University of Exeter

Department of Computer Science

Machine Learning for
Classification and Clustering of
Dementia Data

Felicity Louise Guest

Submitted by Felicity Louise Guest to the University of Exeter as a thesis for the
degree of Doctor of Philosophy in Computer Science, January 2021.

This thesis is available for Library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been identified
and that any material that has previously been submitted and approved for the

award of a degree by this or any other University has been acknowledged.



To my grandad,

who will always be my biggest inspiration.



Abstract

Dementia is a term used to describe heterogeneous diseases that can generally be
characterised by a decline in cognitive ability that affects daily living. It has been
predicted that the prevalence of dementia will increase significantly over the coming
years, thus it is a priority worldwide. This thesis discusses research conducted
with two primary aims. They were to investigate the use of machine learning for
distinguishing between people with and without dementia, as well as differentiating
between key dementia subtypes where appropriate; and to gain an understanding of
the inherent structure of dementia data, to ultimately investigate disease signatures.

Data was acquired from the National Alzheimer’s Coordinating Center in the
United States, and a data set comprising 32,573 observations and 260 features of
mixed type was utilised. It included features whose values were constrained by
relations with others, as well as two types of missingness which arose when data was
unexpectedly not recorded and when the information was irrelevant or unobtainable
for a known reason, respectively. Notably, the former genuinely missing values were
imputed where possible, whilst the latter conditionally missing values were handled.

An imputation approach was developed, which simultaneously builds a random
forest classifier while handling conditionally missing values. It maintained the known
relations in the data set, so far as possible. A clustering approach was also developed
that ultimately measures the similarity of observations based on the similarity of their
paths through the trees of an isolation forest before employing spectral clustering.
Crucially, it can naturally draw on variables of mixed type.

A dementia classifier with an area under the receiver operating characteristic
curve (AUC) of 0.99 and 10 pairwise dementia subtype classifiers with AUCs ranging

from 0.88 to 1.0 (rounded) were produced, suggesting machine learning could be a
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useful tool for diagnosing dementia and differentiating between the main subtypes.
Key features were identified using these classifiers and were markedly different for
the two types of diagnosis. Furthermore, preliminary experiments conducted using
the clustering approach suggested that mild cognitive impairment may be a mild
form of dementia as opposed to a clinical entity, over which there is much debate;
and there could be evidence for the current subtypes. Ultimately, these findings have

the potential to transform the way dementia is diagnosed.
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Chapter 1

Introduction

Dementia is a term used to describe heterogeneous diseases that can generally be
characterised by a decline in cognitive ability that affects daily living. It mainly affects
older people, although it is not a normal part of ageing (World Health Organisation,
2020). There are thought to be numerous types (or subtypes) of dementia, for which
the signs and symptoms vary. The four main subtypes are Alzheimer’s disease (AD),
vascular dementia (VD), dementia with Lewy bodies (DLB) and frontotemporal
dementia (FTD). However, dementia can also manifest differently from person to
person. Furthermore, it is possible, if not common, for people to be affected by
more than one subtype; the term mixed dementia is used to describe this eventuality
(National Institute on Aging, 2017).

Prince et al. (2015) reported that 46.8 million people worldwide were living
with dementia in 2015 and estimated that this number would increase to 131.5 million
by 2050. Prince et al. (2016) and Wu et al. (2017) highlight, however, that predicting
the prevalence (proportion of the population affected at a certain time) and incidence
(occurrence of new cases during a period of time) of dementia is challenging and
suggest that this forecast may not be accurate. Nevertheless, the predicted increase
in the prevalence of dementia is concerning, along with the the considerable economic
and social burden associated with dementia.

There are diagnostic criteria for dementia, as well as its subtypes, but import-
ant assessments that facilitate an accurate diagnosis are not included; the lack of

knowledge of the signs and symptoms could be considered a contributing factor.



Consequently, it is currently difficult and time consuming to diagnose dementia
reliably. In short, this reinforces that conducting research into dementia is vital. It
also provides some insight into the motivations behind this research and the two
primary aims that are outlined in the following section.

As the four main dementia subtypes are considered throughout the thesis,
the key criteria that characterise them are summarised. Firstly, AD is diagnosed
when someone is exhibiting deficits in at least two cognitive domains, specifically
progressive deterioration of memory and other cognitive functions (e.g. language,
motor skills and perception) (McKhann et al., 1984). VD is diagnosed when there is
evidence of cognitive decline and cerebrovascular disease (e.g. stroke), as well as a
relationship between them (Romén et al., 1993). DLB is diagnosed when there is
progressive cognitive decline and symptoms such as fluctuations in attention and
alertness, recurrent visual hallucinations and spontaneous movement abnormalities
associated with Parkinson’s disease (McKeith et al., 2005). Lastly, FTD is diagnosed
when there is a gradual decline in someone’s cognition that affects their personality

and social conduct; their memory is relatively well preserved (Neary et al., 1998).

1.1 Research Aims

As indicated in the previous section, there were two primary aims for this research.

1. Investigate the use of machine learning for distinguishing between people with
and without dementia, as well as differentiating between key dementia subtypes

(AD, VD, DLB and FTD) where appropriate.

2. Gain an understanding of the inherent structure of dementia data, to ultimately

investigate disease signatures.

The latter aim, in particular, allowed for some investigation into whether the pre-
vailing diagnostic criteria accurately reflect the nature of dementia and its subtypes.
Incidentally, a disease signature attempts to characterise a disease. Stemmer et al.
(2019) proffer a detailed definition which specifies different aspects that should be

considered, including causes and undesired effects of the disease.



These aims were tackled using classification and clustering respectively. Classi-
fication is the process of individually assigning new (unseen) observations to one of
a number of classes. A classifier is constructed in order to achieve this, specifically
by drawing on labels, relating to the classes, that are associated with observations
comprising a training set; this is an example of supervised learning. Clustering, on
the other hand, is an unsupervised learning technique that aims to discover groups (or
clusters) of similar observations without utilising any associated labels. Information

as to how classification and clustering was performed is included in section 1.3.

1.2 Data

Data was obtained from the National Alzheimer’s Coordinating Center (NACC),
ultimately due to it being one of the biggest and most comprehensive sources of its
kind (National Alzheimer’s Coordinating Center, 2019). In particular, the Uniform
Data Set (UDS) was acquired, comprising data from visits to Alzheimer’s Disease
Centers (ADCs) situated across the United States. During a visit, the visitor (or
subject) is assessed according to a standardised evaluation, administered using a
number of different forms, in order to ascertain a diagnosis that essentially indicates
whether they have dementia, along with the type of dementia if appropriate. 112,719
visits from September 2005 to February 2016, namely to 35 ADCs, were included
in the data set obtained. More specifically, the data described 33,415 subjects, the
majority of which had visited an ADC on more than one occasion, by means of 755
variables (or features).

The variables concerning diagnosis were extracted from the data set so labels
(or classification targets) could be generated. The remaining data was cleansed, which
involved identifying the variables of interest, along with the subjects to be analysed,
for which only initial visits were considered. This resulted in a data set composed
of 32,573 visits/subjects/observations and 260 variables; the latter of which were
of continuous, categorical, ordinal and binary type. Notably, ordinal and binary
variables can be considered to be types of categorical variables. Additionally, it

involved improving the representation of missingness, of which there were two types,



as well as identifying and verifying relationships between variables. In particular,
missingness arose when data was unexpectedly not recorded, or when the information
was irrelevant or unobtainable for a known reason. The former genuinely missing
values were imputed where possible, using the approach detailed in chapter 3. The
latter values, however, were handled during classification and clustering, and are
instances of what is termed conditional missingness. To illustrate, a conditionally
missing value could arise from the question “In the past four weeks, did the subject
have difficulty or need help with preparing a balanced meal?” (ADC Clinical Task
Force and National Alzheimer’s Coordinating Center, 2017¢) if the subject had never
performed this task. Furthermore, training and test sets were formed in preparation
for classification. For more details regarding the data, the reader is directed to

chapter 2.

1.3 Decision Tree Learning

Decision tree learning is fundamental to this thesis, which is why it is discussed here
at the outset. A decision tree consists of two types of nodes, namely internal splitting
nodes and terminal (or leaf) nodes, together with edges (or branches). Decision trees
are essentially used to make decisions, but can be learnt for classification, along with
regression, as explained by Breiman et al. (1984). As a result, there are two main
types of decision trees within this field, specifically classification and regression trees.
Due to the nature of the research conducted, the former (i.e. classification trees) are
focused on here. There are a variety of algorithms which can be used to construct
classification trees and Kotsiantis (2013) discusses a number of them. Nonetheless,
the basic principles are largely the same. In brief, a tree is built from top to bottom
by recursively partitioning a set of observations, forming a data set, based on the
values of a variable. The variable can change over the course of construction and
the feature space, defined by the set of variables, is partitioned. Each region of the
partitioned feature space corresponds to one of the terminal nodes found at the base
of the tree and it is these nodes that enable class predictions to be made.

Decision trees were chosen to aid in the investigation of the classification of



dementia and its main subtypes for a number of reasons. Firstly, they are able
to handle categorical variables, along with continuous variables, without needing
the former to be transformed in some way (James et al., 2017). Many alternative
classifiers, such as artificial neural networks, are unable to do so. In fact, it is
common practice to transform each categorical variable into a set of binary variables
using one-hot encoding. By using decision trees and keeping the categorical variables
intact, the number of variables is kept to a minimum; this helps to avoid the curse of
dimensionality (Keogh and Mueen, 2017). Secondly, decision trees are interpretable
and allow the importance of each variable for the classification task to be ascertained.
It should be noted that variable importances enabled the key features for diagnosing
dementia and differentiating between the main subtypes to be identified, and being
able to maintain the identity of each of the categorical variables aided the process.
Thirdly, powerful classifiers can be constructed by aggregating multiple trees, which
are all different to some extent, to form an ensemble (or forest) (James et al., 2017).
Ho (1995) demonstrates how generalisation, or the classifier’s ability to handle new
(unseen) data, can be improved if multiple trees as opposed to a single tree are
utilised. Criminisi, Shotton and Konukoglu (2011) highlight that the popularity of
decision trees can be attributed to the performance of ensembles.

The Extra-Trees algorithm (Geurts, Ernst and Wehenkel, 2006), which is closely
related to the well-known Random Forests algorithm (Breiman, 2001), generates
an ensemble of extremely randomised trees (or random forest). The algorithm was
used, in conjunction with missingness incorporated in attributes (MIA) (Twala,
Jones and Hand, 2008), to generate random forest classifiers for the NACC data. It
was chosen for its accuracy, as well as its computational efficiency, as evidenced by
Geurts, Ernst and Wehenkel (2006). The rest of this section discusses the Extra-Trees
algorithm and provides insight into how it was employed for the NACC data. Prior
to this, however, the section offers further explanation as to how a decision tree
can be constructed, along with a brief overview of the Random Forests algorithm.
Notably, chapter 3 describes how Extra-Trees and MIA were employed together

during imputation, whilst chapter 4 presents the various results obtained for the



NACC data.

Before defining the notation pertaining to the data, which is utilised in the
discussion that follows and beyond, it should be highlighted that decision trees were
also employed for clustering. More specifically, an isolation forest (Liu, Ting and
Zhou, 2008), consisting of unsupervised decision trees, was constructed to ascertain
the similarity between observations; thus, enabling them to be clustered. The reader
is directed to chapter 5 for details.

With regards to notation, the data set is denoted by X and the classification
targets by Y. In particular, X is a design matrix of size N—by—F', where N is the
number of observations (i.e. subjects) and F' is the number of features (or variables).
Each row of X pertains to a single subject, which is denoted by X,,, whilst each
column of X is a variable X7; thus, a value for a specific subject and variable can
be designated as X/. Y, however, is the column of targets or class labels. As the
focus is on two-class classification, a subject X, can be assigned one of two classes,
specifically 0 or 1; Y, is used to refer to the class of X,,. Y(© and Y™ denote, more

generally, all the instances of class 0 and 1 respectively.

1.3.1 Decision Tree

A very high-level description of how a decision tree is built has been provided, but
this section outlines, in more detail, how a standard binary decision tree can be
constructed. A binary tree, in particular, splits the set of observations at each
internal splitting node in two; thus, each of the nodes has two child nodes. The basic
notation used for a decision tree is as follows: t represents the tree itself, n denotes
an internal splitting node and ¢ corresponds to a terminal node.

The data set (or training set) X, as well as the classification targets Y, are
required to construct a tree t. Initially, the complete set of observations is considered;
and a split S on a variable X/ must be chosen which partitions X into X, and Xg,
along with Y into Y, and Yg (algorithm 1 line 15). The objective is to choose the
best split, or the purest with regards to Y7, and Y, of all the possible splits on every

variable. There are a number of metrics to assess the quality of a split, but .S can be
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Figure 1.1: A simple diagram of a decision tree marked with two possible paths. One path
is shown by blue arrows; the other by red arrows.

chosen so as to maximise the information gain Zg(X) which is described in detail
below (equation 1.1). Generally, S is formed using a cut-point if X/ is continuous,
or a subset if X/ is categorical. This particular split is associated with the first
internal splitting node, which is also known as the root node. X; and Xg, which
satisfy X7, U Xgp = X and X, N Xi = &, as well as Y, and Yj, are subsequently
used to construct the left and right subtrees (algorithm 1 lines 16-19). In particular,
Xy, and Y7, enable the left subtree t;, to be built, whilst Xz and Yz enable the right
subtree tr to be built. The process is repeated for each subtree (or child node),
but a terminal node ¢ must be formed if certain criteria are met (algorithm 1 lines
8-12). Each terminal node can be labelled with the class frequencies for the set of

observations that reach it.

A new (unseen) observation is classified by passing it through ¢, once the latter
is fully formed. Figure 1.1 provides a visual representation of two paths through a
simple decision tree. The paths are identical up to, but not including, the terminal
node; the terminal node for each path is coloured accordingly to highlight this. As
previously discussed, it is the terminal nodes that enable classifications to be made.
In fact, an observation is assigned a class (0 or 1) in accordance with the majority
of the observations that reached the same terminal node when constructing ¢. If it
could be assigned more than one class, one can be chosen at random from the set of

possible classes.



1.3.2 Random Forests

As previously explained, an ensemble (or forest) 7" is an aggregation of multiple (or
M) different decision trees (algorithm 1 lines 1-6). As Breiman (2001) highlights,
using an ensemble of trees can significantly improve classification accuracy; and
predictions are made by allowing the trees to vote, in the manner in which a terminal
node of a tree makes a prediction (i.e. by majority). A decision tree, as described
in section 1.3.1, is built using all the observations in X, whilst the best split is
selected for each internal node based on the complete set of variables. Constructing
each member of a forest in this way would prove problematic as there would be no
variability, but injecting some randomness into the process would allow a viable
ensemble to be produced. The ensemble of trees generated, as a result, can be

referred to as a random forest.

The Random Forests algorithm, originally termed Forest-RI, introduces ran-
domness in two ways. Firstly, each tree is constructed using a different bootstrap
sample of size N, which is generated by randomly sampling the observations in X
with replacement; this is known as bootstrap aggregating (or bagging) (Breiman,
1996). Secondly, a different random subset of the variables is used in order to choose
a split S for each internal node (algorithm 1 line 13). The size of the random subset
K is decided on at the outset. Combining bagging with random feature selection
ensures there is enough variation between the trees for the ensemble to be effective,
whilst speeding up construction (James et al., 2017; Breiman, 2001). Bagging is
also advantageous, however. In fact, it was found to improve the accuracy of the
ensemble when random feature selection was employed, according to Breiman (2001);
and it enables out-of-bag (OOB) estimates to be calculated, which eliminate the
need for a test set. An OOB estimate of the classification error, for example, can
be calculated by obtaining a prediction for every observation in X using only those

trees trained on a bootstrap sample for which it was omitted.



1.3.3 Extra-Trees

Breiman (2001) suggests, in his seminal paper on random forests, that it may be
possible to improve upon the Random Forests algorithm by introducing randomness
in alternative ways; Geurts, Ernst and Wehenkel (2006) did just that with their
Extra-Trees algorithm. The two algorithms are closely related, as highlighted in
section 1.3, but there are two fundamental differences. Firstly, all the observations
in X are used to train each tree instead of a bootstrap sample. Secondly, a single
split is generated at random, as opposed to all the possible splits, for each of the
variables considered for splitting (i.e. constituting the random subset) (algorithm 1
line 14). In short, Extra-Trees makes use of random feature selection, along with
what could be termed random split selection.

Similarly to Random Forests, K variables are randomly selected to generate
potential splits for an internal node. Geurts, Ernst and Wehenkel (2006) emphasise
the fact that these variables must be chosen without replacement and should be
inconstant, that is, the observations do not all have the same value. As a result, it
is possible for less than K variables to be considered at any one time. The default
value for K is v/F (rounded), where F is the number of variables in X. According
to Geurts, Ernst and Wehenkel (2006), this value is generally deemed suitable for
data sets with features of variable importance.

In contrast to Random Forests, a single random split is generated for every
variable within the random subset. The manner in which each split is generated,
however, is dependent on the type of the variable (algorithm 1 lines 21-35). If X7 is
continuous, a cut-point f., is uniformly drawn between the minimum and maximum
of X/, and then used to split the set of observations in two (algorithm 1 lines 23-25).
If X7 is categorical, the process is a little more involved (algorithm 1 lines 26-31).
Initially, all the possible values present in X7 are identified. f is used to denote
the set of possible values, whilst f(" represents the set of values present. A proper
nonempty subset of f™) is randomly drawn (f;), along with a subset of the values
absent from X/ (f;). fi and f, are subsequently combined, and the resultant subset

is used to split the set of observations in two.



Algorithm 1 Pseudocode for Extra-Trees
1: function build_ensemble(X,Y)
2 fori+ 1,...,M do

3 t; < build_tree(X,Y)

4: end for
)

6

return 7' < {t1,...,ty}

: end function

7. function build_tree(X,Y)

8: if X'Vi<1,...,F constant or Y constant or | X|< n,, then

9: YO « {V, eY|Y, =0}

10: YU Y, eY|Y, =1}

11: return ¢ + {|Y O] [y (W]}

12: end if

13: Randomly select K inconstant variables { X*¥' ... X®%} without replacement

14: Generate K splits {S7,..., Sk}

where S; <— generate_split(X, X% Y) Vi<« 1,..., K
15: Choose a split S = {(Xp, Y1), (Xr, Yr)}

such that Zg(X) < max; . 1
16: t; < build _tree(X,,Y7)
17: tr < build_tree(Xg,Yr)
18: Create n for S and attach t; and tr to form ¢

i Ls,(X) using equation 1.1

-----

19: return ¢

20: end function

21: function generate_ split(X,X/Y)
22: A+ {1,...,|X|}

23: if X/ continuous then

24: Uniformly draw a cut-point f,, in (min X/, max X7)
25: Ap—{ie N X/ < f,}

26: else if X/ categorical then

27: Identify all possible values present in X/ (™) C f)
28: Randomly draw f; C (") where f; # @

29: Randomly draw f, C f\ f0™

30: Ap+{ieAN|X] € fiufo}

31: end if

32: XL%{XZVZEAL}, XR(—X\XL
33: Y - {Y;Vie AL} ; YR Y \Y,
34: return S < {(X,Y7), (Xg, Yr)}

35: end function
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For each internal node, S is chosen from the pool of potential splits so as to
maximise the information gain Zg(X). Geurts, Ernst and Wehenkel (2006) advocate
the use of a normalisation of the information gain formulated by Wehenkel and

Pavella (1991), which can be defined as

2(H.(X) — He 5(X))
H.(X) + Hy(X) (1.1)

Is(X) =

where H.(X) is the classification entropy of X, Hg(X) is the split entropy of X
and H.|g(X) is the classification entropy of X given S. More specifically, H.(X)
measures the uncertainty associated with classifying an observation in X, as does
H. s(X) given that X has been split according to S, whilst Hg(X) assesses the
impurity of S for X (Wehenkel and Pavella, 1991). These three terms can also be

defined mathematically as follows:

Ho(X) = —[p(YV ] X)logy, p(Y M | X) + p(Y O | X)log, p(Y @ | X)],  (1.2a)
Hg(X) = —[p(Xr | X)logyp(XL | X) + p(Xgr| X)logy p(Xr | X)], (1.2b)

H, 5(X) = p(X0 | X)H(X1) + p(Xr ] X) Ho(Xr) (1.2¢)

To put these equations into context, p(Y )| X) is the probability an observation
in X is a member of class 1 (in equation 1.2a), and p(X | X) is the probability an
observation in X is sent to the left child node (in equations 1.2b and 1.2c).

In section 1.3.1 it was stated that a terminal node ¢ must be formed if certain
criteria are met. Geurts, Ernst and Wehenkel (2006) specify three criteria which
trigger a terminal node, namely all the variables in X are constant (i.e. all the
observations are equivalent), the classification targets constituting Y are constant
(or all equal) and the number of observations in X is less than n,,;, (algorithm 1 line
8). Only one criterion needs to be satisfied for a terminal node to be formed and
setting n,;, = 2 is a robust choice, according to Geurts, Ernst and Wehenkel (2006).

Extra-Trees was chosen not only for its accuracy but also its computational
efficiency, as explained in section 1.3. In fact, Geurts, Ernst and Wehenkel (2006)

show that their algorithm is faster than Random Forests and bagging, fundamentally
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due to its use of random split selection which avoids an expensive search for the best
possible split. A disadvantage of using Extra-Trees, however, is that OOB estimates
cannot be calculated, meaning a test set is required. The authors note that bagging
could be incorporated into the algorithm, enabling OOB estimates to be computed,
but highlight that it typically reduces the accuracy of the algorithm. Bagging, in
general, can also reduce interpretability (James et al., 2017).

The NACC data included variables of mixed type (continuous, categorical,
ordinal and binary), as explained in section 1.2, but Geurts, Ernst and Wehenkel
(2006) fail to explicitly specify how ordinal and binary variables should be handled.
In short, ordinal variables were treated as if they were continuous, as their values had
inherent order, along with binary variables. Binary variables could have been regarded
as continuous or categorical in this context, but it is much simpler to generate a cut-
point than a subset to split on. The NACC data also included conditionally missing
values, which were handled using MIA (missingness incorporated in attributes) in
conjunction with Extra-Trees. As stated in section 1.3, chapter 3 describes how

Extra-Trees and MIA were employed together during imputation.

1.4 Contributions

Two machine learning approaches were developed for the purposes of this research.
Firstly, an imputation approach was developed, which simultaneously builds a random
forest classifier whilst handling conditionally missing values; it is termed proximity
imputation with MIA. In particular, it can deal with mixed data and maintain
the known relations between variables in the (NACC) data set, so far as possible.
Secondly, a clustering approach was developed that ultimately measures the similarity
of observations by means of an isolation forest, and is able to naturally draw on
variables of mixed type. Notably, three (novel) isolation forest proximity (distance
or similarity) measures were considered.

Of course, there are also contributions to dementia research. To summarise, a
dementia classifier was constructed with an accuracy of 94.21%, a sensitivity of 0.93,

a specificity of 0.95 and an area under the receiver operating characteristic curve
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(AUC) of 0.99, suggesting machine learning could be a useful tool for diagnosing
dementia. 10 pairwise dementia subtype classifiers were also generated with AUCs
ranging from 0.88 to 1.0 (rounded to two decimal places), indicating machine learning
could be used to differentiate between the main dementia subtypes. Using these
classifiers, it was possible to identify the key features for diagnosing dementia, as well
as differentiating between the main subtypes of dementia. Crucially, there is a clear
difference between the important features for the two types of diagnosis. Last but not
least, preliminary experiments conducted using the clustering approach developed
suggested that mild cognitive impairment (MCI) may be a mild form of dementia
as opposed to a clinical entity (i.e. a condition in its own right), over which there
is much debate. They also suggested that there could be evidence for the current
subtypes (AD, VD, DLB and FTD).

In conducting this research, numerous possible avenues for future research have
been revealed, some of which are already being explored by another researcher. Most
importantly, however, its findings have the potential to transform the way in which
dementia is diagnosed. As a matter of fact, the key features identified, for both
diagnosing dementia and differentiating between the main subtypes, could prove
useful in redesigning and streamlining routine clinical practice. They may also help
to improve dementia diagnosis, in more general terms, if the diagnostic criteria were
updated accordingly. Furthermore, there is the potential to develop a diagnostic aid
from the classifiers constructed. To clarify, this research is not immediately changing

dementia diagnosis practice but is a foundation for change.

1.5 Thesis Overview

The thesis is organised into four main chapters.

e Chapter 2 discusses the NACC UDS, expanding on the introduction to the

data set provided in section 1.2.

e Chapter 3 explains the imputation approach developed, as well as the exper-

imental work carried out which helped to inform the parameters employed
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and ascertained the effects of additional missingness on the imputation and
classification performance. In addition, it provides a brief overview of related
literature, specifically concerning methods for handling missing data, to put

the work into context.

e Chapter 4 presents results from the imputation and classification of the NACC
data. In particular, results pertaining to the dementia classifier and pairwise
dementia subtype classifiers are included, along with those concerning a stacking
classifier. It explains how these classifiers were built, whilst it also puts the
work into context by discussing related literature and the clinical implications

of the findings.

e Chapter 5 describes the clustering approach developed, as well as how it was
tested using a variety of data sets, following a brief discussion of related work
predominantly on clustering categorical and mixed data. It also gives an
account of the preliminary experiments conducted on NACC data, for which

the results are provided.

Finally, chapter 6 concludes the thesis and highlights some potential future research.
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Chapter 2

National Alzheimer’s Coordinating

Center Uniform Data Set

This chapter expands on the introduction to the data set provided in chapter 1. It
describes the variety of data constituting the data set; and gives an overview of the
data cleansing process performed, including a discussion of the missing data present.
It also outlines how labels were generated using the diagnosis data, primarily for the
purposes of classification, as well as how training and test sets were created. Finally,

it explains how each variable’s predictive capacity was investigated.

2.1 Overview

The National Alzheimer’s Coordinating Center Uniform Data Set (NACC UDS)
contains data pertaining to Alzheimer’s Disease Center (ADC) visits. The ADCs
are situated at major medical institutions across the United States and are funded
by the National Institute on Aging to carry out research into dementia (National
Institute on Aging, 2019). Those visiting an ADC will typically have been referred
for a clinical evaluation or invited to participate in a research study. Each visitor (or
subject) undergoes a standardised evaluation which leads to a diagnosis that basically
indicates whether they have dementia or not, as well as the type of dementia if so.
Subjects are asked to bring along a co-participant, who is also questioned in order to

provide supplementary information on the subject. All participants (i.e. subjects)
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and co-participants are required to provide written informed consent. The majority
of subjects attend follow-up visits, which are conducted on a yearly basis, meaning
there can be multiple visits associated with a single subject.

NACC was chosen as the source of the data for this work as it is one of the
biggest and most comprehensive of its kind (National Alzheimer’s Coordinating
Center, 2019). Morris et al. (2006), Beekly et al. (2007) and Weintraub et al.
(2009) provide a detailed look at the UDS shortly after its inception. However, the
researchers data dictionary (National Alzheimer’s Coordinating Center, 2017) is
the primary resource that was used throughout the research, and it discusses the
variables in depth. Data collection is continuous; the data obtained from NACC was
collected between September 2005 and February 2016. It included 112,719 visits to

35 ADCs, concerning 33,415 subjects and 755 variables.

2.2 Forms

The UDS is populated using forms, of which there have been 19 across three versions
(1.2, 2.0 and 3.0) of the data set resulting in a total of 374, 407 and 523 variables for
each version respectively. This section gives a very brief overview of the information
collected by each form, in accordance with the researchers data dictionary (National
Alzheimer’s Coordinating Center, 2017), except for Form D1 which is considered in
section 2.4. The variables derived by NACC and included in the UDS are discussed
with the relevant forms. Table 2.1 provides a list of the forms covered and indicates
the number of variables each of them gives rise to. 12 variables are associated
with every form and make up the form header; these variables should be identical
across the forms for a single visit. They provide the subject and center identification
numbers; visit date, number and type; version; and statistics pertaining to visits,

such as the total number.

Subject and Co-participant Demographics

Forms A1l and A2 obtain information about the subject and co-participant, resulting

in 25 and 22 variables for each respectively. Basic data such as date of birth, sex and
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Form Name Variables

Form Header 12
Al Subject Demographics 25
A2 Co-participant Demographics 22
A3  Family History 15
A4 Medications 62
A5 Health History 75
B1 Physical Examination 12
B2 Hachinski Ischemic Score and Cerebrovascular Disease 17
B3 Unified Parkinson’s Disease Rating Scale 55
B4 Clinical Dementia Rating 10
B5 Neuropsychiatric Inventory Questionnaire 26
B6  Geriatric Depression Scale 17
B7 Functional Activities Questionnaire 10
B8 Physical /Neurological Exam Findings 47
B9 Clinician Judgment of Symptoms 59
C1 Neuropsychological Battery 48
C2 Neuropsychological Battery (version 3.0) 47
D2 Clinician-assessed Medical Conditions 33

Milestones 16

Table 2.1: The forms used to populate the NACC UDS, except for Form D1, along with
the number of variables associated with each of them. The form header is also included.

race are collected for both the subject and co-participant, along with the number
of years they spent in education. The primary reason for the subject visiting the
ADC and the principal referral source is recorded. The living situation and level of
independence of the subject is also recorded. For the co-participant, the nature of
their relationship with the subject, along with the type and frequency of their contact

is noted. In addition, the perceived reliability of the co-participant is reported.

Family History, Medications and Health History

Forms A3, A4 and A5 record the subject’s family history, medications and health
history respectively. A total of 152 variables are produced, of which 15 describe
family history, 62 provide details of medications and 75 report health history. Family
history focuses on whether the subject has a first-degree family member with cognitive
impairment, specifically their mother and/or father. Any evidence of gene mutations
is also noted. Medications the subject has taken within the last two weeks are

of interest, and the different types are identified from those provided. The data
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concerning the subject’s health history is quite extensive. It covers history of smoking,

alcohol consumption, stroke and various psychiatric disorders to name a few.

Physical Examination

Form B1 is used to record the findings of the subject’s physical examination, which is
basic and generates just 12 variables. The subject’s height and weight are measured,
allowing their body mass index (BMI) to be calculated. The subject’s blood pressure
and resting heart rate are also assessed. Any issues with vision and hearing are

reported, along with the subject’s use of corrective lenses and hearing aids.

Hachinski Ischemic Score and Cerebrovascular Disease

Form B2 includes the eight clinical features required to calculate the modified
Hachinski ischemic score (HIS), proposed by Rosen et al. (1980). It also collects
information pertaining to cerebrovascular disease, particularly imaging evidence,
resulting in a total of 17 variables. The HIS, specifically, is used to identify people
with vascular dementia. The eight features considered include whether the subject
experienced an abrupt onset of cognitive decline and stepwise deterioration. They
also look at whether the subject has a history of stroke, and any focal neurological

signs and symptoms.

Unified Parkinson’s Disease Rating Scale

Form B3 records the results of the motor examination which forms part of the Unified
Parkinson’s Disease Rating Scale (UPDRS) (Fahn, Elton and UPDRS Development
Committee, 1987). It produces 55 variables, some of which indicate the presence
and severity of certain motor problems, such as tremors and rigidity. During the
examination, the subject is asked to perform a number of tasks to enable any
impairments to be identified. For example, one task involves the subject opening
and closing their hands in rapid succession. The subject’s speech, facial expression

and posture are also inspected and rated.
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Clinical Dementia Rating

Form B4 features the Clinical Dementia Rating (CDR@®)) Dementia Staging Instru-
ment plus NACC FTLD Behaviour & Language Domains, the latter of which helps
to identify cases of frontotemporal dementia (also referred to as frontotemporal lobar
degeneration (FTLD)) and/or primary progressive aphasia (ADC Clinical Task Force
and National Alzheimer’s Coordinating Center, 2019). It gives rise to 10 variables.
The CDR, as detailed by Morris (1993), assesses six categories; and a score indicating
the perceived level of impairment is recorded for each. The categories are memory,
orientation, judgment and problem-solving, community affairs, home and hobbies,
and personal care. The scores are summed to yield the CDR sum of bores. An
overall score is also derived, namely the global CDR. The second component (NACC
FTLD) involves the assessment of two additional constructs. The first encapsulates

behaviour, comportment and personality; and the second is language.

Neuropsychiatric Inventory Questionnaire

Form B5 is the Neuropsychiatric Inventory Questionnaire (NPI-Q) (Kaufer et al.,
2000). It assesses the presence and severity of a number of behavioural disorders for
the month prior to the assessment, resulting in 26 variables. Examples of the disorders
considered are appetite and eating problems, agitation or aggression, depression or

dysphoria, hallucinations, and motor disturbances.

Geriatric Depression Scale

Form B6 comprises the Short Form of the Geriatric Depression Scale (GDS), which
is discussed by Sheikh and Yesavage (1986); and generates 17 variables. It is used to
screen the subject for depression and consists of 15 questions for them to answer,
such as “Are you in good spirits most of the time?” (ADC Clinical Task Force and
National Alzheimer’s Coordinating Center, 2017¢). Scores are accumulated across

the questions and, ultimately, summed to produce the total GDS score.
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Functional Activities Questionnaire

Form B7 is an adaptation of the Functional Activities Questionnaire (FAQ) presented
by Pfeffer et al. (1982). It evaluates whether the subject has had any difficulty,
or needed help, with an instrumental activity of daily living (IADL) in the past
four weeks, and to what degree. 10 variables are generated, each corresponding
to one of the 10 TADLs which are assessed. They cover tasks such as preparing a
balanced meal; shopping alone for clothes, household necessities or groceries; writing
checks, paying bills or balancing a checkbook; and remembering appointments, family

occasions, holidays or medications.

Physical /Neurological Exam Findings

Form B8 captures the findings of the physical /neurological exam and enables the
identification of a syndrome that could be responsible. It produces 47 variables,
and does not record information pertaining to cognition or behaviour. There is
some overlap with Form B3 but findings consistent with syndromes such as central
nervous system disorder, posterior cortical atrophy, progressive supranuclear palsy

and amyotrophic lateral sclerosis are also considered.

Clinician Judgment of Symptoms

Form B9 enables the symptoms the subject is experiencing to be identified, and
looks into the nature and onset of these symptoms. Any decline in memory reported
by the subject or co-participant is noted, along with whether the clinician believes
there is a meaningful decline in cognition, behaviour or movement. Subdivisions of
these domains are also considered, for example, personality change for behaviour. In

total, the form gives rise to 59 variables.

Neuropsychological Battery

Form C1 results in 48 variables. It incorporates the Mini-Mental State Examination

(MMSE) (Folstein, Folstein and McHugh, 2001), which is a neuropsychological battery
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in itself that produces a score indicating cognitive impairment; and a number of
neuropsychological tests, such as digit span forward. This test requires the subject
to repeat number sequences of increasing length and is widely used to assess working
memory (ADC Clinical Task Force and National Alzheimer’s Coordinating Center,
2014a). Once the tests have been completed, the clinician rates the subject’s cognitive
status based on their performance. Form C2 replaced C1 for version 3.0 of the UDS.
There is significant overlap between them but there are 47 variables solely associated

with Form C2, most of which correspond to alternative neuropsychological tests.

Clinician-assessed Medical Conditions

Form D2, which produces 33 variables, provides the clinician with the opportunity to
report any active medical conditions or procedures performed in the last 12 months.
The clinician must have sufficient evidence for any medical conditions, which can be
sleep disorders, diabetes, arthritis, cancer and congestive heart failure to name a few
(ADC Clinical Task Force and National Alzheimer’s Coordinating Center, 2017a).
Procedures such as having a pacemaker and/or defibrillator fitted, and a heart valve

replacement or repair are recorded.

Milestones

Information such as whether the subject is deceased; no longer visits an ADC; has
permanently moved to a nursing home; or has additional data associated with them,
specifically neuropathology or FTLD, is documented in Milestones. All 16 variables

associated with this form are derived by NACC.

2.3 Data Cleansing

Discrepancies were apparent between the data obtained and the documentation
for the UDS, such as missing variables and undocumented variable values. After
receiving a number of corrected versions of the data set, it was necessary to extract

the data of interest, improve the representation of the missing data present, and
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Version 1.2 Version 2.0

Version 3.0

Figure 2.1: A Venn diagram showing the associations between the 608 variables considered
and the three versions of the NACC UDS.

identify and verify relationships between variables. The forms were considered in
turn to make the process more manageable; this section provides an explanation
of each stage. For more information, specifically regarding how each variable was

handled, the reader is referred to appendix A.

2.3.1 Visit and Variable Selection

Despite the UDS being longitudinal, the research undertaken was not; therefore, every
subject’s initial visit was extracted in the first instance. This reduced the number of
visits from 112,719 to 33,415 and equalised the number of visits and subjects. 15,804
of these visits used version 1.2 of the UDS, 16,769 used version 2.0 and 842 used
version 3.0. 608 of the 755 variables in the data set were scrutinised. The remaining
147 variables, which resulted from Form D1, were considered separately as they
provide data pertaining to diagnosis; these variables are discussed in section 2.4.
Figure 2.1 highlights that significant changes were made to the UDS when
version 3.0 was introduced. 200 variables were added and 84 were removed. In order
to maximise the number of visits and variables, the 842 visits which employed version
3.0 were dropped, and the variables were initially restricted to those included in both
versions 1.2 and 2.0. Consequently, 32,573 visits and 373 variables were retained.

These visits fell between September 2005 and February 2015 and were to 35 ADCs.
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The variables excluded from versions 1.2 and 2.0, of which there were 35 in total,
were not considered to provide key information.

Additional variables were excluded from the 373 preserved for a number of
reasons, such as the variable contained free-text (e.g. other Hispanic origins), provided
irrelevant information (e.g. ADC identification number) or was constant across the
subjects (e.g. number of days from initial visit). However, a single constant variable
providing the visit number (NACCVNUM) was retained for testing purposes, which
are explained in chapter 4. Duplicate information was removed where possible,
mainly on a form-by-form basis; and a selection of variables were replaced by some
which had been newly derived, in order to consolidate data and provide it in a more
suitable format. For example, the two variables indicating whether the subject had
experienced hallucinations in the last month, and the severity of the hallucinations,
were combined to form a single variable (HALL_SEV). This resulted in a total of
258 variables, which are detailed in table 2.2. Two of these variables, specifying
the subject’s identification number (NACCID) and visit date (VISIT_DATE), were
maintained for administrative reasons; and were excluded when analysis was applied
to the data set. Of the other 256 variables, 39 were continuous, 63 were categorical,
60 were ordinal and 94 were binary.

Prior to analysis, four randomly generated synthetic variables were introduced
into the data set, increasing the total number of variables to 260. The exact nature

of these variables is discussed in chapter 4, as they were added for testing purposes.

2.3.2 Missing Data

The UDS contains two types of missing values. The first arises when data is
unexpectedly not recorded, and the second occurs for a number of reasons. The
main reason is the associated question was not relevant, either in its own right
or because a response to a previous question rendered it so. An example of a
question for the former case, from Form B7, is “In the past four weeks, did the
subject have difficulty or need help with preparing a balanced meal?” (ADC Clinical

Task Force and National Alzheimer’s Coordinating Center, 2017¢). In short, the

23



oy Areurgqg JuouLITed W SATIIUSOD M ISI0W JO I0YeIIPU] WOINDOVN
Al Areurg JAiqerpar s yuedoryred-00 oY) noge wonsonb ® o197} S| ATHYUNI
v reurpiQ J3orjuoo auordere) Jo Aouonboaiy oyewxordde ‘ou Iy STTIVONI
v [eurpiQ ;sysia uostod-ur jo Aouonboiy ojewxoidde ‘ou jf SLISIANI
vV Areurgg J309lqns oy yym o1 juedmoiyred-0o o) S90(] HIMAIINI
vV [eoLI089%R)) 109lqns 0y drgsuonyeror s juedoryred-o0) OITHYUNI
Al Areurg xos s juedmryred-o)) XHSNI
A SnonuIjuo)) JISTA JO IeaA/[juout 0) [iIiq Jo Ieak /yjuow s juedmoryred-00 wWoly SYIUOIN «SOINH# HUIANI
v [eorI089%R)) suonuyep 9ovl (HIN) YI[ROH JO SOINIIISU] [RUOIJRN POALIS(] YHINDDVN
TV SnonuIjuo)) JSTA Je 93e 5 320(qng HOVOOVN
v [eot10803e) (POPURY-JYSLI 10 -3 320(qns oy S AIANVH
v [eor10899e)) Snje)s [ejLrefy LVLSTdVIN
v [eat10809e) 9ouapIsal Jo adAT, ONAAISAY
v [euIpIO) oouepuadopur Jo [oAd] AONHJdHANI
TV [eo11080%e)) TOTYeNYTS SUTAL] SAI'TODVN
v SNONUIIUO)) UOIJRONPS JO SIBIX ONad
Vv [eor10893e)) oSengue] Arewi | DNVINIYd
v [eoL10897R)) SursLIo oruedsry HOdSTH
Vv Kreurgg Ayoruyje ouryer/oruedsiy DINVJSIH
v Areurgg xos s.30alqng XHS
1V SNONUIIUO)) JISIA JO IR9A/YJuowW 0 YIIIq Jo Ieak/yjuout s409(qns woly SyIuojy «SON# HIYId
1V [eoLI089%R)) 90IN0S [RLIOJAI TedDULL ] VATNDOVN
1874 [eOLI0S9)R)) AOQ<V IOYUR)) 9SRASI(] S, IOWIOYZ[Y UR 0} SUIOD JI0] UOSeal AIRWILIJ SVAIDOVN
HA SnonuIuo)) (1op10) T9qUINU NSTA S(I() INANADOVN
HA 100(qo ouur T, /ore(] (Aep ‘qyuowr ‘Ieak) 9jep ULIOA «HAILVA LISIA
H SNONUIIUO)) IoquInU UOISIOA TLIO HHAINEOA
HA Tegruept HHVN IdqUINT UOIyedy1uapl 329lqng dIOOVN
WLIO] odAT, eye(q uorydrosa(] o[qeLIRA

24



v
v
@V
@V
@V
vV
A4
A4
vV
v
A
A
A4
A%
vV

A4
A4
A%
v
vV
A
A
vV
A%
vV
A%
ev
ev

[eoLI089%R))
[eoLI089%R))
[eOLI0S9)R))
[eoLI0S9%R))
[eOLI0S9)R))
Areurgg
Areurg
Areurqg
Areurgg
Areurgg
Areurgg
Areurg
Areurqg
Areurqg
Areurgg

Areurg
Areurqg
Areurqg
Areurgg
Areurgg
Areurgg
Areurqg
Areurqg
Areurgg
snonuryuo,)
Areurg
Areurg
Areurqg

IOYRUWIOR ]
aanpeooxd ssedAq ovipre))

Jue)s / AwojoeIelrepus /Asedorsuy

UOTYR[[LIQY [BLI}Y

}SoLIR DRIPIRD /YoRIIR IR}

UOIJRIIPOUW $939(RIP © JO 9Sh JualInd pajiodey

Aderoy) suourroy unse301d + US0I1$0 JO oSN JULLIND pajrodoy

Ade1a1[) SUOULIOY ULS0IISO JO 9STL JUDLIND PajIoday]

JuoSe uosuryredijue ue Jjo osn JuoLInd pojrodey

Juege o1j0udAy 10 9ATIRPaS ‘OIIATOIXUR UR JO SN JULLIND pajloday]

JueGe d1joPAsdijue U Jo oSN JULLIND pajrodoy]

juessordoprjue ue Jo 9sn JueLInd pojrodey

JuoSe jofejerdijue 10 jue[NSROOIUR UR JO ST JULLIND Pajroday]
UOI}RIIPOW AIOJRUWWIRPUI-TJUR [RPIOISISUOU JO STl JUSLIND Pojrodoy]
uorjedIpowl JuLIomo] prdi[ Jo osn juaerImno pajiodoy

UOT)ROTPOUL

aassoxd poorq 10 aarsuslIdAyriue jo odA) Aue jo osn juormd pajrodey]
JOYIQIUI [] UISULOISUR UR JO oSN JUoLIND pajiodey

JOJR[IPOSBA ® JO 9SI JUDLIND pojrodoy]

OIJOINIP ® JO 9sN JuolINd pajiodoy

JuoSe SUINOO[( [PUURYD WNIO[RD B JO 9SN JU2LIND pajrodoy
(1opo[g-rIeg) JueSe FUIYD0[q dIFIoULIPLR-R)S( B JO JST JUSLIND PajIoday]
JUoSe DISIOUAIPRIJUR UR JO 9SN JUuoLInd pariodey

1031qIUUI (V) OWAZUS SUILIOATO0D UISUJOISUR UR JO 9SN JUSLIND PotIodoy]
Ade1o[) woryRUIqUIOD dAISUS}IOAAYIUR UR JO ST JUOLIND PojIoday]

JISIA 0RO 8 Pa1I0dol SUOI)RIIPOW JO JOQUINU [R)Q],

suorjyedIpawr Aue gurye) 30slqng

JuouLITed W SATIIUSOD M IOQUIDUL AJIUIR] 99I39P-)SIY JO I0)RIIPU]
JuotLITed Wl SATITUS0D M ISYJR] JO I0)RIIPU]

HOVAAD
SSVdAdAD
OIDNVAD
dIdVAD
LLVHAD
ANdODVN
ANdIDOVN
ANIDOVN
ANAdODOVN
XNVVODVN
ASdVODVN
dHAVOOVN
DVOOVN
ASNDOVN
TdI'TOOVN

NLHVODVN
IONVOOVN
ASVADDVN
dAIdOOVN
SAODODVN
VLHIODVN
SVVVODVN
[HOVODVN
ONLHDOVN
AINVODVN
SAIINANY
INVADDVN
AVAODOVN

25



v
@V
av
v
v
v
v
av
av
v
v
@V
@V
av
v
v
v
v
@V

v
av

@V
oV
v
v

[eOLI0S9)R))
Areurgg
Areurgg

[eoLI089%R))

[eoLI039%R))

[ROLIOS9)R))

[eoLI0S9%R))

[eOLI089%R))

[eoLI089%R))

[eoLI089%R))

[ROLIOS9)R))

[eoLI0S9%R))

[eoLI089%R))

[eOLI0S9)R))

[eoLI089%R))

SnonuIuo))
Areurqg

SNONUIUO))
Areurgqg

SNoNuUIuo))
[eOLI0S9)R))

SNONUIIO))
[eOLI089%R))
[eoLI039%R))
[ROLIOS9)R))

[RID0S 10 [e39]

‘SUIALID ‘YIOM :SedIe FUIMO[[OJ [} JO 9UO Ul pajsejiurm porrad yjuouwr
-Z1 © J9A0 SULLINDOO jusuLIredwll JUROYIUSIS A[RIIUI[D - osnge [0YOI[y
oge s1eok omj) uer) arow seposide uorssardo(]

SIeoA om) )Se[ 1) Ul UOISsaIdop 9A1)OY

[9MO( - dOUDUTIUOIU]

AIRULIN - 9OULUIJUOIU]

9SROSIP PIOIAY T,

Adueroyep g ururejr\

sojeqeI(]

RIWS[0I99S9[0PIdAY

uotsudIod A

UOT)IPUOD [eIIS0[0INdU I9Y)()

JIOYOP OTUOIYD - BWINRI} UlRIg

SSOUSTIOIISUODUN POPUI)XO - RUWINRI} UTRIE]

SSOUSNOIISUOIUN JOLI(| - RWINRI} UIRIG

SOINZIOG

JISIA JO IRaA 0} SISOUSRIP IOPIOSIp ueruosuryred Jo Ieak wogj sieox
Ioplosip ueruosuryred I073()

JISIA JO IROK 09 SISOUSRIP ([J JO IRA WIOIJ SIROL

(dd) oseesIp s uosulyIed

JISTA JO IROA

09 JISIA [RIYTUL 9] JO Se Y], JO Teak pojiodor A[JUsdal JSOUl WOLJ SIedX
(VLL) YoriIe OIUeyosT Jualsued],

JISIA JO TedA

07 JISIA [RIIIUL 9] JO Sk 9YO0I)S JO IRoA PalIodarl ATJUedal JSOUl WO SIedx
R)[RUIS

9SRASIP TR[NOSRAOIPIRD I9Y)()

9IN[IR] 1I€JY OAI}SOFUO))

TOHODTV
YHILOJHAAd
SHAZdAA
ALNODNI
NINODNI
AIOYAHL

Adde14g
SHILAIVIA
OHDYHAJAH
NAILHAJAH
YHILODON
YHOINNVYL
IXANNVYL
ANV UL
SHYNZIAS

«SHA# YAYHLOAJ
YHIOAd

«SHAH# YA

ad

+SUAF MALLODOVN
VILID

«SHAH YALSOOVN
HMOYLSID
YHILOAD

AHDAD

26



¢d
¢d
¢d
¢d
¢d
1d

1d
1d
1d

1d
1d
1d
Id
Id
1d
1d
1d
@V
av

v
@V
av
v
v
v

Areurg
Areurqg
Areurqg
Areurgg
Areurgg
SNONUIIUO))

Areurqg
Areurgg
Areurgy

Areurg
Areurqg
Areurqg
SNoONUIUO,)
snonuruo,)
SNONUIIUO))
SNONUIIUO.)
SNONUIIUO.)
Areurgg
[eOLI0S9)R))

[eOLI0S9)R))
snonuryuo))
[eUIpIO
SNONUIIUO))
Areurg
Areurqg

uotsuajIadAy Jo sousserd 10 A10)STH

9OUSUIUOIUT [RUOTIOWY

syure[duod d13euog

(snje)s 9ATIIUS0D :01) UOIRIOLIDIOP ostmdalg

(snje)s oAy U800 1) jesuo dniqy

(INg) xeput ssewt £pog]

J(S)pre SuLreay ® )M [RULIOU A[[RUOIIOUNJ

Surreot] s,300lqns o1y st ‘(s)pre Surresy ® sreom A[ensn 3oalqns oy J
/. (S)pre Surreay © Ieom Afrensn 09lqns oY) so0(]

JeuLiou A[[euor}ouny urreay s,300[qns oy st ‘(s)pre JuLIedy ® JMOYIIAN
J,SOSUO] OAT}DOIIOD [[IIM [RULIOU A[[RUOIIOUN]

UOISIA §,309[(NS o) SI ‘SosSUS[ 9AIJIIIIOD SIeam A[[ensn 30s(qns oy Iy
] SOSUQ[ OAT}O9II0D IeOM ATrensn 90o(qns o) soo(]

JeuLIOU AJ[RUOIJOUN] UOISIA §,100[(NS 9} SI ‘SOSUS] OAIJIIILION JNOYIIAN
(es[nd) oyer jreoy Surysal 3oolqng

orjogserp ‘(8uryyis) aanssexd poorq 109lqng

o1[0984s ‘(8uryyis) aamssexd poorq 109lqng

(sqr) yStom s300lqng

(seypur) sy s 00lqng

(19.1) Am(ur ureiq oryewnery jo AI0)sTH

Ioprosip ouryeryoAsd 1813()

[RID0S 10 [e39]

‘SUIALID ‘YIOM :SeoIR SUIMO[[O] [} JO 9UO Ul pajsejiuet pordd yjuow-g
JOAO SULLINDOO JuauLIred Wl JURIYIUSIS AJ[RIIUI[D - S90URISNS Pasn|e I1971()
(ymb -o'1) pojouws gse[ oys /oy yorym e ode ‘Surjows jmb 10alqns oyy I
Aep 10d peyows syoed JO IDqUINU 9FRIDAY

$91901e310 POYOUWS SIRIA [R)Q],

OJI[ UI $9399IR3ID ()] UR() 9I0W POYOWS

sAep ()¢ 1Se[ Ul $91101eT1D PoyOuS

HHdAHXH
LONH
DILLVINOS
HASIMJHLS
LdNy4dv
INGODVN

AIVMYVHH
dIvdavdH
ONIHVHH

HIODMSIA
HIODSIA
NOISIA
HLVdH
Svidadd
SASdd
LHOIHM
LHOIHH
[dLOOVN
SIADAS

YHLOSNIV
MONSLING
YAISMOVI
SYAMOINS
00TOV4dOL
0£0VdOL

27



cd
ed
ed
ed
ed
cd
ed
cd
ed
ed
ed
ed
ed
ed
ed
ed
ed
ed
ed
ed
ed
cd
ed
ed
ed
¢d
¢d
¢d
¢d

[eUIpIO
[eUIpIO
[eUIpIO
[BUIPIO
[eUIpIO
[eUIpIO
[BUIPIO
[BUIPIO
[BUIPIO
[eUIpIO
[ELH O
[BUIpIO
[eUIpIO
[eUIpIO
[eUIpIO
[eUIpIO
[PUIpIO
[BUIPIO
[BUIPIO
[eUIpIO
[eUIpIO
[eUIpIO
[BUIpIO
[BUIPIO
[eUIpIO
snonuryuo))
Areurg
Areurqg
Areurqg

yren
9In3s0g

IreyD WO SUISLIY

o1 9391 - ApISe Sor]

o St - Lyide Fory

puey o[ - JUOWAOW SUIJRUI) Y
puey JYSLI - JUSWLAOT SUIYRULINIY
PURY 1JO] - SHUOWDAOW PURE

puey JSH - SJUOWDAOW PURE]

puey yor - sde} 1o3urq

puey 1ysu - sdey 1e8urg

AJTWIOIIXO ToMO[ Y[ - ANPISTY
AJUIDIIXD TOMO] JYSLI - AYPISTY
Aymueryxe roddn 9301 - ANpISry
Ayrworyxe roddn Jysu - Aypisry
Yoou - ANpISry

puey Jor - Iowel) eimisod 10 oy
puey JYSLI - I0oweI) [ean)sod 10 Uo10y
100J 1JO - 1801 J® IOWDI],

100J JYSLI - 359I e JOWDI],

puey 339 - 1801 Je I0oWaI],

puey JYSLI - 1S9I Je I0WdI],

uryo ‘sdif ‘eoeJ - 1891 Je I0WI],
uorssoxdxo emoeyq

yooodg

9I00S DTWAYDST IYSUIYORH

SUSIS [ROISO[OINDU [BIO]

swoydwAs [eo130[0INdU [RIO]

9Y 0138 JO AI0)STH

LIVD
HdNLS0d
ONISTHV
ATOHT
LHOHT
TUTVANVH
HJILTVANVH
"TAOINANVH
HAOWANVH
dATSdV.L
LYSdV.L
JTOTADIY
LHOTADIY
ATdNADIY
LHdNAdDIY
MOUNAOIY
HTLOVY.L
AHYLOVYL
LATLSHYL
LAY LSHYL
HTLSHY.L
AHY.LSHY.L
OVALSHYL
dXHOVA
HOHHAS
NIHOVH
NDISTOOA
INASTOOA
HMOYLSXH

28



9d
9d
9d

9d
ad
ad
ad
ad
ad
qd
qd
qd
ad
ad
qd
ad
qd
vd
vd
vd
vd
vd
vd
vd
vd
cd
ed
ed

Areurg
Areurqg
Areurqg

Areurgg
[BUIPIO
[FUPIO
[FWIPIO
[eUIpIO
[eUIpIO
[BUIPIO
[FUPIO
[BUIPIO
[BUIPIO
[eUIpIO
[BUIPIO
[FUPIO

[eoLI089%R))
[PUpIO
SNONUIIUO))
[eUIpIO
[FUIPIO
[PUpIO
[FWIPIO
[eUIpIO
[eUIpIO

Areurgg
[PUIpIO
[FUIPIO

JArdure st of1] InoA jey) [98) NOA O(]

JS1SeIRUL puR SoT)IATIOR INOA Jo Auewr paddoip noA eavy

JOJI INOA 1M poysIjes A[eoIseq NoA o1y

Jyuowdpnl 4soq S, URIOIUID 9} UO Paseq

‘(8@D) oreog uorssarda(] ouyeLILY) oY) 9jo[dwod 0} s[qe 10a[qns oYy ST
Jjuouwr 4se[ o) ul ‘AJLI0Aas 1Y) pue ‘swajqoid Suryes pue ajgeddy
[JUOUL SB[ O} Ul AJLIOADS IO} PUR SINOIARYD( SWIIIYSIN

JUOWL }Se[ O} Ul AJLIOADS O} PUR 9OURGINISIP IOJOTN

JUOWL }SB[ O} Ul ‘AJLIOADS oY) PUR ‘AY[IqR] 10 AY[IQRILLI]

JUOW SB[ 9} Ul AJLIOASS O} PUR UOTIIIYUISI(]

[JUOUL JSe[ 9} Ul ‘AJLIOASS S} puR ‘edualayipur 10 Ayjyedy
JJUoW Jse[ oY) Ul ‘AJLI0AdS o) pue ‘“erioydno 10 uoryersy

[IUOW JSe[ 9} Ul AJLISASS 9} puR ABIXUY

uowW Jse[ o) Ul ‘AJLI0AdS o) pue “eLIoydsAp 10 uotssoxdo(]
[juour Jse[ o) Ul ‘AJLIOASS ) PUR ‘UOISSOIZTR 10 UOIIR)ISY
[JUOUL JSe[ S} Ul AJLIOASS DY) PUR SUOIJRUDN[[RY

JUOUL JSe[ S} Ul AJLIOAS IO} PUR SUOISNI(]

juedoipred-00 (BH)-TN) oIreuuonsan) A10jusAu] oLyeIydAsdomay
qdaon 901D

soX0q Jo wms (Y(I))) Surey RIUSW(] [RIIUI))

9IRD [RUOSID]

S9I((O1] pUR dWOH

sIreye AjTunuIwIo))

surajos-wdqoid pue juowspn(

UOT}RIUILI()

AIOWLN

[ewwou (SYd[)) °[e2S Suljey asessi(] S,UOSUI{IR] PoyIu[)
rIsouryodAy pue eIsoursjApelrq Apog

A)1[1qe)s 9In9)soJ

ALdINH
LOvVdOodd
SILLVS

SaAOON
«AIS ddV
+AIS HLIN
«AHIS LON
+AIS I
+AIS NSIA
+AAS VAV
+AIS IVTH
«AIS XNV
«AAS Addd
+«AAS LIV
«AHdS TIVH
«AAS T
ANIOIAN
dOTOHUAD
INNSYAD
HIVOSYAd
d9OHANOH
NAWINOD
INANOANL
INATHO
AHOIWHAN
TYINHONAd
NDIAAVYd
dVvISSOd

29



Ld

Ld

Ld

Ld

Ld

Ld

L4
9d
9d
9d
9d
9d
9d
9d

9d
9d
9d
9d
9d
9d

[eUIpIQ)
[eUIPIQ)
[eUIpIQ)
[eUIpIQ)
[eUIpIQ
[eUIpIQ)

[eUuIpIO
snonuruo,)
Areurg
Areurqg
Areurqg
Areurg]
Areurgg
Areurg

Areurqg
Areurgg
Areurgg
Areurgg
Areurg
Areurqg

SIURAD JUOILIND JO 3prl) Furdooy

s djey peeu 10 AYNOTHIp oARY 1o0lqns o) pIp ‘syeom Inoj jsed o) UJ
[eowr pooueleq e Sutredod

T djey pesu 10 AYMOLIp aARY 909(qns oY) pIp ‘syoam Inoj jsed o) uf
9A01S 91} JO Furwiny I0 ‘9afoo Jo dno e Sumyew ‘Iajem Surjesy

Ty dey peau 10 AYMOLIp 9ARY 999(qns oY) pIp ‘syoem anoj jsed oy uy

A£qqO1 ® U0 SUIYIOM IO ‘SSOTD 10 9FPLIQ Se Yous [[I¥s Jo awres v Jurde[d

s djoy peeu 10 AYNOIIp oARY jo0lqns o) pIp ‘sypom Inoj jsed o) Uuf

SOLIODOIS 10 SAIISS00U P[OYSNOY ‘so[jo[o 10} auore surddoys

s dpot) peou 10 AynomyIp aary 300lqns o) pIp ‘syjoem Imoj jsed o1y uf

stoded 107)0 10 SITeje SSOUISN( ‘SPIODSI XB) SUI[(UISSSE

s djey pesu 10 AYNOIHIP aARY 100[qns o) pIp ‘sypam Inoj jsed o) Uuf

Jooq¥Payp & Jumoue[eq I0 S[[iq Sutded ‘Sydoyd SUIILIM

e dppy pesu 10 Aymogip oary 1oolqns o) pIp ‘sypom noj jsed oy ug

91098 §(I9) 8107,
JoIe NoA uey) Jjo 19330q are oajdoad jsomr yer[) Uy} NoA o]

Jsserodor St uoryenys Mok et} (99 NoA o(J

JAS10U0 JO [[NJ [99F NOA O(]

jmou oIe noA Aem o) ssoIom £3301d [00] noA o

JMOU DAT[R 9 0} [NJIDPUOM ST )T JUIY) NOK O(]

Jasowr uey) Aroweow 3m swa[oId 8I10ur SARY NOA [99] NOA O(]
Jssuryy

MU SUIOP puUe MO SUI0S UeT[) IoYIel ‘Dwoy e Aris 0} Iojoid NoA o(]
J;sso1doy [99] we)j0 NOA o(J

jowry o) Jo jsowr Addey (0] nok o(J

;nok 09 uadder 01 SUIOS SI pe( SUIISWOS IR} Preije NOA oIy
jowry oy Jo gsowr syurids poos ur NoA ary

,PoI0q 198 U21J0 NOA O(]

SLNHAH

dHAdTVHIN

HAOLS

SHINVD

ONIddOHS

SHXV.L

STIId
SAOOOVN
dHLLHY
SSHTHdOH
ADUINA
SSHTHIYM
TNAIANOM
dOddINHIN

HINOHAVLS
SSHTdTHH
AddVH
dIvddyv
SLIYIdS
aqyod

30



6d

6d

6d

6d

6d
6d
6d
8d
8d
8d
8d
Ld

Ld

Ld

Areurqg

Areurgg
Areurg

SNONUIIUO))

Areurg
Areurqg
Areurgg
Areurqg
Areurqg

Areurgg
Areurgg

[euIpI0

[eUIPIO

[euIpIO

o8ensue url ‘sonI[Iqe paurelje Arsnorasid oy

oATyRaI ‘porredwir A[mySururaur ST AJJUSLIND 309[(NS S} IOYIOYM 9)RIIPU]
surajos-woqoad 10

suruue[d ‘yuowISpnl - UOIPOUNY OAIINDOXS UL ‘SAIYI[IR poureje Ajsnoraoid 09
oATyR[Rl ‘poiredul A[nySururot ST AJJUDLIND 109[(NS oY) IOYIOYM 9)RIIPU]J
Arowowr Ul ‘sorjIqe pourejye Asnoraard o

oATyR[RI ‘parredwur A[mydururaur ST AJJUSLIND 109[(NSs S} IOYIOYM 9)RIIPU]
Juisaq

QUI[DOP OAT}IUS0D O} PIP 9F% JeUYM JR ‘JUOWISSOSSE S URIIUID UO Posey
Se3URYD JUAUIDAOW /I0J0UT SI®

9191 I0 ‘SITefe 19 /SIY 9Feur 0] AY[Iqe ‘INOIARYD( ‘SII}I[IqR SATIIUIO0D
AI0WLW-UOU ‘AIOWSUL UL SUIDAP [NJSUTURIUWL ® ST 919} SOASI[O( URIDIUI])
J(senyr[iqe paureye A[snorasid

0} aA1jR[al) ATowLwW S,300[qus ur surep e 11o0del juedoryred-00 o) SO0
J(somiqe paurejye

Arsnotaard 0} eArye[RI) Arowew Ul aurpep ® 1rodal joalgns oy seo(]
J IOPIOSIP WD)SAS

STIOATOU [RINUD JO OATIRIIPUL JU9SOId SOT[RULIOUR JUSTIOAOWL 94D 919} 91y
JJOPIOSTP WIDYSAS STIOATIOU [RIJUSD JO SAIIROIIPUL JuasoId IOPIOSIp RS S|
JIOPIOSIP WDYSAS SNOAIOU [RINUOD JO SAIJRIIPUL JUasaId S)IOTOP [8I0F 91y
Jolqes{IewoIun SSUIPUL [[® 9IOA\

uorjejrodsuery

oriqnd oxeg) 03 SurduRLIR 10 ‘SUIALIP ‘POOYINOQUSIOU oY) JO MO SUI[[PARI)

s djey peeu 10 AYNOIHIP oARY 100lqns o) pIp ‘sypom Inoj jsed o) Uuf

SUOT)RIIPAU 10 SARPI[OY] ‘SUOISLID0 AJiwre] ‘sjustjutodde SULIOQUIOTIST

s dpot] peou 10 AynoIp oary 300lqns o1y pIp ‘syoom Imoj jsed oty uf

ourzegeul
10 Yooq ‘ommreisold A J, ® Suipueisiopun pue o} uorjuojje surded yim
dpy peou 10 AYNOIPIP oARY 309[qns oY) pIip ‘syoom Inoj jised o) uf

DNVIOOD

DANCrHNOO

INHINDOD

JOvVOodd

NI'TOOHd
NIDHA
dnsodd
HAOIWHAH
SIALIVD
dHATOOA
XHUNOOVN
THAVY.L

SHLVANAY

NLLVAVd

31



6d

6d
6d

6d
6d
6d
6d
6d
6d
6d
6d

6d
6d

6d

6d

6d

6d

[eorI089%R))

[eoLI0S9%R))
Areurgqg

Areurg
Areurqg
Areurgg
Areurgg
Areurg
Areurqg
Areurgg

Areurqg

Areurg]
[eOLI0S9)R))

[eoLI089%R))
Areurgy
Areurgg

Areurqg

swoldwAs [eInorAeyaq Jo 19SU0 JO 9pOIN

INOTARTR( S,309[qns oy} ur

QUI[O9P ® SB POSTuF0dal 351y sem Jey) wojdwAs jueuropald o) 93eorpu]
19U} - INOIARYQ( Ul 9FURYD [NJFUIURSUL SISOJIURUL A[JUSLIND 10a[qng
asueryd

A[RUOSID - INOIARYD( U 9SURYD [NJSUTUROWL SISAJIURM A[JULLIND 102[qng
UOT)RIISY - INOIARYS( UL 9SURYD [NJSUTURSIUWL SISOJIURU A[JULIND 109[qng
AYI[IQRILLI] - INOTARYD( Ul 9SURYD [NJSUIURSIUL SISOJIURUI AJJUSLIND 100(qng
UOTIIYUISI(] - INOIARYD( U 93URYD [NJSUTURIUL S)SOJTUR A[JUSIIND 109[qng
SJoI[eq [RUOISN[AP IO dS[R] ‘[euLIOUqY

- SISOUYPASJ - INOIARYD( UL 9SURYD [NJFUITRIUW S)SOJIUR A[JUaLIND 309[qng
suorjeuDN[[RY AI0JPNY

- SISOUPASJ - INOIARYO( Ul 9SURYD [NJFUIURIU S)SoJIuetl A[JuaLind 409lqng
SUOT)eUdN[[RY [RNSIA

- SISOUPASJ - INOIARYS( UL 9SURYD [NJFUIURIUW S)SOJIURI A[JUaLInNd 409[qng
poowt

possaxdo(] - INOTARYD(Q Ul 9FURYD [NFFUIURIUWL $)SJIURT ATJUSLIND 309[(ng
[eMRIPYIIM

‘Ayredy - INOIARYDQ UL dFURYD [MJSUTTRIUW SISOJIURTI AJJUSLIND Joo(qng
swo)duwAS 9ATIIUS0D JO JOSUO JO OPOJN

uorIugod §,399[qns o) ut

QUI[O9P ® S PosTuF0dal 381y sem Jey) wojdwAs jueuropard o) 93eorpuy
SUTRWOP SAIITUS0D ISYJO Ul ‘SOI[IqR paure)je A[snoradid oy

oATyR[aI ‘parredwil AJmysurueaur ST AJJUOLIND 109[qnNs ) IOYIoYM 9)RIIPU]
UOT)RIJUIOUO0D IO UOIHUSIJR UL ‘SerIIqe paurelje Asnorasid o

oATyRaI ‘parredwur AJmysururaur ST AJJUSLIND 109[qNSs ) ISYIoYM 3)RDIIPU]
uorOuUNy [eryedsonsia ur ‘SonyI[Iqr paurejjye Ajsnoraaid oy

oATYR[RI ‘poiredul A[nysururot ST A[JULLIND 109[(NS o) IOYJOM 9)ROIIPUJ

HAOWHd

AHHIOOVN
HHLOHY

HOdHddd
LIOVHA
LIgdIdd
NISIaHd
THadd
TIVHVHA
TIVHAHA
dddHdd

AHLVdVHd
HAOWDOD

IDO0ODOVN

HHLODOD

NLLVODOD

SIADOD

32



D
£9)
£9)
[£9)
[§9)
D
9]
£9)
19)
[19)
D
9]
£9)
19)
[19)

6d
6d
6d
6d
6d
6d
6d

6d

[eOLI089%R))
SnonuIuo))
SnoNnuIuo))
[eoLI0S9%R))
SNONUIUO))
[eOLI089%R))
[eoLI039%R))
[eOLIOS9)R))
SNoNuUIIO))
[eoLI089%R))
SNONUIUO))
[eOLI039%R))
SnoNuIuo))
[eoLI0S9%R))
[eoLI089%R))

[eoLI089%R))
[eoLI080%R))
[ROLIOS9)R))
[eOLI0S9)R))
Areurqg
Areurgy

Areurgg

Areurqg

AIOIA 10} popraoid 10U sem IomsSuR UR UOSRIY

)suo] premioy ueds 4131y

1091100 S[eLI) premioj ueds S

INAINIDOT 10] popraoid 10U sem IoMSUR UR UOSRIY

UOTIRIJSIUTUIPR 1$9) JUSLIND SIY) WO PA[[eIal sirun AI109s Jo Iaquunu [ejo],
UOT)RIJSTUTUIPR 1$9) JO oFenguer|

‘poIvjsTUTIIPe sem AI91)e( o) JO IopUlewal oy,

ASININDOVN 10J popraoid jou sem IomsSUe Ue UOSBOY

(M-0O-4~T-( 3uisn) 91008 FSININ [®I0L,

OTHOMSININ 10] popraoid j0U sem IomsUR UR UOSBIY

90R[J - 91008 9[RISUNS UOIIRIUSLI()

VAYOHASININ 10] popraoid jou sem IomsSuR UR UOSRIY

OWILT, - 91098 O[RISUNS UOIJRIUILI()

uorjeI)STUTIIPR HSINIA JO oSenguer|

:sem (FSININ) UOIRUIUIRX 91R1S [RIUSJA-IUL]\ ) JO UOIJRIISTUIUIPY
109[qns o1y

Ul PaSURYD Se PISIUG0Ial JSIY SeM Je() Urewop jururmopaid oY) 93eorpuy
SWOIPUAS I0JOU /[RINOIARYD( /OATIIUSO0D JO SUI[IDP JO 9SINOD [[RIDA()
swojduwAs 100U JO 39SUO JO OPOJN

uorounj I030W S,399[qns oy} ut

QUI[D9P ® S POSIF0dal )81y sem Jey) wojduwAs jueuropaid oY) a3eorpuy
SSOUMO[S - UOIOUNy

IOJOUI UT $oFURYD [MJSUTURSIWL SRY AJJUSLIND 309[(NS oY) IoYjoym 2)RIIPU]
JOWI], - UOI}OUIy

IOJOUW UI SoFURYD [MJSUTURIW SRY A[JUSLIND 309[(nNs oy} Ioyjoym 93eIIpU]
S[[eq - uorjouny

I0JOUI UT $OFURYD [MJSUIURSUL SRY A[JUSLIND 303[(NS 9} IoYjoym 2)ROIPU]
IOPIOSIP J1ex) - UOIJOUI]

I0JOW UT SOFURYD [NFSUIURIUWL SRY A[JUDLIND 309[qNs oY) I M 9)eIIPU]

xd0dd AIDI1d
NHTAIOIA

ADIA

xd0dd WHINIDO'T
INHINTOO'T
NVTASAN
DOTOASIN

x*dOdd HSININDOVN
HSININDDVN

xd0dd OTHOISININ
OTHOHSININ

x*d0dd VAHOISININ
VAIOISININ
NVTISININ
DOTASININ

DHOLSYA
HSHENOD
HAOWOIN
ALONDOVN
MOTSON
INHYLOW
STIVAOIN

LIVOOIN

33



(2707 ‘193U BUIpeUIPIOO)) S IOWIDYZ[Y [RUOIJRN) AIRUOIIOIP RJepP SIOUDIRISaI oY) Ul Paplaold 9sot[) U0 poaseq
oIe suolydiIosep oY ], "Iopeay ULIOJ o1} S9J0UaP F 2IOUM ‘UM PIJRIDOSSE SI 41 WLIO] oY} [3tm Suofe ‘papraoid st od4) eyep pue uordLdsep ‘oureu s,a[qerIeA
ory] "POALIOD A[MOU oIom , UR M POXIRU So[(RLIRA oY ], ‘stsoudeip o) Sutureitad osoy) Surpnoxe ‘SN DOVN 2} WOIJ Pasiin sa[qeLIeA 7' d[qR],

0 Areurgg 1D WO pue [y WO S(I[] Weamiaq AouedaIdsip 9)ep ULIOq TODDOVN
POWIOOP SI STYRIS DAIIIUI0D
10 [eOLI0S9)R)) s,790[qns oy} ‘uoryeureXs [RIISO[OYIASdoInou oY) U0 Paseq ‘URIIIUID I9J ILVISHOD
0 [eorI089%R ) NOISOY 10} popraoxd j0u sem Iomsue UR UOSeIY] +JO0Yd NOLSOYg
10 SNONUIIUO)) 91008 1107, - (0€) 1S9, Surmrey u03IsOg NOILSOY
0 [eo110899e)) SLINNINAIN 10 popraoid j0U sem IomsUe Ue WOSeI] x*dO0dd SLINNINHIN
oyRIpOIU]
10 snonuryuo,) - Y[ AIOWwRN [e21807 2ouls posde[d oWl ], - poAR[d(] - Y]] AIOWSN [RIIS07] AINTLINAIN
1D snonuryuo,) po[[esal sjrun AI103S Jo Ioquinu [RJ0], - poAe[d(] - V][ AIOWDIN [eIIS0r] SLINNINAN
0 [eoL10899e) SIVAA 10J popraold jou sem Iomsue UR UOSROY +dOYd SIVM
D snonuIjuo)) [oquifg Y81 (Y-SIVA) (POSIAdY]) o[edg 90UaSI[AIU] INPY IO[SYDIAN STV
10 [eoLI089%R)) TIVH.L 10] pepraoid jou sem IOMSUR U UOSBIY +IOUd dTIVIL
10 SNONUIIUO.) 99o1dwoo 03 SPU0deS JO IoqUINU [RIOT, - g HeJ 1S9], SUIYRIN [lel], dTIVyL
0 [eoLI089%R ) VIIVYH.L 10] popraoid 10U sem Iomsue Ue UOSRIY «+IOUd VIIVHL
10 SNONUIIUO)) 93o1dwod 03 SpuodKes Jo IoquINU [RIO], - YV MR 1S9], SUINRIN [Iel], VIIVY.L
D [eo110809e)) A 10J popraoid j0u sem IomsSuR UR UOSRIY +dOUd DIAA
10 SNONUIIUO)) SPU0D9s ()9 Ul PAWRU SO[([RIIFAA JO ISUINU [RI0], - SO[(RIDTIA DA
10 [eoLI089%R)) STVININYV 10 popraoid j0u sem IomsuR UR UOSBIY +IOUd STVININY
1D SNONUIIUO.) SPU029s ()9 Ul PoWRU S[RUWIUR JO IOQUINU [R}0], - S[eWIUY STVININY
0 [eo110893e)) NHATAIDIA 10§ papraoid jou sem Iomsue Ue UOSLIY +dOdd NHTdIDId
D [eo110809e)) qIOI( 10} popraoid jou sem Iomsue Ur UOSBIY +d0Yd dInI1d
0 snonurpuo)) [)3uo] premspeq ueds $131(] NATIIOIA
10 SNONUIIUO.) 1091100 S[RLI} premyoeq ueds 331(] qaimoI1a
1D [eorI089%R)) NHATAIOIA 0] popraoid jou sem IoMSUR UR UOSRIY «+dOUd NATAIOHIA

34



subject may never have performed this task, making the question irrelevant. An
example for the latter case, from Form A1, includes “Does the subject report being
of Hispanic/Latino ethnicity (i.e. having origins from a mainly Spanish-speaking
Latin American country), regardless of race?” and “If yes, what are the subject’s
reported origins?” (ADC Clinical Task Force and National Alzheimer’s Coordinating
Center, 2017¢). Fundamentally, a negative response to the first question renders
the follow-up question inconsequential. Other reasons are the clinician believed the
subject was unable to be assessed in the prescribed way; and the corresponding form
did not have to be completed and was not due to the subject having a physical,
cognitive/behaviour or other problem, or they verbally refused. This second type of
missing data is termed conditional missingness. Values indicating that the variable’s
question did not feature in the version of the UDS used to assess the subject can be
associated with both types of missingness, but they were eliminated when variables
were excluded from the data set.

Numerical codes are used by NACC to represent non-numerical values for
variables, including missing and conditionally missing values. These codes were
inconsistent across the data set, and some even represented different types of missing-
ness for a single variable. Each variable was interrogated individually so the meaning
of each code pertaining to missingness could be identified. It was important that
the two types of missingness were uniformly labelled across all the variables and the
distinction between them was clear, so that they could be handled appropriately. Any
missingness was recoded accordingly, and the values indicated as genuinely missing
were later imputed as described in chapter 3. In contrast, the values which were
designated conditionally missing were handled, as their presence was meaningful. As
a result, any missing values that could not be sensibly imputed, for example those
associated with a variable providing the number of years since the subject’s most
recent stroke (NACCSTYR_#YRS), were marked as conditionally missing. It was
previously stated that conditionally missing values could result due to the relevant
form not having to be completed. These values also needed to be identifiable so they

were not drawn on during imputation, ultimately to avoid introducing bias towards
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conditionally missing values.

The percentage of subjects missing each form is included in appendix A, along
with the proportions of the different types of missingness for the relevant variables.
NACCBMI, which provides the subject’s body mass index (BMI), had the most
genuinely missing values, accounting for 10.55%. The average amount of missing
values per variable, however, was just 0.66%. The percentage of missing values for
the data set as a whole also equalled 0.66%, but the number of subjects with at least
one missing value totalled 15,494 (47.57%). The significant proportion of subjects
with missing values was the main motivation for performing imputation, rather than
simply discarding the subjects affected. By imputing the missing values, the difficult

task of handling two types of missingness was also avoided.

2.3.3 Variable Relationships

Section 2.3.2 implied there are relationships between variables within the UDS, due
to there being links between questions in the forms. The relations were of interest as
a result of missing values being present, and those featured in the UDS were split into
two groups. The first comprised the relationships involving only two variables, where
one (parent variable) can cause the other (child variable) to have a conditionally
missing value if it takes on a specific value itself. These types of relationships are
referred to as dependencies; and the example concerning Hispanic/Latino ethnicity,
provided in section 2.3.2, is representative of this group.

The diagram in figure 2.2 shows the dependencies between the 21 variables
used from Form A4, which provide the medications the subject took in the two weeks
prior to their visit. There is a node to represent the form itself, which does not have
a label and is coloured purple, as well as each of the variables. The ANYMEDS
variable, which indicates whether the subject has taken any medications, is linked to
the form node and every other variable. The former link signifies that the variable is
associated with Form A4, whilst the latter links indicate that the other 20 variables
are dependent on it. These variables provide information such as the total number

of medications reported, and highlight different types of medications that have been
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NACCADEP
NACCAAAS
NAGCBETA :
NACCHTNC
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NACCACEI NAGCDIUR
NACCAMD
NACCPDMD
NACCNSD
©) NAGCAPSY
NACCAC

Figure 2.2: A visualisation of the dependencies between the 21 variables used from Form
A4, which provide the medications the subject took in the two weeks prior to their visit.

taken (e.g. diabetes medication). It, therefore, makes sense that the values for
these variables are dependent on whether or not any medications have been taken.
Appendix A features a similar diagram for each of the forms.

The second group of relationships included those for which one or more variables
can determine the value of another. The vast majority of these relationships arose
due to a number of variables needing to be split in two, specifically to separate
out two sets of data contained within them pertaining to different things. An
example of a relationship, from Form B1, involving three variables providing the
height (HEIGHT), weight (WEIGHT) and BMI (NACCBMI) of the subject can be
characterised using an equation. More specifically, BMI = (w x 703)/h?, where w is
weight (in pounds) and A is height (in inches) (National Alzheimer’s Coordinating
Center, 2017). The interactions between these variables constitute a relationship as
the HEIGHT and WEIGHT variables determine the value of NACCBMI. For more
examples of relations in the UDS, especially those which were considered during
imputation, please refer to section 3.2.5.

The dependencies and relationships were not all clearly indicated in the doc-

umentation for the UDS, so it was necessary to identify and verify them. In fact,
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some relations that were stated in the documentation were not found to hold in the
data set, whilst some were present in the data set but not documented.

A number of the variables which can determine others (e.g. parent variables)
had missing values; thus, the values in their associated variables corresponding to
those that were missing had to be identified. It was important to set out which of
these values would be updated, if the missing values were imputed, to ensure the
relations within the UDS were maintained so far as possible. The majority of the
values were either missing or conditionally missing, which were suitable to update
for the most part. Any measured values were retained, however, even if they could
be recalculated. An example of a variable which did not have its values updated
is NACCGDS from Form B6. In particular, it provides the total GDS score which
is calculated using 15 other variables, all of which had missing values that were
imputed. Measured values which could potentially be updated arose as a total could

still be calculated even if the values of up to three of the 15 variables were missing.

2.4 Diagnosis Data

Data pertaining to the subject’s diagnosis is collected using Form D1. It generates
147 variables which mainly provide information as to the cause of any cognitive
impairment. Dementia subtypes such as Alzheimer’s disease (AD), vascular dementia
(VD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) are
considered, along with others which are less common. Neurological, genetic and
infectious conditions, including epilepsy, Down’s syndrome and human immunode-
ficiency virus (HIV) respectively; and psychiatric diseases, such as depression and
schizophrenia, are also possible diagnoses. Furthermore, cognitive impairment due
to substance abuse or medications is considered. For the majority of the diagnoses,
whether it is a primary, contributing or non-contributing cause of the cognitive
impairment is indicated. It is possible for multiple causes to be reported, but just
one must be designated as the primary cause. This form also records whether the
subject has any hereditary mutations, biomarker findings or imaging evidence, which

could point towards a cause; and indicates if the diagnosis was made by a single
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Variable Description

NACCUDSD Cognitive status at UDS visit
NACCALZD Presumptive etiologic diagnosis of the cognitive disorder -
Alzheimer’s disease

VASC Presumptive etiologic diagnosis of the cognitive disorder -
Probable vascular dementia
VASCPS Presumptive etiologic diagnosis of the cognitive disorder -

Possible vascular dementia
STROKE Presumptive etiologic diagnosis - Stroke
NACCLBDE Presumptive etiologic diagnosis - Lewy body disease (dementia
with Lewy bodies or Parkinson’s disease)
NACCBVFET Behavioural variant frontotemporal dementia syndrome
NACCPPA Primary progressive aphasia with cognitive impairment
NACCETPR Primary etiologic diagnosis of the cognitive disorder

Table 2.3: Diagnosis variables utilised from the NACC UDS. Each variable’s name and
description is given. The descriptions are based on those provided by the National
Alzheimer’s Coordinating Center (2017).

clinician or whether it was a consensus diagnosis.

The variables from Form D1 were used to generate a number of labels (or
classification targets) for every subject, each concerning an aspect of their diagnosis.
The cognitive status of the subjects, and their dementia subtypes where applicable,
were of most interest due to the objectives of the research, which were outlined in
section 1.1. In particular, the relevant variables in both versions 1.2 and 2.0 of the
UDS were identified but, as there was considerable overlap between them, a number
of the variables were found to be redundant. Ultimately, only nine variables were
required, namely those detailed in table 2.3.

Cognitive status was broken down into dementia, mild cognitive impairment
(MCI) and normal cognition. The latter category comprised subjects without any
cognitive impairment and those who were cognitively impaired but failed to meet the
criteria for MCI, which are outlined by Petersen and Morris (2005). According to the
National Alzheimer’s Coordinating Center (2017), diagnostic criteria for dementia
were not specified. However, it is suggested that most ADCs probably used those in
the DSM-IV (American Psychiatric Association, 1994). In particular, 12,136 subjects
were found to have been diagnosed with dementia, 6,815 with MCI and 13,622 with
normal cognition.

The four main subtypes were focused on for those diagnosed with dementia.
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Dementia Subtype All Cases Primary Cases Pure Cases

Alzheimer’s Disease 9501 8896 7757
Vascular Dementia 1070 239 134
Dementia with Lewy Bodies 1107 749 567
Frontotemporal Dementia 1658 1439 1203

Table 2.4: The number of subjects diagnosed with the four main dementia subtypes. The
primary and ‘pure’ case frequencies only include subjects with certain diagnoses. Pure
cases, in particular, were considered to be those in which a subject had a primary diagnosis
of the subtype but no diagnoses of any of the other main subtypes.

McKhann et al. (1984), Roméan et al. (1993), McKeith et al. (2005) and Neary et al.
(1998) provide the diagnostic criteria for each of the subtypes. Reflecting the way in
which NACC grouped diagnoses, subjects with a diagnosis of stroke were combined
with those diagnosed with vascular dementia. Likewise, Parkinson’s disease and
dementia with Lewy bodies diagnoses were grouped together, along with primary
progressive aphasia and frontotemporal dementia diagnoses. It was ensured that
all subjects considered with alternative diagnoses had dementia. Aho et al. (1980),
Litvan et al. (2003), Mesulam (2001) and Mesulam (2003) provide the additional
diagnostic criteria to distinguish between the diagnoses for the three pairings.
Table 2.4 provides a breakdown of those diagnosed with dementia, indicating
the number of cases of each key subtype. Subjects with any diagnosis (primary,
contributing or non-contributing) of the subtype were considered for all cases, whilst
only those with a primary diagnosis of the subtype were included in primary cases.
Moreover, subjects with a primary diagnosis of the subtype, but no diagnoses of any
of the other main subtypes, were considered for pure cases. These pure cases were
as pure as they reasonably could be without close inspection of rarer subtypes of
dementia. Due to the way in which subjects are recruited and referred to ADCs, the
frequencies are not representative of the prevalence of the subtypes in the general

population (National Alzheimer’s Coordinating Center, 2020).

2.5 Training and Test Sets

The data set, containing 32,573 subjects, was randomly partitioned into training and

test sets. 22,801 subjects (70%) were included in the training set and the remaining
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9,772 (30%) formed the test set. The proportion of missing values in the training
and test sets was 0.65% and 0.68% respectively. The percentage of conditionally
missing values, however, was 13.74% for the training set and 13.71% for the test set.
All the missing values were imputed, and a number of those conditionally missing
were updated in order to maintain relations between variables.

Tables 2.5, 2.6, 2.7 and 2.8 provide the basic characteristics for the two sets
of subjects, broken down according to cognitive status and dementia subtype, post-
imputation. N indicates the number of subjects or visits considered for each cognitive
status and dementia subtype. The statistics concerning continuous variables are
presented using medians and interquartile ranges (IQR), as the distribution for each
of the relevant variables was found to be skewed. Those relating to binary or ordinal
variables are given in terms of numbers and percentages. The last row of each
table, providing the number of subjects without an MMSE score, corresponds to the
conditionally missing values in the variable pertaining to the score (NACCMMSE).
In particular, the score ranges from 0 to 30, with higher values indicating better
cognition. The circumstances under which a score was not recorded were when
the subject had a physical, cognitive/behaviour or other problem, or there was a
verbal refusal. Tables 2.7 and 2.8 provide the characteristics for the pure cases of
each dementia subtype; the last column (Other) of each table corresponds to all the
remaining cases of dementia.

No considerable differences were found between the training and test sets when
comparing them as a whole, and by cognitive status, but there were minor differences
for the dementia subtypes. These were, however, mainly attributable to the small

number of VD cases considered.

2.6 Variable Analysis

An investigation of each variable’s predictive capacity was conducted to gain an
understanding of how they correlate with their fellow variables, as well as targets
distinguishing between dementia and no dementia (i.e. normal cognition or MCI). Of

the 258 variables (in table 2.2), 255 were considered. Notably, NACCID (subject’s
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identification number), VISIT_DATE (visit date) and NACCVNUM (visit number)
were excluded as they were originally maintained for administrative reasons and
testing purposes.

Firstly, a naive Bayes classifier was trained to predict dementia or no dementia
using each variable one by one. As Hand and Yu (2001) explain, a naive Bayes
classifier, which is simple but effective, utilises Bayes’ theorem whilst assuming
conditional independence between variables given the target value (or class). A
variety of naive Bayes classifiers can be produced which are suited to different types
of variables, thus this was taken into consideration. In fact, Gaussian, multinomial and
Bernoulli naive Bayes classifiers were produced for continuous/ordinal, categorical and
binary variables respectively (see scikit-learn documentation (scikit-learn developers,
2020c) for more details). Naturally, data from the training set was used to train
each classifier and data from the test set was used to determine its accuracy, but any
missing or conditionally missing values were disregarded for the sake of simplicity.

Table 2.9 provides the top 10 variables predictive of dementia, namely the
variables whose classifiers had the highest accuracies. The accuracy of each variable’s
classifier is given, which is simply the percentage of subjects correctly classified,
along with abridged descriptions of the variables themselves. It is clear from the
table that some of the variables are highly predictive, particularly those pertaining
to the Clinical Dementia Rating (CDR). However, this does not seem to be the
case for the majority of the 255 variables. In fact, it appears their classifiers simply
predicted no dementia (the predominant class) for every subject, based on their
accuracies. Crucially, the variables which are predictive of dementia focus mainly on
cognitive impairment and the subject’s ability to engage in activities of daily living,
corresponding with the fundamental aspects clinicians consider when diagnosing
dementia.

Subsequently, naive Bayes classifiers and (simple) linear regression models, the
latter of which employed the ordinary least squares method, were trained to predict
the values of a variable from another. Every possible pairing (and permutation)

of the 255 variables was considered, except for those where a variable was paired
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with itself; and whether a classifier or regression model was produced depended on
the type of the variable acting as the target. Notably, a naive Bayes classifier was
produced if the target variable was binary or categorical and a linear regression model
was produced if it was continuous or ordinal. The type of the predictor variable
also had to be taken into consideration. As a matter of fact, Gaussian, multinomial
and Bernoulli naive Bayes classifiers were generated, and one-hot encoding was
performed for binary and categorical predictor variables prior to the generation of
a linear regression model. Once again, data from the training and test sets, minus
any missing or conditionally missing values, was used. However, the normalised
root mean squared error (NRMSE), which can be defined using equation 2.1, was

calculated for each linear regression model as opposed to accuracy.

mean((X7., — X7 )2
NRMSE — (( true - pred) ) (21)
var(‘Xtrue)

To clarify, X !

e and X ;;e 4 are the true and predicted values for a variable, respectively,

whilst mean(-) and var(-) represent the empirical mean and variance. It should
be noted that lower NRMSE values indicate better performance and a very small
number of variable pairings were ultimately excluded from this analysis as a result of
the training and/or test set being empty once any missingness had been eliminated.

Table 2.10 provides the top 10 predictive variable pairings, according to the
NRMSE, where the target variable is either continuous or ordinal. An abridged
description of every variable is given, along with the NRMSE for each variable
pairing. The role of each variable (predictor or target) is not specified for any of the
pairings as the NRMSE was equivalent (to two decimal places) for both permutations.
Interestingly, half of the pairings in table 2.10 comprise CDR variables and all five
of these pairings feature CDRSUM, which provides the sum of the scores for six
categories (home and hobbies, community affairs, etc.) that essentially assess the
subject’s cognitive impairment and their ability to engage in activities of daily living.
It could be inferred that the CDRSUM variable is somewhat correlated with the
other CDR variables. For these top 10 pairings, age is also a recurring theme. In

fact, the pairing with by far the lowest NRMSE includes variables pertaining to the
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Variable Description ccuracy

(%)
CDRSUM CDR sum of boxes 92.25
MEMORY CDR - Memory 90.29
JUDGMENT CDR - Judgment and problem-solving 89.26
TAXES Recent difficulty with taxes 88.65
COGJUDG Impaired in judgment, planning or problem-solving 88.42
CDRGLOB Global CDR 88.33
BILLS Recent difficulty with bills 87.78
COMMUN CDR - Community affairs 87.68
HOMEHOBB CDR - Home and hobbies 87.65
ORIENT CDR - Orientation 86.39
Table 2.9: Top 10 variables predictive of dementia.
Variables Descriptions NRMSE
NACCAGE Subject’s age at visit 0.03
BIRTH #MOS Months from subject’s birth )
CDRGLOB Global CDR 0.97
CDRSUM CDR sum of boxes '
CDRSUM CDR sum of boxes 0.29
HOMEHOBB  CDR - Home and hobbies )
CDRSUM CDR sum of boxes 0.29
COMMUN CDR - Community affairs '
JUDGMENT  CDR - Judgment and problem-solving 0.3
CDRSUM CDR sum of boxes '
DIGIB Digit span backward trials correct 0.33
DIGIBLEN Digit span backward length )
NACCAGE Subject’s age at visit 0.33
DECAGE Age cognitive decline began '
BIRTH_ #MOS Months from subject’s birth 0.33
DECAGE Age cognitive decline began '
BILLS Recent difficulty with bills 0.34
TAXES Recent difficulty with taxes '
ORIENT CDR - Orientation 0.34
CDRSUM CDR sum of boxes '

Table 2.10: Top 10 predictive variable pairings, according to the normalised root mean
squared error (NRMSE), where the target variable is either continuous or ordinal.
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subject’s age, whilst two other pairings comprise variables concerning the subject’s
age and the age at which cognitive decline began. It is unlikely these ages would be
drastically different, hence the apparent correlation between the variables.

Only a few examples of predictive variable pairings where the target variable
is either binary or categorical are provided presently, as it seems the naive Bayes
classifiers for many of the pairings achieved a high accuracy by simply predicting
the predominant target value. Three variables are included in the example pairings
collectively, namely DECCLIN, COGMEM and MEMORY. DECCLIN indicates
whether the clinician believed there was a meaningful decline in one or more of a
variety of domains, such as memory, or there were motor/movement changes. COG-
MEM and MEMORY, on the other hand, indicate whether the subject’s memory
was meaningfully impaired by means of yes/no and a (CDR) score, respectively. The
pairings, in the form of (predictor, target), are as follows: (DECCLIN, COGMEM),
(COGMEM, DECCLIN) and (MEMORY, COGMEM). Notably, the classifier pro-
duced for the third pairing had an accuracy of 94%, whereas those produced for
the first and second pairings had an accuracy of 96.15%. From the descriptions of
these variables, it is clear they primarily concern the subject’s memory; therefore, it
follows that these pairs of variables seem to be correlated.

To summarise, each variable’s predictive capacity was investigated by training
various naive Bayes classifiers and (simple) linear regression models. It was ascertained
that variables, such as CDRSUM, which essentially provide information on the
subject’s cognitive impairment and their ability to engage in activities of daily living
are highly predictive of dementia. It was also demonstrated that variables covering

the same or similar topics are largely predictive of each other.

2.7 Summary

The Uniform Data Set was obtained from the National Alzheimer’s Coordinating
Center. It includes data pertaining to Alzheimer’s Disease Center (ADC) visits at
which a number of forms are completed. These provide demographic information

for the subject and co-participant, insights into the subject’s health, results of
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standardised tests and evaluations for the subject, and an assessment of the subject’s
symptoms. Two types of missingness are present within the data set. Missing values
occur due to data unexpectedly not being recorded; these values were imputed, where
possible. Conditionally missing values arise as a result of information being irrelevant
or unobtainable for a known reason; these values were handled rather than imputed.

Data cleansing was necessary, and the first step was to extract the data of
interest. This resulted in a data set comprising 32,573 visits/subjects and 258
variables, two of which were not utilised during analysis. In fact, 260 variables were
included in the data set subjected to analysis, as four randomly generated synthetic
variables were added for testing purposes. The codes corresponding to missingness
were subsequently examined and replaced, ensuring uniformity throughout the data
set and enabling the two types of missing values to be easily identified. Crucially,
any missing values which could not be sensibly imputed were marked as conditionally
missing. The conditionally missing values which resulted due to an omitted form
were also noted, so they were not drawn on during imputation. The proportion of
missing values for the data set was just 0.66%), but the percentage of subjects with at
least one missing value was 47.57%. The significant number of subjects with missing
values motivated the use of imputation. Finally, relations between variables were
identified and verified. They were separated into two groups, namely dependencies
and relationships. The former group included relations in which a single variable
can cause another to have a conditionally missing value if it takes on a specific value
itself. The latter, however, encompassed the relationships in which one or more
variables can dictate the value of another. Missing values were present for some of
the variables which can determine others, so it was important to deduce what the
associated values were in the determined variables and set out whether they should
be updated post-imputation.

The cognitive status of every subject was deduced, and dementia subtypes
associated with them were identified, in order to assign each of them labels (or
classification targets). Cognitive status was broken down into normal cognition,

mild cognitive impairment (MCI) and dementia. Those designated as having normal
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cognition were free from cognitive impairment or failed to meet the criteria for MCI.
The four main dementia subtypes, which are Alzheimer’s disease, vascular dementia,
dementia with Lewy bodies and frontotemporal dementia, were focused on for those
with dementia. The prevalence of the subtypes in the data set does not reflect the
true prevalence for the general population due to the way in which subjects are
enrolled at ADCs.

In preparation for classification, the data set was split 70:30 into training and
test sets. There were found to be no considerable differences between the training
and test sets when the basic characteristics were compared for the subjects as a whole
and based on cognitive status. Prior to imputation, these training and test sets were
used to aid the investigation of each variable’s predictive capacity. Ultimately, this
investigation revealed that some of the variables are highly predictive of dementia
and variables covering the same or similar topics are largely predictive of each other.
Incidentally, the imputation of the missing values in the training set was closely
coupled with the construction of a classifier; the next chapter discusses the imputation

approach.
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Chapter 3

Imputation and Learning with
Missing Data using Random

Forests

This chapter discusses the imputation approach developed, which simultaneously
builds a classifier whilst handling conditionally missing values. It begins with a
brief overview of related literature to put the work into context. This is followed by
an explanation of the approach, for which each step is considered in turn. Finally,
experimental work is recounted which informed the number of imputation iterations
performed, and the number of trees used. It also ascertained the effects of additional
missingness on the imputation and classification performance.

Throughout the chapter the focus is on the NACC data, for which results are
presented in chapter 4, along with the clinical implications. Nevertheless, the method
could be applied to alternative data sets if it was tailored appropriately. In fact, at
the time of writing, it is being adapted for clinical data from the Sentinel Stroke
National Audit Programme (King’s College London, 2020) by another researcher. It
could also prove particularly useful for survey data generally, as conditionally missing
values are likely and there does not appear to be a standard approach that takes

them into consideration.
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3.1 Background

Literature concerning methods for handling missing data is discussed in this section.
Firstly, a brief explanation of the mechanisms of missingness is provided, which is
followed by an overview of imputation techniques. Single and multiple imputation
methods are covered, and the imputation of derived variables is considered. In this
context, derived variables are those which can be determined by known relations
between variables. Finally, a selection of decision-tree-based approaches that deal

with missing data, via imputation or otherwise, are discussed.

3.1.1 Mechanisms of Missingness

Determining the mechanism behind any missingness is considered important, spe-
cifically for ensuring it is dealt with appropriately; there are three widely accepted
mechanisms which are outlined by Little and Rubin (2002). The first is missing com-
pletely at random (MCAR), for which it is assumed that the pattern of missingness
is independent of the data. Missing values that are MCAR could have arisen as a
result of accidental omission and can be handled with relative ease. The second
mechanism is missing at random (MAR), where the missingness is considered to be
dependent on observed values in the data set as opposed to those that are missing.
The third mechanism is not missing at random (NMAR), or missing not at random
(MNAR) as it is more commonly known. For this mechanism, the missingness is
deemed to be dependent on the missing values themselves. Dealing with missing
values which are MNAR is much more difficult.

In practice, it is rarely possible to confidently identify the mechanism. Croninger
and Douglas (2005) discuss this, along with the fact that more than one mechanism
could be at work for data sets with large numbers of variables. Due to the relatively
low degree of missingness in the NACC data set, and the complexity of modelling
mechanisms of missingness, no formal investigation was undertaken to determine the

mechanisms of the missing values; and they were treated as if they were MAR.
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3.1.2 Imputation

Imputation, which replaces missing values with suitable substitutions, is one way
of handling missing data. It promotes the preservation of data and enables the
application of standard methods of analysis. Little and Rubin (2002), Schafer and
Graham (2002) and Enders (2010) provide detailed reviews of imputation approaches,
along with alternative techniques for dealing with missing data. There are numerous

methods of imputation and some examples are discussed presently.

3.1.2.1 Single Imputation Methods

Single imputation methods generate a single value for every missing value. They
have been very popular, but their use is now generally discouraged as they fail to
account for imputation uncertainty. Four different approaches are considered below

to illustrate this type of imputation.

Mean Imputation In its simplest form, mean imputation replaces a missing
value with the mean of the observed values for the variable. It can be adapted for
categorical variables by substituting the mode for the mean. The technique is simple
to implement but naive in its approach. It alters the distribution of the variable,
although the mean is unchanged, as well as its correlation with other variables

(Schafer and Graham, 2002; Twala, 2005).

Hot Deck Imputation Andridge and Little (2010) describe the multiple forms of
hot deck imputation but, in short, every missing value is replaced with an observed
value for the same variable from a similar observation. This method is a favourite of
those working with survey data. It is not based on a parametric model and preserves
the distributions of variables (Schafer and Graham, 2002; Twala, 2005). However, a
similarity metric must be chosen; and it relies heavily on identifying well-matched
observations, which could prove difficult if there are very few observations to start

with (Andridge and Little, 2010).

Regression Imputation In order to impute the missing values of a variable using

regression imputation, a regression model based on the other variables in the data
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set is built. It is trained using the observations for which the variable to be imputed
has observed values, and can be used to generate predictions for the values that are
missing. Little and Rubin (2002) explain that the approach can be extended by
adding a residual to each of the predicted values to account for uncertainty; this is
stochastic regression imputation and it has the potential to preserve the correlations

between variables (van Buuren, 2018).

Expectation Maximisation Algorithm The Expectation Maximisation (EM)
algorithm, formalised by Dempster, Laird and Rubin (1977), can be employed to
find maximum likelihood estimates, or more specifically parameter estimates which
maximise a likelihood function, for parametric models using data with missing values.
As the parameters of a model are optimised, the missing values are inferred (or
imputed). Schafer (1997) outlines the complete procedure, which Little and Rubin
(2002) highlight is conceptually simple, even though it can be difficult to implement.
In addition, considerable missingness can adversely affect the speed at which the

parameters converge (Little and Rubin, 2002).

3.1.2.2 Multiple Imputation Methods

Multiple imputation methods, as the name suggests, produce multiple values for
each missing value. They have gained prominence more recently, and are highly
recommended as they deal with the issue of imputation uncertainty. Nevertheless,
they are more labour-intensive than single imputation approaches.

Multiple imputation is performed in three steps. Initially, several versions of
the data set are generated which incorporate different imputed values. Each data
set is subjected to the same analysis, and the results are then combined. Little and
Rubin (2002) discuss how certain single imputation methods can be used to complete
the first step, but multiple imputation can naturally be motivated from the Bayesian
perspective (Schafer and Graham, 2002). Data augmentation (Tanner and Wong,
1987) is a well-known iterative Bayesian approach to multiple imputation which has

been explored by Schafer (1997) for use with categorical and mixed data.
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3.1.2.3 Imputation of Derived Variables

Some data sets, such as the NACC UDS, include variables in relations with one
another (e.g. height, weight and body mass index). The variables which can be
determined by these relations are generally referred to as derived variables when
discussed in relation to imputation. Nonetheless, literature on the imputation of
derived variables is relatively recent and limited.

Desai et al. (2016) provide a brief overview of the literature and state that the
approaches can broadly be categorised as either active or passive. It appears the
main distinction between active and passive methods is the former allow implausible
values and the latter do not. In particular, a value is implausible if it introduces
inconsistencies into the data set, with regards to known relations, whilst a value is
plausible if it does not. There is no consensus as to which type of approach is best,
as plausible values are desirable but any bias that may be induced in obtaining them
needs to be considered. Desai et al. (2016) note that the type of derived variable
also warrants consideration when choosing a technique.

Alternatively, van Buuren (2018) discusses the imputation of derived variables
in terms of the types of these variables. The review places considerable importance on
generating plausible values, whilst highlighting that specifically tailored approaches
are needed to deal with some types of variables in order to achieve the desired result.

One method championed by van Buuren (2018) builds on fully conditional
specification (FCS), namely substantive model compatible FCS (SMC-FCS) (Bartlett
et al., 2015). FCS is a popular multiple imputation approach which generates a
number of imputed data sets using a collection of univariate models. Each model
pertains to one of the variables with missing values, and is conditional on all the
other variables in the data set. The substantive model, relating an outcome to the
complete set of variables, is fitted to every imputed data set; and the results are
combined. Fundamentally, SMC-FCS ensures all the univariate (imputation) models
are compatible with the substantive model (i.e. analysis undertaken). Bartlett et al.
(2015) point out that, in practice, an imputation model is unlikely to be perfect,

but suggest that if the aspects of the data which are of interest in the analysis are
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preserved, then any bias introduced by the imputation model may be small.

3.1.3 Missing Data and Decision Trees

As explained in chapter 1, decision trees were chosen for classification for a number
of reasons, such as their ability to handle continuous and categorical variables with
relative ease, their interpretability, and their performance when employed as members
of an ensemble. Decision trees, however, can also be used to perform imputation; and
Stekhoven and Bithlmann (2012) and van Buuren (2018) discuss the benefits. The
most discernible advantage of decision-tree-based approaches is they are able to deal
with mixed data, which the vast majority of imputation methods are unequipped for.

Research into imputation with decision trees is gaining momentum, but there
is already an array of literature discussing techniques for handling missing data with
decision trees. Twala (2005, 2009) and Ding and Simonoff (2010) provide overviews
of the various approaches, whilst van Buuren (2018) focuses on imputation. Tang and
Ishwaran (2017), more specifically, review imputation methods using random forests,
which were introduced in chapter 1. Essentially, a random forest is an ensemble of
different decision trees, each of which have been generated using a process with an
element of randomness. A selection of techniques are discussed in the remainder
of this section. The first two are well-known imputation approaches, which utilise
random forests and ordinarily employ the Random Forests algorithm (section 1.3.2),
but the final one is an alternative method which is suitable for dealing with the

conditionally missing values in the NACC data (section 2.3.2).

missForest Stekhoven and Bithlmann (2012) proposed missForest: an iterative
imputation method which uses random forests. It begins by substituting initial
guesses for the missing values; and determining the order in which the variables
should be considered, based on their number of missing values (smallest to largest).
The approach proceeds by constructing an ensemble of regression trees for each
variable with missing values in the designated order, using only the observations for
which the variable has observed values. Once each random forest is formed, it is used

to make predictions for the missing values in the variable, which are subsequently
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substituted for the initial guesses. After all the missing values have been imputed,
the first variable is revisited; and the whole procedure is repeated using the newly
imputed values, until a stopping criterion is met.

Stekhoven and Biihlmann (2012) claim that each ensemble naturally executes
multiple imputation, but this is not recognised by van Buuren (2018). Regardless,
Tang and Ishwaran (2017) recommend missForest when correlation between variables
is high. The authors do point out, however, that the approach can be slow; this
can be mitigated to some degree by using Extra-Trees (section 1.3.3) rather than
the Random Forests algorithm. The computational efficiency of the Extra-Trees
algorithm, as well as its accuracy, is why it was chosen for classification on the NACC

data, as discussed in chapter 1.

Proximity Imputation The approach described by Breiman and Cutler (2004)
and Cutler, Cutler and Stevens (2012) is the original imputation method for random
forests. The first step is to roughly impute the missing values, which can be achieved
by substituting the median (continuous data) or mode (categorical data) of the
observed values on a variable-by-variable basis. A random forest is generated using
the imputed data set; and an N—by—/N matrix is populated, where N is the number
of observations. This proximity (or similarity) matrix captures how similar the
observations are to one another, by providing the proportion of times each pair
ended up in the same terminal node across the ensemble. The missing values are
then imputed again using the proximity matrix: the proximity-weighted average
and proximity-weighted mode are used for continuous and categorical variables
respectively. A new ensemble is subsequently constructed, and the process is repeated.
Breiman and Cutler (2004) note that four to six iterations are typically enough to
give stable imputed values.

The technique actively uses the classification targets to inform the imputation,
as each proximity matrix is populated using a random forest; this is generally
recommended, but it means that there can be no targets missing (Josse et al., 2019;
Stekhoven and Biihlmann, 2012). The imputation is also closely coupled with the

construction of the random forest which is later used for classification. It can be
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advantageous to integrate the two stages, as it is easier to ensure they are compatible
with one another, but imputing test cases can become more difficult (Bartlett et al.,
2015). Within the literature, there does not appear to be a clear explanation of
how to impute test data when this approach is used. However, Breiman and Cutler
(2004) point out that it is possible to identify the proximity for each training and

test observation pairing.

Missingness Incorporated in Attributes A conceptually simple method which
handles rather than imputes missing values is missingness incorporated in attributes
(MIA) (Twala, Jones and Hand, 2008). As explained in chapter 1, a split S on a
variable X/, which partitions the data set X and the set of classification targets Y,
is chosen to be associated with an internal splitting node during the construction of
a decision tree. MIA can increase the number of splits generated for each variable
considered for splitting to 2x 4+ 1, where x is the number produced when no missing
values are present. Essentially, observations which have a missing value for the
variable are collectively incorporated into either side of a split, enabling two splits
to be formed (Spra,_,); they are also split from the observations which have an
observed value for the variable, to generate one additional split (Spsr4,). When the
Extra-Trees algorithm is employed, K randomly selected variables are considered,
and a single random split is generated for each of them (k = 1). By using MIA in
conjunction with Extra-Trees, the number of splits produced for each variable can
be increased from one to three.

In the pseudocode for Extra-Trees (algorithm 1), which was provided in

chapter 1, S was defined as
S é {(XL7 YL)7 (XRy YR)} )

where X and Xy are the subsets of observations sent to the left and right child
nodes respectively, and Y;, and Yy are the corresponding subsets of classification
targets. Alternatively, the three MIA splits Sysra4, , can be defined as

Swra, = {(X1, Y1), (Xp U Xonis, YR U Vo) b

Surray = {(Xp U Xonis, Y2 U Yonis), (Xr, Yr)},
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SMIAg é {(Xmisa Ymis)7 (Xob57 Yvobs)} .

In order to produce these three splits, X must be partitioned into X,,;s and X,
and Y must be divided into Y;,;s and Y,;s. X,.s includes the observations with a
missing value for the variable X7 on which to split, whilst X,,, comprises those
which have an observed value. Syr4, , use S as a basis but, crucially, X, and Xp
only include observations with an observed value for X7/ (X, U Xp = X,,).

MIA is recommended by many, such as Josse et al. (2019) and Kapelner and
Bleich (2015), as it can successfully deal with missing values without imputing them.
Twala, Jones and Hand (2008) also highlight that it can be utilised in conjunction

with any method of building decision trees.

3.2 Proximity Imputation with MIA

There is no optimal imputation strategy. The suitability of an approach is dependent
on the characteristics of the data set itself, including the proportion of missing
data, mechanisms of missingness and number of observations. It is also contingent
on whether the data set includes variables of mixed type, like the NACC UDS,
as most imputation strategies are unable to deal with mixed data. Decision-tree-
based approaches, however, are capable of handling mixed data, as highlighted in
section 3.1.3. The proximity imputation method was the natural choice for the NACC
data and this research, particularly as it enables the imputation to be closely coupled
with the construction of a random forest classifier. It was also possible to utilise
missingness incorporated in attributes (MIA) in conjunction with the proximity
imputation approach to handle the conditionally missing values. In fact, MIA was
integrated into Extra-Trees: the algorithm chosen to construct random forests.
The approach developed, simply termed prozimity imputation with MIA, begins
by crudely imputing the missing values in the data set (or training set) to enable a
random forest to be constructed. Extra-Trees and MIA are subsequently employed
to build the ensemble of decision trees, using the imputed data set. By inspecting

the paths of the observations through every tree, the similarity of each pair of
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observations can be ascertained. These similarities (or proximities) are used to
populate a proximity matrix, which is then utilised to impute the missing values
for a second time. It was necessary to specifically tailor this step of the proximity
imputation method to maintain the known relations between variables in the NACC
data set (section 2.3.3), so far as possible. Nonetheless, all the variables are still used
to inform the imputation. Once a newly imputed data set has been formed, another
random forest is built and the process is repeated for a number of iterations. The
remainder of this section provides a detailed explanation of the approach, which is

discussed step-by-step in an attempt to aid understanding.

3.2.1 Initial Imputation

The first step of the approach eliminates any genuinely missing values in the data
set, to leave only those which are conditionally missing; and does so by roughly
imputing them. The missing values must be filled in (i.e. imputed) to permit a
random forest to be built, as MIA is only employed to handle conditionally missing
values. It was suggested in section 3.1.3 that missing values could be crudely imputed
by substituting the median or mode of the observed values on a variable-by-variable
basis. However, due to the presence of conditionally missing values, which are deemed
observed for this step alone, the median could not be calculated for a number of the
continuous variables in the NACC UDS. Consequently, a simple implementation of
hot deck imputation is used which, in short, replaces each missing value with an
observed value for the variable from an observation associated with the same class.
It is able to take any conditionally missing values into consideration for each of the
variables, and imputes values that are somewhat informed.

As indicated above, the classification targets (or classes) Y are required to
initially impute the data set X. Each observation X, has a corresponding class
label Y, (0 or 1), and the class labels can be used to ascertain whether observations
could be deemed similar. The procedure considers every variable X/ with missing
values in turn (algorithm 2 line 4). For each variable, it begins by identifying the

missing values, along with the observed values from observations associated with
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Algorithm 2 Initial imputation of missing values

1: function initial_imputation(X,Y)
2: X+ X

3: A—A{1,....|X|}

4: for each X7/ with missing values do

5: Apis < {i € A (X))} > ¢(X!) = true if X! missing
6 Aops = A\ Ay

7 Ao {1 € Aops | Yi = 0}5 Ay <= Agps \ Ao

8: Xhoo X Vie N} XD, {X] Vien}
9: for i € A,,;; do

10: if Y; =0 then

11: Xzf < random sample from ngs‘o

12: else if Y; = 1 then

13: )E'Zf < random sample from X(fbs‘l

14: end if

15: end for

16: end for

17: return X

18: end function

class 0 and class 1, denoted by X !

obs

1o and X . 1 Tespectively (algorithm 2 lines 5-8).

In algorithm 2, a predicate (Boolean-valued function) ¢(-) is employed to assess

whether a value X/ is missing. Every missing value is subsequently imputed with a
n g y g y

random sample from either X ({bs 1o OF x! according to the class of the observation

obs |1’
with the missing value (algorithm 2 lines 9-15). There is no guarantee that known
relations between variables are maintained, but any inconsistencies introduced are

eliminated in the next stage of imputation. Once all the missing values in X have

been imputed, the imputed data set X can be used to build a random forest.

It was stated in chapter 2 that conditionally missing values could arise in the
NACC data due to a form not having to be completed. It was also explained that
these values had the potential to introduce bias into the imputation if used to inform

it; thus, any conditionally missing values which occured for this reason were excluded

f

from the sets of observed values, namely X fb8| oand X -
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3.2.2 Extra-Trees with MIA

With the imputed data set, which is simply referred to as X, a random forest can be
constructed. The random forest is fundamental to the approach as it enables the
similarity of each pair of observations to be ascertained, all of which are subsequently
used to inform the imputation of the missing values. As previously explained, the
Extra-Trees algorithm was chosen to build random forests, due to its accuracy and
computational efficiency; and it is employed in conjunction with MIA, which handles
the conditionally missing values that remain in the data set.

Extra-Trees, which was discussed in detail in section 1.3.3, builds an ensemble
of decision trees (or random forest) using random feature selection and random
split selection. Every tree is built using all the observations in X (or a training
set); and a split S on a variable X/ is chosen for each internal splitting node from
K randomly generated splits, each of which corresponds to one of the inconstant
variables randomly selected at the node. In particular, S is chosen so as to maximise
the information gain Zg(X) resulting from the split.

MIA, also known as missingness incorporated in attributes, can be used together
with any method of building decision trees (e.g. Extra-Trees) to deal with missing
values, or conditionally missing values in this context, without imputing them. The
approach ultimately generates more splits for each variable considered for splitting
that has conditionally missing values, specifically 2k 4+ 1 as opposed to k; the three
possible MIA splits Syra,_, were defined in section 3.1.3. For Extra-Trees, in
particular, the number of splits is increased from one to three.

Modifications can be made to the pseudocode for Extra-Trees (algorithm 1),
provided in chapter 1, to reflect the changes introduced by MIA. In fact, lines 14-15

can be amended as follows:

13: Randomly select K inconstant variables { X', ... X%} without replacement
14: Generate splits {51, ... } using generate_splits(X, X% Y) Vi<« 1,... K
15: Choose a split S = {(X, Y1), (Xgr, Yr)}

such that Zg(X) < max; 1, (s,,..}) Zs, (X) using equation 1.1

Line 13 has been included, regardless of the fact it is unchanged, as together these
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three lines detail how a split is chosen. The amendments made to lines 14-15 are
minor, and simply reflect that it is no longer known exactly how many splits will
be generated. In addition, lines 21-35 can be replaced with those constituting
algorithm 3, which outlines how splits are generated.

The new procedure for generating splits extends the original, as two of the
three MIA splits (Sasr4, ,) use a standard split as a basis. The first step is to identify
any conditionally missing values for the variable X/ on which to split, as well as

the observed values X,{bs

(algorithm 3 lines 2-5). In algorithm 3, a predicate ¥ (-)
is employed to assess whether a value X/ is conditionally missing, similar to ¢(-)
in algorithm 2. X can subsequently be partitioned into X,,;s and X, and Y can
correspondingly be divided into Y,;s and Y, (algorithm 3 lines 6-7). X,,;s is the
subset of observations which have a conditionally missing value for X7/, which could
be empty, whilst X, is the subset of observations which have an observed value.
The next step is to examine the set of observed values X gbs. If there is only one
unique observed value, a single split separating X,,;s from X, as well as Y,,;s from
Yops, is generated (algorithm 3 lines 8-10). These are the only conditions under
which a single split, specifically Syss4,, is produced for a variable with conditionally
missing values, but exceptional circumstances that Twala, Jones and Hand (2008)
seemingly overlooked. Alternatively, X, is partitioned into X and Xz, and Y, is
divided into Y7 and Yj, using a cut-point or subset depending on the type of X/
(algorithm 3 lines 11-21). It must then be ascertained whether one or three splits
need to be generated, by essentially checking if X/ has conditionally missing values
(algorithm 3 line 22). If not, a (standard) split is formed which separates X, from
Xr, as well as Y, from Yy (algorithm 3 line 23). Otherwise, the three MIA splits
Sarra, s are produced (algorithm 3 lines 25-28). The split generated if there are no
conditionally missing values forms the foundations of Sy;74, and Syrra,. For Syrra,,
Xmis and Y,;s are combined with Xi and Yy respectively. For Sysr4,, however, they
are combined with X and Y.

In section 1.3.1, it was explained how a new (unseen) observation (or test case)

is classified using a decision tree: it is simply passed through the tree, once the latter
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Algorithm 3 Generating splits for a variable

1: function generate_splits(X,X/)Y)

2 A—A{1,....|X]|}

3 Apis  {i € A (X)) > (X)) = true if X! conditionally missing
4 Aops — A\ Apis

5 XL {X] Vi€ Ay}

6 Xpis ¢ {Xi Vi € Anis}; Yinis < {Y3 Vi € Ajis}

7 Xops = {Xi Vi € Nops }; Yops < {Y5 Vi € Agps }

8 if single unique value € X (fbs then

9 return Syrra; < {(Xmiss Yonis)s (Xobss Yobs) }

10: end if

11: if X/ continuous, ordinal or binary then

12: Uniformly draw a cut-point f,, in (min X ({bs, max X jbs)
13: Ap < {i € Ay | X/ < fop}

14: else if X/ categorical then

15: Identify all possible values present in X fbs (fimC f)
16: Randomly draw f; C (" where f; # @

17: Randomly draw f, C f\ f(™

18: Ap{ie Ao | X € fLU fo}

19: end if

20: Xy {X;VieAL}; Xp+ {X; Vi€ Aps \ AL}
21: Y - {Y;Vie AL}; YR {Y; Vi€ Aps \ AL}
22: if X,,;s = @ then

23: return S «+ {(X., Y1), (Xg,Yr)}

24: end if

25: Sara, < {( X, YY), (XrU Xonis, YR U Yois) }
26: Sara, — {(Xp U Xpis, Yo U Yus), (X, Yr)}
27 Smras < {(Xomis, Yinis), (Xobs, Yobs) }

28: return {Syra,, Snray, Svras

29: end function
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is fully formed. As a test case traverses through a tree built using Extra-Trees with
MIA, an internal splitting node may be encountered which employs a standard split
on a variable for which the test case has a conditionally missing value. In the event

that this occurs, the test case is sent to the left or right child node at random.

3.2.3 Proximity Matrix

Using the random forest, it is possible to determine how similar the observations in
X are to one another. In fact, the similarity of two observations is calculated based
on their paths through the trees in the ensemble. The similarities (or proximities)
are used to impute the missing values more rigorously by means of an N—by—N
proximity matrix, where /N is the number of observations. Fundamentally, a missing
value is imputed with the average, or alternatively the mode, of the observed values
for the variable, weighted by proximity. The proximities could be calculated as the
ensemble is constructed but, for the sake of simplicity, they are computed once it is
fully formed.

Breiman and Cutler (2004) define the proximity of two observations for a single

tree t as follows:

Pi(Xi, X5) = Lpi = p;) - (3.2)

pn is the path of an observation through ¢, and I(+) is an indicator function which
equals one when the paths of the two observations are identical. In order to utilise

more of the information provided by ¢, the proximity is defined as

P(X,, X;) = . . 3.3
XXy = ) vl v\ m (33)

0, € p; Np; 1 + Z ||{;€‘ 0goy |Y€| W if ?.

More generally, it is the total information gain Zg(X) across the common nodes of
. . . N

the paths, weighted by the proportion of observations at each node = when ¢ was

built. As a split is not associated with a terminal node ¢, unlike an internal node 7,

the weighted inverse entropy of ¢ is also added if required. Y, and YE(C) are needed to
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Algorithm 4 Determining the similarities (or proximities) of the observations

1: function calculate_proximities(X,N,T')

2 for each t € T' do

3 P+ On N > Oy n is a zero matrix of size N—by—N
4 fori+ 1,....,N do

5: p; < path of X, through ¢

6 for j«<1,...,N do

7 p; < path of X; through ¢

8 Calculate P;(X;, X;) using p;, p; and equation 3.3
9 end for

10: end for

11: P, + normalise P, using equation 3.4

12: end for

13: P + average across P, Vt € T using equation 3.5

14: return P

15: end function

calculate the latter, namely the classification targets for £ and the instances of each
class (¢ € {0,1}). Zhu, Loy and Gong (2014) consider alternative ways of defining
proximity for the purposes of spectral clustering.

As the proximity is a similarity, it must be normalised to ensure P,(X;, X;) =

1Vi=1,...,N. This is achieved as follows:

_ B Pi(X;, X))
P(X;, X;) = N oo Aok (3.4)

Once (normalised) proximities have been obtained for every tree in the ensemble T,
proximities for T itself can be ascertained. In fact, the proximity of two observations
is calculated by simply averaging across the trees using
P(X;, X,) = % > P(X, X)), (3.5)
teT
where M is the size of T' (i.e. the number of trees).
To clarify, proximities are computed for every tree in T" by essentially comparing
the paths of the observations through the tree (algorithm 4 lines 2-10). For each
tree, the proximities form an N—by—N matrix P;, which is ultimately normalised

to yield P, (algorithm 4 line 11). The normalised proximities are averaged across
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Algorithm 5 Imputation of missing values

1: function impute(X,P)
2: X+ X

3: A—A{1,... |X|}

4: for each X7/ with missing values do

5: Apis < {i € M| (X))} > (X)) = true if X! missing
6 Aops = A\ Ay

7 for i € A,,;s do

8: if X/ continuous or ordinal then

9: X! round(Y, oy, XIP(X3, X)) /3 cn,,. P(X0, X))
10: else if X/ categorical or binary then

11: X AXT V) € Novs by Xops  {X; V5 € Ao}

12: X! «— mode(X?,,) weighted by P(X;, Xops)

13: end if

14: end for

15: end for

16: return X

17: end function

the trees to give the proximities for 7', which constitute the proximity matrix P

(algorithm 4 lines 13-14).

3.2.4 Imputation

With the proximities in P, the missing values in the data set X can be imputed
in a more rigorous manner, ultimately enabling more meaningful conclusions to be
drawn from the subsequent analysis. In practice, the crudely imputed values in X
are updated. However, the necessary steps are outlined in a way which suggests that
the missing values have yet to be imputed, to simplify the explanation of the process.
Conditionally missing values are also initially disregarded for the same reason, along
with derived variables which are considered in section 3.2.5.

As for the initial imputation, each variable X/ with missing values is considered
in turn (algorithm 5 line 4). The missing and observed values of X/ are identified; and
every missing value is subsequently imputed according to the type of X/, to ultimately
form a newly imputed data set X (algorithm 5 lines 5-14). If X/ is continuous or

ordinal, the missing value is imputed with the proximity-weighted average of the
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observed values, rounded to conform with the observed values (algorithm 5 lines 8-9).
If X/ is categorical or binary, however, the proximity-weighted mode is substituted
(algorithm 5 lines 10-12). In the event of multiple modes, one is chosen at random.

Without due consideration of the conditionally missing values or derived
variables, there are only minor differences between the imputation stages of the
newly developed approach and the original, specifically pertaining to how different
types of variables are handled. Similarly to Geurts, Ernst and Wehenkel (2006), who
proposed Extra-Trees (section 1.3.3), Breiman and Cutler (2004) fail to explicitly
specify how ordinal and binary variables should be handled. As previously indicated,
ordinal variables are treated as if they are continuous, and binary variables are
regarded as if they are categorical; this is due to their fundamental nature. The
proximity-weighted averages are also rounded, where appropriate, to ensure each
imputed value is legitimate.

As explained in chapter 2, conditionally missing values can arise of their own
accord in the NACC data set; the primary reason being a question is irrelevant
in its own right. In section 2.3.2, the question associated with the MEALPREP
variable, namely “In the past four weeks, did the subject have difficulty or need
help with preparing a balanced meal?” (ADC Clinical Task Force and National
Alzheimer’s Coordinating Center, 2017¢), was provided as an example. For this
question in particular, a conditionally missing value would ensue if the subject had
never performed the task. As a result, a conditionally missing value could be a
legitimate fill value (i.e. imputed value) for certain variables in the NACC UDS.

The process described above had to be adapted to allow for conditionally missing
fill values. In particular, the conditionally missing values have to be identified for
each variable considered, along with those which are missing and observed. The

relevant lines in algorithm 5 are 5-6, and they can be replaced with the following:

Amis < {i € A ¢(Xzf)} > q')(Xif) = true if Xif missing
Aemis < {i € A ’I,b(le)} > 'I,/J(le) = true if Xif conditionally missing
Aobs — A \ (Amzs U Ac—mis)

In section 3.2.1, it was stated that certain conditionally missing values, specifically
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those which arose due to a form not having to be completed, were not used to inform
the initial imputation; this was in fact the case for all imputation steps. Thus, these
values were not considered for A._,,is, or A, and Ay for that matter.

In addition to identifying the conditionally missing values, it must be ascer-
tained whether a conditionally missing value is a legitimate fill value for the variable
in question, prior to calculating the proximity-weighted average or mode for a missing
value. The relevant calculation must then allow for a conditionally missing fill value,
if appropriate. For continuous or ordinal variables, line 9 of algorithm 5 can be

substituted with those that follow.

if v(X7)and 35, P(Xi, Xj) >3 ca, P(Xi, X;) then
> v(X/) = true if conditionally missing fill value legitimate
> ties broken randomly for condition two

f(f <+ conditionally missing
else

X! — round(>>
end if

XJP(Xi, X)) [ X jen,, P(Xi, X))

j S Aobs

Initially, the legitimacy of a conditionally missing fill value is determined, using a
predicate v(-). The proximity-weighted mode of the conditionally missing values
and the observed values, collectively, for the variable X/ is also calculated. If a
conditionally missing value is appropriate, and they are found to be most frequent
value in X/, then the missing value is imputed as conditionally missing. Otherwise,
the proximity-weighted average of the observed values is simply substituted. For

categorical or binary variables, lines 11-12 can be replaced with the following:

Xt{bs — {X]f vj S Aobs}; Xobs — {Xj V] € Aobs}
if v(X7) then

XD e = AXI V) € Apmis}s Xemmis < {X; V5 € Aemmis}

Xzf — mode(X({bs U Xé:mis) weighted by P(X;, Xops U Xeomis)
else

X/ « mode(X?,,) weighted by P(X;, Xop)
end if

The proximity-weighted mode is calculated regardless of whether a conditionally

missing fill value is appropriate or not, but the conditionally missing values are only
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Algorithm 6 Proximity imputation with MIA procedure

Input: Output:
X : data set X : imputed data set
Y : classification targets T : random forest
N : number of observations P : proximity matrix

1: X « initial_imputation(X,Y’)
2: while imputed values unstable do
3: T < build_ensemble(X,Y)

4 P « calculate_proximities(X, N, T)
5 X « impute(X, P)

6: end while

7: T < build_ensemble(X,Y)

8: P <+ calculate_proximities(X, N, T)

considered if so. In order to calculate the mode of the observed and conditionally

f

c—mas

missing values, the set of conditionally missing values X is combined with the set
of observed values X ({bs. As the frequencies of the values are weighted, the proximities
are also required for the observations with conditionally missing and observed values
for X7, denoted by X._mis and X respectively. Crucially, the observed values are
considered individually not collectively, unlike for continuous or ordinal variables.
As explained in section 3.2, the imputed values are iteratively updated (al-
gorithm 6 line 2). Cutler, Cutler and Stevens (2012) highlight that the intention
is for the imputed values to stabilise, and Breiman and Cutler (2004) state four to
six iterations are typically sufficient for the original proximity imputation approach.
Experimental work was undertaken to inform the number of iterations for proximity
imputation with MIA on the NACC data, and this is discussed in section 3.3.1.
During a single iteration, a random forest is constructed, proximities are
calculated, and the missing values in the data set are imputed (algorithm 6 lines
3-5). The first two steps are also repeated for proximity imputation with MIA
once the imputed values have stabilised and the imputation iterations have ceased
(algorithm 6 lines 7-8). This ensures the random forest and proximity matrix used

for analysis are based on the final imputed data set, as it cannot be guaranteed that

the imputed values generated during the last and penultimate iterations are identical;
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something which Breiman and Cutler (2004) do not acknowledge.

3.2.5 Derived Variables

As explained in chapter 2, a number of the variables included in the NACC data set
are involved in either dependencies or relationships with each other. The variables
which can be determined by these relations are referred to as derived variables within
this chapter, in accordance with the imputation literature. The imputation step
of the approach was specifically tailored to maintain the known relations between
variables in the NACC UDS so far as possible, as stated in section 3.2; this was due
to the general consensus in the literature being that it is ultimately desirable to do
so. In particular, it was necessary to update certain derived variables with plausible
values, specifically values which do not introduce inconsistencies into the data set
with regards to the known relations, where the variables which can determine them
had missing values. This idea was first discussed in section 2.3.3, which stated the
values that were suitable to be updated were identified at the outset.

For the NACC data, a dependency arises when a certain value for one variable
(parent) can trigger a conditionally missing value for another (child), whilst a
relationship involves one or more variables which can determine the value of another.
The HISPANIC and HISPOR variables form a dependency. The HISPANIC variable
indicates whether the subject is of Hispanic/Latino ethnicity, and the HISPOR
variable provides their origins if so. As a result, the former is the parent variable and
the latter is the child. In the event that the subject is not of Hispanic/Latino ethnicity,
the value of the HISPANIC variable is 0 and the HISPOR variable is assigned a
conditionally missing value. The NACCMOM, NACCDAD and NACCFAM variables
are involved in a relationship. They specify whether the subject’s mother or father,
or any of their first-degree family members, have or had cognitive impairment
respectively. As a parent is a first-degree family member, the value of the NACCFAM
variable is 1, indicating cognitive impairment was reported, if the value of at least
one of the NACCMOM and NACCDAD variables is 1.

Tables 3.1 and 3.2 include the six dependencies and 20 relationships handled
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during imputation. In the latter, the relationships are detailed under the assumption
that the variables involved are complete (i.e. do not have missing values). Each of
the variables which are part of a validated dependency or relationship in the NACC
UDS are also highlighted in appendix A, along with exactly how they interact with
one another. Not all of these interactions (or relations) needed to be considered
during imputation for several reasons, including one or more of the variables involved
could not be sensibly imputed; the derived variable’s values should not be updated;
and missing values were absent from the variable(s) which can determine another,
not only in the data set but also in the documentation provided by NACC.

Only two of the relationships in table 3.2, specifically those including NACCTBI
and NACCBMI, invariably determine the value of their derived variables. For the
derived variables of the remaining relationships and the dependencies in table 3.1,
imputation can be required to settle on a value. In fact, 15 of the relationships
specify a range of values for the derived variable if the determining variable has a
conditionally missing (CM) value, one of which needs to be chosen via imputation.

A number of variables feature in a dependency and a relationship; two variables
which do so, namely DIGIFLEN and DIGIBLEN, are important. Both variables
pertain to the digit span tests, for which subjects are asked to repeat number
sequences of increasing length in order (forward) or in reverse order (backward)
(ADC Clinical Task Force and National Alzheimer’s Coordinating Center, 2014a).
The DIGIFLEN and DIGIBLEN variables provide the length of the longest sequence
correctly repeated forwards and backwards respectively. Crucially, these variables act
as the derived variable in their respective dependencies, and can determine the value
of another in their relationships. As a result, it is vital that the derived variables
of the dependencies are updated prior to those of the relationships, to ensure any
updates required for the DIGIFLEN and DIGIBLEN variables can be appropriately
dealt with for the variables they can determine.

The imputation is staggered to maintain relations in the data set. In fact, the
derived variables of the dependencies and relationships are updated immediately after

the missing values of the variables which can determine them have been imputed,
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and the missing values of the remaining variables are imputed subsequently. The
derived variables are included for the last step as a number of them can have missing
values of their own, although some will have already been dealt with by the updates.

Algorithm 6 outlines the proximity imputation with MIA procedure, and line
5 pertains to the imputation. This particular line can be replaced with those that

follow, which describe the required modifications.

X « impute the variables which can determine others using impute(X, P)
X « update the derived variables for the dependencies

using impute(X, P) where not conditionally missing
X « update the derived variables for the relationships

using impute(X, P) where value not predetermined

X + impute all the remaining variables using impute(f( , P)

As previously explained, imputation can be required to settle on a value for the
derived variables of the dependencies and certain relationships. For dependencies it
is needed when the value of the parent variable is not the dependency trigger, namely
the value which causes the child to be conditionally missing. For the majority of the
relationships, it is necessary when the value is simply not predetermined based on
the values of the other variables involved in the relationship.

The imputation carried out at each step may act on different variables, and also
different types of values where updates are concerned (i.e. not just missing values),
but the fundamental process is the same. Consequently, the pseudocode outlining
how missing values are imputed, presented in section 3.2.4 and pieced together
in algorithm 7 (lines 94-120), is not altered to reflect this. In short, the relevant
variables are imputed rather than every one with missing values; and specific values
are replaced, not simply missing values, when the derived variables are updated.

In addition to the conditionally missing values which arose due to a form not
having to be completed, certain values were disregarded during imputation for three
of the four steps. In particular, the values to be imputed in the fourth step were
dismissed for the two update steps, and the updated values were ignored for the last
(i.e. fourth) step. No values were disregarded for the first step, as the DIGIFLEN

and DIGIBLEN variables did not have any missing values of their own.
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Each aspect of the approach developed has now been discussed. As a result,
the algorithms and pseudocode snippets presented thus far, both in this chapter and
chapter 1, can be assembled to form the pseudocode for proximity imputation with
MIA; this is provided in algorithm 7. How the approach is applied to test cases is

explained in section 3.2.6.

3.2.6 Imputation of Test Cases

Test cases could also have missing values. As stated in section 3.1.3, no clear
explanation of how to impute test cases using the proximity imputation approach
was found in the literature, but Breiman and Cutler (2004) do highlight it is possible
to determine the similarity (or proximity) of training and test observations. In
fact, proximity imputation with MIA can be used to impute test cases with a few
alterations. Crucially, the imputed values are generated based on the imputed

training cases alone, as each test case would be considered independently in practice.

Test cases do not typically have classification targets, so none are required.
As a result, the initial imputation step simply substitutes a random value, which
is associated with the same variable as the missing value, from one of the imputed
training observations; the difference is any training observation is considered regard-
less of their class. In order to impute the missing values more rigorously, the random
forest constructed using the final imputed training set is required, along with the
proximities pertaining to the pairs of training and test cases which are obtained
using the preconstructed forest. The proximity of each pair of test observations is
also calculated to enable the latter to be normalised, and as they are likely to be of
interest during analysis. The four stages of imputation are subsequently completed,
for which the values of the imputed training observations are used to inform the
imputed values, bar the conditionally missing values which arose due to a form not
having to be completed. These imputed values are then updated over the course of a

number of iterations, and the specified proximities are calculated one final time.
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Algorithm 7 Pseudocode for proximity imputation with MIA

Input: Output:
X : data set X : imputed data set
Y : classification targets T : random forest
N : number of observations P : proximity matrix

1: X « initial_imputation(X,Y’)

2: while imputed values unstable do

3: T < build_ensemble(X,Y)

4 P + calculate_proximities(X, N, T)

5: X « impute the variables which can determine others using impute(X, P)
6 X + update the derived variables for the dependencies

using impute(f( , P) where not conditionally missing

7: X <+ update the derived variables for the relationships

using impute(X, P) where value not predetermined
8: X « impute all the remaining variables using impute(X, P)
9: end while

10: T + build_ensemble(X,Y)
11: P + calculate_proximities(X, N, T)

12: function initial imputation(X,Y)

13 X+ X

14: A A{1,...,|X|}

15: for each X/ with missing values do

16: Apis — {i € A (X))} > (X)) = true if X/ missing
17: Aops — A\ Ay

18: Ao {i € Aops | Yi =0} Ay < Agps \ Ao

19: Xhoro = {X] Vie N} X, {X] Vie N}
20: for i € A,,;s do

21: if Y; =0 then

22: X'lf < random sample from X c{bslo

23: else if Y; = 1 then

24: X/ « random sample from X ({bs|1

25: end if

26: end for

27: end for
28: return X

29: end function
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30: function build_ensemble(XY)

31:
32:
33:
34:
35:

36

45:
46:
47:
48:
49:

50

51:
52:
53:
54:
55:
56:
LY
58:
59:
60:
61:
62:

fori<1,...,M do
t; < build_tree(X,Y)
end for

return 7' <« {t1,...,tu}

end function

: function build tree(X,Y)
37:
38:
39:
40:
41:
42:
43:
44:

if X'Vi<« 1,...,F constant or Y constant or | X|< n;, then

YO Y, €YY, =0}

YO YV, eY|Y, =1}

return ¢ « {|Y©], Y]}
end if
Randomly select K inconstant variables{ X#' ... X¥%}without replacement
Generate splits {51, ...} using generate_splits(X , X% Y) Vi« 1,... K
Choose a split S = {(X, Y1), (Xr, Yr)}

such that Zg(X) < max; .

tr, < build_tree(X,Y7)
tr < build_tree(Xg,YR)
Create n for S and attach ¢y and ty to form ¢

1£81,... 1 Ls, (X) using equation 1.1

.....

return ¢

end function

. function generate_splits(X,X7/)Y)

A {1,...,|X]|}

Apis = {i € A (X)) > (X)) = true if X! conditionally missing

Aope = A\ Ay

X/ {X] Vi € A}

KXomis < {Xi Vi € Apis}; Yinis < {Yi Vi € Apis}

Xobs < {Xi Vi € Nops}s Yops < {Yi Vi € Agps}

if single unique value € X st then
return Sysra, < {(Xois: Yinis), (Xobss Yobs)

end if

if X/ continuous, ordinal or binary then
Uniformly draw a cut-point f., in (min X7,  max X7, )

obs?
AL — {Z S Aobs | Xzf< fcp}
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63: else if X/ categorical then

64: Identify all possible values present in X gbs (fimC f)
65: Randomly draw f; C f0" where f; # @

66: Randomly draw f, C f\ f0™

67: Ap <+ {ie M| XS € fLUfo)

68: end if

69: X+ {X;VieAL}; Xp+ {X; Vi€ Aps \ AL}
70: Y« {Y;Vie AL}; YR« {Y; Vi€ Aps \ AL}
71: if X,.;s = @ then

72: return S < {(X.,Y),(Xg, Yr)}

73: end if

74: Syra, < {( X1, Y1), (XrU Xois, YR U Y,i6) }
75: Smra, < {(Xp U Xpis, Yo U Youis), (Xg, Yr)}
76: Snrras < {(Xmis, Ymis), (Xobs, Yobs) }

7 return {Syra,, Snvray, Svras )

78: end function

79: function calculate_proximities(X,N,T)
80: for each t € T' do

81: P+ Oy N > Oy n is a zero matrix of size N—by—N
82: fori<1,...,N do

83: p; < path of X; through ¢

84: for j < 1,...,N do

85: p; < path of X; through ¢

86: Calculate P,(X;, X;) using p;, p; and equation 3.3

87: end for

88: end for

89: P, < normalise P, using equation 3.4

90: end for
91: P <+ average across P, Vt € T using equation 3.5
92: return P

93: end function

94: function impute(X,P)

95 X+ X

96: A—{1,...,|X|}

97: for each X/ with missing values do

98: Apis — {i € A (X))} > (X)) = true if X! missing
99: Aemis — {i € A (X))} > (X)) = true if X/ conditionally missing
100: Aops < AN\ (Apis U Aeinis)
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101: for i € A,,;s do

102: if X/ continuous or ordinal then

103: if v(X7) and Y P(Xi, X5) >3 cn,,. P(Xi, X;) then
> ~(X/) = true if conditionally missing fill value legitimate

j S Ac—mis

> ties broken randomly for condition two

104: X'f < conditionally missing

105: else

106: X! round(Y; ., XIP(Xi, X;5) /3 cn,,, P(Xi, X))
107: end if

108: else if X/ categorical or binary then

109: X AXT V5 € Novs b Xobs < {X; V) € Aops}

110: if v(X/) then

111: XD e  AXI V) € Apmis}s Xemmis < {X; V) € Acpnis}
112: X! — mode(X U X! ) weighted by P(Xi, Xops U Xo_mis)
113: else

114: X/ « mode(XY,) weighted by P(X;, Xops)

115: end if

116: end if

117: end for

118: end for
119: return X

120: end function

3.3 Experiments

A number of experiments were conducted using proximity imputation with MIA
on the NACC data, in order to determine an appropriate number of imputation
iterations and trees. Moreover, the effects of additional missingness were ascertained
with regards to the imputation and classification performance, to assess the capability
of the approach developed.

Proximity imputation with MIA was applied to the training and test sets
detailed in section 2.5; classification targets indicating whether each subject had
received a diagnosis of dementia at their initial visit were utilised in conjunction
with the training set. 1,000 missing values were also introduced into the training set

before any experimental work was carried out, to enable the imputation performance
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to be assessed. Values were replaced at random but a number of restrictions were
adhered to. In particular, missing values already present, and conditionally missing
values which arose due to a form not having to be completed, were not replaced.
When a non-essential form is skipped, every variable related to the form is assigned
a conditionally missing value; thus, to replace any less than all of these values would
be inappropriate. Furthermore, the additional missing values were restricted to 111
of the 260 variables. These 111 variables were not involved in the dependencies and
relationships handled during imputation, and could have missing values according to
the National Alzheimer’s Coordinating Center (2017).

As stated in section 3.2.5, not all of the validated dependencies and relationships
in the NACC UDS needed to be considered during imputation. 19 of the variables
(categorical or binary) for which missing values were added were involved in relations
that were not handled. By incorporating missing values into these variables, it was
confirmed that inconsistencies will almost certainly be introduced into the data if
the relation with which a variable is associated is not taken into consideration, when
appropriate; this highlights the importance of considering the various relations in
the data set. A number of implausible values were imputed for the training set as a
result, but they ultimately accounted for just 2.6% of the 1,000 values.

The remainder of this section discusses the experiments carried out, along with
their results. The work undertaken to determine a suitable number of imputation
iterations is explained to begin with, followed by that which verified 100 trees were
sufficient. Finally, the work investigating the effects of additional missingness on the

imputation and classification performance is discussed.

3.3.1 Number of Imputation Iterations Required?

As explained in section 3.2.4, the approach iteratively updates the imputed values,
intending for them to stabilise. For the original method, Breiman and Cutler (2004)
state four to six iterations are typically sufficient. It was unclear whether this would
also be the case for the approach developed when applied to the NACC data; thus,

work was undertaken to find out. In order to determine an appropriate number of
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iterations, the size of the random forest (i.e. number of trees) constructed during
each iteration needed to be set. In short, this experiment was carried out with 100
trees, namely the common number as indicated by Geurts, Ernst and Wehenkel
(2006), which the experiment described in section 3.3.2 confirmed was sufficient.

Neither Breiman and Cutler (2004) or Cutler, Cutler and Stevens (2012)
provide a test for stability which would permit a suitable number of iterations
to be identified. In the case of this experiment, the imputation performance for
each iteration of the approach, as well as the initial imputation step, was assessed
and compared, specifically for the training set. It was explained in the previous
section that 1,000 missing values were introduced into the training set to enable the
imputation performance to be assessed. In fact, this process was repeated a further 20
times, along with the imputation itself, to allow the variability of the performance to
also be determined. For all 21 invocations of the approach, 10 iterations were executed
so as to err on the side of caution, and imputation performance was evaluated based
on the true and imputed values corresponding to the 1,000 additional missing values,
denoted by X and X" respectively.

Stekhoven and Biithlmann (2012), who proposed missForest (section 3.1.3), as-
sess imputation performance using the normalised root mean squared error (NRMSE)
for continuous variables and the proportion of falsely classified entries (PFC) for
categorical variables. These measures, which can be defined using the following

equations, were utilised during this experiment.

mean((Xtrue _ Ximp)Q)
NRMSE = .
RMS \/ var(Xtrue) (3.6)

Z ]I(Xtrue 7& szp)

Nyal

PFC = (3.7)

For the NRMSE, mean(-) and var(-) represent the empirical mean and variance over
the continuous values. For the PFC, I(-) is an indicator function which equals one
when the true and imputed values fail to match for any of the categorical, ordinal or

binary variables; and n, is the number of true-imputed value pairs, specifically for
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these types of variables. Notably, lower values indicate better imputation performance
for both the NRMSE and PFC.

As highlighted above, the ordinal and binary variable values contributed to
the PFC. This was due to the fundamental nature of the variables, as well as the
possibility of conditionally missing values in X% and/or X for a number of
them; conditionally missing values are problematic for the NRMSE. Only six of the
variables for which missing values were added were continuous, and two of them
could be imputed with a conditionally missing value. As a result, true-imputed value
pairs which included at least one conditionally missing value were also considered
for the PFC and the NRMSE was calculated based on a relatively small number
of value pairs. In particular, these two variables provide the number of years the
subject has smoked cigarettes (SMOKYRS) and the age at which they quit smoking,
if applicable (QUITSMOK). The other four continuous variables provide the number
of years of education the subject received (EDUC), their systolic and diastolic blood
pressure (BPSYS, BPDIAS), and their resting heart rate (HRATE).

Figure 3.1 presents the PFC and NRMSE for each imputation iteration, in-
cluding the initial imputation step which results in crudely imputed values, for all
21 invocations of the approach (left). To clarify, the set of 1,000 additional missing
values was different for every invocation. It also presents the mean PFC and NRMSE
for each iteration across these invocations (right), for which error bars are given
showing one standard deviation, characterising the variability of the imputation
performance. Interestingly, there is little change in the PFC (blue) and NRMSE
(orange) after the initial imputation step for all invocations of the approach. It
should be noted that the initial decrease, which almost invariably occurred, indicates
the first iteration improved on the crudely imputed values.

It was previously explained that the imputation performance was compared
across the iterations in order to determine an appropriate number of them. As shown
by figure 3.1, the number of iterations suggested by Breiman and Cutler (2004) for
the original proximity imputation approach (i.e. four to six), or even less, may well

have been sufficient. 10 iterations were utilised, nonetheless, as minor changes in
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Figure 3.1: Imputation performance, as defined by the proportion of falsely classified
entries (PFC) and the normalised root mean squared error (NRMSE), for each imputation
iteration, including the initial imputation step which results in crudely imputed values.
To be specific, the performance values for all 21 invocations of the approach are indicated
(left), along with the mean values across these invocations (right), for which error bars are
given showing one standard deviation.

performance were apparent past six iterations for individual invocations.

3.3.2 Number of Trees Required?

In addition to the number of imputation iterations, the number of trees constructed
during each iteration needed to be set. As explained in section 3.3.1, 100 trees were
used to determine a suitable number of iterations, but it was then necessary to verify
that 100 trees were sufficient. Geurts, Ernst and Wehenkel (2006) highlight that
enough trees must be utilised to ensure convergence of the ensemble effect.
Proximity imputation with MIA was applied to the training and test sets using
a variety of ensemble sizes, ranging from 10 to 100 in steps of 10. 10 classifiers resulted,
each of which were associated with their own imputed training and test sets. The
performance of every classifier was ascertained by first generating M classifications

(or predictions) for each observation in its imputed test set, notably one for each
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tree in the ensemble. As discussed in section 1.3.1, a tree makes a prediction based
on the class majority of the terminal node reached by the observation. However,
as only one class was represented in each terminal node due to the way in which
the trees were constructed, the predicted class of the observation (or subject) was
simply that which was associated with the terminal node. The arithmetic mean
of every set of predictions was then computed to produce a set of ensemble scores,
which were essentially estimates of a subject’s probability of dementia. Finally, these
scores were used, along with the classification targets and a resampling method
known as bootstrapping, to determine the (mean) area under the receiver operating
characteristic curve (AUC) and 95% confidence interval for the classifier. In particular,
the AUC was calculated using the relevant scores and targets for 2,000 bootstrap
samples, each of which were generated by randomly sampling subjects from the test
set with replacement, and were the same size as the test set. From these values, the
mean AUC and 95% confidence interval were deduced.

To put this into context, a receiver operating characteristic (ROC) curve (or
graph) shows the true positive rate versus the false positive rate as the classification
threshold is varied, providing insight into the classifier’s performance. Here, the
positive class is ‘dementia’ and the negative class is ‘no dementia’. The AUC, on
the other hand, indicates the average performance of the classifier over the range of
classification thresholds but, more specifically, is a measure of how well the probability
distributions for the two classes are separated (Fawcett, 2006; Hand and Till, 2001).
It is also considered to be equivalent to the probability of the classifier scoring a
randomly chosen instance of the positive class more highly than that of the negative
class (Fawcett, 2006).

Figure 3.2 shows the AUC for each classifier, along with the 95% confidence
intervals by means of the shaded region. Notably, the range of AUCs is very small.
Regardless, there is a relatively large increase in AUC from 10 to 20 trees, but then it
becomes much more gradual. The AUC appears to level off at around 50 trees, and
can be considered reasonably stable for larger ensembles despite very small increases.

As previously stated, it was ultimately confirmed that 100 trees were sufficient.
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Figure 3.2: Classification performance, as defined by the area under the receiver operating
characteristic curve (AUC) and 95% confidence interval, for a range of ensemble sizes.

3.3.3 Effects of Additional Missingness

As explained in section 3.3, the capability of the approach developed was assessed
by investigating the effects of additional missingness, specifically in the training
set, on the imputation and classification performance. Originally, the proportion of
missing values in the training set was 0.65%, which was increased to 0.67% when
the 1,000 extra missing values were added. For this experiment, the proportion of
missing values was increased further. In fact, an additional 5, 10, 15 and 20% of the
values were converted to missing in the manner described in section 3.3. Proximity
imputation with MIA was applied to the four new training sets, as well as the test set
several times, using 10 imputation iterations and 100 trees; this resulted in four new
classifiers with their own imputed training and test sets. A number of implausible
values were imputed for each training set, fundamentally due to the way in which
missing values were added, but they replaced just 2.8% of the new missing values.
Imputation performance was assessed for each of the training sets by calculating
the NRMSE and PFC as described in section 3.3.1. By using the true and (final)
imputed values corresponding to the 1,000 missing values originally added, the

performance could be compared. Figure 3.3 presents the NRMSE and PFC for
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each training set, showing that the imputation performance was fairly consistent as
missingness was increased. However, the PFC (blue) does suggest a slight decrease
in performance as missingness was increased from 10.67% to 15.67%.

Classification performance was ascertained for each of the classifiers as outlined
in section 3.3.2. Figure 3.4 shows the AUC for each classifier, along with the 95%
confidence intervals by means of the shaded region. Similarly to figure 3.2, the range
of AUCs is very small. In short, classification performance decreased as missingness
was increased, but the change in AUC was very gradual. It is highly unlikely the
classification performance decreased due to the introduction of implausible values
into the various training sets, as the variables involved in the applicable relations were
found to be of relatively low importance for differentiating between subjects with
and without a diagnosis of dementia. For more information on variable importance,
the reader is directed to chapter 4.

It was expected that the imputation and classification performance would
decrease as the proportion of missing values was increased, and this did appear to
be the case. Nonetheless, the performance seemed to be only marginally affected for

the proportions considered.

3.4 Summary

There is a vast amount of literature on handling missing data. Prior to choosing
an approach, it is considered important to determine the mechanism behind any
missingness, specifically for the purposes of ensuring it is dealt with appropriately.
There are three widely accepted mechanisms: missing completely at random (MCAR),
missing at random (MAR) and missing not at random (MNAR). Due to the relatively
low degree of missingness in the NACC data set, and the complexity of modelling
mechanisms of missingness, no formal investigation was undertaken to determine the
mechanisms of the missing values; and they were treated as if they were MAR.
Imputation replaces missing values with suitable substitutions, and is one way
of dealing with missing data. Single imputation methods, such as mean imputation,

hot deck imputation and regression imputation, generate a single value for every
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Figure 3.3: Imputation performance, as defined by the normalised root mean squared error
(NRMSE) and the proportion of falsely classified entries (PFC), for data with additional
missingness.
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Figure 3.4: Classification performance, as defined by the area under the receiver operat-
ing characteristic curve (AUC) and 95% confidence interval, using data with additional
missingness.

91



missing value; their use is generally discouraged. Multiple imputation methods, for
example data augmentation, produce multiple values for each missing value; these
types of techniques are highly recommended but are more labour-intensive.

The NACC UDS is an example of a data set which includes variables in
relations with one another; the variables which can be determined by these relations
are referred to as derived variables. The literature discussing the imputation of
derived variables is relatively recent and limited, but the general consensus seems
to be that plausible values are desirable, namely values which do not introduce
inconsistencies into the data. For some types of derived variables, specifically tailored
approaches are required to obtain plausible values.

Decision trees were chosen for classification, but they can also be used to
perform imputation. Decision-tree-based approaches are advantageous as they
are able to handle mixed data, and two prominent examples are missForest and
proximity imputation. In addition to missing values, the NACC data set contains
conditionally missing values. Missingness incorporated in attributes (MIA) is an
acclaimed technique for handling missing data in decision trees, which is suitable for
dealing with the conditionally missing values.

The proximity imputation method was the natural choice for the NACC data
and this research, as it is able to deal with mixed data and it enables the imputation
to be closely coupled with the construction of a random forest classifier. Notably,
a random forest is an ensemble of different decision trees, each of which have been
generated using a process with an element of randomness. In addition, it was possible
to utilise MIA in conjunction with the proximity imputation approach to handle the
conditionally missing values.

The approach developed is proximity imputation with MIA. It begins by
eliminating any missing values in the data set (or training set), leaving only those
which are conditionally missing. In particular, a simple implementation of hot deck
imputation is used which replaces each missing value with an observed value for the
variable from an observation associated with the same class. Once all the missing

values have been crudely imputed, the imputed data set can be used to construct a
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random forest. The random forest is built using the Extra-Trees algorithm, along
with MIA, the latter of which handles the conditionally missing values without
imputing them. Essentially, more splits are generated for each variable considered
for splitting that has conditionally missing values.

By inspecting the paths of the observations through every tree in the random
forest, the similarity (or proximity) of each pair of observations can be ascertained. In
fact, the proximity of two observations for a single tree is the total information gain
across the common nodes of their paths, weighted by the proportion of observations
at each node when the tree was built. If the two paths have the terminal node
in common, an extra quantity must be added as terminal nodes do not have an
associated information gain. Alternatively, the weighted information gain could
be accumulated according to whether the subsequent nodes in the paths are also
common. This would render the additional value corresponding to the terminal node
obsolete, and result in observations having zero proximity if their paths diverge after
the root node. Ultimately, the proximities for each tree are normalised, and those
pertaining to the ensemble are calculated by simply averaging across the trees.

The proximities for the ensemble are used to impute the missing values more
rigorously by means of an N—by—N proximity matrix, where /N is the number of
observations. Fundamentally, a missing value is imputed with the proximity-weighted
average or proximity-weighted mode of the observed values for the variable. As
conditionally missing values can arise of their own accord in the NACC data set,
a conditionally missing value could legitimately be imputed for certain variables;
this is considered when calculating the proximity-weighted average or mode. The
imputation is also staggered in order to maintain the known relations between
variables in the NACC UDS, so far as possible. At first, the missing values of the
variables which can determine others are imputed. The derived variables of the
dependencies and relationships are then updated, if and where appropriate; and,
finally, all the remaining missing values are imputed. Certain values are prevented
from informing the imputation at the various stages, and those predetermined by

the relations could be also.
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The approach iteratively updates the imputed values, repeatedly generating
a new random forest and proximities in the process, intending for the values to
stabilise. For the purposes of analysis, a random forest is also built using the final
imputed data set, and proximities are calculated. Incidentally, the approach can also
be used to impute test cases with a few alterations. Crucially, the imputed values
are generated based on the imputed training cases alone.

Four to six iterations are typically sufficient for the proximity imputation
method. However, 10 iterations were ultimately utilised for the approach developed,
despite there being little change in the imputation performance after the initial
imputation step when it was applied to the training set. In particular, imputation
performance was assessed using the normalised root mean squared error (NRMSE)
and the proportion of falsely classified entries (PFC), which were calculated for 1,000
missing values added to the training set.

100 trees were used to determine a suitable number of imputation iterations,
but it was imperative to verify 100 trees were sufficient. In order to do so, the
approach was applied to the training and test sets using a range of ensemble sizes;
this resulted in a number of random forest classifiers. The performance of every
classifier was then assessed on their respective imputed test sets by means of the area
under the receiver operating characteristic curve (AUC). In short, it was confirmed
that 100 trees were adequate.

The effects of additional missingness on the imputation and classification
performance were investigated by increasing the proportion of missing values in
the training set from 0.67%. In particular, the approach was applied to the new
training sets, as well as the test set several times, using 10 imputation iterations
and 100 trees. Classification performance was assessed on the test set using the
AUC, whilst the NRMSE and PFC were utilised to evaluate imputation performance
on the 1,000 missing values originally added to the training set. In summary, the
imputation and classification performance decreased as the proportion of missing
values was increased, but the performance seemed to be only marginally affected for

the proportions considered.
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Chapter 4

Diagnosing Dementia and

Differentiating between Subtypes

As explained in chapter 1, one of the primary aims of the research was to investigate
the use of machine learning for distinguishing between people, specifically Alzheimer’s
Disease Center (ADC) subjects, with and without dementia, as well as differentiating
between key dementia subtypes where appropriate. In particular, the four main
dementia subtypes were considered, namely Alzheimer’s disease (AD), vascular
dementia (VD), dementia with Lewy bodies (DLB) and frontotemporal dementia
(FTD). The approach outlined in chapter 3 was developed for this purpose, and
results from the imputation and classification of the NACC data are presented in this
chapter. In fact, results pertaining to the dementia classifier, which was constructed
during the experiments described in section 3.3, are discussed, along with results
concerning pairwise dementia subtype classifiers and a stacking classifier. This
chapter also explains how the additional classifiers were built and puts the work into

context by discussing related literature and the clinical implications of the findings.

4.1 Dementia Classifier

As previously stated, the dementia classifier was constructed during the experiments
described in section 3.3. In particular, the approach outlined in chapter 3, namely

proximity imputation with MIA (missingness incorporated in attributes), was em-
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ployed with 10 imputation iterations and 100 trees to simultaneously impute the
training set and build a random forest classifier. The training set comprised 22,801
subjects selected at random, whilst its classification targets indicated whether each
subject had a received a diagnosis of dementia at their initial visit. It was explained
in section 2.4 that cognitive status was broken down into dementia, mild cognitive
impairment (MCI) and normal cognition; thus, the targets separated the subjects
diagnosed with dementia from those diagnosed with MCI or normal cognition. Of
the 22,801 subjects, 8,500 had been diagnosed with dementia and 14,301 had been
diagnosed with either MCI (4,737) or normal cognition (9,564); these totals suggest
there was a slight imbalance of the classes.

This section details the performance of the classifier in terms of the ensemble
and the trees comprising it. It also provides the results of the seriation analysis,
which give some insight into the similarity of subjects; and the variable importance
investigation that aimed to identify the most important variables for diagnosing
dementia. In addition, it recounts the work undertaken to determine the number of
variables required to match the performance of the classifier, which makes use of all
260 variables, whilst taking the importance of each variable into account. This work
indicated a number of assessments should be prioritised, and the research conducted

to investigate their importance further is also discussed.

4.1.1 Classification Performance

The test set, which included the remaining 9,772 subjects, was also imputed using
proximity imputation with MIA, enabling the performance of the classifier to be
assessed for both the training set and the test set. In order to assess the performance,
M classifications (or predictions) were generated for each observation in the training
or test set, notably one for each tree in the ensemble. As discussed in section 1.3.1,
a tree makes a prediction based on the class majority of the terminal node reached
by the observation. However, as only one class was represented in each terminal
node due to the way in which the trees were constructed, the predicted class of

the observation was simply that which was associated with the terminal node. A
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True Class

Dementia No Dementia Total

) Dementia 3373 303 3676
Predicted Class 'py 1 entia 263 5333 6096
Total 3636 6136 9772

Table 4.1: Confusion matrix for the dementia classifier.

single prediction was also generated for each observation, using the appropriate set
of classifications, by identifying the class with the most predictions. In fact, the trees
effectively voted on the most suitable class (or diagnosis) for every subject. If the
trees predicted each class equally, the tie was broken randomly.

One measure of performance is the accuracy of the classifier, which was simply
calculated by comparing the set of votes (or predicted classes) to the classification
targets (or true classes), and determining the percentage of subjects correctly classified.
As previously highlighted, each terminal node in every tree was only associated with
a single class; thus, the accuracy for the training set was 100%. Consequently, only
the performance of the classifier for the test set is discussed. Prior to this, it is
worth noting that the true classes, namely the diagnoses provided by NACC, may be
subject to error, despite being based on the results of extensive examinations; this
is, fundamentally, due to the fact that it is currently difficult to diagnose dementia
reliably. As a result, it should be kept in mind that any inconsistencies between
the true and predicted classes could have been due to an incorrect diagnosis by a
clinician or otherwise, rather than an erroneous prediction by the classifier.

Of the 9,772 subjects in the test set, 3,636 had dementia and the remaining
6,136 did not. The accuracy of the classifier for the test set was 94.21%; and the
confusion matrix, presented in the form of table 4.1, details how its subjects were
classified with respect to their true classes. From the information provided by the
confusion matrix, the sensitivity (true positive rate) and specificity (true negative
rate) of the dementia classifier can be deduced. The sensitivity, in this context, can
be defined as the proportion of subjects with dementia that were correctly classified.

The specificity, on the other hand, is the proportion of subjects without dementia who
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Figure 4.1: Classification accuracies for the trees comprising the ensemble which constitutes
the dementia classifier, along with the accuracy for the ensemble itself.

were correctly classified. Consequently, the sensitivity was 0.93 and the specificity
was 0.95. These values are high, and indicate that there were relatively few instances
of false negatives and false positives in which those with and without dementia were
incorrectly classified. Interestingly, 86% of the 303 subjects without dementia that
were incorrectly classified had MCI. This suggests that MCI is more difficult to
differentiate from dementia than normal cognition, as to be expected.

In addition to the accuracy of the ensemble (i.e. classifier), the accuracy of each
tree was determined by comparing their predictions to the set of targets. Figure 4.1
provides the tree accuracies in blue, along with the overall accuracy indicated by the
red dotted line. It clearly demonstrates that forming an ensemble is beneficial, as its
accuracy is considerably higher than that of each tree on its own.

Ensemble scores, which were generated as detailed in section 3.3.2, were used
in conjunction with the targets to produce a receiver operating characteristic (ROC)
curve (Fawcett, 2006), in order to gain a better understanding of the classifier’s
performance. The area under the ROC curve (AUC) was also calculated. The blue
ROC curve, in figure 4.2, shows the true positive rate (TPR or sensitivity) versus
the false positive rate (FPR or 1 - specificity) as the classification threshold is varied.
The curve passes particularly close to point (0, 1) in the top left corner of the graph,

which signifies perfect classification; thus, it can be concluded that the classifier is
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Figure 4.2: Receiver operating characteristic (ROC) curves for dementia classifiers with
and without imputation.

able to perform very well. The AUC, which indicates the average performance of the
classifier over the range of classification thresholds (Fawcett, 2006), was 0.99. The
best possible value is 1.00, reinforcing that there is very little room for improvement.

To provide further justification for the imputation of the missing values present
in the data set, another dementia classifier was trained and tested using only
the subjects and variables that were free from missing values. As highlighted in
section 2.3.2, 47.57% (15,494) of the 32,573 subjects had at least one missing value.
Of the 260 variables, 48.46% (126) had at least one missing value. Ultimately, these
subjects and variables were removed from the original training and test sets, and
a new dementia classifier was constructed. Notably, the new training set included
11,947 subjects and 134 variables, whilst the new test set included 5,132 subjects
and 134 variables. The classifier’s performance was subsequently assessed using the
test set, for which its accuracy, sensitivity and specificity was determined. An ROC
curve was also produced, enabling the AUC to be calculated.

The original dementia classifier (with imputation) achieved an accuracy of
94.21%, a sensitivity of 0.93, a specificity of 0.95 and an AUC of 0.99. The new
dementia classifier (without imputation) performed marginally worse as it had an
accuracy of 92.83%, a sensitivity of 0.89, a specificity of 0.95 and an AUC of 0.98;

its (orange) ROC curve, in figure 4.2, also corroborates this. It should be kept in
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mind, however, that the test set used to assess the performance of the new dementia
classifier was a subset of that which was used for the original. Despite the fact that
there was no significant degradation in performance, the imputation step can still
be considered valuable. Not only did the original dementia classifier perform better
on a larger test set, but also dropping subjects could have biased the data set as
it is possible those with severe cognitive impairment were more prone to missing
values. Additionally, it was important to preserve subjects to ensure the four main
dementia subtypes could be investigated and, although not also necessary in practice,

dropping variables would have greatly reduced the scope of the data set.

4.1.2 Seriation Analysis

Seriation can be employed to reveal some of the underlying structure of a data
set. It does so by arranging the observations in a sequence along a one-dimensional
continuum, specifically placing similar observations close to one another (Liiv, 2010).
Spectral seriation (Atkins, Boman and Hendrickson, 1998), in particular, was used to
gain an understanding of the training and test set subjects in terms of their similarity;
it is similar to spectral clustering, which is covered in chapter 5.

The proximity (similarity) matrix P, which was populated using the random
forest as explained in section 3.2.3, was required. More specifically, the proximities
calculated using equations 3.3 to 3.5, namely the similarities between observations
determined based on their paths through the trees in the random forest, were used to
populate P. By using the decision trees to ascertain similarities, both the continuous
and categorical variables, as well as the other types of variables in the data set
(ordinal and binary), were naturally drawn on in a way which would be very hard
to achieve by hand. In addition, the similarities were specialised to the task of
distinguishing between subjects with and without a diagnosis of dementia.

For computational simplicity and to ease visualisation, 500 subjects were
randomly sampled from each of the training and test sets and the relevant fragments
of P were analysed. In fact, seriation was employed for each of these smaller

similarity matrices, which are also denoted by P for the sake of simplicity. Initially,
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the (unnormalised) Laplacian matrix £ of P was determined using

L=D-P, (4.1)

where D is the diagonal (or degree) matrix which has the sum of the similarities for
every subject along the diagonal. The eigenvalues and eigenvectors of £ were then
calculated, and the eigenvector corresponding to the smallest non-zero eigenvalue
was identified. This eigenvector is known as the Fiedler vector, and it was ordered to
form the permutation vector. Finally, P was symmetrically permuted by reordering
its rows and columns using said permutation vector.

Part A of figures 4.3(a) and 4.3(b) shows P reordered according to the per-
mutation vector for the training and test set subjects respectively. The pairs of
subjects which are very similar are coloured yellow/orange, whilst those that are less
similar are coloured blue/purple. As all the subject pairs have at least a similarity
of 0.47, the colourmap is not extended below 0.4. In each visualisation, the pairs
situated along the diagonal have a similarity of one, and it is these pairs which
compare a subject with itself. As a result of the seriation, the similarity broadly
decreases moving away from the diagonal but, most importantly, the subjects clearly
fall into one of two distinct groups. The subjects within each of these groups are
similar to one another and dissimilar to those in the other group; thus, two clusters
have effectively been discovered.

Part B indicates the cognitive status of each subject, ordered according to the
permutation vector. Normal cognition is shown in green, mild cognitive impairment
(MCI) in pink, and dementia in red. When it is considered in conjunction with part
A, it is possible to conclude that the classifier can differentiate between subjects with
normal cognition and those with dementia well. It is also shown that, on the whole,
the subjects with dementia are more similar to each other than they are to those that
are cognitively normal, and vice versa. In contrast, the MCI subjects do not form
their own distinct group. As a matter of fact, the vast majority are included in the
group of subjects with dementia. Nevertheless, they tend to be situated between the

cognitively normal subjects on the left and those with dementia on the right, forming
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a spectrum of cognitive impairment. There is much debate as to whether MCI is a
clinical entity (i.e. a condition in its own right), and how useful a diagnosis of MCI
is in itself, as highlighted by Zanetti, Geroldi and Frisoni (2009), NeurologyToday
(2004), Pinto and Subramanyam (2009) and Beard and Neary (2013). These results
suggest that MCI may not be a clinical entity but rather a mild form of dementia.

Part D provides (an estimate of) the dementia probability for every subject
which, as highlighted in section 3.3.2, is the ensemble score. A probability of one
corresponds to a diagnosis of dementia, whilst a probability of zero indicates the
inverse (i.e. no dementia). The range of probabilities differs for the training and
test set subjects, due to the way in which the classifier was constructed. In fact, the
probability of dementia for those in the training set is either zero or one, coinciding
with the targets used to train the classifier, as only one class was represented in
each terminal node of every tree in the ensemble. In figure 4.3(b), the probability of
dementia for the subjects comprising the test set sample increases, on average, from
left to right, appearing to be indicative of cognitive impairment severity. From left
to right, 82.76% of those with normal cognition have zero probability of dementia.
The probability increases for the MCI subjects, reflecting their mild impairment; and
this increase continues for those with dementia. Of the dementia subjects sampled,
23.44% have a probability of one, suggesting severe impairment. The variation
in probability for this group of subjects is likely to reflect the differing levels of
impairment experienced by individuals, despite receiving the same diagnosis.

Figure 4.4 provides a more detailed view of the dementia probabilities, in terms
of cognitive status, for the subjects sampled from the test set. In fact, it is effectively
an amalgamation of parts B and D of figure 4.3(b), showing the dementia probability
for each subject coloured according to their cognitive status. It corroborates that
the probability of dementia appears to be indicative of cognitive impairment severity,
whilst highlighting the transition from MCI to dementia roughly coincides with the
classification threshold at 0.5.

Reverting back to figure 4.3, part C indicates the dementia subtype diagnoses

for those with a dementia diagnosis. Only the ‘pure’ cases of the four main subtypes

103



x  Normal Cognition Mild Cognitive Impairment x Dementia

1
X R RO BRI,
X X
XK R e e e ik
X, X X
x Xx X x »
X x
% X X Ko Xy %
b X
x x x*
x x X x X X
X x £, x X % %
X R %% %
0 PR S g %

Figure 4.4: Dementia probability coloured according to cognitive status for each of the
subjects sampled from the test set, ordered with regards to the permutation vector.

(AD, VD, DLB and FTD) are highlighted, meaning the subject received a primary
diagnosis of the subtype and no supplementary diagnoses of any of the other main
subtypes. All the remaining cases of dementia are indicated as ‘other’. In contrast
to part B, in which the subjects were grouped by cognitive status as a result of
seriation, the subjects are not arranged by dementia subtype. As a result, it can
be concluded that the dementia classifier is unable to differentiate between the key
dementia subtypes.

In section 2.1 it was highlighted that the majority of subjects attend follow-up
visits. At every follow-up visit the subject is provided with a diagnosis which could
be different from before. For example, a subject could have been diagnosed with
MCI at their initial visit, but dementia at a subsequent visit. There is likely to
have been one of two reasons for this, either the subject’s cognitive impairment had
worsened or the subject was previously incorrectly diagnosed. Within the NACC
data there are instances in which subjects appear to revert from dementia back to
normal cognition, but progressive dementias, which include the four main subtypes,
are not reversible (Mayo Clinic Staff, 2019).

For the test set, in particular, 2,777 of the 9,772 subjects had visited their
respective Alzheimer’s Disease Centers (ADCs) only once. Of the 6,995 subjects that
made multiple visits, 4,925 had the same cognitive status for every one; therefore,
2,070 subjects received at least one alternative diagnosis. In order to determine
whether these changes in diagnosis (i.e. cognitive status) would reveal anything in
relation to the spectrum of cognitive impairment formed, the nature of the changes

were ascertained in terms of progression and reversion for the sampled subjects.
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Figure 4.5: Changes in cognitive status over time, in terms of progression and reversion,
for the subjects sampled from the test set. The subjects are arranged along the x-axis
according to the original permutation vector. Moreover, the cognitive status of each subject
at their initial visit is indicated using colour; and progression and/or reversion is shown by
the displacement of points, in the y-direction, from the baseline for each cognitive status.

Figure 4.5 was produced by modifying part B of figure 4.3(b), so it indicated
the direction of change with regards to each subject’s initial diagnosis. In order to
indicate progression, the relevant points were displaced upwards, whilst points were
shifted downwards to signify reversion. For those subjects with an initial diagnosis of
MCI, there was the possibility of both progression and reversion; thus, it is possible
for a single subject to have two points. Although changes are indicated across the
majority of the spectrum, the subjects situated in the centre appear to be more
prone to change. Progression as opposed to reversion also seems to be more likely,
which is to be expected. Interestingly, several of the subjects initially diagnosed
with MCI which were later diagnosed with dementia, specifically towards the left of
the spectrum, were predicted to have approximately zero probability of dementia.
Inspecting the variables across the visits for these subjects in particular may uncover
information which could prove useful in predicting change in cognitive impairment,
which is a potential avenue for future research.

In summary, spectral seriation separated the subjects into two distinct groups,
comprising, for the most part, subjects with dementia or MCI and subjects with
normal cognition. As a result, it was shown that the subjects with dementia were
more similar to each other than they were to those with normal cognition, and
vice versa. In particular, the MCI subjects tended to be situated between those
with normal cognition and dementia, forming a spectrum of cognitive impairment;

and those subjects situated in the centre of the spectrum appeared to be more
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prone to change in their cognitive status. Based on these results, it may be more
suitable to consider MCI as a mild form of dementia rather than a condition in its
own right. In addition, this analysis highlighted that the classifier can differentiate
between subjects with normal cognition and those with dementia well. However,
it is unable to distinguish between the key dementia subtypes. It also suggested
that the dementia probabilities generated by the classifier are indicative of cognitive

impairment severity.

4.1.3 Variable Importances

A benefit of using decision trees for classification is it is possible to determine the
importance of each variable for said classification, as highlighted in chapter 1. At the
outset this was an attractive feature, as it would enable the most important variables
(or features) for diagnosing dementia to be identified. In this section, exactly how the
variable importances were calculated is detailed, along with the variables which could
be considered to be the key diagnostic features for dementia. Prior to this, the five
variables that were included in the data set to test the validity of the importances
are discussed; these variables were unrelated to the classification targets.

The inclusion of variables in the data set for testing purposes was first considered
in section 2.3.1. One of the variables was already present, and it provided the
visit number (NACCVNUM); the variable was constant due to only initial visits
being utilised. The other four variables were generated and added to the data
set, specifically for testing. One of these variables (RAND_VAR) was created by
randomly sampling from a normal distribution. The remaining three were produced
by randomly permuting variables from the data set, and each of them was of a
different type. The variables were generated in this manner so they each had a
realistic distribution but lacked correlation with the classification targets. There was a
synthetic binary variable (RAND_BVAR) which was based on INSEX (co-participant’s
sex), a synthetic categorical variable (RAND_CVAR) that was a permutation of
TRAILB_PROB (reason Trail Making Test Part B not completed), and a synthetic
ordinal/continuous variable (RAND_DOCVAR) generated using CDRSUM (Clinical
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Dementia Rating (CDR) sum of boxes). These variables, in particular, were chosen as
they were free from missing values and, in the case of TRAILB_PROB and CDRSUM,
were reasonably representative of their type in terms of number of unique values.
For example, TRAILB_PROB has four categories, which was the average across all
the categorical variables. Conditionally missing values were present in two of the
three variables, but the underlying reasons for them were ignored. All five of the
variables were expected to be of negligible importance.

In the case of the dementia classifier, the variable importances quantify the
significance of the variables in the prediction of dementia or no dementia. Initially,
the importances were determined on a tree-by-tree basis, fundamentally by counting
the number of instances in which a variable X/ was used to perform a split S. The
count was weighted by the information gain resulting from the split Zg(X) and
the proportion of observations split on % when the tree t was constructed. Once
the tree-based importances had been determined for all the variables, they were
normalised to transform the absolute importances into relative scores that summed
to one for each tree, as in scikit-learn (Pedregosa et al., 2011). Essentially, this
step was performed to ensure none of the trees disproportionately influenced the
importances. The variable importances were then averaged across the ensemble T
The following equation summarises how the (unnormalised) variable importance
(VIMP) of a single variable X/ can be calculated, which is, in fact, the mean decrease

impurity (MDI) importance (Louppe et al., 2013).

VIMP(X) = Z D Ts(X)=I(S split on X7) (4.2)
t eTnet

I(-) is an indicator function, representing the count, which equals one when the
variable of interest X/ matches the variable associated with the split S for the node
1. Before the importances were inspected, they were scaled to set the score of the

most important variable to 100%.
If there are similar variables in the data set, the importance of the information
they provide may be split between them. However, it can be assumed that no

two variables are identical, meaning valuable insight could still be revealed on an
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elemental basis. It may also be possible to identify variables which are similar to
one another, enabling their respective importances to be considered in combination.
Within the NACC data set, duplicate information was minimised as much as possible;
thus, reducing the likelihood of importance being shared by variables.

Figure 4.6 presents the variable importances ascertained from the dementia
classifier. Part B, in particular, provides the importances for all 260 variables in
decreasing order, and indicates that most variables are of very little importance. As
a matter of fact, 194 of the variables have an importance score between 0% and 4%,
including the one constant and four synthetic variables discussed earlier. In particular,
the constant variable (NACCVNUM) has a score of 0%, whilst the four synthetic
variables (RAND_VAR, RAND_DOCVAR, RAND_CVAR and RAND_BVAR) have
scores of 2.26%, 2.15%, 3.51% and 3.55%. NACCVNUM, which provides the visit
number, is the only variable with exactly 0% importance, due to the fact it could not
be chosen as one of the K variables considered for splitting at an internal node as it
was constant. Interestingly, the synthetic binary variable (RAND_BVAR) appears
to be of marginally more importance than the variable it was based on, namely
that which provides the co-participant’s sex (INSEX), by 1.1%. However, it is likely
this occurred due to INSEX being of very little importance itself, as the other two
synthetic variables that were generated by random permutation seem to be of much
less importance than their highly ranked (i.e. important) counterparts.

Part A of figure 4.6 gives a closer look at the 60 most important variables for
diagnosing dementia. Abridged descriptions of the variables are provided based on
those from the researchers data dictionary (National Alzheimer’s Coordinating Center,
2017), and the bars of variables pertaining to the Clinical Dementia Rating (CDR),
Functional Activities Questionnaire (FAQ) and Mini-Mental State Examination
(MMSE) are coloured accordingly; these assessments are discussed in more detail in
the following sections. The top two variables, which indicate whether the subject was
impaired in judgment, planning or problem-solving (COGJUDG), and pertain to the
home and hobbies category of the CDR (HOMEHOBB), appear to be considerably

more important than all the others. In particular, the home and hobbies category
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A
Impaired in judgment, planning or problem-solving —

CDR - Home and hobbies ]
CDR - Community affairs ]
CDR - Orientation ]
Predominant symptom for decline in cognition
Mode of onset of cognitive symptoms
Recent difficulty with bills [ ]
Predominant domain first recognised as changed e ———

CDR sum of boxes I

|

CDR - Judgment and problem-solving 1 = CDR
CDR - Memory
Age cognitive decline began = £ FAQ
Level of independence 3 MMSE
Global CDR

Recent difficulty with shopping
Recent difficulty with travel

Clinician believes meaningful decline
Recent difficulty with taxes

Subject's cognitive status
Meaningfully impaired in memory

|
|
]
]
MMSE - Orientation subscale score - Time [ ] B
Recent difficulty keeping track of events
Recent difficulty preparing a meal
CDR - Personal care
Co-participant reports a decline in memory
Recent difficulty with stove
Recent difficulty remembering dates and medications
Overall course of decline
Meaningfully impaired in language 50
Total MMSE score
Number of story units recalled
Predominant symptom for decline in behaviour
Recent difficulty with paying attention
Trail Making Test Part B - Seconds
Number of story units recalled - Delayed
Recent difficulty playing games of skill 100
Number of animals in 60 seconds
MMSE - Orientation subscale score - Place
Reason Trail Making Test Part B not completed
Mode of onset of behavioural symptoms
Meaningful change in behaviour - Apathy, withdrawal
Digit span forward length
Number of vegetables in 60 seconds 150
Boston Naming Test (30) - Total score
Meaningfully impaired in visuospatial function
Alternating movement - Right hand
Digit span forward trials correct
Predominant symptom for decline in motor function
Mode of onset of motor symptoms
Trail Making Test Part A - Seconds 200
Meaningful change in behaviour - Irritability
Meaningfully impaired in attention or concentration
Recent apathy or indifference and severity
Finger taps - Right hand
Rigidity - Right upper extremity
Action or postural tremor - Right hand
Digit span backward trials correct 250
WAIS-R Digit Symbol
Hand movements - Right hand 0 100
Reason Trail Making Test Part A not completed

I

40 60 80 100
Variable Importance (%)

o
N
o

Figure 4.6: The 60 most important variables for diagnosing dementia according to the
dementia classifier, along with their importances (A). The importances for all 260 variables
(B) are also indicated.
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of the CDR broadly assesses whether the subject has been able to carry out chores
around the home, and if they are still engaging in hobbies and intellectual interests
(ADC Clinical Task Force and National Alzheimer’s Coordinating Center, 2014a).
These variables relate directly to the general definition of dementia, provided in
chapter 1. The remaining variables constituting the top 10 important features
concern the community affairs (COMMUN), orientation (ORIENT), and judgment
and problem-solving (JUDGMENT) categories of the CDR; the CDR sum of boxes
(CDRSUM); the predominant symptom for decline in cognition (NACCCOGF); the
mode of onset of cognitive symptoms (COGMODE); any recent difficulty with bills
(BILLS); and the predominant domain first recognised as changed (FRSTCHG). The
common themes of these variables are cognitive impairment and the subject’s ability
to engage in activities of daily living, which correspond with the fundamental aspects

clinicians consider when diagnosing dementia.

4.1.4 Performance Matching

The ADCs which contribute to the NACC data set are specialised centres. It is
unlikely that subjects could be assessed to the same degree outside of specialised
centres, such as in primary care, due to constraints on time and resources. In these
settings, prioritising data collection in accordance with the variable importances
could be beneficial. However, there is no clear indication as to what might constitute
a sufficient amount of data for a diagnosis of some substance to be made. The aim
of this additional investigative work was to identify the number of variables required
to match the performance of the dementia classifier, which utilised all 260 variables;
and deduce the subset of features which could be considered fundamental for the
diagnosis of dementia. Despite the fact the NACC UDS encompasses a wide range
of clinical and neuropsychological data, it does not include all types of data used to
diagnose dementia, for instance neuroimaging data is absent. As a result, further
research investigating the importance of these absent features is required before a
complete list of fundamental features can be proposed.

60 new classifiers were constructed in total; the first used only the most
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important variable, namely that which indicated whether the subject was impaired
in judgment, planning or problem-solving (COGJUDG). Each subsequent classifier
utilised one more variable than its predecessor, and the variables were added in
order of importance; thus, the last classifier exploited the top 60 variables, as shown
in part A of figure 4.6. No changes were made to the way in which each classifier
was built, but the training set was not imputed again to significantly reduce the
computational time. As a matter of fact, the imputed training set corresponding to
the original dementia classifier was utilised, along with the imputed test set which
was needed to ascertain classification performance. In particular, the performance of
each classifier was assessed based on a condensed version of the test set, including
only the variables used to construct the former. Also, the procedure described in
section 3.3.2 was followed. Essentially, a set of predictions was generated for every
subject, each of which were converted into an ensemble score. These scores were then
used in conjunction with the classification targets to determine the (mean) AUC and
95% confidence interval for the classifier, by employing bootstrapping with 2,000
bootstrap samples.

In figure 4.7, the AUC for each classifier is indicated by the blue line, and the
associated confidence intervals are shown by the blue shading. The AUC and 95%
confidence interval for the original classifier are also provided in red for reference.
The figure shows a clear increase in performance, which is almost monotonic, as
the number of variables increases from one to 19. The increase then becomes more
gradual from 19 to 32 variables, and even more so from 32 to 42 variables. At 42
variables the performance of the (original) classifier which uses all 260 variables is
reached; and, from this point on, the performance is approximately constant. In
order to confirm that the performance of the classifier which utilised just 42 variables
was statistically indistinguishable from that of the original classifier, one-way analysis
of variance (ANOVA) was employed with a significance level of 0.05.

As a result of these findings it can be concluded that the top 42 variables
for diagnosing dementia, according to the original dementia classifier, are able to

match the performance of all 260 variables in the data set; and it is these features
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Figure 4.7: Classification performance, as defined by the area under the receiver operating
characteristic curve (AUC) and 95% confidence interval, for an increasing number of
variables. The performance of the dementia classifier, which uses all 260 variables, is also
indicated.

that could be considered fundamental for dementia diagnosis. Despite the fact that
42 is still a reasonably large number of variables, a closer look at them suggests
there are three main assessments to prioritise, accounting for exactly half of the
variables. These assessments are the Clinical Dementia Rating (CDR), Functional
Activities Questionnaire (FAQ) and Mini-Mental State Examination (MMSE). In
figure 4.7, the point at which each of the 21 variables pertaining to either the CDR,
FAQ or MMSE was introduced is highlighted by means of coloured bars indicating
the relevant assessment. Incidentally, more variables may have been significant if
more training observations had been available, as it is possible the performance of
the original classifier would have been greater.

Figure 4.7 shows that increasing the number of variables from 19 to 42 results
in only a small gain in performance. In fact, the AUC for the classifier which utilises
just 19 variables is 0.980, whilst the AUC for the classifier that uses 42 variables is
0.987. Consequently, it could be worth considering the effort and resources required
to collect the data encapsulated in the additional 23 variables, and whether the small

gain in performance outweighs this. If just 19 variables were used, the MMSE, for
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example, would not need to be completed.

4.1.5 Assessment Exclusion

In the previous section, it was suggested that there are three main assessments
to prioritise, specifically the CDR, FAQ and MMSE. The importance of these
assessments, along with Form B9, was investigated further by systematically excluding
the sets of features brought about by the assessments (including Form B9) and
creating new dementia classifiers whose performance could be compared to that of
the original. Form B9, which explores the symptoms the subject was experiencing,
was considered as 13 of the 42 variables that could be deemed fundamental for
diagnosing dementia were associated with it. Incidentally, there were eight CDR, 10
FAQ, eight MMSE and 32 Form B9 variables.

15 new classifiers were trained and tested using the imputed training and test
sets with various combinations of features excluded. As previously, the imputed
training and test sets were used to significantly reduce the computational time.
Table 4.2 shows that the accuracy, sensitivity (true positive rate or TPR) and
specificity (true negative rate or TNR) of each classifier was ascertained, as well as
the false negative rate (FNR or 1 - sensitivity) and false positive rate (FPR or 1 -
specificity). ROC curves, which are provided in figure 4.8, were also produced and
the AUCs were calculated (table 4.2).

For ease of comparison, the statistics pertaining to the original dementia
classifier are included in table 4.2 and its ROC curve is present in figure 4.8. Overall,
there was relatively little change in performance, suggesting the vast majority of the
information encapsulated within the variables excluded could be garnered from those
that remained. In other words, the four assessments (CDR, FAQ, MMSE and Form
B9) do not seem to be irreplaceable. Nonetheless, the CDR could be considered
marginally more important than the other assessments. It may also be unwise to
overlook the CDR as the naive Bayes classifier (from section 2.6) which predicted

dementia with an accuracy of 92.25% utilised a CDR variable (CDRSUM).
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Figure 4.8: Receiver operating characteristic (ROC) curves for dementia classifiers with as-
sessments excluded, specifically the Clinical Dementia Rating (CDR), Functional Activities
Questionnaire (FAQ), Mini-Mental State Examination (MMSE) and Form B9. The ROC
curve for the original dementia classifier, which utilised all 260 variables, is also shown.

4.2 Pairwise Dementia Subtype Classifiers

In order to determine whether machine learning could discern the main subtypes of
dementia, pairwise dementia subtype classifiers were constructed. These classifiers
were trained to differentiate between two of the four key subtypes, or a key subtype
and alternative dementia diagnoses (referred to as ‘other’). Notably, the main
subtypes of dementia are Alzheimer’s disease (AD), vascular dementia (VD), dementia
with Lewy bodies (DLB) and frontotemporal dementia (FTD). This section explains
how the classifiers were constructed, along with how each of them performed. It
also indicates which features were found to be most important for the differential

diagnosis of dementia on a pair-by-pair basis and in general.

4.2.1 Construction

In order to construct the 10 pairwise dementia subtype classifiers, and assess their

performance, multiple training and test sets had to be created which comprised
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Classifier Training Set Test Set
S1 S2 S1 S2  Total S1  S2  Total

AD DLB 3595 258 3833 1819 123 1942
AD FTD 3595 568 4163 1819 288 2107
AD  Other 3595 266 3861 1819 154 1973
AD VD 3595 75 3670 1819 21 1840
DLB FTD 258 568 826 123 288 411
DLB Other 258 266 524 123 154 277
FTD Other 568 266 834 288 154 442

VD DLB 75 258 333 21 123 144
VD  FTD 75 568 643 21 288 309
VD  Other 75 266 341 21 154 175

Table 4.3: Composition of the training and test sets for the pairwise dementia subtype
classifiers. S1 and S2 are shorthand for subtype one and subtype two, which were either
Alzheimer’s disease (AD), vascular dementia (VD), dementia with Lewy bodies (DLB),
frontotemporal dementia (FTD) or ‘other’.

subjects diagnosed with only the relevant subtypes (including ‘other’). These new
training and test sets were formed using the subjects in the original training set (N =
22,801), and the imputed data was used to significantly reduce the computational
time required to build and test each classifier. In fact, the 10 new conditioned training
sets were produced from a random sample that contained two-thirds (N = 15,201)
of the subjects in the imputed training set, whilst the 10 corresponding test sets
were created using the remaining one-third (N = 7,600). Only ‘pure’ cases of the
subtypes were drawn upon, to ensure those representing each of the subtypes were
as distinct as possible. A subject was considered to have a pure diagnosis of a main
subtype if that subtype was provided as the primary diagnosis, and they had not
received a diagnosis of any of the other main subtypes. Within the original training
set there were 5,414 pure cases of AD, 96 of VD, 381 of DLB and 856 of FTD. A
subject was considered to have a pure alternative dementia diagnosis, on the other
hand, if they had been diagnosed with dementia but none of the four key subtypes;
there were 420 of these (‘other’) cases in the original training set. As the number of
cases for each subtype varied, the training and test sets created were all different
sizes. Table 4.3 provides the number of subjects in each training and test set, along

with a breakdown by subtype.
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The subtype classifiers were constructed, in the aforementioned manner, using
the 10 new conditioned training sets, along with classification targets which differen-
tiated between the subtypes. The performance of each classifier in terms of accuracy,

sensitivity and specificity, among other things, is discussed in the next section.

4.2.2 Classification Performance

The performance of each of the pairwise dementia subtype classifiers was assessed
using its conditioned training and test sets, but the former was only used to confirm
that the classifier was 100% accurate for its training set. Predictions were generated
for every subject in the set, and used to determine ensemble votes (or predicted
classes) and scores, as was customary. The latter, in this case, were estimates of the
probability that the subject had dementia subtype one. The accuracy, sensitivity
(true positive rate or TPR) and specificity (true negative rate or TNR) were then
calculated, by comparing the predicted and true classes; and an ROC curve was
produced, using the ensemble scores and true classes, which enabled the AUC to
be computed. The sensitivity, in this context, was the proportion of subjects with
subtype one that were correctly classified, so the specificity was the proportion of
subjects with subtype two who were classified as such. As noted in section 4.1.1,
the true classes may be subject to error; thus, this should be kept in mind when
considering the results.

Table 4.4 presents the accuracy, sensitivity and specificity of each pairwise
dementia subtype classifier for its test set, along with the AUC. The number of
subjects correctly classified in total, as well as for subtypes one and two (S1 & S2),
are also provided. All the accuracies are above 90%, except for the FTD v Other
classifier which has an accuracy of 80.77%. The sensitivities are also all relatively
high. In fact, the minimum is 0.81, and three of the classifiers have a sensitivity of
1.0 (rounded to two decimal places). The specificities, on the other hand, are much
more varied, ranging from 0.38 to 1.0 (again, rounded to two decimal places). When
the sensitivities and specificities are considered together, there appears to be some

bias towards subtype one for the four AD classifiers, as well as for the FTD v Other
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Classifier Accuracy Sensitivity — Specificity ATC
S1 S2 % (no.) TPR (no.) TNR (no.)

AD DLB  97.37 (1891) 1.00 (1814) 0.63 ( 77) 0.98
AD FTD  95.25(2007) 0.99 (1805) 0.70 (202) 0.98
AD  Other  94.98 (1874) 1.00 (1815) 0.38 ( 59) 0.88
AD VD 99.40 (1829) 1.00 (1816) 0.62 ( 13) 0.94
DLB FTD  94.89 ( 390) 0.88 ( 108) 0.98 (282) 0.98
DLB Other  90.25 ( 250) 0.88 ( 108) 0.92 (142) 0.95
FTD Other  80.77 ( 357) 0.93 ( 269) 0.57 ( 83) 0.88
VD DLB 9583 ( 138) 0.86( 18) 0.8 (120) 0.9
VD FTD  98.38(304) 0.81( 17) 1.00(287) 1.00
VD  Other  96.00 ( 168) 0.81 ( 17) 0.98 (151) 0.98

Table 4.4: Classification performance of the pairwise dementia subtype classifiers. S1
and S2 are shorthand for subtype one and subtype two, which were either Alzheimer’s
disease (AD), vascular dementia (VD), dementia with Lewy bodies (DLB), frontotemporal
dementia (FTD) or ‘other’. Performance was measured in terms of the accuracy, sensitivity
(true positive rate or TPR) and specificity (true negative rate or TNR) of the classifier,
and the area under the receiver operating characteristic curve (AUC).

classifier. It is possible that this occurred, for the AD classifiers in particular, due to
an imbalance of the classes in the conditioned data sets. The performance of these
classifiers for subtype two could potentially be improved, however, by adjusting the
classification threshold. The threshold was 0.5, by default, as the predicted classes
were decided by majority vote across the ensemble. The AUC is independent of the
classification threshold, as it indicates the average performance of the classifier, so
it could be considered a more reliable measure of performance. All the AUCs are
very high, and only two classifiers have an AUC below 0.94. In particular, these
two classifiers have an AUC of 0.88, have the lowest specificities, and compare a key
dementia subtype (AD or FTD) to the set of alternative diagnoses (Other). It is
not surprising that the classifiers with the worst performance, in terms of the AUC,
attempt to distinguish between a main subtype and ‘other’; as the latter includes
subjects with a variety of dementia diagnoses instead of a single subtype, making its
subjects harder to classify.

Figure 4.9 shows the ROC curves for the 10 pairwise dementia subtype classifiers.
It reiterates that the AD v Other (dark green) and FTD v Other (pink) classifiers are

the poorest performers. It also highlights that the VD v FTD classifier (light green)
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Figure 4.9: Receiver operating characteristic (ROC) curves for the pairwise dementia
subtype classifiers.

is the best, although it did not achieve perfect classification as its AUC (rounded
to two decimal places) in table 4.4 suggests. Nevertheless, the ROC curves all pass
reasonably close to point (0, 1) in the top left corner of the graph, and indicate that
the trade-off between sensitivity and specificity could most likely be improved for at
least some of the classifiers. Overall, the pairwise dementia subtype classifiers are
able to perform well, suggesting that machine learning could be used to differentiate

between the key dementia subtypes.

4.2.3 Variable Importances

In order to identify the key features for the differential diagnosis of dementia, the
importance of every variable was determined for each of the pairwise dementia
subtype classifiers in turn, following the procedure outlined in section 4.1.3. This
resulted in 10 sets of rankings, each of which denoted the order of the variables in
terms of decreasing importance.

Table 4.5 provides the top five variables, in the form of abridged descriptions,
for each pairwise dementia subtype classifier, which could be considered the key

features for differentiating between the two specified subtypes (including ‘other’). A
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number of variables appear to be associated with a particular subtype, such as the
variable that indicates whether the subject currently manifests meaningful change
in behaviour in the form of visual hallucinations (BEVHALL). This variable, in
particular, is in the top five for three of the four DLB classifiers. Another example
is the variable which specifies whether the subject currently manifests meaningful
change in behaviour with respect to disinhibition (BEDISIN). It is also featured
in the top five for three classifiers, but they were trained using FTD diagnoses. In
addition, it seems the most important variables for the VD and DLB classifiers have
a common theme, specifically stroke and Parkinson’s disease (and other parkinsonian
disorder) respectively. It should be noted, however, that combining subjects with a
diagnosis of stroke and VD, and those with Parkinson’s disease and DLB, (section 2.4)
could have potentially inflated the importance of the variables associated with these
themes. Nevertheless, it is extremely reassuring that the features and themes linked
to specific subtypes generally reflect the current diagnostic criteria.

Figure 4.10 presents the complete set of variable importances for each pairwise
dementia subtype classifier. The plots highlight the rate at which importance declines,
as the variables have been arranged according to the rankings. In fact, it can be
ascertained that importance decreases very quickly for the VD classifiers and relatively
slowly for the ‘other’ classifiers (excluding VD v Other). The latter is unsurprising
as the ‘other’ subjects had not been assigned a specific subtype diagnosis, so the
defining features of these subjects were likely to be much more varied. The FTD v
Other classifier, in particular, has the slowest decline, and the variables low in the
rankings appear to still be of some importance. This could partly explain why the
FTD v Other classifier was one of the poorest performers, and it may suggest that
many of the diagnoses designated as ‘other’ exhibited similar symptoms to FTD.

To determine the key features for the differential diagnosis of dementia in more
general terms, the 10 sets of variable importances were summed and then scaled so
the most important variable had an importance of 100%. The resultant importances
are referred to as the differential importances. Figure 4.11 shows the 60 most import-

ant variables for differential diagnosis, according to these differential importances.
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History of stroke 1.
Years from last stroke 3.
Stroke 1.

Meaningful change in behaviour - Visual hallucinations 1

Hachinski ischemic score 2

Parkinson's disease 1
Years from Parkinson's disease diagnosis 2.13
Predominant symptom for decline in cognition 54.67
Years from parkinsonian disorder diagnosis 2.50
Predominant domain first recognised as changed 49.17
Other parkinsonian disorder 1.76
Mode of onset of motor symptoms 6.55
Meaningfully impaired in memory 27.28
Gait disorder indicative of CNS disorder 1.60
Abrupt onset (cognitive status) 2.28
Mode of onset of cognitive symptoms 54.10
Eye movement abnormalities indicative of CNS disorder 1.75
Meaningful change in behaviour - Disinhibition 3.22
Focal neurological signs 1.87
Stepwise deterioration (cognitive status) 1.70
Meaningful change in behaviour - Personality change 4.54
Meaningful changes in motor function - Slowness  4.00
Current use of an antiparkinson agent 1.77

Focal neurological symptoms 1.93

Overall course of decline 18.07

Predominant symptom for decline in motor function 6.55
Subject's age at visit 2.38

Years from last transient ischemic attack  3.11
Meaningful changes in motor function - Gait disorder 2.40
Predominant symptom for decline in behaviour 15.82
Months from subject's birth 2.57

Age cognitive decline began 37.74

Facial expression 2.15

Focal deficits indicative of CNS disorder 1.65

Mode of onset of behavioural symptoms 9.67

Gait 1.94

Transient ischemic attack 1.38

Co-participant reports a decline in memory 18.68

All physical/neurological exam findings unremarkable 1.71
Arising from chair 1.93

Posture stability 2.54

Speech 4.35

Recent hallucinations and severity 3.02

Meaningfully impaired in language 17.75

Finger taps - Right hand 5.26

Leg agility - Leftleg  2.02

Number of story units recalled - Delayed 13.52

Leg agility - Right leg  1.88

Meaningfully impaired in visuospatial function 7.32

Time elapsed since immediate story unit recall 3.63

Hand movements - Left hand 2.34

Posture 1.79

Hand movements - Right hand 4.57

Body bradykinesia and hypokinesia 1.55

Recent disinhibition and severity 2.76

Age subject quit smoking 4.39

Meaningful changes in motor function - Falls  4.12

Finger taps - Left hand 2.39

Alternating movement - Left hand 2.00

Meaningful changes in motor function - Tremor 1.29

4
2
4
1
3
1

0o WWwo

AD v DLB
AD v FTD
AD v Other
AD v VD

DLB v FTD
DLB v Other
FTD v Other

VD v DLB
VD v FTD
VD v Other

[e5}
o

Variable Importance (%)

100

Figure 4.11: The 60 most important variables for the differential diagnosis of dementia
according to the pairwise dementia subtype classifiers, along with their importances. The
importance of each variable for diagnosing dementia, according to the dementia classifier,

is also provided (to the right of the variable’s description).



Similarly to figure 4.6, abridged descriptions of the variables are provided based
on those from the researchers data dictionary (National Alzheimer’s Coordinating
Center, 2017). The multi-coloured bars indicate the differential importance of each
variable; and every colour corresponds to a single pairwise dementia subtype classifier,
showing its contribution.

The top three variables, which provide the subject’s stroke history (HX-
STROKE, CBSTROKE) and the number of years since their last stroke, if applicable
(NACCSTYR_#YRS), seem to be considerably more important than all the others.
Incidentally, the two variables pertaining to stroke history record the information in
different ways. HXSTROKE, which is the most important, simply indicates whether
the subject has previously had a stroke; this information was used to calculate the
Hachinski ischemic score. CBSTROKE, on the other hand, goes into more detail and
specifies whether the subject has had a clinical or silent stroke. As both variables
are ranked very highly, it appears that their importance was not severely affected by
their similarity. The rankings of the two variables could also suggest that a simple
indication of stroke is the most valuable way to record this information. Interestingly,
figure 4.11 shows that the top three variables almost exclusively got their importance
from the VD classifiers. Likewise, those ranked fourth, sixth and seventh acquired
almost all of their importance from the DLB classifiers. These three variables indicate
whether the subject is having visual hallucinations (BEVHALL); has been diagnosed
with Parkinson’s disease (PD); and the number of years since the Parkinson’s disease
diagnosis, if applicable (PDYR_#YRS). The close connections apparent between
these variables and subtypes echo the analysis of table 4.5.

The remaining variables comprising the top 10 important features for the differ-
ential diagnosis of dementia concern the Hachinski ischemic score (HACHIN); the pre-
dominant symptom for decline in cognition (NACCCOGF); the number of years since
the subject’s parkinsonian disorder diagnosis, if applicable (PDOTHRYR_#YRS);
and the predominant domain first recognised as changed (FRSTCHG). NACCCOGF
and FRSTCHG are the only variables also included in the top 10 features for diagnos-

ing dementia, indicating a clear difference in the key features for diagnosing dementia
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and differentiating between the subtypes. This is emphasised by the variable im-
portances inferred using the dementia classifier (diagnostic importances) which are
provided in figure 4.11 to the right of the variable descriptions. They also show that
the vast majority of the variables which are important for both types of diagnosis
pertain to cognition and, more generally, the nature of any changes the subject is
experiencing. Furthermore, figure 4.12 has been included to demonstrate that the
most important variables for diagnosing dementia and differentiating between the
subtypes are different. In particular, it shows the differential importances for all 260
variables ordered according to their diagnostic importances.

Table B.1 also highlights the differences in diagnostic and differential import-
ance. In addition, it indicates that most variables are of very little importance
for differentiating between dementia subtypes, including the one constant and four

synthetic variables discussed in section 4.1.3, as they were for diagnosing dementia.

4.3 Stacking Classifier

To determine whether the performance of the original dementia classifier could be
improved upon (i.e. if more accurate diagnoses could be made), a stacking classifier
was constructed to differentiate between subjects with and without dementia. Notably,
a stacking classifier is a meta-classifier which, fundamentally, is trained using the
outputs of a number of other classifiers. This section explains how the new classifier
was built and details its performance. Two additional classifiers, one of which was

constructed to aid in the analysis of the stacking classifier, are also discussed.

4.3.1 Construction

As shown in figure 4.13, the outputs of five classifiers, labelled C_5, were used to
train the stacking classifier SC. These Lg (level zero) classifiers had been trained to
differentiate between a key dementia subtype (or ‘other’) and diagnoses indicating
no dementia, in the same manner as the pairwise dementia subtype classifiers. Each

classifier required their own unique training set, comprising subjects with a diagnosis
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AD v DLB
AD v FTD
AD v Other
AD v VD
DLB v FTD
DLB v Other
FTD v Other
VD v DLB
VD v FTD
VD v Other

: |l l!
!II‘

40 60 80 100
Variable Importance (%)

Figure 4.12: Differential importances for all 260 variables ordered according to their
diagnostic importances. The most important variable for diagnosing dementia is at the top.
The names of the variables are provided, but they are only readable if the plot is viewed
electronically. Table B.1, however, provides the variable names in the same order.
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AD

VD@\

DLB > Dementia
Other
Ly Ly
(70%) (30%)
Original Training Set Original Test Set
A A
| 1 \
® ® NACC Data
l 1 | )
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L, Training Sets L, Test Set L, Test Set
(2/3) (1/3)

Figure 4.13: A simple diagram of the stacking classifier SC', showing that it was trained
using the outputs of five subtype classifiers C1_5. Lo (level zero) and L; (level one) indicate
the stage in the stacking process. A supplementary diagram, which provides an overview of
how the NACC data was broken down into various training and test sets, is also provided.

of the subtype in question (including ‘other’) or without dementia, as well as a set
of classification targets which, essentially, distinguished between cases of dementia
and no dementia. The training sets were generated as described in section 4.2.1,
by identifying the relevant subjects from two-thirds of the original training set
(N =15,201) in its imputed state. The same random sample (two-thirds) of subjects
was used but primary cases of each subtype, namely the cases in which the subtype
was the primary cause of the subject’s cognitive impairment (i.e. dementia), were
extracted instead of pure cases. Primary cases were utilised as these subtype classifiers
were not being trained to differentiate between two subtypes, so mixed presentations
were not an issue; this also meant more data could be used. Within the original
training set there were 6,226 primary cases of AD, 161 of VD, 507 of DLB and
1,014 of FTD. There were also 592 of ‘other’, more specifically the cases in which a

subject had been diagnosed with dementia but the primary cause of their cognitive
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Training Set Test Set
DS ND Total DS ND Total

AD () 4141 9547 13688 2085 4754 6839
VD (Cg) 123 9547 9670 38 4754 4792
DLB (03) 340 9547 9887 167 4754 4921
(Cy)
(Cs)

Ly Classifier

FTD 676 9547 10223 338 4754 5092
Other 3749547 9921 218 4754 4972

Table 4.6: Composition of the training (and test) sets for the Lo (or subtype) classifiers. DS
and ND are shorthand for dementia subtype and no dementia respectively. The subtypes
considered were Alzheimer’s disease (AD), vascular dementia (VD), dementia with Lewy
bodies (DLB), frontotemporal dementia (FTD) and ‘other’. The test sets described were
only generated to ascertain how the classifiers performed in their own right.

impairment was not one of the four main subtypes.

Table 4.6 indicates the number of subjects in each of the five training sets, as
well as those with a dementia subtype diagnosis (DS) and without dementia (ND).
In addition, the table details five conditioned test sets, which were generated from
the remaining one-third of the original training set (N = 7,600). These test sets
were only created to determine how each of the subtype (L) classifiers performed in
their own right, and were not pertinent to the construction of the stacking classifier.
The individual performance of these classifiers is commented on in the next section.

Before the stacking or L; (level one) classifier could be constructed, the subtype
classifiers each had to be employed for subjects comprised within a single test set.
As indicated in figure 4.13, the Ly test set amounted to the remaining one-third
of the original training set. Of the 7,600 subjects, 2,846 had been diagnosed with
dementia and 4,754 had not. The resultant sets of predictions (or outputs), which
were converted into dementia probabilities and compiled into a data set, were used to
train the stacking classifier in the usual way. As the Ly classifiers had been tailored
to different dementia subtypes, the dementia probabilities varied for the classifiers.

To enable the stacking classifier and original dementia classifier to be compared,
a new version of the latter was built using the L test set. A third classifier was
also constructed with the purpose of differentiating between subjects with and
without dementia. This classifier was trained using the Lj test set and the dementia

probabilities from the L classifiers, to determine whether utilising the two sets of
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Accuracy Sensitivity  Specificity

Classifier % (no.) TPR (no.) TNR (no.)

FNR (no.) FPR (no.) AUC

Dementia 93.97 (9183) 0.92 (3363) 0.95 (5820) 0.08 (273) 0.05 (316)  0.99
Stacking  93.50 (9137) 0.92 (3349) 0.94 (5788) 0.08 (287) 0.06 (348) 0.98
Hybrid ~ 94.12 (9197) 0.93 (3369) 0.95 (5828) 0.07 (267) 0.05 (308)  0.99

Table 4.7: Classification performance of the stacking and hybrid classifiers. The performance
of the newly generated dementia classifier, which was trained with a subset of the subjects
used for the original, is also detailed. Performance was measured in terms of the accuracy,
sensitivity (true positive rate or TPR), specificity (true negative rate or TNR), false
negative rate (FNR) and false positive rate (FPR) of the classifier, and the area under the
receiver operating characteristic curve (AUC).

information in conjunction with one another could improve classification performance.
As the classifier made use of the inputs to both the stacking classifier and the newly
generated dementia classifier, it is referred to as the hybrid classifier. Analysis of the
three classifiers’ performance for the original test set (N = 9,772) is provided in the

following section.

4.3.2 Classification Performance

As indicated in section 4.3.1, the stacking and hybrid classifiers, along with the newly
generated dementia classifier, were assessed using the original test set (N = 9, 772)
in its imputed state. Of the 9,772 subjects, 3,636 had received a dementia diagnosis
and 6,136 had not. Sets of predictions were easily ascertained from the dementia
classifier, by simply passing the observations through each tree in the ensemble, but a
precursory step was required for the stacking and hybrid classifiers. In particular, the
observations had to be classified using the subtype (Lg) classifiers, so that dementia
probabilities (or ensemble scores) could be generated to serve as input. Once sets of
predictions had been obtained from each of the three classifiers, the ensemble votes
(predicted classes) and scores could be determined. The predicted classes were used,
along with the true classes, to calculate the accuracy, sensitivity, specificity, FNR
(1 - sensitivity) and FPR (1 - specificity) of the classifiers (table 4.7). ROC curves
were also produced (figure 4.14) using the ensemble scores and true classes, and their

AUCs were computed (table 4.7).
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Table 4.7 shows the new dementia classifier’s performance is consistent with
that of the original. To reiterate, the original dementia classifier had an accuracy
of 94.21%, a sensitivity of 0.93, a specificity of 0.95, a FNR of 0.07, a FPR of 0.05
and an AUC of 0.99. The table also indicates that the stacking and hybrid classifiers
perform very well; and suggests all three classifiers have comparable performance,
which the ROC curves in figure 4.14 confirm. As a result, the stacking and hybrid
classifiers fail to improve upon the performance of the dementia classifier.

It was stated in section 4.3.1 that conditioned test sets were created to assess
the individual performance of the subtype (Lg) classifiers. Figure 4.15 presents the
ROC curves generated. In particular, it shows that all five of the classifiers are able
to perform well, although it highlights that the Other classifier (purple) is the worst

performer. This is unsurprising due to the varied nature of the ‘other’ subjects.

4.4 Discussion

The purpose of this section is to put the work recounted over the course of this
chapter into context. It does so by providing a relatively concise discussion of related
work, focusing on the intersection of machine learning and dementia literature. It
also briefly explores the clinical implications of the findings, which were identified, in

part, by my clinical supervisors.

4.4.1 Related Work

Machine learning has been employed for a wide range of medical applications.
Whilst reviewing the dementia literature it became apparent that machine learning
has predominantly been utilised in conjunction with neuroimaging, largely for the
purposes of diagnosing Alzheimer’s disease. Pellegrini et al. (2018), along with Ahmed
et al. (2019), provide a comprehensive review of machine learning approaches which
make use of neuroimaging. Support vector machines are the most commonly used
classifiers, as highlighted by Sgrensen, Nielsen and Alzheimer’s Disease Neuroimaging
Initiative (2018), but ensembles of classifiers and random forests are becoming more

popular; this is emphasised by the work of Sarica, Cerasa and Quattrone (2017).
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Figure 4.14: Receiver operating characteristic (ROC) curves for the stacking and hybrid
classifiers. The ROC curve for the newly generated dementia classifier is also shown.
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Figure 4.15: Receiver operating characteristic (ROC) curves for the Ly (subtype) classifiers.
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Pellegrini et al. (2018) highlight the need to diversify the data used. Jammeh
et al. (2018) did just that by utilising primary care clinical data routinely collected
over the course of two years at GP (general practitioner) surgeries in Devon. The
aim of their study was to develop a tool which could identify people that may have
dementia who had not received a formal diagnosis. In particular, 3,063 patients, all
above the age of 65, were used to develop a naive Bayes classifier to differentiate
between patients with and without dementia. Of the 3,063 patients, 850 were thought
to have dementia and 2,213 were deemed healthy (or cognitively normal). As all
the variables were binary and simply highlighted the patients for which a specific
risk factor, symptom or behaviour had been noted, there was no missing data. A
combination of manual and automated feature selection was employed, prior to the
construction of the classifier, in order to identify the subset of variables considered to
be indicative of dementia. Notably, the variables used to identify patients with and
without dementia were not included. 10-fold cross-validation was used to assess the
performance of the classifier; and it achieved an accuracy of 86.06%, a sensitivity of
0.84, a specificity of 0.87 and an AUC of 0.87. The dementia classifier (section 4.1),
in comparison, had an accuracy of 94.21%, a sensitivity of 0.93, a specificity of 0.95
and an AUC of 0.99.

Research with the aim of differentiating between subtypes of dementia using
machine learning has been limited to date, but Jarrold et al. (2014) and Dauwan et al.
(2016) have conducted work of this nature. In fact, Dauwan et al. (2016) utilised
a random forest to differentiate between dementia with Lewy bodies (DLB) and
Alzheimer’s disease (AD). The classifier, which was built using the Random Forests
algorithm (section 1.3.2) and consisted of 500 trees, was developed with 66 DLB and
66 AD patients from the Amsterdam Dementia Cohort (van der Flier et al., 2014).
In particular, features were manually selected according to their availability, as well
as their presence in the diagnostic criteria of the subtypes. 61 features of continuous
and categorical type were used, which encapsulated electroencephalography (EEG)
(47 features), clinical (2 features) and neuropsychological (5 features) data, along

with information regarding neuroimaging and cerebrospinal fluid (CSF) biomarkers
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(7 features). Missing data was dealt with by discarding the features which had greater
than (or equal to) 33% of its values missing, and any remaining missing values were
imputed with the average for the corresponding feature. The authors note it can be
difficult to determine a meaningful average for a categorical feature. The resultant
classifier had an accuracy of 87%, a sensitivity of 0.88 and a specificity of 0.86.
Interestingly, a classifier was also developed using the clinical and neuropsychological
data alone; it achieved an accuracy of 66%, a sensitivity of 0.65 and a specificity of
0.67. The latter classifier is more comparable to the AD v DLB pairwise dementia
subtype classifier (section 4.2), which had an accuracy of 97%, a sensitivity of 1.00
and a specificity of 0.63.

Sarica, Cerasa and Quattrone (2017), along with Dauwan et al. (2016), discuss
the fact that variable importances can be ascertained using random forests. They
also highlight their significance for the domain, particularly in identifying features
that are important for diagnosis. In fact, Dauwan et al. (2016) specifically highlight
the importance of EEG features for differentiating between DLB and AD. EEG data,
however, is not routinely collected in clinical practice for the purposes of diagnosing
dementia. Furthermore, a modest amount of work has been carried out with the
intention of identifying a small number of features that could be used to diagnose
cognitive impairment to varying degrees. The work of Weakley et al. (2015) and
Chiu et al. (2019) serve as examples, but neither of the studies made use of a large
number of variables or random forests.

Machine learning has also been used to predict the prognosis of dementia
or, in simpler terms, the likelihood that someone will develop dementia. Dallora
et al. (2017) present a detailed review of machine learning approaches tailored for
this purpose, highlighting that, once again, a significant proportion of research has
focused on neuroimaging and Alzheimer’s disease. Ritchie and Tuokko (2011) and
Maroco et al. (2011) describe studies which predominantly aimed to predict the
incidence of dementia using clinical and neuropsychological data, or just the latter.
Maroco et al. (2011), in particular, conducted a comparison of a range of techniques

and found that random forests, along with linear discriminant analysis, was the most
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successful approach. Additionally, a study which utilised data from the NACC UDS
in order to predict the incidence of mild cognitive impairment (MCI) is presented by

Lin et al. (2018).

4.4.2 Clinical Implications

The findings presented over the course of this chapter have the potential to transform
the way in which dementia is diagnosed. This is due to the lack of clarity in
the prevailing diagnostic criteria, notably important assessments that facilitate
an accurate diagnosis are absent; and the fact that it is currently difficult and
time consuming to diagnose dementia reliably. The key features, which have been
identified for the purposes of diagnosing dementia and differentiating between the
main subtypes, could prove useful in redesigning and streamlining routine clinical
practice, particularly in specialised centres; thus, reducing the time required to make
a diagnosis, along with the associated costs. They may also help to reduce the
variability in the diagnosis of dementia, as well as to improve the quality of diagnoses.
In addition, there is the potential to further enhance clinical practice with a diagnostic
aid, developed from the various classifiers constructed. It would, however, require
appropriate validation (in a clinical trial, for example) and regulatory approval.
The research conducted is valuable, partly due to the size of the data set utilised,
in terms of both subjects and features. It is also advantageous that the subjects
were assessed at a number of different specialised centres, the features encompassed
a wide range of clinical and neuropsychological data, and missingness was handled
in what could be considered a robust manner. Nevertheless, there are inevitably
limitations to the study. In fact, the degree to which the findings are applicable
to other settings, such as low- and middle-income countries and less specialised
diagnostic environments, is unknown. However, it may be possible to draw on what
has been learnt via transfer learning (Pan and Yang, 2010). Furthermore, the true
accuracy of each classifier could be marginally different to the accuracy provided here,
as the diagnoses in the NACC UDS may have been subject to error. The classifiers

also work under the assumption that the criteria used to make these diagnoses
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accurately reflect the nature of dementia and its subtypes, which is investigated to
some extent in the following chapter.

In addition to the avenues for future research suggested earlier in the chapter,
such as predicting change in cognitive impairment, there are two others to mention.
Firstly, it could be informative to investigate the effects of varying the amount of
training observations, particularly on accuracy and the number of important features,
not only for the dementia classifier but also the pairwise dementia subtype classifiers.
It is probable that more subjects diagnosed with certain subtypes, including ‘other’,
would be useful. Secondly, it may be beneficial to look into multi-label classifiers,
which can associate an observation with more than one class (Tsoumakas and Katakis,
2007), for those subjects diagnosed with more than one dementia subtype (i.e. mixed

dementia (National Institute on Aging, 2017)).

4.5 Summary

A dementia classifier was built using 22,801 subjects from the NACC UDS,; specifically
to identify people with and without dementia; it was subsequently tested using 9,772
subjects, also from the NACC UDS. For this test set, the classifier achieved an
accuracy of 94.21%, a sensitivity of 0.93 and a specificity of 0.95. Moreover, the area
under the receiver operating characteristic curve (AUC) was 0.99. In short, these
results suggest that machine learning could be a useful tool for diagnosing dementia.

Using the proximity (similarity) matrix generated in accordance with the
dementia classifier, spectral seriation was employed to gain an understanding of the
subjects in terms of their similarity. It arranged similar subjects together and two
distinct groups were formed. On the whole, these groups separated the subjects with
dementia or mild cognitive impairment (MCI) from those with normal cognition,
indicating that the subjects with dementia were more similar to each other than they
were to those with normal cognition, and vice versa. In particular, the MCI subjects
tended to be situated between those with normal cognition and dementia, meaning
that all the subjects had essentially been arranged to form a spectrum of cognitive

impairment. Based on these results, it may be more suitable to consider MCI as a
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mild form of dementia rather than a condition in its own right.

The importance of each variable was inferred using the dementia classifier, to
enable the key features for diagnosing dementia to be identified. The vast majority of
the variables were of very little importance, but those found to be highly important
were clinically relevant. The top two variables, in particular, indicated whether the
subject was impaired in judgment, planning or problem-solving; and pertained to
the home and hobbies category of the Clinical Dementia Rating (CDR).

An investigation was carried out to determine the number of variables required
to match the performance of the dementia classifier, which used all 260 variables,
taking their importance into account. Ultimately, the 42 most important variables
were needed; and exactly half of them provided information concerning either the
CDR, Functional Activities Questionnaire (FAQ) or Mini-Mental State Examination
(MMSE). It is these 42 features that could be considered fundamental for the diagnosis
of dementia, although just 19 may be sufficient if the small drop in performance is
deemed inconsequential when the effort and resources required to collect the data
encapsulated in the additional 23 variables are taken into account.

The importance of the CDR, FAQ and MMSE, as well as Form B9, was invest-
igated further. Interestingly, the four assessments do not seem to be irreplaceable.
Nonetheless, the CDR could be considered marginally more important than the other
assessments and it may be unwise to overlook it.

In addition to the dementia classifier, 10 pairwise dementia subtype classifiers
were constructed. They were trained to differentiate between two of the four key
subtypes, or a key subtype and alternative dementia diagnoses (‘other’), using
subjects with pure cases of the relevant subtypes (including ‘other’); these subjects
were selected from two-thirds of the 22,801 previously utilised. Each classifier was
subsequently tested using subjects from the remaining one-third, and the accuracies
ranged from 80.77% (FTD v Other) to 99.40% (AD v VD). The sensitivities (subtype
one) and specificities (subtype two) were also determined, and they ranged from
0.81 (VD v FTD and VD v Other) to 1.0 (AD v DLB, AD v Other and AD v VD)
and 0.38 (AD v Other) to 1.0 (VD v FTD) respectively. Close inspection of the
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sensitivities and specificities indicated there was some bias towards subtype one for
a number of the classifiers, possibly resulting from class imbalance, but adjusting
the classification thresholds could potentially improve performance. Incidentally,
additional sets of subjects would be required to determine the optimal thresholds.
Nonetheless, each classifier had a very high AUC, which could be considered a more
reliable measure of performance. In fact, the AUCs ranged from 0.88 (AD v Other
and FTD v Other) to 1.0 (VD v FTD), indicating machine learning could be used to
differentiate between the key dementia subtypes.

Variable importances were ascertained for each pairwise dementia subtype
classifier, and subsequently combined, to enable the key features for differentiating
between the main subtypes of dementia to be identified. Most of the variables were
of very little importance, once again, but those found to be highly important for
specific subtypes generally corresponded with the current diagnostic criteria. The
top three variables provided the subject’s stroke history, along with the number of
years since the subject’s last stroke, if applicable; and almost exclusively acquired
their importance from the VD (vascular dementia) classifiers. Interestingly, only two
of the top 10 variables also featured in the top 10 for diagnosing dementia, indicating
a clear difference between the important features for the two types of diagnosis.

Two additional classifiers were developed to determine whether the performance
of the dementia classifier could be improved upon. The first was a stacking classifier,
which was trained using the outputs of five other classifiers. These five classifiers
were built to differentiate between a key dementia subtype (or ‘other’) and diagnoses
indicating no dementia, specifically using primary cases of the subtypes. The second
classifier was regarded as a hybrid classifier, as it was trained using the outputs of the
same five classifiers, along with all 260 original features. Both of the classifiers were
tested with the 9,772 subjects used to test the dementia classifier, and were found to
perform very well. However, the performance of all the classifiers was comparable,
meaning no improvement was made on the dementia classifier’s performance.

On review of the dementia literature, it became apparent that machine learning

has primarily been used with neuroimaging, mainly to diagnose Alzheimer’s disease.
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Support vector machines are typically employed, but ensembles of classifiers and
random forests are gaining popularity. Even the benefit of being able to determine
variable importances from a random forest has been noted by a modest number in
the field. Researchers are aware of the need to diversify the data used, along with
the applications; and work has been done on diagnosing dementia, in more general
terms, and differentiating between subtypes. Nevertheless, very few studies could be
considered comparable with the research that has been described.

In summary, these findings have the potential to transform the way in which
dementia is diagnosed, despite there being limitations to the study. The key features
identified, for both diagnosing dementia and differentiating between the main sub-
types, could prove useful in redesigning and streamlining routine clinical practice.
They may also help to improve dementia diagnosis, in more general terms, if the
diagnostic criteria were updated accordingly. Furthermore, there is the potential to

develop a diagnostic aid from the classifiers constructed.
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Chapter 5

Clustering Mixed Data with

Isolation Forests

In chapter 1 it was explained that one of the primary aims of the research was to
gain an understanding of the inherent structure of dementia data, to ultimately
investigate disease signatures (Stemmer et al., 2019). Clustering, which groups
similar observations (or subjects) together in an unsupervised manner (i.e. without
reference to any associated labels) to form clusters, was employed for this purpose.
Notably, observations comprising a cluster are deemed to be similar to one another
and dissimilar to those in other clusters. As Xu and Wunsch (2009) and Saxena et al.
(2017) highlight, there are many different clustering methods which can broadly be
categorised as hierarchical or partitional. Hierarchical methods group observations
in one of two ways, either the complete set of observations is regarded as a cluster
which is recursively partitioned (divisive hierarchical clustering) or each observation
is considered as a cluster, all of which are merged into larger and larger clusters
(agglomerative hierarchical clustering). Partitional methods, however, directly divide
the observations into a number of clusters; it is this type of clustering that was used.

Regardless of the type of clustering employed, most algorithms make use of a
proximity measure between observations, specifically a distance or similarity measure
in this context (Xu and Wunsch, 2009). As indicated throughout the thesis, the data
obtained from the National Alzheimer’s Coordinating Center (NACC) contained

variables (or features) of continuous, categorical, ordinal and binary type. Notably,

139



the latter two can be classed as categorical. Ahmad and Khan (2019) explain that
clustering mixed data is challenging, primarily due to it being difficult to measure
distance or similarity for variables with values that have no inherent order, and
ensure measures for different variables are compatible and meaningful. Ultimately,
an approach was developed that measures proximity by means of an isolation forest,
essentially an ensemble of (unsupervised) decision trees that isolate each unique
observation; thus, it can naturally draw on variables of mixed type. More specifically,
proximity is based on the similarity of the paths taken by observations through each
of the trees in an isolation forest. Despite the fact the approach was applied to
NACC data, it is initially discussed without regard to it, following a brief discussion
of related work predominantly on clustering categorical and mixed data. It was also
tested on a variety of alternative data sets, for which results are provided later in

the chapter, along with those for the NACC data.

5.1 Related Work

As James et al. (2017) explain, K-means clustering is probably one of the most
well-known clustering methods. The algorithm was proposed by both Lloyd (1982)
and Forgy (1965), and it is partitional in nature. In short, this simple method
looks to minimise the variation within each cluster, of which there are K; and uses
centroids to represent the clusters in order to do so. Notably, each centroid is the set
of mean feature values for the observations in its cluster, and the clusters can be
initialised by randomly assigning observations to them. After initialising the clusters
and computing the centroids, two steps are iteratively performed until the clusters
stabilise. Firstly, each observation is reassigned to the cluster with the closest centroid,
which is typically identified using the (squared) Euclidean distance. Secondly, the
centroids are updated to reflect the new cluster assignments. James et al. (2017)
highlight that K-means finds a locally optimal clustering; thus, it is important to
repeat the process a number of times with different cluster initialisations.

K-means clustering is unsuitable for categorical data, as Huang (1998) points

out. However, Huang (1998) and Chaturvedi, Green and Carroll (2001) independently
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repurposed K-means for categorical data, ultimately creating K-modes. Although
the two K-modes algorithms differ, Huang and Ng (2003) show that they are
equivalent. Huang (1998), specifically, substituted the mode for the mean, as well as
the Hamming distance for the squared Euclidean distance, which could be considered
an over-simplistic measure (Ahmad and Khan, 2019). In addition to K-modes,
Huang (1998) proposed K-prototypes for clustering mixed data, which is essentially
an amalgamation of K-means and K-modes.

A variety of alternative algorithms have been devised for the purposes of
clustering categorical and mixed data, as evidenced by Elavarasi and Akilandeswari
(2014), Ahmad and Khan (2019), Foss, Markatou and Ray (2019), Hendrickson
(2014) and van de Velden, D’Enza and Markos (2019). Nonetheless, it is highlighted
in the literature that it is common to use dummy coding (or one-hot encoding) for
categorical variables in conjunction with a method such as K-means. In particular,
dummy coding involves generating a binary variable for each category associated
with a feature; this has the potential to significantly increase the dimensionality of
the data, which could prove problematic (Keogh and Mueen, 2017). Foss, Markatou
and Ray (2019) also explain that the values used for the binary variables, namely
one or another scalar, can affect the contribution of the different types of variables
to the clustering.

A few examples of algorithms for clustering categorical data are CACTUS
(Ganti, Gehrke and Ramakrishnan, 1999), ROCK (Guha, Rastogi and Shim, 2000),
COOLCAT (Barbara, Li and Couto, 2002), Squeezer (He, Xu and Deng, 2002),
LIMBO (Andritsos et al., 2004) and AT-DC (Cesario, Manco and Ortale, 2007).
Squeezer, in particular, is simple but efficient, as every observation is considered only
once. In fact, the observations are considered in turn. The first forms its own cluster
and then each observation is either added to an existing cluster or used to create a
new one, depending on the similarity between the observation and every one of the
existing clusters. In order to calculate the similarity, each of the observation’s feature
values is inspected and, essentially, the proportion of observations in the cluster

with the same feature value is determined; these proportions are then summed. The
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number of clusters is not specified at the outset, but a similarity threshold must be
set. Notably, an observation is only added to a cluster, namely the cluster with the
most similarity, if this threshold is exceeded. Once all the observations have been
clustered, outliers are handled by discarding any very small clusters. He, Xu and
Deng (2002) state that the algorithm is robust with regards to the order in which
the observations are processed, but highlight that the similarity threshold can affect
the quality of the clustering and the algorithm’s execution time.

A significant portion of the research on clustering categorical and mixed data
focuses on defining a new distance or similarity measure which can be put to use by an
existing clustering method. For instance, Jia, Cheung and Liu (2016) proposed a new
distance measure for categorical data that utilises the relative frequency of categorical
values, along with the perceived importance of the variables and the correlation
between variables. Boriah, Chandola and Kumar (2008), Alamuri, Surampudi and
Negi (2014) and Elavarasi and Akilandeswari (2014) review a number of measures for
categorical data, whilst Xu and Wunsch (2009) discuss measures for various types
of features, as well as mixed data. Foss, Markatou and Ray (2019) also consider
measures for mixed data, and highlight that Gower’s distance (Gower, 1971) is
popular. In short, Gower’s distance is the weighted average over the set of features,
where the distance between two categorical values for a variable is measured using
the Hamming distance.

As previously stated, a clustering approach was developed which measures
proximity by means of an isolation forest. Whilst re-examining related literature
post hoc, it was discovered that Cortes (2019) had independently looked into using
an isolation forest to measure proximity. In fact, Cortes (2019) proposed a distance
measure based on the average separation depth across the trees in an isolation
forest, which has been adapted to handle categorical variables and missing values.
The isolation forest is similarly constructed, but proximity is measured differently.
Crucially, the measure presented by Cortes (2019) works under the assumption that
all observations are unique. Incidentally, unsupervised random forests have been

used to measure proximity and perform clustering, which Shi and Horvath (2006)
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discuss; an example of work of this nature is provided by Zhu, Loy and Gong (2014).

The clustering approach was applied to NACC data, in order to gain an
understanding of its inherent structure. Ahlqvist et al. (2018) undertook similar
research on diabetes data; and a limited number of related studies have been carried
out for dementia, some of which are highlighted here. As a matter of fact, Viroli
(2012) applied a factor mixture model to neuropsychological data from the Aging,
Demographics, and Memory Study (ADAMS) (Langa et al., 2005) which largely
clustered individuals according to cognitive impairment. Young et al. (2018), on
the other hand, proposed the Subtype and Stage Inference (SuStaln) model to
group patients according to disease subtype, as well as stage of progression. It was
tested on magnetic resonance imaging (MRI) data from the Genetic Frontotemporal
dementia Initiative (GENFI) (The Genetic Frontotemporal dementia Initiative, 2020)
and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005),
respectively; the objective was to identify subtypes of genetic frontotemporal dementia
(FTD) and sporadic Alzheimer’s disease (AD). In addition, Whitwell et al. (2009)
investigated anatomical subtypes of the behavioural variant of FTD, specifically
with differences in grey matter loss, whilst Mitelpunkt et al. (2020) and Qiu et al.
(2018, 2019) conducted research into subtypes of AD. Notably, Qiu et al. (2018,
2019) utilised neuropsychological data from NACC. Finally, Cleret de Langavant,
Bayen and Yaffe (2018) employed clustering to identify individuals which are highly
likely to develop dementia, and Gamberger et al. (2017) investigated the prognosis
of subjects with mild cognitive impairment (MCI) using a multilayered clustering

algorithm that makes use of unsupervised random forests.

5.2 Clustering with Isolation Forests

To reiterate, a clustering approach was developed which measures proximity based
on the similarity of the paths taken by observations through each tree of an isolation
forest, primarily to exploit the nature of isolation forests and their intrinsic ability
to handle mixed data. As a result, the approach can naturally draw on variables of

mixed type, which is advantageous as clustering mixed data is challenging. In short,
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Algorithm 8 Building an iTree (isolation tree)
function build _iTree(X)
if | X|=1o0r X"Vi< 1,...,F constant then

1:
2
3 return / < X

4 end if

5: Randomly select an inconstant variable X/

6 Randomly generate a split S = {X, Xg} on X/
7 tr, < build_iTree(X)

8 tr < build_iTree(Xg)

9 Create 7 for S and attach ¢, and tr to form ¢
10: return ¢

11: end function

an isolation forest is constructed, which is ultimately used to measure the similarity of
observations; and spectral clustering is applied to the matrix of similarities. Spectral
clustering, which is similar to spectral seriation (section 4.1.2), is popular and simple
to implement, as well as effective (von Luxburg, 2007). The remainder of this section
details how an isolation forest is constructed, the various isolation forest proximity

measures considered, and how spectral clustering is performed.

5.2.1 Isolation Forest

As explained, an isolation forest, which is essentially an ensemble of (unsupervised)
decision trees that isolate each unique observation, is initially constructed. Notably,
Liu, Ting and Zhou (2008) originally proposed building an isolation forest (or iForest)
for the purposes of anomaly detection. The authors highlight that anomalies are
few and far between, as well as different from normal instances; thus, they are more
susceptible to isolation.

In chapter 1 it was explained that a decision tree consists of internal splitting
and terminal nodes, along with edges. For each internal splitting node n of an isolation
tree (or iTree) ¢, a variable X/ and a split S are randomly chosen (algorithm 8
lines 5-6). S partitions the data set X into X, and X, which are the subsets of

observations used to construct the left and right subtrees (7, and tg) respectively
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(algorithm 8 lines 7-9). If at any point during the construction of ¢ only a single
observation remains or all the observations are equivalent, a terminal node ¢ is formed
(algorithm 8 lines 2-4). It should be noted that if all the observations are equivalent,
then all the variables will be constant (of which there are F'). An isolation forest T
is simply produced by building multiple (or M) trees in this manner.

Assuming X/ is free from missingness, S is based on a random cut-point or
subset depending on the type of X7, as for Extra-Trees (section 1.3.3). Missing (or
conditionally missing) values can be handled, however. In fact, one of the three
missingness incorporated in attributes (MIA) (section 3.1.3) splits is chosen at
random if missing values are present; the sole exception being when there is just a
single unique observed value, as the only option is to split X according to whether
the value for X7 is missing or observed (Syr, ).

As indicated, there are similarities between the ways in which an isolation forest
and a random forest (Extra-Trees algorithm) are constructed, but there are inevitably
differences. For example, an isolation forest is built in an unsupervised manner,
meaning classification targets are not required, whilst Extra-Trees is a supervised
procedure. There are also differences between the isolation forest algorithm described
and the original outlined by Liu, Ting and Zhou (2008). In particular, Liu, Ting
and Zhou (2008) sample the data set prior to constructing each tree, which they
claim improves anomaly detection; and limit the depth of the trees, as anomalies
are likely to have relatively short paths. Furthermore, their algorithm does not deal
with categorical variables and missing values.

There is scope to potentially improve the clustering approach by employing
either an isolation forest with random rotations (rotated trees) or an extended
isolation forest (Hariri, Kind and Brunner, 2018). In short, an isolation forest can
only partition the feature space into axis-aligned hyperrectangles, whereas these
alternatives are not restricted in this way. To construct an isolation forest with
random rotations, the data is simply randomly rotated before each tree is built. The
splitting procedure, however, is different for an extended isolation forest. In fact,

a hyperplane with a random slope and intercept is chosen rather than a random
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variable and split. Notably, these alternatives are unable to handle categorical
variables; thus, a potential avenue for future research is to investigate how to extend

them so that they can.

5.2.2 Isolation Forest Proximity Measures

Using the isolation forest, the similarity between observations in X can be ascertained.
As for a random forest (section 3.2.3), the similarity of two observations is calculated
based on their paths through the trees in the ensemble. The similarities are used to
cluster the observations by means of an N—by— /N matrix P, where N is the number
of observations. In fact, spectral clustering is applied to the similarity matrix, which
ultimately results in a projection of the data being clustered using K-means.

As previously indicated, a number of (novel) isolation forest proximity measures
were considered which enable the similarity between observations to be ascertained.
The first to be discussed makes use of the Baire distance (Baire, 1909; de Bakker
and de Vink, 1998), which is suitable for sequences and utilises the length of the
common prefix. The path of an observation X,, through a tree t, denoted by p,, can
be represented using a binary string (i.e. a sequence), where each digit indicates
whether the observation travelled left or right at each node. Thus, it follows that the

proximity of two observations for a single tree ¢ is measured using the Baire distance:

_ 0 if Pi = Py,
PP(X:, X;) = (5.1)

2-lpi0psl - otherwise .
Here, |p; N pj| is the length of the common path (or prefix), which is equivalent to

the depth of the last common node d;;; and the proximity is zero if the paths of

ij3
the observations are identical. It should be noted that a normalisation step is not
required for the Baire measure due to the way in which proximity is defined for a
single tree, hence P, is used instead of P,. In order to obtain the proximity of two
observations for the isolation forest T', the average across the trees is calculated using

P(X, X)) = 22 30 UYL X)) (5.2)

teT
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where M is the size of T' (i.e. the number of trees). Clearly, the result is a distance
as opposed to a similarity, but it is possible to convert from the former to the latter
by subtracting the value from one as 0 < P(X;, X;) < 1. Incidentally, the conversion
could be performed for each tree prior to averaging.

The two alternative measures considered also draw on the length of the common
path, or depth of the last common node d;;, for a tree. In fact, the proximity of two

observations for a single tree is defined as
PMP (X, X;) = dyj (5.3)

for the matching depth (MD) similarity measure and

dij(dij +1)

(5.4)

for the quadratic depth (QD) similarity measure; the latter is equivalent to the sum
of the depths up to and including that of the last common node. As these values are
similarities, they must be normalised to ensure P,(X;, X;) =1Vi=1,..., N, which

is achieved using the following equation.

D _ Pt<Xi7Xj)
Pl %) = vV P(Xi, Xi) P(X, X5) (55)

In order to obtain the proximity of two observations for the isolation forest, the
average across the trees is calculated using equation 5.2 for each measure.

Figure 5.1 shows how similarity would be assigned by the three proximity
measures as a path of length 20 is traced through a tree. Crucially, it highlights
the relative change in similarity as depth increases for each of the measures. In
short, the change is constant for the matching depth similarity measure, whilst
it decreases rapidly for the Baire measure and increases for the quadratic depth
similarity measure. Notably, the local structure of the data is emphasised during
clustering if the latter measure is employed, as a result of said increase. Consequently,
the figure indicates that a variety of proximity measures were considered.

As Xu and Wunsch (2009) explain, a proximity measure must satisfy two

conditions to be a similarity function, which are as follows:
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Figure 5.1: Similarity versus depth for the isolation forest proximity measures, namely
the Baire measure, matching depth (MD) similarity measure and quadratic depth (QD)
similarity measure.

P(X;, X;) = P(X;,X;) (symmetry), (5.6a)

0<P(X;,X;) <1V X;, X; (positivity). (5.6b)
In order for it to be regarded as a similarity metric, it must also satisfy

P(X;, X;)P(X;, X) < [P(X;, X;) + P(X;, Xp)|P(Xi, Xi) V Xi, X;, Xy, (5.7a)

The latter condition asserts that the proximity of two observations is equal to one
if and only if the observations are identical, whilst the former is analogous to the
triangle inequality. In brief, the three proximity measures considered are at least
similarity functions, as the conditions described by equations 5.6a and 5.6b are
satisfied by each of them. More work is required, however, to confirm whether or not
they are similarity metrics, although the final condition (equation 5.7b) is satisfied
by each measure. It should be noted that the Baire distance satisfies a strong form of
the triangle inequality, among other conditions, making it an ultrametric (de Bakker
and de Vink, 1998; Contreras and Murtagh, 2010), but it is unclear whether the

Baire measure could be considered a similarity metric as a result.
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5.2.3 Spectral Clustering

With the similarities in P, spectral clustering can be performed. As this is the final
step of the approach, it produces a partition of X (i.e. clusters), from which it is
possible to gain an understanding of the inherent structure of the data. This section
provides a concise overview of spectral clustering and how it is performed, along
with an explanation of K-means clustering, building on that given in section 5.1, as
it plays a fundamental part. For an in-depth discussion of spectral clustering, the
reader is directed to the work of von Luxburg (2007).

As von Luxburg (2007) explains, an undirected, weighted similarity graph,
which consists of edges and vertices, can be constructed using the similarities; the
problem of clustering can then be transformed into that of partitioning the graph.
In general terms, spectral clustering achieves this by determining the Laplacian
matrix (or graph Laplacian) of the weighted adjacency matrix of said graph, the
latter matrix being positive and symmetric (as is P). It then projects the data onto
the first K eigenvectors, assuming the eigenvalues are in ascending order, on which
K-means clustering is performed.

A fully connected graph is used, thus the weighted adjacency matrix is simply
the similarity matrix. It is common to employ a k-nearest neighbour graph, which
emphasises the local structure of the data by only connecting observations (or data
points) that are neighbours, but preliminary experiments suggested it may result in
poorer performance for categorical and mixed data sets. Investigating its effects could
be an interesting avenue for future research, however. The normalised Laplacian
matrix related to a random walk, which is denoted by L,,,, is also utilised on the

recommendation of von Luxburg (2007). It is defined as
L=D'L=1I-D'P, (5.8)

where D is the degree matrix (algorithm 9 line 2), £ is the unnormalised Laplacian
matrix (algorithm 9 line 3) and I is the identity matrix. Chung (1997) details
properties of £,.,,, which von Luxburg (2007) highlights are pivotal to the success of

spectral clustering, such as it is positive semi-definite.
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Algorithm 9 Pseudocode for spectral clustering

1: function spectral_clustering(X,P,K ,N)

20 D« diag(3L, P(X;, X;) Vi< 1,...,N)

3 L+~ D-P

4 Solve Lu; = \jDu; Vi + 1,..., K > generalised eigenvalue problem
5: U< [u1,...,ug|N Kk > eigenvector matrix of size N—by—K
6 Py + K-means(U,K,N) where Py = {cy,...,cx}

7 Convert Pry to Px such that ¢; + {X, VU, € ¢;} Vi< 1,... | K

8 return Py

9: end function

The most common spectral clustering algorithm for £,., draws on the work of
Shi and Malik (2000); this algorithm is employed. To begin with, the degree matrix,
which has the sum of the similarities for every observation along the diagonal, and
the unnormalised Laplacian matrix are computed (algorithm 9 lines 2-3). The first
K (of N) generalised eigenvectors of L are then obtained by solving the generalised
eigenvalue problem (Lu,, = A\, Du,,); these are used as the columns of an N—by—K
matrix, denoted by U, which can be regarded as a projection of the data (algorithm 9
lines 4-5). Crucially, a generalised eigenvalue ), and generalised eigenvector u,
of L are an eigenvalue and eigenvector of L., (von Luxburg, 2007). K-means is
subsequently applied to the rows of U (i.e. the projected data points), each denoted
by U,, which should be easier to cluster, and a partition Pp; results (algorithm 9 line
6). It is possible to convert this partition into one pertaining to the original data,
namely Py, by simply drawing on the indices of the projected data points in each
cluster ¢ (algorithm 9 lines 7-8).

K-means clustering was introduced in section 5.1. Its objective is to assign
each data point X,, in a data set X to exactly one cluster, of which there are K,
such that Ufil ¢; = X and the variation within each cluster is minimised. Initially,
the clusters are randomly assigned data points; they should each contain at least
one (algorithm 10 line 2). The centroid 4 of every cluster, namely the set of mean
feature values, is then computed (algorithm 10 line 3). Subsequently, two steps

are iteratively performed until the clusters converge, which essentially means there
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Algorithm 10 Pseudocode for K-means clustering
1: function K-means(X,K ,N)
2: Randomly assign X; to one of K clusters {c,...,cx} Vi< 1,...,N

3: Compute the cluster centroids {1, ..., ux}
such that p; < ﬁ Doxpee Xn Vi1, K
4: while clusters not converged do
5: Update the cluster assignments such that X; € ¢, Vi<« 1,..., N

where k « argmin;_, || X; — i1

6: Recompute the cluster centroids (see line 3)
7: end while

8: return P < {cy,...,cx}

9:

end function

is no change in cluster assignments (algorithm 10 line 4). During these two steps,
each data point is reassigned to the cluster with the closest centroid in terms of
the squared Euclidean distance, although other distances could be employed, and
the cluster centroids are recomputed (algorithm 10 lines 5-6). Ultimately, a set of
clusters, or partition P, results (algorithm 10 line 8).

In section 5.1 it was explained that it is important to repeat the clustering
process multiple times with different cluster initialisations, as K-means finds a locally
optimal solution (i.e. partition). In order to select a partition from those produced,

the within-cluster sum of squares (WCSS) is calculated, which is defined as

N
WSS =Y min |1 = . (5.9

=1

More simply, it is the sum of the squared Euclidean distances between the data
points and their closest centroid. By minimising the WCSS, which is in fact locally

minimised by K-means, the variation within each cluster is itself minimised.

5.3 Experiments

The clustering approach developed was tested on a variety of alternative data sets,
which are detailed in section 5.3.1, to ascertain whether it could produce reasonable

results. In particular, it was applied to every data set using each proximity measure
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in turn, along with 1,000 trees, 100 repetitions of K-means and K (i.e. the number
of clusters) set to what could be considered the true number of clusters. The same
isolation forest was utilised for each of the proximity measures, enabling their results
to be directly compared. The results for the quadratic depth similarity measure,
which was found to be somewhat more successful than the other measures considered,
are briefly discussed in section 5.3.2 but, to summarise, the approach produced
reasonable clusters for all of the data sets.

As previously stated, the aim was to gain an understanding of the inherent
structure of dementia data, to ultimately investigate disease signatures. Once the
approach had been tested, a number of preliminary experiments were conducted
on NACC data which built on the work discussed in chapter 4. More specifically,
the approach was applied to subsets of NACC data focusing on cognitive status
or the four main dementia subtypes, which are Alzheimer’s disease (AD), vascular
dementia (VD), dementia with Lewy bodies (DLB) and frontotemporal dementia
(FTD). Following its success on alternative data sets, the approach was employed
with the quadratic depth similarity measure using the parameters which had enabled
reasonable clusters to be produced. Exactly how the subsets were generated is detailed
in section 5.3.1 and the results of these preliminary experiments are discussed in

section 5.3.2.

5.3.1 Data Sets

Six alternative (or trial) data sets of different types (continuous, categorical or mixed)
and varying difficulty were considered. They are listed in table 5.1, along with the
two subsets of NACC data; those which are two/three-dimensional are shown in
figure 5.2 with what could be deemed their true classes (or clusters) indicated where
available. It should be noted that four of these data sets are synthetic, whilst the
remaining two comprise real-world data. This section describes all eight of the data

sets in turn and how they were generated where relevant.

Old Faithful Data A version of the classic data set including 222 observations

of the Old Faithful geyser in Yellowstone National Park (Wyoming, United States)

152



Variables Observations

Data Set Type (no.) (no.)
Old Faithful Data Continuous 2 222
Two Rings Data Continuous 2 400
Synthetic Categorical Data Categorical 2 600
Synthetic Mixed Data Mixed 2 200
Tube Data Mixed 3 1000
Lymphography Data Mixed 18 148
NACC Data - Cognitive Status Mixed 50 2000
NACC Data - Dementia Subtypes Mixed 39 396

Table 5.1: Detailed list of data sets.

which were recorded in August 1978 and 1979 (Duke University, 2002). It has two
continuous variables that provide the duration of the eruption and time until the next
eruption (in minutes). The data, which is visualised in figure 5.2(a), was standardised

prior to its use.

Two Rings Data A more challenging two-dimensional continuous data set which
has proved popular for testing classification and clustering approaches; it consists
of two rings, one of which is situated inside the other. This version, in particular,
was generated using the make circles function in scikit-learn (Pedregosa et al.,
2011) and comprises 400 observations (or data points), namely 200 per ring. As

figure 5.2(b) highlights, its true classes coincide with the two rings.

Synthetic Categorical Data This two-dimensional categorical data set is com-
posed of 600 data points. Each variable has nine categories labelled with the integers
in [0, 8], which were grouped during the creation of the data set as figure 5.2(c)
indicates. In fact, the points of three distinct three-by-three grids were randomly
sampled in turn; the sample size was 200. Notably, these three grids correspond to
the data set’s three true classes and the category labels (or values) themselves are

arbitrary, meaning they can be permuted without affecting the clustering.

Synthetic Mixed Data A simple mixed data set with one continuous and one
categorical variable including 200 data points. The continuous variable was generated
by randomly sampling from two different normal distributions one by one with a

sample size of 100. The categorical variable, on the other hand, was produced
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by randomly selecting 10 categories in [1,100] with replacement and drawing two
samples from a multinomial distribution, each of which represented the frequencies
for five categories for 100 data points. It should be noted that the category values
themselves were irrelevant and the categories had equal probability of occurring.
Ultimately, the data set’s two true classes were formed by pairing the samples from
each of the normal distributions with five of the categories. Figure 5.2(d) presents

the data and shows the categorical variable has nine unique categories.

Tube Data Essentially, this is an elongated version of the two rings data with
two continuous variables, one categorical variable and 1,000 data points. It is a
more testing mixed data set to successfully cluster into its two true classes, each
of which comprise 500 data points, as its categorical variable does not aid in their
separation (see figure 5.2(e)). Initially, the two continuous variables were generated
using scikit-learn’s make _circles function. The categorical variable was then created
by randomly selecting five unique categories labelled with integers in [1,10] and
drawing two samples from a multinomial distribution; these two samples represented
the frequencies of the five categories for the 500 points of the inner and outer rings
respectively. As for the synthetic mixed data, the category values themselves were

irrelevant and the categories had equal probability of occurring.

Lymphography Data A data set encapsulating the findings of a medical imaging
technique known as lymphography, which is used to visualise the lymphatic system.
It was obtained from the UCI (University of California, Irvine) Machine Learning
Repository (Dua and Graff, 2019), whilst the data itself was from the University
Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia (Zwitter et al., 1988).
Notably, the data set includes 148 (complete) observations and 18 variables of mixed
type. Every observation is also associated with one of four true classes, namely
normal find, metastases, malign lymph and fibrosis; the number of observations in

each class is 2, 81, 61 and 4 respectively.

NACC Data - Cognitive Status A subset of NACC data which is focused on
cognitive status. In short, the subset was extracted from the training set, comprising

22,801 randomly selected subjects and 260 variables, in which missing values had been
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imputed using the approach outlined in chapter 3, namely proximity imputation with
MIA; conditionally missing values were still present, however. The 50 most important
features for diagnosing dementia, according to the dementia classifier, were included
in the subset, building on the work discussed in chapter 4. The dimensionality of the
data was reduced significantly because the majority of the 260 variables were found
to be of very little importance for diagnosing dementia. A sample of 2,000 subjects
was also used. These subjects were chosen such that 1,000 had been diagnosed with
dementia and 1,000 had been diagnosed with either MCI (332) or normal cognition
(668), although the subjects themselves were selected at random. Notably, these true

classes may be subject to error, as explained in chapter 4.

NACC Data - Dementia Subtypes This is a subset of NACC data which is
focused on the four main dementia subtypes (AD, VD, DLB and FTD); it was
extracted from the imputed training set, similarly to the cognitive status subset.
Once again, the dimensionality of the data was reduced significantly, but this time
by drawing on the fact that most of the 260 variables were found to be of very little
importance for the differential diagnosis of dementia (see chapter 4). In particular,
the 39 most important features for the differential diagnosis of dementia, according
to the pairwise dementia subtype classifiers, were included in the subset, along with
a sample of 396 subjects. This sample comprised subjects with ‘pure’ cases of the
four main dementia subtypes, thus each subject had a primary diagnosis of one of
the main subtypes and no supplementary diagnoses of any of the others. Ultimately,
all those with a pure diagnosis of VD were included as there were only 96, whilst 100
subjects were chosen at random for the remaining subtypes (AD, DLB and FTD)
so there was approximately an equal number of pure cases for each of the subtypes.

Inevitably, these true classes may also be subject to error.

5.3.2 Results

Figure 5.3 presents the results (i.e. clusters) for the two/three-dimensional alternative
data sets. When considered in conjunction with figure 5.2, it is clear that three

of the data sets were successfully clustered into their true classes, namely the two

156



Duration of Eruption

Categorical Feature 2

1.5 ° °
] srItty.
° 0 L4
1.01 e ....oa-: 0 % o2® k
® o oeemoo ‘k
» % o N %
° o 051 [ P
0.5 ° o0 =
& & o 5 r' 4 D)
° e °® o ™ ] '.
00 %% e » (] ‘.. °
0.0 ) ° w ° oo
° e i (L)
° ° Qv 00 ’ '
) ° 3 &
° ° S .‘
—0.51 ® ° c , N
) ° 5 e®® °
* o S-os|{ §
~1.0 ee o o ® e
° ' Qe
) ’
~1.5- '. “g
| ,&. K I SO
' 0 1 2 _10 _05 0.0 0.5 1.0
Time Until Next Eruption Continuous Feature 1
(a) Old Faithful Data (b) Two Rings Data
8 - e o o 1007 o camemsme
@wme o 0
7 e o e
80
6 e [ ] e (4]
3
5 e o o S 60 emanume
= coemmen
4 e o o S
34 e o o S 407
9
O
2{e o o (@]
201 oo AR *
11{e e e
o cmmssme ¢
o{e e e 0] o cumme 60 >amse
o 1 2 3 4 5 6 7 8 05 10 15 20 25 30 35

Categorical Feature 1

(c) Synthetic Categorical Data

v -B"":h
e

Qm
oo-o ‘0

<
>

~10_g5
Continuo”s ,.:e

' 1.0
ature 3

(e) Tube Data

0.0
-0.5 45
-1.0 ‘\\\o

o™

Continuous Feature

(d) Synthetic Mixed Data

Categorical Feature

H N W h U N 0 ©

0

1.
2
05" e

¢ed®

Figure 5.3: Clustering results for the two/three-dimensional alternative data sets.

157




rings, synthetic categorical and synthetic mixed data. This was verified with the
normalised mutual information (NMI) (Strehl and Ghosh, 2002), which is a widely
used external measure that evaluates the clusters (or partition P) against the true
classes 2, disregarding any labels that have been assigned. It produces a value
between zero and one, where the latter indicates perfect agreement between the
clusters and true classes. The measure can be defined as follows:

MI(P, 0
mean(H(P), H(Y))’

NMI(P, Q) = (5.10)

where MI(+) is the mutual information, H(-) is the entropy and mean(-) is the
arithmetic mean (see scikit-learn documentation (scikit-learn developers, 2020a) for
more details). Incidentally, the Old Faithful data was also successfully clustered but
no true classes were available.

It was highlighted in section 5.3.1 that the tube data is challenging as its
categorical variable does not aid in the separation of its true classes, and the
lymphography data has two very small true classes (Jnormal find| = 2, |fibrosis| = 4).
In contrast to the four alternative data sets already mentioned, the clusters generated
for these two do not match their respective true classes; they are not unreasonable,
however. Figure 5.3(e) shows the clustering results for the tube data, which suggest
that five clusters may be found to be more appropriate than two. Figure 5.4 shows
the clusters, along with the true classes, for the lymphography data, which were
visualised using metric multidimensional scaling (MDS) (Abdi, 2007). In short, MDS
attempts to produce a low-dimensional embedding in which distances are preserved.
Unlike the tube data, the clusters bear some resemblance to the true classes. In fact,
those corresponding to the very small true classes are simply larger. As for the other
alternative data sets, the NMI was calculated. It was approximately zero for the
tube data and 0.26 for the lymphography data; this highlights that the NMI simply
measures how closely the clusters match the true classes rather than indicating
whether the clusters are reasonable or not. Ultimately, it could be concluded that
the clustering approach developed can produce reasonable clusters for a variety of

data sets.

158



Normal Find ® C(Clusterl

® Metastases »  Cluster 2
® Malign Lymph Cluster 3
® Fibrosis ® Cluster4
. Py 0.2
.. ] @
Oy |© o9 ° 0.1
0g | 0e 9g °
o g ®® o8 LY ". 0.0
0, S Re ® | 0® _
0.1
- @ Y
..’ ~. -0.2
$ [ X ’:
.
" 0.3
[ ]
9

()
-0.1 0.0

-0.1

-0.1

0.1
02 02 02 02

(a) True Classes (b) Clusters

Figure 5.4: Clustering results for the lymphography data visualised using metric multi-
dimensional scaling (MDS).

Figure 5.5 presents the similarity matrices for five of the six alternative data
sets, as well as the two NACC subsets. The matrices are ordered such that the
observations are grouped according to their true classes, and categories in some cases,
hence the matrix for the Old Faithful data is not included. It should be noted that
imperfections, such as the broken diagonal in figure 5.5(f), are artefacts of the plotting
process. Figures 5.5(a), 5.5(b) and 5.5(c), in particular, show the similarity matrices
for the three alternative data sets which were successfully clustered into their true
classes and, unsurprisingly, there is little similarity between the classes. Reassuringly,
the points comprising the inner ring of the two rings data are more similar to each
other than those in the outer ring, similarity has been assigned in accordance with
the number of matching categories for the synthetic categorical data, and there is
approximately uniform similarity between categories for the synthetic mixed data.
Figures 5.5(d) and 5.5(e) show the similarity matrices for the tube and lymphography
data respectively, and provide some explanation as to the clusters produced. The
former matrix appears to almost be an amalgamation of those for the two rings and
synthetic mixed data, although there is some similarity between the classes for the

categories; this similarity influenced the clustering. The latter, however, is unlike any
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of the others. The matrix has some structure but it is considerably less pronounced.

It was stated that figure 5.5 also presents the similarity matrices for the two
NACC subsets. Figure 5.5(f), specifically, shows the matrix for the cognitive status
subset which, from left to right, includes subjects diagnosed with normal cognition,
MCI and dementia. Clearly, there are three blocks that correspond to the three
categories of cognitive status, and relatively little similarity between the subjects
with normal cognition and dementia. However, there is some similarity between the
MCI subjects and those with normal cognition and dementia, suggesting the clusters
may not simply corroborate NACC’s diagnoses (i.e. the true classes). Furthermore,
the matrix indicates that the cognitively normal subjects are more similar to each
other than those with MCI and dementia. Figure 5.5(g), on the other hand, shows
the matrix for the dementia subtypes subset, for which the subjects are ordered
by subtype (from left to right: AD, VD, DLB and FTD). Once again, the matrix
has structure, but there is some similarity between the subtypes, particularly AD
and FTD. As a result, the clusters may differ somewhat from NACC’s diagnoses.
Interestingly, the subjects with AD are more similar to each other, as those with
normal cognition are in the matrix for the cognitive status subset.

Figure 5.6 provides the clustering results for the cognitive status subset. Clus-
tering was, in fact, performed with K = 2 and K = 3, where K is the number of
clusters, as cognitive status can also be considered in terms of dementia and no
dementia; the true classes (i.e. NACC’s diagnoses) and clusters are shown for each
case. MDS was used to visualise the true classes and clusters, as for the lymphography
data, revealing some underlying structure consisting of two parts. Figure 5.6(c) shows
that, essentially, one part encompasses the subjects diagnosed with normal cognition,
whilst the other comprises those with MCI and dementia. Consequently, the no
dementia class in figure 5.6(a), which consists of subjects with normal cognition
and MCI, extends across the two parts. In short, the three clusters produced are
relatively well-matched to their true classes (NMI = 0.54), but the two clusters are
less so (NMI = 0.44). Nonetheless, both sets of clusters, along with the underlying

structure, suggest that MCI may be a mild form of dementia as opposed to a clinical
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Figure 5.6: Clustering results for the subset of NACC data which is focused on cognitive

status visualised using metric multidimensional scaling (MDS). Notably, two and three
clusters are considered.
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Figure 5.7: Clustering results for the subset of NACC data which is focused on the four
main dementia subtypes visualised using metric multidimensional scaling (MDS).

entity (i.e. a condition in its own right), which it was explained in chapter 4 there
is much debate over. The similarity matrix (figure 5.5(f)) also lends weight to this
view, as it could be considered indicative of a spectrum of cognitive impairment.
Finally, figure 5.7 presents the true classes (i.e. NACC’s diagnoses) and clusters
for the dementia subtypes subset, which were visualised using MDS. Despite the
NMI being 0.38, the figure indicates the four main subtypes (AD, VD, DLB and
FTD) were basically recovered as clusters, suggesting there may be evidence for
the current subtypes. In fact, the only real difference between the true classes and
clusters appears to be the degree of overlap between the subtypes. The confusion
matrix, which is presented in the form of table 5.2 and provides a more detailed
view of how the subjects were clustered with respect to their true classes, does not
dispute this. To ascertain whether this would be the case if all 260 variables or
primary cases of the subtypes were utilised, two additional NACC subsets were
experimented with. It should be noted that a primary case of a subtype is one in
which the subject received a primary diagnosis of said subtype, and 150 subjects
with primary diagnoses were randomly selected for each subtype. Ultimately, the

clusters generated with all 260 variables bore some resemblance to the true classes,
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True Class
AD VD DLB FTD Total

AD D13 8 30 126
VD 3 69 2 5 79

1)
2)
3) DLB 18 11 88 16 133
4) FTD 4 3 2 49 o8

Total 100 96 100 100 396

(
Cluster E
(

Table 5.2: Confusion matrix for the subset of NACC data which is focused on the four
main dementia subtypes.

but considerably less so as indicated by the NMI which was 0.15, whilst the subtypes
were, once again, essentially recovered as clusters using primary rather than pure
cases (NMI = 0.34).

An alternative external measure that evaluates the clusters (or partition P)
against the true classes 2 is the adjusted Rand index (ARI) (Hubert and Arabie,
1985), which was also used, albeit post hoc, as it could be considered preferable to
the NMI due to it being corrected (or adjusted) for chance. As a result, the ARI
is close to zero when observations have been randomly assigned to clusters. The
measure can be defined as follows:

RI(P, ) — E[RI(P, Q)]
max RI(P,Q) — E[RI(P,Q)]’

ARI(P,Q) = (5.11)

where RI(+) is the Rand index (Rand, 1971), E[RI(P, )] is the expected value and
max RI(P, ) is the maximum value (see scikit-learn documentation (scikit-learn
developers, 2020b) for more details). Once again, permuting any labels that have
been allocated has no effect, and a value of one indicates perfect agreement between
the clusters and true classes. In contrast to the NMI, negative values are possible,
although not common in practice. Ultimately, the ARI was found to equal the NMI
(to two decimal places) for all but two of the data sets, namely the lymphography
data (ARI = 0.25, NMI = 0.26) and the cognitive status subset of NACC data
(K =2: ARI = 0.42, NMI = 0.44; K = 3: ARI = 0.6, NMI = 0.54), for which there
was very little difference between the two measures.

To summarise, it could be concluded that the clustering approach developed
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can produce reasonable clusters for a variety of data sets. Moreover, the preliminary
experiments on NACC data suggested MCI may be a mild form of dementia as
opposed to a clinical entity, and there could be evidence for the current dementia
subtypes. With regards to future research, the main focus should be conducting
more exploratory experiments to enable disease signatures to be investigated and
a clinical conclusion to be drawn. For example, the clustering approach could be
applied to all the data using a range of K. In addition, it may be worth considering
substituting a fuzzy (or soft) clustering method for K-means, which permits an
observation to belong to more than one cluster (Bezdek, 1981); this would allow for

mixed presentations of subtypes.

5.3.3 Supplementary Investigation

As a precursor to the future research outlined at the end of the previous section,
a supplementary investigation was conducted with the aim of revealing potential
sub-subtypes of dementia. To be brief, agglomerative hierarchical clustering was
carried out on the dementia subtypes subset of NACC data (see section 5.3.1 for
details), enabling a dendrogram to be produced; this type of tree diagram, which
is used to visualise the hierarchy of clusters, can prove useful in understanding the
structure of data.

Agglomerative hierarchical clustering initially considers each observation as
a cluster and repeatedly merges pairs of clusters until one remains. In particular,
clusters are merged such that a linkage criterion, which draws on the distances
between the observations, is minimised. For this investigation, the similarity matrix
populated using the quadratic depth similarity measure (visualised in figure 5.5)
was converted to a distance matrix and utilised in conjunction with average linkage
(Sokal and Michener, 1958). Single and complete linkage were considered but the
former failed to find meaningful clusters and the latter showed no improvement on
that which was used. For explanations of the various linkage criteria, the reader is
referred to the work of Everitt et al. (2011).

Figure 5.8 shows the resultant dendrogram; the dementia subtype (AD, VD,
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DLB or FTD) diagnosed for each of the 396 subjects in the data set is indicated
below the relevant edge (or branch). A truncated version of the dendrogram, which
is easier to interpret, is also presented in figure 5.9. Notably, this version of the
dendrogram is annotated with subtype frequencies (x = 0), as well as coloured
boxes that indicate the predominant subtype for three major clusters (from left
to right: VD, AD and FTD, DLB). These three clusters, along with the cluster
situated on the far left comprising only 10 subjects, can be compared to the four
found using spectral clustering (visualised in figure 5.7). As previously discussed,
spectral clustering basically recovered the four main subtypes, whereas agglomerative
hierarchical clustering had difficulty differentiating between AD and FTD. This
outcome was not unexpected due to the fact that there was some similarity between
these subtypes in the similarity matrix, as explained in section 5.3.2. Regardless,
the dendrogram, in either form, does not clearly highlight potential sub-subtypes of

dementia.

5.4 Summary

One of the primary aims of the research was to gain an understanding of the
inherent structure of dementia data, specifically (mixed) data obtained from the
National Alzheimer’s Coordinating Center (NACC), to ultimately investigate disease
signatures; clustering was employed for this purpose. Most clustering algorithms
make use of a proximity (distance or similarity) measure between observations,
but measuring proximity appropriately when the data is of mixed type is difficult.
Consequently, clustering mixed data, in general, is challenging. Ultimately, an
approach was developed that measures proximity by means of an isolation forest, so
it is able to naturally draw on variables of mixed type.

On review of related work predominantly concerning clustering categorical
and mixed data, it became apparent that a variety of algorithms have been devised,
including K-modes (categorical), K-prototypes (mixed) and Squeezer (categorical).
Nevertheless, a significant portion of the research focuses on defining a new proximity

measure which can be put to use by an existing clustering method. At the time of
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writing, it was discovered another researcher had independently looked into using an
isolation forest to measure proximity. The distance measure they proposed, however,
works under the assumption that all observations are unique, which is less than
ideal. Furthermore, related studies on dementia data were reviewed. In brief, it was
revealed there are a limited number which primarily focus on identifying subtypes of
Alzheimer’s disease and frontotemporal dementia.

The clustering approach developed specifically measures proximity based on
the similarity of the paths taken by observations through each tree of an isolation
forest. Initially, an isolation forest is constructed in a manner that enables categor-
ical variables, as well as missing (or conditionally missing) values, to be handled,
then, ultimately, the similarity between observations is ascertained. Various (novel)
isolation forest proximity measures were considered, but the quadratic depth simil-
arity measure was found to be somewhat more successful during testing. Notably,
the local structure of the data is emphasised during clustering if this measure is
utilised. Finally, spectral clustering is applied to the matrix of similarities, using
a fully connected graph and the Laplacian matrix related to a random walk. In
short, clusters are produced using K-means on a projection of the data, from which
it is possible to gain an understanding of the data’s inherent structure. Crucially,
K-means is repeated multiple times with different cluster initialisations and a set of
clusters (i.e. a partition) is selected by minimising the within-cluster sum of squares.

As previously indicated, the approach was tested. In fact, it was tested on
six alternative data sets of different types (continuous, categorical and mixed) and
varying difficulty to ascertain whether it could produce reasonable results. It has
already been highlighted that the quadratic depth similarity measure was somewhat
more successful than the others, but with it the approach produced reasonable clusters
for all of the data sets. Consequently, it could be concluded that the clustering
approach developed can produce reasonable clusters for a variety of data sets.

Once the approach had been tested, a number of preliminary experiments were
conducted on NACC data which built on the work discussed in chapter 4. As a

matter of fact, the approach was applied to subsets of NACC data, extracted from the
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imputed training set, focusing on cognitive status or the four main dementia subtypes.
More specifically, the cognitive status subset included the 50 most important features
for diagnosing dementia, according to the dementia classifier, as well as 2,000 subjects
selected based on their cognitive status (normal cognition, mild cognitive impairment
(MCI) or dementia). Contrastingly, the dementia subtypes subset included the 39
most important features for the differential diagnosis of dementia, according to
the pairwise dementia subtype classifiers, along with 396 subjects chosen such that
there was approximately an equal number of pure cases for each of the subtypes.
Ultimately, these preliminary experiments suggested that MCI may be a mild form
of dementia as opposed to a clinical entity, over which there is much debate; and

there could be evidence for the current subtypes.
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Chapter 6

Summary, Conclusions and

Future Research

It has been predicted that the prevalence of dementia will increase significantly over
the coming years; this, along with the considerable economic and social burden
associated with dementia, is concerning. The thesis discussed research conducted
with two primary aims, largely motivated by these factors and that it is currently
difficult and time consuming to diagnose dementia reliably. The first aim was to
investigate the use of machine learning for distinguishing between people with and
without dementia, as well as differentiating between key dementia subtypes where
appropriate. Notably, the four main subtypes are Alzheimer’s disease (AD), vascular
dementia (VD), dementia with Lewy bodies (DLB) and frontotemporal dementia
(FTD). The second aim was to gain an understanding of the inherent structure
of dementia data, to ultimately investigate disease signatures; it allowed for some
investigation into whether the prevailing diagnostic criteria accurately reflect the
nature of dementia and its subtypes. These aims were tackled using classification
and clustering respectively.

The Uniform Data Set (UDS) was acquired from the National Alzheimer’s
Coordinating Center (NACC) for the purposes of this research. It comprises clinical
and neuropsychological data from visits to Alzheimer’s Disease Centers in the United
States, during which the visitor (or subject) is assessed according to a standardised

evaluation, specifically to ascertain a diagnosis that essentially indicates whether
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they have dementia, along with the type of dementia if appropriate. The variables (or
features) concerning diagnosis were extracted from the data set so labels, primarily
for classification, could be generated. The remaining data was cleansed, resulting in
a data set composed of 32,573 initial visits or subjects (i.e. observations) and 260
variables of mixed type (continuous, categorical, ordinal and binary). Crucially, the
data set included variables in relations with one another and two types of missingness.
The genuinely missing values, which arose when data was unexpectedly not recorded,
were imputed where possible. The conditionally missing values, on the other hand,
which arose when the information was irrelevant or unobtainable for a known reason,
were handled during classification and clustering.

Two machine learning approaches were developed for this research. Firstly,
an imputation approach was developed, which simultaneously builds a random
forest classifier whilst handling conditionally missing values; it is termed proximity
imputation with MIA (missingness incorporated in attributes). In fact, it is an
amalgamation of the proximity imputation method (Breiman and Cutler, 2004),
the Extra-Trees algorithm (Geurts, Ernst and Wehenkel, 2006) and MIA (Twala,
Jones and Hand, 2008). Notably, the proximity imputation method was specifically
tailored to maintain the known relations between variables in the NACC data set, so
far as possible. To summarise, proximity imputation with MIA begins by crudely
imputing the missing values in the data set (or training set) to enable a random
forest to be constructed. Extra-Trees and MIA are subsequently employed to build
the ensemble of decision trees, using the imputed data set. By inspecting the paths
of the observations through every tree, the similarity of each pair of observations can
be ascertained. These similarities (or proximities) are used to populate a proximity
matrix, which is then utilised to impute the missing values for a second time. It
is at this stage that precautions must be taken to ensure that the known relations
between variables are maintained, so far as possible. Once a newly imputed data
set has been formed, another random forest is built and the process is repeated for
a number of iterations. Incidentally, the approach can also be used to impute test

cases with a few alterations. Crucially, the imputed values are generated based on
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the imputed training cases alone.

A clustering approach was also developed, which measures the proximity
(distance or similarity, in this context) between observations based on the similarity
of their paths through each tree of an isolation forest. Various (novel) isolation forest
proximity measures were considered, but the quadratic depth similarity measure was
found to be somewhat more successful during testing. Initially, an isolation forest is
constructed in a manner that enables categorical variables, as well as missing (or
conditionally missing) values, to be handled, then, ultimately, the similarity between
observations is ascertained. Finally, spectral clustering is applied to the matrix of
similarities, using a fully connected graph and the Laplacian matrix related to a
random walk. In short, clusters are produced using K-means on a projection of the
data, but it should be noted that K-means is repeated multiple times with different
cluster initialisations and a set of clusters (i.e. a partition) is selected by minimising
the within-cluster sum of squares.

The research produced a dementia classifier with an accuracy of 94.21%, a
sensitivity of 0.93, a specificity of 0.95 and an area under the receiver operating
characteristic curve (AUC) of 0.99, suggesting machine learning could be a useful tool
for diagnosing dementia. It also produced 10 pairwise dementia subtype classifiers
with AUCs ranging from 0.88 to 1.0 (rounded to two decimal places), indicating
machine learning could be used to differentiate between the main dementia subtypes.
Using these classifiers, it was possible to identify the key features for diagnosing
dementia, as well as differentiating between the main subtypes of dementia; there
is a clear difference between the important features for the two types of diagnosis.
Furthermore, preliminary experiments conducted using the clustering approach
developed suggested that mild cognitive impairment (MCI) may be a mild form
of dementia as opposed to a clinical entity (i.e. a condition in its own right), over
which there is much debate. They also suggested that there could be evidence for
the current subtypes (AD, VD, DLB and FTD).

To summarise, the research prompted the development of two machine learning

approaches and gave rise to what could be deemed valuable findings concerning
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dementia and its diagnosis. It is hoped that these approaches will continue to
prove useful and the findings ultimately help to improve the diagnosis of dementia.
Nonetheless, there are numerous possible avenues for future research, some of which
have been highlighted throughout the thesis. With regards to the clustering approach
developed, there is scope to potentially improve it, specifically by employing either
an isolation forest with random rotations (rotated trees) or an extended isolation
forest (Hariri, Kind and Brunner, 2018). However, these isolation forest alternatives
are unable to handle categorical variables, so it would be necessary to investigate how
to extend them so that they can. It may also be interesting to investigate the effects
of a k-nearest neighbour graph as opposed to a fully connected graph on clustering
performance. In relation to the primary aims of the research, the main focus should
be conducting more exploratory experiments using the clustering approach to enable
disease signatures to be investigated and a clinical conclusion to be drawn. It is also
vitally important that progress is made towards tangible changes in the diagnosis of
dementia; developing a diagnostic aid from the classifiers produced could be a good

place to start.
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Appendix A

Data Cleansing Specifics

This appendix provides a more in-depth view of the data cleansing process, which was
discussed in section 2.3, by detailing how each variable in the National Alzheimer’s
Coordinating Center Uniform Data Set (NACC UDS) was handled, excluding the
diagnostic variables associated with Form D1. What follows was compiled using the
researchers data dictionary (National Alzheimer’s Coordinating Center, 2017) as a
basis. However, it was also necessary to refer to the original forms (ADC Clinical
Task Force and National Alzheimer’s Coordinating Center, 2006¢, 2014c, 2017c),
coding guidebooks (ADC Clinical Task Force and National Alzheimer’s Coordinating
Center, 2006a, 2014a, 2017a) and data element dictionaries (ADC Clinical Task
Force and National Alzheimer’s Coordinating Center, 2006b, 2014b, 2017b) provided
by NACC for the initial visits within the UDS.

The 18 forms and the form header are considered in turn. Firstly, information
pertaining to the form or form header itself is provided. This includes the original
number of variables; the number utilised; and a diagram showing the dependencies
between the variables used, similar to the one in figure 2.2. For the vast majority of
the forms, whether it is required to be completed according to versions 1.2 and 2.0 of
the UDS is indicated. In addition to this, the proportion of the subjects considered
for which the form was not completed is provided. This information is not applicable
to the form header, and is not included for three forms (C2, D2, Milestones) as no
variables were used from them.

Each of the variables utilised is subsequently considered in detail. Their name
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is provided, along with the versions of the UDS they are in, or associated with
for those which were newly derived. All of the variables are linked to versions 1.2
and 2.0, as a direct result of the way in which variables were selected for analysis.
Whether the variable was derived is also indicated. There are two types of derived
variable in the UDS, as defined by NACC, namely those encapsulating data collected
differently across versions, and those resulting from some form of analysis by NACC
(National Alzheimer’s Coordinating Center, 2017). Only the latter are highlighted,
along with those derived as part of this work to consolidate data and provide it in a
more suitable format. A brief description of the variable, and its corresponding data
type, is given next. This is followed by the possible values for the variable, and those
identified as either missing (M) or conditionally missing (CM) are indicated. The
proportions of the subjects considered with these types of values were calculated, and
are stated. Brief comments on individual values are also provided where necessary,
typically explaining why it was deemed missing or conditionally missing.

For those variables acting as the parent in a dependency, the value which
causes the child to be conditionally missing is given; this is denoted the dependency
trigger. A parent variable is immediately followed by any children it has, each of
which is preceded with a dashed line. For any variables which can be determined by
a relationship, said relationship is declared.

Missing values were imputed, and the variables requiring imputation are high-
lighted. It was important that the dependencies and relationships were maintained
during imputation, so far as possible; thus, two additional actions are also considered.
These are whether the parent should be inspected, if the variable is the child in
a dependency; and whether an attempt should be made to calculate or derive the
variable from others, if it can be determined by a relationship. These actions relate to
the update steps discussed in section 3.2.5 in chapter 3, within which the imputation
procedure is fully explained.

Further information is supplied for a number of the variables in the form of
general comments. These can indicate any constraints on the variable, such as

whether it would be appropriate for a conditionally missing value to be considered
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as a potential fill value (i.e. imputed value); and inconsistencies between NACC'’s
documentation and the data set, particularly in reference to dependencies and
relationships. The general comments can also provide explanations for certain
decisions, and the original variables used to derive a new one.

Finally, the variables that were dropped from the data set are listed. The name
of each variable is provided, along with a brief description and the predominant
reason(s) for its exclusion. There were a variety of the latter, but the most common

ones were the variable contained free-text, and it was not in versions 1.2 and 2.0 of

the UDS.
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Form Header

NACCVNUM

FORMVER

Number of Variables 12
Number of Variables Used 4

VISIT_DATE

NACCID
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NACCID

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject identification number
Data Type NACC identifier

Values

Comments
Original Replacement

Prefix NACC
followed by
0-10 numbers

Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute
X X X

General Comments Only to be used to identify subjects. Should be excluded when analysis is
applied to the data set.

FORMVER

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Form version number
Data Type Continuous

Values
Comments
Original Replacement
1-3 - -
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
VISIT_DATE
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X 4

Description Form date (year, month, day)
Data Type Date/Time object
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Values

Comments
Original Replacement
Date from
2005 to 2016 )
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Derived from VISITMO, VISITDAY and VISITYR. Only to be used to put
other date variables into context. Should be excluded when analysis is applied
to the data set.

NACCVNUM

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description UDS visit number (order)
Data Type Continuous

Values
Comments
Original Replacement
1-20 - -
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Constant variable as only initial visits considered. Retained for testing
purposes.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

NACCADC
Center identification number
Information provided deemed irrelevant to the research.

PACKET
Packet code
Constant variable as only initial visits considered.

VISITMO
Form date - month
Replaced by the derived variable VISIT _DATE.

VISITDAY
Form date - day
Replaced by the derived variable VISIT DATE.

VISITYR
Form date - year
Replaced by the derived variable VISIT _DATE.

NACCAVST

Total number of all UDS visits made

Variable is constant across visits. Information provided would not be available
at an initial visit.

NACCNVST

Number of in-person UDS visits made

Variable is constant across visits. Information provided would not be available
at an initial visit.

NACCDAYS

Days from initial visit to most recent visit

Variable is constant across visits. Information provided would not be available
at an initial visit.

NACCFDYS
Days from initial visit to each follow-up visit
Constant variable as only initial visits considered.
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A1l - Subject Demographics

RESIDENC MARISTAT

NAGCREAS
NACCAGE
PRIMLANG
BIRTH_#MOS
SEX
NAGENIHR %
HANDED
NAGCLIVS
INDEPEND B
: HISPANIC
NAGCREFR
HISPOR

Number of Variables 25
Number of Variables Used 15
Form Required? v

Form Missingness 0.00%
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NACCREAS

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Description Primary reason for coming to an Alzheimer’s Disease Center (ADC)
Data Type Categorical

Values
Comments
Original Replacement
1-2 - .
7 - -
9 M (0.10%)
i Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCREFR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Principal referral source
Data Type Categorical

Values
Comments
Original Replacement
1-2 - -
8 - -
9 M (2.54%)
” Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments -
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BIRTH #MOS

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0, 3.0

v

Months from subject’s month/year of birth to month/year of visit

Continuous
Values
Comments
Original Replacement
Positive .
. - Year of birth from 1875 to 2001.
integer

Inspect Parent

Calculate/Derive

Impute

X

Derived from BIRTHMO and BIRTHYR.

SEX

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0, 3.0

X

Subject’s sex

Binary
Values
Comments
Original Replacement
Binary due to number of options
1-2 - .
available.
Inspect Parent Calculate/Derive Impute

X

HISPANIC

Description
Data Type

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0, 3.0

X

Hispanic/Latino ethnicity
Binary
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Values

Comments
Original Replacement
0-1 - -
9 M (0.41%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
HISPOR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Description Hispanic origins
Data Type Categorical
Values
Comments
Original Replacement
1-6 - -
50 - -
88 CM (92.36%)
99 M (0.21%)
4 oM Conditionally missing even though form
) required as variable dependent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments Values should be updated if parent imputed. A conditionally missing value
should not be used as a potential fill value if child imputed.

PRIMLANG

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Primary language
Data Type Categorical
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Values

Comments
Original Replacement
1-6 - -
8 - -
9 M (0.10%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
EDUC
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Description Years of education
Data Type Continuous
Values
Comments
Original Replacement
0-36 - -
99 M (0.71%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCLIVS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Description Living situation
Data Type Categorical
Values
Comments
Original Replacement
1-5 - -
9 M (0.25%)

Dependency Trigger -
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Relationship -

Inspect Parent Calculate/Derive Impute
X X v
General Comments -
INDEPEND
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Level of independence
Data Type Ordinal

Values
Comments
Original Replacement
1-4 - -
9 M (0.38%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
RESIDENC
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Description Type of residence
Data Type Categorical
Values
Comments
Original Replacement
1-4 - -
9 - Not replaced as ‘other or unknown’.
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments -
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MARISTAT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Marital status

Categorical
Values
Comments
Original Replacement
1-6 - -
9 - Not replaced as ‘other or unknown’.

Inspect Parent Calculate/Derive Impute

X X

HANDED

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Is the subject left- or right-handed?

Categorical
Values
Comments
Original Replacement
1-3 - -
9 oM Conditionally missing as cannot be

sensibly imputed. (0.53%)

Inspect Parent Calculate/Derive Impute

X X

NACCAGE

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 v X

Subject’s age at visit
Continuous
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
18-120 - -
Inspect Parent Calculate/Derive Impute

X X

NACCNIHR

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 v X
Derived National Institutes of Health (NIH) race definitions
Categorical

Values
Comments
Original Replacement

1-6 - -

99 M (1.63%)

Inspect Parent Calculate/Derive Impute
X X v
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

BIRTHMO
Subject’s month of birth
Replaced by the derived variable BIRTH_#MOS.

BIRTHYR
Subject’s year of birth
Replaced by the derived variable BIRTH__#MOS.

HISPORX
Hispanic origins, other - specify
Free-text variable.

RACE
Race
Information provided used to generate NACCNIHR.

RACEX
Race, other - specify
Free-text variable and information provided used to generate NACCNIHR.

RACESEC
Second race
Information provided used to generate NACCNIHR.

RACESECX
Second race, other - specify
Free-text variable and information provided used to generate NACCNIHR.

RACETER

Third race

Information provided used to generate NACCNIHR.
RACETERX

Third race, other - specify

Free-text variable and information provided used to generate NACCNIHR.

PRIMLANX
Primary language, other - specify
Free-text variable.

NACCAGEB
Subject’s age at initial visit
Equivalent to NACCAGE as only initial visits considered.
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A2 - Co-participant Demographics

INRELTO

INSEX

INBIR_#MOS

INRELY
INVISITS

INCIVIVTH

INCALLS

Number of Variables 22
Number of Variables Used 7
Form Required? X

Form Missingness 6.32%
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INBIR_#MOS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Months from co-participant’s month/year of birth to month/year of visit
Data Type Continuous

Values
Comments
Original Replacement
Positive .
. - Year of birth from 1875 to 2001.
integer

Conditionally missing as cannot be
CM - sensibly imputed and form not required.
(5.16% (9999) + 6.32% (-4))

Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X X

General Comments Derived from INBIRMO and INBIRYR. Missingness based on that of
INBIRYR. ‘Average’ month (June) used if only year provided.

INSEX

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Co-participant’s sex
Data Type Binary

Values
Comments
Original Replacement
Binary due to number of options
1-2 - .
available.
» oM Conditionally missing as form not
required. (6.32%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
INRELTO
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

192



Description Co-participant’s relationship to subject
Data Type Categorical

Values
Comments
Original Replacement
1-7 - -
i oM Conditionally missing as form not
required. (6.32%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
INLIVWTH
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Does the co-participant live with the subject?
Data Type Binary

Values

Comments
Original Replacement
0-1 - -
4 oM COHdlthl’laH}.l missing as form not
required. (6.32%)
Dependency Trigger 1
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
INVISITS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description If no, approximate frequency of in-person visits?
Data Type Ordinal
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Values

Comments
Original Replacement
1-6 - -
8 CM (58.96%)
i oM Conditionally missing as form not
required. (6.32%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

INCALLS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description If no, approximate frequency of telephone contact?
Data Type Ordinal

Values

Comments
Original Replacement
1-6 - -
8 CM (58.96%)
iy oM Conditionally missing as form not
required. (6.32%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

INRELY

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Is there a question about the co-participant’s reliability?
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
4 M Conditionally missing as form not
required. (6.32%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments -
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

INBIRMO
Co-participant’s month of birth
Replaced by the derived variable INBIR_ #MOS.

INBIRYR
Co-participant’s year of birth
Replaced by the derived variable INBIR_ #MOS.

INHISP
Co-participant Hispanic/Latino ethnicity
Information provided deemed irrelevant to the research.

INHISPOR
Co-participant’s Hispanic origins

Information provided deemed irrelevant to the research.

INHISPOX

Co-participant of Hispanic origins, other - specify

Free-text variable and information provided deemed irrelevant to the research.
INRACE

Co-participant race

Information provided deemed irrelevant to the research.
INRACEX
Co-participant race, other - specify

Free-text variable and information provided deemed irrelevant to the research.
INRASEC

Co-participant second race

Information provided deemed irrelevant to the research.

INRASECX

Co-participant second race, other - specify

Free-text variable and information provided deemed irrelevant to the research.

INRATER
Co-participant third race
Information provided deemed irrelevant to the research.

INRATERX
Co-participant third race, other - specify
Free-text variable and information provided deemed irrelevant to the research.

INEDUC
Co-participant’s years of education

Information provided deemed irrelevant to the research.
INRELTOX
Co-participant relationship, other - specify

Free-text variable.

NACCNINR
Derived National Institutes of Health (NIH) race definitions
Information provided deemed irrelevant to the research.
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Name
Description
Reason

Name
Description

Reason

INKNOWN
How long has the co-participant known the subject?

Only available in version 3.0 of the UDS.
NEWINF
Is this a new co-participant - i.e. one who was not a co-participant at any past

UDS visit?
Information provided would not be available at an initial visit.
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A3 - Family History

NAGEMOM

Number of Variables 15
Number of Variables Used 3
Form Required? X

NACCFAM

Form Missingness 1.15%

NACCDAD
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NACCMOM

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Indicator of mother with cognitive impairment
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (4.81%)
o oM COIldlthIlaH}.l missing as form not
required. (1.15%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments A conditionally missing value should not be used as a potential fill value if
imputed.
NACCDAD
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Indicator of father with cognitive impairment
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (7.37%)
Conditionally missing as form not
-4 CM required. (1.15%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments A conditionally missing value should not be used as a potential fill value if
imputed.
NACCFAM
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X
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Description Indicator of first-degree family member with cognitive impairment
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (9.85%)
i oM Conditionally missing as form not

required. (1.15%)

Dependency Trigger -
Relationship NACCFAM = 1 if NACCMOM and/or NACCDAD = 1

Inspect Parent Calculate/Derive Impute

X v v

General Comments Only missing values should be updated if NACCMOM and/or NACCDAD
imputed. A conditionally missing value should not be used as a potential fill
value if variable imputed.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

NACCAM
In this family, is there evidence for an Alzheimer’s disease (AD) mutation?
Only available in version 3.0 of the UDS.

NACCAMX
If yes, other - specify
Free-text variable and only available in version 3.0 of the UDS.

NACCAMS
Source of evidence for AD mutation
Only available in version 3.0 of the UDS.

NACCAMSX
If other - specify
Free-text variable and only available in version 3.0 of the UDS.

NACCFM

In this family, is there evidence for a frontotemporal lobar degeneration

(FTLD) mutation?
Only available in version 3.0 of the UDS.

NACCFMX
If yes, other - specify
Free-text variable and only available in version 3.0 of the UDS.

NACCFMS
Source of evidence for FTLD mutation
Only available in version 3.0 of the UDS.

NACCFMSX
If other - specify
Free-text variable and only available in version 3.0 of the UDS.

NACCOM

In this family, is there evidence for a mutation other than an AD or FTLD

mutation?
Only available in version 3.0 of the UDS.

NACCOMX
If yes - specify
Free-text variable and only available in version 3.0 of the UDS.

NACCOMS
Source of evidence for other mutation
Only available in version 3.0 of the UDS.

NACCOMSX
If other - specify
Free-text variable and only available in version 3.0 of the UDS.
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A4 - Medications

NACCADEP NACEDBMD
NACCAAAS
NAGCBETA
NACCHTNC
NACCANGI NACCEPMD
NACCCCBS
NACCAHTN
NACCLIPL nacANX
ANYMEDS
NACCVASD
NAGCEMD
NACCACEI NACCDIUR
NACCPDMD Na@mo
NACCNSD
@ NAGCAPSY
- NACCAC

Number of Variables
Number of Variables Used
Form Required?

Form Missingness

62
21

1.09%
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ANYMEDS

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Description Subject taking any medications
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
o oM Condltlonally missing as form not
required. (1.09%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
NACCAMD
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Total number of medications reported at each visit
Data Type Continuous

Values
Comments
Original Replacement
0-40 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
o oM COIldlthl’laH}./ missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCHTNC

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 v X
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Description Reported current use of an antihypertensive combination therapy
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
o oM COHdlthHaH}./ missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCACEI

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an angiotensin converting enzyme (ACE) inhibitor
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCAAAS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an antiadrenergic agent
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCBETA

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of a beta-adrenergic blocking agent (Beta-Blocker)
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCCCBS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of a calcium channel blocking agent
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCDIUR

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of a diuretic
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCVASD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of a vasodilator
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCANGI

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an angiotensin II inhibitor
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCAHTN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of any type of antihypertensive or blood pressure
medication
Data Type Binary

207



Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not

required. (1.09%)

Dependency Trigger -
Relationship NACCAHTN = 1 if NACCHTNC, NACCACEIL, NACCAAAS, NACCBETA,
NACCCCBS, NACCDIUR, NACCVASD and/or NACCANGI = 1 else 0

Inspect Parent Calculate/Derive Impute

X X X

General Comments No need to inspect parent or calculate/derive variable as no missing values in
any of the variables involved.

NACCLIPL

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of lipid lowering medication
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCNSD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of nonsteroidal anti-inflammatory medication
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCAC

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an anticoagulant or antiplatelet agent
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCADEP

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an antidepressant
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

'NACCAPSY

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an antipsychotic agent
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCAANX

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an anxiolytic, sedative or hypnotic agent
Data Type Binary

210



Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCPDMD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of an antiparkinson agent
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCEMD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of estrogen hormone therapy
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCEPMD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of estrogen + progestin hormone therapy
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
i oM Conditionally missing as form not
required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.

NACCDBMD

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Reported current use of a diabetes medication
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
oM ) Replaced 0 and -4 values to indicate
dependence on ANYMEDS. (8.14%)
4 oM Conditionally missing as form not
B required. (1.09%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as no missing values in parent.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

DRUGI1
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG2
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG3
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG4
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG5H
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG6
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGT
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGS8
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG9
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGI10
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGI11
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGI12
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG13
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG14
Name of medication used within two weeks of UDS visit
Free-text variable.
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Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

DRUG15
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGI16
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG17
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG18
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG19
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG20
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG21
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG22
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG23
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG24
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG25
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG26
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG27
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG28
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG29
Name of medication used within two weeks of UDS visit
Free-text variable.
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Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

DRUG30
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG31
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG32
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG33
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG34
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG35
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG36
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG37
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUGS38
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG39
Name of medication used within two weeks of UDS visit
Free-text variable.

DRUG40
Name of medication used within two weeks of UDS visit
Free-text variable.

NACCADMD

Reported current use of FDA-approved medication for Alzheimer’s disease

(AD) symptoms

Information provided may indicate AD has previously been diagnosed.
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A5 - Health History

CVAFIB pIABETES

INGONTYCOTHR QUITSMOK
PSYCDIS ) T
TRAQYGHR cvere  TRAUMERF
CVBYPASS SEIZURES
THYROID
. PACKSPER HYPERCHO
CVPACE
DEROTHR B13DEF
HYPERTEN
CBTIA
TRAGMEXT CVOTHR
NACCTIYR_#YRS ABUSOTHR
SMOKYRS 5 CVANGIO
8 DEP2YRS ’
PDOTHR o Naggre!
INGONTF TOBAC30 -~ )
PDOTHRYR_#YRS TOBACG100
ALCOHOL
CBSIBOKE PDYR#YRS

NACCSTYR_#YRS

Number of Variables
Number of Variables Used
Form Required?

Form Missingness

(0]
38

0.00%
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CVHATT

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Description Heart attack/cardiac arrest
Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.35%)
o Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
CVAFIB
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Atrial fibrillation
Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.51%)
» M Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
CVANGIO
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
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Description
Data Type

Dependency Trigger
Relationship

General Comments

Angioplasty /endarterectomy /stent

Categorical
Values
Comments
Original Replacement
0-2 - -
9 M (0.14%)
4 M Missing as form required and variable
) independent. (0.00%)
Inspect Parent Calculate/Derive Impute
X X v

CVBYPASS

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X
Cardiac bypass procedure
Categorical

Values
Comments
Original Replacement

0-2 - -

9 M (0.11%)

4 M Missing as form required and variable

independent. (0.00%)

Inspect Parent Calculate/Derive Impute

X X

CVPACE

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Pacemaker
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.09%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

CVCHF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X
Congestive heart failure
Categorical

Values
Comments
Original Replacement

0-2 - -

9 (0.25%)

iy Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

CVOTHR

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Other cardiovascular disease
Categorical
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Values

Comments
Original Replacement
0-2 - -
9 (0.65%)
i Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments -

CBSTROKE
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Description Stroke
Data Type Categorical
Values
Comments
Original Replacement
0-2 - -
9 M (0.40%)
4 M Missing as form required and variable

independent. (0.00%)

Dependency Trigger 0
Relationship -

Inspect Parent

Calculate/Derive Impute

X

X v

General Comments -

NACCSTYR_#YR

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X v

Description Years from most recently reported year of stroke as of the initial visit to year

of visit
Data Type Continuous
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Values

Comments
Original Replacement
Positive ) Year of stroke from 1900 to 2016. One
integer negative (-1) value converted to zero.
Conditionally missing even though form
oM ) required as variable dependent and
cannot be sensibly imputed. (94.41%
(8888) + 1.41% (9999) + 0.40% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Derived from NACCSTYR. No need to inspect parent as cannot be sensibly

imputed.
CBTIA
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Transient ischemic attack (TIA)
Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.92%)
o Missing as form required and variable
independent. (0.00%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCTIYR_#YR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Years from most recently reported year of TIA as of the initial visit to year of
visit
Data Type Continuous
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Values

Comments
Original Replacement
Positive . Year of TIA from 1900 to 2016,
integer
Conditionally missing even though form
oM ) required as variable dependent and
cannot be sensibly imputed. (94.08%
(8888) + 0.75% (9999) + 0.92% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Derived from NACCTIYR. No need to inspect parent as cannot be sensibly

imputed.
PD
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Parkinson’s disease (PD)
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.30%)
4 Missing as form required and variable
independent. (0.00%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments -
PDYR_#YRS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X 4

Description Years from year of PD diagnosis to year of visit
Data Type Continuous
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Values

Comments
Original Replacement
Positive ) Year of diagnosis from 1900 to 2016. Six
integer negative (-1) values converted to zero.
Conditionally missing even though form
oM ) required as variable dependent and
cannot be sensibly imputed. (97.66%
(8888) + 0.20% (9999) + 0.00% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Derived from PDYR. No need to inspect parent as cannot be sensibly imputed.

PDOTHR

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Other parkinsonian disorder
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.33%)
v M Missing as form required and variable
independent. (0.00%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments -
PDOTHRYR_#YR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X 4

Description Years from year of parkinsonian disorder diagnosis to year of visit
Data Type Continuous
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Values

Comments
Original Replacement
Positive ; Year of diagnosis from 1900 to 2016.
integer
Conditionally missing even though form
oM ) required as variable dependent and
cannot be sensibly imputed. (96.95%
(8888) + 0.47% (9999) + 0.00% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments Derived from PDOTHRYR. No need to inspect parent as cannot be sensibly

imputed.
SEIZURES
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Seizures
Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.40%)
4 Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
TRAUMBRF
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Brain trauma - brief unconsciousness
Data Type Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (1.17%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

TRAUMEXT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0 X X
Brain trauma - extended unconsciousness
Categorical
Values
Comments
Original Replacement

0-2 - _

9 (0.89%)

” Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

TRAUMCHR

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0

X X

Brain trauma - chronic deficit

Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.68%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

NCOTHR

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2,2.0

X X

Other neurological condition

Categorical
Values
Comments
Original Replacement
0-2 - -
9 (0.83%)
4 Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

HYPERTEN

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Hypertension
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.37%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

HYPERCHO

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X
Hypercholesterolemia
Categorical

Values
Comments
Original Replacement

0-2 - -

9 (1.25%)

iy Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

DIABETES

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Diabetes
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.38%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

B12DEF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Vitamin B12 deficiency
Categorical

Values
Comments
Original Replacement
0-2 - -
9 (2.04%)
” Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

THYROID

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Thyroid disease
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.84%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

INCONTU

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Incontinence - urinary

Categorical
Values
Comments
Original Replacement
0-2 - -
9 (0.29%)
o Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X

INCONTF

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Incontinence - bowel
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-2 - -
9 (0.27%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

DEP2YRS

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Active depression in the last two years

Binary
Values
Comments
Original Replacement
0-1 - -
9 (0.76%)
4 Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

DEPOTHR

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Depression episodes more than two years ago

Binary
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Values

Comments
Original Replacement
0-1 - -
9 M (1.72%)
i Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
ALCOHOL
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Alcohol abuse - clinically significant impairment occurring over a 12-month
period manifested in one of the following areas: work, driving, legal or social
Data Type Categorical

Values

Comments
Original Replacement
0-2 - -
9 M (0.37%)
i M Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
TOBAC30
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Smoked cigarettes in last 30 days
Data Type Binary
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-1 - -
9 (0.62%)
i Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

TOBAC100

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Smoked more than 100 cigarettes in life

Binary
Values
Comments
Original Replacement
0-1 - -
9 (1.36%)
4 Missing as form required and variable

independent. (0.00%)

Inspect Parent

Calculate/Derive Impute

X

X v

SMOKYRS

Description
Data Type

Form Versions

Derived (NACC) Derived (New)

1.2, 2.0, 3.0

X X

Total years smoked cigarettes

Continuous
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Values

Comments
Original Replacement
0-87 - -
88 CM (0.26%)
99 M (3.47%)
4 Missing as form required and variable
) independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments NACC’s coding guidebooks state variable is dependent on TOBAC100,
but dependency does not hold and is omitted from NACC’s data element
dictionaries for versions 1.2 and 2.0. A conditionally missing value should be
used as a potential fill value if imputed.

PACKSPER

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Average number of packs smoked per day
Data Type Ordinal

Values

Comments
Original Replacement
0 oM Omitted from original forms and
NACC'’s coding guidebooks. (53.66%)
1-5 - -
8 CM (1.34%)
9 M (2.59%)
4 Missing as form required and variable
) independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments NACC’s coding guidebooks state variable is dependent on TOBAC100,
and NACC’s researchers data dictionary states variable is dependent
on TOBAC100 and SMOKYRS, but dependencies do not hold and are
omitted from NACC’s data element dictionaries for versions 1.2 and 2.0. A
conditionally missing value should be used as a potential fill value if imputed.
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QUITSMOK

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description If the subject quit smoking, age at which he/she last smoked (i.e. quit)
Data Type Continuous

Values
Comments
Original Replacement
7-110 - -
388 oM Indicates no significant smoking history
or subject still smokes. (57.50%)
999 M (3.87%)
i M Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments NACC’s coding guidebooks state variable is dependent on TOBAC100,
but dependency does not hold and is omitted from NACC’s data element
dictionaries for versions 1.2 and 2.0. A conditionally missing value should be
used as a potential fill value if imputed.

ABUSOTHR

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Other abused substances - clinically significant impairment occurring over a
12-month period manifested in one of the following areas: work, driving, legal
or social

Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.36%)
4 Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments -

PSYCDIS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Other psychiatric disorder
Data Type Categorical

Values
Comments
Original Replacement
0-2 - -
9 M (0.45%)
o Missing as form required and variable
independent. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCTBI
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description History of traumatic brain injury (TBI)
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (1.20%)
-4 M Missing as form required. (0.00%)

Dependency Trigger -
Relationship NACCTBI = 1 if TRAUMBRF, TRAUMEXT and/or TRAUMCHR = 1 or 2
else 0 (NACCTBI = M if all M or all M and 0)

Inspect Parent Calculate/Derive Impute

X v X

General Comments Values should be updated if TRAUMBRF, TRAUMEXT and/or TRAUMCHR
imputed.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

CVOTHRX

Other cardiovascular disease - specify

Free-text variable and, even though present in original forms and NACC’s
coding guidebooks for all versions, NACC’s researchers data dictionary states
only available in version 3.0 of the UDS.

NACCSTYR
Most recently reported year of stroke as of the initial visit
Replaced by the derived variable NACCSTYR_ #YRS.

NACCTIYR
Most recently reported year of TIA as of the initial visit
Replaced by the derived variable NACCTIYR_#YRS.

PDYR
Year of PD diagnosis
Replaced by the derived variable PDYR_ #YRS.

PDOTHRYR
Year of parkinsonian disorder diagnosis
Replaced by the derived variable PDOTHRYR_ #YRS.

NCOTHRX
Other neurological condition - specify
Free-text variable.

ABUSX
If reported other abused substances - specify abused substance(s)
Free-text variable.

PSYCDISX
If recent/active or remote/inactive psychiatric disorder - specify disorder
Free-text variable.

HATTMULT
More than one heart attack/cardiac arrest?
Only available in version 3.0 of the UDS.

HATTYEAR
Year of most recent heart attack
Only available in version 3.0 of the UDS.

CVPACDEF
Pacemaker and/or defibrillator
Only available in version 3.0 of the UDS.

CVANGINA
Angina
Only available in version 3.0 of the UDS.

CVHVALVE
Heart valve replacement or repair
Only available in version 3.0 of the UDS.

STROKMUL
More than one stroke reported as of the initial visit
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Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name

Only available in version 3.0 of the UDS.

TIAMULT
More than one TIA reported as of the initial visit
Only available in version 3.0 of the UDS.

TBI
Traumatic brain injury (TBI)
Only available in version 3.0 of the UDS.

TBIBRIEF
TBI with brief loss of consciousness
Only available in version 3.0 of the UDS.

TBIEXTEN
TBI with extended loss of consciousness - 5 minutes or longer
Only available in version 3.0 of the UDS.

TBIWOLOS

TBI without loss of consciousness - as might result from military detonations

or sports injury
Only available in version 3.0 of the UDS.

TBIYEAR
Year of most recent TBI
Only available in version 3.0 of the UDS.

DIABTYPE
If recent/active or remote/inactive diabetes, which type?
Only available in version 3.0 of the UDS.

ARTHRIT
Arthritis
Only available in version 3.0 of the UDS.

ARTHTYPE
Type of arthritis
Only available in version 3.0 of the UDS.

ARTHTYPX
Other arthritis - specify
Free-text variable and only available in version 3.0 of the UDS.

ARTHUPEX
Arthritis, region affected - upper extremity
Only available in version 3.0 of the UDS.

ARTHLOEX
Arthritis, region affected - lower extremity
Only available in version 3.0 of the UDS.

ARTHSPIN
Arthritis, region affected - spine
Only available in version 3.0 of the UDS.

ARTHUNK
Arthritis, region affected - unknown
Only available in version 3.0 of the UDS.

APNEA
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Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Sleep apnea history reported at initial visit
Only available in version 3.0 of the UDS.

RBD
REM sleep behaviour disorder (RBD) history reported at initial visit
Only available in version 3.0 of the UDS.

INSOMN
Hyposomnia/insomnia history reported at initial visit
Only available in version 3.0 of the UDS.

OTHSLEEP
Other sleep disorder history reported at initial visit
Only available in version 3.0 of the UDS.

OTHSLEEX
Other sleep disorder - specify
Free-text variable and only available in version 3.0 of the UDS.

ALCOCCAS
In the past three months, has the subject consumed any alcohol?
Only available in version 3.0 of the UDS.

ALCFREQ

During the past three months, how often did the subject have at least one
drink of any alcoholic beverage such as wine, beer, malt liquor or spirits?
Only available in version 3.0 of the UDS.

PTSD
Post-traumatic stress disorder (PTSD)
Only available in version 3.0 of the UDS.

BIPOLAR
Bipolar disorder
Only available in version 3.0 of the UDS.

SCHIZ
Schizophrenia
Only available in version 3.0 of the UDS.

ANXIETY
Anxiety
Only available in version 3.0 of the UDS.

OCD
Obsessive-compulsive disorder (OCD)
Only available in version 3.0 of the UDS.

NPSYDEV

Developmental neuropsychiatric disorders (e.g. autism spectrum disorder
(ASD), attention-deficit hyperactivity disorder (ADHD), dyslexia)

Only available in version 3.0 of the UDS.
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B1 - Physical Examination

VISWCORR

HEIGHT

VISCORR
NACCBMI
VISION
Number of Variables 12
erBins Number of Variables Used 12
* WaggHT Form Required? X

Form Missingness 1.42%

HEARAID
HRATE

HEARWAID
HEARING
BPSYS
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HEIGHT

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject’s height (inches)
Data Type Continuous

Values
Comments
Original Replacement
36.0-87.9 - -
99.9 in original forms and NACC’s
88.8 M coding guidebooks for versions 1.2 and
2.0. (9.63%)
-4.0 rather than -4 due to data type.
-4.0 CM Conditionally missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments A conditionally missing value should not be used as a potential fill value if

imputed.
WEIGHT
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject’s weight (1bs)
Data Type Continuous

Values
Comments
Original Replacement
50-400 - -
999 in original forms and NACC’s coding
888 M guidebooks for versions 1.2 and 2.0.
(7.08%)
" oM Condltlonall}f missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments A conditionally missing value should not be used as a potential fill value if

imputed.
BPSYS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject blood pressure (sitting), systolic
Data Type Continuous

Values
Comments
Original Replacement
70-230 - -
999 in original forms and NACC’s coding
888 M guidebooks for versions 1.2 and 2.0.
(7.62%)
4 oM Condltlonally missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments A conditionally missing value should not be used as a potential fill value if
imputed.
BPDIAS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject blood pressure (sitting), diastolic
Data Type Continuous

Values
Comments
Original Replacement
30-140 - -
999 in original forms and NACC’s coding
888 M guidebooks for versions 1.2 and 2.0.
(7.64%)
o M Conditionally missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments A conditionally missing value should not be used as a potential fill value if

imputed.
HRATE
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject resting heart rate (pulse)
Data Type Continuous

Values
Comments
Original Replacement
33-160 - -
999 in original forms and NACC’s coding
888 M guidebooks for versions 1.2 and 2.0.
(8.08%)
4 oM Conditionally missing as form not
- required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should not be used as a potential fill value if

imputed.
VISION
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Without corrective lenses, is the subject’s vision functionally normal?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (2.12%)
i oM Condltlonall)f missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments A conditionally missing value should not be used as a potential fill value if

imputed.
VISCORR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Does the subject usually wear corrective lenses?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M Conditionally missing as cannot be
sensibly imputed. (1.70%)
y oM Conditionally missing as form not
required. (1.42%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
VISWCORR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description If the subject usually wears corrective lenses, is the subject’s vision functionally
normal with corrective lenses?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
554 values converted from -4 to 8 to
8 CM indicate dependence on VISCORR.
(24.06%)
9 oM Conditionally missing as cannot be
sensibly imputed. (1.19%)
i oM Conditionally missing as form not

required. (1.42%)

Dependency Trigger -
Relationship -
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Inspect Parent Calculate/Derive Impute

X X X

General Comments No need to inspect parent as parent and child cannot be sensibly imputed.

HEARING

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Without a hearing aid(s), is the subject’s hearing functionally normal?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (1.65%)
o oM Conditionally missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments A conditionally missing value should not be used as a potential fill value if
imputed.
HEARAID
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Does the subject usually wear a hearing aid(s)?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 oM Conditionally missing as cannot be
sensibly imputed. (1.69%)
4 oM Conditionally missing as form not
required. (1.42%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
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General Comments -

HEARWAID

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description If the subject usually wears a hearing aid(s), is the subject’s hearing
functionally normal with a hearing aid(s)?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
550 values converted from -4 to 8 to
8 CM indicate dependence on HEARAID.
(86.03%)
9 oM Conditionally missing as cannot be
sensibly imputed. (0.41%)
i oM Conditionally missing as form not
required. (1.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments No need to inspect parent as parent and child cannot be sensibly imputed.

NACCBMI

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Body mass index (BMI)
Data Type Continuous

Values
Comments
Original Replacement
10.0-100.0 - -
888.8 M (10.55%)
-4.0 rather than -4 due to data type.
-4.0 CM Conditionally missing as form not

required. (1.42%)

Dependency Trigger -
Relationship NACCBMI = (WEIGHT x 703)/HEIGHT? if HEIGHT and WEIGHT not M
(NACCBMI = M if any M)
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Inspect Parent Calculate/Derive Impute

X v X

General Comments Values should be updated if HEIGHT and/or WEIGHT imputed. Ensure any
calculated values are within the allowed range.
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B2 - Hachinski Ischemic Score and Cerebrovascular Disease

FOCLSYM

EMOT

SOMATIC

STEPWISE

ABRUPT

HXSTROKE

HACHIN

FOCLSIGN

HXHYPER

Number of Variables 17
Number of Variables Used 9
Form Required? X

Form Missingness 2.27%
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ABRUPT

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Description Abrupt onset (re: cognitive status)
Data Type Binary

Values
Comments
Original Replacement
0 - -
9 i Binary due to number of options
available.
» oM Conditionally missing as form not
required. (2.27%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
STEPWISE
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Stepwise deterioration (re: cognitive status)
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
o oM Conditionally missing as form not
required. (2.27%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
SOMATIC
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X
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Description
Data Type

Dependency Trigger
Relationship

General Comments

Somatic complaints
Binary

Comments

Values
Original Replacement
0-1 -
-4 CM

Conditionally missing as form not
required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

EMOT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2,2.0

X

X

Emotional incontinence
Binary

Comments

Conditionally missing as form not

Values
Original Replacement
0-1 -
-4 CM

required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

HXHYPER

Description
Data Type

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0

X

X

History or presence of hypertension

Binary
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-1 - -
4 M Conditionally missing as form not

required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

HXSTROKE

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0

X

X

History of stroke

Binary
Values
Comments
Original Replacement
0 - -
9 i Binary due to number of options
available.
v oM Conditionally missing as form not

required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

FOCLSYM

Description
Data Type

Form Versions

Derived (NACC)

Derived (New)

1.2,2.0

X

X

Focal neurological symptoms

Binary
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0 - .
9 i Binary due to number of options
available.
i oM Conditionally missing as form not

required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

FOCLSIGN

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0

X

X

Focal neurological signs
Binary

Comments

Binary due to number of options

Values
Original Replacement
0 -
2 -
-4 CM

available.

Conditionally missing as form not
required. (2.27%)

Inspect Parent

Calculate/Derive

Impute

X

X

HACHIN

Description
Data Type

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0

X

X

Hachinski ischemic score
Continuous
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Values

Comments
Original Replacement
0-12 - .
4 M Conditionally missing as form not

required. (2.27%)

Dependency Trigger -
Relationship HACHIN = sum of ABRUPT, STEPWISE, SOMATIC, EMOT, HXHYPER,
HXSTROKE, FOCLSYM and FOCLSIGN

Inspect Parent Calculate/Derive Impute

X X X

General Comments No need to calculate/derive variable as no missing values in any of the variables
involved.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

CVDCOG

Cerebrovascular disease contributing to cognitive impairment

Only available in version 2.0 of the UDS.

STROKCOG

Relationship between stroke and cognitive impairment

Only available in version 2.0 of the UDS.

CVDIMAG
Imaging evidence
Only available in version 2.0 of the UDS.

CVDIMAG1
Single strategic infarct
Only available in version 2.0 of the UDS.

CVDIMAG?2
Multiple infarcts
Only available in version 2.0 of the UDS.

CVDIMAG3
Extensive white matter hyperintensity
Only available in version 2.0 of the UDS.

CVDIMAG4
Other imaging evidence
Only available in version 2.0 of the UDS.

CVDIMAGX
Other imaging evidence - specify

Free-text variable and only available in version 2.0 of the UDS.
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B3 - Unified Parkinson’s Disease

Rating Scale

FACEXP
HANBMOVR
RIGBUPRT
TAPSRT
HANBMOVL
SPEECH
LEGRT
HANDALTL ~ POSTURE

RIGDNECK TRACTLHD

TRESTRHD

ARISING

TRESTRFT

RIGDUPLF

LEGLF
TRACTRHD
RIGDLOLF
TAPSLF
TRESTFAC
BRADYKIN
POSSTAB
HANDALTR  pPDNORMAL
TREQDHD TRESTLFT
RIGDLORT
GAIT

Number of Variables
Number of Variables Used
Form Required?

Form Missingness

95
28

2.58%
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SPEECH

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Description Speech
Data Type Ordinal

Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.30%)
o M Conditionally missing as form not
required. (2.58%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
FACEXP
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Facial expression
Data Type Ordinal

Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.07%)
o oM Conditionally missing as form not
required. (2.58%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
TRESTFAC
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X
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Description Tremor at rest - face, lips, chin
Data Type Ordinal

Values
Comments
Original Replacement
0-4 - -
3 oM Conditionally missing as value omitted
for a reason. (0.02%)
4 oM Conditionally missing as form not
B required. (2.58%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
TRESTRHD
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X
Description Tremor at rest - right hand
Data Type Ordinal
Values
Comments
Original Replacement
0-4 - -
3 oM Conditionally missing as value omitted
for a reason. (0.03%)
» oM Conditionally missing as form not
required. (2.58%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
TRESTLHD
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Tremor at rest - left hand
Data Type Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.04%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TRESTRFT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Tremor at rest - right foot

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.04%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TRESTLFT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Tremor at rest - left foot
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.05%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TRACTRHD

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Action or postural tremor - right hand

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.23%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TRACTLHD

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Action or postural tremor - left hand
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.26%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

RIGDNECK

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Rigidity - neck

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.23%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

RIGDUPRT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Rigidity - right upper extremity
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.19%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

RIGDUPLF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Rigidity - left upper extremity

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.20%)
4 oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

RIGDLORT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Rigidity - right lower extremity
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.26%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

RIGDLOLF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Rigidity - left lower extremity

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.27%)
4 oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TAPSRT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Finger taps - right hand
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.76%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

TAPSLF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Finger taps - left hand

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.78%)
4 oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

HANDMOVR

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Hand movements - right hand
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.80%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

HANDMOVL

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Hand movements - left hand

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.80%)
» oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

HANDALTR

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Alternating movement - right hand
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (2.07%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

HANDALTL

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Alternating movement - left hand

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (2.10%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

LEGRT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Leg agility - right leg
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (2.17%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

LEGLF

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Leg agility - left leg

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (2.20%)
» oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

ARISING

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Arising from chair
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.23%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

POSTURE

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X
Posture
Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.07%)
4 oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

GAIT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2,2.0 X X

Gait
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (1.12%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

POSSTAB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Posture stability

Ordinal
Values
Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (2.68%)
i oM Conditionally missing as form not

required. (2.58%)

Inspect Parent Calculate/Derive Impute

X X

BRADYKIN

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0 X X

Body bradykinesia and hypokinesia
Ordinal
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Values

Comments
Original Replacement
0-4 - -
8 oM Conditionally missing as value omitted
for a reason. (0.34%)
4 oM Conditionally missing as form not
B required. (2.58%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
PDNORMAL
Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Unified Parkinson’s Disease Rating Scale (UPDRS) normal
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
8 oM Conditionally missing as cannot be
sensibly imputed. (0.30%)
4 oM Conditionally missing as form not

required. (2.58%)

Dependency Trigger -
Relationship PDNORMAL = 1 if SPEECH, FACEXP, TRESTFAC, TRESTRHD,
TRESTLHD, TRESTRFT, TRESTLFT, TRACTRHD, TRACTLHD,
RIGDNECK, RIGDUPRT, RIGDUPLF, RIGDLORT, RIGDLOLF, TAPSRT,
TAPSLF, HANDMOVR, HANDMOVL, HANDALTR, HANDALTL, LEGRT,
LEGLF, ARISING, POSTURE, GAIT, POSSTAB and BRADYKIN = 0 else
0 (PDNORMAL = CM if all CM or all CM and 0)

Inspect Parent Calculate/Derive Impute

X X X

General Comments NACC’s coding guidebooks and data element dictionaries for versions 1.2 and
2.0 state all B3 variables are dependent on PDNORMAL but dependency does
not hold. No need to calculate/derive variable as no missing values in any of
the variables involved.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

SPEECHX
Speech; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

FACEXPX
Facial expression; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRESTFAX
Tremor at rest - face, lips, chin; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRESTRHX
Tremor at rest - right hand; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRESTLHX
Tremor at rest - left hand; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRESTRFX
Tremor at rest - right foot; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRESTLFX
Tremor at rest - left foot; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRACTRHX
Action or postural tremor - right hand; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

TRACTLHX
Action or postural tremor - left hand; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

RIGDNEX
Rigidity - neck; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

RIGDUPRX
Rigidity - right upper extremity; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

RIGDUPLX
Rigidity - left upper extremity; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

RIGDLORX
Rigidity - right lower extremity; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.

RIGDLOLX
Rigidity - left lower extremity; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.
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Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

TAPSRTX
Finger taps - right hand; untestable - specify reason
Free-text variable.

TAPSLFX
Finger taps - left hand; untestable - specify reason
Free-text variable.

HANDMVRX
Hand movements - right hand; untestable - specify reason
Free-text variable.

HANDMVLX
Hand movements - left hand; untestable - specify reason
Free-text variable.

HANDATRX
Alternating movement - right hand; untestable - specify reason
Free-text variable.

HANDATLX
Alternating movement - left hand; untestable - specify reason
Free-text variable.

LEGRTX
Leg agility - right leg; untestable - specify reason
Free-text variable.

LEGLFX
Leg agility - left leg; untestable - specify reason
Free-text variable.

ARISINGX
Arising from chair; untestable - specify reason
Free-text variable.

POSTUREX
Posture; untestable - specify reason
Free-text variable.

GAITX
Gait; untestable - specify reason
Free-text variable.

POSSTABX
Posture stability; untestable - specify reason
Free-text variable.

BRADYKIX
Body bradykinesia and hypokinesia; untestable - specify reason
Free-text variable and only available in version 2.0 of the UDS.
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B4 - Clinical Dementia Rating

CDRGLOB
MEMORY

JUDGMENT
PERSCARE Number of Variables 10
] Number of Variables Used 8
al Form Required? v
HOMEHOBS Form Missingness 0.00%

ORIENT

COMMUN
CDRSUM
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MEMORY

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC)

Derived (New)

1.2, 2.0, 3.0 X

X

Memory
Ordinal

Values

Original Replacement

Comments

0.0-1.0
(step=0.5)

2.0-3.0
(step=1.0)

Inspect Parent Calculate/Derive

Impute

X X

ORIENT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC)

Derived (New)

1.2, 2.0, 3.0 X X
Orientation
Ordinal
Values
Comments
Original Replacement
0.0-1.0 i i
(step=0.5)
2.0-3.0 i i
(step=1.0)
Inspect Parent Calculate/Derive Impute
X X X

JUDGMENT

Description
Data Type

Form Versions Derived (NACC)

Derived (New)

1.2, 2.0, 3.0 X

X

Judgment and problem-solving
Ordinal
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Dependency Trigger
Relationship

General Comments

Values

Original Replacement

Comments

0.0-1.0
(step=0.5)

2.0-3.0
(step=1.0)

Inspect Parent

Calculate/Derive

Impute

X

COMMUN

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0, 3.0 X
Community affairs
Ordinal
Values
Comments
Original Replacement
0.0-1.0 ) )
(step=0.5)
2.0-3.0 i i
(step=1.0)
Inspect Parent Calculate/Derive Impute
X X

HOMEHOBB

Description
Data Type

Form Versions

Derived (NACC)

Derived (New)

1.2, 2.0, 3.0

X

Home and hobbies
Ordinal

Values

Original Replacement

Comments

0.0-1.0
(step=0.5)

2.0-3.0
(step=1.0)
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Dependency Trigger -

Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
PERSCARE
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Personal care
Data Type Ordinal

Values
Comments

Original Replacement

0.0-3.0
(step=1.0)

Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X X

General Comments -

CDRSUM

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Description Clinical Dementia Rating (CDR) sum of boxes
Data Type Continuous

Values
Comments

Original Replacement

0.0-16.0
(step=0.5)

17.0-18.0
(step=1.0)

Dependency Trigger -
Relationship CDRSUM = sum of MEMORY, ORIENT, JUDGMENT, COMMUN,
HOMEHOBB and PERSCARE

Inspect Parent Calculate/Derive Impute

X X X
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General Comments

No need to calculate/derive variable as no missing values in any of the variables
involved.

CDRGLOB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Global CDR
Ordinal
Values
Comments
Original Replacement
0.0-1.0 i i
(step=0.5)
2.0-3.0 ) )
(step=1.0)

CDRGLOB is derived using the Washington University CDR-assignment
algorithm.

Inspect Parent Calculate/Derive Impute
X X X

Relationship mnot verified as values automatically generated, and no
missingness. No need to calculate/derive variable as no missing values
in any of the variables involved.
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Dropped Variables

Name COMPORT
Description Behaviour, comportment and personality
Reason Not available in version 1.2 of the UDS.

Name CDRLANG
Description Language
Reason Not available in version 1.2 of the UDS.
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B5 - Neuropsychiatric Inventory Questionnaire

APP(H#SEV

DEL_#SEV

APA#SEV

DISN_#SEV

ANX_#SEV

MOT_#SEV

IRR(#SEV

AGIT_#SEV

HALL_#SEV

ELAT_#SEV

NPIQINF

DEPD_#SEV

NITE_#SEV

Number of Variables 26
Number of Variables Used 13
Form Required? X

Form Missingness 5.42%
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NPIQINF

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Neuropsychiatric Inventory Questionnaire (NPI-Q) co-participant
Data Type Categorical

Values
Comments
Original Replacement
1-3 - -
o oM COHdlthl’laH}./ missing as form not
required. (5.42%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
DEL_SEV
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Delusions and their severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 Indicate none, mild, moderate and severe
) ) respectively.
M - (0.00% (DEL 9) + 0.00% (DELSEV 9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from DEL and DELSEV. A conditionally missing value should not be
used as a potential fill value if imputed.

HALL_ SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v
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Description Hallucinations and their severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M ) (0.00% (HALL 9) + 0.00% (HALLSEV
9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments Derived from HALL and HALLSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

AGIT_ SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Agitation or aggression, and the severity, in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M ) (0.00% (AGIT 9) + 0.00% (AGITSEV
9))
OM i Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from AGIT and AGITSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

DEPD_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v
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Description Depression or dysphoria, and the severity, in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M ) (0.00% (DEPD 9) + 0.00% (DEPDSEV
9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from DEPD and DEPDSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

ANX_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v/

Description Anxiety and the severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
03 i Indicate none, mild, moderate and severe
respectively.
M - (0.00% (ANX 9) + 0.00% (ANXSEV 9))
One ANXSEV value converted from -4
to 8 to indicate dependence on ANX.
CM - o o
Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from ANX and ANXSEV. A conditionally missing value should not
be used as a potential fill value if imputed.
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ELAT SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Elation or euphoria, and the severity, in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M ) (0.00% (ELAT 9) + 0.00% (ELATSEV
9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from ELAT and ELATSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

APA_ SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Apathy or indifference, and the severity, in the last month
Data Type Ordinal

Values

Comments
Original Replacement
0-3 Indicate none, mild, moderate and severe
) ) respectively.
M - (0.00% (APA 9) + 0.00% (APASEV 9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from APA and APASEV. A conditionally missing value should not be
used as a potential fill value if imputed.
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DISN_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Disinhibition and the severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M - (0.00% (DISN 9) + 0.00% (DISNSEV 9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from DISN and DISNSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

IRR_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Irritability or lability, and the severity, in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M - (0.00% (IRR 9) + 0.00% (IRRSEV 9))
oM Conditionally missing as form not
) required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from IRR and IRRSEV. A conditionally missing value should not be
used as a potential fill value if imputed.
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MOT_ SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Motor disturbance and the severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
0-3 ) Indicate none, mild, moderate and severe
respectively.
M - (0.00% (MOT 9) + 0.00% (MOTSEV 9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from MOT and MOTSEV. A conditionally missing value should not
be used as a potential fill value if imputed.

NITE_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Nighttime behaviours and their severity in the last month
Data Type Ordinal

Values
Comments
Original Replacement
03 i Indicate none, mild, moderate and severe
respectively.
M ) (0.00% (NITE 9) + 0.00% (NITESEV
9))
oM ) Conditionally missing as form not
required. (5.42% (-4))
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Derived from NITE and NITESEV. A conditionally missing value should not
be used as a potential fill value if imputed.
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APP_SEV

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Appetite and eating problems, and their severity, in the last month
Data Type Ordinal

Values

Comments
Original Replacement

Indicate none, mild, moderate and severe

0-3 ) respectively.

One APP value converted from 1 to M
M - as APPSEV value M. (0.00% (APP 9) +
0.00% (APPSEV 9))

Conditionally missing as form not

CM - required. (5.42% (-4))

Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments Derived from APP and APPSEV. A conditionally missing value should not be
used as a potential fill value if imputed.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

NPIQINFX
NPI-Q co-participant, other - specify
Free-text variable.

DEL
Delusions in the last month
Replaced by the derived variable DEL__SEV.

DELSEV
Delusions severity
Replaced by the derived variable DEL__SEV.

HALL
Hallucinations in the last month
Replaced by the derived variable HALL _SEV.

HALLSEV
Hallucinations severity
Replaced by the derived variable HALL_SEV.

AGIT
Agitation or aggression in the last month
Replaced by the derived variable AGIT_SEV.

AGITSEV
Agitation or aggression severity
Replaced by the derived variable AGIT_SEV.

DEPD
Depression or dysphoria in the last month
Replaced by the derived variable DEPD__SEV.

DEPDSEV
Depression or dysphoria severity
Replaced by the derived variable DEPD__SEV.

ANX
Anxiety in the last month
Replaced by the derived variable ANX_SEV.

ANXSEV
Anxiety severity
Replaced by the derived variable ANX_SEV.

ELAT
Elation or euphoria in the last month
Replaced by the derived variable ELAT SEV.

ELATSEV
Elation or euphoria severity
Replaced by the derived variable ELAT _SEV.

APA
Apathy or indifference in the last month
Replaced by the derived variable APA_SEV.

286



Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

APASEV
Apathy or indifference severity
Replaced by the derived variable APA__SEV.

DISN
Disinhibition in the last month
Replaced by the derived variable DISN__SEV.

DISNSEV
Disinhibition severity
Replaced by the derived variable DISN__SEV.

IRR
Irritability or lability in the last month
Replaced by the derived variable IRR__SEV.

IRRSEV
Irritability or lability severity
Replaced by the derived variable IRR_SEV.

MOT
Motor disturbance in the last month
Replaced by the derived variable MOT _SEV.

MOTSEV
Motor disturbance severity
Replaced by the derived variable MOT _SEV.

NITE
Nighttime behaviours in the last month
Replaced by the derived variable NITE_SEV.

NITESEV
Nighttime behaviours severity
Replaced by the derived variable NITE_SEV.

APP
Appetite and eating problems in the last month
Replaced by the derived variable APP_SEV.

APPSEV
Appetite and eating problems severity
Replaced by the derived variable APP_SEV.
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B6 - Geriatric Depression Scale

EMPTY
MEMPROB
BORED
NACCGDS
STAYHOME
NOEDS
WONDRFUL
AFRAID
SATIS ENERGY
WRTHLESS
HAPPY

SPIRITS

BETTER

HOPRELESS

DROPACT

HELPLESS

Number of Variables 17

Number of Variables Used 17

Form Required? X
Form Missingness 2.98%
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NOGDS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Is the subject able to complete the Geriatric Depression Scale (GDS), based
on the clinician’s best judgment?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
iy oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger 1
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
SATIS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Are you basically satisfied with your life?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.02%)
i oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.
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DROPACT

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Have you dropped many of your activities and interests?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.02%)
” oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel that your life is empty?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.02%)
iy oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

290



General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you often get bored?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.02%)
o oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

SPIRITS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Are you in good spirits most of the time?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.03%)
i oM Conditionally missing as form not

required. (2.98%)

Dependency Trigger -
Relationship -
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Inspect Parent Calculate/Derive Impute

X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

AFRAID

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Are you afraid that something bad is going to happen to you?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.04%)
4 M COIldlthIlaH}./ missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel happy most of the time?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.05%)
i oM Conditionally missing as form not

required. (2.98%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

HELPLESS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you often feel helpless?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.03%)
» oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

'STAYHOME

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you prefer to stay at home, rather than going out and doing new things?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.05%)
i oM Conditionally missing as form not

required. (2.98%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

MEMPROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel you have more problems with memory than most?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.09%)
» oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

WONDRFUL

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you think it is wonderful to be alive now?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.07%)
i oM Conditionally missing as form not

required. (2.98%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

WRTHLESS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel pretty worthless the way you are now?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.06%)
» oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

ENERGY

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel full of energy?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.06%)
i oM Conditionally missing as form not

required. (2.98%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

'HOPELESS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you feel that your situation is hopeless?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
OM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.03%)
» oM Conditionally missing as form not
required. (2.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

BETTER

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Do you think that most people are better off than you are?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
oM ) Replaced 9 values to indicate dependence
on NOGDS. (5.24%)
9 M (0.07%)
i oM Conditionally missing as form not

required. (2.98%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute
X X v

General Comments No need to inspect parent as no missing values in parent. A conditionally
missing value should not be used as a potential fill value if imputed.

NACCGDS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Total GDS score
Data Type Continuous

Values
Comments

Original Replacement

0-15 - -

Indicates subject not able to complete
88 CM the GDS or more than three GDS items
missing. (5.24%)

Conditionally missing as form not
required. (2.98%)

Dependency Trigger -
Relationship NACCGDS = sum of SATIS, DROPACT, EMPTY, BORED, SPIRITS,
AFRAID, HAPPY, HELPLESS, STAYHOME, MEMPROB, WONDRFUL,
WRTHLESS, ENERGY, HOPELESS and BETTER (GDS items) where <= 3
missing (sum of scores + sum of scores / number of scores X number missing,
rounded) (NACCGDS = CM if > 3 missing)

Inspect Parent Calculate/Derive Impute

X X X

General Comments No need to inspect parent, as no missing values in parent; or calculate/derive
variable, as no missing values in variable. Values not updated when GDS items
imputed.
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B7 - Functional Activities Questionnaire

TAXES

PAYATTN

EVENTS

SHOPRING

REMDATES

BILLS

GAMES

MEALPREP

TRAVEL

STOVE

Number of Variables 10
Number of Variables Used 10
Form Required? X

Form Missingness 3.22%
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BILLS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with: writing
checks, paying bills or balancing a checkbook
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (7.95%)
9 M (0.00%)
4 M COHdlthl’laH;}.f missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

TAXES

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with:
assembling tax records, business affairs or other papers
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (11.74%)
9 M (0.00%)
o oM COHdlthl’laH}./ missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.
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SHOPPING

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with:
shopping alone for clothes, household necessities or groceries
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (2.35%)
9 M (0.00%)
4 M COHdlthl’laH;}.f missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

GAMES

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with: playing
a game of skill such as bridge or chess, or working on a hobby
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (9.55%)
9 M (0.00%)
o oM COHdlthl’laH}./ missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.
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STOVE

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with: heating
water, making a cup of coffee, or turning off the stove
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (1.81%)
9 M (0.00%)
4 M COHdlthl’laH;}.f missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

MEALPREP

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with:
preparing a balanced meal
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (9.76%)
9 M (0.00%)
o oM COHdlthl’laH}./ missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.
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EVENTS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with: keeping
track of current events
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (1.10%)
9 M (0.00%)
4 M COHdlthl’laH;}.f missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

PAYATTN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with: paying
attention to and understanding a TV programme, book or magazine
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (0.49%)
9 M (0.00%)
i oM Conditionally missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.
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REMDATES

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with:
remembering appointments, family occasions, holidays or medications
Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (0.50%)
9 M (0.00%)
4 M COHdlthl’laH;}.f missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

TRAVEL

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description In the past four weeks, did the subject have difficulty or need help with:
travelling out of the neighbourhood, driving, or arranging to take public
transportation

Data Type Ordinal

Values
Comments
Original Replacement
0-3 - -
8 CM (1.21%)
9 M (0.00%)
o oM COIldlthl’laH}./ missing as form not
required. (3.22%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments A conditionally missing value should be used as a potential fill value if imputed.
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B8 - Physical /Neurological Exam Findings

GAITDIS

NACCNREX

Number of Variables 47
Number of Variables Used 4
Form Required? X

Form Missingness 2.30%

EYEMOVE

FOCLDEF
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NACCNREX

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Were all findings unremarkable?

Data Type

Dependency Trigger
Relationship

General Comments

Binary
Values
Comments
Original Replacement
0-1 - -
9 M (0.23%)
o oM COIldlthIlaH}.l missing as form not
required. (2.30%)
Inspect Parent Calculate/Derive Impute
X X v

A conditionally missing value should not be used as a potential fill value if
imputed.

FOCLDEF

Description
Data Type

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Are focal deficits present indicative of central nervous system disorder?
Binary

Dependency Trigger -
Relationship -

General Comments

Values
Comments
Original Replacement
0-1 - -
9 M (0.80%)
i oM Conditionally missing as form not
required. (2.30%)
Inspect Parent Calculate/Derive Impute
X X v

A conditionally missing value should not be used as a potential fill value if
imputed.

GAITDIS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X
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Description Is gait disorder present indicative of central nervous system disorder?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (1.13%)
4 oM Conditionally missing as form not
B required. (2.30%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should not be used as a potential fill value if
imputed.

EYEMOVE

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Are there eye movement abnormalities present indicative of central nervous
system disorder?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.77%)
o oM Conditionally missing as form not
required. (2.30%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments A conditionally missing value should not be used as a potential fill value if
imputed.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description

NORMEXAM
Were there abnormal neurological exam findings?
Only available in version 3.0 of the UDS.

PARKSIGN
Parkinsonian signs
Only available in version 3.0 of the UDS.

RESTTRL
Resting tremor - left arm
Only available in version 3.0 of the UDS.

RESTTRR
Resting tremor - right arm
Only available in version 3.0 of the UDS.

SLOWINGL
Slowing of fine motor movements - left side
Only available in version 3.0 of the UDS.

SLOWINGR
Slowing of fine motor movements - right side
Only available in version 3.0 of the UDS.

RIGIDL
Rigidity - left arm
Only available in version 3.0 of the UDS.

RIGIDR
Rigidity - right arm
Only available in version 3.0 of the UDS.

BRADY
Bradykinesia
Only available in version 3.0 of the UDS.

PARKGAIT
Parkinsonian gait disorder
Only available in version 3.0 of the UDS.

POSTINST
Postural instability
Only available in version 3.0 of the UDS.

CVDSIGNS

Neurological sign considered by examiner to be most likely consistent with
cerebrovascular disease

Only available in version 3.0 of the UDS.

CORTDEF
Cortical cognitive deficit (e.g. aphasia, apraxia, neglect)
Only available in version 3.0 of the UDS.

SIVDFIND
Focal or other neurological findings consistent with subcortical ischemic
vascular dementia (SIVD)
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Reason

Name
Description

Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Only available in version 3.0 of the UDS.

CVDMOTL

Motor (may include weakness of combination of face, arm and leg; reflex
changes, etc.) - left side

Only available in version 3.0 of the UDS.

CVDMOTR

Motor (may include weakness of combination of face, arm and leg; reflex
changes, etc.) - right side

Only available in version 3.0 of the UDS.

CORTVISL
Cortical visual field loss - left side
Only available in version 3.0 of the UDS.

CORTVISR
Cortical visual field loss - right side
Only available in version 3.0 of the UDS.

SOMATL
Somatosensory loss - left side
Only available in version 3.0 of the UDS.

SOMATR
Somatosensory loss - right side
Only available in version 3.0 of the UDS.

POSTCORT

Higher cortical visual problem suggesting posterior cortical atrophy (e.g.
prosopagnosia, simultagnosia, Balint’s syndrome) or apraxia of gaze

Only available in version 3.0 of the UDS.

PSPCBS

Findings suggestive of progressive supranuclear palsy (PSP), corticobasal
syndrome (CBS) or other related disorders

Only available in version 3.0 of the UDS.

EYEPSP
Eye movement changes consistent with PSP
Only available in version 3.0 of the UDS.

DYSPSP
Dysarthria consistent with PSP
Only available in version 3.0 of the UDS.

AXTALPSP
Axial rigidity consistent with PSP
Only available in version 3.0 of the UDS.

GAITPSP
Gait disorder consistent with PSP
Only available in version 3.0 of the UDS.

APRAXSP
Apraxia of speech
Only available in version 3.0 of the UDS.

APRAXL
Apraxia consistent with CBS - left side
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Reason Only available in version 3.0 of the UDS.

Name APRAXR
Description Apraxia consistent with CBS - right side
Reason Only available in version 3.0 of the UDS.

Name CORTSENL
Description Cortical sensory deficits consistent with CBS - left side
Reason Only available in version 3.0 of the UDS.

Name CORTSENR
Description Cortical sensory deficits consistent with CBS - right side
Reason Only available in version 3.0 of the UDS.

Name ATAXL
Description Ataxia consistent with CBS - left side
Reason Only available in version 3.0 of the UDS.

Name ATAXR
Description Ataxia consistent with CBS - right side
Reason Only available in version 3.0 of the UDS.

Name ALIENLML
Description Alien limb consistent with CBS - left side
Reason Only available in version 3.0 of the UDS.

Name ALIENLMR
Description Alien limb consistent with CBS - right side
Reason Only available in version 3.0 of the UDS.

Name DYSTONL
Description Dystonia consistent with CBS, PSP or related disorder - left side
Reason Only available in version 3.0 of the UDS.

Name DYSTONR
Description Dystonia consistent with CBS, PSP or related disorder - right side
Reason Only available in version 3.0 of the UDS.

Name MYOCLLT
Description Myoclonus consistent with CBS - left side
Reason Only available in version 3.0 of the UDS.

Name MYOCLRT
Description Myoclonus consistent with CBS - right side
Reason Only available in version 3.0 of the UDS.

Name ALSFIND
Description Findings suggest amyotrophic lateral sclerosis (ALS) (e.g. muscle wasting,
fasciculations, upper motor and/or lower motor neuron signs)
Reason Only available in version 3.0 of the UDS.

Name GAITNPH
Description Normal pressure hydrocephalus - gait apraxia
Reason Only available in version 3.0 of the UDS.

Name OTHNEUR
Description Other findings (e.g. cerebella ataxia, chorea, myoclonus)
Reason Only available in version 3.0 of the UDS.

Name OTHNEURX
Description Other findings - specify
Reason Free-text variable and only available in version 3.0 of the UDS.
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B9 - Clinician Judgment of Symptoms

BEVHALL __-
BEDISIN T BEDEP pegiHR

BEAPATHY ) MoStow

MOFALLS
BRERL , COGATTN BEAHALL
BEPERCH

DECIN D
BEAGIT  NACCBEHF

COGJUDG
COGLANG
- * BEIRRIT
NACEMOTF

BEMODE CoGYIS
COGOTHR
COGMEM

DECSUB COURSE FRSTQHG N
MOGAIT

MOo@pDE | NACECOGF
DECCLIN MOTREM

COGMODE
DECAGE

Number of Variables
Number of Variables Used
Form Required?

Form Missingness

59
32

0.00%
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DECSUB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Does the subject report a decline in memory (relative to previously attained
abilities)?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
8 oM Conditionally missing as value omitted
for a reason. (0.00%)
9 M (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

DECIN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Does the co-participant report a decline in subject’s memory (relative to
previously attained abilities)?
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
8 CM (0.00%)
9 M (2.90%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

DECCLIN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

312



Description Clinician believes there is a meaningful decline in memory, non-memory
cognitive abilities, behaviour, ability to manage his/her affairs, or there are
motor/movement changes

Data Type Binary

Values
Comments
Original Replacement
0-1 - -
o M Missing as form required and variable
independent. (0.00%)
Dependency Trigger 0
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Original forms and NACC’s data element dictionaries for versions 1.2 and
2.0 state all following B9 variables are dependent on DECCLIN, but NACC’s
coding guidebooks for versions 1.2 and 2.0 and NACC’s researchers data
dictionary contradict this.

DECAGE

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Based on clinician’s assessment, at what age did the cognitive decline begin?
Data Type Continuous

Values
Comments
Original Replacement
15-110 - -
888 CM (40.55%)
999 M (1.98%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments Unable to determine whether values should be updated if parent imputed, as
no missingness for parent in data set. A conditionally missing value should be
used as a potential fill value if child imputed, as conditionally missing values
do not exclusively result from DECCLIN 0 values.

COGMEM

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

313



Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in memory
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.07%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
COGJUDG
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in executive function - judgment, planning or
problem-solving

Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.16%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
COGLANG
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in language
Data Type Binary
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Values

Comments
Original Replacement
0-1 - -
9 M (0.15%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
COGVIS
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in visuospatial function
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.50%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
COGATTN
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in attention or concentration
Data Type Binary

Values
Comments

Original Replacement

0-1 ; ]
9 M (0.42%)
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Dependency Trigger -

Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
COGOTHR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in other cognitive domains
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (1.66%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCCOGF
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate the predominant symptom that was first recognised as a decline in
the subject’s cognition
Data Type Categorical

Values
Comments
Original Replacement
0 oM 88 in original forms and NACC'’s coding
guidebooks. (40.83%)
1-8 - -
99 M (0.31%)
Dependency Trigger CM
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments Unable to determine whether a relationship exists due to dropped variables. A
conditionally missing value should be used as a potential fill value if imputed.

COGMODE

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Mode of onset of cognitive symptoms
Data Type Categorical

Values
Comments
Original Replacement
0 oM 88 in original forms and NACC’s coding
guidebooks. (40.92%)
1-4 - -
99 M (0.80%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments Only missing and conditionally missing values should be updated if parent
imputed. A conditionally missing value should be used as a potential fill value

if child imputed, as conditionally missing values do not exclusively result from
NACCCOGF CM (or M) values.

BEAPATHY

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Apathy,
withdrawal
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.26%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments -
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BEDEP

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Depressed mood
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.35%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
BEVHALL
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Psychosis -
Visual hallucinations
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.52%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
BEAHALL
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Psychosis -
Auditory hallucinations
Data Type Binary

318



Values

Comments
Original Replacement
0-1 - -
9 M (0.57%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments -
BEDEL
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Psychosis -
Abnormal, false or delusional beliefs
Data Type Binary

Values

Comments
Original Replacement
0-1 - -
9 M (0.50%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments -
BEDISIN
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Disinhibition
Data Type Binary

Values
Comments

Original Replacement

0-1 ; )
9 M (0.30%)

Dependency Trigger -
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Relationship

General Comments

Inspect Parent Calculate/Derive Impute

X X

BEIRRIT

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Subject currently manifests meaningful change in behaviour - Irritability
Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.25%)
Inspect Parent Calculate/Derive Impute

X X

BEAGIT

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Subject currently manifests meaningful change in behaviour - Agitation
Binary

Dependency Trigger -
Relationship -

Values
Comments
Original Replacement
0-1 - -
9 M (0.24%)
Inspect Parent Calculate/Derive Impute

X X

General Comments -
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BEPERCH

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Personality
change
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
9 M (0.45%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
BEOTHR
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Subject currently manifests meaningful change in behaviour - Other
Data Type Binary

Values
Comments
Original Replacement
0-1 - 0 not replaced as ‘no/unknown’
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X
General Comments -
NACCBEHF
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate the predominant symptom that was first recognised as a decline in
the subject’s behaviour
Data Type Categorical
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Values

Comments
Original Replacement
0 M 88 in original forms and NACC’s coding
guidebooks. (57.96%)
1-10 - .
99 M (0.83%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments Unable to determine whether a relationship exists due to dropped variables. A
conditionally missing value should be used as a potential fill value if imputed.

BEMODE

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Mode of onset of behavioural symptoms
Data Type Categorical

Values
Comments
Original Replacement
0 oM 88 in original forms and NACC’s coding
guidebooks. (58.15%)
1-4 - -
99 M (1.24%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments NACC’s documentation suggests variable is dependent on NACCBEHF but
dependency does not hold. A conditionally missing value should be used as a
potential fill value if imputed.

MOGAIT

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate whether the subject currently has meaningful changes in motor
function - Gait disorder
Data Type Binary
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-1 - -
9 M (0.49%)
Inspect Parent Calculate/Derive Impute

X X

MOFALLS

Description

Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
X

Indicate whether the subject currently has meaningful changes in motor
function - Falls

Binary
Values
Comments
Original Replacement
0-1 - -
9 M (0.49%)
Inspect Parent Calculate/Derive Impute

X X

MOTREM

Description

Data Type

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
X

Indicate whether the subject currently has meaningful changes in motor
function - Tremor
Binary

Values
Comments

Original Replacement

0-1 - -

9 M (0.29%)
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Dependency Trigger
Relationship

General Comments

Inspect Parent

X

Calculate/Derive

X

Impute

MOSLOW

Description

Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
X

Indicate whether the subject currently has meaningful changes in motor
function - Slowness

Binary
Values
Comments
Original Replacement
0-1 - -
9 M (0.32%)

Inspect Parent Calculate/Derive Impute

X X v

NACCMOTF

Description

Data Type

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
X

Indicate the predominant symptom that was first recognised as a decline in
the subject’s motor function

Dependency Trigger -
Relationship -

Categorical
Values
Comments
Original Replacement
0 oM 88 in original forms and NACC'’s coding
guidebooks. (78.34%)
1-4 - -
99 M (0.70%)
Inspect Parent Calculate/Derive Impute
X X v
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General Comments

NACC’s documentation suggests a relationship exists with MOGAIT,
MOFALLS, MOTREM and MOSLOW but relationship does not hold. A
conditionally missing value should be used as a potential fill value if imputed.

MOMODE

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X
Mode of onset of motor symptoms
Categorical
Values
Comments
Original Replacement
0 oM 88 in original forms and NACC’s coding
guidebooks. (78.45%)
14 - -
99 M (1.10%)
Inspect Parent Calculate/Derive Impute
X X v

NACC’s documentation suggests variable is dependent on NACCMOTF but
dependency does not hold. A conditionally missing value should be used as a
potential fill value if imputed.

COURSE

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Overall course of decline of cognitive/behavioural/motor syndrome
Categorical

Values

Comments
Original Replacement
1-5 - .
8 CM (40.42%)
9 M (1.32%)

COURSE = CM if NACCCOGF, NACCBEHF and NACCMOTF = CM

Inspect Parent Calculate/Derive Impute

X v v

Only missing values should be updated if NACCCOGF, NACCBEHF and/or
NACCMOTF imputed. A conditionally missing value should not be used as a
potential fill value if variable imputed.
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FRSTCHG

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Indicate the predominant domain that was first recognised as changed in the
subject
Data Type Categorical

Values
Comments
Original Replacement
1-3 - -
8 CM (40.42%)
9 M (0.84%)

Dependency Trigger -
Relationship FRSTCHG = CM if NACCCOGF, NACCBEHF and NACCMOTF = CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments NACC’s documentation suggests a more complex relationship exists with
NACCCOGF, NACCBEHF and NACCMOTF but only relationship stated
holds. Only missing values should be updated if NACCCOGF, NACCBEHF
and/or NACCMOTF imputed. A conditionally missing value should not be
used as a potential fill value if variable imputed.
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

COGFLUC
Indicate whether the subject currently has fluctuating cognition

Not available in version 1.2 of the UDS.
COGOTHRX
Other cognitive impairment - specify

Free-text variable.

NACCCGFX

Other predominant symptom first recognised as a decline in the subject’s
cognition - specify

Free-text variable.

COGMODEX
Other mode of onset of cognitive symptoms - specify
Free-text variable.

BEVWELL
If yes, are the (visual) hallucinations well-formed and detailed?
Not available in version 1.2 of the UDS.

BEREM

Subject currently manifests meaningful change in behaviour - REM sleep
behaviour disorder (RBD)

Not available in version 1.2 of the UDS.

BEOTHRX
Subject currently manifests meaningful change in behaviour, other - specify
Free-text variable.

NACCBEFX

Other predominant symptom first recognised as a decline in the subject’s
behaviour - specify

Free-text variable.

BEMODEX
Other mode of onset of behavioural symptoms - specify
Free-text variable.

MOMODEX
Other mode of onset of motor symptoms - specify
Free-text variable.

MOMOPARK
Were changes in motor function suggestive of Parkinsonism?

Not available in version 1.2 of the UDS.
DECCLCOG
Based on the clinician’s judgment, is the subject currently experiencing

meaningful impairment in cognition?
Only available in version 3.0 of the UDS.

COGORI
Indicate whether the subject currently is meaningfully impaired, relative to
previously attained abilities, in orientation
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Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

Reason

Only available in version 3.0 of the UDS.

COGFLAGO
At what age did the fluctuating cognition begin?
Only available in version 3.0 of the UDS.

DECCLBE

Based on the clinician’s judgment, is the subject currently experiencing any
kind of behavioural symptoms?

Only available in version 3.0 of the UDS.

BEVHAGO

If well-formed, clear-cut visual hallucinations,
hallucinations begin?

Only available in version 3.0 of the UDS.

at what age did these

BEREMAGO
If yes, at what age did the RBD begin?
Only available in version 3.0 of the UDS.

BEANX
Subject currently manifests meaningful change in behaviour - Anxiety
Only available in version 3.0 of the UDS.

BEAGE

Based on the clinician’s assessment, at what age did the behavioural symptoms
begin?

Only available in version 3.0 of the UDS.

DECCLMOT

Based on the clinician’s judgment, is the subject currently experiencing any
motor symptoms?

Only available in version 3.0 of the UDS.

PARKAGE
If yes, at what age did the motor symptoms suggestive of Parkinsonism begin?
Only available in version 3.0 of the UDS.

MOMOALS

Were changes in motor function suggestive of amyotrophic lateral sclerosis
(ALS)?

Only available in version 3.0 of the UDS.

ALSAGE
If yes, at what age did the motor symptoms suggestive of ALS begin?
Only available in version 3.0 of the UDS.

MOAGE
Based on the clinician’s assessment, at what age did the motor changes begin?
Only available in version 3.0 of the UDS.

LBDEVAL

Is the subject a potential candidate for further evaluation for Lewy body
disease?

Only available in version 3.0 of the UDS.

FTLDEVAL

Is the subject a potential candidate for further evaluation for frontotemporal
lobar degeneration (FTLD)?

Only available in version 3.0 of the UDS.
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Name BICHG
Description Indicates changes in information reported at previous visit
Reason Information provided would not be available at an initial visit and only
available in version 1.2 of the UDS.
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C1 - Neuropsychological Battery

BOSTON
TRAYA 7 LoGIMEM
NACCC1 MEMUNITS_PROB
MMSEORLO
VEG PROB DIGIBLEN_PROB
= WAIS_PROB
NPSYCLOC L DIGIE_PROB
BOSTON) PROB NPSTLAN
ANIMALS
DIGIF
' DIGIFLEN_PROB
DIGIFLEN MMSEORDA \*
S NACEMMSE
TRAILB \ )
LOGIMEM_PROB
COGSTAT
oee I \ MMSELAN
DIGIBLEN TRAILA_PROB  MMSEORDA_PROB

NACCMMSE_PROB ~ WAIS

MEMUNITS

MEMTIME

TRAILB PROB
ANIMALS, PROB
MMSEORLO_PROB

MMSELOC pGig pROB

Number of Variables
Number of Variables Used
Form Required?

Form Missingness

48
37

0.00%
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MMSELOC

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Description Administration of the Mini-Mental State Examination (MMSE) was:
Data Type Categorical

Values
Comments
Original Replacement
1-3 - -
4 M Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
MMSELAN
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Language of MMSE administration
Data Type Categorical

Values

Comments
Original Replacement
1-3 - -
4 M Missing as form required and variable
) independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4
General Comments -
MMSEORDA
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Orientation subscale score - Time
Data Type Continuous
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-5 - -
Conditionally missing as
95-98 CM MMSEORDA__PROB generated.
(3.15%)
i M Missing as form required and variable
independent. (1.87%)
Inspect Parent Calculate/Derive Impute
X X v

A conditionally missing value should be used as a potential fill value if imputed.

MMSEORDA_ PROB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v
Reason an answer was not provided for MMSEORDA
Categorical
Values
Comments
Original Replacement
95-98 - -

Placeholder for 0-5 and M values in

CM - MMSEORDA. (96.85%)

MMSEORDA__PROB = 95-98 if MMSEORDA = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

Derived from MMSEORDA. Values should be updated if MMSEORDA
imputed. A conditionally missing value should not be used as a potential fill
value if variable imputed.

MMSEORLO

Description
Data Type

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Orientation subscale score - Place
Continuous
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-5 - -
Conditionally missing as
95-98 CM MMSEORLO_ PROB generated.
(3.16%)
i M Missing as form required and variable
independent. (1.87%)
Inspect Parent Calculate/Derive Impute
X X v

A conditionally missing value should be used as a potential fill value if imputed.

MMSEORLO_PROB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v
Reason an answer was not provided for MMSEORLO
Categorical
Values
Comments
Original Replacement
95-98 - -

Placeholder for 0-5 and M values in

CM - MMSEORLO. (96.84%)

MMSEORLO_PROB = 95-98 if MMSEORLO = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

Derived from MMSEORLO. Values should be updated if MMSEORLO
imputed. A conditionally missing value should not be used as a potential fill
value if variable imputed.

NACCMMSE

Description
Data Type

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Total MMSE score (using D-L-R-O-W)
Continuous
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-30 - -
Dropped to avoid multiple types of
conditionally missing but irrelevant for
88 Dropped the data set used as introduced in
version 3.0.
Conditionally missing as
95-98 CM NACCMMSE__PROB generated.
(3.45%)
4 M Missing as form required and variable
independent. (1.87%)
Inspect Parent Calculate/Derive Impute
X X 4

A conditionally missing value should be used as a potential fill value if imputed.

NACCMMSE_PROB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Reason an answer was not provided for NACCMMSE

Categorical
Values
Comments
Original Replacement
95-98 - -
oM ) Placeholder for 0-30 and M values in

NACCMMSE. (96.55%)

NACCMMSE_PROB = 95-98 if NACCMMSE = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

Derived from NACCMMSE. Values should be updated if NACCMMSE
imputed. A conditionally missing value should not be used as a potential fill
value if variable imputed.

NPSYCLOC

Description
Data Type

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

The remainder of the battery was administered:
Categorical
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
1-3 - -
4 M Missing as form required and variable

independent. (1.87%)

Inspect Parent Calculate/Derive Impute

X X

NPSYLAN

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Language of test administration

Categorical
Values
Comments
Original Replacement
1-3 - -
o M Missing as form required and variable

independent. (1.87%)

Inspect Parent Calculate/Derive Impute

X X

LOGIMEM

Description
Data Type

Form Versions Derived (NACC) Derived (New)

1.2, 2.0, 3.0 X X

Total number of story units recalled from this current test administration
Continuous

Values
Comments
Original Replacement
0-25 - -
Conditionally missing as
95-98 M LOGIMEM_PROB generated. (9.13%)
i M Missing as form required and variable

independent. (1.87%)
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Dependency Trigger -
Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

LOGIMEM PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for LOGIMEM
Data Type Categorical

Values
Comments

Original Replacement

95-98 - -

Placeholder for 0-25 and M values in

CM - LOGIMEM. (90.87%)

Dependency Trigger -
Relationship LOGIMEM_ PROB = 95-98 if LOGIMEM = CM else CM

Inspect Parent Calculate/Derive Impute
X v v

General Comments Derived from LOGIMEM. Values should be updated if LOGIMEM imputed.
A conditionally missing value should not be used as a potential fill value if
variable imputed.

DIGIF

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Digit span forward trials correct
Data Type Continuous

Values
Comments
Original Replacement
0-12 - -
Conditionally missing as DIGIF__PROB
95-98 M generated. (7.84%)
iy M Missing as form required and variable

independent. (1.87%)

Dependency Trigger CM
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Relationship -

Inspect Parent Calculate/Derive Impute

X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

DIGIFLEN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Digit span forward length
Data Type Continuous

Values
Comments
Original Replacement
0-8 - -
Conditionally missing as
95-98 M DIGIFLEN PROB generated. (7.88%)
iy oM Conditionally missing even though form
required as variable dependent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments Values should be updated if parent imputed. A conditionally missing value
should be used as a potential fill value if child imputed, as conditionally missing
values do not exclusively result from DIGIF CM (or M) values.

DIGIF_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for DIGIF
Data Type Categorical

Values
Comments

Original Replacement

95-98 - -

Placeholder for 0-12 and M values in

M ) DIGIF. (92.16%)

Dependency Trigger -
Relationship DIGIF_PROB = 95-98 if DIGIF = CM else CM

Inspect Parent Calculate/Derive Impute

X v v
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General Comments Derived from DIGIF. Values should be updated if DIGIF imputed. A
conditionally missing value should not be used as a potential fill value if
variable imputed.

DIGIFLEN__PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v/

Description Reason an answer was not provided for DIGIFLEN
Data Type Categorical

Values
Comments

Original Replacement

95-98 - -

Placeholder for 0-8 and CM values
CM - resulting from dependency in
DIGIFLEN. (92.12%)

Dependency Trigger -
Relationship DIGIFLEN_PROB = 95-98 if DIGIFLEN = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from DIGIFLEN. Values should be updated if DIGIFLEN imputed.
A conditionally missing value should not be used as a potential fill value if
variable imputed.

DIGIB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Digit span backward trials correct
Data Type Continuous

Values
Comments
Original Replacement
0-12 - -
Conditionally missing as DIGIB_ PROB
95-98 M generated. (8.18%)
” M Missing as form required and variable
independent. (1.87%)
Dependency Trigger CM
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
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General Comments A conditionally missing value should be used as a potential fill value if imputed.

DIGIBLEN

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Digit span backward length
Data Type Continuous

Values
Comments
Original Replacement
0-8 0-7 in original forms and NACC’s coding
) ) guidebooks for versions 1.2 and 2.0.
Conditionally missing as
95-98 M DIGIBLEN PROB generated. (8.18%)
Conditionally missing even though form
-4 CM . .
required as variable dependent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments Values should be updated if parent imputed. A conditionally missing value
should be used as a potential fill value if child imputed, as conditionally missing
values do not exclusively result from DIGIB CM (or M) values.

DIGIB_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v/

Description Reason an answer was not provided for DIGIB
Data Type Categorical

Values
Comments

Original Replacement

95-98 - -

Placeholder for 0-12 and M values in

CM B DIGIB. (91.82%)

Dependency Trigger -
Relationship DIGIB_PROB = 95-98 if DIGIB = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from DIGIB. Values should be updated if DIGIB imputed. A
conditionally missing value should not be used as a potential fill value if
variable imputed.
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DIGIBLEN_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for DIGIBLEN
Data Type Categorical

Values

Comments
Original Replacement

95-98 - -

Placeholder for 0-8 and CM values
CM - resulting from dependency in
DIGIBLEN. (91.82%)

Dependency Trigger -
Relationship DIGIBLEN_PROB = 95-98 if DIGIBLEN = CM else CM

Inspect Parent Calculate/Derive Impute
X v v

General Comments Derived from DIGIBLEN. Values should be updated if DIGIBLEN imputed.
A conditionally missing value should not be used as a potential fill value if
variable imputed.

ANIMALS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Animals - Total number of animals named in 60 seconds
Data Type Continuous

Values
Comments
Original Replacement
0-77 - -
Conditionally missing as
95-98 M ANIMALS PROB generated. (7.04%)
4 M Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.
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ANIMALS PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for ANIMALS
Data Type Categorical

Values

Comments
Original Replacement

95-98 - -

Placeholder for 0-77 and M values in

CM - ANIMALS. (92.96%)

Dependency Trigger -
Relationship ANIMALS PROB = 95-98 if ANIMALS = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from ANIMALS. Values should be updated if ANIMALS imputed.
A conditionally missing value should not be used as a potential fill value if
variable imputed.

VEG

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Vegetables - Total number of vegetables named in 60 seconds
Data Type Continuous

Values
Comments
Original Replacement
0-77 - -
Conditionally missing as VEG_PROB
95-98 M generated. (8.63%)
» M Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments A conditionally missing value should be used as a potential fill value if imputed.

VEG_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v
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Description Reason an answer was not provided for VEG

Data Type

Dependency Trigger
Relationship

General Comments

Categorical
Values
Comments
Original Replacement
95-98 - -

Placeholder for 0-77 and M values in

CM ) VEG. (91.37%)

VEG_PROB = 95-98 if VEG = CM else CM

Calculate/Derive

v

Inspect Parent

X

Impute

v

Derived from VEG. Values should be updated if VEG imputed. A conditionally
missing value should not be used as a potential fill value if variable imputed.

TRAILA

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
X

Trail Making Test Part A - Total number of seconds to complete
Continuous

Values
Comments
Original Replacement
0-150 - -
Conditionally missing as
995-998 CM TRAILA_PROB generated. (11.04%)
4 M Missing as form required and variable

independent. (1.87%)

Inspect Parent

X

Calculate/Derive

X

Impute

v

A conditionally missing value should be used as a potential fill value if imputed.

TRAILA PROB

Description
Data Type

Form Versions

1.2, 2.0, 3.0

Derived (NACC)
X

Derived (New)
v

Reason an answer was not provided for TRAILA
Categorical
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Values

Comments
Original Replacement
995-998 - -
OM ) Placeholder for 0-150 and M values in

TRAILA. (88.96%)

Dependency Trigger -
Relationship TRAILA_PROB = 995-998 if TRAILA = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from TRAILA. Values should be updated if TRAILA imputed. A
conditionally missing value should not be used as a potential fill value if variable

imputed.
TRAILB
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Trail Making Test Part B - Total number of seconds to complete
Data Type Continuous

Values
Comments
Original Replacement
0-300 - -
Conditionally missing as
995-998 M TRAILB_ PROB generated. (19.59%)
» M Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X 4

General Comments A conditionally missing value should be used as a potential fill value if imputed.

TRAILB_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for TRAILB
Data Type Categorical
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Values

Comments
Original Replacement
995-998 - -
OM ) Placeholder for 0-300 and M values in

TRAILB. (80.41%)

Dependency Trigger -
Relationship TRAILB_PROB = 995-998 if TRAILB = CM else CM

Inspect Parent Calculate/Derive Impute

X v v/

General Comments Derived from TRAILB. Values should be updated if TRAILB imputed. A
conditionally missing value should not be used as a potential fill value if variable
imputed.

WAIS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X X

Description Wechsler Adult Intelligence Scale (Revised) (WAIS-R) Digit Symbol
Data Type Continuous

Values
Comments
Original Replacement
0-93 - -
Conditionally missing as WAIS_ PROB
95-98 M generated. (15.12%)
» M Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments A conditionally missing value should be used as a potential fill value if imputed.

WAIS_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0 X v

Description Reason an answer was not provided for WAIS
Data Type Categorical
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Values

Comments
Original Replacement
95-98 - -
OM ) Placeholder for 0-93 and M values in

WAIS. (84.88%)

Dependency Trigger -
Relationship WAIS_PROB = 95-98 if WAIS = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from WAIS. Values should be updated if WAIS imputed. A
conditionally missing value should not be used as a potential fill value if
variable imputed.

MEMUNITS

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Logical Memory ITA - Delayed - Total number of story units recalled
Data Type Continuous

Values
Comments
Original Replacement
0-25 - -
Conditionally missing as
95-98 M MEMUNITS_PROB generated. (9.38%)
4 M Missing as form required and variable
) independent. (1.87%)
Dependency Trigger CM
Relationship -
Inspect Parent Calculate/Derive Impute
X X v

General Comments NACC’s documentation suggests variable is dependent on LOGIMEM but
dependency does not hold. A conditionally missing value should be used as a
potential fill value if imputed.

MEMTIME

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Logical Memory ITA - Delayed - Time elapsed since Logical Memory TA -
Immediate
Data Type Continuous
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Values

Comments
Original Replacement
0-85 - -
99 M (1.57%)
i oM Conditionally missing even though form
required as variable dependent. (11.25%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
v X v

General Comments 88 (CM) value in original forms and NACC’s coding guidebooks for versions
1.2 and 2.0 but omitted from NACC'’s researchers data dictionary and data
set. Values should be updated if parent imputed. A conditionally missing
value should not be used as a potential fill value if child imputed.

MEMUNITS_PROB

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Description Reason an answer was not provided for MEMUNITS
Data Type Categorical

Values
Comments

Original Replacement

95-98 - -

Placeholder for 0-25 and M values in

CM - MEMUNITS. (90.62%)

Dependency Trigger -
Relationship MEMUNITS_PROB = 95-98 if MEMUNITS = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

General Comments Derived from MEMUNITS. Values should be updated if MEMUNITS imputed.
A conditionally missing value should not be used as a potential fill value if
variable imputed.

BOSTON

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Description Boston Naming Test (30) - Total score
Data Type Continuous
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Dependency Trigger
Relationship

General Comments

Values

Comments
Original Replacement
0-30 - -
Conditionally missing as
95-98 M BOSTON PROB generated. (8.91%)
4 M Missing as form required and variable
) independent. (1.87%)
Inspect Parent Calculate/Derive Impute
X X 4

A conditionally missing value should be used as a potential fill value if imputed.

BOSTON_PROB

Description
Data Type

Dependency Trigger
Relationship

General Comments

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X v

Reason an answer was not provided for BOSTON

Categorical
Values
Comments
Original Replacement
95-98 - -
oM ) Placeholder for 0-30 and M values in

BOSTON. (91.09%)

BOSTON__PROB = 95-98 if BOSTON = CM else CM

Inspect Parent Calculate/Derive Impute

X v v

Derived from BOSTON. Values should be updated if BOSTON imputed. A
conditionally missing value should not be used as a potential fill value if variable
imputed.

COGSTAT

Description

Data Type

Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 X X

Per clinician, based on the neuropsychological examination, the subject’s
cognitive status is deemed
Categorical
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Values

Comments
Original Replacement
0-4 - -
9 M (0.00%)
i Missing as form required and variable
independent. (1.87%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X v
General Comments -
NACCC1
Form Versions Derived (NACC) Derived (New)
1.2, 2.0, 3.0 v X

Description Form date discrepancy between UDS Form Al and Form C1
Data Type Binary

Values
Comments
Original Replacement
0-1 - -
o oM Conditionally missing as cannot be
sensibly imputed. (0.00%)
Dependency Trigger -
Relationship -
Inspect Parent Calculate/Derive Impute
X X X

General Comments -
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Dropped Variables

Name MMSELANX
Description Language of MMSE administration, other - specify
Reason Free-text variable.

Name PENTAGON
Description Intersecting pentagon subscale score
Reason Not available in version 1.2 of the UDS.

Name NPSYLANX
Description Language of test administration, other - specify
Reason Free-text variable.

Name LOGIMO
Description If this test has been administered to the subject within the past 3 months,
specify the date previously administered (month)
Reason Information provided would not be available at an initial visit.

Name LOGIDAY
Description If this test has been administered to the subject within the past 3 months,
specify the date previously administered (day)
Reason Information provided would not be available at an initial visit.

Name LOGIYR
Description If this test has been administered to the subject within the past 3 months,
specify the date previously administered (year)
Reason Information provided would not be available at an initial visit.

Name LOGIPREV
Description Total score from the previous test administration
Reason Information provided would not be available at an initial visit.

Name TRAILARR
Description Part A - Number of commission errors
Reason Not available in version 1.2 of the UDS.

Name TRAILALI
Description Part A - Number of correct lines
Reason Not available in version 1.2 of the UDS.

Name TRAILBRR
Description Part B - Number of commission errors
Reason Not available in version 1.2 of the UDS.

Name TRAILBLI
Description Part B - Number of correct lines
Reason Not available in version 1.2 of the UDS.

Name MMSECOMP
Description Was any part of the MMSE completed?
Reason Only available in version 3.0 of the UDS.

Name MMSEVIS
Description Subject was unable to complete one or more sections due to visual impairment
Reason Only available in version 3.0 of the UDS.

Name MMSEHEAR

349



Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Subject was unable to complete one or more sections due to hearing impairment
Only available in version 3.0 of the UDS.

UDSBENTC
Total score for copy of Benson figure
Only available in version 3.0 of the UDS.

UDSBENTD
Total score for 10 to 15 minute delayed drawing of Benson figure
Only available in version 3.0 of the UDS.

UDSBENRS
Recognised original stimulus from among four options
Only available in version 3.0 of the UDS.

UDSVERFC
Number of correct F-words generated in 1 minute
Only available in version 3.0 of the UDS.

UDSVERFN
Number of F-words repeated in 1 minute
Only available in version 3.0 of the UDS.

UDSVERNF
Number of non-F-words and rule violation errors in 1 minute
Only available in version 3.0 of the UDS.

UDSVERLC
Number of correct L-words generated in 1 minute
Only available in version 3.0 of the UDS.

UDSVERLR
Number of L-words repeated in 1 minute
Only available in version 3.0 of the UDS.

UDSVERLN
Number of non-L-words and rule violation errors in 1 minute
Only available in version 3.0 of the UDS.

UDSVERTN
Total number of correct F-words and L-words
Only available in version 3.0 of the UDS.

UDSVERTE
Total number of F-word and L-word repetition errors
Only available in version 3.0 of the UDS.

UDSVERTI
Total number of non-F/L-words and rule violation errors
Only available in version 3.0 of the UDS.
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C2 - Neuropsychological Battery

Number of Variables 47
Number of Variables Used 0

Y
@
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

MOCACOMP

Was any part of the Montreal Cognitive Assessment (MoCA) administered?

Only available in version 3.0 of the UDS.

MOCAREAS
If no part of MoCA administered, reason code
Only available in version 3.0 of the UDS.

MOCALOC
Where was MoCA administered?
Only available in version 3.0 of the UDS.

MOCALAN
Language of MoCA administration
Only available in version 3.0 of the UDS.

MOCALANX

Language of MoCA administration, other - specify
Free-text variable and only available in version 3.0 of the UDS.

MOCAVIS

Subject was unable to complete one or more sections due to visual impairment

Only available in version 3.0 of the UDS.

MOCAHEAR

Subject was unable to complete one or more sections due to hearing impairment

Only available in version 3.0 of the UDS.

MOCATOTS
MoCA Total Raw Score - Uncorrected
Only available in version 3.0 of the UDS.

MOCATRAI
MoCA: Visuospatial/executive - Trails
Only available in version 3.0 of the UDS.

MOCACUBE
MoCA: Visuospatial/executive - Cube
Only available in version 3.0 of the UDS.

MOCACLOC
MoCA: Visuospatial /executive - Clock contour
Only available in version 3.0 of the UDS.

MOCACLON
MoCA: Visuospatial /executive - Clock numbers
Only available in version 3.0 of the UDS.

MOCACLOH
MoCA: Visuospatial /executive - Clock hands
Only available in version 3.0 of the UDS.

MOCANAMI

MoCA: Language - Naming
Only available in version 3.0 of the UDS.
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Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

MOCAREGI
MoCA: Memory - Registration (two trials)
Only available in version 3.0 of the UDS.

MOCADIGI
MoCA: Attention - Digits
Only available in version 3.0 of the UDS.

MOCALETT
MoCA: Attention - Letter A
Only available in version 3.0 of the UDS.

MOCASER?Y
MoCA: Attention - Serial 7s
Only available in version 3.0 of the UDS.

MOCAREPE
MoCA: Language - Repetition
Only available in version 3.0 of the UDS.

MOCAFLUE
MoCA: Language - Fluency
Only available in version 3.0 of the UDS.

MOCAABST
MoCA: Abstraction
Only available in version 3.0 of the UDS.

MOCARECN
MoCA: Delayed recall - No cue
Only available in version 3.0 of the UDS.

MOCARECC
MoCA: Delayed recall - Category clue
Only available in version 3.0 of the UDS.

MOCARECR
MoCA: Delayed recall - Recognition
Only available in version 3.0 of the UDS.

MOCAORDT
MoCA: Orientation - Date
Only available in version 3.0 of the UDS.

MOCAORMO
MoCA: Orientation - Month
Only available in version 3.0 of the UDS.

MOCAORYR
MoCA: Orientation - Year
Only available in version 3.0 of the UDS.

MOCAORDY
MoCA: Orientation - Day
Only available in version 3.0 of the UDS.

MOCAORPL
MoCA: Orientation - Place
Only available in version 3.0 of the UDS.
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Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

MOCAORCT
MoCA: Orientation - City
Only available in version 3.0 of the UDS.

CRAFTVRS
Craft Story 21 Recall (Immediate) - Total story units recalled, verbatim scoring
Only available in version 3.0 of the UDS.

CRAFTURS

Craft Story 21 Recall (Immediate) - Total story units recalled, paraphrase
scoring

Only available in version 3.0 of the UDS.

DIGFORCT
Number Span Test: Forward - Number of correct trials
Only available in version 3.0 of the UDS.

DIGFORSL
Number Span Test: Forward - Longest span forward
Only available in version 3.0 of the UDS.

DIGBACCT
Number Span Test: Backward - Number of correct trials
Only available in version 3.0 of the UDS.

DIGBACLS
Number Span Test: Backward - Longest span backward
Only available in version 3.0 of the UDS.

CRAFTDVR
Craft Story 21 Recall (Delayed) - Total story units recalled, verbatim scoring
Only available in version 3.0 of the UDS.

CRAFTDRE
Craft Story 21 Recall (Delayed) - Total story units recalled, paraphrase scoring
Only available in version 3.0 of the UDS.

CRAFTDTI
Craft Story 21 Recall (Delayed) - Delay time
Only available in version 3.0 of the UDS.

CRAFTCUE
Craft Story 21 Recall (Delayed) - Cue (boy) needed
Only available in version 3.0 of the UDS.

MINTTOTS
Multilingual Naming Test (MINT): Total score
Only available in version 3.0 of the UDS.

MINTTOTW
Multilingual Naming Test (MINT): Total correct without semantic cue
Only available in version 3.0 of the UDS.

MINTSCNG
Multilingual Naming Test (MINT): Semantic cues - Number given
Only available in version 3.0 of the UDS.

MINTSCNC
Multilingual Naming Test (MINT): Semantic cues - Number correct with cue
Only available in version 3.0 of the UDS.
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Description
Reason

Name
Description
Reason

Name
Description
Reason

MINTPCNG
Multilingual Naming Test (MINT): Phonemic cues - Number given
Only available in version 3.0 of the UDS.

MINTPCNC
Multilingual Naming Test (MINT): Phonemic cues - Number correct with cue
Only available in version 3.0 of the UDS.

NACCC2
Form date discrepancy between UDS Form Al and Form C2
Only available in version 3.0 of the UDS.
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D2 - Clinician-assessed Medical Conditions

Number of Variables 33
Number of Variables Used 0

a
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Dropped Variables

Name
Description

Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

CANCER

Cancer present in the last 12 months (excluding non-melanoma skin cancer),

primary or metastatic
Only available in version 3.0 of the UDS.

CANCSITE
Cancer primary site - specify
Free-text variable and only available in version 3.0 of the UDS.

DIABET
Diabetes present at visit
Only available in version 3.0 of the UDS.

MYOINF
Myocardial infarct present within the past 12 months
Only available in version 3.0 of the UDS.

CONGHRT
Congestive heart failure present
Only available in version 3.0 of the UDS.

AFIBRILL
Atrial fibrillation present
Only available in version 3.0 of the UDS.

HYPERT
Hypertension present
Only available in version 3.0 of the UDS.

ANGINA
Angina present
Only available in version 3.0 of the UDS.

HYPCHOL
Hypercholesterolemia present
Only available in version 3.0 of the UDS.

VB12DEF
B12 deficiency present
Only available in version 3.0 of the UDS.

THYDIS
Thyroid disease present
Only available in version 3.0 of the UDS.

ARTH
Arthritis present
Only available in version 3.0 of the UDS.

ARTYPE
Arthritis type
Only available in version 3.0 of the UDS.

ARTYPEX
Other arthritis type - specify
Free-text variable and only available in version 3.0 of the UDS.
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Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description

Reason

Name
Description
Reason

Name
Description

ARTUPEX
Arthritis region affected - upper extremity
Only available in version 3.0 of the UDS.

ARTLOEX
Arthritis region affected - lower extremity
Only available in version 3.0 of the UDS.

ARTSPIN
Arthritis region affected - spine
Only available in version 3.0 of the UDS.

ARTUNKN
Arthritis region affected - unknown
Only available in version 3.0 of the UDS.

URINEINC
Incontinence present - urinary
Only available in version 3.0 of the UDS.

BOWLINC
Incontinence present - bowel
Only available in version 3.0 of the UDS.

SLEEPAP
Sleep apnea present
Only available in version 3.0 of the UDS.

REMDIS
REM sleep behaviour disorder (RBD) present
Only available in version 3.0 of the UDS.

HYPOSOM
Hyposomnia/insomnia present
Only available in version 3.0 of the UDS.

SLEEPOTH
Other sleep disorder present
Only available in version 3.0 of the UDS.

SLEEPOTX
Other sleep disorder - specify
Free-text variable and only available in version 3.0 of the UDS.

ANGIOCP

Carotid procedure - angioplasty, endarterectomy or stent within the past 12
months

Only available in version 3.0 of the UDS.

ANGIOPCI

Percutaneous coronary intervention - angioplasty and/or stent within the past
12 months

Only available in version 3.0 of the UDS.

PACEMAKE
Procedure - pacemaker and/or defibrillator within the past 12 months
Only available in version 3.0 of the UDS.

HVALVE
Procedure - heart valve replacement or repair within the past 12 months
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Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

Name
Description
Reason

Only available in version 3.0 of the UDS.

ANTIENC
Antibody-mediated encephalopathy within the past 12 months
Only available in version 3.0 of the UDS.

ANTIENCX
Antibody-mediated encephalopathy - specify
Free-text variable and only available in version 3.0 of the UDS.

OTHCOND

Other medical conditions or procedures within the past 12 months not listed
above

Only available in version 3.0 of the UDS.

OTHCONDX
Other medical conditions - specify
Free-text variable and only available in version 3.0 of the UDS.
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Milestones

Number of Variables 16
Number of Variables Used 0
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Dropped Variables

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description
Reason

Name
Description

Reason

NACCDIED
Subject is known to be deceased
Information provided would not be available at an initial visit.

NACCMOD
Month of death
Information provided would not be available at an initial visit.

NACCYOD
Year of death
Information provided would not be available at an initial visit.

NACCAUTP
Neuropathology data from an autopsy is available
Information provided would not be available at an initial visit.

NACCACTV
Follow-up status at the Alzheimer’s Disease Center (ADC)
Information provided would not be available at an initial visit.

NACCNOVS
No longer followed annually in person or by telephone
Information provided would not be available at an initial visit.

NACCDSMO
Month of discontinuation from annual follow-up
Information provided would not be available at an initial visit.

NACCDSDY
Day of discontinuation from annual follow-up
Information provided would not be available at an initial visit.

NACCDSYR
Year of discontinuation from annual follow-up
Information provided would not be available at an initial visit.

NACCNURP
Permanently moved to a nursing home
Information provided would not be available at an initial visit.

NACCNRMO
Month permanently moved to a nursing home
Information provided would not be available at an initial visit.

NACCNRDY
Day permanently moved to a nursing home
Information provided would not be available at an initial visit.

NACCNRYR
Year permanently moved to a nursing home
Information provided would not be available at an initial visit.

NACCFTD

One or more FTLD (frontotemporal lobar degeneration) Module visits

completed
Irrelevant as data from the FTLD Module not utilised.
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Name
Description
Reason

Name
Description
Reason

NACCMDSS
Subject’s status in the Minimal Data Set (MDS) and Uniform Data Set (UDS)
Irrelevant as only data available at an initial visit considered.

NACCPAFF
Previously affiliated subject
Irrelevant as only data available at an initial visit considered.
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Appendix B

Diagnostic and Differential

Variable Importances

Table B.1 provides the diagnostic and differential importances for the 260 variables
utilised. The diagnostic importance is the importance of a variable for diagnosing
dementia, according to the dementia classifier; and the differential importance is
the importance of a variable for the differential diagnosis of dementia, according
to the pairwise dementia subtype classifiers. The latter was calculated using all 10
pairwise subtype classifiers, as explained in section 4.2.3. The variables are ordered
with regards to their diagnostic importance; and a description of each of them is
given, based on those provided by the National Alzheimer’s Coordinating Center
(2017). The short descriptions used in figures 4.6 and 4.11, as well as table 4.5, are
also provided for the relevant variables (in square brackets following the description).

The table shows that the variables found to be important for diagnosing
dementia are different to those found to be important for the differential diagnosis of
dementia. This is demonstrated by DECCLIN, which indicates whether the clinician
believed there was a meaningful decline in one or more of a variety of domains, or
there were motor/movement changes. It is in the top 20 important variables for
diagnosing dementia, but is of almost no importance for differentiating between
subtypes. Another example is HXSTROKE, which provides the subject’s stroke
history. It is the most important variable for the differential diagnosis of dementia,

but is of very little importance for diagnosing dementia.
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