ‘Reducing emissions from 

deforestation and forest degradation’ (REDD+) schemes to be accurately 

quantified. 

The examples above are only some of the vast range of mining sector 

applications which may benefit from deep learning in future. Potentially the most 

change inducing new technologies have not even been envisaged yet. What is 

certain is that the industry needs to keep pace with technological advances and 

maintain a critical view of both the possibilities and limitations. This can be 

achieved by encouraging collaboration between big tech and the mining sector, 

by attracting more students from a computer science background into mining 
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programs and by further research into how these technologies can be adapted 

and applied for maximum benefit within the mining sector. 
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 Conclusion 
The purpose of this thesis was to demonstrate that deep learning and remote 

sensing tools can be successfully used to solve real world mining sector 

problems. The research developed applications for the three most common 

remote sensing data structures, showing that these technologies can be applied 

across a wide range of data types and scales. Each of the individual 

applications contribute scientific knowledge to their area, from intelligent 

underground machines to governmental mining policies.  

Each of the case studies used a different type of remote sensing data, 

demonstrating how approaches can be designed to leverage a wide range of 

data structures and scales. The first case study used a lightweight feature 

based fully connected network to accommodate the noise and density of 3D 

point clouds. In contrast, the second and third case studies used a grid based 

convolutional neural network architecture as these are better suited to 

multispectral 2D and 2.5D datasets. In particular, the second case study 

demonstrated that differing LiDAR data representations can be used to enhance 

the interpretability of these types of datasets. By adapting the model design to 

the data type, task complexity and data availability, this research demonstrates 

that neural network based approaches can detect objects at a level of accuracy 

comparable to or surpassing other published approaches, with the caveat that 

direct accuracy comparisons are not possible due to each study being 

evaluated against its own bespoke datasets and tasks.  

In the three case studies of this research, methodological improvements were 

developed that increased the accuracy on their target datasets. For the bolt 

detection algorithm in the first case study, accuracy was improved by combining 

feature generation techniques from both the mobile robotics and remote 

sensing research communities, demonstrating how cross disciplinary 

knowledge transfer can aid in real world technology application. For the LiDAR 

applications in the second case study, transfer learning from a similar domain 

was proven to be a powerful method for applying deep learning techniques to 

smaller datasets, depending upon the availability of a suitably similar transfer 

learning model. In the third case study, the accuracy improvements came from 

a novel confidence based ensembling, which additionally allowed for greater 
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coverage in cloudy regions. This case study also demonstrated that building 

and training deep learning models without transfer learning is a viable strategy 

for specific tasks and data types, provided the training data can be generated.  

Each case study also included a practical post detection example of how the 

results from these algorithms can be used to add knowledge and value to 

remote sensing datasets. The bolt detection algorithm in the first case study 

was used to feed into a bolt location database, allowing a mine to record the as-

built bolting pattern and to generate bolting quality assurance reports, 

supporting intelligent machines and mining information modelling. The legacy 

mining pit detection algorithm in the second case study was extended to infer 

mineralisation and lode direction, allowing historians and stakeholders to gain 

further knowledge of a landscape’s history even in cases where records have 

been lost. The third case study, which examined small scale mining in Ghana 

provided an accurate national scale dataset that will allow governments and 

NGOs to gain valuable insights into the patterns of mining, migration and 

urbanisation. 

Taken together, the three case studies of this thesis establish a flexible and 

effective approach to utilising these technologies in the mining sector. The final 

chapter of this thesis brings together the implementation knowledge gained into 

a framework that will aid in the application of these techniques to other tasks. 

Through comparing and contrasting the approaches selected in the three case 

studies, the framework sets out effective methods of identifying, developing and 

applying these technologies within the mining sector across a range of tasks, 

data structures and end users.  
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Appendices 
Appendix A – Chapter 3 

A-1 Datasets 
3D point cloud data from two mines, collected by Matthew Eyre and Jane 

Gallwey – not publicly available. 

A-2 Software 
Leica Cyclone V.9.3.1 

Python libraries: Scikit-Learn, OpenCV, Pandas, Numpy 

CloudCompare v2.9.1 
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Appendix B – Chapter 4 
Datasets, software and workflow from paper ‘Bringing Lunar LiDAR Back Down 

to Earth: Mapping Our Industrial Heritage Through Deep Transfer Learning’ 

B-1 Datasets 
Lidar Composite Digital Surface Model England 50cm resolution [ASC 
geospatial data], Scale 1:2000, Tiles: sx6780, sx6781, sx6782, sx6880, sx6680, 
sx6681, sx6070, sx6071, sx6170, sx6171, sx6270, sx6570. Updated: 5 January 
2016, Open Government Licence, Using: EDINA LiDAR Digimap Service, 
<https://digimap.edina.ac.uk>, Downloaded: 2019-03-07 16:43:54.775 

Lidar Composite Digital Surface Model England 25cm resolution [ASC 
geospatial data], Scale 1:1000, Tiles: se0166 Updated: 5 January 2016, Open 
Government Licence, Using: EDINA LiDAR Digimap Service, 
<https://digimap.edina.ac.uk>, Downloaded: 2019-06-10 13:37:54.891 

High Resolution (25cm) Vertical Aerial Imagery (2011, 2015) Scale 1:500, Tiles: 
sx6780, sx6781, sx6782, sx6680, sx6681, sx6070, sx6071, sx6170, sx6171, 
sx6270, sx6570, se0166, Updated: 25 October 2015, Getmapping, Using: 
EDINA Aerial Digimap Service, <https://digimap.edina.ac.uk>, Downloaded: 
2019-03-09 11:26:46.049 

1:2500 County Series 1st Edition [TIFF geospatial data], Scale 1:2500, Tiles: 
devo-sx6780-1, devo-sx6781-1, devo-sx6782-1, devo-sx680-1, devo-sx6681-1, 
devo-sx6070-1, devo-sx6071-1, devo-sx6170-1, devo-sx6171-1, devo-sx6270-
1, devo-sx6570-1. Updated: 30 November 2010, Historic, Using: EDINA Historic 
Digimap Service, <https://digimap.edina.ac.uk>, Downloaded: 2019-03-07 
15:03:20.971 

B-2 Software 
ArcGIS Pro 2.3.1 

Relief Visualisation Toolbox 1.3 

Python libraries: Scikit Image, OpenCV, Pandas, Numpy, H5py, Matplotlib, 
Keras, Tensorflow 

 

 

 

 



211 
 

B-3 Workflow 
1) Import layers to ArcGIS and create training data from desktop survey. 

2) Quality control the DEM using an elevation void fill operation 

3) Export training data for deep learning using appropriate object radius and tile 

overlap. For generating training data do not tick ‘export no feature tiles’, for 

test data this box should be checked. Use Pascal VOC as the type of label 

to be exported. This step creates .tiff images, .tfw geotiff world files 

(georeferencing information) and .xml label files for every image tile. 

4) Remove the default output folder structure and put all files in one folder. 

5) If required, the image tiles can be batch fed into RVT to create other 

visualisations which will match the existing georeferencing and label files.  

6) A modified version of the ‘input_data_gen.py’ script found at 

https://github.com/silburt/DeepMoon is then run to generate hdf5 database 

files from the labelled images. The modifications are minor and will depend 

on the machine and data considerations for a particular user. This script 

outputs two database files for each of the training, validation and test 

datasets; one for the images and one for the pits.  

7) The ‘run_model_train.py’ script also from 

https://github.com/silburt/DeepMoon is then run, with the parameters set 

appropriately for the dataset and computer used. This script calls the 

‘model_train.py’ script which also needs to be modified to load the model 

provided from https://zenodo.org/record/1133969#.XVUZi-j0k2w in either 

Keras 1 or Keras 2 format depending on machine setup. This allows the 

model to be fine tuned from the endpoint of the Lunar study rather than 

trained from scratch. 

8) To test the model a modified version of ‘Using Zenodo Data.ipynb’ found in 

https://github.com/silburt/DeepMoon/tree/master/docs is run. This jupyter 

notebook can be modified to remove the sections on crater drawing and loop 

through whichever directory the test image database is found in. Python 

image libraries can be used to save the generated image masks. 

9) These image masks have the same extents as the original image tiles output 

from ArcGIS, therefore if the .tfw files from the original export are copied into 

the folder with the masks the masks will import into ArcGIS already 

georeferenced correctly. 
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10) Merge the tiles into a single raster. This is the end of the workflow if using 

the pixel based masks. To aid interpretation it is recommended to use a 

graduated colour scheme where 0 probability is mapped to fully transparent 

pixels. 

11) To generate vector data first remove all pixels below a set threshold, for 

example 0.4. 

12) Use raster calculator to convert this layer to integer form =(int(raster * 100)). 

13) Use tool ‘convert raster to polygon’. 

14) Tidy up generated polygons by merging edges that touch and splitting 

polygons that don’t touch into separate objects. 
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Appendix C – Chapter 5 

C-1 Dataset 
Tile Code17 Date Tile Code Date Tile Code Date Tile Code Date 
Year 1  Year 2  Year 3  Year 4  
NYM 24-Nov-15 NWM_W 11-Dec-16 NYM 13-Dec-17 NWN_E 23-Dec-18 
NWN_E 04-Dec-15 NVN 11-Dec-16 NYM 02-Jan-18 NWM_W 26-Dec-18 
NWP_E 04-Dec-15 NWN_W 11-Dec-16 NXL 02-Jan-18 NVM 26-Dec-18 
NWN_W 07-Dec-15 NWL 28-Dec-16 NWN_E 02-Jan-18 NVN 26-Dec-18 
NWP_W 07-Dec-15 NYN 28-Dec-16 NWM_W 05-Jan-18 NWM_E 28-Dec-18 
NVN 17-Dec-15 NXN 28-Dec-16 NWN_W 05-Jan-18 NXM 28-Dec-18 
NWN_W 17-Dec-15 NWN_E 28-Dec-16 NWM_E 12-Jan-18 NYM 28-Dec-18 
NWP_W 17-Dec-15 NWP_E 28-Dec-16 NYM 12-Jan-18 NWL 28-Dec-18 
NWM_E 24-Dec-15 NWM_W 31-Dec-16 NYN 12-Jan-18 NXL 28-Dec-18 
NXM 24-Dec-15 NVM 31-Dec-16 NWM_W 15-Jan-18 NWN_W 31-Dec-18 
NYM 24-Dec-15 NWP_W 31-Dec-16 NVM 15-Jan-18 NWP_W 31-Dec-18 
NZM 24-Dec-15 NXP 07-Jan-17 NWN_W 15-Jan-18 NYN 02-Jan-19 
NYL 24-Dec-15 NWP_E 07-Jan-17 NWL 17-Jan-18 NXN 02-Jan-19 
NWL 24-Dec-15 NWM_E 27-Jan-17 NXL 17-Jan-18 NWN_E 02-Jan-19 
NXL 24-Dec-15 NXM 27-Jan-17 NWM_E 22-Jan-18 NWP_E 02-Jan-19 
NYN 24-Dec-15 NYM 27-Jan-17 NXM 22-Jan-18 NWM_W 05-Jan-19 
NXN 24-Dec-15 NWL 27-Jan-17 NWL 22-Jan-18 NVN 05-Jan-19 
NWN_E 24-Dec-15 NXL 27-Jan-17 NXL 22-Jan-18 NWN_W 05-Jan-19 
NWP_E 24-Dec-15 NYN 27-Jan-17 NYN 22-Jan-18 NWP_W 05-Jan-19 
NWM_W 27-Dec-15 NXN 27-Jan-17 NXN 22-Jan-18 NWM_E 07-Jan-19 
NVM 27-Dec-15 NWN_E 27-Jan-17 NWN_E 22-Jan-18 NWP_E 07-Jan-19 
NWN_W 27-Dec-15 NVN 30-Jan-17 NWM_E 27-Jan-18 NWN_W 20-Jan-19 
NWM_W 06-Jan-16 NWN_W 30-Jan-17 NXM 27-Jan-18 NXM 22-Jan-19 
NVM 06-Jan-16 NWP_W 30-Jan-17 NYM 27-Jan-18 NYM 22-Jan-19 
NVN 16-Jan-16 NWN_E 06-Feb-17 NYN 27-Jan-18 NYN 22-Jan-19 
NWP_W 16-Jan-16 NWP_E 06-Feb-17 NXN 27-Jan-18 NXN 22-Jan-19 
NWM_E 23-Jan-16 NWP_W 09-Feb-17 NWN_E 27-Jan-18 NWM_E 11-Feb-19 
NXM 23-Jan-16 NWM_W 19-Feb-17 NXM 01-Feb-18 NWN_E 11-Feb-19 
NWL 23-Jan-16 NWN_W 19-Feb-17 NXL 01-Feb-18 NWM_W 14-Feb-19 
NXL 23-Jan-16 NXN 08-Mar-17 NYN 01-Feb-18 NVN 14-Feb-19 
NYN 23-Jan-16 NWM_E 28-Mar-17 NWM_W 19-Feb-18 NWN_W 14-Feb-19 
NXN 23-Jan-16 NXM 28-Mar-17 NVM 19-Feb-18 NWL 16-Feb-19 
NWN_E 23-Jan-16 NYM 28-Mar-17 NVN 19-Feb-18 NXL 16-Feb-19 
NWP_E 23-Jan-16 NWL 28-Mar-17 NWN_W 19-Feb-18 NWM_E 21-Feb-19 
NWM_W 26-Jan-16 NXL 28-Mar-17 NWP_W 19-Feb-18 NXM 21-Feb-19 
NVN 26-Jan-16 NYN 28-Mar-17 NXP 03-Mar-18 NYM 21-Feb-19 
NWN_W 26-Jan-16 NXM 17-Apr-17 NWP_E 03-Mar-18 NWN_E 21-Feb-19 
NYM 12-Feb-16 NYM 17-Apr-17 NWM_W 06-Mar-18 NWM_E 26-Feb-19 
NXP 03-Mar-16 NZM 17-Apr-17 NVN 06-Mar-18 NXM 26-Feb-19 
NWM_E 22-Apr-16 NYL 17-Apr-17 NWN_W 06-Mar-18 NYM 26-Feb-19 

 
17 XXX_E and XXX_W refer to tiles on the Sentinel swath boundary which are split diagonally 
into East and West tiles. 
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NXM 22-Apr-16 NWL 17-Apr-17 NWP_W 06-Mar-18 NWL 26-Feb-19 
NWL 22-Apr-16 NXL 17-Apr-17 NWP_E 23-Mar-18 NXL 26-Feb-19 
NXL 22-Apr-16 NYN 17-Apr-17 NWP_W 20-Apr-18 NXN 26-Feb-19 
NYN 22-Apr-16 NWM_E 27-Apr-17 NXN 22-Apr-18 NWN_E 26-Feb-19 
NXN 22-Apr-16 NXN 27-Apr-17 NWP_E 22-Apr-18 NXN 03-Mar-19 

    NXM 27-Apr-18 NWN_E 03-Mar-19 

    NYM 27-Apr-18 NWM_W 11-Mar-19 

    NZM 27-Apr-18 NVM 11-Mar-19 

    NYL 27-Apr-18 NVN 11-Mar-19 

    NWL 27-Apr-18 NWN_W 11-Mar-19 

    NXL 27-Apr-18 NWL 13-Mar-19 

    NYN 27-Apr-18 NXL 13-Mar-19 

      NWP_E 13-Mar-19 

      NVN 26-Mar-19 

      NWN_W 26-Mar-19 

      NWP_W 26-Mar-19 

      NWM_E 02-Apr-19 

      NXM 02-Apr-19 

      NXP 02-Apr-19 

      NYN 02-Apr-19 

      NXN 02-Apr-19 

      NWN_E 02-Apr-19 

      NWP_E 02-Apr-19 

      NWP_W 10-Apr-19 

      NXM 22-Apr-19 

      NYM 22-Apr-19 

      NZM 22-Apr-19 

      NYL 22-Apr-19 

      NYN 22-Apr-19 
 

C-2 Software 
ArcGIS Pro 2.3.1 

MATLAB 2019b + Deep Learning Toolbox 

Sen2Cor_v2.5.5 
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C-3 Change mapping schema 

 

 



216 
 

References 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., 

Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., 

Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., 

Zheng, X., 2016. TensorFlow: A System for Large-Scale Machine Learning, in: 12th 

USENIX Conference on Operating Systems Design and Implementation, OSDI’16. 

USENIX Association, USA, pp. 265–283. 

Abdoulatif, A.S., Baratoux, D., Baratoux, L., Ahoussi, E.K., Yao, A., Colin, F., Jean 

Kan, K., Kamagaté, B., Zié, O., Gnamba Emmanuel Franck, G., 2019. Remote-

sensing mapping (Landsat) of abandoned mining wastes over time by artisanal gold 

mining in Koma Bangou (Liptako, Niger)., in: AGU Fall Meeting Abstracts. 

Abellán, A., Calvet, J., Vilaplana, J.M., Blanchard, J., 2010. Detection and spatial 

prediction of rockfalls by means of terrestrial laser scanner monitoring. 

Geomorphology 119, 162–171. 

https://doi.org/https://doi.org/10.1016/j.geomorph.2010.03.016 

Aber, J.S., Marzolff, I., Ries, J., 2010. Small-Format Aerial Photography: Principles, 

Techniques and Geoscience Applications. Elsevier B.V., Amsterdam. 

Agrawal, A., Nakazawa, A., Takemura, H., 2009. MMM-classification of 3D Range 

Data, in: IEEE International Conference on Robotics and Automation. Kobe, pp. 

2003–2008. https://doi.org/10.1109/ROBOT.2009.5152539 

Alamiyan-Harandi, F., Derhami, V., Jamshidi, F., 2020. Combination of Recurrent 

Neural Network and Deep Learning for Robot Navigation Task in Off-Road 

Environment. Robotica 38, 1450–1462. https://doi.org/10.1017/S0263574719001565 

Albee, A.L., Arvidson, R.E., Palluconi, F., Thorpe, T., 2001. Overview of the Mars 

Global Surveyor mission. J. Geophys. Res. Planets 106, 23291–23316. 

https://doi.org/10.1029/2000JE001306 

Ali, D., Frimpong, S., 2020. Artificial intelligence, machine learning and process 

automation: existing knowledge frontier and way forward for mining sector. Artif. 

Intell. Rev. 53, 6025–6042. https://doi.org/10.1007/s10462-020-09841-6 



217 
 

Alvi, M., Zisserman, A., Nellåker, C., 2019. Turning a Blind Eye: Explicit Removal of 

Biases and Variation from Deep Neural Network Embeddings, in: Leal-Taixé, L., 

Roth, S. (Eds.), Computer Vision – ECCV 2018 Workshops. Springer International 

Publishing, Cham, Switzerland, pp. 556–572. https://doi.org/10.1007/978-3-030-

11009-3_34 

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A., 

2005. Discriminative Learning of Markov Random Fields for Segmentation of 3D 

Scan Data, in: 2005 IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition (CVPR’05). IEEE, pp. 169–176. 

https://doi.org/10.1109/CVPR.2005.133 

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J., 2018. NetVLAD: CNN 

Architecture for Weakly Supervised Place Recognition. IEEE Trans. Pattern Anal. 

Mach. Intell. 40, 1437–1451. https://doi.org/10.1109/TPAMI.2017.2711011 

Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K., 2020. Pseudo-

Labeling and Confirmation Bias in Deep Semi-Supervised Learning, in: 2020 

International Joint Conference on Neural Networks (IJCNN). pp. 1–8. 

https://doi.org/10.1109/IJCNN48605.2020.9207304 

Armeni, I., Sax, S., Zamir, A.R., Savarese, S., 2017. Joint 2D-3D-Semantic Data for 

Indoor Scene Understanding. arXiv Prepr. 

Ashby, A., van Etten, E., Lund, M., 2016. Pitfalls of gold mine sites in care and 

maintenance, in: Fourie, A., Tibbett, M. (Eds.), 11th International Conference on 

Mine Closure. Australian Centre for Geomechanics, Perth, pp. 313–324. 

https://doi.org/10.36487/ACG_rep/1608_22_Ashby 

Asner, G.P., Llactayo, W., Tupayachi, R., Luna, E.R., 2013. Elevated rates of gold 

mining in the Amazon revealed through high-resolution monitoring. Natl. Acad. Sci. 

110, 18454–18459. https://doi.org/10.1073/pnas.1318271110 

Asner, G.P., Tupayachi, R., 2016. Accelerated losses of protected forests from gold 

mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004. 

https://doi.org/10.1088/1748-9326/aa7dab 



218 
 

Attard, L., Debono, C.J., Valentino, G., Di Castro, M., 2018. Tunnel inspection using 

photogrammetric techniques and image processing: A review. ISPRS J. 

Photogramm. Remote Sens. 144, 180–188. 

https://doi.org/10.1016/j.isprsjprs.2018.07.010 

Azmin, B.A., Bell, I., Sameti, B., Ko, D., Tafazoli, S., 2016. Porta Metrics TM safety 

and consistancy of results in image-based fragmentation analysis, in: International 

Society of Explosives Engineers. 

Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional 

Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. 

Mach. Intell. 39, 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615 

Balabin, R.M., Safieva, R.Z., Lomakina, E.I., 2010. Gasoline classification using near 

infrared (NIR) spectroscopy data: Comparison of multivariate techniques. Anal. 

Chim. Acta 671, 27–35. https://doi.org/10.1016/j.aca.2010.05.013 

Balado, J., Díaz-Vilariño, L., Arias, P., González-Jorge, H., 2018. Automatic 

classification of urban ground elements from mobile laser scanning data. Autom. 

Constr. 86, 226–239. https://doi.org/10.1016/j.autcon.2017.09.004 

Balaniuk, R., Isupova, O., Reece, S., 2020. Mining and Tailings Dam Detection in 

Satellite Imagery Using Deep Learning. Sensors 20, 6936. 

https://doi.org/10.3390/s20236936 

Ball, J.E., Anderson, D.T., Chan, C.S., 2017. Comprehensive survey of deep 

learning in remote sensing: theories, tools, and challenges for the community. J. 

Appl. Remote Sens. 11, 042609. https://doi.org/10.1117/1.JRS.11.042609 

Bamford, T., Esmaeili, K., Schoellig, A.P., 2017. A real-time analysis of post-blast 

rock fragmentation using UAV technology. Int. J. Mining, Reclam. Environ. 31, 439–

456. https://doi.org/10.1080/17480930.2017.1339170 

Bansah, K.J., Dumakor-Dupey, N.K., Kansake, B.A., Assan, E., Bekui, P., 2018. 

Socioeconomic and environmental assessment of informal artisanal and small-scale 

mining in Ghana. J. Clean. Prod. 202, 465–475. 

https://doi.org/10.1016/j.jclepro.2018.08.150 



219 
 

Barenblitt, A., Payton, A., Lagomasino, D., Fatoyinbo, T., Asare, K., Aidoo, K., Pigott, 

H., Som, C.K., Seidu, O., Smeets, L., others, 2020. Spatial distribution of artisanal 

goldmining in Ghana: Using machine learning and Google Earth Engine to quantify 

conversion of vegetation to gold mines, in: AGU Fall Meeting 2020. 

Barich, A., 2019. Earth AI to start autonomous rig in April before further exploration 

expansion. S&P Glob. Mark. Intell. 

Basommi, P.L., Guan, Q., Cheng, D., 2015. Exploring Land use and Land cover 

change in the mining areas of Wa East District, Ghana using Satellite Imagery. Open 

Geosci. 7, 618–626. https://doi.org/10.1515/geo-2015-0058 

Bassier, M., Van Genechten, B., Vergauwen, M., 2019. Classification of sensor 

independent point cloud data of building objects using random forests. J. Build. Eng. 

21, 468–477. https://doi.org/10.1016/j.jobe.2018.04.027 

Bayer, B.E., 1975. Color Imaging Array. United States Patent No. 3971065. 

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J., 

2019. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR 

Sequences, in: 2019 IEEE/CVF International Conference on Computer Vision 

(ICCV). IEEE, pp. 9296–9306. https://doi.org/10.1109/ICCV.2019.00939 

Behley, J., Kersting, K., Schulz, D., Steinhage, V., Cremers, A.B., 2010. Learning to 

hash logistic regression for fast 3D scan point classification, in: 2010 IEEE/RSJ 

International Conference on Intelligent Robots and Systems. IEEE, pp. 5960–5965. 

https://doi.org/10.1109/IROS.2010.5650093 

Bello, S.A., Yu, S., Wang, C., Adam, J.M., Li, J., 2020. Review: Deep Learning on 

3D Point Clouds. Remote Sens. 12, 1729. https://doi.org/10.3390/rs12111729 

Bengio, Y., 2012. Practical recommendations for gradient-based training of deep 

architectures, in: Montavon, G., Orr, G.B., Müller, K.-R. (Eds.), Neural Networks: 

Tricks of the Trade. Springer, Berlin, Germany. 



220 
 

Bengio, Y., LeCun, Y., 2007. Scaling learning algorithms towards AI, in: Bottou, L., 

Chapelle, O., DeCoste, D., Weston, J. (Eds.), Large-Scale Kernel Machines. MIT 

Press, pp. 321–359. 

Beraldin, J.-A., Blais, F., Lohr, U., 2010. Laser Scanning Technology, in: Vosselman, 

G., Maas, H.-G. (Eds.), Airborne and Terrestrial Laser Scanning. Whittles Publishing, 

Caithness, UK, pp. 1–44. 

Berger, M., Moreno, J., Johannessen, J.A., Levelt, P.F., Hanssen, R.F., 2012. ESA’s 

sentinel missions in support of Earth system science. Remote Sens. Environ. 120, 

84–90. https://doi.org/10.1016/j.rse.2011.07.023 

BGS, 2016. Tile: EW338 Devon. 

Bissiri, Y., Baiden, G., Filion, S., Saari, A., 2008. Automated surveying device for 

underground navigation. Min. Technol. 117, 71–82. 

https://doi.org/10.1179/174328608X362640 

Blakely, R.J., Simpson, R.W., 1986. Approximating edges of source bodies from 

magnetic or gravity anomalies. Geophysics 51, 1494–1498. 

https://doi.org/10.1190/1.1442197 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz 

Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. 

Geographic Object-Based Image Analysis – Towards a new paradigm. ISPRS J. 

Photogramm. Remote Sens. 87, 180–191. 

https://doi.org/10.1016/j.isprsjprs.2013.09.014 

Blomley, R., Jutzi, B., Weinmann, M., 2016. Classification of airborne laser scanning 

data using geometric multi-scale features and different neighbourhood types. ISPRS 

Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III–3, 169–176. 

https://doi.org/10.5194/isprsannals-III-3-169-2016 

Boadi, S., Nsor, C.A., Antobre, O.O., Acquah, E., 2016. An analysis of illegal mining 

on the Offin shelterbelt forest reserve, Ghana: Implications on community livelihood. 

J. Sustain. Min. 15, 115–119. https://doi.org/10.1016/j.jsm.2016.12.001 



221 
 

Boakye, E., Anyemedu, F.O.K., Quaye-Ballard, J.A., Donkor, E.A., 2020. Spatio-

temporal analysis of land use/cover changes in the Pra River Basin, Ghana. Appl. 

Geomatics 12, 83–93. https://doi.org/10.1007/s12518-019-00278-3 

Body, D., 2014. The Changing Face of Surveying within the Mining Industry. 

Bonetto, S., Facello, A., Ferrero, A.M., Umili, G., 2015. A tool for semi-automatic 

linear feature detection based on DTM. Comput. Geosci. 75, 1–12. 

https://doi.org/10.1016/j.cageo.2014.10.005 

Borodinov, N., Neumayer, S., Kalinin, S. V, Ovchinnikova, O.S., Vasudevan, R.K., 

Jesse, S., 2019. Deep neural networks for understanding noisy data applied to 

physical property extraction in scanning probe microscopy. npj Comput. Mater. 5, 25. 

https://doi.org/10.1038/s41524-019-0148-5 

Borthwick, J.R., 2009. Mining haul truck pose estimation and load profiling using 

stereo vision. University of British Columbia. 

Botchwey, G., Crawford, G., Loubere, N., Lu, J., 2019. South‐South Irregular 

Migration: The Impacts of China’s Informal Gold Rush in Ghana. Int. Migr. 57, 310–

328. https://doi.org/10.1111/imig.12518 

Boulch, A., 2019. Generalizing discrete convolutions for unstructured point clouds, 

in: Biasotti, S., Lavoué, G., Falcidieno, B., Pratikakis, I. (Eds.), Eurographics 

Workshop on 3D Object Retrieval. pp. 1–11. https://doi.org/10.2312/3dor.20191064 

Boulch, A., Guerry, J., Le Saux, B., Audebert, N., 2018. SnapNet: 3D point cloud 

semantic labeling with 2D deep segmentation networks. Comput. Graph. 71, 189–

198. https://doi.org/10.1016/j.cag.2017.11.010 

Bradski, G., 2000. The OpenCV Library. Dr. Dobb’s J. Softw. Tools. 

Brandt, M., Tucker, C.J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., Chave, J., 

Rasmussen, L.V., Hiernaux, P., Diouf, A.A., Kergoat, L., Mertz, O., Igel, C., Gieseke, 

F., Schöning, J., Li, S., Melocik, K., Meyer, J., Sinno, S., Romero, E., Glennie, E., 

Montagu, A., Dendoncker, M., Fensholt, R., 2020. An unexpectedly large count of 



222 
 

trees in the West African Sahara and Sahel. Nature 587, 78–82. 

https://doi.org/10.1038/s41586-020-2824-5 

Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. 

https://doi.org/https://doi.org/10.1023/A:1010933404324 

Bressan, T.S., Kehl de Souza, M., Girelli, T.J., Junior, F.C., 2020. Evaluation of 

machine learning methods for lithology classification using geophysical data. 

Comput. Geosci. 139, 104475. https://doi.org/10.1016/j.cageo.2020.104475 

Briese, C., 2010. Extraction of Digital Terrain Models, in: Vosselman, G., Maas, H.-

G. (Eds.), Airborne and Terrestrial Laser Scanning. Whittles Publishing, Dunbeath. 

Burkov, A., 2019. The Hundred-Page Machine Learning Book. Andriy Burkov, 

Quebec City, Canada. 

Caballero Espejo, J., Messinger, M., Román-Dañobeytia, F., Ascorra, C., Fernandez, 

L., Silman, M., 2018. Deforestation and Forest Degradation Due to Gold Mining in 

the Peruvian Amazon: A 34-Year Perspective. Remote Sens. 10, 1903. 

https://doi.org/10.3390/rs10121903 

Campbell, A.D., Thurley, M.J., 2017. Application of laser scanning to measure 

fragmentation in underground mines. Min. Technol. 126, 1–8. 

https://doi.org/10.1080/14749009.2017.1296668 

Carrivick, J.L., Smith, M.W., Quincey, D.J., 2016. Structure from Motion in the 

Geosciences. John Wiley & Sons, Oxford, UK. 

Caruana, R., Niculescu-Mizil, A., 2006. An empirical comparison of supervised 

learning algorithms, in: 23rd International Conference on Machine Learning - ICML 

’06. ACM Press, New York, New York, USA, pp. 161–168. 

https://doi.org/10.1145/1143844.1143865 

Chapelle, O., Zien, A., 2005. Semi-Supervised Classification by Low Density 

Separation. AISTATS 57–64. 



223 
 

Chehata, N., Guo, L., Mallet, C., 2009. Airborne LiDAR feature selection for urban 

classification using random forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. 

Sci. 38, 207–212. 

Chen, S., Walske, M.L., Davies, I.J., 2018. Rapid mapping and analysing rock mass 

discontinuities with 3D terrestrial laser scanning in the underground excavation. Int. 

J. Rock Mech. Min. Sci. 110, 28–35. https://doi.org/10.1016/j.ijrmms.2018.07.012 

Chen, W., Li, X., He, H., Wang, L., 2017. A Review of Fine-Scale Land Use and 

Land Cover Classification in Open-Pit Mining Areas by Remote Sensing Techniques. 

Remote Sens. 10, 15. https://doi.org/10.3390/rs10010015 

Chen, Z., Liu, X., Yang, J., Little, E., Zhou, Y., 2020. Deep learning-based method 

for SEM image segmentation in mineral characterization, an example from Duvernay 

Shale samples in Western Canada Sedimentary Basin. Comput. Geosci. 138, 

104450. https://doi.org/10.1016/j.cageo.2020.104450 

Cheng, G., Zhou, P., Han, J., 2016. Learning Rotation-Invariant Convolutional Neural 

Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. 

Geosci. Remote Sens. 54, 7405–7415. https://doi.org/10.1109/TGRS.2016.2601622 

Cherabier, I., Hane, C., Oswald, M.R., Pollefeys, M., 2016. Multi-Label Semantic 3D 

Reconstruction Using Voxel Blocks, in: 2016 Fourth International Conference on 3D 

Vision (3DV). IEEE, pp. 601–610. https://doi.org/10.1109/3DV.2016.68 

Chevrel, M., Courtois, M., Weill, G., 1981. The SPOT satellite remote sensing 

mission. Photogramm. Eng. Remote Sensing 47, 1163–1171. 

Chiang, A., Yeh, Y., 2015. Anomaly Detection Ensembles: In Defense of the 

Average, in: 2015 IEEE/WIC/ACM International Conference on Web Intelligence and 

Intelligent Agent Technology (WI-IAT). pp. 207–210. https://doi.org/10.1109/WI-

IAT.2015.260 

Chollet, F., 2015. Keras. 

Chollet, F., 2017. Deep Learning with Python. Manning Publications, Shelter Island, 

NY, USA. 



224 
 

Chowdhary, A., Jadhav, A., Jaiswal, A.K., Mukherjee, B., Shah, U., Gawade, P.S., 

Jagyasi, B., Vegesna, R.G.V., Mohammad, N., Contractor, G., 2019. Detection of 

coal stockpiles using geospatial satellite images, in: Schulz, K., Nikolakopoulos, 

K.G., Michel, U. (Eds.), Earth Resources and Environmental Remote Sensing/GIS 

Applications X. SPIE, p. 27. https://doi.org/10.1117/12.2532523 

Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J., 2010. Deep, Big, 

Simple Neural Nets for Handwritten Digit Recognition. Neural Comput. 22, 3207–

3220. https://doi.org/10.1162/NECO_a_00052 

Cochran, W.G., 1977. Sampling Techniques, 3rd ed. John Wiley & Sons, New York, 

NY, USA. 

Coggan, J., Wetherelt, A., Gwynn, X.P., Flynn, Z.N., 2007. Comparison of Hand-

mapping With Remote Data Capture Systems For Effective Rock Mass 

Characterisation, in: 11th ISRM Congress. International Society for Rock Mechanics 

and Rock Engineering, Lisbon, Portugal. 

Congedo, L., 2016. Semi-Automatic Classification Plugin Documentation. Release 

6.0.1.1. https://doi.org/10.13140/RG.2.2.29474.02242/1 

Corbett, T., O’Faircheallaigh, C., Regan, A., 2017. ‘Designated areas’ and the 

regulation of artisanal and small-scale mining. Land use policy 68, 393–401. 

https://doi.org/10.1016/j.landusepol.2017.08.004 

Coulter, L.L., Stow, D.A., Tsai, Y.-H., Ibanez, N., Shih, H., Kerr, A., Benza, M., 

Weeks, J.R., Mensah, F., 2016. Classification and assessment of land cover and 

land use change in southern Ghana using dense stacks of Landsat 7 ETM+ imagery. 

Remote Sens. Environ. 184, 396–409. https://doi.org/10.1016/j.rse.2016.07.016 

Cracknell, M.J., Reading, A.M., 2014. Geological mapping using remote sensing 

data: A comparison of five machine learning algorithms, their response to variations 

in the spatial distribution of training data and the use of explicit spatial information. 

Comput. Geosci. 63, 22–33. https://doi.org/10.1016/j.cageo.2013.10.008 



225 
 

Cryderman, C., Mah, S.B., Shufletoski, A., 2014. Evaluation of UAV 

Photogrammetric Accuracy for Mapping and Earthworks Computations. Geomatica 

68, 309–317. https://doi.org/10.5623/cig2014-405 

Data Study Group Team, 2020. Data Study Group Final Report: SenSat. 

https://doi.org/10.5281/zenodo.3878499 

Dekker, F., 2019. Cocoa not main cause of deforestation in Ghana [WWW 

Document]. Satelligence. URL https://satelligence.com/news/2019/5/17/cocoa-not-

main-cause-of-deforestation-in-ghana (accessed 12.4.19). 

Demirel, N., Emil, M.K., Duzgun, H.S., 2011. Surface coal mine area monitoring 

using multi-temporal high-resolution satellite imagery. Int. J. Coal Geol. 86, 3–11. 

https://doi.org/10.1016/j.coal.2010.11.010 

Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei, 2009. ImageNet: A large-

scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision 

and Pattern Recognition. pp. 248–255. https://doi.org/10.1109/CVPR.2009.5206848 

Dietterich, T.G., 2000. Ensemble Methods in Machine Learning, in: Multiple 

Classifier Systems: First International Workshop, MCS 2000, Lecture Notes in 

Computer Science. Springer, Berlin, Germany, pp. 1–15. https://doi.org/10.1007/3-

540-45014-9_1 

DigitalGlobe, 2015. World Imagery Basemap. 

Dines, H.G., 1988. The metalliferous mining region of south west England, 3rd ed. 

British Geological Survey, Nottingham, UK. 

Doneus, M., 2013. Openness as Visualization Technique for Interpretative Mapping 

of Airborne Lidar Derived Digital Terrain Models. Remote Sens. 5, 6427–6442. 

https://doi.org/10.3390/rs5126427 

Dong, P., Chen, Q., 2017. Lidar remote sensing and applications. CRC Press, Boca 

Raton, FL, USA. 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, 

B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, 



226 
 

F., Bargellini, P., 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES 

Operational Services. Remote Sens. Environ. 120, 25–36. 

https://doi.org/10.1016/j.rse.2011.11.026 

Durrant-Whyte, H., Bailey, T., 2006. Simultaneous localization and mapping: part I. 

IEEE Robot. Autom. Mag. 13, 99–110. https://doi.org/10.1109/MRA.2006.1638022 

Environment Agency, 2020. LiDAR Capture Programme [WWW Document]. URL 

https://environment.maps.arcgis.com/apps/opsdashboard/index.html#/27d3192741c

e48dfabdeb20f3d740bc7 (accessed 1.19.21). 

ESRI, 2019. ArcGIS Pro. 

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., 1996. A Density-Based Algorithm for 

Discovering Clusters in Large Spatial Databases with Noise, in: Second International 

Conference on Knowledge Discovery and Data Mining. AAAI Press, Portland, 

Oregon, pp. 226–231. 

European Space Agency, 2019. Level-2A [WWW Document]. Prod. Types User 

Guid. URL https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-

types/level-2a (accessed 12.5.19). 

European Space Agency, 2015. Sentinel-2 User Handbook. 

Eyre, M., Wetherelt, A., Coggan, J., 2016. Evaluation of automated underground 

mapping solutions for mining and civil engineering applications. J. Appl. Remote 

Sens. 10, 046011. https://doi.org/10.1117/1.JRS.10.046011 

Eyre, M.L., Foster, P.J., Jobling-Purser, J., Coggan, J., 2015. The benefits of laser 

scanning and 3D modelling in accident investigation: in a mining context. Min. 

Technol. 124, 73–77. https://doi.org/10.1179/1743286315Y.0000000004 

Fekete, S., Diederichs, M., 2013. Integration of three-dimensional laser scanning 

with discontinuum modelling for stability analysis of tunnels in blocky rockmasses. 

Int. J. Rock Mech. Min. Sci. 57, 11–23. https://doi.org/10.1016/j.ijrmms.2012.08.003 



227 
 

Fekete, S., Diederichs, M., Lato, M., 2010. Geotechnical and operational applications 

for 3-dimensional laser scanning in drill and blast tunnels. Tunn. Undergr. Sp. 

Technol. 25, 614–628. https://doi.org/10.1016/j.tust.2010.04.008 

Fernández-Lozano, J., Gutiérrez-Alonso, G., Fernández-Morán, M.Á., 2015. Using 

airborne LiDAR sensing technology and aerial orthoimages to unravel roman water 

supply systems and gold works in NW Spain (Eria valley, León). J. Archaeol. Sci. 53, 

356–373. https://doi.org/10.1016/j.jas.2014.11.003 

Ferreira, E., Brito, M., Balaniuk, R., Alvim, M.S., Santos, J.A. dos, 2020. Brazildam: 

A Benchmark Dataset For Tailings Dam Detection, in: 2020 IEEE Latin American 

GRSS & ISPRS Remote Sensing Conference (LAGIRS). IEEE, pp. 339–344. 

https://doi.org/10.1109/LAGIRS48042.2020.9165620 

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., 1990. Computer Graphics: 

Principles and Practice (2nd Ed.). Addison-Wesley Longman Publishing Co., Inc., 

USA. 

Folleco, A., Khoshgoftaar, T.M., Van Hulse, J., Bullard, L., 2008. Identifying learners 

robust to low quality data, in: 2008 IEEE International Conference on Information 

Reuse and Integration. IEEE, pp. 190–195. https://doi.org/10.1109/IRI.2008.4583028 

Fonte, J., Pires, H., Gonçalves-Seco, L., Matias Rodriguez, R., Lima, A., 2014. 

Archaeological research of ancient mining landscapes in Galicia (Spain) using 

Airborne Laser Scanning data, in: Ancient Mining Landscapes in Western Europe. 

Boticas, Portugal. https://doi.org/10.13140/2.1.3122.5608 

Forestry Commission, 2010. Shapefiles of Forest and Game Reserves in Ghana 

2010. 

Forkuor, G., Benewinde Zoungrana, J.-B., Dimobe, K., Ouattara, B., Vadrevu, K.P., 

Tondoh, J.E., 2020. Above-ground biomass mapping in West African dryland forest 

using Sentinel-1 and 2 datasets - A case study. Remote Sens. Environ. 236, 111496. 

https://doi.org/10.1016/j.rse.2019.111496 

Freeland, T., Heung, B., Burley, D. V., Clark, G., Knudby, A., 2016. Automated 

feature extraction for prospection and analysis of monumental earthworks from aerial 



228 
 

LiDAR in the Kingdom of Tonga. J. Archaeol. Sci. 69, 64–74. 

https://doi.org/10.1016/j.jas.2016.04.011 

Frei, E., Kung, J., Bukowski, R., 2004. High-Definition Surveying ( Hds ): a New Era 

in Reality Capture, in: Thies, M., Koch, B., Spiecker, H., Weinacker, H. (Eds.), 

International Archives of Photogrammetry, Remote Sensing and Spatial Information 

Sciences. ISPRS, Freiburg, Germany, pp. 262–271. 

Frimpong, S., Li, Y., Agarwal, S., 2007. Frontier research in dynamic control, vision 

and collision avoidance for truck haulage, in: 2007 SME Annual Meeting. Society of 

Manufacturing Engineers. 

Froese, C.R., Mei, S., 2008. Mapping and monitoring coal mine subsidence using 

LiDAR and InSAR, in: GeoEdmonton2008. Edmunton, Canada, pp. 1127–1133. 

Fu, W., Ma, J., Chen, P., Chen, F., 2020. Remote Sensing Satellites for Digital Earth, 

in: Guo, H., Goodchild, M.F., Annoni, A. (Eds.), Manual of Digital Earth. Springer 

Singapore, Singapore, pp. 55–123. https://doi.org/10.1007/978-981-32-9915-3_3 

Fukushima, K., 1988. Neocognitron: A hierarchical neural network capable of visual 

pattern recognition. Neural Networks 1, 119–130. https://doi.org/10.1016/0893-

6080(88)90014-7 

Ganić, A., Milutinović, A., Tokalić, R., Ognjanović, S., 2011. Measuring methods for 

cross sections of underground mine chambers. Podzemn. Rad. 0. 

Gao, H., Mao, J., Zhou, J., Huang, Z., Wang, L., Xu, W., 2015. Are You Talking to a 

Machine? Dataset and Methods for Multilingual Image Question Answering, in: 28th 

International Conference on Neural Information Processing Systems - Volume 2, 

NIPS’15. MIT Press, Cambridge, MA, USA, pp. 2296–2304. 

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Martinez-

Gonzalez, P., Garcia-Rodriguez, J., 2018. A survey on deep learning techniques for 

image and video semantic segmentation. Appl. Soft Comput. 70, 41–65. 

https://doi.org/10.1016/j.asoc.2018.05.018 



229 
 

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, 

V., Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., 

Viallefont, F., Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De 

Bonis, R., Isola, C., Martimort, P., Fernandez, V., 2017. Copernicus Sentinel-2A 

Calibration and Products Validation Status. Remote Sens. 9, 584. 

https://doi.org/10.3390/rs9060584 

Gebhardt, S., Payzer, E., Salemann, L., Fettinger, A., Rotenberg, E., Seher, C., 

2009. Polygons, point-clouds, and voxels, A comparison of high-fidelity terrain 

representations. Fall Simul. Interoperability Work. 2009, 2009 Fall SIW 357–365. 

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets robotics: The KITTI 

dataset. Int. J. Rob. Res. 32, 1231–1237. 

https://doi.org/10.1177/0278364913491297 

Geman, S., Geman, D., 1984. Stochastic Relaxation, Gibbs Distributions, and the 

Bayesian Restoration of Images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6, 

721–741. https://doi.org/10.1109/TPAMI.1984.4767596 

Géron, A., 2017. Hands-On Machine Learning with Scikit-Learn & Tensorflow, 1st 

ed. O’Reilly, Sebastopol, CA, USA. 

Ghosh, S., Das, N., Das, I., Maulik, U., 2019. Understanding Deep Learning 

Techniques for Image Segmentation. ACM Comput. Surv. 52, 1–35. 

https://doi.org/10.1145/3329784 

Giannoni, L., Lange, F., Tachtsidis, I., 2018. Hyperspectral imaging solutions for 

brain tissue metabolic and hemodynamic monitoring: past, current and future 

developments. J. Opt. 20, 044009. https://doi.org/10.1088/2040-8986/aab3a6 

Gigli, G., Casagli, N., 2011. Semi-automatic extraction of rock mass structural data 

from high resolution LiDAR point clouds. Int. J. Rock Mech. Min. Sci. 48, 187–198. 

https://doi.org/10.1016/j.ijrmms.2010.11.009 

Gikas, V., 2012. Three-Dimensional Laser Scanning for Geometry Documentation 

and Construction Management of Highway Tunnels during Excavation. Sensors 12, 

11249–11270. https://doi.org/10.3390/s120811249 



230 
 

Girardeau-Montaut, D., 2016. Cloud compare documentation [WWW Document]. 

URL http://www.cloudcompare.org/doc/wiki/index.php?title=Main_Page (accessed 

10.23.18). 

Girshick, R., 2015. Fast R-CNN, in: 2015 IEEE International Conference on 

Computer Vision (ICCV). IEEE, pp. 1440–1448. 

https://doi.org/10.1109/ICCV.2015.169 

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich Feature Hierarchies for 

Accurate Object Detection and Semantic Segmentation, in: 2014 IEEE Conference 

on Computer Vision and Pattern Recognition. IEEE, pp. 580–587. 

https://doi.org/10.1109/CVPR.2014.81 

González-Jorge, H., Rodríguez-Gonzálvez, P., Shen, Y., Lagüela, S., Díaz-Vilariño, 

L., Lindenbergh, R., González-Aguilera, D., Arias, P., 2018. Metrological 

intercomparison of six terrestrial laser scanning systems. IET Sci. Meas. Technol. 

12, 218–222. https://doi.org/10.1049/iet-smt.2017.0209 

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press, 

Cambridge, MA, USA. 

Grebby, S., Cunningham, D., Naden, J., Tansey, K., 2012. Application of airborne 

LiDAR data and airborne multispectral imagery to structural mapping of the upper 

section of the Troodos ophiolite, Cyprus. Int. J. Earth Sci. 101, 1645–1660. 

https://doi.org/10.1007/s00531-011-0742-3 

Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G., 2020. A survey of deep 

learning techniques for autonomous driving. J. F. Robot. 37, 362–386. 

https://doi.org/10.1002/rob.21918 

Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., 

Blake, D.F., Conrad, P., Edgett, K.S., Ferdowski, B., Gellert, R., Gilbert, J.B., 

Golombek, M., Gómez-Elvira, J., Hassler, D.M., Jandura, L., Litvak, M., Mahaffy, P., 

Maki, J., Meyer, M., Malin, M.C., Mitrofanov, I., Simmonds, J.J., Vaniman, D., Welch, 

R. V, Wiens, R.C., 2012. Mars Science Laboratory Mission and Science 

Investigation. Space Sci. Rev. 170, 5–56. https://doi.org/10.1007/s11214-012-9892-2 



231 
 

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., 

Wang, G., Cai, J., Chen, T., 2018. Recent advances in convolutional neural 

networks. Pattern Recognit. 77, 354–377. 

https://doi.org/10.1016/j.patcog.2017.10.013 

Guyot, A., Hubert-Moy, L., Lorho, T., 2018. Detecting Neolithic Burial Mounds from 

LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning 

Techniques. Remote Sens. 10, 225. https://doi.org/10.3390/rs10020225 

Hackel, T., Savinov, N., Ladicky, L., Wegner, J.D., Schindler, K., Pollefeys, M., 

2017a. Semantic3d.net: A new large-scale point cloud classification benchmark. 

ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-1/W1, 91–98. 

https://doi.org/10.5194/isprs-annals-IV-1-W1-91-2017 

Hackel, T., Wegner, J.D., Schindler, K., 2017b. Joint classification and contour 

extraction of large 3D point clouds. ISPRS J. Photogramm. Remote Sens. 130, 231–

245. https://doi.org/10.1016/j.isprsjprs.2017.05.012 

Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Scoffier, M., Kavukcuoglu, K., Muller, 

U., LeCun, Y., 2009. Learning long-range vision for autonomous off-road driving. J. 

F. Robot. 26, 120–144. https://doi.org/10.1002/rob.20276 

Hamilton Jenkin, A.K., 1974. Mines of Devon Volume 1: The Southern Area. David 

and Charles (Holdings) Limited, Newton Abbot, UK. 

Hanan, N.P., Anchang, J.Y., 2020. Satellites could soon map every tree on Earth. 

Nature 587, 42–43. https://doi.org/10.1038/d41586-020-02830-3 

Hanke, K., Hiebel, G., Kovacs, K., Moser, M., 2009. Surveying and Geoinformation - 

Contributions To an Interdisciplinary Special Research Program on the History of 

Mining Activities, in: 22nd CIPA Symposium. Kyoto, Japan. 

Haslam, R., Howard, A.S., 2017. TELLUS How — an exemplar approach for end-

user innovation and follow up of a major NERC environmental survey project. 



232 
 

He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask R-CNN, in: 2017 IEEE 

International Conference on Computer Vision (ICCV). IEEE, pp. 2980–2988. 

https://doi.org/10.1109/ICCV.2017.322 

Hecht-Nielsen, R., 1992. Theory of the Backpropagation Neural Network, in: 

Wechsler, H. (Ed.), Neural Networks for Perception. Academic Press, pp. 65–93. 

Hesse, R., 2010. LiDAR-derived Local Relief Models - a new tool for archaeological 

prospection. Archaeol. Prospect. 17, 67–72. https://doi.org/10.1002/arp.374 

Hilson, G., 2002. The future of small-scale mining: environmental and socioeconomic 

perspectives. Futures 34, 863–872. https://doi.org/10.1016/S0016-3287(02)00044-7 

Hilson, G., 2001. A contextual review of the Ghanaian small-scale mining industry. 

Mining, Miner. Sustain. Dev. 29. 

Hilson, G., Gatsinzi, A., 2014. A rocky road ahead? Critical reflections on the futures 

of small-scale mining in sub-Saharan Africa. Futures 62, 1–9. 

https://doi.org/10.1016/j.futures.2014.05.006 

Hilson, G., Hilson, A., Adu-Darko, E., 2014. Chinese participation in Ghana’s 

informal gold mining economy: Drivers, implications and clarifications. J. Rural Stud. 

34, 292–303. https://doi.org/10.1016/j.jrurstud.2014.03.001 

Hilson, G., Maconachie, R., 2020. Artisanal and small-scale mining and the 

Sustainable Development Goals: Opportunities and new directions for sub-Saharan 

Africa. Geoforum 111, 125–141. https://doi.org/10.1016/j.geoforum.2019.09.006 

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., 

Vanhoucke, V., Nguyen, P., Sainath, T., Kingsbury, B., 2012. Deep Neural Networks 

for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research 

Groups. IEEE Signal Process. Mag. 29, 82–97. 

https://doi.org/10.1109/MSP.2012.2205597 

Hinton, G.E., 2012. A Practical Guide to Training Restricted Boltzmann Machines, in: 

Montavon, G., Orr, G.B., Müller, K.-R. (Eds.), Neural Networks: Tricks of the Trade. 

Springer, Berlin, Germany. 



233 
 

Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A Fast Learning Algorithm for Deep 

Belief Nets. Neural Comput. 18, 1527–1554. 

https://doi.org/10.1162/neco.2006.18.7.1527 

Historic England, 2018. Using Airborne Lidar in Archaeological Survey: The Light 

Fantastic. Swindon, UK. 

Hoek, E., Brown, E., 1982. Underground Excavations in Rock. Institution of Mining 

and Metallurgy, Boca Raton, FL, USA. 

Hoeser, T., Kuenzer, C., 2020. Object Detection and Image Segmentation with Deep 

Learning on Earth Observation Data: A Review-Part I: Evolution and Recent Trends. 

Remote Sens. 12, 1667. https://doi.org/10.3390/rs12101667 

Holmes, F., 2019. This AI Company Is The Future Of Gold Exploration [WWW 

Document]. Forbes. URL 

https://www.forbes.com/sites/greatspeculations/2019/02/11/this-ai-company-is-the-

future-of-gold-exploration/#57693c8b2ae3 

Hood, S.B., Cracknell, M.J., Gazley, M.F., Reading, A.M., 2019. Improved 

supervised classification of bedrock in areas of transported overburden: Applying 

domain expertise at Kerkasha, Eritrea. Appl. Comput. Geosci. 3–4, 100001. 

https://doi.org/10.1016/j.acags.2019.100001 

Hornik, K., 1991. Approximation capabilities of multilayer feedforward networks. 

Neural Networks 4, 251–257. https://doi.org/10.1016/0893-6080(91)90009-T 

Hough, P.V.C., 1962. Method and means for recognizing complex patterns. United 

States Patent No. 3069654 A. 

Howarth, K., Van Komen, D.F., Neilsen, T.B., Knobles, D.P., Dahl, P.H., Dall’Osto, 

D.R., 2019. Effect of signal to noise ratio on a convolutional neural network for 

source ranging and environmental classification. J. Acoust. Soc. Am. 146, 2961–

2962. https://doi.org/10.1121/1.5137292 

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 

2020. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds, 



234 
 

in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition 

(CVPR). IEEE, pp. 11105–11114. https://doi.org/10.1109/CVPR42600.2020.01112 

Hu, W., Wu, L., 2016. Ground deformation extraction using visible images and 

LiDAR data in mining area. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. 

Sci. XLI-B7, 505–512. https://doi.org/10.5194/isprs-archives-XLI-B7-505-2016 

Huang, C., Li, Y., Loy, C.C., Tang, X., 2016. Learning Deep Representation for 

Imbalanced Classification, in: 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR). IEEE, pp. 5375–5384. 

https://doi.org/10.1109/CVPR.2016.580 

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, 

Z., Song, Y., Guadarrama, S., Murphy, K., 2017. Speed/Accuracy Trade-Offs for 

Modern Convolutional Object Detectors, in: 2017 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). IEEE, pp. 3296–3297. 

https://doi.org/10.1109/CVPR.2017.351 

Huang, Z., Fu, H., Chen, W., Zhang, J., Huang, H., 2018. Damage detection and 

quantitative analysis of shield tunnel structure. Autom. Constr. 94, 303–316. 

https://doi.org/10.1016/j.autcon.2018.07.006 

Hubel, D.H., Wiesel, T.N., 1968. Receptive fields and functional architecture of 

monkey striate cortex. J. Physiol. 195, 215–243. 

https://doi.org/10.1113/jphysiol.1968.sp008455 

Hubel, D.H., Wiesel, T.N., 1959. Receptive fields of single neurones in the cat’s 

striate cortex. J. Physiol. 148, 574–591. 

https://doi.org/10.1113/jphysiol.1959.sp006308 

Humboldt State University, 2019. Introduction to Remote Sensing [WWW 

Document]. GSP 216. URL 

http://gsp.humboldt.edu/OLM/Courses/GSP_216_Online/lesson3-1/bands.html 

(accessed 6.30.20). 

Iglovikov, V., Mushinskiy, S., Osin, V., 2017. Satellite Imagery Feature Detection 

using Deep Convolutional Neural Network: A Kaggle Competition. arXiv Prepr. 



235 
 

Intergovernmental Forum on Mining Minerals Metals and Sustainable Development, 

2017. Global Trends in Artisanal and Small-Scale Mining (ASM): A review of key 

numbers and issues. Winnipeg, Canada. 

Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., Gloaguen, R., 2018. Drone-

Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the 

Sokolov Lignite District. Remote Sens. 10, 385. https://doi.org/10.3390/rs10030385 

Jacobson, N.P., Gupta, M.R., 2005. Design goals and solutions for display of 

hyperspectral images. IEEE Trans. Geosci. Remote Sens. 43, 2684–2692. 

https://doi.org/10.1109/TGRS.2005.857623 

Jain, V., Seung, H.S., 2008. Natural Image Denoising with Convolutional Networks, 

in: Proceedings of the 21st International Conference on Neural Information 

Processing Systems, NIPS’08. Curran Associates Inc., Red Hook, NY, USA, pp. 

769–776. 

Jensen, J.R., 2007. Remote Sensing of the Environment: An Earth Resource 

Perspective, 2nd ed. Pearson, London, UK. 

Jinfei Wang, Howarth, P.J., 1990. Use of the Hough transform in automated 

lineament. IEEE Trans. Geosci. Remote Sens. 28, 561–567. 

https://doi.org/10.1109/TGRS.1990.572949 

Justice, C., Townshend, J., 2002. Special issue on the moderate resolution imaging 

spectroradiometer (MODIS): a new generation of land surface monitoring. Remote 

Sens. Environ. 83, 1–2. https://doi.org/10.1016/S0034-4257(02)00083-4 

Jutzi, B., Gross, H., 2009. Nearest neighbour classification on laser point clouds to 

gain object structures from buildings, in: ISPRS Hannover Workshop 2009 High-

Resolution Earth Imaging for Geospatial Information. ISPRS, Hannover, Germany, p. 

6. 

Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement Learning: A 

Survey. J. Artif. Intell. Res. 4, 237–285. https://doi.org/10.1613/jair.301 



236 
 

Kalman, R.E., 1960. A New Approach to Linear Filtering and Prediction Problems. J. 

Basic Eng. 82, 35–45. https://doi.org/10.1115/1.3662552 

Karan, S.K., Samadder, S.R., Maiti, S.K., 2016. Assessment of the capability of 

remote sensing and GIS techniques for monitoring reclamation success in coal mine 

degraded lands. J. Environ. Manage. 182, 272–283. 

https://doi.org/10.1016/j.jenvman.2016.07.070 

Kelly, M., Blanchard, S.D., Kersten, E., Koy, K., 2011. Terrestrial Remotely Sensed 

Imagery in Support of Public Health: New Avenues of Research Using Object-Based 

Image Analysis. Remote Sens. 3, 2321–2345. https://doi.org/10.3390/rs3112321 

Kemker, R., Salvaggio, C., Kanan, C., 2018. Algorithms for semantic segmentation 

of multispectral remote sensing imagery using deep learning. ISPRS J. Photogramm. 

Remote Sens. 145, 60–77. https://doi.org/10.1016/j.isprsjprs.2018.04.014 

Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Möckel, R., Hödl, P., Booysen, R., 

Khodadadzadeh, M., Gloaguen, R., 2018. Integration of Terrestrial and Drone-Borne 

Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and 

Mining Monitoring. Remote Sens. 10, 1366. https://doi.org/10.3390/rs10091366 

Kogut, T., Weistock, M., 2019. Classifying airborne bathymetry data using the 

Random Forest algorithm. Remote Sens. Lett. 10, 874–882. 

https://doi.org/10.1080/2150704X.2019.1629710 

Kokalj, Ž., Hesse, R., 2017. Airborne laser scanning raster data visualization, 

Prostor, Kraj, Čas, Prostor, kraj, čas. ZRC SAZU, Založba ZRC, Ljubljana, Slovenia. 

https://doi.org/10.3986/9789612549848 

Kokalj, Ž., Somrak, M., 2019. Why Not a Single Image? Combining Visualizations to 

Facilitate Fieldwork and On-Screen Mapping. Remote Sens. 11, 747. 

https://doi.org/10.3390/rs11070747 

Konoplich, G. V, Putin, E.O., Filchenkov, A.A., 2016. Application of deep learning to 

the problem of vehicle detection in UAV images, in: 2016 XIX IEEE International 

Conference on Soft Computing and Measurements (SCM). IEEE, pp. 4–6. 

https://doi.org/10.1109/SCM.2016.7519666 



237 
 

Korosec, K., 2019. Uber unveils new Volvo self-driving vehicle in a step toward 

robotaxi service [WWW Document]. TechCrunch. URL 

https://techcrunch.com/2019/06/12/uber-unveils-new-volvo-self-driving-vehicle-in-a-

step-toward-robotaxi-

service/?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&gu

ce_referrer_sig=AQAAANMFgP7arLZO_Y6W5KVkJEe87FH7ESDXvbQoed-

FELH3T2TlSSLaQt5BzcCHl 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep 

convolutional neural networks, in: NIPS’12: Proceedings of the 25th International 

Conference on Neural Information Processing Systems. pp. 1097–1105. 

Kroupi, E., Kesa, M., Navarro-Sánchez, V.D., Saeed, S., Pelloquin, C., Alhaddad, B., 

Moreno, L., Soria-Frisch, A., Ruffini, G., 2019. Deep convolutional neural networks 

for land-cover classification with Sentinel-2 images. J. Appl. Remote Sens. 13, 1. 

https://doi.org/10.1117/1.JRS.13.024525 

Kumar, A., Sattigeri, P., Fletcher, P.T., 2017. Semi-Supervised Learning with GANs: 

Manifold Invariance with Improved Inference, in: Proceedings of the 31st 

International Conference on Neural Information Processing Systems, NIPS’17. 

Curran Associates Inc., Red Hook, NY, USA, pp. 5540–5550. 

Kusimi, J.M., 2008. Assessing land use and land cover change in the Wassa West 

District of Ghana using remote sensing. GeoJournal 71, 249–259. 

https://doi.org/10.1007/s10708-008-9172-6 

Labou, I., Benoit, M., Baratoux, L., Grégoire, M., Ndiaye, P.M., Thebaud, N., Béziat, 

D., Debat, P., 2020. Petrological and geochemical study of Birimian ultramafic rocks 

within the West African Craton: Insights from Mako (Senegal) and Loraboué (Burkina 

Faso) lherzolite/harzburgite/wehrlite associations. J. African Earth Sci. 162, 103677. 

https://doi.org/10.1016/j.jafrearsci.2019.103677 

Lafferty, J., Zhu, X., Liu, Y., 2004. Kernel conditional random fields, in: Twenty-First 

International Conference on Machine Learning - ICML ’04, ICML ’04. ACM Press, 

New York, New York, USA, p. 64. https://doi.org/10.1145/1015330.1015337 



238 
 

Landrieu, L., Mallet, C., Weinmann, M., 2017a. Comparison of belief propagation 

and graph-cut approaches for contextual classification of 3D lidar point cloud data, 

in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 

IEEE, pp. 2768–2771. https://doi.org/10.1109/IGARSS.2017.8127571 

Landrieu, L., Raguet, H., Vallet, B., Mallet, C., Weinmann, M., 2017b. A structured 

regularization framework for spatially smoothing semantic labelings of 3D point 

clouds. ISPRS J. Photogramm. Remote Sens. 132, 102–118. 

https://doi.org/10.1016/j.isprsjprs.2017.08.010 

Landrieu, L., Simonovsky, M., 2018. Large-Scale Point Cloud Semantic 

Segmentation with Superpoint Graphs, in: 2018 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition. IEEE, pp. 4558–4567. 

https://doi.org/10.1109/CVPR.2018.00479 

Latifovic, R., Pouliot, D., Campbell, J., 2018. Assessment of Convolution Neural 

Networks for Surficial Geology Mapping in the South Rae Geological Region, 

Northwest Territories, Canada. Remote Sens. 10, 307. 

https://doi.org/10.3390/rs10020307 

Lato, M., Diederichs, M.S., Hutchinson, D.J., Harrap, R., 2009. Optimization of 

LiDAR scanning and processing for automated structural evaluation of discontinuities 

in rockmasses. Int. J. Rock Mech. Min. Sci. 46, 194–199. 

https://doi.org/10.1016/j.ijrmms.2008.04.007 

LeCun, Y., 2019. Deep Learning Hardware: Past, Present, and Future, in: 2019 IEEE 

International Solid- State Circuits Conference - (ISSCC). IEEE, pp. 12–19. 

https://doi.org/10.1109/ISSCC.2019.8662396 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444. 

https://doi.org/10.1038/nature14539 

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., 

Jackel, L.D., 1989a. Backpropagation Applied to Handwritten Zip Code Recognition. 

Neural Comput. 1, 541–551. https://doi.org/10.1162/neco.1989.1.4.541 



239 
 

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., 

Jackel, L.D., 1989b. Handwritten digit recognition with a back-propagation network, 

in: NIPS’89: Proceedings of the 2nd International Conference on Neural Information 

Processing Systems. pp. 396–404. 

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-based learning applied 

to document recognition. Proc. IEEE 86, 2278–2324. 

https://doi.org/10.1109/5.726791 

Lee, S., Choi, Y., 2016. Reviews of unmanned aerial vehicle (drone) technology 

trends and its applications in the mining industry. Geosystem Eng. 19, 197–204. 

https://doi.org/10.1080/12269328.2016.1162115 

Lehtomäki, M., Jaakkola, A., Hyyppä, J., Kukko, A., Kaartinen, H., 2010. Detection of 

Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser 

Scanning Data. Remote Sens. 2, 641–664. https://doi.org/10.3390/rs2030641 

Lehtomaki, M., Jaakkola, A., Hyyppa, J., Lampinen, J., Kaartinen, H., Kukko, A., 

Puttonen, E., Hyyppa, H., 2016. Object Classification and Recognition From Mobile 

Laser Scanning Point Clouds in a Road Environment. IEEE Trans. Geosci. Remote 

Sens. 54, 1226–1239. https://doi.org/10.1109/TGRS.2015.2476502 

Leroux, L., Congedo, L., Bellón, B., Gaetano, R., Bégué, A., 2018. Land Cover 

Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A 

Northern Burkina Faso Case Study, in: QGIS and Applications in Agriculture and 

Forest. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 119–151. 

https://doi.org/10.1002/9781119457107.ch4 

Li, C.C., 2017. Principles of rockbolting design. J. Rock Mech. Geotech. Eng. 9, 

396–414. https://doi.org/10.1016/j.jrmge.2017.04.002 

Li, F.-F., Krishna, R., Xu, D., 2020. CS231n: Convolutional Neural Networks for 

Visual Recognition [WWW Document]. URL http://cs231n.stanford.edu/ (accessed 

1.11.21). 

Lillesand, T.M., Kiefer, R.W., Chipman, J.W., 2015. Remote Sensing and Image 

Interpretation, 7th ed. John Wiley & Sons, Hoboken, NJ, USA. 



240 
 

Lin, L.-H., Lawrence, P.D., Hall, R., 2013. Robust outdoor stereo vision SLAM for 

heavy machine rotation sensing. Mach. Vis. Appl. 24, 205–226. 

https://doi.org/10.1007/s00138-011-0380-6 

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., 

Zitnick, C.L., 2014. Microsoft COCO: Common Objects in Context, in: Fleet, D., 

Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). Springer International Publishing, Cham, Switzerland, pp. 740–755. 

https://doi.org/10.1007/978-3-319-10602-1_48 

Linder, W., 2014. Digital Photogrammetry: Theory and Applications. Springer, Berlin, 

Germany. 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. 

SSD: Single Shot MultiBox Detector, in: Leibe, B., Matas, J., Sebe, N., Welling, M. 

(Eds.), Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer 

Science. Springer International Publishing, Cham, Switzerland, pp. 21–37. 

https://doi.org/10.1007/978-3-319-46448-0_2 

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E., 2017. A survey of deep 

neural network architectures and their applications. Neurocomputing 234, 11–26. 

https://doi.org/10.1016/j.neucom.2016.12.038 

Liu, X., Wang, H., Jing, H., Shao, A., Wang, L., 2020. Research on Intelligent 

Identification of Rock Types Based on Faster R-CNN Method. IEEE Access 8, 

21804–21812. https://doi.org/10.1109/ACCESS.2020.2968515 

Lobo, F. de L., Souza-Filho, P.W.M., Novo, E.M.L. de M., Carlos, F.M., Barbosa, 

C.C.F., 2018. Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 

Imagery (2017). Remote Sens. 10, 1178. https://doi.org/10.3390/rs10081178 

Long, N.Q., Buczek, M.M., Hien, L.P., Szlapińska, S.A., Nam, B.X., Nghia, N.V., 

Cuong, C.X., 2018. Accuracy assessment of mine walls’ surface models derived 

from terrestrial laser scanning. Int. J. Coal Sci. Technol. 5, 328–338. 

https://doi.org/10.1007/s40789-018-0218-1 



241 
 

Luhmann, T., Robson, S., Kyle, S., Boehm, J., 2014. Close-Range Photogrammetry 

and 3D Imaging, 2nd ed. Walter de Gruyter, Berlin, Germany. 

Maennling, N., Toledano, P., 2019. Seven trends shaping the future of the mining 

and metals industry [WWW Document]. World Econ. Forum. URL 

https://www.weforum.org/agenda/2019/03/seven-trends-shaping-the-future-of-the-

mining-and-metals-sector/ (accessed 1.11.21). 

Majurski, M., Manescu, P., Padi, S., Schaub, N., Hotaling, N., Simon, C., Bajcsy, P., 

2019. Cell Image Segmentation Using Generative Adversarial Networks, Transfer 

Learning, and Augmentations, in: 2019 IEEE/CVF Conference on Computer Vision 

and Pattern Recognition Workshops (CVPRW). IEEE, pp. 1114–1122. 

https://doi.org/10.1109/CVPRW.2019.00145 

Mallast, U., Gloaguen, R., Geyer, S., Rödiger, T., Siebert, C., 2011. Semi-automatic 

extraction of lineaments from remote sensing data and the derivation of groundwater 

flow-paths. Hydrol. Earth Syst. Sci. Discuss. 8, 1399–1431. 

https://doi.org/10.5194/hessd-8-1399-2011 

Marshall, J.A., Bonchis, A., Nebot, E., Scheding, S., 2016. Robotics in Mining, in: 

Siciliano, B., Khatib, O. (Eds.), Springer Handbook of Robotics. Springer 

International Publishing, Cham, Switzerland, pp. 1549–1572. 

Martin, P.G., Payton, O.D., Fardoulis, J.S., Richards, D.A., Scott, T.B., 2015. The 

use of unmanned aerial systems for the mapping of legacy uranium mines. J. 

Environ. Radioact. 143, 135–140. https://doi.org/10.1016/j.jenvrad.2015.02.004 

Martínez-Sánchez, J., Puente, I., GonzálezJorge, H., Riveiro, B., Arias, P., 2016. 

Automatic thickness and volume estimation of sprayed concrete on anchored 

retaining walls from terrestrial LiDAR data. ISPRS - Int. Arch. Photogramm. Remote 

Sens. Spat. Inf. Sci. XLI-B5, 521–526. https://doi.org/10.5194/isprsarchives-XLI-B5-

521-2016 

Masoud, A., Koike, K., 2017. Applicability of computer-aided comprehensive tool 

(LINDA: LINeament Detection and Analysis) and shaded digital elevation model for 



242 
 

characterizing and interpreting morphotectonic features from lineaments. Comput. 

Geosci. 106, 89–100. https://doi.org/10.1016/j.cageo.2017.06.006 

MathWorks, 2019. Semantic Segmentation of Multispectral Images Using Deep 

Learning [WWW Document]. R2019b Doc. Examples. URL 

https://uk.mathworks.com/help/images/multispectral-semantic-segmentation-using-

deep-learning.html (accessed 1.11.21). 

Maturana, D., Scherer, S., 2015. VoxNet: A 3D Convolutional Neural Network for 

real-time object recognition, in: 2015 IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS). IEEE, pp. 922–928. 

https://doi.org/10.1109/IROS.2015.7353481 

Maxwell, A.E., Pourmohammadi, P., Poyner, J.D., 2020. Mapping the Topographic 

Features of Mining-Related Valley Fills Using Mask R-CNN Deep Learning and 

Digital Elevation Data. Remote Sens. 12, 547. https://doi.org/10.3390/rs12030547 

Maxwell, A.E., Warner, T.A., Strager, M.P., Pal, M., 2014. Combining RapidEye 

Satellite Imagery and Lidar for Mapping of Mining and Mine Reclamation. 

Photogramm. Eng. Remote Sens. 80, 179–189. 

https://doi.org/10.14358/PERS.80.2.179-189 

McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in 

nervous activity. Bull. Math. Biophys. 5, 115–133. 

https://doi.org/10.1007/BF02478259 

Mcdonald, J., 2013. New Data and Techniques for Evaluating Subsidence from 

Abandoned Underground Mines in Ohio, in: American Association of Petroleum 

Geologists Annual Conference and Exhibition. Pittsburgh, PA, USA. 

Mcdonald, J., 2011. Mapping Abandoned Mines Using Imagery and LiDAR from the 

Ohio Statewide Imagery Program, in: Digital Mapping Techniques ’11Affiliation: 

Association of American State Geologists and the U.S. Geological Survey. 

McGlone, J.C., Mikhail, E.M., Bethel, J.S., Mullen, R., 2004. Manual of 

photogrammetry. 



243 
 

McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Wang, L., Elder, 

J.H., 2013. Using Video Acquired from an Unmanned Aerial Vehicle (UAV) to 

Measure Fracture Orientation in an Open-Pit Mine. Geomatica 67, 173–180. 

https://doi.org/10.5623/cig2013-036 

McQuilken, J., Garvin, H., 2016. Artisanal and small-scale gold mining in Ghana. 

Evidence to inform an ‘action dialogue,’ International Institute for Environment and 

Development. London, UK. 

Mcquillan, A., 2013. Comparison of photogrammetry and survey laser scanning 

output data for use in mapping joints in open cut highwalls, in: 13th Coal Operators’ 

Conference. The Australasian Institute of Mining and Metallurgy & Mine Managers 

Association of Australia, Wollongong, Australia, pp. 347–354. 

Middleton, M., Schnur, T., Sorjonen-Ward, P., Hyvönen, E., 2015. Geological 

lineament interpretation using the object-based image analysis approach: results of 

semi-automated analyses versus visual interpretation, in: Novel Technologies for 

Greenfield Exploration. Geological Survey of Finland, pp. 135–154. 

Ministry of Lands and Natural Resources, 2019. Government committed to the fight 

against illegal mining [WWW Document]. Online Artic. URL 

http://mlnr.gov.gh/index.php/government-committed-to-the-fight-against-illegal-

mining/ (accessed 2.9.20). 

Minsky, M., Papert, S., 1969. Perceptrons., Perceptrons. M.I.T. Press, Oxford,  

England. 

Monsalve, J.J., Baggett, J., Bishop, R., Ripepi, N., 2019. Application of laser 

scanning for rock mass characterization and discrete fracture network generation in 

an underground limestone mine. Int. J. Min. Sci. Technol. 29, 131–137. 

https://doi.org/10.1016/j.ijmst.2018.11.009 

Moore, K., 2019. Goldcorp and IBM pioneer orebody discovery and predictability 

solution [WWW Document]. MiningWorld Mag. URL http://miningworld.com/goldcorp-

and-ibm-pioneer-orebody-discovery-and-predictability-solution/ (accessed 1.12.21). 



244 
 

Moraes, R., Valiati, J.F., Gavião Neto, W.P., 2013. Document-level sentiment 

classification: An empirical comparison between SVM and ANN. Expert Syst. Appl. 

40, 621–633. https://doi.org/10.1016/j.eswa.2012.07.059 

Moudrý, V., Gdulová, K., Fogl, M., Klápště, P., Urban, R., Komárek, J., Moudrá, L., 

Štroner, M., Barták, V., Solský, M., 2019. Comparison of leaf-off and leaf-on 

combined UAV imagery and airborne LiDAR for assessment of a post-mining site 

terrain and vegetation structure: Prospects for monitoring hazards and restoration 

success. Appl. Geogr. 104, 32–41. https://doi.org/10.1016/j.apgeog.2019.02.002 

MXNet, 2020. Data Augmentation with Masks [WWW Document]. MXNet Tutorials. 

URL 

https://mxnet.apache.org/versions/1.2.1/tutorials/python/data_augmentation_with_m

asks.html (accessed 9.1.20). 

Munappy, A., Bosch, J., Olsson, H.H., Arpteg, A., Brinne, B., 2019. Data 

Management Challenges for Deep Learning, in: 2019 45th Euromicro Conference on 

Software Engineering and Advanced Applications (SEAA). pp. 140–147. 

https://doi.org/10.1109/SEAA.2019.00030 

Naprstek, T., 2020. New Methods for the Interpolation and Interpretation of 

Lineaments in Aeromagnetic Data. Laurentian Université. 

Newman, P., 2010. Environment, Antecedent and Adventure: Tin and Copper Mining 

on Dartmoor, Devon, c.1700-1914. University of Leicester. 

Ng, A., 2017. Improving Deep Neural Networks: Hyperparameter tuning, 

Regularization and Optimization [WWW Document]. URL 

https://www.coursera.org/learn/deep-neural-network/home/welcome (accessed 

1.12.21). 

Nielsen, M.A., 2015. Neural Networks and Deep Learning. Determination Press. 

Niemeyer, J., Rottensteiner, F., Soergel, U., 2014. Contextual classification of lidar 

data and building object detection in urban areas. ISPRS J. Photogramm. Remote 

Sens. 87, 152–165. https://doi.org/10.1016/j.isprsjprs.2013.11.001 



245 
 

Nogueira, K., Penatti, O.A.B., dos Santos, J.A., 2017. Towards better exploiting 

convolutional neural networks for remote sensing scene classification. Pattern 

Recognit. 61, 539–556. https://doi.org/10.1016/j.patcog.2016.07.001 

Northern Mine Research Society, 1980. British Mining Vol 13: The Mines of 

Grassington Moor. Northern Mine Research Society, Sheffield, UK. 

Nuijten, R.J.G., Kooistra, L., De Deyn, G.B., 2019. Using Unmanned Aerial Systems 

(UAS) and Object-Based Image Analysis (OBIA) for Measuring Plant-Soil Feedback 

Effects on Crop Productivity. Drones 3, 54. https://doi.org/10.3390/drones3030054 

Nygren, P., Jasinski, M., 2016. A Comparative Study of Segmentation and 

Classification Methods for 3D Point Clouds. University of Gothenburg. 

O’Leary, D.W., Friedman, J.D., Pohn, H.A., 1976. Lineament, linear, lineation: Some 

proposed new standards for old terms. Geol. Soc. Am. Bull. 87, 1463. 

Öberg, F., 2013. Method and system for monitoring and documenting installation of 

rock reinforcement bolt. United States Patent No. 8606542 B2. 

Obodai, J., Adjei, K.A., Odai, S.N., Lumor, M., 2019. Land use/land cover dynamics 

using landsat data in a gold mining basin-the Ankobra, Ghana. Remote Sens. Appl. 

Soc. Environ. 13, 247–256. https://doi.org/10.1016/j.rsase.2018.10.007 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., Wulder, 

M.A., 2014. Good practices for estimating area and assessing accuracy of land 

change. Remote Sens. Environ. 148, 42–57. 

https://doi.org/10.1016/j.rse.2014.02.015 

Onederra, I., Thurley, M.J., Catalan, A., 2015a. Measuring blast fragmentation at 

Esperanza mine using high-resolution 3D laser scanning. Min. Technol. 124, 34–36. 

https://doi.org/10.1179/1743286314Y.0000000076 

Onederra, I., Thurley, M.J., Catalan, A., 2015b. Measuring blast fragmentation at 

Esperanza mine using high-resolution 3D laser scanning. Min. Technol. 124, 34–36. 

https://doi.org/10.1179/1743286314Y.0000000076 



246 
 

Owusu-Nimo, F., Mantey, J., Nyarko, K.B., Appiah-Effah, E., Aubynn, A., 2018. 

Spatial distribution patterns of illegal artisanal small scale gold mining (Galamsey) 

operations in Ghana: A focus on the Western Region. Heliyon 4, e00534. 

https://doi.org/10.1016/j.heliyon.2018.e00534 

Owusu, K., Emmanuel, A.K., Musah-Surugu, I.J., Yankson, P.W.K., 2019. The 

effects of 2015 El Nino on smallholder maize production in the transitional ecological 

zone of Ghana. Int. J. Clim. Chang. Strateg. Manag. 11, 609–621. 

https://doi.org/10.1108/IJCCSM-02-2018-0014 

Padró, J.-C., Carabassa, V., Balagué, J., Brotons, L., Alcañiz, J.M., Pons, X., 2019. 

Monitoring opencast mine restorations using Unmanned Aerial System (UAS) 

imagery. Sci. Total Environ. 657, 1602–1614. 

https://doi.org/10.1016/j.scitotenv.2018.12.156 

Pal, M., 2005. Random forest classifier for remote sensing classification. Int. J. 

Remote Sens. 26, 217–222. https://doi.org/10.1080/01431160412331269698 

Palafox, L.F., Hamilton, C.W., Scheidt, S.P., Alvarez, A.M., 2017. Automated 

detection of geological landforms on Mars using Convolutional Neural Networks. 

Comput. Geosci. 101, 48–56. https://doi.org/10.1016/j.cageo.2016.12.015 

Palamara, D.R., Nicholson, M., Flentje, P., Baafi, E., Brassington, G.M., 2007. An 

evaluation of airborne laser scan data for coalmine subsidence mapping. Int. J. 

Remote Sens. 28, 3181–3203. https://doi.org/10.1080/01431160600993439 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., 

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., 2019. PyTorch: An Imperative 

Style, High-Performance Deep Learning Library, in: Advances in Neural Information 

Processing Systems 32. pp. 8024–8035. 

Pauly, M., Keiser, R., Gross, M., 2003. Multi-scale Feature Extraction on Point-

Sampled Surfaces. Comput. Graph. Forum 22, 281–289. 

https://doi.org/10.1111/1467-8659.00675 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 



247 
 

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine 

Learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicre, C., Dedieu, G., 

2017. Effect of Training Class Label Noise on Classification Performances for Land 

Cover Mapping with Satellite Image Time Series. Remote Sens. 9, 173. 

https://doi.org/10.3390/rs9020173 

Peng, D., Zhang, Y., Guan, H., 2019. End-to-End Change Detection for High 

Resolution Satellite Images Using Improved UNet++. Remote Sens. 11, 1382. 

https://doi.org/10.3390/rs11111382 

Pires de Lima, R., Duarte, D., Nicholson, C., Slatt, R., Marfurt, K.J., 2020. 

Petrographic microfacies classification with deep convolutional neural networks. 

Comput. Geosci. 142, 104481. https://doi.org/10.1016/j.cageo.2020.104481 

Price, R., Cornelius, M., Burnside, L., Miller, B., 2020. Mine Planning and Selection 

of Autonomous Trucks, in: Topal, E. (Ed.), 28th International Symposium on Mine 

Planning and Equipment Selection - MPES 2019. Springer International Publishing, 

Cham, Switzerland, pp. 203–212. https://doi.org/10.1007/978-3-030-33954-8_26 

Prno, J., Scott Slocombe, D., 2012. Exploring the origins of ‘social license to operate’ 

in the mining sector: Perspectives from governance and sustainability theories. 

Resour. Policy 37, 346–357. https://doi.org/10.1016/j.resourpol.2012.04.002 

Procopio, M.J., Mulligan, J., Grudic, G., 2009. Learning terrain segmentation with 

classifier ensembles for autonomous robot navigation in unstructured environments. 

J. F. Robot. 26, 145–175. https://doi.org/10.1002/rob.20279 

Puente, I., González-Jorge, H., Martínez-Sánchez, J., Arias, P., 2013. Review of 

mobile mapping and surveying technologies. Measurement 46, 2127–2145. 

https://doi.org/10.1016/j.measurement.2013.03.006 

Python 3.6.7, 2019. 

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. PointNet++: Deep hierarchical feature 

learning on point sets in a metric space, in: Luxburg, U. Von, Guyon, I.M., Bengio, 



248 
 

S., Wallach, H.M., Fergus, R. (Eds.), NIPS’17: Proceedings of the 31st International 

Conference on Neural Information Processing Systems. Curran Associates, Red 

Hook, NY, USA, pp. 5105–5114. 

Rahnama, M., Gloaguen, R., 2014. TecLines: A MATLAB-Based Toolbox for 

Tectonic Lineament Analysis from Satellite Images and DEMs, Part 2: Line 

Segments Linking and Merging. Remote Sens. 6, 11468–11493. 

https://doi.org/10.3390/rs61111468 

Raina, R., Madhavan, A., Ng, A.Y., 2009. Large-scale deep unsupervised learning 

using graphics processors, in: 26th Annual International Conference on Machine 

Learning - ICML ’09. ACM Press, New York, New York, USA, pp. 1–8. 

https://doi.org/10.1145/1553374.1553486 

Rajaee, M., Obiri, S., Green, A., Long, R., Cobbina, S., Nartey, V., Buck, D., Antwi, 

E., Basu, N., 2015. Integrated Assessment of Artisanal and Small-Scale Gold Mining 

in Ghana—Part 2: Natural Sciences Review. Int. J. Environ. Res. Public Health 12, 

8971–9011. https://doi.org/10.3390/ijerph120808971 

Ramezani, M., Nouranian, S., Bell, I., Sameti, B., Tafazoli, S., 2017. Fast Rock 

Segmentation Using Artificial Intelligence to Approach Human-Level Accuracy. J. 

Explos. Eng. 

Rau, J.Y., Jhan, J.P., Hsu, Y.C., 2015. Analysis of oblique aerial images for land 

cover and point cloud classification in an Urban environment. IEEE Trans. Geosci. 

Remote Sens. 53, 1304–1319. https://doi.org/10.1109/TGRS.2014.2337658 

Rauhala, A., Tuomela, A., Davids, C., Rossi, P., 2017. UAV Remote Sensing 

Surveillance of a Mine Tailings Impoundment in Sub-Arctic Conditions. Remote 

Sens. 9, 1318. https://doi.org/10.3390/rs9121318 

Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S., 2014. CNN Features Off-the-

Shelf: An Astounding Baseline for Recognition, in: 2014 IEEE Conference on 

Computer Vision and Pattern Recognition Workshops. IEEE, pp. 512–519. 

https://doi.org/10.1109/CVPRW.2014.131 



249 
 

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: 

Unified, Real-Time Object Detection, in: 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). IEEE, pp. 779–788. 

https://doi.org/10.1109/CVPR.2016.91 

Redmon, J., Farhadi, A., 2017. YOLO9000: Better, Faster, Stronger, in: 2017 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 6517–

6525. https://doi.org/10.1109/CVPR.2017.690 

Relief Visualisation Toolbox (RVT), n.d. 

Ren, S., He, K., Girshick, R., Sun, J., 2017. Faster R-CNN: Towards Real-Time 

Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. 

Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 

Ren, Y., Zhu, C., Xiao, S., 2018. Small Object Detection in Optical Remote Sensing 

Images via Modified Faster R-CNN. Appl. Sci. 8, 813. 

https://doi.org/10.3390/app8050813 

Richardson, P.H.G., 1992. British Mining Vol. 44: Mines of Dartmoor and the Tamar 

Valley. Sheffield, UK. 

Riegler, G., Ulusoy, A.O., Geiger, A., 2017. OctNet: Learning Deep 3D 

Representations at High Resolutions, in: 2017 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR). IEEE, pp. 6620–6629. 

https://doi.org/10.1109/CVPR.2017.701 

Rodner, E., Simon, M., Fisher, R., Denzler, J., 2016. Fine-grained Recognition in the 

Noisy Wild: Sensitivity Analysis of Convolutional Neural Networks Approaches, in: 

Procedings of the British Machine Vision Conference 2016. British Machine Vision 

Association, pp. 60.1-60.13. https://doi.org/10.5244/C.30.60 

Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M., 

2015. Machine learning predictive models for mineral prospectivity: An evaluation of 

neural networks, random forest, regression trees and support vector machines. Ore 

Geol. Rev. 71, 804–818. https://doi.org/10.1016/j.oregeorev.2015.01.001 



250 
 

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for 

Biomedical Image Segmentation, in: Navab, N., Hornegger, J., Wells, W.M., Frangi, 

A.F. (Eds.), Medical Image Computing and Computer-Assisted Intervention – 

MICCAI 2015. Springer International Publishing, Cham, Switzerland, pp. 234–241. 

https://doi.org/10.1007/978-3-319-24574-4_28 

Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage 

and organization in the brain. Psychol. Rev. 65, 386–408. 

https://doi.org/10.1037/h0042519 

Rosser, N., Lim, M., Petley, D., Dunning, S., Allison, R., 2007. Patterns of precursory 

rockfall prior to slope failure. J. Geophys. Res. 112, F04014. 

https://doi.org/10.1029/2006JF000642 

Rowe, T.P., Foster, C.L.N., 1887. Observations on Balleswidden Mine. Trans. R. 

Geol. Soc. Cornwall x. 

Ruff, T.M., 2004. Advances in proximity detection technologies for surface mining 

equipment, in: 34th Annual Institute on Mining Health, Health, Safety and Research. 

Salt Lake City, UT, USA. 

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by 

back-propagating errors. Nature 323, 533–536. https://doi.org/10.1038/323533a0 

Rumelhart, D.E., McClelland, J.L., 1986. Parallel Distributed Processing: 

Explorations in the Microstructure of Cognition, Vol. 1: Foundations. MIT Press, 

Cambridge, MA, USA. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., 

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet 

Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115, 211–252. 

https://doi.org/10.1007/s11263-015-0816-y 

Rusu, R.B., 2010. Semantic 3D Object Maps for Everyday Manipulation in Human 

Living Environments. KI - Künstliche Intelligenz 24, 345–348. 

https://doi.org/10.1007/s13218-010-0059-6 



251 
 

Rusu, R.B., Blodow, N., Beetz, M., 2009. Fast Point Feature Histograms (FPFH) for 

3D registration, in: 2009 IEEE International Conference on Robotics and Automation. 

IEEE, pp. 3212–3217. https://doi.org/10.1109/ROBOT.2009.5152473 

Rusu, R.B., Cousins, S., 2011. 3D is here: Point Cloud Library (PCL), in: 2011 IEEE 

International Conference on Robotics and Automation. IEEE, pp. 1–4. 

https://doi.org/10.1109/ICRA.2011.5980567 

Samuel, A.L., 1959. Some Studies in Machine Learning Using the Game of 

Checkers. IBM J. Res. Dev. 3, 210–229. https://doi.org/10.1147/rd.33.0210 

Sapling Learning, 2015. Electromagnetic Spectrum [WWW Document]. Chempendix. 

URL https://sites.google.com/site/chempendix/em-spectrum (accessed 8.5.20). 

Sayab, M., Aerden, D., Paananen, M., Saarela, P., 2018. Virtual Structural Analysis 

of Jokisivu Open Pit Using ‘Structure-from-Motion’ Unmanned Aerial Vehicles (UAV) 

Photogrammetry: Implications for Structurally-Controlled Gold Deposits in Southwest 

Finland. Remote Sens. 10, 1296. https://doi.org/10.3390/rs10081296 

Schach, R., Garshol, K., Heltzen, A.M., 1979. Rock Bolting - A Practical Handbook. 

Pergamon Press, Oxford. 

Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X., 2017. DBSCAN Revisited, 

Revisited. ACM Trans. Database Syst. 42, 1–21. https://doi.org/10.1145/3068335 

Schuegraf, P., Bittner, K., 2019. Automatic Building Footprint Extraction from Multi-

Resolution Remote Sensing Images Using a Hybrid FCN. ISPRS Int. J. Geo-

Information 8, 191. https://doi.org/10.3390/ijgi8040191 

Scrivener, R.C., 2006. Cornubian granites and mineralization of SW England, in: The 

Geology of England and Wales. The Geological Society of London, pp. 257–267. 

https://doi.org/10.1144/GOEWP.11 

Sevara, C., Pregesbauer, M., Doneus, M., Verhoeven, G., Trinks, I., 2016. Pixel 

versus object — A comparison of strategies for the semi-automated mapping of 

archaeological features using airborne laser scanning data. J. Archaeol. Sci. Reports 

5, 485–498. https://doi.org/10.1016/j.jasrep.2015.12.023 



252 
 

Shao, X., Zhu, H., Guo, D., Zheng, R., Wei, J., 2020. Research on Detection of 

Large Coal Blockage at the Transfer Point of Belt Conveyor Based on Improved 

Mask R-CNN. IOP Conf. Ser. Earth Environ. Sci. 440, 052028. 

https://doi.org/10.1088/1755-1315/440/5/052028 

Shariati, H., Yeraliyev, A., Terai, B., Tafazoli, S., Ramezani, M., 2019. Towards 

autonomous mining via intelligent excavators. 2019 IEEE Conf. Comput. Vis. Pattern 

Recognit. 26–32. 

Shelhamer, E., Long, J., Darrell, T., 2017. Fully Convolutional Networks for Semantic 

Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 640–651. 

https://doi.org/10.1109/TPAMI.2016.2572683 

Shendryk, Y., Rist, Y., Ticehurst, C., Thorburn, P., 2019. Deep learning for multi-

modal classification of cloud, shadow and land cover scenes in PlanetScope and 

Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 157, 124–136. 

https://doi.org/10.1016/j.isprsjprs.2019.08.018 

Shorten, C., Khoshgoftaar, T.M., 2019. A survey on Image Data Augmentation for 

Deep Learning. J. Big Data 6, 60. https://doi.org/10.1186/s40537-019-0197-0 

Signoroni, A., Savardi, M., Baronio, A., Benini, S., 2019. Deep Learning Meets 

Hyperspectral Image Analysis: A Multidisciplinary Review. J. Imaging 5, 52. 

https://doi.org/10.3390/jimaging5050052 

Silburt, A., Ali-Dib, M., Zhu, C., Jackson, A., Valencia, D., Kissin, Y., Tamayo, D., 

Menou, K., 2019. Lunar crater identification via deep learning. Icarus 317, 27–38. 

https://doi.org/10.1016/j.icarus.2018.06.022 

Šilhavý, J., Minár, J., Mentlík, P., Sládek, J., 2016. A new artefacts resistant method 

for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering 

(MHHC). Comput. Geosci. 92, 9–20. https://doi.org/10.1016/j.cageo.2016.03.015 

Simic Milas, A., Cracknell, A.P., Warner, T.A., 2018. Drones – the third generation 

source of remote sensing data. Int. J. Remote Sens. 39, 7125–7137. 

https://doi.org/10.1080/01431161.2018.1523832 



253 
 

Simons, B., Shail, R.K., Andersen, J.C.Ø., 2016. The petrogenesis of the Early 

Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional 

peraluminous magmatism in the Rhenohercynian Zone of SW England. Lithos 260, 

76–94. https://doi.org/10.1016/j.lithos.2016.05.010 

Snapir, B., Simms, D.M., Waine, T.W., 2017. Mapping the expansion of galamsey 

gold mines in the cocoa growing area of Ghana using optical remote sensing. Int. J. 

Appl. Earth Obs. Geoinf. 58, 225–233. https://doi.org/10.1016/j.jag.2017.02.009 

Soilán, M., Riveiro, B., Martínez-Sánchez, J., Arias, P., 2017. Segmentation and 

classification of road markings using MLS data. ISPRS J. Photogramm. Remote 

Sens. 123, 94–103. https://doi.org/10.1016/j.isprsjprs.2016.11.011 

Soilán, Sánchez-Rodríguez, Río-Barral, Perez-Collazo, Arias, Riveiro, 2019. Review 

of Laser Scanning Technologies and Their Applications for Road and Railway 

Infrastructure Monitoring. Infrastructures 4, 58. 

https://doi.org/10.3390/infrastructures4040058 

Somua-Gyimah, G., Frimpong, S., Nyaaba, W., Gbadam, E., 2019. A computer 

vision system for terrain recognition and object detection tasks in mining and 

construction environments, in: 2019 SME Annual Conference and Expo and CMA 

121st National Western Mining Conference. Society for Mining, Metallurgy and 

Exploration (SME), Denver, CO, USA. 

Soto-Pinto, C., Arellano-Baeza, A., Sánchez, G., 2013. A new code for automatic 

detection and analysis of the lineament patterns for geophysical and geological 

purposes (ADALGEO). Comput. Geosci. 57, 93–103. 

https://doi.org/10.1016/j.cageo.2013.03.019 

Souza-Filho, P., Nascimento, W., Santos, D., Weber, E., Silva, R., Siqueira, J., 2018. 

A GEOBIA Approach for Multitemporal Land-Cover and Land-Use Change Analysis 

in a Tropical Watershed in the Southeastern Amazon. Remote Sens. 10, 1683. 

https://doi.org/10.3390/rs10111683 



254 
 

Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. 

Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. 

Res. 15, 1929–1958. 

Stewart, P., 2018. Automated, Real Time Processing, Analysis, Mapping and 

Reporting of Data for the Detection of Geotechnical Features. Australia Patent No. 

201180 A1. 

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., Zeileis, A., 2008. Conditional 

variable importance for random forests. BMC Bioinformatics 9, 307. 

https://doi.org/10.1186/1471-2105-9-307 

Sturzenegger, M., Stead, D., 2009. Close-range terrestrial digital photogrammetry 

and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng. 

Geol. 106, 163–182. https://doi.org/10.1016/j.enggeo.2009.03.004 

Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-view Convolutional 

Neural Networks for 3D Shape Recognition. https://doi.org/10.1109/ICCV.2015.114 

Sun, T., Li, H., Wu, K., Chen, F., Zhu, Z., Hu, Z., 2020. Data-Driven Predictive 

Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning 

Methods: A Case Study from Southern Jiangxi Province, China. Minerals 10, 102. 

https://doi.org/10.3390/min10020102 

Sun, Y., Zhang, X., Xin, Q., Huang, J., 2018. Developing a multi-filter convolutional 

neural network for semantic segmentation using high-resolution aerial imagery and 

LiDAR data. ISPRS J. Photogramm. Remote Sens. 143, 3–14. 

https://doi.org/10.1016/j.isprsjprs.2018.06.005 

Sunderhauf, N., Shirazi, S., Dayoub, F., Upcroft, B., Milford, M., 2015. On the 

performance of ConvNet features for place recognition, in: 2015 IEEE/RSJ 

International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 

4297–4304. https://doi.org/10.1109/IROS.2015.7353986 

Szegedy, C., Wei Liu, Yangqing Jia, Sermanet, P., Reed, S., Anguelov, D., Erhan, 

D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions, in: 2015 



255 
 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9. 

https://doi.org/10.1109/CVPR.2015.7298594 

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the 

Inception Architecture for Computer Vision, in: 2016 IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). IEEE, pp. 2818–2826. 

https://doi.org/10.1109/CVPR.2016.308 

Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X., 2020. 

Embracing imperfect datasets: A review of deep learning solutions for medical image 

segmentation. Med. Image Anal. 63, 101693. 

https://doi.org/10.1016/j.media.2020.101693 

Tan, K., Cheng, X., Ju, Q., Wu, S., 2016. Correction of Mobile TLS Intensity Data for 

Water Leakage Spots Detection in Metro Tunnels. IEEE Geosci. Remote Sens. Lett. 

13, 1711–1715. https://doi.org/10.1109/LGRS.2016.2605158 

Tang, J., Deng, C., Huang, G.-B., Zhao, B., 2015. Compressed-Domain Ship 

Detection on Spaceborne Optical Image Using Deep Neural Network and Extreme 

Learning Machine. IEEE Trans. Geosci. Remote Sens. 53, 1174–1185. 

https://doi.org/10.1109/TGRS.2014.2335751 

Taravat, A., Del Frate, F., Cornaro, C., Vergari, S., 2015. Neural Networks and 

Support Vector Machine Algorithms for Automatic Cloud Classification of Whole-Sky 

Ground-Based Images. IEEE Geosci. Remote Sens. Lett. 12, 666–670. 

https://doi.org/10.1109/LGRS.2014.2356616 

Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S., 2017. SEGCloud: 

Semantic Segmentation of 3D Point Clouds, in: 2017 International Conference on 3D 

Vision (3DV). IEEE, pp. 537–547. https://doi.org/10.1109/3DV.2017.00067 

Teledyne Optech, 2020. Lynx Camera Solutions [WWW Document]. URL 

https://www.teledyneoptech.com/en/products/mobile-survey/lynx-cameras/ 

(accessed 8.5.20). 



256 
 

Telmer, K., Stapper, D., 2007. Evaluating and Monitoring Small Scale Gold Mining 

and Mercury Use: Building a Knowledge-base with Satelite Imagery and Field Work. 

Victoria, Canada. 

The MathWorks, 2020. MATLAB Deep Learning Toolkit. 

Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F., Guibas, L., 

2019. KPConv: Flexible and Deformable Convolution for Point Clouds, in: 2019 

IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, pp. 6410–

6419. https://doi.org/10.1109/ICCV.2019.00651 

Thurley, M.J., 2013. Automated Image Segmentation and Analysis of Rock Piles in 

an Open-Pit Mine, in: 2013 International Conference on Digital Image Computing: 

Techniques and Applications (DICTA). IEEE, pp. 1–8. 

https://doi.org/10.1109/DICTA.2013.6691484 

Thurley, M.J., Ng, K.C., 2008. Identification and sizing of the entirely visible rocks 

from a 3D surface data segmentation of laboratory rock piles. Comput. Vis. Image 

Underst. 111, 170–178. https://doi.org/10.1016/j.cviu.2007.09.009 

Tien Bui, D., Long, N.Q., Bui, X.-N., Nguyen, V.-N., Van Pham, C., Van Le, C., Ngo, 

P.-T.T., Bui, D.T., Kristoffersen, B., 2018. Lightweight Unmanned Aerial Vehicle and 

Structure-from-Motion Photogrammetry for Generating Digital Surface Model for 

Open-Pit Coal Mine Area and Its Accuracy Assessment, in: Tien Bui, D., Ngoc Do, 

A., Bui, H.-B., Hoang, N.-D. (Eds.), Advances and Applications in Geospatial 

Technology and Earth Resources. Springer International Publishing, Cham, 

Switzerland, pp. 17–33. https://doi.org/10.1007/978-3-319-68240-2_2 

Tien Bui, D., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial 

prediction models for shallow landslide hazards: a comparative assessment of the 

efficacy of support vector machines, artificial neural networks, kernel logistic 

regression, and logistic model tree. Landslides 13, 361–378. 

https://doi.org/10.1007/s10346-015-0557-6 

Titos, M., Bueno, A., Garcia, L., Benitez, C., 2018. A Deep Neural Networks 

Approach to Automatic Recognition Systems for Volcano-Seismic Events. IEEE J. 



257 
 

Sel. Top. Appl. Earth Obs. Remote Sens. 11, 1533–1544. 

https://doi.org/10.1109/JSTARS.2018.2803198 

Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S., 2016. Deep 

Convolutional Neural Networks for pedestrian detection. Signal Process. Image 

Commun. 47, 482–489. https://doi.org/10.1016/j.image.2016.05.007 

Tong, X., Liu, Xiangfeng, Chen, P., Liu, Shijie, Luan, K., Li, L., Liu, Shuang, Liu, 

Xianglei, Xie, H., Jin, Y., Hong, Z., 2015. Integration of UAV-Based Photogrammetry 

and Terrestrial Laser Scanning for the Three-Dimensional Mapping and Monitoring 

of Open-Pit Mine Areas. Remote Sens. 7, 6635–6662. 

https://doi.org/10.3390/rs70606635 

Toutin, T., Cheng, P., 2002. QuickBird – A Milestone for High Resolution Mapping. 

Earth Obs. Mag. 11, 14–18. 

Triebel, R., Kersting, K., Burgard, W., 2006. Robust 3D scan point classification 

using associative Markov networks, in: 2006 IEEE International Conference on 

Robotics and Automation, 2006. ICRA 2006. IEEE, pp. 2603–2608. 

https://doi.org/10.1109/ROBOT.2006.1642094 

Trier, Ø.D., Cowley, D.C., Waldeland, A.U., 2019. Using deep neural networks on 

airborne laser scanning data: Results from a case study of semi‐automatic mapping 

of archaeological topography on Arran, Scotland. Archaeol. Prospect. 26, 165–175. 

https://doi.org/10.1002/arp.1731 

Trier, Ø.D., Larsen, S.Ø., Solberg, R., 2009. Automatic detection of circular 

structures in high-resolution satellite images of agricultural land. Archaeol. Prospect. 

16, 1–15. https://doi.org/10.1002/arp.339 

Trier, Ø.D., Salberg, A.-B., Pilø, L.H., 2016. Semi-automatic mapping of charcoal 

kilns from airborne laser scanning data using deep learning, in: Matsumoto, M., 

Uleberg, E. (Eds.), 44th Conference on Computer Applications and Quantitative 

Methods in Archaeology. Archaeopress, Oxford, UK, pp. 219–231. 



258 
 

Trier, Ø.D., Zortea, M., Tonning, C., 2015. Automatic detection of mound structures 

in airborne laser scanning data. J. Archaeol. Sci. Reports 2, 69–79. 

https://doi.org/10.1016/j.jasrep.2015.01.005 

Tuokuu, F.X.D., Idemudia, U., Gruber, J.S., Kayira, J., 2019. Identifying and 

clarifying environmental policy best practices for the mining industry–A systematic 

review. J. Clean. Prod. 222, 922–933. https://doi.org/10.1016/j.jclepro.2019.03.111 

Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M., 2013. 

Selective Search for Object Recognition. Int. J. Comput. Vis. 104, 154–171. 

https://doi.org/10.1007/s11263-013-0620-5 

Vaiopoulos, A.D., Karantzalos, K., 2016. Pansharpening on the narrow VNIR and 

SWIR spectral bands of Sentinel-2. ISPRS - Int. Arch. Photogramm. Remote Sens. 

Spat. Inf. Sci. XLI-B7, 723–730. https://doi.org/10.5194/isprsarchives-XLI-B7-723-

2016 

Valenta, R., Clark, A., O’Sullivan, R., Thomas, J., 2018. Estimating Geometallurgical 

Risk in Undeveloped Complex Orebodies, in: Procemin-Geomet 2018: 14th 

International Mineral Processing Conference and the 5th International Seminar on 

Geometallurgy. Gecamin, Santiago, Chile. 

Valler, A., Andersson, A.-S., 2020. Epiroc and Orica unveil prototype system for first 

stages of underground automation [WWW Document]. URL 

https://www.epiroc.com/en-uk/newsroom/2020/epiroc-and-orica-unveil-prototype-

system-for-first-stages-of-underground-automation (accessed 1.15.21). 

van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., 2014. Potential of 

ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 148, 124–133. 

https://doi.org/10.1016/j.rse.2014.03.022 

van der Meer, F.D., van der Werff, H.M.A., van Ruitenbeek, F.J.A., Hecker, C.A., 

Bakker, W.H., Noomen, M.F., van der Meijde, M., Carranza, E.J.M., Smeth, J.B. de, 

Woldai, T., 2012. Multi- and hyperspectral geologic remote sensing: A review. Int. J. 

Appl. Earth Obs. Geoinf. 14, 112–128. https://doi.org/10.1016/j.jag.2011.08.002 



259 
 

van der Merwe, J.W., Andersen, D.C., 2013. Applications and benefits of 3D laser 

scanning for the mining industry. J. South. African Inst. Min. Metall. 113, 213–219. 

Vandapel, N., Huber, D.F., Kapuria, A., Hebert, M., 2004. Natural terrain 

classification using 3-d ladar data, in: IEEE International Conference on Robotics 

and Automation, 2004. Proceedings. ICRA ’04. 2004. IEEE, pp. 5117–5122. 

https://doi.org/10.1109/ROBOT.2004.1302529 

Verschoof-van der Vaart, W.B., Lambers, K., 2019. Learning to Look at LiDAR: The 

Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data 

from the Netherlands. J. Comput. Appl. Archaeol. 2, 31–40. 

https://doi.org/10.5334/jcaa.32 

Vo, A.-V., Truong-Hong, L., Laefer, D.F., Bertolotto, M., 2015. Octree-based region 

growing for point cloud segmentation. ISPRS J. Photogramm. Remote Sens. 104, 

88–100. https://doi.org/10.1016/j.isprsjprs.2015.01.011 

Vosselman, G., Coenen, M., Rottensteiner, F., 2017. Contextual segment-based 

classification of airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 

128, 354–371. https://doi.org/10.1016/j.isprsjprs.2017.03.010 

Vosselman, G., Klein, R., 2010. Visualisation and Structuring of Point Clouds, in: 

Vosselman, G., Maas, H.-G. (Eds.), Airborne and Terrestrial Laser Scanning. 

Whittles Publishing, Dunbeath, UK. 

Vosselman, G., Maas, H.-G., 2010. Airborne and terrestrial laser scanning. Whittles 

Publishing, Dunbeath, UK. 

Walsh, G., 2015. Leica ScanStation P-Series – Details that matter. Leica 

ScanStation - White Paper. Leica Geosystems AG. 

Walsh, L., 2016. A review of terrestrial laser scanner calibration and the 

establishment of the Bentley Calibration Field. Curtin University. 

Wang, C., Zhao, Z., Ren, Q., Xu, Y., Yu, Y., 2019. Dense U-net Based on Patch-

Based Learning for Retinal Vessel Segmentation. Entropy 21, 168. 

https://doi.org/10.3390/e21020168 



260 
 

Wang, H., Jiang, J., Zhang, G., 2018. CraterIDNet: An End-to-End Fully 

Convolutional Neural Network for Crater Detection and Identification in Remotely 

Sensed Planetary Images. Remote Sens. 10, 1067. 

https://doi.org/10.3390/rs10071067 

Wang, Q., Wu, L., Chen, S., Shu, D., Xu, Z., Li, F., Wang, R., 2014. Accuracy 

Evaluation of 3D Geometry from Low-Attitude UAV collections A case at Zijin Mine. 

ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL–4, 297–300. 

https://doi.org/10.5194/isprsarchives-XL-4-297-2014 

Wang, W., Zhao, W., Huang, L., Vimarlund, V., Wang, Z., 2014. Applications of 

terrestrial laser scanning for tunnels: a review. J. Traffic Transp. Eng. (English Ed. 1, 

325–337. https://doi.org/10.1016/S2095-7564(15)30279-8 

Wang, Y., Tian, F., Huang, Y., Wang, J., Wei, C., 2015. Monitoring coal fires in 

Datong coalfield using multi-source remote sensing data. Trans. Nonferrous Met. 

Soc. China 25, 3421–3428. https://doi.org/10.1016/S1003-6326(15)63977-2 

Wanli Ouyang, Xiaogang Wang, 2012. A discriminative deep model for pedestrian 

detection with occlusion handling, in: 2012 IEEE Conference on Computer Vision 

and Pattern Recognition. IEEE, pp. 3258–3265. 

https://doi.org/10.1109/CVPR.2012.6248062 

Weinmann, M., 2016. Reconstruction and Analysis of 3D Scenes, Reconstruction 

and Analysis of 3D Scenes: From Irregularly Distributed 3D Points to Object 

Classes. Springer International Publishing, Cham, Switzerland. 

https://doi.org/10.1007/978-3-319-29246-5 

Weinmann, M., Jutzi, B., Hinz, S., Mallet, C., 2015a. Semantic point cloud 

interpretation based on optimal neighborhoods, relevant features and efficient 

classifiers. ISPRS J. Photogramm. Remote Sens. 105, 286–304. 

https://doi.org/10.1016/j.isprsjprs.2015.01.016 

Weinmann, M., Urban, S., Hinz, S., Jutzi, B., Mallet, C., 2015b. Distinctive 2D and 

3D features for automated large-scale scene analysis in urban areas. Comput. 

Graph. 49, 47–57. https://doi.org/10.1016/j.cag.2015.01.006 



261 
 

Weinmann, Martin, Weinmann, Michael, Mallet, C., Brédif, M., 2017. A Classification-

Segmentation Framework for the Detection of Individual Trees in Dense MMS Point 

Cloud Data Acquired in Urban Areas. Remote Sens. 9, 277. 

https://doi.org/10.3390/rs9030277 

Weisse, M., Goldman, E.D., 2019. The World Lost a Belgium-sized Area of Primary 

Rainforests Last Year [WWW Document]. World Resour. Inst. URL 

https://www.wri.org/blog/2019/04/world-lost-belgium-sized-area-primary-rainforests-

last-

year?utm_campaign=GFW&source=socialmediakit&utm_medium=gfwsocial&utm_te

rm=2018tcl_4_2019 (accessed 12.4.19). 

Weng, Q., 2012. An Introduction to Contemporary Remote Sensing. McGraw-Hill, 

New York, NY, USA. 

Werner, T.T., Bebbington, A., Gregory, G., 2019. Assessing impacts of mining: 

Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 6, 993–1012. 

https://doi.org/10.1016/j.exis.2019.06.011 

Williams, D.L., Goward, S., Arvidson, T., 2006. Landsat: Yesterday, Today, and 

Tomorrow. Photogramm. Eng. Remote Sens. 72, 1171–1178. 

https://doi.org/10.14358/PERS.72.10.1171 

Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B., 2017. The Marginal Value 

of Adaptive Gradient Methods in Machine Learning, in: Guyon, I., Luxburg, U. V, 

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances 

in Neural Information Processing Systems 30. Curran Associates, Inc., Red Hook, 

NY, USA, pp. 4148–4158. 

Winter, S., 2017. Uncovering England’s landscape by 2020 [WWW Document]. URL 

https://environmentagency.blog.gov.uk/2017/12/30/uncovering-englands-landscape-

by-2020/ (accessed 6.9.19). 

Wired Magazine, 2020. Sandvik’s automated loader is so precise it can make it 

through a glass maze [WWW Document]. URL 

https://www.wired.co.uk/article/sandvik-autonomous-loader (accessed 1.15.21). 



262 
 

Wold, S., Esbensen, K., Geladi, P., 1987. Principal component analysis. Chemom. 

Intell. Lab. Syst. 2, 37–52. https://doi.org/10.1016/0169-7439(87)80084-9 

Wright, P., Stow, R., 1999. Detecting mining subsidence from space. Int. J. Remote 

Sens. 20, 1183–1188. https://doi.org/10.1080/014311699212939 

Wu, D., Meng, Y., Zhan, K., Ma, F., 2018. A LiDAR SLAM Based on Point-Line 

Features for Underground Mining Vehicle, in: 2018 Chinese Automation Congress 

(CAC). IEEE, pp. 2879–2883. https://doi.org/10.1109/CAC.2018.8623075 

Wurm, M., Stark, T., Zhu, X.X., Weigand, M., Taubenböck, H., 2019. Semantic 

segmentation of slums in satellite images using transfer learning on fully 

convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 150, 59–69. 

https://doi.org/10.1016/j.isprsjprs.2019.02.006 

Xiang, J., Chen, J., Sofia, G., Tian, Y., Tarolli, P., 2018. Open-pit mine geomorphic 

changes analysis using multi-temporal UAV survey. Environ. Earth Sci. 77, 220. 

https://doi.org/10.1007/s12665-018-7383-9 

Xie, Y., Tian, J., Zhu, X.X., 2020. Linking Points With Labels in 3D: A Review of 

Point Cloud Semantic Segmentation. IEEE Geosci. Remote Sens. Mag. 8, 38–59. 

https://doi.org/10.1109/MGRS.2019.2937630 

Xiong, Y., Zuo, R., 2020. Recognizing multivariate geochemical anomalies for 

mineral exploration by combining deep learning and one-class support vector 

machine. Comput. Geosci. 140, 104484. 

https://doi.org/10.1016/j.cageo.2020.104484 

Xiong, Y., Zuo, R., Carranza, E.J.M., 2018. Mapping mineral prospectivity through 

big data analytics and a deep learning algorithm. Ore Geol. Rev. 102, 811–817. 

https://doi.org/10.1016/j.oregeorev.2018.10.006 

Xu, T., Xu, L., Li, X., Yao, J., 2018. Detection of Water Leakage in Underground 

Tunnels Using Corrected Intensity Data and 3D Point Cloud of Terrestrial Laser 

Scanning. IEEE Access 6, 32471–32480. 

https://doi.org/10.1109/ACCESS.2018.2842797 



263 
 

Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, Chun-Hong Pan, 2014. Vehicle 

Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE 

Geosci. Remote Sens. Lett. 11, 1797–1801. 

https://doi.org/10.1109/LGRS.2014.2309695 

Yang, B., Fang, L., Li, J., 2013. Semi-automated extraction and delineation of 3D 

roads of street scene from mobile laser scanning point clouds. ISPRS J. 

Photogramm. Remote Sens. 79, 80–93. 

https://doi.org/10.1016/j.isprsjprs.2013.01.016 

Yeomans, C.M., 2018. Enhancing the Geological Understanding of Southwest 

England Using Machine Learning Algorithms. University of Exeter. 

Yeomans, C.M., 2017. Tellus South West data usage: a review (2014–2016), in: 

Jones, D.M. (Ed.), Open University Geological Society. Open University Geological 

Society, Exeter, pp. 51–61. 

Yeomans, C.M., Middleton, M., Shail, R.K., Grebby, S., Lusty, P.A.J., 2019. 

Integrated Object-Based Image Analysis for semi-automated geological lineament 

detection in southwest England. Comput. Geosci. 123, 137–148. 

https://doi.org/10.1016/j.cageo.2018.11.005 

Yu, H., Lu, X., Cheng, G., Ge, X., 2011. Detection and volume estimation of mining 

subsidence based on multi-temporal LiDAR data, in: 2011 19th International 

Conference on Geoinformatics. IEEE, pp. 1–6. 

https://doi.org/10.1109/GeoInformatics.2011.5980892 

Yu, L., Porwal, A., Holden, E.-J., Dentith, M.C., 2012. Towards automatic lithological 

classification from remote sensing data using support vector machines. Comput. 

Geosci. 45, 229–239. https://doi.org/10.1016/j.cageo.2011.11.019 

Yumus, D., Ozkazanc, Y., 2019. Land Cover Classification for Synthetic Aperture 

Radar Imagery by Using Unsupervised Methods, in: 2019 9th International 

Conference on Recent Advances in Space Technologies (RAST). IEEE, pp. 435–

440. https://doi.org/10.1109/RAST.2019.8767877 



264 
 

Zeiler, M.D., Fergus, R., 2014. Visualizing and Understanding Convolutional 

Networks, in: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.), Computer Vision 

-- ECCV 2014. Springer International Publishing, Cham, Switzerland, pp. 818–833. 

https://doi.org/10.1007/978-3-319-10590-1_53 

Zeng, F., Jacobson, A., Smith, D., Boswell, N., Peynot, T., Milford, M., 2019. 

LookUP: Vision-Only Real-Time Precise Underground Localisation for Autonomous 

Mining Vehicles, in: 2019 International Conference on Robotics and Automation 

(ICRA). IEEE, pp. 1444–1450. https://doi.org/10.1109/ICRA.2019.8794453 

Zhang, J., Lin, X., Ning, X., 2013. SVM-Based Classification of Segmented Airborne 

LiDAR Point Clouds in Urban Areas. Remote Sens. 5, 3749–3775. 

https://doi.org/10.3390/rs5083749 

Zhao, S., Zhang, D.M., Huang, H.W., 2020. Deep learning–based image instance 

segmentation for moisture marks of shield tunnel lining. Tunn. Undergr. Sp. Technol. 

95, 103156. https://doi.org/10.1016/j.tust.2019.103156 

Zhao, Yuan, Song, Ding, Lin, Liang, Zhang, 2019. Use of Unmanned Aerial Vehicle 

Imagery and Deep Learning UNet to Extract Rice Lodging. Sensors 19, 3859. 

https://doi.org/10.3390/s19183859 

Zhou, Y., Tuzel, O., 2018. VoxelNet: End-to-End Learning for Point Cloud Based 3D 

Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition. IEEE, pp. 4490–4499. https://doi.org/10.1109/CVPR.2018.00472 

Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F., 2017. 

Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. 

IEEE Geosci. Remote Sens. Mag. 5, 8–36. 

https://doi.org/10.1109/MGRS.2017.2762307 

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2021. A 

Comprehensive Survey on Transfer Learning. Proc. IEEE 109, 43–76. 

https://doi.org/10.1109/JPROC.2020.3004555 

Zuber, M.T., Smith, D.E., Zellar, R.S., Neumann, G.A., Sun, X., Katz, R.B., Kleyner, 

I., Matuszeski, A., McGarry, J.F., Ott, M.N., Ramos-Izquierdo, L.A., Rowlands, D.D., 



265 
 

Torrence, M.H., Zagwodzki, T.W., 2010. The Lunar Reconnaissance Orbiter Laser 

Ranging Investigation. Space Sci. Rev. 150, 63–80. https://doi.org/10.1007/s11214-

009-9511-z 

Zuo, R., Xiong, Y., Wang, J., Carranza, E.J.M., 2019. Deep learning and its 

application in geochemical mapping. Earth-Science Rev. 192, 1–14. 

https://doi.org/10.1016/j.earscirev.2019.02.023 

 


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Declaration
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Aims and objectives
	1.3 Methodology
	1.4 Thesis structure
	1.5 Contribution

	Chapter 2: Literature review
	2.1 Introduction
	2.2 Remote sensing technology
	2.2.1 Passive remote sensing systems
	2.2.2 Active remote sensing systems

	2.3 Data structures
	2.3.1 2D image data structures
	2.3.2 2.5D and 3D data structures
	2.3.2.1 Indirect 3D
	2.3.2.2 Direct 3D

	2.3.3 Data structures summary

	2.4 Deep learning
	2.4.1 History of deep learning
	2.4.2 Multi-layer perceptron
	2.4.2.1 Structure
	2.4.2.2 Training
	2.4.2.3 Towards deep learning

	2.4.3 Convolutional neural networks
	2.4.4 Image processing tasks
	2.4.5 Deep learning for point clouds
	2.4.6 Practical deep learning
	2.4.6.1 Generating training data
	2.4.6.2 Data augmentation
	2.4.6.3 Dataset structure
	2.4.6.4 Hyperparameter tuning
	2.4.6.5 Regularisation
	2.4.6.6 Imbalanced classes
	2.4.6.7 Software and hardware


	2.5 Remote sensing and machine learning in mining
	2.5.1 Non-machine learning remote sensing in the mining sector
	2.5.1.1 Terrestrial
	2.5.1.2 Aerial
	2.5.1.3 Orbital

	2.5.2 Machine learning and remote sensing in the mining sector
	2.5.2.1 Prospecting and exploration
	2.5.2.2 Fragmentation analysis
	2.5.2.3 Automation
	2.5.2.4 Environmental management

	2.5.3 Integrated applications outside the mining sector

	2.6 Conclusion

	Chapter 3: Using machine learning techniques to detect objects in 3D point clouds
	3.1 Introduction
	3.2 Datasets
	3.2.1 Cornwall dataset
	3.2.2 Production mine dataset
	3.2.3 Pre-processing

	3.3 Methods
	3.3.1 Feature creation
	3.3.2 Classification
	3.3.3 Object creation
	3.3.4 Generating additional value

	3.4 Results
	3.4.1 Cornwall mine results
	3.4.2 Production mine results

	3.5 Discussion
	3.6 Summary

	Chapter 4:  Analysis of legacy mining landscapes from LiDAR data using deep transfer learning
	4.1 Introduction
	4.2 Datasets
	4.2.1 St Just area
	4.2.2 Dartmoor area
	4.2.3 Yorkshire area

	4.3 Advanced visualisations – project one
	4.3.1 Techniques and discussions
	4.3.2 Visualisation summary

	4.4 Detection using deep transfer learning – project two
	4.4.1 Pre-processing
	4.4.2 Deep learning model
	4.4.3 Transfer learning
	4.4.4 Model training
	4.4.5 Post-processing
	4.4.6 Results
	4.4.6.1 Cross validation results
	4.4.6.2 Test area results

	4.4.7 Discussion
	4.4.8 Deep transfer learning summary

	4.5 Lineament detection – project three
	4.5.1 Methods
	4.5.2 Results and discussion
	4.5.3 Lineament detection summary

	4.6 Summary

	Chapter 5: Using satellite imagery and deep convolutional neural networks to detect land cover changes
	5.1 Introduction
	5.2 Methods
	5.2.1 Case study area
	5.2.2 Datasets
	5.2.3 Cloud removal
	5.2.4 Model development
	5.2.5 Pixel based method comparison
	5.2.6 Post processing
	5.2.7 ASM monitoring
	5.2.8 Model evaluation

	5.3 Results
	5.3.1 Accuracy assessments
	5.3.2 Applied results

	5.4 Discussion
	5.5 Summary

	Chapter 6: Discussion and integration
	6.1 Identifying applications
	6.1.1 Machine learning type
	6.1.2 Task type
	6.1.3 Training data availability
	6.1.4 Dataset considerations

	6.2 Developing workflows
	6.2.1 Programming language
	6.2.2 Model architecture and strategy
	6.2.3 Training data creation
	6.2.4 Training
	6.2.5 Assessing results
	6.2.6 Power of consensus

	6.3 Practical model application
	6.3.1 Data management
	6.3.2 Divergence between training data and inference data
	6.3.3 Code packaging
	6.3.4 Human oversight

	6.4 Framework summary
	6.5 Scope and future recommendations
	6.5.1 Deep learning for point clouds
	6.5.2 Multiple LiDAR data representations
	6.5.3 Multi-biome ASM models
	6.5.4 Hyperspectral models for mining pollution

	6.6 The future of deep learning for mining

	Chapter 7: Conclusion
	Appendices
	Appendix A – Chapter 3
	A-1 Datasets
	A-2 Software

	Appendix B – Chapter 4
	B-1 Datasets
	B-2 Software
	B-3 Workflow

	Appendix C – Chapter 5
	C-1 Dataset
	C-2 Software
	C-3 Change mapping schema


	References

