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used to rapidly analyse soundscape data. However, previous investigations 29 

have primarily used individual indices in isolation to assess coral reefs, with 30 

mixed success. This investigation combines ecoacoustic indices using machine 31 

learning and demonstrates a much improved ability to generate meaningful 32 

predictions about coral reef health. PAM data collected at one of the world’s 33 

largest tropical reef restoration programmes in South Sulawesi, Indonesia, was 34 

used. Multiple one-minute recordings were taken on healthy and degraded sites 35 

with 90–95% and 0–20% of measured coral cover respectively. Twelve 36 

ecoacoustic indices were calculated for each recording, in up to three different 37 

frequency bandwidths (low: 0.05–0.8 kHz, medium: 2–7 kHz and full: 0.05–20 38 

kHz) for each recording, totalling 33 values. Fifteen of these reported a 39 

significant difference between healthy and degraded habitats. However, high 40 

variability in the distribution of results was observed, offering a limited ability for 41 

any single index to discriminate between these two habitats without extensive 42 

sampling. These indices also exhibited little to no correlation with the number of 43 

audible fish vocalisations present in recordings. Regularised discriminant 44 

analysis, a machine learning approach, was then used to better discriminate 45 

between these two habitat classes using an optimised set of ecoacoustic 46 

indices in combination. This multi-index approach discriminated between 47 

healthy and degraded sites with a much-improved accuracy than any single 48 

index in isolation. The pooled classification rate of 1000 cross-validated 49 

iterations of the model had a 91.73 % (± 0.84) success rate. Additionally, this  50 

classification was robust to changes in the diel and lunar cycle. We then report 51 

on the success of the model to classify recordings from three artificially restored 52 

sites. This investigation presents a novel approach  to perform habitat 53 

assessments using short snapshot recordings. It also demonstrates the utility of 54 

PAM to monitor reef recovery over time, reducing the need for labour intensive 55 

in-water surveys. 56 



3 
 

 57 

Keywords 58 

Soundscape, passive acoustic monitoring, ecoacoustic index, machine learning, 59 

coral reef, restoration, bioacoustics. 60 

 61 

1. Introduction  62 

Monitoring of tropical reef habitats primarily relies upon visual based in-situ dive 63 

and/or camera surveys which can be logistically complicated, expensive and 64 

only capture a subset of the ecological community. Passive acoustic monitoring 65 

(PAM) is an emerging practice used to monitor habitats which has the potential 66 

to overcome many of these limitations (Lindseth and Lobel, 2018; Mooney et 67 

al., 2020). Recent progress has been driven by improvements to acoustic 68 

recorder technology, which have created the capacity to capture long-term 69 

soundscape recordings using autonomous hydrophones (Sousa-Lima et al., 70 

2013). Although, this field is still in its infancy, numerous studies have found 71 

relationships between the soundscapes of tropical coral reefs and traditional 72 

ecological metrics such as coral cover, biological communities and overall 73 

habitat quality (Bertucci et al., 2016; Butler et al., 2016; Elise et al., 2019; 74 

Freeman and Freeman, 2016; Gordon et al., 2018; Nedelec et al., 2015). 75 

Furthermore, soundscapes are known to be important components of a reefs 76 

functioning outright, especially for orientation and recruitment of reef associated 77 

organisms (Gordon et al., 2019; Lecchini et al., 2018; Simpson et al., 2005).  78 

A number of analytical approaches have been particularly influential in recent 79 

developments in marine soundscape ecology. First, analysis can be performed 80 

using auditory or visual inspection; investigators listen to recordings or visually 81 

examine spectrograms, manually noting points of interest such as the frequency 82 

of occurrence of certain acoustic events or diversity of fish chorusing (Archer et 83 
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al., 2018; Bertucci et al., 2020b; Carriço et al., 2020; McWilliam et al., 2018, 84 

2017; Putland et al., 2017). However, these approaches can be slow and labour 85 

intensive, introducing a severe limit on the speed at which PAM data can be 86 

analysed.  87 

Computationally generated ecoacoustic indices are a popular approach used to 88 

overcome this limitation (Bradfer-Lawrence et al., 2019; Gibb et al., 2019). 89 

These indices have primarily been developed for terrestrial soundscape 90 

recordings (Sueur et al., 2014), and are designed to quantify particular 91 

attributes of soundscapes such as their variability across time or frequency 92 

bands (Stowell and Sueur, 2020). The key advantage of these indices is their 93 

ability to rapidly process large amounts of acoustic data, enabling significantly 94 

longer periods of recordings to be analysed. A number of indices have been 95 

trialled in the marine environment where investigations have found relationships 96 

between certain indices and elements of the ecological community, habitat 97 

quality or ecological functioning of reef habitats (Elise et al., 2019b; Gordon et 98 

al., 2018; Harris et al., 2016; Lindseth and Lobel, 2018; Mooney et al., 2020). 99 

However, indices do not offer a perfect fix, often these do not correlate with 100 

specific elements of reef ecology in the same way as they did in other 101 

investigations (Bertucci et al., 2016b; Dimoff et al., 2021; Kaplan et al., 2015). 102 

To date, studies of marine soundscape have primarily used individual index 103 

values in isolation when testing for statistical differences between experimental 104 

groups (e.g low and high habitat quality, pre and post bleaching), or 105 

relationships with other ecological parameters (e.g species diversity, 106 

abundance). However, the results of any one index have been shown to often 107 

be overdriven by individual components of the soundscape such as close by 108 

snapping shrimps, or a repetitive fish chorusing, limiting their utility to assess 109 

the full community (Bolgan et al., 2018; Dimoff et al., 2021; Staaterman et al., 110 

2013).  111 
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Recent studies in terrestrial soundscape ecology suggest that combining 112 

multiple indices in a ‘compound index’ design is a potential solution to this 113 

problem (Bradfer-Lawrence et al., 2019; Eldridge et al., 2018; Gibb et al., 2019; 114 

Sethi et al., 2020). This allows the construction of more complex analytical 115 

models, using machine learning or artificial intelligence. Such models allow the 116 

identification of patterns in large multivariate datasets, thus providing a more 117 

holistic approach to analysing soundscapes and offering an increased ability to 118 

identify trends and relationships between soundscapes and ecological attributes 119 

of interest. 120 

In this study, we developed a machine learning approach that generates a 121 

compound index to predict reef health from short-term soundscape recordings. 122 

We used recordings of healthy, degraded and restored reefs, all taken at or 123 

nearby one of the world’s largest reef restoration projects. To compare, we 124 

calculated a range of individual indices between healthy and degraded sites. 125 

We also searched for relationships between these indices and fish produced 126 

sound diversity to determine the degree to which this drove index results. We 127 

then applied a discriminant analysis machine learning algorithm to an optimised 128 

set of these indices. We tested whether the compound machine learning 129 

approach delivered an improved discriminatory power between habitat classes, 130 

relative to any single index. Finally, we applied this model to recordings taken 131 

from restored sites, to test the potential of this rapid analytical approach in 132 

assessing the progress of reef restoration. 133 

 134 

2. Methods 135 

 136 

2.1 Study site 137 

Recordings were taken from seven sites in the Spermonde Archipelago (South 138 

Sulawesi, Central Indonesia; 4°56.9′S, 119°18.1′E; Fig. 1.1A) around Pulau 139 

Badi (Fig. 1B) and Pulau Bontosua (Fig. 1C). An ongoing restoration project has 140 
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been using a novel methodology to re-establish coral cover at sites which have 141 

been degraded by coral mining and persistent destructive dynamite fishing 142 

(Williams et al., 2019). Coral fragments are attached to ‘reef stars’ which 143 

stabilise the substrate using interlinked metal frames. Between 2013 and 2017 144 

this increased coral cover from approximately 10% to 60% on 7000m2 reef 145 

(Williams et al., 2019). Recordings were taken at seven sites which 146 

encompassed four distinct types of habitat (Fig. 2), these sites were: Healthy A 147 

& B, Degraded A & B, Mature Restored A & B, and Newly Restored (one site 148 

only). We measured coral cover as an assessment of the sites’ health 149 

(methodology details provided in Supp. Material 1). The two healthy sites 150 

exhibited naturally high coral cover (A: 91.2% ± 2.0; B: 93.1% ± 2.6; mean ± 151 

SE) whereas the degraded sites exhibited low coral cover (A: 2.1% ± 0.9; B: 152 

17.6% ± 4.6). The two mature restored sites were established >24 months 153 

previously and exhibited an increased coral cover (A: 79.1% ± 3.9; B: 66.5% ± 154 

3.8) compared to the newly restored site (25.6% ± 2.6) established <12 months 155 

previously.  156 

 157 

 158 
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 159 

Fig. 1. Location and habitat class of the seven reef sites, present within the broader 160 

Spermonde Archipelago (A) where soundscape recordings were collected. Fringing 161 

reefs from two nearby islands: Badi (B) and Bontosua (C) were used. 162 

 163 

 164 

Fig. 2. Representative habitat and coral cover images from the four habitat classes at 165 

which soundscape recordings were taken. (A) Degraded, (B) healthy, (C) newly 166 

restored and (D) mature restored.  167 
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2.2 Data collection 168 

Across the seven sites, 262 one-minute soundscape recordings were taken 169 

using SoundTrap hydrophones (SoundTrap 300 STD, Ocean Instruments, 170 

Auckland, NZ) in August-September 2018. SoundTraps were suspended 0.5 m 171 

above the seabed and set to record at a sampling rate of 48 kHz. The 172 

recordings were collected using a regime which sampled sites for five days 173 

either side of the full moon (August 26th) and three days either side of the 174 

following new moon (September 10th) in 2018 during daylight (09:00–15:00), 175 

twilight (half an hour either side of sunrise and sunset) and night time (half an 176 

hour either side of midnight) periods. These recordings were taken as part of 177 

the monitoring programme for the Mars Coral Reef Restoration Project at Badi 178 

and Bontosua Islands. We sub-sampled five non-overlapping one-minute 179 

segments from each of the hour-long periods at random, resulting in 262 180 

samples. Only samples which were recorded under calm conditions (wind 181 

speed <20 km h-1) and which contained no anthropogenic noise were included 182 

in the sample set. Three SoundTraps were rotated between sites, in an 183 

approximately even spread between each period. 184 

 185 

2.3 Processing recordings 186 

Each of the 262 one-minute recordings was band-pass filtered using a short-187 

term Fourier transform filter into three frequency bands: a low-frequency band 188 

(0.05–0.8 kHz), a medium-frequency band (2 kHz–7 kHz) and a full-range band 189 

(0.05–20 kHz). The low-frequency band was selected to cover the frequencies 190 

of a range of known fish vocalisations, and the medium-frequency band was 191 

selected to encompass invertebrate sound (Elise et al., 2019a). The additional 192 

full-range frequency band encompassed the full spectrum of potentially relevant 193 

frequencies, as previously used in coral reef soundscape investigations (Kaplan 194 
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et al., 2015; Lyon, 2018). Frequencies below 0.05 kHz were excluded from low- 195 

and full-frequency band recordings to reduce the presence of  shipping noise 196 

and geophonic noise from waves (Curtis et al., 1999). A new audio file for every 197 

recording in each frequency band was written to produce tracks filtered using a 198 

uniform method for subsequent analysis. All processing was performed in R 199 

(v3.4.2. R Development Core Team, 2020): audio files were read and written 200 

using the tuneR (v.1.3.3) package (Ligges et al., 2018) and the filter was 201 

implemented using Seewave (v2.1.6) (Sueur et al., 2008).  202 

 203 

2.4 Calculating ecoacoustic indices  204 

Twelve ecoacoustic indices chosen from a range of soundscape studies in the 205 

literature were used (Table 1). Each index was calculated for all three frequency 206 

bands, with two exceptions; Snap rate was only calculated for the middle and 207 

full frequency bands, because snapping shrimp cavitation bubbles are not 208 

audible at lower frequencies (Bohnenstiehl et al., 2016), and the normalised 209 

difference soundscape index (NDSI) which is typically used to quantify 210 

discrepancies in amplitude between an anthropogenic noise band up to 1 kHz 211 

and a biophonic noise band at selected higher frequencies (Kasten et al., 2012). 212 

For the first time, this index was implemented in the marine environment to 213 

instead quantify differences in the 1 kHz band where fish noise dominates, and 214 

higher frequencies where snapping shrimp sound is at its highest intensity (Au 215 

and Banks, 1998). This was therefore implemented on the full band recordings 216 

alone, to capture both the fish and shrimp bands. This results in the creation of 217 

a feature set of 33 index values across twelve indices and three frequency 218 

bands for each of the 262 one minute recordings. All indices were calculated 219 

using the R package Seewave (Sueur et al., 2008) where possible and 220 

Soundecology (v.1.3.3) (Villanueva-Rivera et al., 2018) for remaining indices. 221 
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Table 1. The twelve ecoacoustic indices calculated from recordings with summary 222 

description of the mechanistic principle, software used and respective settings 223 

employed. 224 

 225 

Index Mechanism Software Settings   Origin 

Acoustic 
Complexity  
Index (ACI) 

Measures variability in 
intensity of frequencies 

across time 
Seewave in R  

Window size = 512; type = 
Hamming; overlap = 0 

  (Pieretti, 2011) 

Acoustic  
Entropy (H) 

Measures randomness 
across temporal and 

spectral domains 
Seewave in R  

Window size = 512;  
envelope = Hilbert 

  (Sueur, 2008) 

Acoustic 
Eveness  

Index (AEI) 

Measures diversity across 
frequency bands 

Soundecology  
in R 

Max freq = audio tracks 
maximum; freq step = max 
freq/10; threshold = -50 dB 

  
(Villanueva-

Rivera,  
2011) 

Amplitude  
Index (M) 

Measures median of 
amplitude envelope 

Seewave in R  Envelope = Hilbert   (Sueur, 2008) 

Acoustic 
Richness  

(AR) 

Ranks recordings based 
on amplitude multiplied by 

randomness across the 
temporal domain 

Seewave in R  Envelope = Hilbert   
(Depraetere, 

2012) 

Bioacoustic 
Index  
(BI) 

Measures cumulative 
intensity across frequency 

bands 

Soundecology  
in R 

Min and max frequency 
matched to track as appropriate; 

window size = 512 
  (Boelman, 2007) 

Normalised 
mean 

difference 
index (NDSI) 

Measures amplitude 
difference between two 

selected frequency bands 
Seewave in R 

Min and max frequency 
matched to track as appropriate; 

window size = 512 
  (Kasten, 2012) 

Number of 
peaks 

Number of major frequency 
peaks on obtained from a 

mean spectrum 
Seewave in R 

Window size = 512; type = 
Hanning; overlap = 0 

  (Sueur, 2008) 

Spectral 
entropy  

(sh) 

Measures randomness 
across the frequency 

domain 
Seewave in R  No settings required   (Sueur, 2008) 

Temporal 
Entropy  

(th) 

Measures randomness 
across the temporal 

domain 

Seewave in R  No settings required   (Sueur, 2008) 
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Snap Rate 
Measures rate of snapping  

shrimp snaps 
MATLAB Custom script   Widely used 

Sound 
Pressure  

Level (SPL) 

Calibrated measure of root 
mean squared sound 

pressure level 

paPAM in  
MATLAB 

Window length = 1024; type = 
Hamming; Overlap = 50% 

  Widely used 

 226 

 227 

2.5 Comparison of indices to frequency of fish vocalisations 228 

In order to compare whether indices correlated with fish vocalisation activity, 229 

manual counts of different fish call types were obtained for each recording. The 230 

number of different fish calls present in each recording was quantified by an 231 

experienced experimentally-blind observer (T.A.C.G.). To ensure consistency in 232 

reporting, a subset of 20 tracks were listened to twice (experimentally blind to 233 

the first scoring when listening for the second time), with the same results each 234 

time. The number of unique fish calls observed in each recording was called 235 

‘phonic richness’. We tested the relationships between phonic richness and the 236 

full set of index results from all 262 recordings using Pearson’s correlation tests.  237 

 238 

2.6 Comparison of indices between healthy and degraded sites 239 

The results for each index from the healthy and degraded habitat classes were 240 

compared against each other. The presence of a difference between the values 241 

of each of the 33 indices from recordings of healthy habitats (n = 81) and 242 

degraded habitats (n = 71) were tested for using a Mann-Whitney U test. Violin 243 

plots were also used to visualise the level of overlap between the distribution of 244 

these results for any index which reported a significant difference. If minimal 245 

overlap was observed between the two classes for any index, then the 246 
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respective index would likely provide a promising measure with which to 247 

differentiate between healthy and degraded habitats.  248 

 249 

2.6 Applying machine learning to create a compound index 250 

Following individual index analysis, we developed a supervised machine 251 

learning model which could be used to accurately assign recordings to either 252 

healthy or degraded habitat classes. A regularized discriminant analysis (RDA) 253 

algorithm was selected to account for the high level of collinearity reported 254 

between indices (Supp. 1).  255 

An optimised set of indices was selected in a ‘feature selection’ stage, using 256 

recursive feature elimination (RFE) and a multivariate adaptive regression 257 

spline (MAR) (Kuhn and Johnson, 2019) (Supp. 1). The RFE revealed the 258 

increases in model accuracy when using a multi-index approach as additional 259 

indices were sequentially added (Fig. 3). Starting with the most informative 260 

indices, predictive accuracy increased until a peak at eight indices was reached. 261 

This was followed by a decline as further addition of indices introduced noise to 262 

the data and/or overtraining occurred. The list of suggested features from the 263 

RFE included the following index/frequency band combinations: full-frequency 264 

band ACI, H, NDSI and th; and medium-frequency band ACI, BI, H and th. This 265 

was highly congruent with rankings obtained from the relative importance 266 

scores using the MAR (Fig. 4).  267 
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 268 

Fig. 3. Results from the recursive feature elimination performed using 1000 repeats of 269 

the discriminant analysis algorithm using k-fold cross validation with 10 folds (see 270 

methods 2.5). As additional indices are added to the model, the accuracy of the model 271 

is indicated on the y-axis until all 33 indices have been included. 272 

From here, further manual feature selection through removal and addition of 273 

indices one by one whilst executing the full model (outlined in section 2.7) was 274 

used to select a final feature set with the lowest misclassification rate that would 275 

constitute the compound index used. This led to the discarding of th in both the 276 

full and middle-frequency bands and introduction of low-frequency band ACI 277 

and middle-frequency band AR into the final set: low-frequency band ACI, 278 

medium-frequency band ACI, AR and BI, full-frequency band ACI, H and NDSI. 279 

Feature selection was performed using the R packages mlbench (v2.1.1)  280 

(Leisch and Dimitriadou, 2010) and Caret (v.6.0-86) (Kuhn, 2020). 281 
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 282 

Fig. 4.  Relative importance rankings of indices obtained from the multivariate adaptive 283 

regression (MAR) analysis used for feature selection. The eight recommendations 284 

obtained from the recursive feature elimination (RFE) analysis are indicated by the black 285 

line. The top eight indices of the MAR analysis were congruent with the RFE’s eight 286 

recommendations, though the order was not conserved. Black dots to the right of bars 287 

indicate features which were selected for the final model after further manual feature 288 

selection. 289 
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2.7 Constructing the final model 291 

Using the healthy and degraded datasets, an RDA model could then be 292 

constructed. Accuracy of the model was assessed using k-fold cross validation, 293 

with 10 folds. This splits the dataset into ‘training’ and ‘test’ sets to prevent 294 

overestimation of the models accuracy when presented with new data (Supp. 295 

1). Due to random processes used in RDA, 1000 repeats of the cross-validated 296 

model construction were performed to provide a suitable level of depth for 297 

accuracy to be assessed (Rao et al. 2008). The RDA model was constructed 298 

using the R packages MASS (v.7.3-53) (Venables and Ripley, 200) and KlaR 299 

(v.0.6-15) (Weihs et a., 2005).  300 

The suitability of the data from restored reefs for entry into the model also had 301 

to be confirmed. If the restored sites exhibited soundscape properties that were 302 

highly distinct from both healthy and degraded sites, the model would be forced 303 

to attempt to fit them into a classification that was inappropriate. The presence 304 

of divergence from both classes was therefore explored using cluster analysis. 305 

This employed a principal component analysis (PCA) conducted on the feature 306 

set of the eight selected indices and a pairs plot which was also performed in R 307 

between every combination of two indices against one another (Supp. 3, Fig. 308 

S1).  309 

 310 

3. Results 311 

3.1 Comparing indices between healthy and degraded sites 312 

Mann-Whitney U tests revealed significant differences between healthy and 313 

degraded habitat index scores for 15 of the 33 indices (Fig. 5). Violin plots of the 314 

three most significantly different index results between the healthy and 315 
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degraded sites reveal a large area of overlap is present between values of  316 

these indices from both habitat classes (Fig. 6).  317 

 318 

Fig. 6. Violin plots of the three indices with the most significant differences between 319 

healthy and degraded habitat (N = 152). (A) Medium-frequency band Entropy Index (H) 320 

(Mann-Whitney U; U = 1.98, p<0.001), (B) Full-frequency band Acoustic Complexity 321 

index (ACI) (U = 1.78, p<0.001), (C) Medium-frequency Temporal Entropy (th) (U = 1.63, 322 

p<0.001). 323 
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 3.2 Comparing indices to phonic richness 324 

Results from the Pearson’s correlation revealed no strong relationship between 325 

phonic richness and any of the 33 indices trialled (Supp. 1, Fig. S2). The 326 

strongest relationship was a weakly negative correlation with the acoustic 327 

entropy index (H) in the full-frequency band (Pearson correlation; rho = -0.43; 328 

p<0.001), with all other indices reporting weaker correlations than this.  329 

 330 

3.3 Regularised discriminant analysis 331 

From the 1000 repeated constructions of the cross-validated model using the 332 

152 recordings taken across healthy and degraded sites, the pooled mean 333 

misclassification rate was 8.27% (± 0.84, SE). Of the 81 recording samples 334 

taken from the two healthy sites, 72.96 (± 0.11) of these were correctly 335 

classified as healthy, with 8.04 (± 0.11) misclassified as degraded. Of the 71 336 

recordings taken from the two degraded sites, 67.22 (± 0.09) of these were 337 

classified as degraded, with 3.74 (± 0.09) misclassified as healthy. Individual 338 

results for each recording sample are also reported (Fig. 7).  339 

Cluster analysis using the principal component analysis (Fig. 8) and pairs plot 340 

(Supp. 1, Fig. S3) were used to examine whether the 110 samples taken from 341 

recordings of the three restored sites were suitable for input into the model. 342 

Results from the plots showed these had a strong overlap with both the healthy 343 

and degraded habitat classes. For the Mature Restored and Newly Restored 344 

sites 70/81 and 70/71 samples respectively fell within one or both of the 345 

predictive ellipses for the two existing classes. This indicates that the 346 

soundscapes of the restored sites did not diverge from the soundscape present 347 

on the other two habitat types when using the properties investigated here. This 348 

supports the inputting of restored samples into the model as this is likely to 349 

generate an estimation of classification with a similar level of accuracy observed 350 
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for the original two sites from which it was constructed. Additionally, the PCA 351 

showed that 61/81 samples from the Mature Restored sites fell within the ellipse 352 

that could be used predict healthy sites, whereas 24/27 samples of recordings 353 

from the Newly Restored site fell within the ellipse that can be used to predict 354 

degraded sites. However, it is important to note that there was a large region of 355 

overlap between the healthy and degraded class, with most of the ellipse of the 356 

degraded classes encompassed by that of the healthy class. 357 
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Fig. 7. Habitat classifications predicted by the machine learning model. Each cell indicates a single one minute recording from the 152 that were available 

across healthy and degraded habitats. The model was executed 1000 times on the dataset, generating a new habitat class prediction each time for every 

recording. Values within cells represent the proportion of these 1000 iterations in which the recording was predicted as originating from a healthy site, with 

the remaining being predicated as degraded, also represented by the colour code. Recordings taken on the left of the partition were taken during the day 

and recordings to the right were taken during crepuscular or night time periods. Although frequent gaps were present in the sampling regime, the order 

with which cells are presented within their respective blocks conserves the overall order with which they were sampled across time. 
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 444 

 445 

Fig. 8. Plot from the principal component analysis of PC1 and PC2 for the Healthy and 446 

Degraded site recording samples. Samples from recordings of Restored sites are overlaid on 447 

this to help determine whether these conform with either of the two existing classes or whether 448 

the properties of their soundscape are distinct. Ellipses indicate the zone within which a new 449 

sample can be assigned to a class using the two principle components presented in this figure 450 

alone. Overlapping areas indicate ambiguous results which cannot be differentiated but 451 

nonetheless fit one of the existing classes. 452 

 453 

Execution of the model on the restored site samples was therefore performed in the 454 

same manner (Fig. 9). The majority classification of samples from mature restored 455 

sites was healthy, and samples from the newly restored site were mainly classified 456 

as degraded. A more decisive classification of Mature Restored site B was reported 457 

over Mature Restored site A, with 37/38 and 33/39 samples reporting a majority 458 

classification of healthy respectively. The six samples which reported a majority 459 

classification as degraded on Mature Restored site A occurred consecutively on the 460 

new moon at night. On the Newly Restored site, 27/33 samples reported a majority 461 
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classification as degraded, all of these were during the full moon (though only four 462 

new moon samples were available) and five of these were at night.463 
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Fig. 9. Habitat classification predictions by the machine learning model for the restored site recording samples. Each cell indicates a single one-

minute recording from the 110 that were taken from restored sites. The model was executed 1000 times on the dataset, generating a new habitat 

class prediction each time for every recording. Values within cells represent the proportion of these 1000 iterations in which the recording was 

predicted as originating from a healthy site, with the remaining being predicated as degraded, also represented by the colour code. Recordings 

taken on the left of the partition were taken during the day and recordings to the right were taken during crepuscular or night time periods. 

Although frequent gaps were present in the sampling regime, the order with which cells are presented within their respective blocks conserves 

the overall order with which they were sampled across time 
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The model trained on the 2018 recordings was also tested on a smaller number of 466 

recordings taken using the same sites and methodology ten months later, in 467 

June/July 2019 . Here, the model provided similar predictions for six of the seven 468 

sites; the only site exhibited a change in prediction between 2018 and 2019 was 469 

Healthy B, which transitioned from a majority classification as healthy to a majority 470 

classification as degraded (Table 2, full results in Fig. S4).. 471 

 472 

Table 2. Results from the application of the 2018 model when tested on recordings 473 

taken at the same sites in 2019.  474 

 475 

 476 

4. Discussion 477 

Our study compared the ability of individual ecoacoustic indices and a machine-478 

learning based compound model to discriminate between coral reef eco-states. Our 479 

results show that while no single ecoacoustic index can reliably discriminate between 480 

healthy and degraded reefs, our supervised machine-learning approach 481 

demonstrates a strong ability to accurately predict habitat class from randomly drawn 482 

acoustic samples. This highlights the exciting potential of combining PAM with 483 

machine learning for monitoring the health of coral reef ecosystems.  484 

Up to twelve individual ecoacoustic indices were used across three frequency 485 

bandwidths for a total of 33 features; of these 33, 15 reported a significant difference 486 

between healthy and degraded reefs (Fig. 5). Of additional interest is the lack of 487 

strong correlations between any of these indices and phonic richness (Supp. 1), 488 

indicating that fish sound diversity was not the dominant driver of these results; 489 

rather alternative aspects of the soundscape were responsible. A combined diversity 490 

Healthy A Healthy B Degraded A Degraded B 

Mature 

Restored A

Mature 

Restored B

Newly 

Restored

Recordings classified 

as Healthy
"9/9" "2/12" "0/5" "5/12" "9/9" "12/12" "8/9"

Proportion 

classified as Healthy
"1.0" "0.17" "0" "0.42" "1.0" "1.0" "0.89"
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and abundance metric may reveal more about the role fish vocalisations play in 491 

driving index values. 492 

The distribution of values for the indices that reported significant differences between 493 

healthy and degraded reefs all exhibited a high degree of overlap between the two 494 

habitat classes. This means that the ability to distinguish between habitat classes 495 

from a single recording using individual indices is low, as any given value from one 496 

class is also likely to be reported from a recording of the other class. Violin plots of 497 

the three most significant results help to visualise this large overlap between the 498 

results of each class (Fig. 6). These indices therefore offer a useful tool to reveal 499 

differences between habitats if extensive sampling is achievable on all sites of 500 

interest. However, their potential to deliver reliable results from short ‘snapshot’ 501 

recordings is limited.  502 

By contrast, through combining multiple indices, the regularised discriminant analysis 503 

(RDA) model reported a strong predictive ability to classify single recordings. This is 504 

observable in results from the recursive feature elimination algorithm (RFE) (Fig. 3) 505 

which highlights the increases in accuracy attainable through constructing an 506 

optimised set of multiple indices compared to individual indices (Fig. 6). The 507 

misclassification rate of the final RDA model was 8.27% (± 0.84) when applied to 508 

recordings from the same season; this was robust to diel and lunar variation (both 509 

known to influence marine soundscapes (Staaterman et al., 2014)), and reliably 510 

delivered the same classification for recordings from six of the seven sites taken nine 511 

months later. The feature selection stage of this approach is specific to the data and 512 

questions considered in this study. However, indices within the final feature set may 513 

offer a useful starting place for similar investigations. To produce optimised models, 514 

investigations on alternative study systems and questions should carry out 515 

independent feature selection based on their own training data. 516 

Following the successful classification of healthy and degraded habitats, our 517 

compound model was executed on soundscape recordings taken from nearby coral 518 
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reef habitats that had been restored (Williams et al., 2019). This was used to 519 

demonstrate the ability of this approach to perform a rapid assessment of these 520 

restored sites, using one-minute soundscape recordings. The model was able to 521 

detect differences between the Mature Restored sites and the Newly Restored site. 522 

Of the recording samples from the two Mature Restored sites, 33/39 and 37/38 were 523 

given a majority classification of healthy, whereas 27/33 samples from the Newly 524 

Restored sites were classified as degraded (Fig. 9). The Mature Restored sites were 525 

more than twice as old as the Newly Restored site (restoration started >24 months 526 

prior to recordings on Mature Restored sites, compared to <12 months for the Newly 527 

Restored site), and had approximately three times higher live coral cover (79.1% ± 528 

3.9 and 66.5% ± 3.8 for the Mature Restored sites, 25.6% ± 2.6 for the Newly 529 

Restored site; values all % live coral cover mean ± SE; full data in Supplementary 1).  530 

Restoration progress is thus reflected in the soundscape and can be effectively 531 

detected using a machine learning driven approach. This has strong implications for 532 

marine practitioners interested in using PAM to monitor the progress of restored sites 533 

against reference habitats. More generally, it further demonstrates the potential of 534 

using machine learning on PAM data to provide a powerful level of analytical depth 535 

for coral reef monitoring programmes.  536 

To explore how the model could have been further improved, it is worth considering 537 

the sources of the observed error rate. The presence of this error could be due to 538 

several factors in isolation or in combination. The RDA approach used operates best 539 

when the input features are of a Gaussian distribution (Wu et al., 1996), however, 540 

some of the features used exhibited a sub-Gaussian distribution. This effect was 541 

likely due to the inclusion of samples from alternative times of day and multiple sites. 542 

Diel trends are frequently observed in reef soundscapes and this is reflected in the 543 

output of ecoacoustic indices (Kaplan et al., 2015; Bertucci et al., 2020; Carriço et 544 

al., 2020). Additionally, reef soundscapes are known to differ over small spatial 545 

scales (Putland et al., 2017). Considering samples were taken from spatially 546 
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separated sites to provide replicates, it is to be expected that differences across the 547 

same habitat class will have occurred. Both of these factors may have skewed the 548 

distributions of the feature sets. Furthermore, the dataset used to train the model 549 

itself was likely imperfect and will have contained natural outliers through ecological 550 

randomness that cannot be resolved at the sampling resolution employed.  551 

It is also interesting to observe six of the same seven sites recorded in 2018 reported 552 

similar results 10 months later in 2019. The outlier here was Healthy B, for which 553 

10/12 recordings were incorrectly predicted as degraded by the model. Recordings 554 

on this site were only collected during the day in 2019, with 9/12 of these taken 555 

during the new moon period. The soundscape may thus have been inadequately 556 

sampled, or it could be an indicator of a changing state of health on this site, not yet 557 

indicated by the coral cover data which was highly similar for both years (Supp. 1). 558 

Every other recording taken from both the Mature Restored sites in 2019 were 559 

henceforth classified as healthy, potentially indicating their continued restoration 560 

progress towards becoming established ‘healthy’ habitats. 561 

It is important to note that although this model demonstrated an impressive ability to 562 

discriminate between habitat classes, a limitation of the experimental design was 563 

spatial replication: only two example sites of each habitat type were available (and 564 

only one example for Newly Restored).. Trialling the same approach on a larger 565 

number of sites would offer a valuable contribution to elucidating the full utility of 566 

machine learning to discriminate between healthy and degraded coral reef eco-567 

states. 568 

Future investigations could also build on the present study by considering a more 569 

nuanced approach to classifying eco-state. For example, this study employed a 570 

binary classification of reef health. In reality reefs exist along gradients of eco-states 571 

that are not as simplified as this (Downs et al., 2005; Smith et al., 2008). A sliding 572 

gradient of eco-states could be sampled and alternative machine learning algorithms 573 

such as random forests, neural networks or logistic regression could then be trained 574 
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on this data to produce models which can make predictions on a continuous scale. 575 

Additionally, although coral cover alone can be a strong indicator of overall reef 576 

health (Dietzel et al., 2020; Smith et al., 2016), other attributes of interest could be 577 

considered to better determine the eco-state of a site. Future work could attempt to 578 

fit soundscape-based machine learning models to fish abundance or diversity 579 

metrics, or other habitat attributes. Demonstrating the use of machine learning 580 

against such efoort-intensive survey methods would be valuable.  581 

Machine learning models not driven by ecoacoustic indices have also demonstrated 582 

utility in other ecological investigations. Examples of alternative approaches includes 583 

the splitting of recordings into many smaller frequency bands and the calculation of 584 

amplitude values from these (Roca and Van Opzeeland, 2019), or, the use of a 128 585 

strong ‘universal acoustic feature set’ produced from a cross-convolutional neural 586 

network applied to AudioSet, the world’s largest manually labelled sound database 587 

(Hershey et al., 2017; Sethi et al., 2020). 588 

 589 

5. Conclusion 590 

This investigation demonstrates that through combining ecoacoustic indices using 591 

machine learning, improved predictions of a coral reefs eco-state (healthy or 592 

degraded) can be made from one-minute recordings. This constitutes an exciting 593 

step towards maximising the value of PAM data collected from reef habitats. It also 594 

demonstrates this concept in practice through its application on large areas of 595 

restored reef, revealing that restoration progress is detectable in the soundscape of 596 

these sites. 597 
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Coral Cover 

Live coral cover percentages were measured at each site in 2018 and 2019. Three 

10 m transects were laid parallel to each other, 5m apart, at every site. Quadrats 

were placed every metre along each transect and photographed from above using a 

digital camera (Olympus TG-5). Twenty-five points were overlaid on each image 

using Coral Point Count software (Kohler & Gill 2006); the live coral percentage 

cover for each quadrat was taken as the percentage of these points that overlaid live 

coral.  

 

Table S1. Coral cover percentage values.  

  Healthy A Healthy B Degraded A Degraded B  

  2018 2019 2018 2019 2018 2019 2018 2019 

Mean 
percentage live 

coral cover 
91.2 91.5 93.1 94.3 2.1 3.3 17.6 11.6 

Standard error 2.0 3.2 2.6 2.2 0.9 1.3 4.6 2.7 

                  

  
Mature  

Restored A 
Mature  

Restored B 
Newly  

Restored     

  2018 2019 2018 2019 2018 2019     

Mean 
percentage live 

coral cover 
79.1 56.5 66.5 76.3 25.6 34.5 

    

Standard error 3.9 5.7 3.8 2.7 2.6 2.8     

  
 

Feature selection algorithms used for RDA model 

We used two approaches to select relevant indices amongst the feature set with a 

regularized discriminant analysis (RDA) algorithm. The first approach used was 

recursive feature elimination (RFE). This operates by selecting subsets of features 

and adding or removing a small number of other features progressively over multiple 
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iterations until an optimised combination is found (Kuhn and Johnson, 2019). The 

second approach used was a multivariate adaptive regression spline (MAR) which 

constructs models with different combinations of features. It then progressively adds 

the remaining features and scores the associated increase or decrease in 

parameters, such as the predictive error in the model, to determine the importance of 

a feature (Kuhn and Johnson, 2019). One-hundred iterations of each algorithm were 

performed. Both approaches use a RDA algorithm. 

 

Cross-validation of RDA model 

It is important to note that models constructed on the full dataset available typically 

overestimate their own accuracy. It is therefore essential to perform cross-validation 

of the model if a more representative estimate of its accuracy is required, as was 

desired here. Cross-validation involves splitting the data into two groups. The first is 

a ‘training set’ in which the model is provided with samples and informed of the 

correct classification for each, enabling it to construct its predictors which will be 

used to classify new data. The second is a ‘test set’, upon which the model is 

executed whilst blind to the true class of each sample. This yields a prediction of the 

class for each sample within the test set, allowing the accuracy of the model to be 

obtained when presented with new data that was not used in its construction (Stone, 

1974). There are several varieties of cross-validation. In this instance, K-fold cross 

validation using 10 folds was identified as a suitable and conservative technique for 

estimating error (Hastie et al., 2009). This split the data into 10 groups, treating nine 

of the ten as the training set and then testing the model on the remaining fold which 

acted as the test set. This process was then repeated for all combinations of the 

initial 10 folds and the accuracy reported.
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Fig. S1. Results from a Spearmans collinearity test between all 12 indices in each of three frequency bands: low (0.05 – 0.8 kHz), 

medium (2 – 7 kHz), full (0.05 – 20 kHz). Darker cells represent a stronger correlation. Blank cells indicate values <0.00. 
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Fig. S2. Heat map displaying results from Pearson correlation tests between eco-acoustic indices and 

phonic richness scores in the low, medium and full frequency bands. Strength of correlation is indicated 

by the colour bar. Cells marked with an asterisk indicate those with a significant correlation (p<0.05). 

Blank cells indicate indices for which values from the corresponding frequency band were not calculated 

(see methods).  
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Fig. S3. Scatterplots between each of the eight indices selected for inclusion as features in the final model. Values from healthy and degraded 

sites alongside values from restored sites are included to enable divergence between these two groups to be observed if present. 
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Fig. S4. Additional recordings were taken approximately nine months later using the same 

methodology, from the same seven sites, within three days either side of the new moon (June 17th) 

and full moon (July 3rd) in 2019. All recordings were taken during the daytime only. The results from 

1000 iterations of the model are presented below. 
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