FLOATING WIND INSTALLATION CHALLENGES

Alan Crowle *, PR Thies University of Exeter *email ac1080@Exeter.ac.uk

INDEX

- FLOATING OFFSHORE WIND TURBINES TYPES
- WATER DEPTH RANGES
- ADVANTAGES AND DISADVANTAGES
- CONSTRUCTION METHODS
- MOORING INSTALLATION
- OFFSHORE INSTALLATION
- INSTALLATION VESSEL REQUIREMENTS

FIXED vs FLOATING

(ref [1])

Crossover from fixed to floating is 60m to 80m water depth

Criteria:

- WTIV 60m plusSubstructure cost
- Maintenance cost \triangleright

Note that the wind turbine generator (WTG) is the same whether fixed or floating

Tripod Jacket Monopile

Annual Conference 2021

New waves in marine engineering, science and technology

Spar

Semi-Submersible TLP

BARGE TYPES (ref [2])

Concrete Damping barge 3 Blades 2MW France

Built on pontoon Float off in dry dock

Land based crane for topsides

Steel Damping barge 2 Blades 3MW Japan

Built in drydock

Floating crane for topsides

OTHER FOWT OPTIONS

MULTI TURBINE ON SEMI SUBMERSIBLE SUBSTRUCTURE (Ref [3])

SUSPENDED BALLAST WEIGHT NEEDS OFFSHORE CRANE VESSEL

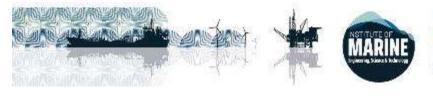
(Ref [4])

Annual Conference 2021 New waves in marine engineering, science and technology

WATER DEPTHS

FIXED BOTTOM VS FLOATING WIND (T-A)

	Water Depth (m)		
	Lower	Upper	Possible
Wind turbine installation vessel (WTIV) waterdepth limit 6	0m, but nev	v vessels wi	ll be 80m
Fixed Monopile	0	20	
Fixed Tripod	15	30	40
Fixed jacket	10	60	80
Barge	50	100	125
Semi Submersible	50	250	300
Spar	70	400	500
Suspended ballast	60	300	350
TLP (tension leg platform)	60	300	350


ADVANTAGES AND DISADVANTAGES DURING CONSTRUCTION AND INSTALLATION

ADVANTAGES-DISADVANTAGES

FOWT TYPE	Advantages	Disadvantages
Pargo	Water ballast only	Long mooring lines
Barge	Standard anchors	
Semi	Based on Oil technology	Long mooring lines
Submersible	Standard anchors	
Submersible	Water ballast only	
	Low motions in tow out	Long mooring lines
	Standard anchors	Needs solid ballast
Spar		Deep water required for inshore construction
		Requires crane vessel to install turbine
		Deep water required for tow to site
TLP (and	Short mooring lines	Low intact stability
suspended ballast		Need for temporary buoyancy
type)		Requires specialised offshore crane vessel

(t-b)

STEEL FOWT WEIGHTS (5MW)

		Semi-Sub	Spar	TLP
Material		Steel	Steel	Steel
Substructure weight	t	1,800	1,400	1,000
Solid Ballast	t	0	3,600	0
Water ballast	t	3,700	2,500	0
5MW wind turbine	t	500	500	500
	t	6,000	8,000	1,500

(t-c)

CONSTRUCTION

SUBSTRUCTURE CONSTRUCTION (t-d)

FOWT TYPE	Semi Submersible or Barge	Spar
	Quay moorings	Inshore Moorings - Installation
Comparison of inchara maaring		> Install mooring chains, anchors, marker buoys
Comparison of inshore mooring requirements for turbine fit out		> Hire fit out barge
requirements for turbine in out		> Add solid ballast to the base of the Spar
		> Pump water ballast into Spar

Annual Conference 2021 New waves in marine engineering, science and technology

FOWT STATUS

(t-e)

Name	Туре	Sub Structure Built	Sub Structure Material	Turbine Outfitting	Final location	Status
Wind float	Semi sub	Spain	Steel	Portugal	Portugal	Operating (3 * 8.4MW)
Wind float	Semi-sub	Spain	Steel	Netherlands	UK (East coast of Scotland)	Under construction (5 * 9.6MW)
Hywind	Spar	Spain	Steel	Norway	UK (East coast of Scotland)	Operating (5 * 6MW)
Hywind	Spar	Norway	Concrete	Norway	Norway	Under construction (11 * 8MW)
Barge	Damping pool	France	Concrete	France	France	Demo (1 * 2MW)
Barge	Damping pool	Japan	Steel	Japan	Japan	Demo (1 * 3MW)

INSHORE vs OFFSHORE WORK

(t-f)

FOWT = DO CONSTRUCTION WORK ONSHORE

Item	Work	Port Laydown and storage time	
			e/Semi-Sub/Spar
Electrical Cables	Storage	25%	75%
Anchors	Storage	15%	85%
Mooring	Storage	35%	65%
	Shipyard (land or		
Substructure	drydock)	95%	5%
Tower	Inshore fit-out quay	85%	15%
Nacelle	Inshore fit-out quay	80%	20%
Blades	Inshore fit-out quay	80%	20%

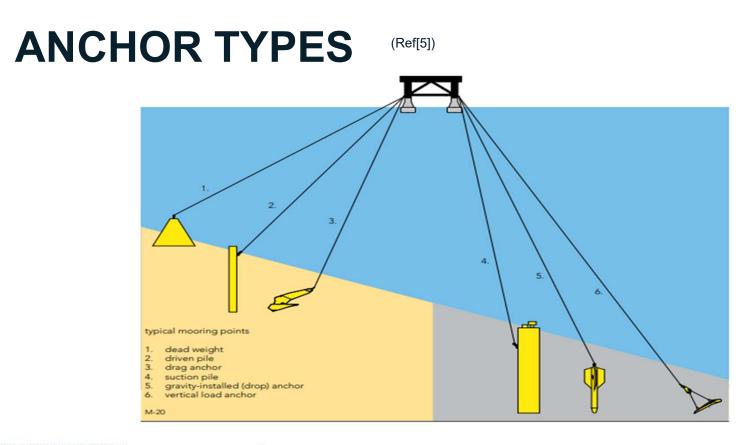
Annual Conference 2021 New waves in marine engineering, science and technology

TOPSIDE INSTALLATION INSHORE (1-g)

FOWT Type	Semi Submersible	Spar
Topside construction	Large capacity onshore crane lifts topside directly onto the substructure	Complete tower built on land using large capacity onshore crane
Inshore		SSCV lifts turbine off quay and installs turbine tower on to Spar
Alternate inshore	Floating sheer leg crane vessel	

MOORING INSTALLATION

ANCHOR TYPES INSTALLATION


Anchor Type	Vessel for anchor	Vessel for mooring line laydown	Advantages	Disadvantages
Gravity-base anchor (dead weight)	Floating crane vessel	AHT	OK for temporary moorings in sheltered waters	Very heavy
Driven pile anchor	Floating crane vessel	AHT	All types	Underwater vibrations
Drag-embedded anchor	AHT	AHT	Very Experienced	Not for TLP
Suction pile	Floating crane vessel	AHT	Some experience	Needs soft/medium soil
Gravity installed drop anchor	AHT	AHT	Lightweight	Limited experience
Vertical loaded anchor	AHT	AHT	Lightweight	Limited experience

Annual Conference 2021 New waves in marine engineering, science and technology

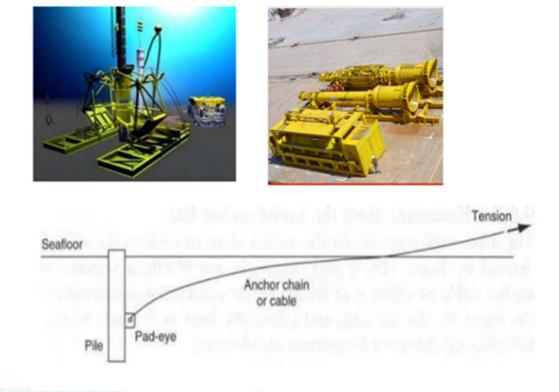
(t-h)

DRAG EMBEDMENT ANCHOR

DRAG ANCHOR TENSIONER

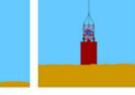
For Spar, Semi Submersible and Barge

Catenary mooring lines:


- Chain
- ➢ Wire
- Synthetic fibre

DRIVEN PILE

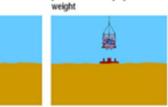
For all Floating Offshore Wind Turbine types



SUCTION PILE

Possible for all options but depends on soil condition

Work Class Rov To Disconnect Pump



Lower caisson + suction pump

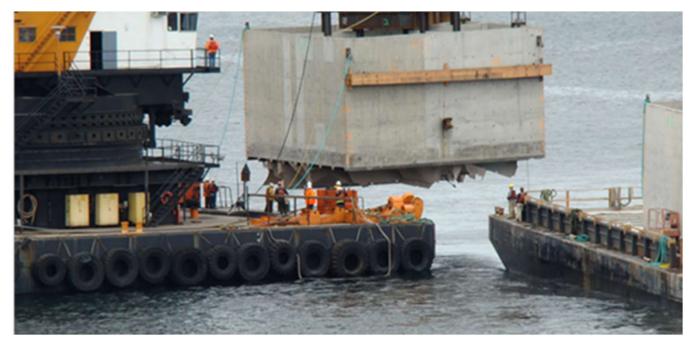
Design penetration depth

reached

Caisson touchdown & penetrates initially by own

Undock suction pump

Pump water out from inside the caisson and develops lower inner pressure for installation



Annual Conference 2021 New waves in marine engineering, science and technology

GRAVITY BASE ANCHOR

For temporary moorings

FOWT TYPE	Semi Submersible	Spar
Construction	On shore or in a dry dock	On shore
Loadout	Loadout onto HTV or floatout from drydock	Loadout onto HTV
Transport to fit out quay	Transport to fit out port	Transport to fit out port
Seabed check	Check seabed at quay for debris	Check seabed at quay for debris
Float off from HTV	Float off vertically	Float off horizontally

INSTALLATION

OFFSHORE INSTALLATION (semi/spar)

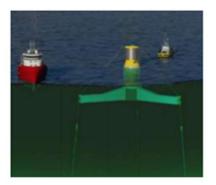
(t-j)

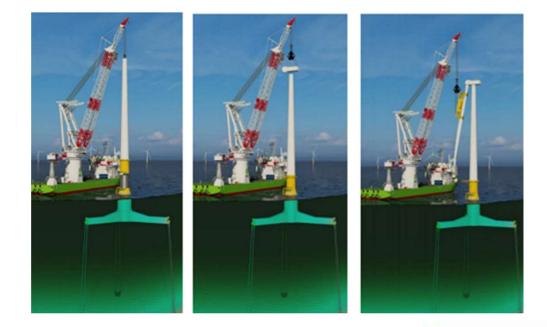
FOWT Type	Semi Submersible (or barge)	Spar
Step		
1st	Connect catenary moorings	Connect catenary moorings
2nd	Adjust moorings and re-tension	Adjust moorings and
3rd	Cable connection	Cable connection
4th	Commission turbine	Commission Turbine
5th	ROV seabed survey after installation	ROV seabed survey after installation
Draft during towout and	10 to 15m	75 to 100m
installation		

OFFSHORE INSTALLATION (TLP)

FOWT Type	TLP	TLP
	Assumes sufficient intact stability with the addition of temporary buoyancy	Installed turbine components piece small offshore with a crane vessel
Step		
1st	Connect tendon moorings	Connect tendon moorings
2nd	De ballast substructure hull Tension tendon moorings	De ballast substructure hull Tension tendon moorings
2a	Remove temporary buoyancy	
		Using heave compensated lift hook to fit the tower, nacelle and blades from a floating crane vessel (under development)
3rd	Cable connection	Cable connection
4th	Commission Turbine	Commission Turbine
5th	ROV seabed survey after installation	ROV seabed survey after installation

(t-k)


TEMPORARY BUOYANCY FOR TLP (Ref [6])



CRANE VESSEL INSTALLATION OF TLP

Active Heave Compensation Of Hook

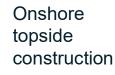
SEMI SUBMERSIBLE INSTALLATION

(Ref [8])

Subcomponent Production Assembly, Load-out, Transport

WTG Integration at Quayside Operations (in-place & O&M)

Annual Conference 2021 New waves in marine engineering, science and technology



STEEL SPAR INSTALLATION

Onshore Construction Of the Substructure

(Ref [9])

Substructure

- Floated off HTV
- > Upended
- Sold ballasted

Large crane vessel

- Lifts topside off the fit-out quay
- Crosses fjord
- Install topside on the floating substructure

Loadout Onto Heavy Transport Vessel (HTV)

INSTALLATION VESSELS

INSTALLATION VESSELS (1-1)

Vessel	Comment	Average Number Of Vessels Required			
vesser		Spar	Semi-Sub	TLP	TLP
			Barge Similar	with temporary buoyancy	with crane vessel
Anchor handling vessel	Drag anchors	1	1		
Offshore crane vessel	Suction piles or drive piles			1	1
Heavy Transport Vessel	For ocean voyage of substructure	1	1	1	1
Harbour tug	Yard assistance	2	2	2	2
Anchor Handler for installation	Minimum of 2	3	3	4	2
Cable Lay Vessel		1	1	1	1
Large onshore crane		0.9	1	1	1
Inshore Crane Vessel	Lift turbine from shore	1	0.1	0.2	
Large offshore crane vessel					1

Annual Conference 2021 New waves in marine engineering, science and technology

CONCLUSIONS

LOGISTICS ISSUES

(t-m)

To facilitate the installation process and minimize costs, the main logistical aspects have to be considered:

- > Floating offshore wind turbine Type
- > Inshore vessel requirements
- > Shipyard location
- > Distance from the shipyard to the Fit out port distance
- > Distance from fit out port to offshore wind farm site
- > Weather downtime during installation
- > Number of anchor handling vessels
- > Offshore crane vessel

FOWT INSTALLATION COMPARISON

FOWT TYPE	BARGE	SEMI SUBMERSIBLE	SPAR	TLP
Construction Land Area	Medium	Large	Medium	Medium
Ease of onshore construction compared to fixed structure	Medium	Medium	Medium	Complicated
Seabed area	Large	Large	Large	Low
Intact stability in tow	Medium	Large	Large	Low
Attachment of moorings	Standard	Standard	Standard	Complicated
Offshore crane vessel	No	No	No	Yes

Annual Conference 2021 New waves in marine engineering, science and technology

(t-n)

INSTALLATION CHALLENGES

- Ease of towing of the completed substructure
- Making mooring connection operations more weather tolerant
- Simplification of installation methodology
- Reduce risks to personnel working offshore during installation
- Easy electrical connection

(t-o)

THANK YOU FOR YOUR TIME

ANY QUESTIONS ?

Email: ac1080@exeter.ac.uk

University of Exeter, College of Engineering, Mathematics and Physical Sciences Renewable Energy Group, Penryn Campus, Treliever Road, TR10 9FE, UK

References (t-z)

- No Reference
 - 1 www.umass.edu
 - 2 www.bw-ideol.com
 - 3 www.hexicon.eu
 - 4 www.saipem.com
 - 5 www.intermoor.com
 - 6 www.steisdal.com
 - 7 www.bluewater.com
 - 8 www.PrinciplePower.com
 - 9 www.equinor.com

APPENDIX QUESTIONS

28 June - 9 July 2021 www.imarest.org/events.

1.How to achieve areas of improvement in Installation campaign schedules and find out real reduction in time spent offshore by construction vessels in FOWT Projects to reduce project cost?

- a. Mass production on land of substructures. This will result in better scheduled work for the offshore installation vessels.
- b. Use the largest possible turbine which minimizes to number of substructures and hence reduces the number of installation operations

2.To what extent, will Offshore renewables benefit from captured Lessons Learned of Offshore Oil & Gas construction and Installation projects execution and expertise?

- a. The main lesson learnt from O&G installation is to not use small installation vessels that can only work in limited weather conditions.
- b. It is much more efficient and overall cost benefit to use the best offshore installation equipment which can extend the weather installation window.

- 3. How feasible is it to share resources of O&M Vessels between Nearby FOWF and offshore Oil & gas fields to reduce OPEX?
- a. As Floating offshore wind turbines are installed in deeper water, long distance from maintenance ports then the sharing of crew transfer vessels with other platforms becomes feasible.
- b. This common maintenance vessel operation will probably happen for the Hywind Norway project where electricity will be used to power existing O&G facilities, rather than sending the electricity ashore.

