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Highlights 

 The spraying device was developed, to remove dust particles from mine air 

 Stand tests on the smart spraying device prototype were positive 

 Fractional drops distribution was tested on the laboratory stand test 

 Drops absorption surface area were determined 

 A method for selecting the drops size for dust concentration was developed 

 
 

Airborne dust in underground hard coal mines is an ongoing explosion and respiratory health 

hazard. The latest design solution for controlling dusts, the smart spraying system, is described. From 

the results of stand tests, the main factors determining the efficiency of the new device are: 1) the 

integrated real-time acquisition of dust particle size and concentration data, determined using a new 

optical dust meter; 2) the fractional distribution of water droplets; and 3) the selection of droplet size to 

capture PM10 and PM2.5. The latter two factors are automatically controlled, based on dust 

measurements, by varying the pressure of water and compressed air supplied to the sprayer nozzles. The 

effects of varying these parameters and the results of stand tests are presented. The spraying device was 

tested for the effectiveness of PM2.5 dust and PM10 dust reduction in underground conditions in the 

KWK Pniówek mine. The tests were based on the following Polish Standards: PN-91/Z-04030/05 and 

PN91/Z-04030/06,  which define the methodology for measurements of inhalable and respirable dust at 

workplaces using the filtration-weighing method to determine the concentration of inhalable and 

respirable dust with the spraying system on and off. The results showed that the assumed objective, i.e. 

development of a dust control device that would reduce PM2.5 dust (by min. 25%) and PM10 dust (by 

min. 20%) more effectively than the currently used solutions, was achieved in the project. At the same 

time, the device, due to application of dust sensor, continuously adjusts the parameters of spraying 

streams to the dust concentration level, optimizing the consumption of water and compressed air. Similar 

results in reduction of PM10 and PM2.5 dust, with an average effectiveness of over 60% is the 

undoubted advantage of the device.  

 

Keywords: coal dust; particle diameter; dust suppression; water-air spraying device 
 

1. Introduction 

 

There are a number of hazards associated with underground coal mining, coal dust is one of them. Its 

generation, , has generally increased over time due to mechanization of mining processes and higher productivity. 

The dust is lofted and moved around by air currents, increasing the risk of explosions and respiratory diseases of 

miners. The likelihood of explosions is greatest where there are high concentrations of combustible dust, an 

oxidizer (mine air) and an ignition source, in confined space being particularly hazardous [Cybulski, 1973]. Dust 

explosions are rare and difficult to predict but their effects can be extremely dangerous for mine personnel and 

equipment. Historically, the most serious disasters related to coal dust explosions were in the Henkeiko mine, 

Manchuria, in 1942 (1,527 deaths) and in the Courries mine in France, in 1906 (1099 deaths) [Rojek, 2012] and 

in recent years  in Mexico, Pasta De Conchos, 2006; U.S., Upper Big Branch, 2010r, Turkey in Soma, in 2014.  

Pneumoconiosis, which includes incurable and often fatal coal workers’ pneumoconiosis (CWP, or ‘black 

lung’), and silicosis [4] are the most common respiratory disease amongst miners exposed to dust over protracted 

time periods [NIOSH, 2019]. Such diseases often cause chronic bronchitis and emphysema, and sometimes heart 

failure and cardiac hypertrophy [Landen et. al., 2011; Brodny and Tutak. 2018]. The  particle size fraction PM2.5, 

nominally particulate with an aerodynamic diameter of less than 2.5 microns, which, from urban air pollution 

studies, has been linked to higher rates of cardiovascular and respiratory mortality [Liu et. al., 2019] is of particular 

concern. Almost all previous studies were based on PM10.  

Symptoms of CWP usually appear after several years, that is why these diseases are most commonly 

diagnosed in retired miners [Cohen et al., 2018]. Share of new pneumoconiosis cases in Poland caused by coal 

mining processes is shown in Fig. 1 [Swiatkowska and Hanke, 2018] [Górniczy, 2020]. The persistently high rates 

of pneumoconiosis suggests that protective measures are insufficient, and/or that dust reduction systems in mines 

are inadequate.  
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Fig. 1. Share of new pneumoconiosis cases in Poland that are caused by coal mining in the years 2013-2017 [Górniczy, 2020]. 

 

Limitation of dust  generation decrease of possibility of rising the already settled dust, as well as removing 

it from air are the main methods for reducing airborne dust concentrations in underground coal mines. Currently, 

a number of devices and new technologies for dust control using the agents such as: environmentally-friendly 

agglomerant to improve the dry dust removal effect for filter material for dust removal devices [Liu et al., 2020], 

or a new ecofriendly crust-dust suppressant extracted from waste paper [Li et al., 2020] are being introduced more 

and more often. Water spraying is one of the main ways to reduce airborne dust and the likelihood of its 

resuspension [Ren et al., 2014] [Shi et.al, 2019]. The latter is realized by wetting the settled dust particles, so that 

they make larger particles and are therefore less likely to be re-suspended. The new high-efficiency coal dust 

suppressant based on self-healing gel [Ding et al., 2020] limits the effect of dust rising. 

Over approximately the last 10 years, a number of spraying devices have been developed for use in hard coal 

mines. These devices operate by producing a mist of water drops [Wang et al., 2019], each drop potentially 

captures one or more dust particles. The dust-laden drops have a relatively high mass and are therefore easy to be 

deposited. 

These installations are used on roadheaders [Libera et al. 2010], on longwall shearers [Xu et al. 2019], [Ma 

et al., 2020], on belt conveyors and in roadways [Bałaga et al., 2015]. All these installations have high dust control 

efficiency, proved in tests and stand simulations.  

One such device, the “water mist generation system with mesh apertures" developed by Telesto’s [System, 

2020], can operate with use of either water or a mixture of water and compressed air. In both cases special nozzles 

are used to create water drops with sizes ranging from a few to several tens of micrometres. The device has a 

spraying frame suspended in the roadway cross-section and a set of movable meshes to catch water-dust droplets.  

The CZP BRYZA roadway air-water dust protection system, developed at KOMAG and manufactured 

by ELEKTRON S.C., is another well-known and commonly used solution for reducing airborne dust [Bałaga et 

al., 2015] [Prostański, 2018]. The system is equipped with a set of three spraying devices on which the spraying 

packs (heads) are installed together with linearly arranged spraying nozzles. The nozzles use compressed air which 

decreases the amount of water required to effectively reduce airborne dust concentration and allows for better 

water droplet formation. The system operates at water and air pressures of 0.3-0.6 MPa, which restricts its use to 

the places, where there is access to compressed air and fire-fighting pipelines. In-situ tests of the BRYZA, 

TELESTO, PNIÓWEK dust protection systems showed that its efficiency for reducing total dust concentration 

can be as high as 60%, and for PM10 around 50% (Fig. 2).  

 

 

Fig. 2. Efficiency of PM10 and PM2.5 dust dust reduction using three tested spraying devices (CZP BRYZA, TELESTO, PNIÓWEK) 

[Bałaga, 2019]  

The air-water spraying solutions presented in Fig. 2 significantly reduce airborne PM10 dust levels and so 

improve the miners safety and work comfort of. It is not known how they reduce PM2.5 dust concentration, as it 
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was not determined before. Studies on PM 2.5 dust indicate that this fraction causes human diseases, mainly related 

to the cardiovascular system. The KOMAG Institute has therefore designed a new SSD-1smart spraying device, , 

which will control both PM10 and PM2.5  dust [Bałaga, 2019]. The effectiveness of the device will be assessed in 

underground tests. 

2. Theoretical background for the new SSD-1 device 

The resuspension of coal dust largely depends on the water content in the dust [Cybulski, 2005], and 

conversely, dust wetting efficiency is an important factor in removing dust particles from the air . Coal dust will 

not be resuspended when: 

 

Wc>1.83xWhw+2.2      (1) 

where: 

 

Wc – total water content in the coal dust, %. It is assumed that Wc has to be at least 8% [Laskowski, 1948] 

[Cybulski, 2005] 

Whw  – content of hydroscopic water in coal, %  

The three inertial collision, attachment and diffusion mechanisms for combining the dust particles with 

water droplets are most important to promote their deposition (Fig. 3) [Zacharzewski and Kwiecień, 1974].  

a)  b)  

c)  

Fig. 3. Mechanisms for combining the dust particle with a water droplet: a) inertia, b) attachment, c) diffusion 

The efficiency of dust reduction as a combined effect of inertial collision, attachment and diffusion 

(Brown's dispersion mechanisms) can be determined from the following relationship [Changchi et al., 1996]: 

ƞns = 1 − (1 − ƞis)(1 − ƞrs)(1 − ƞds)   (2) 

 

where: 

ƞ𝑛𝑠  effectiveness of dust particle capture by a water droplet, % 

ƞ𝑖𝑠  effectiveness of dust particle capture as a result of inertial collision of a water droplet with a 

dustparticle, % 

ƞ𝑟𝑠  effectiveness of dust particle capture as a result of water droplet attachment, % 

ƞ𝑑𝑠  effectiveness of dust particle capture as a result of water droplet diffusion, % 

Efficiency of inertial collision can be calculated from the following relationship given by Herne [Liu et 

al., 2019]: 

ƞ𝒊𝒔 =
𝑺𝒕𝒌

(𝑺𝒕𝒌+𝟎.𝟐𝟓)𝟐

𝟐
      (3) 

 

S𝑡𝑘 =
𝜌𝑝𝑑𝑝

2𝜐0

18𝜇𝑑𝑐
  

where: 

Stk the inertial collision parameter,  

Jo
ur

na
l P

re
-p

ro
of



ρp  the dust density, kg/m3 

dp  the dust particle diameter, m 

υ0  the mean relative velocity, m/s 

Efficiency of dust particles capturing in the result of attachment with a water drop  can be calculated from 

the following relationship given by Ranz [Liu et al., 2019]: 

ƞ
𝑟𝑠

= (1 +
𝑑𝑝

𝑑𝑐
)2 − 

𝑑𝑐

𝑑𝑐−𝑑𝑝
     (4) 

where: 

dp  the dust particle diameter, m 

dc  the droplet diameter, m 

 

Efficiency of dust particles capturing in the result of diffusion in a water drop  can be calculated from the 

following relationship given by Craford [Liu et al., 2019]: 

ƞ
𝑑𝑠

= 4.18 𝑅𝑒𝑑 

1

6
 𝑃𝑒−

2

3       (5) 

𝑅𝑒𝑑 =  
𝜐0 𝑑𝑐𝛒𝑔

𝜇
        (6) 

 𝑃𝑒 =  
𝜐0 𝑑𝑐

𝜇
      (7) 

where: 

Red the Reynolds number, 
Pe the Peclet number, 

dc  the droplet diameter, m 

υ0  the mean relative velocity, m/s 

ρg  the air density, kg/m3 

µ  the air dynamic viscosity, Pa*s 

 

According to tests carried out by Karowiec [Karowiec, 1984], the efficiency of water droplets to capture 

dust particles depends on their size and energy. It decreases rapidly as the diameter of dust particles decreases, and 

increases with reduction in water droplet diameter. Unfortunately, a reduction in water droplet diameter, and an 

increase in the distance from the spraying nozzle, can cause a loss of water drop energy, which leads to a decrease 

in the efficiency of dust deposition. Karowiec’s tests were carried out for dust particles smaller than 5 μm (Fig. 4). 

 

 

Fig. 4. Efficiency of dust particle capture by water droplets of different diameters, which depends on the size of the dust particle and 

distance from the spraying source [Karowiec, 1984]. 

Producing smaller diameter droplets increases their total surface area compared with larger droplets from the 

same volume of water, which contributes to increasing the efficiency of dust particle capture [Lebecki et al., 2004 

]. The following calculations confirm this: 

Vr   - volume of droplet of radius r, 

V0,1r  - volume of droplet of radius 0.1r. 
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𝑉𝑟 =
4

3
𝜋𝑟3       (8) 

𝑉0,1𝑟 =
4

3
𝜋 (

1

10
𝑟)

3

=
1

1000
×

4

3
𝜋𝑟3 =

1

1000
𝑉𝑟     (9) 

 

Assuming that droplet radius is reduced by 10 times, the surface area of the droplets will be: 

𝑆𝑟 = 4𝜋𝑟2       (10) 

𝑆0,1𝑟 = 4𝜋 (
1

10
𝑟)

2

=
1

100
× 4𝜋𝑟2 =

1

100
𝑆𝑟 

𝑆1000 = 100 × 4𝜋 (
1

10
𝑟)

2

=
1

100
𝑟2 × 1000 × 4𝜋 = 10 × 4𝜋𝑟2 = 10𝑆1 

Where 𝑆1000 is the surface of 1000 drops of radius  r = 
1

10
𝑟, and their volume corresponds to 1 droplet with a radius 

r.  

From these calculations, a 10-fold reduction in the radius of the droplets causes their total surface area to 

increase by 10 times, which increases the probability of a water droplet encountering a dust particle. At the same 

speed, however, smaller diameter water droplets have lower kinetic energy, which worsens their effectiveness for 

capturing dust particles. To overcome this, the velocity of droplets can be increased by using a high pressure water 

system to supply the spraying nozzles. Unfortunately, such systems require special pumps which generate 

additional costs. Using compressed air can produce smaller diameter droplets with relatively high kinetic energy 

[Siegmund et al., 2018] [Wang et al., 2019].  

 

3. SSD-1Smart Spraying Device  

Currently used spraying devices produce droplets of unknown sizes and velocity and do not respond to 

changing dust concentration. With knowledge of the theoretical background, and having experience from several 

hundred installations of spraying devices [Bałaga et al., 2015] [Prostański, 2018], a team of KOMAG designers 

has developed a new smart SSD-1spraying device, the, for use in roadways [Bałaga, 2019]. The operational 

principle of the device is to produce water droplets with diameters close to the size of the dust particles, and to 

maintain a high output energy from the nozzles by using water combined with compressed air (Fig. 5) [Wang et 

al., 2019].  

 
Fig. 5. 3D visualisation of the new SSD-1 smart spraying system [Bałaga, 2019] 

The prototype of the SSD-1 device has several spraying units installed on the perimeter of the roadway 

support, to which water and compressed air are supplied from special units. Both water and compressed air flow 

through one of the three supply lines, within which the pressure is adjusted by reduction valves. The SSD-1 device 

creates spraying streams with different droplets fractional distributions, produced and controlled by nine water and 

compressed air pressure combinations. From the measurement of ambient PM10 and PM2.5 dust concentrations, 

using an EMIDUST optical dust meter, the MDJ6001 intrinsically safe controller uses an algorithm to select the 

optimum water and compressed air pressures. Photographs of the functional testing of the prototype device are 

shown in Fig. 6. 

 
Fig. 6. Functional tests of the SSD-1 smart spraying device. 
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4. Droplet fractional distribution tests 

For the correct operation of the SSD-1 device and its control algorithm, it was necessary to develop and 

manufacture a prototype nozzle. This was tested using a test stand, built at the KOMAG Institute of Mining 

Technology, which consisted of a nozzle supplied with water and compressed air, instruments for recording the 

spraying parameters and a Spraytec droplet analyser made by Malvern Instruments (Fig. 7). The water spraying 

stream was tested at a distance of 1 m from the nozzle end. The aim was to determine the fractional distribution of 

droplets which depends on water and air supply pressures. Based on the results, the best water nozzle supply 

parameters were selected for the most efficient and effective reductions in PM10 and PM2.5.  

 

Fig. 7. Test stand used for the measurement of water droplets fractional distribution in the spray stream, where the source of the 

spraying stream was located at a distance of 1 m from the Spraytec droplets analyser. 

Fractional droplets distribution tests in the spraying streams generated by nozzles supplied with water and 

compressed air were carried out according to the combinations of parameters listed in Table 1. These parameters 

resulted from the range of proper operation of the nozzle and parameters of media available in mine underground. 

Pressure/Combination No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Pwater[MPa] 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 

Pair [MPa] 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5 

After stabilization of the spraying stream and water and air outputs, the results of the droplet distribution tests 

were recorded. The spray streams supplied by different combinations of water pressure and compressed air are 

shown in Fig. 8. 

 

 1  2  3  4 

 5  6  7  8 

 9  10  11  12 

 13  14  15  16 

Fig. 8. Spraying streams generated by the nozzle when supplied with water and compressed air at given combinations of water and 

compressed air pressures 

Table. 1. Water and compressed air pressures and corresponding combination numbers  
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5. Droplet fractional analysis  

The results obtained from the tests were for the percentage share of droplets, the D32 Sauter mean diameter 

and the cumulative curve. The dust capture effectiveness of the generated water stream produced at each of the 

tested combinations of water nozzle supply parameters was assessed. Firstly, based on the result of the D32 Sauter 

mean diameter and the flowrate of water supplying the spraying nozzle, the total surface area of generated drops 

was calculated. This assumed that the droplets had the shape of an ideal sphere, which surface area and volume 

were calculated using the following formula:  

𝑃𝑘 = 4𝜋 ∙ 𝑟3     (11) 

where: 

𝑃𝑘  - the single drop surface area, m2 

r  - the drop radius ( 0.5 D32 Sauter diameter), m   

 

In turn, the volume of the droplets was calculated from the following formula: 

𝑽𝒌 =
𝟒

𝟑
𝝅 ∙ 𝒓𝟑     (12) 

where: 

𝑉𝑘  - the single droplet volume, m3 

r   - the droplet radius ( 0.5 D32 Sauter diameter), m 

   

Knowing the volumetric flowrate of the water supplying the Qw nozzle, and the volume of a single droplet 

(determined using the Sauter mean diameter), it was possible to calculate the mean number of all droplets in the 

spraying stream, generated per minute. The number of drops nt is calculated from the following formula: 

𝒏𝒕 =
𝑸𝒘

𝑽𝒌
      (13) 

where: 

𝑛𝑡  - equivalent number of drops generated in 1 min, 

𝑄𝑤  - water flow rate, 
𝑚3

 𝑚𝑖𝑛
, 

 𝑉𝑘 - single drop volume, m3. 

 

The total absorption surface area generated by the nozzle in 1 minute was calculated using the following 

formula: 

𝑃𝐴/𝑇 = 𝑛𝑡 ∙ 𝑃𝑘      (14) 

where: 

𝑃𝐴/𝑇  - absorption surface area created within 1 𝑚𝑖𝑛, 𝑚2 

𝑛𝑡  - equivalent number of drops generated within 1 𝑚𝑖𝑛 

𝑃𝑘 - single drop surface area, m2 

 

Thus, the determined absorption surface areas generated within 1 min, for the spraying streams [Bałaga et al., 

2019], at given combinations of water and compressed air pressures, are presented in Table 2. 

Combination 

number 
Water flow rate [dm3/min] 

Air flow rate 

[Ndm3/min] 

Diameter D(32) 

[µm] 

PA/T 

[m2/min] 

1 0.24 18.83 61.25 23.5 

2 0.22 25.98 49.51 26.7 

3 0.18 32.2 37.13 29.1 

4 0.17 35.99 31.82 32.1 

5 0.38 16.37 77.34 29.5 

6 0.34 25.51 62.69 32.5 

7 0.3 31.68 50.34 35.8 

8 0.28 35.43 43.82 38.3 

9 0.62 12.28 96.66 38.5 

10 0.53 23.26 69.23 45.9 

11 0.54 31.15 61.98 52.3 

12 0.49 35.16 58.34 50.4 

13 0.99 6.14 142 41.8 

14 0.73 16.77 83.41 52.5 

15 0.74 28.51 69.62 63.8 

16 0.67 32.67 65.97 60.9 

Table. 2. Droplet diameter and absorption surface area for the different combinations of water and compressed air flow rate  
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It is possible to obtain different sizes of water droplets in the spraying stream by changing the pressure of the 

water and compressed air supplying the nozzle. The results are presented in a graphical form in Fig. 9. The smallest 

D32 Sauter mean diameter,of 31.82 µm, was measured at the lowest water pressure and the highest compressed 

air pressure. In turn, the highest D32 Sauter mean diameter of 142 µm was measured at the highest water pressure 

and the lowest compressed air pressure., Increase in air and water pressure, at the same flow rate, decreases a 

droplet diameter. In turn, a decrease in the difference between the water and relative air pressure increases the D32 

Sauter mean droplet diameter. 

 

 

Fig. 9. The D32 Sauter mean droplet diameter which depends on the pressure of water and compressed air supplying the nozzle 

The situation is different for the absorbtion surface area (Fig. 10) where the highest values were obtained at 

the highest water and compressed air pressures (0.4 MPa air and 0.3 MPa water), and the lowest at the lowest 

water and compressed air pressures (0.2 MPa air and 0.05 MPa water). The highest absorption surface area was 

about 64 m2/min, and the lowest around 24 m2/min. 

 

Fig. 10. Absorption surface area of PA/T droplets, which depends on the pressure of water and compressed air supplied to the nozzle. 

The tests also indicated that the size of the absorption surface area and the diameter of the droplets in the 

tested two-media nozzle, with external mixing, is controlled by the amount of water and compressed air supplied 

to the nozzle. The increase in water flowrate is directly proportional to the increase in its pressure and inversely 

proportional to the decrease in compressed air pressure (Fig. 11). 
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Fig. 11. Water flow rate [dm3/min], which depends on the pressure of water and compressed air supplied to the nozzle. 

A similar effect is  observed for air flow rate. An increase in air flow rate is directly proportional to the increase 

in air pressure and inversely proportional to the increase in water pressure (Fig. 12). 

 

 

Fig. 12. Air flow rate [Ndm3/min], depending on the water pressure and compressed air supplied to the nozzle 

For such tests on the effects of different nozzle parameters on droplet characteristics, the energy needed 

to produce the air-water spray stream was additionally determined. This energy is a sum of energy needed to 

produce the required air flow rate, and the pressure needed to generate the required water flow rate and pressure, 

within a given time [Rojek and Kalukiewicz, 2012]. 

𝐸 = 𝐸𝑃 + 𝐸𝑊     (15) 

 

The energy required to generate the given air parameters is the following: 

𝐸𝑃 = �̇�𝑃 ∙ 𝑝𝑃 ∙ τ     (16) 

 

where: 

�̇�𝑃 - air volume over a given time interval[m3] 

𝑝𝑃 - air pressure [Pa] 

τ - time [min] 

 

By treating air as an ideal gas, we can write: 

�̇�𝑃𝑁 ∙ 𝑝𝑃𝑁 = 𝑛 ∙ 𝑅 ∙ 𝑇𝑃𝑁     (17) 
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where: 

�̇�𝑃𝑁  - air volume under normal conditions over a given time interval, Nm3 

𝑝𝑃𝑁  - air pressure under normal conditions (𝑝𝑃𝑁 = 101325  [Pa]) 

𝑛  - number of air moles 

𝑅  - individual gas constant of air (𝑅 =  287  
J

kgK
 ) 

𝑇𝑃𝑁  - air temperature under normal conditions (𝑇𝑃𝑁 = 273.15,  K) 

 

As the results for the air flow rate are related to normal conditions, they should be converted into real 

conditions in the pipe supplying the nozzle: 

�̇�𝑃 ∙ 𝑝𝑃 = 𝑛 ∙ 𝑅 ∙ 𝑇𝑃     (18) 

where: 

�̇�𝑃  - air volume over a given time interval, m3 

𝑝𝑃  - air pressure under real conditions  

𝑛  - number of air moles 

𝑅  - individual gas constant of air (𝑅 =  287
𝐽

𝑘𝑔𝐾
) 

𝑇𝑃  - air temperature in real conditions (𝑇𝑃 = 288.35,  K) 

 

After comparison of equations (18) and (19) we get: 

�̇�𝑃 =
�̇�𝑃𝑁∙𝑇𝑃∙𝑝𝑃𝑁

𝑇𝑃𝑁∙𝑝𝑃
      (19) 

In turn, the energy required to generate the given water parameters is the following: 

𝐸𝑊 = �̇�𝑊 ∙ 𝑝𝑊 ∙ τ      (20) 

The determined energy consumption is presented in Table. 3.  

Combination 

number 

Water flow rate 

[dm3/min] 

Air flow rate (normal 

conditions) [Ndm3/min] 

Air flow (real 

conditions) [m3/min] 

Air 

energy 

Ep [kJ] 

Water 

energy 

Ew [kJ] 

Energy 

E [kJ] 

1 0.24 18.83 0.0100 2.01 0.01 2.03 

2 0.22 25.98 0.0093 2.78 0.01 2.79 

3 0.18 32.2 0.0085 3.39 0.01 3.4 

4 0.17 35.99 0.0077 3.85 0.01 3.86 

5 0.38 16.37 0.0087 1.75 0.04 1.79 

6 0.34 25.51 0.0091 2.73 0.03 2.76 

7 0.3 31.68 0.0083 3.33 0.03 3.36 

8 0.28 35.43 0.0076 3.79 0.03 3.82 

9 0.62 12.28 0.0065 1.31 0.12 1.44 

10 0.53 23.26 0.0083 2.49 0.11 2.59 

11 0.54 31.15 0.0045 1.79 0.11 1.9 

12 0.49 35.16 0.0075 3.76 0.10 3.86 

13 0.99 6.14 0.0033 0.66 0.30 0.95 

14 0.73 16.77 0.0115 3.44 0.22 3.66 

15 0.74 28.51 0.0076 3.05 0.22 3.27 

16 0.67 32.67 0.0070 3.49 0.20 3.7 

Water and air energy required to generate 1 m2 of absorption surface depends on the combination of air-

water nozzle supply parameters, as shown in Fig. 13.  

 

Table. 3. Energy consumption required to obtain each combination of parameters to provide different spray streams. 
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Fig. 13. Water and compressed air energy consumption to generate a 1m2 absorption surface, which depends on the relative pressures 

of water and compressed air supplied to the nozzle  

From the energy needed to generate a given droplet distribution, the least preferable setting is a water 

pressure below 0.1 MPa, where the energy required for a 1m2 absorption area is above 0.1 kJ. The most favourable 

water supply pressure is above 0.1 MPa, where the required energy is only 0.23 kJ/m2 (0.3 MPa water and 0.2 

MPa air). Unfortunately, this case is the least favourable in terms of the D32 Sauter mean diameter.  

6. Selection of optimum combination of water spraying stream  parameters to the given dust 

concentration 

After fractional analysis of the spraying stream, the optimum combination of parameters were selected to 

reduce airborne dust concentrations using the SSD-1 smart spraying device. As the device has 3 possible settings 

for water pressure, and 3 for compressed air pressure, there are nine combinations of air and water pressures. The 

optimum parameters were selected over a number of test stages.  

At the first stage, the pressure reducer settings in the spraying device were determined, taking into account 

the energy demand needed to generate a 1 m2 absorption surface area. Due to the large amount of energy required, 

water pressures below 0.1 MPa, were rejected. Waterpressures of 0.1 MPa, 0.2 MPa and 0.3 MPa were selected 

for the reducer settings, in combination with compressed air pressures equal to 0.3 MPa, 0.4 MPa and 0.5 MPa. 

The lowest compressed air pressure was combined with the highest water pressure of 0.3 MPa to give better droplet 

distribution. Cumulative curves for the selected combinations of the spray nozzle parameters are presented in Fig. 

14. 

 

6. (Pw-0.1 MPa, Pp-0.3MPa) 7. (Pw-0.1 MPa, Pp-0.4MPa) 8. (Pw-0.1 MPa, Pp-0.5MPa) 

10. (Pw-0.2 MPa, Pp-0.3MPa) 11. (Pw-0.2 MPa, Pp-0.4MPa   12. (Pw-0.2 MPa, Pp-0.5MPa) 
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14. (Pw-0.3 MPa, Pp-0.3MPa) 15. (Pw-0.3 MPa, Pp-0.4MPa) 16. (Pw-0.3 MPa, Pp-0.5MPa) 

Fig. 14. Cumulative curves of droplet diameter achieved by the selected combinations of spray stream parameters. 

 

The next step was to determine which of the 9 combinations of water pressure and compressed air settings, 

in terms of absorption surface and the mean diameter of the droplets they produce (Sauter mean diameter), would 

be best for capturing the PM10 and PM2.5, measured using the EMIDUST continuous dust monitoring system. 

(Table 2). Based on gained experience [Bałaga and Jaszczuk, 2016], in controlling the PM10 dust, the largest 

absorption surface generated by the spraying streams should be used. In turn, from the highest absorption surfaces 

for effective control of PM2.5 dust, the smallest mean diameter should be selected. On this basis, a SSD-1 spraying 

device response to dust fractional analysis table was created (Table. 4).  

Number of combination 
Concentration of PM10 

<20 mg/m3 20-40 mg/m3 >40 mg/m3 

Concentration 

of PM2.5 

<10 mg/m3 8 12 16 

10-50 mg/m3 7 11 15 

>50 mg/m3 6 10 14 

The smart SSD-1 spraying device was programmed for using the numbers of media pressure  combination 

depending on dust concentration and composition given in Table 4, and then its operation was verified in 

operational tests at KOMAG. As part of this, the dust concentration was manually entered into the MDJ controller’s 

software and the nature of the response of the spray system to PM10 and PM2.5 dust concentrations was assessed, 

especially the time required for valve activation and thus the initiation of the spraying system.  

Each of the assessed spray nozzle supply combinations differed significantly in the characteristics (range 

and intensity) of the droplet stream produced by the nozzle. Fig. 15 illustrates the effect of different water and 

compressed air pressures combination on the spraying stream characteristics produced by the SSD-1 device. 

  
6. (Pw-0.1 MPa. Pp-0.3MPa)

 

7. (Pw-0.1 MPa. Pp-0.4MPa)

 

8. (Pw-0.1 MPa. Pp-0.5MPa)

 

Table. 4. Table of response for SSD-1 smart spraying device (number of combination.)  
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10. (Pw-0.2 MPa. Pp-0.3MPa)

 

11. (Pw-0.2 MPa. Pp-0.4MPa)

 

12. (Pw-0.2 MPa. Pp-0.5MPa)

 
14. (Pw-0.3 MPa. Pp-0.3MPa)

 

15. (Pw-0.3 MPa. Pp-0.4MPa)

 

16. (Pw-0.3 MPa. Pp-0.5MPa)

 
Fig. 15. Production of water mist curtain in a simulated mine roadway cross-section which depends on the size distribution of droplets 

produced at different pressures of water and compressed air (ultimately chosen combinations) 
 

7. Underground in-situ tests 

 

After positive operational verification tests of SSD-1 smart spraying device in the testing room, it was 

transported to  KWK Pniówek mine. SSD-1 device was installed in N-3 in the seam 404’4. Testing its effectiveness 

in controlling PM10 and PM2.5 dust concentration and comparing the results with those reported in the case of 

currently used spraying devices was the main objective of the underground tests (Fig. 16). Measurements of PM10 

and PM2.5 dust concentration were measured, as in the case of currently used devices,  by the personal gravimetric 

dust meters type CIP-10R for measurements of PM2.5 dust fraction and type CIP-10I for PM10 fraction. Dust 

concertation measurements were taken ahead of the spraying device and behind it (at a distance of about 20m) for 

each of nine combinations of spraying stream parameters. 

 

a)  b)  
Fig. 16. View of: a) the two-media nozzle of the SSD-1 device in operation, b) the EMIDUST’s measuring head. 

The results of the CIP-10R and CIP-10I particle counter measurements allowed to calculate the average dust 

concentration at given measuring points. The following formula for determination of dust concentration in the air 

was used (21). 

𝐒 =
𝐦

𝐕
˙

∗𝛕
         (21) 

where: 
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𝑆1 − measured dust concentration [
𝑚𝑔

𝑚3] 

𝑉
˙

− 𝑎𝑖𝑟𝑓𝑙𝑜𝑤 𝑖𝑛 𝐶𝐼𝑃 − 10 [
𝑑𝑚3

𝑚𝑖𝑛
] 

𝜏 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 [ 𝑚𝑖𝑛] 

𝑚 − 𝑚𝑎𝑠𝑠 𝑜𝑓  𝑑𝑢𝑠𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑖𝑛𝑔 𝑐𝑢𝑝  [𝑚𝑔] 
 

Results of average concentrations of PM10 and PM2.5 dust, measured around the tested device, allowed to 

calculate the tested spraying device efficiency in dust reduction . This efficiency was calculated according to the 

formula (22). Efficiency of PM10/PM2.5 dust reduction is the difference between the PM10/PM2.5 dust 

concentration measured ahead of the spraying device and the PM10/PM2.5 dust concentration measured behind 

the spraying device.  

%100
1

21
x

S

SS
zapred




      (22) 

where: 

1S  – dust concentration ahead of the spraying device  

2S  – dust concentration behind the spraying device 

The measuring cycle consisting in dust concentration measurements for nine combinations of spraying 

parameters was completed within one working shift. During two following days, additional two measuring cycles 

were made .  

Underground tests for determination of efficiency in reduction of PM2.5 and PM10 dust concentration by the 

smart spraying device enabled to find clear relationships between spraying stream parameters and dust 

concentration. Based on the results of PM10 dust reduction efficiency, it was observed in each of three measuring 

days, that the efficiency increased with water pressure increase. It was also observed that in all testing days dust 

reduction efficiency increased when difference of water pressure and compressed air pressure was small (0.1MPa 

water and 0.3 MPa compressed air- combination No. 6; 0.2MPa water and 0.3 MPa compressed air- combination 

No. 10 ; 0.3MPa water and 0.3 MPa compressed air- combination No. 14) Fig. 17. 

 

Fig. 17. Effectiveness in reduction of PM10 dust concentration depending on pressure  of water and compressed air supplying the 

spraying nozzles in relation to air flowrate measured in a roadway  

During three measuring days, air flowrate was measured using the anemometer.  The recorded flowrates 

were successively:  2.9m/s; 3.2 m/s and 2.7 m/s. Impact of air flowrate on efficiency of PM10 and PM2.5 dust was 

observed, where the highest dust reduction efficiency was found for the lowest air flowrate equal to 2.7 m/s.  

Based on the results of efficiency in reduction of PM2.5 dust, obtained in each of three measuring days, 

it was observed that this efficiency reduced with increase of water pressure . It was also observed that in all testing 

days PM2.5 dust reduction efficiency increased when difference of water pressure and compressed air pressure 

was high (0.1MPa water and 0.5 MPa compressed air - combination No. 8; 0.2 MPa water and 0.5 MPa compressed 

air - combination No. 12 ; 0.3MPa water and 0.5 MPa compressed air - combination No. 16). Fig. 18  
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Fig. 18. Effectiveness in reduction of PM2.5 dust concentration depending on pressure  of water and compressed air supplying the 

spraying nozzles in relation to air flowrate measured in a roadway  
 

Average concentrations of PM10 and PM2.5 dust ahead and behind the SSD-1 spraying device obtained 

during three days of measurements were compared with the results obtained for the currently used spraying 

devices, Fig. 19. 

 

Fig. 19. Comparison of  dust control efficiency of currently used and SSD-1 spraying devices 

 

8. Conclusions 

 

High airborne dust concentrations in underground hard coal mines in Poland need to be mitigated urgently to 

reduce the risks from explosions and to the respiratory health of mine workers. From previous studies [Ren et al., 

2014; Shi et al., 2005; Wang et al., 2019], it was suggested that future dust suppression systems should be based 

on water driven by compressed air to produce droplet spray streams and curtains [Wang et al., 2019; System, 2020; 

Bałaga et al., 2015; Prostański, 2018; Bałaga, 2019]. To address this, KOMAG has recently prototyped an smart 

spraying device, SSD-1, which is designed to optimise the size and concentration of water droplets to match those 

of ambient dust particles, the latter continuously measured using an EMIDUST monitoring device. From an 

analysis of droplet size distribution and absorption surface area in the spray stream, water droplets of different 

sizes can be produced by varying the pressure of supplied water and compressed air. The prototype of the SSD-1 

smart spraying device has been subject to functional tests, during which its operational capabilities and the speed 

of response to changing dust concentrations were found to be excellent.  

After functional tests, the SSD-1 device was installed in the Pniówek coal mine, where it was tested for the 

reduction of PM10 and PM2.5 dust. The presented results of the efficiency of PM2.5 dust reduction are consistent 

Jo
ur

na
l P

re
-p

ro
of



with the determined Sauter mean diameters (D32), where the smallest diameters were obtained in the case of an 

increased difference between compressed air pressure and water pressure. In addition, the increase in water and 

compressed air pressure caused an increase in the Sauter mean diameter, which directly translates into a decrease 

in the effectiveness of PM2.5 dust reduction. The most favourable result of the PM2.5 dust reduction efficiency 

was obtained for the case when the water pressure was 0.1 MPa and compressed air 0.5 MPa, which corresponds 

to the lowest value of the Sauter mean diameter obtained by the tested combinations of the spraying parameters. 

The reverse situation is for the determined mean Sauter diameter and the results of the PM10 dust reduction 

efficiency. The obtained results show that the larger the Sauter mean diameter (D32), the greater effectiveness of 

PM10 dust reduction. At the same time, a decrease in the compressed air pressure in relation to water pressure 

increases the size of the Sauter diameter (D32), and thus increases the effectiveness of PM10 dust reduction 

The results from testing the smart SSD-1 spraying device clearly indicate that the assumed objective  to develop a 

dust reduction device that would reduce PM2.5 and PM10 dust more effectively than the currently used solutions, 

was achieved. The most important advantage of the new solution of the SSD-1 device is that the effectiveness of 

PM10 and PM2.5 dust reduction in nearly the same unlike the known spraying devices. As a result, the device, 

unlike previous solutions, does not reduce effectively only one type of dust, so the device is more universal. An 

additional advantage of the solution is its adaptability, allowing the spraying intensity to be adjusted to the current 

concentration of PM10 and PM2.5 dust. This allows for obtaining the optimum spraying parameters for effective 

dust control and reduction of water consumption. 

In the case of PM10 dust reduction, the highest efficiency (73%) was achieved with water and compressed 

air pressure of 0.3 MPa, and drops size D(32) of 83.41 µm. In turn, the highest efficiency of PM2.5 dust reduction 

(80%) was obtained at a water pressure of 0.1 MPa and a compressed air pressure of 0.3 MPa, and the drops size 

D(32) 43.82 µm. 
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