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Figure 3.7: Plot from the principal component analysis of PC1 and PC2 for the 

Healthy and Degraded site recording samples. Samples from recordings of 

Restored sites are overlaid on this to help determine whether these conform 
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by the colour scale. Recordings taken on the left of the partition were taken 
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1.1 Soundscape ecology  

In any given habitat, there is typically an abundance of sensory information 

available. Sound is a ubiquitous component of this, the cumulative sum of which 

can be defined as the environmental ‘soundscape’ (Canada, et al., 1978). 

Typically, sounds within a habitat can be divided into three major components: 

biophony, geophony and anthrophony (Pijanowski et al., 2011; Duarte et al., 

2021). Biophony consists of all sounds emanating from a biological source 

(Krause, 1987). This may be through deliberate sound production, such as 

vocalisations (Lieberman, 1968; Tricas and Boyle, 2009; Potamitis, 2015) or use 

of objects in the environment to create sounds (Deakos, 2002). Alternatively, it 

may be unintentional, such as disturbance during motion (Larsson, 2012) or 

feeding (Krause, 2008; Pijanowski et al., 2011). The other natural component of 

the soundscape of an environment is the geophony. This is comprised of sounds 

of a non-biological origin, including processes such as weather, the splashing of 

waves or rocks crumbling (Kull, 2006; Erbe et al., 2015). The final component, 

anthrophony, encompasses all sounds of a human origin caused by activities 

including transportation and construction (Joo et al., 2011).  
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Soundscapes therefore contain a broad range of information about the processes 

occurring within a given habitat. Detecting, interpreting and contributing to this 

information can be essential to the survival of many organisms (Pijanowski et al., 

2011). Soundscape ecologists can also use this information to understand more 

about the ecology of a habitat and the life within. Until recently, this field of study 

has focussed on the terrestrial environment 

 

Soundscape ecology in the marine environment 

A common misconception is that the ocean soundscape is a void and empty 

domain (Cousteau and Dumas, 1953). However, the soundscape of the marine 

environment is in fact rich and varied. Sound is the dominant sensory process in 

the activities of many marine organisms. An excellent example of this is whale 

song, which enables the largest animals in the ocean to communicate across 

hundreds of kilometres, further than any terrestrial animal (Clark, 1990). Tiny 

organisms also rely on sound: fish, crustacean, mollusc and coral larvae have all 

been shown to use sound as a sensory cue to orientate towards suitable habitat 

before it is near enough to be visually or chemically detected (Simpson et al., 

2005; Lillis et al., 2015; Lillis et al., 2016; Gordon et al., 2018). The ubiquitous 

sound of snapping shrimp is unmistakable, with the ceaseless crackling of their 

snaps revealing the presence of these highly cryptic invertebrates across almost 

all marine habitats (Versluis et al., 2000). There are countless other organisms 

across a broad range of taxa which contribute further to the underwater biophony 

for a number of reasons (Tricas and Boyle, 2009; Gedamke and Robinson, 2010; 

Lobel et al., 2010; Coquereau et al., 2016). These reasons may be passive, such 

as the distinctive scraping of parrotfish whilst feeding (Tricas and Boyle, 2014). 

Active sounds are also produced, including courtship displays of signallers which 

are in turn acted upon by receivers in mate selection (Lobel et al., 2010). 

Alternatively, these may be used to mediate agonistic interactions within and 
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between species (Tricas and Boyle, 2014). Acoustic signals can also be 

intercepted by predators to detect prey, resulting in many species reducing their 

sound output in the presence of predators (Holt and Johnston, 2011). In addition 

to biophony, geophonic noise is also a significant component. This is primarily 

driven by waves and rain (Cazau et al., 2017; Putland et al., 2017) as well as 

being punctuated with rare occurrences such as thawing ice in glacial regions 

(Geyer et al., 2016) and underwater earthquakes (Dziak et al., 2015).  

These natural sources vary between biological communities and habitats (Joseph 

and Margolina, 2014; Haver et al., 2018), making the soundscape of the marine 

environment diverse and changeable over space and time (Matsinos et al., 2008; 

Rodriguez et al., 2014; Putland et al.,2017). Common trends in this are seen over 

diel, lunar and seasonal periods, which dictate the natural processes within 

habitats and the behavioural responses of organisms to this (Staaterman et al., 

2014; Buscaino et al., 2016; Insley et al., 2017; Kaplan et al., 2018). Anthrophony, 

emanating from sources such as shipping, construction and seismic surveys, has 

also attracted growing interest (Williams et al., 2015; Duarte et al., 2021). This 

pollutant has doubled each decade for 60 years (Veirs et al., 2018) and has 

increasingly been shown to negatively impact marine ecosystems and the life 

within (Wright et al., 2007; de Soto, 2016). 

 

Why studying marine soundscapes can be useful 

Soundscape ecology in the terrestrial environment has led to many key 

discoveries, yet the advantages of studying sound in the underwater environment 

are perhaps even greater. Traditional surveying techniques typically rely on visual 

counts and identification of organisms. However, in almost every marine habitat, 

visibility is frequently too low for visual surveys to be conducted, and many are 

mostly inaccessible using this technique (Mooney et al., 2020). Conversely, 

sound can travel much further and faster in water, at 4.3 times the speed of sound 
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in air, allowing noises to be detected over great distances (Rogers and Cox, 

1988). Sound in air can rarely be detected further than a few kilometres from its 

source, whereas, at the extrmeme end, some sounds in the ocean can be 

detected thousands of kilometres from the source (Lurton, 2002).  

Capitalising on the information held within the diverse array of sounds present in 

the ocean, and the ability to detect this over scales often not possible with visual 

survey techniques, is therefore of interest to ecologists. Studying soundscapes 

can indicate key information about habitats and the behaviour of organisms 

present within these (Cotter, 2008; Rossi et al., 2016; Gordon et al., 2018). More 

focused components of bioacoustics and the marine soundscape, such as marine 

mammal communication, have been studied for some time (Cotter, 2008). 

However, the practice of studying the broader acoustic environment in the marine 

setting is an emerging field, only growing amongst ecologists in recent years 

(Lindseth and Lobel, 2018; Mooney et al., 2020). Soundscapes have now been 

studied in a range of marine habitats, from tropical and temperate shallow reef 

habitats to the polar regions and the deep sea (Staaterman et al., 2013; Harris et 

al., 2016; Haver et al., 2018; Lin and Tsao, 2018).  

A broad range of biodiversity and functional attributes have been measured from 

marine soundscapes (Elise et al., 2019; Mooney et al., 2020). These attributes 

can be important indicators of a system’s ability to provide ecosystem services 

and resist stressors (Ferrigno et al., 2016; Hughes et al., 2017). For example, 

soundscape properties such as amplitude, stochasticity and temporal trends 

have been found to have a relationship with the abundance and diversity of fish 

communities, essential for productive fisheries (Kaplan et al., 2015; Elise et al., 

2019b). Such properties can also be an indicator of habitat quality (Piercy et al., 

2014; Bertucci et al., 2016) which can be a key determinant of services such as 

coastal protection, income from tourism and provisions from biodiversity (Hicks 

et al., 2013; Pascal et al., 2016; Otrachshenko and Bosello, 2017). Similar 
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research has revealed differences across degraded and healthy systems 

allowing those in need of protection or restoration to be identified (Butler et al.,  

2016; Gordon et al., 2018). The changed soundscape on degraded systems has 

in turn been found to reduce recruitment from a variety of taxa, potentially 

spiralling sites into a negative feedback loop (Rossi et al., 2017; Gordon et al., 

2018; Gordon et al., 2019).  

Although it is agreed that useful insights can be revealed from the study of the 

marine acoustic environment (Haver et al., 2018; Lindseth and Lobel, 2018), the 

full potential of this endeavour is not certain (Buxton et al., 2018) and 

contradictory findings on the relationship between properties of the soundscape 

and the wider ecosystem exist. For example, sound pressure level and spectral 

based acoustic metrics have been found to hold differing relationships with 

attributes such as fish diversity and benthic cover (Nedelec et al., 2015; Freeman 

and Freeman, 2016; Buxton et al., 2018; Elise et al., 2019). The sound of 

snapping shrimp has also been found to both positively (Gordon et al., 2018) and 

negatively (Nedelec et al., 2015) correlate with habitat health, with a further study 

reporting no relationship (Kaplan et al., 2015).  

The validity of some of these findings has also been criticised due to short 

recording times (Mooney et al., 2020). Misperceptions also exist about the 

attributes that some metrics may be quantifying, with many authors assuming fish 

vocalisations are driving results when in fact other factors may be the 

predominant determinants (Bohnenstiehl et al., 2018; Bolgan et al., 2018). 

Opposite trends in the values of modern computational metrics (discussed in 

Section 1.2) have also been observed, with different studies reporting the same 

metrics to be both affected (Bohnenstiehl et al., 2018) and unaffected (Harris et 

al., 2016) by changes in spectral resolution of the recordings under analysis. 

Further work is needed to elucidate which properties relate to particular aspects 

of ecology and how these may change spatially and temporally (Nedelec et al., 
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2015; Elise et al., 2019). The use of soundscape ecology has revolutionised the 

ability of terrestrial practitioners to perform rapid landscape assessments and 

gather important information on biological communities (Farina and Pieretti, 

2012; Agnieszka, 2017). The same developments in the marine environment 

could set the path for equally valuable advances in this field, if not greater due to 

the advantages it offers over traditional underwater survey techniques. 

1.2 Methods used to study marine soundscapes 

Collecting marine soundscape recordings 

Soundscape recordings are typically made by hydrophones, the underwater 

equivalent of a microphone (Lillis and Mooney, 2018). These devices consist of 

a piezoelectric transducer which converts acoustic pressure into an electrical 

current (Lau et al., 2002). These devices are deployed at sites of interest for the 

collection of soundscape data in a practice known as passive acoustic monitoring 

(PAM) (Sousa-Lima et al., 2013). Many considerations are needed during this 

stage such as the length of deployment and frequency range to sample from, 

determined by the sampling rate of a device. Oversampling can create very large 

datasets which require large amounts of digital storage to match and can lead to 

unworkable computing times during download and processing. Instead, 

investigations typically use duty cycles and frequency filters for long deployments 

where shorter recordings of a high quality are made periodically by these devices 

across the frequency band of interest to collect datasets which are more practical 

to archive and analyse (Farina, 2013) 

 

Traditional methods to analyse recordings 

Once soundscape recordings have been collected the next step is to analyse the 

information within these. There are a number of possible approaches, the choice 

of which is dependent on the questions under investigation. Auditory inspection 
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is the most obvious of these, where investigators listen to playbacks of their 

recordings and note points of interest such as the frequency of occurrence of 

certain acoustic events (Putland et al., 2017; Archer et al., 2018). However, this 

approach is slow and can limit investigations to signals within the range of human 

hearing sensitivity and difficulty can be had when interpreting multiple 

simultaneous signals. A more sophisticated and thorough approach is to convert 

the recording into an image, called a spectrogram, which displays the full 

spectrum of the recorded sounds and their intensity across time (Fig.1.1) (Archer 

et al., 2018; Carriço et al., 2020). Visual inspection of the spectrogram can then 

be used in complement to, or independently of, auditory inspections to more 

 

Figure 1.1 Spectrogram of a 30 second coral reef soundscape from Mooney et al. 

(2020). The plot shows frequency against time, relative intensity is indicated by colour, 

with darker colouration indicating low intensity sounds and lighter colouration indicating 

high intensity sounds. Sounds from biological sources are highlighted. 

rapidly reveal conspicuous acoustic signatures or changes over time (Archer et 

al., 2018; McWilliam et al., 2018). Other plots such as power spectral density 

(PSD), which reveal the predominant frequencies present in a broadband signal, 

can be used to supplement this (Staaterman et al., 2014; McWilliam et al., 2018). 
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 Assessing marine soundscapes using computer generated indices 

Auditory and spectrogram approaches can be effective in some scenarios. 

However, PAM investigations can amass large quantities of data from long term 

recordings and human led inspection of these recordings can be limited by 

available time and repeatability with human investigators. Computer generated 

indices are an emerging solution that enables rapid assessments of soundscapes 

(Sueur et al., 2008; Depraetere et al., 2012; Buxton et al., 2018). These 

approaches typically use algorithms to assess components of the spectrogram 

through searches for patterns or randomness across time, frequency and 

amplitude (Sueur, 2018a). They then quantify these findings and output values 

that correspond to these properties (Sueur et al., 2014; Buxton et al., 2018). 

Known as eco-acoustic indices, such approaches were primarily developed in the 

terrestrial environment with success in many areas (Depraetere et al., 2012; 

Sueur et al., 2014).  

Recently, soundscape ecologists began applying these to recordings of marine 

habitats. This has revealed some interesting relationships between a number of 

indices and the ecological processes in certain habitats (Buxton et al., 2018; 

Lindseth and Lobel, 2018; Mooney et al., 2020). Over the last five years the use 

of acoustic indices has become standard practice in marine soundscape ecology 

investigations attempting to advance this field (Pieretti and Danovaro, 2020). 

Researchers now mostly use a combination of these indices alongside other 

surveying approaches to investigate their utility (Buxton et al., 2018; Lindseth and 

Lobel, 2018). However, of the dozens of eco-acoustic indices in circulation 

amongst bio-acousticians and soundscape ecologists, only a select few have 

been investigated on marine soundscapes.  
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Summarising relevant indices 

The following section outlines the nine indices that have previously been found 

to have a specific relationship with a component of marine ecology (Pieretti and 

Danovaro, 2020), and introduces three others that have been trialled for the first 

time in the marine setting as part of this thesis. 

 

Amplitude index and sound pressure level 

The most commonly used acoustic indices in the marine environment relate to 

amplitude. This is effectively a quantification of how loud a recording is. The 

amplitude index (M) calculates the median of the amplitude envelope of a 

recording (Fig. 1.2) (Sueur, 2018a), which is usually performed over short 

durations (e.g., seconds to minutes). However, this index can be subject to 

variability depending on the equipment and conditions in which recordings were 

taken. Sound pressure level (SPL) is similar to M but is measured in decibels (dB) 

relative to the intensity of a reference pressure to provide an exact intensity level  

Figure 1.2. (A) Amplitude envelope of a one minute recording taken on a coral reef during 

this Masters study. The variability of this is assessed by the temporal entropy index (th). 

Amplitude is expressed relative to itself and as such no units are given. (B) A fast Fourier 

transform (FFT) of the same recording, this displays the relative amplitude for each 

frequency band. The variability of amplitude across frequency bands is assessed by the 

spectral entropy index (sh). 
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(Merchant et al., 2015). This requires the calibration of instrumentation against 

reference sounds to be performed. The route mean square sound pressure level 

(rmsSPL) is commonly used to provide a working average of intensity across the 

duration of a recording. 

 

Acoustic complexity index 

The acoustic complexity index (ACI) is primarily designed to enable the 

discrimination of acoustically complex biotic sounds from background noise. ACI 

operates on the principle that biotic noises, especially vocalisations, exhibit an 

intrinsically higher variability of intensity across certain frequency bands (Pieretti 

et al., 2011). ACI operates by calculating the difference in intensity between each 

frequency bin in a temporal window and the intensity in the same frequency bin 

in adjacent windows. This is performed across the full length of the recording and 

the sum of all the differences between adjacent frequency bins is taken. ACI 

accounts for distance from the receiver by dividing this result by the total sum of 

intensities in the recording. High values of the ACI index indicates a greater 

abundance of complex signals that exhibit variable frequencies and intensities, 

such as frequent and varied vocalisations of birds, for which it was first developed 

(Bradfer-Lawrence et al., 2019). 

 

Acoustic diversity and evenness  

The acoustic diversity index (ADI) and acoustic evenness index (AEI) were 

designed together to provide landscape ecologists with a way to quantify the level 

of variability in the intensities of different frequency bands present within a 

soundscape (Villanueva-Rivera et al., 2011). ADI and AEI operate by dividing the 

spectrum of a recording into different frequency bins (e.g.,10), and then 

calculating the proportion of the total sound in the recording that is in each 
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frequency bin. Each index then applies a diversity index to these results: ADI 

uses the Shannon evenness index (Spellerberg and Fedor, 2003) and AEI uses 

the Gini index (Hurlbert, 1971; Pekin et al., 2012). These indices produce values 

from 0–1. Recordings in which the total sound is spread evenly across frequency 

bands report a high ADI value and a low AEI value, and vice versa when this 

distribution is uneven (Bradfer-Lawrence et al., 2019). 

 

Temporal entropy and spectral entropy 

Temporal entropy (th) is used to measure the randomness in the total amplitude 

of a soundscape over time. The index takes the size of the amplitude envelope 

of a recording at each time point for which it is available (Fig.1.2A). It then 

executes the Shannon evenness on these values to provide the temporal entropy 

index (Sueur et al., 2008). This index produces values from 0–1, with low values 

indicating a recording where the amplitude envelope has a high random 

variability. This value can be subtracted from 1 to yield temporal variability (TV), 

as used in Elise et al. (2019a). Spectral entropy (sh) operates on a similar 

principle but instead uses squared mean amplitude values of the full frequency 

spectrum. This is obtained from a fast Fourier transformation (FFT) of the 

recording (Fig. 1.2B) which when plotted appears similar to the amplitude 

envelope (Fig. 1.2A). It then applies the Shannon index to this transformation to 

yield spectral entropy. This is again reported between 0–1, with low values 

indicating a uniform distribution of amplitude across frequencies and high values 

indicating a random distribution (Sueur et al., 2008). 

 

Acoustic entropy 

Acoustic entropy (H), also known as total entropy, measures randomness in the 

spectral and temporal domain of a soundscape. It is the product of temporal 
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entropy and spectral entropy (Fig. 1.2), producing values between 0–1. Higher 

values of H indicate a recording with a greater evenness across all frequencies 

over time, often dominated by silence. Lower values indicate the dominance of a 

single frequency band across time, for example the continuous presence of 

chorusing from one species or from a source of chronic anthropogenic noise 

(Bradfer-Lawrence et al., 2019). 

 

Acoustic richness 

The Acoustic Richness (AR) index was developed as an improvement upon the 

acoustic entropy index. The initial index was found to be less reliable in habitats 

with a reduced diversity and frequency of sounds and therefore AR was created 

(Depraetere et al., 2012). AR ranks each recording by its median amplitude then 

multiplies each rank by the corresponding recordings temporal entropy. It then 

divides this value by the square of the number of samples. AR is different from 

other indices in that it must be applied to a group of recordings due to the ranking 

component. A value between 0–1 is produced, with higher values indicating a 

richer soundscape due to a greater diversity of vocalisations and other complex 

sounds (Depraetere et al., 2012). 

 

Bioacoustic index 

The bioacoustics index (BI) is designed to quantify the total level of sound across 

the full spectrum. This uses a simple approach that begins by dividing the 

recording into a number of frequency bins determined by the user (e.g., 10). It 

then identifies the minimum intensity present at any point across the whole 

recording and calculates how much greater the mean intensity of each of the 
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frequency bins is above this minimum. It then sums these to provide a BI value. 

This can be visualised by plotting a curve (Fig. 1.3.), with BI being the total area 

 

Figure 1.3. This plot, adapted from Boalman et al. (2007), shows the bioacoustics index 

(BI) curve for eight different recordings. These curves indicate sound intensity across the 

0–8000 Hz frequency spectrum. The larger the area under this curve, the higher the BI 

value. For example, the total area under curve A is greater than the area under curve B 

and would therefore report a higher BI. 

under the curve. Higher values of this index indicate a higher intensity level 

across a broader range of frequency bands, such as continuous high intensity 

broadband sounds produced by snapping shrimp or cicadas (Bradfer-Lawrence 

et al., 2019).  

 

Snap rate 

Snap rate is an index unique to the marine environment. This index is used to 

calculate the level of snapping shrimp activity which can be an indicator of the 
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wider ecosystem (Gordon et al., 2018). Snapping shrimp are cryptic invertebrates 

ubiquitous in tropical and sub-tropical environments. These organisms perform 

rapid closure of their claws to produce cavitation bubbles which collapse to 

produce the characterise snapping sound, to both communicate and to stun prey 

or defend against aggressors (Versluis et al., 2000). A standard approach used 

by snap rate calculators begins by squaring the amplitude value of all signals in 

a recording, eliminating negative values, and then taking the median amplitude 

value from this set. The approach then searches for instances where (i) the 

amplitude is exceeded by a set threshold (e.g., four standard deviations above 

the median), (ii) fall below this threshold within a short time frame (e.g., 0.125 

ms), and, (iii) do not occur within a short window of time immediately after another 

snap to discount echoes (e.g., 1 ms) (Gordon et al., 2018). This is usually 

converted into snaps per minute with higher values indicating a greater number 

of snaps. 

 

Current consensus on the use of eco-acoustic indices 

It is worth noting the validity of each index to determine useful ecological 

information from the marine environment is not yet fully established within the 

soundscape ecology community. Most of the indices presented here that have 

been used in multiple studies have been the subject of some of the contradictory 

findings discussed in Section 1.1. Some studies support the use of specific 

indices to reveal characteristics of biological communities, whilst others challenge 

these findings (Buxton et al., 2018; Mooney et al., 2020). Any index where this 

discrepancy has not yet been revealed has likely only been used in one or two 

studies and as such lacks sufficient validation as of yet. This trend is frequently 

seen in the field of terrestrial soundscape ecology where their use is more 

established (Buxton et al., 2018). Additionally, any index that has not yet shown 

promise in the marine environment may simply have not been applied in an 
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effective manner. Further experimentation with these may reveal a relationship 

with certain aspects of ecology. It is therefore to be expected that a significant 

period of trial and error will be required in the marine environment before 

computational indices can become a more exact science used to deliver accurate 

ecological and biological findings. Many practitioners also suggest that the use of 

eco-acoustic indices should never be treated as a replacement for less efficient 

traditional surveying techniques outright. Instead these indices could be used 

alongside traditional techniques in a complementary approach that builds a more 

comprehensive surveying effort (Mooney et al., 2020).  

1.3 Advances needed in marine soundscape ecology 

Applications of soundscape ecology in the marine environment are still limited 

(Pieretti et al., 2017; Lindseth and Lobel, 2018). Continued investigation to 

address the full potential of this field and better understand the relationship 

between soundscapes and the environment is needed (Buxton et al., 2018; 

Lindseth and Lobel, 2018). Sampling from a variety of habitats around the globe 

over a range of spatial and temporal scales is required to better understand which 

properties of a soundscape may be of interest and to help identify commonly 

observable trends (Pieretti and Danovaro, 2020). Initially PAM will be needed 

alongside traditional surveying methods. This will enable novel PAM techniques 

to be compared to and validated against existing methods.  

As a deeper understanding is developed, continued expansion of this field can 

progress. New users who can access recorders and the expertise on how to 

conduct a soundscape ecology investigation using these will be needed. Rapid 

analysis of recordings using computational approaches will be key to increasing 

the pace at which this growing volume of data can be interpreted.  These 

advances will help PAM contribute to growing efforts to monitor the oceans to 
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help better understand and protect marine habitats. PAM may be used in isolation 

or alongside existing monitoring techniques in complementary approaches. 

This thesis presents two investigations aimed to advance the methods used by 

marine soundscape ecologists to collect and analyse PAM data. The first of these 

addresses the current inaccessibility of marine capable recorders; currently one 

of most limiting factors in PAM, holding back the widespread use of this practice 

in the marine environment. The second investigation demonstrates the potential 

of applying the modern analytical approach of machine learning to marine PAM 

data. This was performed using recordings from the world’s largest active coral 

reef restoration programme and reveals an exciting new way to perform habitat 

assessments. 
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Abstract 

1. Underwater passive acoustic monitoring (PAM) is an increasingly popular 

approach to monitor the health of aquatic environments through the analysis of 

soundscapes. Standard practices use hydrophones to record ambient sounds. 

They must either be cabled to surface recording devices or use autonomous 

instrumentation which comes at a premium cost. However, low-cost consumer-

grade action cameras offer an accessible alternative also capable of autonomous 

underwater acoustic recordings.  

2. The performance of two models of GoPro underwater action cameras  

when used as PAM recorders was evaluated. These were tested against a 

research-grade hydrophone in field conditions on shallow-water tropical coral 

reefs.  
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3. Simultaneous recordings of loudspeaker playbacks of known acoustic 

signals using all three instruments were taken first. Repeated deployments on 

different coral reef sites in which all three instruments were placed side by to side 

to record the same natural reef soundscape simultaneously were then 

undertaken. Eight of the most common eco-acoustic indices used in marine 

soundscape ecology from these GoPro recordings were calculated. These were 

used to assess the reliability and accuracy of results from the GoPros compared 

to the hydrophone. 

4. Although not calibrated, GoPros appeared to provide recordings from 

which select eco-acoustic indices could be calculated reliably, including temporal 

variability, the acoustic complexity index and acoustic richness. Results from a 

GoPro can be compared against others of the same model but should not be 

used interchangeably with a hydrophone or those from another model. We outline 

the best settings that can be used to collect such soundscape data with GoPros. 

5. Underwater action cameras are very popular with marine scientists and 

potential citizen scientists around the world. Their recordings represent a 

valuable tool for the global expansion of PAM techniques. 

 

2.1 Introduction 

Soundscape recordings are typically made by pressure-sensitive hydrophones, 

the underwater equivalent of a microphone (Lillis and Mooney, 2018). These 

devices consist of a piezoelectric transducer which convert pressure fluctuations 

into an electrical current (Lau et al., 2002). Compared to microphones, the 

receivers on these devices have a reduced sensitivity matched to the lower 

acoustic impedance of water (Medwin, 2005). This allows louder sounds to be 

recorded without surpassing the receiver’s dynamic range which leads to 
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distortion in recordings and reduces the intensity of quieter sounds. Hydrophones 

have been essential in advancing the field of marine soundscape ecology. 

However, these devices come with other drawbacks. 

In every application of soundscape ecology, compromises are made between 

factors such as the number of sites at which recordings are taken, and the length 

of time these are taken for (Hill et al., 2018; Elise et al., 2019). Access to recording 

equipment often dictates this trade-off (Merchant et al., 2015; Hill et al., 2018). 

Terrestrial practitioners benefit from access to an extensive choice of equipment 

that is often able to overcome this limit to the point where other constraints 

become more limiting. High specification instruments are available to purchase 

for a few hundred pounds; e.g., Wildlife Acoustics Song Meter, £399 (Wildlife 

Acoustics, US) (Darras et al., 2018; Beason et al., 2019). These devices house 

all the necessary components in a compact, self-contained and durable device, 

capable of long term deployments. New disruptive technologies that deliver many 

of these features in a small and much more cost effective device are also 

becoming available; e.g., the AudioMoth recorder, £47 (Open Acoustic Devices, 

UK) (Hill et al., 2018).  

However, for marine practitioners, access to equipment continues to be a limiting 

factor. This can result in investigations struggling to achieve the sampling depth 

they require or attract criticism when attempting to draw conclusions from only 

short windows of recording (Elise et al., 2019; Mooney et al., 2020). Often it is 

clear only one or two hydrophones could be accessed for even high impact 

investigations (Nedelec et al., 2015; Bertucci et al., 2016; Elise et al., 2019), 

whereas dozens may be used in terrestrial investigations (Hill et al., 2018; Sethi 

et al., 2020).  

This likely a result of the high expense associated with research-grade 

hydrophones. Low specification hydrophone sets ups typically come at costs 

similar to or above that of the highest specification terrestrial devices. These low 
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cost options also require complex set ups which include cables to power sources 

and recorders above the surface, necessitating boat attendance or long cables 

attached along the sea floor to land nearby (Elise et al., 2019). If an autonomous 

set up using these models is needed then floatation of dry components in a 

buoyant housing at the surface is required. This can be vulnerable to flooding, 

overheating and strong currents, as well as potentially introducing unwanted 

noise from surface splashing against the housing (Sousa-Lima et al., 2013). 

Advances in the last decade have led to the development of self-contained 

research-grade hydrophones that remove these drawbacks and can be left 

unattended for extended periods of recording (Sousa-Lima et al., 2013). 

However, these come at a premium cost that is typically an order of magnitude 

higher than the terrestrial equivalent; e.g., SoundTrap STD300, £2,230 (Ocean 

Instruments, New Zealand). 

The high cost and/or technical expertise required to deploy hydrophones is 

therefore an obstruction to many marine practitioners. This prevents established 

marine soundscape ecologists from collecting recordings from multiple sites 

simultaneously on the scale that terrestrial practitioners are able to. It is also likely 

an obstruction to marine practitioners hoping to incorporate passive acoustic 

monitoring alongside existing work. The availability of low-cost equipment that 

requires minimal specialist knowledge for assembly and deployment would 

greatly increase the accessibility of PAM in the marine environment. This would 

allow existing soundscape ecologists to further expand the research in this field 

and enable new users to consider the use of PAM alongside existing work. There 

is therefore a demand to identify or develop low-cost equipment capable of 

collecting useful acoustic data in underwater environments. 
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GoPros: Low-cost audio-visual recorders commonly used in marine 

research 

We identified GoPros (GoPro™, California, US) as a potential solution to some 

of the equipment challenges faced by marine soundscape ecologists. These 

devices are compact consumer-grade recorders primarily designed to collect 

high-definition video footage and images of action-adventure sports. They can be 

deployed in underwater housings and left to record for up to two hours before the 

battery dies. The widespread use of GoPros amongst marine practitioners makes 

it apparent that these devices are suitable for work in this setting. This includes 

the collection of images and video for surveying (Morgan et al., 2017; Villon et 

al., 2018), observing ecosystem functions (Rasher et al., 2017; Ford et al., 2018; 

Lefcheck et al., 2019), 3D photogrammetry (Raoult et al., 2016; Young et al., 

2017) and in combination with ROV’s and drones (Casella et al., 2017; Corriero 

et al., 2019). Additionally, audio can be collected by these devices. This can either 

be extracted from video footage to obtain an MP3 file, or, from the GoPro 5 

onwards, a ‘raw’ audio setting can be enabled which records an uncompressed, 

unmodified wave file, typically preferable to soundscape ecologists.  

Whilst the use of microphones in place of hydrophones is unconventional, 

countless hours of video footage using GoPros have been collected by 

investigators for various reasons, all of which are accompanied by audio. These 

audio recordings contain the characteristic sounds expected of these habitats 

such as the background crackle of snapping shrimp, clearly distinguishable fish 

vocalisations and influences from the weather. This opens the possibility that 

ecologically relevant information could potentially be obtained from this audio for 

use in PAM investigations. 

However, to our knowledge, no soundscape investigation in the marine 

environment has considered the use of terrestrial recorders, such as GoPros, to 

collect acoustic recordings. This makes the use of these devices an alternative 
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approach to the current standard and introduces two key differences: (i) the use 

of microphones instead of hydrophones, (ii) the use of low cost consumer-grade 

devices. It is important to note also that no terrestrial soundscape ecology 

investigation has considered the use of GoPros for data collection. However, 

other purpose made consumer grade devices able to fulfil this demand are 

already available, precluding the use of GoPros (Hill et al., 2018), but these do 

not yet offer underwater housing. 

 

Limitations of consumer grade recorders 

Although they offer improved accessibility, consumer grade devices are not 

without limitations. Notably, devices such as GoPros, do not come with 

microphones calibrated by the manufacturer. This is typically the case with 

hydrophones and calibration using alternative methods is not a simple or cost-

effective process (Robinson et al., 2014). Calibration is necessary to ascertain a 

true level of intensity relative to a standardised reference pressure. This allows 

comparisons of volume/intensity to be made across different devices (Robinson 

et al., 2014).  

As part of the calibration process, a detailed frequency response curve is 

produced which is essential when reporting the intensity of different sounds 

across the frequency spectrum. Often this frequency response curve is flat for 

high specification devices, which means the sensitivity is consistent  across all 

relevant frequencies. This allows exact intensity to be calculated using the 

calibration data, and can applied with ease across the full spectrum, removing 

the need for complex adjustments at difference frequencies (Lurton, 2002; 

Robinson et al., 2014). A flat response is not easily obtained and therefore is 

unlikely to be observed in consumer-grade devices. This in turn cannot be 

accounted for as they are uncalibrated, likely resulting in the intensity of sounds 

at different frequencies being misrepresented.  
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The dynamic range of microphones/hydrophones is also an important 

consideration (Robinson et al., 2014). This is essentially the lowest and highest 

levels of sound intensity a device can record without failure of detection or 

distortion respectively. Details of this for the internal microphones are not 

provided by GoPro. System self-noise can also affect recordings, this is where 

the internal mechanisms of a device produce low level noise that is detected and 

recorded by the device (Robinson et al., 2014). Again, no details on this are 

readily available for GoPros, meaning it could confound recordings. Finally, 

soundscape ecologists generally consider omnidirectional recordings which 

record audio from all directions equally (Robinson et al., 2014). No deliberate 

attempt is made to provide this using GoPros and it is instead simulated using 

three internal microphones placed on the left, right and bottom of each device. 

However, these limitations do not rule out the utility of lower specification devices 

such as GoPros. Although calibrated soundscape information is an important 

component to study some ecological characteristics (Lindseth and Lobel, 2018), 

the majority of indices used by soundscape ecologists do not rely on calibration 

(Sueur, 2018a). If deviations from a flat frequency response are consistent across 

recordings, an index can still be calculated accurately, providing a basis for 

relative comparisons.  The lack of omnidirectionality does not always have to be 

a limitation. If a habitat being recorded is large enough then a (semi-)directional 

recording may still be adequate if the device is orientated towards the area of 

interest. 

 

Aims of this investigation 

This study was designed to test the utility of GoPros in marine soundscape 

ecology using modern PAM techniques. The first component of this used 

spectrogram and power spectral density (PSD) plots generated from recordings 

of two artificial signals produced from a loud-speaker and a reef soundscape 
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recording. This was performed to explore any overt differences in GoPro and 

hydrophone recordings such as amplitude and frequency responses. 

A more complex investigation was then designed to address the utility of eco-

acoustic indices testing against the following hypotheses: 

 H1: Eco-acoustic indices calculated from GoPro camera audio can be used 

to produce reliable and accurate results in place of those calculated from 

research-grade hydrophone recordings. 

 H0: Eco-acoustic indices calculated from GoPro camera audio cannot be 

used to produce reliable and accurate results in place of those calculated 

from research-grade hydrophone recordings. 

Reliability was defined as how consistent the relationship between the results 

calculated from the GoPros was to those from the hydrophone. Accuracy was 

defined as how closely the results calculated from GoPro recordings were to 

those from the hydrophone recordings, and is dependent first on a good reliability 

score. 

We used a method comparison approach to perform this investigation. Such 

approaches are frequently used to compare alternative means of collecting 

measurements or data using new technologies or methodologies (Magari, 2002). 

In accordance with this, a SoundTrap STD300 hydrophone (Ocean Instruments, 

NZ), a commonly used model in published marine soundscape ecology 

investigations (Roland et al., 2017; Bohnenstiehl et al., 2018; Lillis et al., 2018), 

was treated as the gold standard. Recordings on the hydrophone and several 

GoPro devices were taken simultaneously on different patches of a tropical reef.   
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2.2 Methods 

Study site 

All recordings were taken in November and December 2019, in the shallow-water 

coral reef environment, directly south-west of Lizard Island Research Station, 

Great Barrier Reef, Australia (14°40.8′S, 145°26.4′E; Fig. 2.1). Lizard Island is a 

mid-shelf island in the northern Great Barrier Reef, situated 27 km offshore and  

 

Figure 2.1. (A) Lizard Island (14°40.8’S, 145°26.4’E) relative to mainland Australia. (B) 

Aerial view of Lizard Island. (C) Approximate locations at which GoPros were placed 

alongside the hydrophone to collect recordings, white arrows indicate both GoPro 5 & 7 

recordings were taken, black arrows indicate just GoPro 7 recordings, red arrow 

indicates location of the playback experiment (Maps: Google Earth, Maxar 

Technologies). 

17 km from the outer Greater Barrier Reef. To sample the reef soundscape, the 

recording devices were deployed at 11 randomly selected reef flat sites by 

snorkelers at depths from 2 to 8 m (Fig. 2.1C). A playback experiment was also 

performed on a sand-flat site 50 m from the nearest reef at 4 m depth (Fig. 2.1C). 
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Collection of recordings 

A SoundTrap (300 STD; Ocean Instruments, Auckland, NZ) was used as the 

industry standard hydrophone for this study. This self-contained device 

possesses an omnidirectional receiver with an inbuilt digital recorder (288 kHz 

maximal sampling rate, 16-bit resolution, 0.02–60 kHz ± 3dB frequency range, 34 

dB re 1 μPa self-noise above 2 kHz, maximum gain before clipping 186 dB re 1 

μPa, calibrated by manufacturer). For each deployment this was set to record 

continuously on the low gain setting at a sampling rate of 48 kHz. 

Three GoPro HERO5 Black and two GoPro HERO7 Black (GoPro™, California, 

USA) were used, hereinafter referred to as GoPro 5 and GoPro 7 respectively. 

All cameras were enclosed in the manufacturer’s ‘Super Suit’ underwater 

housing. Each GoPro contains three internal microphones with a sampling rate 

of 48 kHz. The cameras were set to record videos at the lowest resolution and 

frame rate per second possible for both cameras (720p, 60fps); note this does 

not affect audio quality. They were also set to record a ‘raw’ audio file in the .wav 

format using the ‘Protune’ settings accessible through the user interface.  

Both the hydrophone and GoPro were suspended on vertical ropes at matching 

heights of 0.5 m above the seabed, less than 0.3 m apart, using small sub-surface 

buoys, dive weights, rope and cable ties (Fig. 2.2). The devices were left to record 

for 120 minutes, which was the maximum limit of the GoPro battery life. All 

recordings that resulted in battery or camera failure prior to 30 minutes were 

discarded. Those including excessive motorboat noise, in which five one minute 

segments could not be collected without boat disturbance, were discarded. 

Recordings were only taken when the wind was between 0 and 2 on the Beaufort 

scale, the sea state was calm or smooth on the Douglas scale, and there was no 

rain.  
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Figure 2.2. (A) GoPro 5 & 7 being deployed next to the hydrophone. (B) Schematic of 

how the devices were suspended. Devices were repositioned until all were within 0.3 m 

and suspended at equal heights. 

 

Pre-processing recordings 

Audio was extracted from the GoPro video footage using WavePad (v.9.6.3) and 

uploaded to Audacity (v2.3.1) alongside the raw GoPro audio recordings and 

hydrophone recordings. An approximate temporal alignment of each GoPro track 

against the hydrophone was then performed manually using a short section of 

speech present at the start of each recording. This section was then cropped from 

each track and used to perform a precise alignment using the Signal Processing 

Toolbox in MATLAB (v9.7.0) with the AlignWave plugin (Chen, 2020). This plugin 

uses waveform cross-correlation to output the difference between audio samples 

down to 1 ms. The difference was then removed from tracks as appropriate to 

produce an accurate alignment. Aligned tracks are referred to as one track from 

here on, with all subsequent changes made in parallel. 
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Additional recordings for Spectrogram and PSD inspection 

Additional recordings were taken and aligned for spectrogram and power spectral 

density (PSD) comparisons. For this, a playback of two controlled acoustic 

signals were recorded. The acoustic signals were generated in Raven Pro 

(v1.6.1) and put into an audio track using Audacity, these were: 

 Nine simultaneous pure tones of a one second duration. Beginning at 1 

kHz up to 17 kHz at 2 kHz intervals. 

 A sine sweep that increased linearly from 0 Hz to 20 kHz over a 10 second 

duration. 

Each device was set to record whilst exposed to a playback of this track using an 

underwater loudspeaker (University Sound UW-30; max output 156 dB re 1 μPa 

at 1m, frequency response 0.1–10 kHz; Lubell Labs) powered by an amplifier 

(M033N, 18 W, frequency response 0.04–20 kHz; Kemo Electronic GmbH) and 

connected to an MP3 player (SanDisk Clip Jam), and a battery (12V 12Ah sealed 

lead acid). Here, it is important to note the loud-speaker may not produce sine 

sweeps or pure tones with consistent amplitudes across the full spectrum, 

especially below 100 Hz and above 10 kHz as this is the limit the manufacturer 

placed on its flat frequency response. However, the speaker could be relied on 

to output any imperfection consistently, allowing each device to record the same 

signal even if these were not true perfect representations of the input track. 

These recordings were taken with the loudspeaker placed at 4 m depth on a 

sandflat >50 m from the nearest reef in the Lizard Island lagoon. A dive weight 

was placed as a marker 2 m from the speaker at this same depth. One by one, 

each device was placed on top of the marker and left for several cycles of the 

track. Each device was suspended and set to record in the same manor 

described previously. To prevent disturbance, recordings were taken whilst the 

sea-state was calm on the Douglas scale, the wind was 0 on the Beaufort scale 



37 
 

and all snorkelers, divers and boats vacated the area during each cycle of  

recordings. One of the 30 s soundscape recordings, taken for the eco-acoustic 

index component, recorded by all three devices simultaneously was also selected 

for comparison. Recordings were processed in Audacity where an individual sine 

sweep and pure tone was isolated from each recording of the playback. These 

were processed in a purpose written MATLAB script used to produce 

spectrogram and PSD plots for each device.  

 

Sampling recordings for index comparison 

An acclimation period of 15 minutes was removed from the beginning of all 

aligned tracks to account for any disturbance to the experimental site during 

deployment. The next 15-minute period was used as the window of data to 

analyse as it encompassed the minimum length of time each GoPro was able to 

record for. 

Sub-sampling of tracks to produce short windows of each recording is standard 

practice in PAM investigations. This reduces bottlenecks at the analysis stage 

that can be introduced by computationally intense approaches (Pieretti et al., 

2015; Elise et al., 2019). However, no standardised regime is agreed (Elise et al., 

2019). Sub-samples typically range between five seconds to five minutes 

(Radford et al., 2014; Nedelec et al., 2015) and may be taken once every few 

minutes of recording to once each hour (Staaterman et al., 2013; Lombardi et al., 

2016). A subsampling regime of 5 x 30 second non-overlapping segments chosen 

at random from each 15-minute window was therefore selected.  

A further consideration is the presence of engine noise from motorboats that can 

dramatically affect the output of bioacoustics indices (Elise et al., 2019). 

Recordings were therefore screened for boat noise through visually and 

acoustically inspecting spectrograms. Four full recording days were removed due 
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to chronic boat disturbance. Boat noise was only observed for 3/95 sub-samples 

across the other recording days. These were removed and an alternative sample 

was randomly chosen from the corresponding 15 minute window from which each 

sub-sample was taken. In total, 40 sub-samples were generated for the GoPro5s 

and 55 for the GoPro7s from the eight and eleven successful recording blocks, 

with matched hydrophone sub-samples for each. 

 

Eco-acoustic indices 

Eight eco-acoustic indices (Table 2.1) were calculated in R using the packages 

Seewave (v2.1.6) and Soundecology (v.1.3.3). Snap rate was the only exception 

which was calculated using a modified MATLAB script from Gordon et al. (2018). 

Two frequency bands were used for every index. This included a low band (0.1–

1.5 kHz) intended to be inclusive of most fish sounds (Lammers and Munger, 

2016) with interference from low frequency ship noise and geophonic disturbance 

removed (Curtis et al., 1999). Above this a high band was used (1.5–20 kHz), 

dominated by broadband snapping shrimp (Versluis et al., 2000). The upper limit 

of this high band was determined by the Nyquist frequency limit of the GoPros; 

that is, half the maximal sampling rate of a device for which recordings must be 

limited to adequately sample all sounds (Sueur, 2018b). The only exception to 

these bands was the index snap rate, for which the same high band was used 

and a broadband (0.1–20 kHz) range as snap rate is not typically measured in 

the low band alone (Bohnenstiehl et al., 2018). These bands were created using 

Seewave and Soundecology’s inbuilt frequency filters for indices where this is 

available. If not, sixth order Butterworth filters with a 40 dB roll off were 

implemented to tracks in MATLAB. Most indices were calculated using default 

windows, envelopes, and other settings from Seewave and Soundecology (Table 

2.1). The exceptions were ADI and AEI’s frequency bins. The default for 
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Index Mechanism Software Settings Filter Citation 

Acoustic Complexity Index (ACI) 
Measures variability in intensity 
of frequencies across time. 

Seewave in R  
Window size = 512; type = 
Hamming; overlap = 0. 

Seewave 'ffilter': Window = 1024;  
type = Hanning; overlap = 75. 

(Pieretti et al., 2011) 

Acoustic Diversity Index (ADI) 
Measures diversity across 
frequency bands. 

Soundecology in R 
Maximum frequency = (i) 1.5 kHz, 
(ii) 20 kHz; frequency bins = (i) 0.15 
kHz, (ii) 2 kHz; threshold = -50 dB. 

Filtered in function. 
(Villanueva-Rivera et al., 
2011) 

Acoustic Entropy (H) 
Measures randomness across 
temporal and spectral domains. 

Seewave in R  
Window size = 512; envelope = 
Hilbert. 

Seewave 'ffilter': Window = 1024;  
type = Hanning; overlap = 75. 

(Sueur et al., 2008) 

Acoustic Evenness Index (AEI) 
Measures evenness across  
frequency bands. 

Soundecology in R 
Maximum frequency = (i) 1500 Hz, 
(ii) 20 kHz; frequency bins = (i) 150 
Hz, (ii) 2 kHz; threshold = -50 dB. 

Filtered in function. 
(Villanueva-Rivera et al., 
2011) 

Acoustic Richness (AR) 

Ranks recordings based on 
amplitude multiplied by 
randomness across the 
temporal domain. 

Seewave in R  Envelope = Hilbert. 
Seewave 'ffilter': Window = 1024;  
type = Hanning; overlap = 75. 

(Depraetere et al., 2012) 

Bioacoustic Index (BI) 
Measures cumulative intensity 
across frequency bands. 

Soundecology in R 

Minimum frequency = (i) 0.1 kHz, (ii) 
1.5 kHz; Maximum frequency = (i) 
1.5 kHz, (ii) 20 kHz; window size = 
512. 

Filtered in function. (Boelman et al., 2007) 

Temporal Variability (TV) 
Measures randomness across 
the temporal domain. 

Seewave in R  No settings required. 
Seewave 'ffilter': Window = 1024;  
type = Hanning; overlap = 75. 

(Sueur et al., 2008) 

Snap Rate 
Measures rate of snapping  
shrimp snaps. 

 MATLAB Custom script. 
6th order Butterworth filter;  
40 dB roll off. 

(Gordon et al., 2018) 

Table 2.1. The eco-acoustic indices calculated for each recording with a summary description of the mechanistic principle behind each and the software 

used. The settings and filter used for each index in their respective software is also included. 
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each of these uses ten frequency bins, therefore, ten 150 Hz and ten 1850 Hz 

bins were used for the low and high bands respectively.  

 

Spectrogram and PSD plot comparisons 

Qualitative inspection of spectrogram and PSD plots from the controlled playback 

experiment was used to compare recording properties across both models (5 and 

7) and audio types (raw and video) against the hydrophone. Variance between 

each device of the same model and audio types was also investigated through 

manual listening and visual inspection of spectrograms. 

 

Statistical analysis 

In accordance with method comparison approaches, results generated from 

hydrophone recordings were treated as an ‘industry standard’ against which 

assessments of the reliability and accuracy of results generated from GoPro 

recordings could be made (Magari, 2002; Carstensen, 2011). Individual 

comparisons between the hydrophone and GoPro recordings were made for 

each eco-acoustic index using a single paired measure method comparison 

approach (Abu-Arafeh et al, 2016) for the GoPro 5’s (n = 40) and GoPro 7’s (n = 

55). Non-parametric tests were selected, since little consistency between the 

distributions of each dataset was observed. All analysis was performed in R using 

the MethComp (v1.30.0) package. 

Two tests were selected that are complementary to one another (Magari, 2002). 

The first was a Spearman’s rank-order correlation test, used to quantify the 

reliability of GoPros against the hydrophone by testing the strength of the linear 

relationship between these. The second test was a Passing-Bablok regression 

used to determine whether each GoPro-index combination under inspection was 

equivalent and can therefore be used interchangeably with results from a 
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hydrophone. This is done by quantifying the proportional and constant bias (Bilic-

Zulle, 2011). This test is specifically designed for method comparison studies and 

is non-sensitive to distribution errors or outliers. The test assumes a continuous 

distribution across datasets and a strong correlation between datasets which was 

determined in the first test using the Spearman’s approach. Not all indices 

compared in this investigation met this second assumption. However, only those 

with a strong correlation have the potential to provide interchangeable results and 

as such only those should be considered in detail for this component. The 

Passing-Bablok regression analysis produces values for the intercept and slope 

which represent the constant and proportional bias respectively. Presence of a 

constant bias indicates a consistent deviation between results from the two 

devices in one direction. Presence of proportional bias indicates datasets do not 

agree equally across the range of measurements. For example, differences in 

results at the lower end of measurements may be small whilst differences present 

at the higher end are large (Ludbrook, 1997). The test also produces confidence 

interval bounds. If the confidence interval bounds calculated for the slope contain 

1, and, the confidence interval bounds calculated for the intercept contain 0, then 

the two methods can be said to be in agreement and used interchangeably (Bilic-

Zulle, 2011). 

In combination, these two tests inform on the reliability and accuracy of GoPro 

recordings for calculating the eco-acoustic indices in question and whether they 

are equivalent to the hydrophones results. Without the Spearman test, the 

consistency of GoPro results against the hydrophone cannot be determined, and 

without the Passing-Bablok test, it would not be possible to determine whether a 

highly reliable GoPro-index could be used interchangeably or whether a bias is 

present.  
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2.3 Results 

Spectrogram and power spectral density inspection 

Spectrogram plots revealed a high level of consistency was observed between 

GoPro’s of the same model (Supp 2.2). However, they did reveal notable 

differences between devices from different models (Fig. 2.3). Firstly, this included 

a difference in the gain applied, as indicated by the power/frequency colour scale. 

The GoPro video audio appeared to have the largest gain applied, followed by 

the hydrophone, with the lowest gain applied to the raw GoPro audio. A skewed 

frequency response is also revealed by the sine sweep in the video audio for both 

GoPro devices, and the raw audio for the GoPro 5 to a lesser degree. Here, lower 

frequencies in the sign sweep appear to be at a greater intensity whereas the 

hydrophone remains consistent. This skewed frequency response is also shown 

in the reef soundscape spectrograms, in which the hydrophone displays 

consistent broadband noise from a low frequency up to 20 kHz (also shown in 

the PSD plot (Fig. 2.4)). However, the video audio for both GoPros shows a 

greatly reduced intensity at frequencies above 15 kHz, and the GoPro 7 raw audio 

exhibits a slightly reduced intensity for signals above 10 kHz. The presence of 

more discrete discrepancies in the amplitude of some narrower frequency bands 

are also present in all the GoPro recordings whereas the hydrophone was 

uniform. The sine sweep also revealed an interesting artefact from the video 

audio files. As the sweep passed through the 8–10 kHz band, a second sweep 

appeared following the opposite gradient. This second sweep begins at 

approximately 15 kHz until it reaches 11 kHz where it stops. 

The PSD plots (Fig. 2.4) of the pure tones revealed 18 clear peaks for the 

hydrophone, most likely a result of the nine pure tones and associated harmonics.  

The GoPro peaks are not as clearly defined, although it was evident that the raw 

recording from the GoPro 7 was the closest fit to the hydrophone with at least
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Pure tone Sine Sweep Reef Soundscape 

Figure 2.3. Spectrogram of a pure tone (left), a sine sweep (middle) and a coral reef soundscape (right) recorded by the hydrophone, GoPro 7 

raw and video audio, and, GoPro 5 raw and video audio. A Hamming window was used with 75% overlap, pure tone window length = 128, sine 

sweep window length = 256, reef soundscape window length = 512.  
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Figure 2.4. Welch’s power spectral density (PSD) plots of a pure tone (left), a sine sweep (middle) and a coral reef soundscape (right) 

recorded by the hydrophone, GoPro 7 raw and video audio, and, GoPro 5 raw and video audio.  
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peaks (though many at a reduced amplitude), followed by the GoPro 7 video audio 

with 11. The GoPro 5 raw and video audio exhibited less peaks (around seven visible). 

The PSD of the sine sweep revealed a drop off in frequencies above 15 kHz in the 

video audio from both GoPros. Signals were attenuated above 15 kHz for the GoPro 

5 and 16 kHz for the GoPro 7. PSD plots of the reef soundscape recorded by each 

device also showed uneven frequency responses for both GoPro devices. Conversely, 

the hydrophone showed a consistent intensity across the full spectrum up to 20 kHz. 

Relative to the hydrophone, the raw files taken by both GoPros showed a slightly 

increased intensity at the low end of the spectrum up to about 7 kHz, before exhibiting 

a flatter response up to 20 kHz. The videos for both GoPros showed an increased 

intensity at the lower end of the spectrum, relative to the hydrophone, which steadily 

decreased until 15 kHz where the intensity was reduced. At the lower end of the 

spectrum for both GoPro 7 audio types and the GoPro 5 video, many small 

inconsistencies in intensity between frequencies were also present, indicated by the 

‘zig-zagging’ pattern along the spectrum.  

 

Reef soundscape: reliability of acoustic indices generated by GoPros  

Results from the correlation test between the GoPro and hydrophone recordings were 

used to estimate the reliability of the indices calculated from GoPro recordings (Fig. 

2.5). Low band acoustic richness (AR) calculated from GoPro 7 raw audio recordings 

had the strongest correlation (rho = 0.98, p<0.001), with four others exhibiting highly 

significant correlations (p<0.001) above rho = 0.9. At the lower end, other GoPro-index 

correlations showed little to no correlation. 

The GoPro 7 indices consistently reported stronger correlations with the hydrophone. 

The strongest correlation for 15/16 eco-acoustic indices was reported from the GoPro 

7s. The exception was low band acoustic entropy (H) calculated from GoPro 5 raw 

audio recordings (rho = 0.75, p<0.001). Raw audio files had a stronger correlation with 

the hydrophone than video audio overall. Of the eight eco-acoustic indices across both 
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Figure 2.5. Spearman’s rank-order correlation test scores between indices calculated from 

GoPro and Hydrophone recordings. Shading indicates strength of correlation, with no 

correlation (rho = 0) indicated by white and a perfect correlation (rho = 1 or -1) indicated by 

black. Rows are presented in ascending rank order of the GoPro 7 raw audio results. 

audio types (raw and video), raw audio reported a stronger correlation in 12 and 11 

cases for the GoPro 7 and 5 respectively. Results for any one index were often 

inconsistent across models and raw/video audio. However, some reported stronger 

correlations in general. Across both frequency bands AR, TV, ACI and H reported 

strong correlations for three out of four model/audio types (rho>0.5, p<0.001). At the 

lower end BI and snap rate showed little correlation in most instances. ADI and AEI 

exhibited a middling reliability (rho = 0.46–0.7, p<0.001) except when GoPro 5 video 

audio was used which showed little to no correlation (rho<0.4, p>0.05 or above).  
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Reef soundscape: accuracy of acoustic indices generated by GoPros 

For results with a strong correlation, findings from the Passing-Bablok test (Table 2.2) 

could also be used to explore the relationship of indices calculated from the GoPros 

compared with the hydrophone. No GoPro-index combination fitted the criteria set by 

the Passing-Bablok regression needed to be considered indistinguishable from the 

hydrophone when confidence intervals were set to 90% and above. When confidence 

intervals were set to 80%, one measure, low band acoustic complexity index (ACI) 

calculated from GoPro7 raw audio recordings, reported confidence intervals for the 

slope (0.96 to 1.01) and intercept (-1.29 to 8.05) that encompassed the respective 

values of 1 and 0 needed to satisfy the criteria to be considered as an interchangeable 

measure. 

High band ACI measured with GoPro 7 raw audio demonstrates a combination where 

index values have a strong correlation (rho = 0.9, p<0.001) but a proportional bias 

remains present (Fig. 2.6B). The values for this index are therefore reliable and can 

be used to calculate consistent results, but these results cannot be used 

interchangeably with or compared to the hydrophone without correcting for the 

proportional bias. Conversely, low band ADI calculated from GoPro 5 video audio (Fig. 

2.6C) which suggests the constant bias could be removed to provide what appears to 

be an accurate measure. However, no correlation is observed (rho = 0.05, p = 0.75), 

indicating the index has a low reliability. This example demonstrates that the apparent 

absence of bias can be misleading and why indices with no correlation should not be 

considered accurate or reliable (Bilic-Zulle, 2011).  

Moreover, high reliability cannot be confirmed without considering the accuracy, as 

demonstrated in Fig. 2.6D: a strong correlation is reported for high band ADI taken 

from GoPro 7 video audio (rho = 0.63, p<0.001). However, a very high proportional 

bias was also revealed (slope = 684.04). In this instance, the results for the 

hydrophone were highly similar for every recording whereas the GoPro reported a 

much greater variability. Therefore, any value for the GoPro would have fallen clos
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Index &   
GoPro 7 Raw   GoPro 7 Video   GoPro 5 Raw   GoPro 5 Video 

Frequency 
Band   

Slope Intercept   Slope Intercept   Slope Intercept   Slope Intercept 

AR Low   0.90 0.01   0.88 0.01   0.54 0.04   0.05 0.78 

TV Low   0.93 0.00   0.91 0.00   0.63 0.01   0.01 0.27 

TV High   1.18 0.00   1.27 0.00   0.93 0.03   0.77 0.01 

AR High   0.93 0.00   0.97 0.00   0.97 -0.04   0.84 0.00 

ACI High   0.50 82.67   0.83 31.52   0.72 49.86   0.47 97.77 

H High   1.12 -0.14   3.69 -2.61   1.08 -0.09   4.42 -3.26 

ACI Low   0.99 3.49   0.81 37.30   0.68 61.86   0.38 114.30 

AEI High   15.70 -0.06   12.97 0.45   0.33 0.02   8.84 0.36 

ADI High   162.41 -371.64   684.04 -1573.26   0.47 1.21   924.00 -2125.55 

AEI Low   3.02 -0.10   2.74 -0.02   0.02 0.00   0.08 0.07 

ADI Low   3.30 -5.27   7.66 -15.33   0.00 2.30   0.95 0.08 

Snap High   2.83 -68.50   4.29 23.45   3.33 -150.43   6.12 -203.93 

BI High   0.75 3.74   9.91 -58.29   1.17 -11.54   1.24 114.35 

H Low   0.70 0.11   1.87 -0.46   0.25 0.36   0.51 0.24 

Snap Full   3.15 -207.75   8.23 -869.19   3.64 -232.32   9.30 -906.50 

BI Low   2.32 -0.75   Inconclusive Inconclusive   0.13 1.42   0.50 3.53 

Table 2.2. Slope and intercept values used to quantify proportional and constant bias calculated from the Passing-Bablok regression between each GoPro 

audio format and the hydrophone. A slope highly divergent from 1 indicates a large proportional bias, whereas an intercept highly divergent from 0 indicated 

a large constant bias. Rows are in rank order of the strength of correlation for the GoPro 7 raw recordings (Fig. 2.5). Low band ACI from GoPro 7 Raw 

recordings (in bold) was the only index to pass the test as equivalent to the hydrophone. Results indicated by inconclusive could not be computed by the test. 
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to the regression line as the slope is vertical, resulting in a high rho value falsely 

indicating high reliability.

Figure 2.6. Passing-Bablok regression plots of selected GoPro-index 

combinations against the hydrophone results which demonstrate the range of 

possible relationships between the datasets. Solid line indicates the regression 

line, dashed line indicates the identity line (x = y). Correlation coefficients (rho) 

from the Spearman correlation test (Fig. 2.5) as well as slope and intercept values 

from the Passing-Bablok regression (Table 2.2) are included.  
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2.4 Discussion  

Summary 

The aim of this investigation was to determine whether eco-acoustic indices 

calculated from GoPro recordings taken in the marine environment are both 

accurate and reliable in relation to a research grade hydrophone. We trialled two 

models of GoPro (HERO5 Black and HERO7 Black). A correlation test supported 

the hypothesis that these devices can be used as reliable tools to collect 

recordings for many eco-acoustic indices in an underwater setting. However, 

neither GoPro model passed the Passing-Bablok regression analysis with 90% 

confidence. Therefore, neither offers results which can be used interchangeably 

with the hydrophone. 

The most reliable GoPro from the two models tested appears to be the GoPro 7 

and the most suitable audio format for both models tested appears to be the raw 

audio format. This reliability was assessed by the correlation test. Of the 64 

GoPro-index combinations investigated, 17 reported a correlation equal to or 

above rho = 0.7 and 15 others were above rho = 0.5. This demonstrates that 

reliable comparisons can be made between these indices when recordings are 

collected by the same model of GoPro.  

The accuracy was assessed by the regression analysis. The results from this 

show that values for acoustic indices determined from GoPro recordings 

predominantly are not suitable to be used interchangeably with the Hydrophone. 

Only one GoPro-index combination passed this test: low band ACI taken from 

GoPro7 raw audio recordings. However, for many GoPro-index combinations 

with a strong correlation to the hydrophone the differential bias (indicated by 

slope) was approaching 0. This shows in most cases that, although different, the 

relationship was not highly divergent.  
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The spectrogram and PSD plots offer an explanation for some of the statistical 

findings from the correlation and regression analysis. The hydrophone appears 

to capture more peaks for the pure tones and shows a flatter frequency response 

for the sinusoidal sweep than GoPros. These differences also appear more 

prominent for GoPro video audio which may explain each model’s greater 

reliability when raw audio was used. Differences in overall amplitude are also 

clear between each audio format with the largest difference between raw files 

and the hydrophone. However, as each index assesses the spectrogram relative 

to itself the overall amplitude of a recording should not change the result. This is 

supported by these findings indicating that lack of calibration is not a major 

drawback for devices being used to calculate the indices trialled. 

Qualitative assessments of the variance between each device of the same model 

through manual listening and visual inspection of spectrograms revealed that all 

major recording properties (e.g. frequency response, frequency filtering) were 

conserved between individuals from the same class of model (5 or 7) and audio 

type (raw or video) (Supp 2.2). Model and audio type were therefore the key 

drivers behind differences. As differences within groups were negligible, this 

indicates that comparisons of audio recordings within the same group can be 

performed, but not comparisons across different groups. 

For practitioners who may wish to utilise GoPro recordings, this means that some 

eco-acoustic indices calculated from recordings taken by the same model of 

GoPro can be used in comparisons against one another. This could be between 

treatments, timepoints, sites or other such variables. For example, an 

investigation may be looking to determine whether there is a difference in an eco-

acoustic index between two different reef sites. For indices which reported a 

strong correlation, the GoPro and Hydrophone should reveal a comparable 

conclusion between the two sites. This may not be reported with matching index 
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values, but an equivalent level of statistical difference, or lack thereof, will be 

observed between the two sites. 

 

Possible Ecological Applications 

A key question for practitioners interested in using GoPros to collect soundscape 

recordings is what characteristics and attributes can be monitored or investigated 

using GoPro recordings. To address this question, it is important to note there is 

still much to be learnt about using soundscapes to study marine habitats 

(Bohnenstiehl et al., 2018; Haver et al., 2018; Chary et al., 2020). However, initial 

findings and established trends using the eco-acoustic indices trialled in this 

investigation are emerging (Lindseth and Lobel, 2018). Using the knowledge 

currently available on the relationship between these indices and the marine 

environment there are a number of ecological attributes that could potentially be 

explored with GoPros. Indices with at least one instance of a strong correlation 

(rho>0.7) across models and audio types are discussed with this in mind. 

One attribute often considered a direct provider of ecosystem services is the 

abundance and diversity of fish species present in a habitat (Holmlund and 

Hammer, 1999; Hicks et al., 2013). The highest performing measures reported 

here by GoPros have all been found to directly indicate trends in fish diversity 

and/or abundance in the past, these were: ACI (Bertucci et al., 2016; Harris et 

al., 2016), TV (Elise et al., 2019), high band H and AR (Harris et al., 2016). The 

use of ACI and TV has also been shown to correlate with the abundance of fish 

within certain trophic levels (Elise et al., 2019). H can also be used to detect 

harmonic chorusing of certain species (Bohnenstiehl et al., 2018), which in turn 

can be an indicator of higher richness and abundance of other cryptic species 

(Staaterman et al., 2014). 
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Habitat type and quality is also an important consideration for many marine 

ecologists (Magris et al., 2016; Terrado et al., 2016; Chary et al., 2020). Some of 

the indices that have the potential to be reliably determined using GoPro 

recordings such as ACI and TV have been found to change depending on the 

type of habitat present (Ceraulo et al., 2018; Elise et al., 2019). ACI has been 

shown to correlate with ecosystem state (Elise et al., 2019) and both ACI and AR 

have been used previously to differentiate between healthy and degraded 

habitats (Butler et al., 2016; Gordon et al., 2018). Differences in ACI between 

fished and unfished zones has also been shown (Davies et al., 2020). Differences 

in the soundscape between habitats has not been well explored and further study 

may improve insights into this (Parsons et al., 2016).  

Many ecological functions in marine habitats are dictated by temporal trends 

(Radford et al., 2008; Park et al., 2019; Shlesinger and Loya, 2019; Smale et al., 

2019) and investigations have found this is reflected in the soundscape of marine 

habitats. The indices, H and ACI have previously been observed to show diel 

periodicity (Staaterman et al., 2014; Kaplan et al., 2015; Bertucci et al., 2016; 

Rice et al., 2017), as well as lunar and seasonal trends for ACI (Staaterman et 

al., 2014; Pieretti et al., 2017) and all showed strong potential to be calculated 

reliably using GoPros. Trends for other indices over these longer temporal 

periods have not yet been studied, and warrant further investigation.  

 

Indices and ecological uses not yet supported 

The indices that GoPro recordings reliably produce could be used to investigate 

a variety of ecological functions. However, it is important to highlight indices that 

either could not be well interpreted from the results of this study, performed poorly 

or are not yet possible with GoPros. 
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The next consideration after indices with the strongest correlations with the 

hydrophone are those that reported a weak positive relationship (rho = 0.5–0.7). 

The acoustic diversity index (ADI) and acoustic evenness index (AEI) occupy this 

group. Both these indices assess the variation across different frequency bins 

within the spectrogram (Villanueva-Rivera et al., 2011). Studying the spectrogram 

and PSD plots (Figs. 2.3 & 2.4) provides potential explanations as to why these 

indices did not perform so well. Here, the plots revealed inconsistencies in 

intensity recorded across frequency bins of the GoPros. This would affect outputs 

from ADI, and AEI as they are designed to directly measure differences across 

frequency bins. Shortcomings of these indices are further revealed by the 

regression analysis when considering the proportional bias reported by each 

(Table 2.2). Across both models of GoPro, this was typically either close to zero 

or very high. This indicates that values output by either the GoPros or the 

hydrophone were highly variable, whereas the distribution of the results from the 

other were much narrower. For example. The slope for high band ADI across all 

GoPros was high (Table 2.2), indicating that the hydrophone output highly similar 

results across all sites undermining the regression test (Fig. 2.6D). This makes it 

difficult to interpret the correlation with confidence.  

Both AEI and ADI have been applied in the marine environment on a limited 

number of occasions and their utility needs further investigation (McWilliam and 

Hawkins, 2013; Rice et al., 2017; Roca and Van Opzeeland, 2019). However, 

initial findings have found ADI to be a promising measure to detect or quantify 

boat noise and harmonic fish chorusing (Rice et al., 2017; Siddagangaiah et al., 

2019). There is just one instance of the use of AEIs in the marine environment, 

where it was found to correlate with species richness of marine mammals on shelf 

habitats in the Southern Ocean (Roca and Van Opzeeland, 2019).  

Further down the strength of correlations is the bioacoustics index (BI) and snap 

rate. Both performed best in the high band from GoPro 7 raw recordings (rho = 
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0.48, p<0.001; rho =0.49, p<0.001 respectively). However, the low band for each 

exhibited no significant correlation (rho = 0.05, p = 0.72; rho = 0.2, p = 0.14 

respectively). BI has only been used once in the marine environment, but showed 

promise by outperforming other eco-acoustic indices, where it reported strong 

correlations with planktivore biomass and laminar, foliose and helmet-shaped 

coral cover in a tropical reef system (Elise et al., 2019). Snap rate has been 

broadly investigated in the marine environment and likely constitutes a useful 

measure if properly applied. Diel, lunar and seasonal trends have been observed 

for this index (Lillis et al., 2016; Ricci et al., 2016; Lillis and Mooney, 2018; Lyon 

et al., 2019). It has also been implicated with tropical reefs in different states of 

health (Butler et al., 2016; Gordon et al., 2018) and one instance has also found 

snap rate correlates with habitat complexity (Lyon et al., 2019). However, the 

findings from all these studies demonstrated similar results with alternative eco-

acoustic indices which the GoPros reported more reliably. This means GoPros 

do not have to be ruled out from performing these kind of habitat assessments 

as other indices may be suitable alternatives. 

A key limitation of GoPros is their inability to report calibrated reference pressure 

values such as sound pressure level (SPL). Certain frequency bands of SPL have 

been found to correlate with an extensive list of ecosystem functions in marine 

habitats including: habitat complexity, coral cover, fish abundance, fish diversity 

benthic diversity, benthic invertebrate density, predator density, algal density, 

porites cover, coral growth forms, the presence of dead coral, encrusting coral 

cover and other habitat traits (Kennedy et al., 2010; Kaplan et al., 2015; 

Parmentier et al., 2015; Bertucci et al., 2016; Freeman and Freeman, 2016; Elise 

et al., 2019). These are all either through a direct correlation, or through the 

strength of the metrics diel trend. This list is more extensive than the combined 

list of ecosystem functions that the other eco-acoustic indices trialled on GoPro 

recordings in this study have been shown to be indicators of previously. However, 
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SPL is the most widely used acoustic metric in the literature on marine 

soundscapes currently (Lindseth and Lobel, 2018). As such, a reporting bias due 

to the metrics frequent use may be responsible for the more comprehensive list 

of ecosystem functions found to be indicated by SPL. In support of this, one study 

looked for correlations between the acoustic indices SPL, ACI, TV, SE, BI and H 

across five frequency bands and six ecosystem functions (Elise et al., 2019). 

Here, SPL had the strongest correlation with just one out of the six ecosystem 

functions, suggesting that other eco-acoustic indices have perhaps been 

overlooked previously and that uncalibrated devices such as GoPros could 

potentially be used to perform many of these assessments. 

A limitation of GoPros for acoustics monitoring is their greatly reduced battery life 

compared to many commercially available hydrophones. Throughout this study, 

GoPros rarely exceeded two hours of continuous recording before the battery 

died. In comparison, the hydrophone used in this study is capable of continuous 

recording for two weeks and can achieve significantly longer periods with an 

external battery extension or duty cycling. This limits the suitability of GoPros for 

long term passive acoustic monitoring without battery changes. Memory capacity 

is an additional limitation. GoPros accept commercially available SD cards which, 

though costly, are currently available with a capacity up to 1 TB. However, 

GoPros are inherently less efficient with storage as currently they can only be set 

to record audio whilst video is also being recorded. Ten minutes of raw audio 

recorded as a .wav file from the models used in this study typically took up 450–

540 MB, which must be collected alongside the same length of video which was 

3.2–4 GB when set at the lowest quality. The ability to record audio in isolation, 

duty cycle a device and storage of files in a compressed format would reduce the 

storage required for acoustic data collected by these devices and likely improve 

the battery life. 
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Additionally, GoPros only record frequencies up to 22 kHz when the raw setting 

is used and 16 kHz with audio extracted from video. This is likely because the 

upper limit of the human threshold for hearing is around 20 kHz, and in practice 

is usually more like 15 kHz (Ashihara, 2007). Although not considered in detail in 

this investigation, many marine mammal studies rely on detecting frequencies 

above these values (Matthews et al., 1999) which would rule out GoPros. Some 

soundscape investigations sample higher than 20 kHz (Elise et al., 2019), 

although this is not ubiquitous and a strong case of support for sampling above 

this limit has not yet been given (Lindseth and Lobel, 2018).  

 

Benefits of using GoPros for soundscape investigations 

GoPros offer some useful advantages over hydrophones, with the key benefit 

being their reduced cost. The self-contained fully submersible SoundTrap 

STD300 hydrophone used in this study can be purchased from the supplier for 

£2,230. In comparison, for £215 the GoPro HERO 7 Black with a 32 GB SD card 

and battery included, alongside Super Suit housing that enables underwater 

deployment, can be purchased from GoPro directly, with other retailers listing 

these for lower prices elsewhere. This makes the hydrophone over ten times 

more costly than the GoPro, and this is before international shipping and import 

tax for the hydrophone is included, which may be avoidable for GoPros in many 

countries. 

The inexpensive nature of GoPros relative to hydrophones would allow an 

investigation to increase the number of sites from which soundscape recordings 

are taken by an order of magnitude with the same equipment budget. This could 

be used to greatly increase the spatial scale of the sampling effort in a 

soundscape-based investigation. Soundscapes have been found to differ over 

small spatial scales, habitats and depths (Radford et al., 2014; Elise et al., 2019; 

Ceraulo et al., 2020; Davies et al., 2020). This often requires investigators to 
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sacrifice a more comprehensive sampling regime over a broader extent of the 

reef system they are hoping to study due to equipment limitations. Increasing the 

spatial range sampled could improve the confidence in conclusions regarding the 

value of different metrics for characterising a habitat’s soundscape.  

Other aspects worth highlighting are GoPros ability to be fully submersed with no 

components kept above the surface whilst recording; this has only been achieved 

with research hydrophones in the last decade (Sousa-Lima et al., 2013). They 

also possess multifunctionality, being able to record video simultaneously with 

audio. This presents the opportunity to collect complementary visual and acoustic 

data.  Their frequent occurrence in published literature also demonstrates that 

these devices are commonplace amongst research groups studying the marine 

environment. The potential for GoPros to be used for acoustic data collection 

opens the possibility for practitioners already in possession of GoPros to begin 

incorporating acoustic analysis into their work. Other studies have also 

demonstrated the potential of consumer-grade cameras such as GoPros for use 

in citizen science projects (Letessier et al., 2015; Raoult et al., 2016; Florisson et 

al., 2018). In July 2018, GoPro announced that they had sold over 30 million 

GoPro HERO cameras around the world (Hillary K Grigonis, 2018). This opens 

up a significant potential for citizen science to contribute to the study of marine 

soundscapes.  

 

Example Case Study 

A recent marine soundscape study provides a suitable case study in which the 

use of this technology could be utilised (Elise et al., 2019). Here, an investigation 

was performed on a reef system around Europa Island in the South West Indian 

Ocean which studied the relationship between its soundscape and several key 

ecosystem functions. Acoustic recordings were taken with a RESON TC 4014-5 

hydrophone (Teledyne Marine, US) for a period of two hours during daylight at 
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nine different sites. The indices ACI, BI, H, TV and SPL were calculated from 

these recordings across several frequency bins up to 50 kHz. Two GoPro 

cameras were also used to collect a 90 minute video recording in stereo at each 

site to identify fish and estimate abundance and biomass of those observed. 

These recordings were coupled with community assemblage surveys performed 

by divers.  

This paper revealed some potentially exciting findings but was criticised in other 

published work as it only took two hour recording blocks from each site (Mooney 

et al., 2020). The results presented in this chapter show that ACI, H and TV can 

all be reliably taken from GoPro recordings. Therefore, an alternative approach 

could have used consumer-grade recorders (e.g., the GoPros they were already 

using), and expanded the sampling effort at these sites. Acoustic data taken 

exclusively from GoPro recordings alone would limit some elements of the study. 

However, if taken in addition to hydrophone recordings these could have 

multiplied the replication of some measures.  Additionally, this could instead be 

performed alongside the hydrophone with no need for access to any extra 

equipment beyond batteries and data storage.  

Using GoPro 7’s set to record raw audio as an example, the following costs and 

benefits would be provided: 

Disadvantages 

 GoPros do not record beyond 22 kHz (Fig. 6 & 7), this study recorded up 

to 50kHz. 

 SPL could not be calculated. 

 Results from the present study indicate BI may not be as reliable using a 

GoPro compared to a hydrophone (rho = 0.48). 
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Advantages 

 Acoustic sampling effort could be increased. Recordings could be taken at 

each site every day, as opposed to just once, replicates at each site could 

be taken simultaneously, or, additional sites could be sampled. 

 Video sampling effort could be increased. Additional video footage would 

be collected by each device, increasing the sampling depth of the fish 

assessments. 

 Temporal trends could be considered due to the increased sampling 

capability. Changes over the lunar cycle could be studied if recordings 

were taken over multiple days. Alternatively, diel trends could be 

investigated if recordings were taken at different times of day at each site. 

 Use of GoPros would remove the need for boat attendance or floatation of 

dry components during recording. 

There are clearly costs and benefits of using both approaches and the use of 

consumer-grade recorders may not be appropriate to all the goals set in the 

investigation used as an example. However, this demonstrates that consumer 

grade recorders present researchers with additional options when designing their 

investigations that may provide important benefits. 

 

Recommendations for use 

A walkthrough on how to set up, deploy and retrieve data is detailed in the 

supplementary material (Supp. 2.3). For prospective users, this study reveals 

some important considerations for use. Firstly, raw audio recordings available 

with the GoPros appear to provide the most reliable file format to work with. An 
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added benefit of this is the reduced file size of raw audio files which therefore 

download significantly faster and require less data storage. 

Additionally, several models of GoPro are available alongside many other 

consumer grade recorders that may be useful. This study only focused on two 

models, the GoPro HERO5 Black and GoPro HERO7 Black deployed inside 

Super Suit underwater housing. Notable differences between the reliability of 

eco-acoustic indices between the two models was observed, with the GoPro 7 

demonstrating the greater reliability for most indices. The difference between 

these two models highlights that other models cannot be assumed to provide a 

level of reliability similar to those presented here. Validation of the reliability of an 

index on alternative devices in a similar approach to this study would be required 

for each index before it is used in an ecoacoustics study.   

Some considerations should be made by prospective users when selecting 

reliable eco-acoustic indices to calculate from GoPro recordings. Some 

correlations reported here are very strong, however, no finite limit of suitability is 

attainable. It is instead up to prospective users to apply their own discretion when 

selecting these. If using results from this investigation as a starting point when 

selecting an index or suite of indices, users should first check the strength of 

correlation, used to indicate reliability, for the index in question (Fig. 2.5). If this 

is satisfactory, results from the regression analysis (Table 2.2) should also be 

consulted to determine whether the proportional bias is reasonable and does not 

indicate that the GoPro or hydrophone failed to collect adequate results (e.g., Fig. 

2.6D). For less reliable measures, a hydrophone could still be used to 

complement the GoPros if available and could even be used to reveal more about 

the reliability of these indices in different settings. 
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Limitations of this study 

Some important limitations of the approach used in this study should be 

acknowledged. Firstly, only three GoPro 5s and two GoPro 7s were used and all 

GoPros from each model were treated as one unit. Due to logistical limitations 

these recorders could not all be deployed simultaneously every recording day. 

Although auditory and visual inspections of spectrograms from each recorder 

model and audio type (Supp 2.2) revealed minimal differences within these, some 

small variance may still be present. This may therefore have reduced correlation 

values for certain indices due to the introduction of an additional variable, which 

could have led to some indices being dismissed as they were tested across 

multiple devices whereas each individual device may have had a consistent 

relationship with the hydrophone. Due to equipment failure, different sample sizes 

were collected for the GoPro 7s (n = 55) and GoPro 5s (n = 40), this may have 

affected results from the statistical analysis. 

Another limitation is the trialling of this in just one habitat, a coral reef ecosystem. 

The same reliability using GoPro recordings cannot be guaranteed for markedly 

different soundscapes present on alternative habitats, such as those dominated 

by anthropogenic (e.g., boat traffic) or geophonic (e.g., strong tidal flow) noise. 

Additionally, only one (recently calibrated) hydrophone was used for 

comparisons. Use of a single hydrophone is commonplace in most soundscape 

investigations (Nedelec et al., 2015; Gordon et al., 2018; Elise et al., 2019). 

However, when validating a new approach, method comparison approaches 

often test with multiple devices to account for error in these (Carstensen, 2011; 

Taffé, 2018). To the authors knowledge there has been no comparison in the 

variance between indices taken from different hydrophone models and this could 

be an important consideration in itself. 
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Future study 

As the first study to consider the use of a consumer-grade recorders for marine 

soundscape investigations, not every potential aspect has been explored. There 

is therefore room for further investigations that may help better elucidate the full 

extent of their potential in this field. 

The next to step to determine the utility of consumer-grade recorders for 

soundscape investigations goes beyond the proof of concept presented here. 

This study took recordings at haphazardly selected locations and no habitat 

assessment was performed. Instead, this could be validated in a real-world 

experimental setting that shows whether indices calculated from GoPro 

recordings come to the same ecological conclusion as those from a hydrophone 

recording. This could be an assessment of the relationship between an index and 

an ecological parameter such as species richness, habitat types or ecosystem 

health. 

To the authors knowledge, no coral reef soundscape investigation has 

considered as many eco-acoustic indices as trialled here in a single study to date. 

However, there are still many indices that were not explored, opening up other 

avenues of future study. Only alpha indices that output a single value 

independent of other recordings were considered as they could be more rapidly 

compared using a consistent methodology. However, beta indices were not 

tested in this study. These indices perform between group comparisons to assess 

how acoustically similar or dissimilar two or more groups are relative to one 

another (Sueur et al., 2014). Beta indices applied to the marine field in the past 

include spectral dissimilarity (Lillis et al., 2014; Lindseth and Lobel, 2018) and 

acoustic dissimilarity (Bertucci et al., 2016; Lindseth and Lobel, 2018). 

Additionally, only two frequency bands were trialled for each index in this 

investigation. Whilst an attempt was made to select the most suitable frequency 

bands, there is still little consensus over the most appropriate bands for each 
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index (Nedelec et al., 2015; Elise et al., 2019). Further investigations may find 

alternative frequency bands offer improved or decreased reliability for eco-

acoustic indices calculated from GoPro recordings. Likewise, only one 

combination of window size, envelopes, thresholds and other settings were 

trialled for each index when many are available and worth considering (Sueur, 

2018a). The reliability of indices may improve or decline if alternative settings 

were to be trialled. Appropriate frequency bands and index settings may well 

change on a case by case basis depending on the habitat, time of day, community 

composition and other variables. This could limit the use of an index if an 

inappropriate band or setting is the only reliable choice, or, alternatively changes 

could improve the performance of indices, including those reported as less 

reliable in this investigation. 

The combination of acoustic indices with the video capability of GoPros is another 

obvious route for further investigation (Reeves-Ozanich et al., 2019). A 

multimedia approach applied to marine investigations utilising these methods 

could lead to the development of audio-visual indices not yet considered. For 

example, variables such as species richness and abundance, or visual attributes 

such as turbidity or lighting taken from video footage could be coupled with 

acoustic indices from the audio. Used together, these may provide indications of 

variables such as community resilience or presence of cryptic species.  

Other consumer-grade recorders that overcome cost and availability barriers 

otherwise in place are also worth considering. Lower cost uncalibrated 

hydrophones are becoming available, such as the LSTN2 (£210) (Seiche, 

Holsworthy, UK) capable of on-the-go recording by connecting with smartphones. 

Cheap, autonomous, self-contained devices that can be left on unattended 

deployments for longer periods than GoPros are also likely to be available in the 

near future. The AudioMoth recorder (£47) (Open Acoustics, UK) has recently 
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filled this niche in terrestrial PAM and adaptations for the marine environment 

using waterproof casing could meet this demand in the marine context.  

Finally, passive acoustic monitoring of marine habitats is still an emerging field 

(Parsons et al., 2016; Buxton et al., 2018; Lindseth and Lobel, 2018). The need 

for a more complete understanding of the relationship between marine habitats, 

their soundscapes and the methods that can be used to study these has been 

recognised (Pieretti et al., 2017; Buxton et al., 2018; Obura et al., 2019). During 

the early stages of developing marine soundscape ecology as a field it is 

understandably important that only equipment of a high specification is 

appropriate to fully explore and understand the acoustic domain. However, as 

key properties of soundscapes become recognised, expansion to a wider 

community of practitioners is necessary for the field to fulfil its potential. If these 

key components can be adequately assessed by lower specification consumer-

grade recorders then these devices may be able to meet this demand. In turn, 

this expansion may contribute advances to the field of marine soundscape 

ecology in a mutually beneficial relationship.
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2.5 Supplementary 

 

Supplementary 2.2. Spectrogram of a pure tone and sine sweep recorded by each GoPro used in this study. A Hamming window was used with 75% overlap, 

pure tone window length = 128, sine sweep window length = 256. 
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Supplementary 2.3. A Guide to collecting soundscape recordings with GoPro cameras  

Set up: 
1. Switch the GoPro on and navigate to the ‘Protunes’ setting and turn this on. 
2. In ‘Protunes’, select ‘RAW audio’ and turn this on and select, ‘low’. This will set the GoPro to 

output an additional .wav file with no compression, gain or other adjustments to the audio. 
3. Whilst still in ‘Protunes’, select ‘Mics’ and change this to ‘Stereo’. This will prevent the wind 

reduction mechanism from switching any mics off whilst recording. 
4. Return to the home screen and set video quality and FPS to the lowest available setting to 

save battery and memory if desirable. 

 
The GoPro can be suspended in the same manor used for hydrophones. A simple approach 
can be used: 

1. Place the GoPro in ‘Super Suit’ or other appropriate underwater housing. 
2. Secure the device with two rotations of rope and cable ties. 
3. Tie the rope off to a dive weight or other holdfast at the bottom and a small buoy for 

floatation at the top. 
4. Ensure no moving parts are likely to produce rubbing or knocking noises that may disturb 

recordings. 

Deployment: 
1. Place on the desired location.  
2. Press the record button once placed if aiming to conserve battery or storage. 
3. GoPros will typically run for two hours on these settings if the battery being used hasn’t 

aged. Approximately 3–4.5 GB of data storage will be required for every ten minutes of 
recording. 

Retrieving data: 
1. Once retrieved, the GoPro can be connected to a personal computer to download the 

recordings via any file manager. 
2. Unless video is required, it will be quicker and require considerably less storage to copy over 

the raw .wav files and delete the MP4 video and other files. Do not use the GoPro App, this 
will delete the raw .wav files. 

3. The GoPro will have split longer recordings into multiple segments. These can be combined 
using Audacity or another appropriate software. 

4. Alternatively, SD cards can be stored for this to be completed at a later date. 
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Abstract 

Widespread degradation of tropical coral reefs around the world has resulted in 

them becoming amongst the most threatened habitats globally. This has led to 

an increased demand for conservation and restoration of these habitats. 

Adequate monitoring of restored sites is essential to assess their success and 

identify further areas in need of attention. This investigation builds on previous 

research that used labour intensive manual listening to explore how PAM can be 

used to assess the progress of actively restored sites at one of the world’s largest 

tropical reef restoration projects, in South Sulawesi, Indonesia. The new work 

presented here applies modern computational approaches to recordings from the 

same sites to determine whether these could be used to more rapidly assess 

restoration using PAM data. A set of 12 eco-acoustic indices were calculated for 
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up to three frequency bands; a low (50–800 Hz), medium (2–7 kHz) and full band 

(0.05–20 kHz), for a total of 33 index-frequency band combindations. Fifteen of 

these 33 combinations reported a significant difference between healthy and 

degraded habitats. However, high variability in the distribution of results was 

observed, offering a limited ability for any one index to discriminate between 

these two habitats without extensive sampling. This investigation therefore 

attempted to construct a machine learning model which could better discriminate 

between these two habitat classes using an optimised set of combined eco-

acoustic indices. This used a supervised approach (regularised discriminant 

analysis) that was trained on labelled one minute recordings from both habitats 

and then tested blind. The pooled misclassification rate of 1000 cross-validated 

iterations of the model was 8.27% (± 0.84), demonstrating the first ever 

successful implementation of PAM and machine learning to determine tropical 

reef health from acoustic recordings. 1000 repeats of the model were then 

executed on a set of artificially restored reef recordings from three sites. This 

reported that a recently restored site (<12 months) that still exhibited a reduced 

coral cover (25.6% ± 2.6) received a majority classification of its recordings as 

degraded (27/33), whereas two sites restored >24 months previously that now 

exhibit an increased coral cover (A: 79.1% ± 3.9; B: 66.5% ± 3.8) received a 

majority classification of their recordings as healthy (A: 33/39; B: 37/38). Future 

work should validate this method by investigating trends observed when this tool 

is applied to additional restored sites. If this method continues to report promising 

results, this approach could offer a valuable tool that allows marine practitioners 

to assess habitats rapidly using short snapshot recordings, or effectively monitor 

habitat recovery over time, with a reduced reliance on frequent labour intensive 

in-water surveys. 
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3.1 Introduction 

The end goal of advancing marine ecosystem monitoring using soundscape 

ecology is to develop methods that provide useful real world applications. This 

includes efforts in conservation and restoration where novel methods of 

monitoring can be used to assess the effectiveness of these projects or to 

evaluate further sites that may be in need of attention. Improvements to 

monitoring can help conservation and restoration keep up with the growing 

demand for their implementation. This chapter will focus on the use of 

soundscape ecology to monitor the effectiveness of an active restoration 

approach used on tropical reef habitats.  

 

Demand for restoration on tropical reefs 

Tropical reefs cover less than 0.1% of the ocean surface, yet provide habitat for 

over 25% of described marine species (Plaisance et al., 2011). However, tropical 

reefs are also among the most threatened ecosystems globally (Pratchett et al., 

2014). Pressures such as overfishing, coastal development, resource extraction 

and climate change are some of the primary causes of this loss (Bridge et al., 

2013; Hughes et al., 2017). These pressures have left the remaining tropical reefs 

in a vulnerable state (Hughes et al., 2017). On many reef habitats, local stressors 

continue to rise, alongside the threat of climate change across reefs globally 

(Hoegh-Guldberg et al., 2017; Hughes et al., 2017). The number of communities 

reliant upon tropical reefs is also overrepresented, with over 275 million people 

dependent on the ecosystem services these habitats provide (Gattuso et al., 

2014). Additionally, these communities are mostly in regions set to see population 

booms in the coming decades (Sale et al., 2014). Tropical reefs are therefore 

high priority habitats requiring attention to protect the biodiversity present in these 
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ecosystems and the hundreds of millions of people reliant upon the services they 

provide.  

Restoration is one approach that can help support tropical reefs into the future. 

Restoration can be defined as the “process of assisting the recovery of an 

ecosystem that has been degraded, damaged, or destroyed” (Society for 

Ecological Restoration International, 2004). The use of restoration approaches 

on tropical reefs is on the increase: a 2020 study identified 1,600 reported 

restoration projects, up from <400 prior to the year 2000 (Duarte et al., 2020). 

Restoration approaches can be passive, such as the implementation of marine 

protected areas and reduced exploitation quotas, or they can be active, involving 

direct human interventions and management such as the cultivation of keystone 

organisms or the introduction of physical substrates (Becker et al., 2018).  

Monitoring restoration projects is important to assess the successes or 

shortcomings of these at achieving habitat and conservation goals. A recent 

report on the state of tropical reef restoration projects outlined a lack of clear 

objectives and sufficient monitoring as key issues inhibiting the success of these 

projects  (Boström-Einarsson et al., 2020). The report cautions that these issues 

can result in poorly implemented projects as the knowledge gained from previous 

endeavours is not built upon. On the other hand, improved monitoring and 

assessment of restoration projects can help quantify their effectiveness and 

inform decision makers and stakeholders on which approach is most appropriate 

for the habitats they are trying to restore and the communities that depend on 

them (Seaman, 2007; Baldera et al., 2018).  

 

The potential of passive acoustic monitoring to assess reef restoration 

This investigation was performed using existing soundscape recordings and coral 

cover survey data from one of the world’s largest coral reef restoration projects, 
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based in South Sulawasi, Indonesia (Williams et al., 2019). Here, practitioners 

have used a novel restoration approach centred on the use of ‘Reef Stars’. These 

structures use steel frames 54 cm in diameter which are coated in course beach 

sand. Multiple live coral fragments from the surrounding environment are 

attached using cable ties and adjacent stars are bound together. This provides a 

stable substrate and improved flow of nutrients over the surface of coral 

fragments due to the 28 cm elevation given by the structure. Two years after 

deployment, coral cover on restored sites increased from less than 10% to over 

60%, and supported a diverse community of 42 different coral species. As of 

2015, 11,000 of these had been placed to produce an area of artificially restored 

reef over 7,000 m2, with this number having continued to increase. The presence 

of further degraded habitats and naturally healthy habitats in the local area 

offered useful reference sites against which to compare ecological data from the 

restored sites.  

Previous work used the recording and survey data to successfully demonstrate 

the application of PAM as a tool with which to measure the progress of restored 

sites (Gordon et al., in review (Supp. 3.2)). The authors used phonic richness—

a novel manual listening approach developed for the purposes of their 

investigation—to assess fish-produced sounds; an important contributor to 

tropical reef soundscapes (McWilliam et al., 2018; Carriço et al., 2020). This new 

measure scored the diversity of fish sounds within a recording in the lower 

frequency range (<800 Hz) and was performed on multiple one minute recording 

samples from each site. Results from this analysis revealed that restored sites 

exhibit an enhanced diversity of fish sounds compared to degraded sites, 

converging with those observed on naturally healthy sites. These results 

supported the hypothesis that PAM can be used to differentiate healthy and 

degraded habitats at this location and that the progress of restored sites can 
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therefore be assessed using phonic richness of fish-produced sounds as a 

reference. 

 

Limitations of passive acoustic monitoring to assess reef restoration 

While previous investigation has shown that PAM has the potential to be a useful 

tool to monitor tropical reef restoration, the method developed in Gordon et al. (in 

review) relies on manual listening which is a slow and labour intensive process. 

The ideal PAM tool should also provide a means to rapidly collect and analyse 

soundscape data. The researchers in this instance therefore also trialled the use 

of two acoustic indices which were calculated from the recordings used for phonic 

richness assessments. These were sound pressure level (SPL) and the acoustic 

complexity index (ACI), in a low (50–800 Hz) and high (2–7 kHz) frequency band 

for each. Tests using these indices found no meaningful correlation with the novel 

phonic richness measure, indicating that SPL and ACI do not appear to be 

dictated by the diversity of fish calls.  

Comparisons between these indices and habitat type showed more promise, with 

significant differences between healthy and degraded habitats reported for ACI 

during daylight hours. However, the strength of this difference was still low and 

the distribution of index values included a significant overlap between values from 

either habitat type. This means the value of a random selected sample still has a 

high likelihood of originating from either habitat type. Extensive sampling is 

therefore required to build a robust dataset from each habitat which can be tested 

against one another. This undermines the goal of PAM which is to provide rapid 

assessments that can be performed with snapshot recordings. An ability to 

assess many more sites in this rapid fashion would facilitate a much broader 

spatial scale of assessment. This would help reduce the time needed to survey 

sites of interest and overcome equipment access limitations which can limit 
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available hydrophones to a small number of sites when deployed to record for 

extended periods.  

 

Aims of this investigation 

The previous investigation provided a proof of concept that PAM can be used to 

discriminate between healthy and degraded habitats with a high degree of 

accuracy using manual inspection (Gordon et al., in review ). The new hypothesis 

that, if manual analysis can be used to discriminate between these, then 

computational analyses may also be able to perform this task to a similar or 

improved degree of accuracy, was therefore created. This investigation set out to 

test this hypothesis and determine whether it may be possible to develop a 

computationally driven tool which can perform rapid assessments of habitat class 

in the context of the restoration project presented. Such a tool would need to be 

able to classify sites into the two classes of surveyed habitat, healthy or 

degraded, using short snapshot recordings from these sites. This would allow 

restored sites to also be compared to these reference habitats, enabling the 

success of restored sites to be assessed. 

 

Exploring the use of individual eco-acoustic indices 

This investigation first set out to explore further whether any index not already 

tested may exhibit a strong relationship with phonic richness using a greater suite 

of indices than those presented in Gordon et al. (in review). A strong correlation 

between any of these and phonic richness could offer a useful replacement for 

the more time intensive phonic richness approach. These same indices were also 

compared between habitat types to determine whether any could be used to 

accurately assign sites into degraded or healthy classes.  



75 
 

Numerous published studies performed on reef habitats have employed the use 

eco-acoustic indices in their investigation (Pieretti and Danovaro, 2020). 

However, thus far the highest number of these utilised in any such investigation 

on tropical reefs has been six (Elise et al., 2019), with the majority of studies using 

three or less indices (Kaplan et al., 2015; Nedelec et al., 2015; Freeman and 

Freeman, 2016; Elise et al., 2019; Bertucci et al., 2020; Carriço et al., 2020). This 

investigation therefore explored their use in further depth, utilising 12 of the most 

practical indices to perform a comprehensive assessment of the utility of each of 

these in the context presented. This includes the first reported use on reef 

habitats of three indices, the normalised-differences soundscape index (NDSI), 

number of peaks (NP) and the amplitude index (M). 

 

Exploring the use of compound eco-acoustic indices 

Recent advances in terrestrial soundscape ecology have seen soundscape 

ecologists advocate for the use of multiple indices in unison to generate 

multivariate compound indices (Eldridge et al., 2018; Bradfer-Lawrence et al., 

2019). These compound indices more comprehensively capture the ecosystem 

functioning of a habitat than any one individual index can. The most advanced 

assessments of these use the modern analytical approach of machine learning. 

This can deliver an increased resolution of insight into these large multivariate 

datasets through identifying hidden patterns that traditional statistics are unable 

to reveal (Kendrick et al., 2016; Eldridge et al., 2018; Sethi et al., 2020). A 

common technique is the use of supervised machine learning which requires the 

input of training data in the form multiple indices. An algorithm is then employed 

which attempts to build a model that can perform the regression or classification 

problem at hand. A supervised machine learning model was therefore 

constructed to determine whether this can deliver an improved ability to classify 

short recordings compared to individual indices used on their own.  
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Machine learning on acoustic recordings has seen some use in the marine 

environment, primarily for investigations using call identification to monitor marine 

mammal populations, due to their distinctive vocalisations (Bittle and Duncan, 

2013; Roca and van Opzeeland, 2019). A similar machine learning approach was 

also trialled to compare diversity, richness and total number of manually identified 

sounds between different marine sites in the Everglades national park (Buxton et 

al., 2018). However, this revealed no strong relationship between the models 

findings and these variables (R2≥0.40, MSE≥195).  

This investigation presents the first use of machine learning as a PAM tool to 

monitor coral reef habitat and to test its utility to monitor marine restoration. The 

advantages of this approach compared to manual inspection and single index 

methods are discussed, and the future implications of such methods highlighted.  

 

3.2 Methods 

Data collection 

Recordings and percentage coral cover values were obtained from previous work 

conducted by Gordon et al. (in review) (Supp. 3.2).  Here, we collected data from 

seven sites around the islands Badi (Fig. 3.1B) and Bontosua (Fig. 3.1C) in the 

Spermonde Archipelago (South Sulawesi, Central Indonesia; 4°56.9′S, 

119°18.1′E; Fig. 3.1A). These sites were representative of four distinct habitat 

types present within the system, these sites were: Healthy A & B, Degraded A & 

B, Mature Restored A & B, and Newly Restored (one site only), for a total of seven 

sites. The two healthy sites exhibited naturally high coral cover (A: 91.2% ± 2.0; 

B: 93.1% ± 2.6; mean ± SE) whereas the degraded sites exhibited low coral cover 

(A: 2.1% ± 0.9; B: 17.6% ± 4.6) as a result of coral mining and persistent 

destructive dynamite fishing at these sites (Williams et al., 2019). The remaining 

three sites were comprised of previously degraded sites which have been 
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restored using the novel restoration methodology developed in the region 

(Williams et al., 2019). The two mature restored sites were established >24  

Figure 3.1. Location and habitat class of the seven reef sites, present within the broader 

Spermonde Archipelago (3.1A), from which soundscape recordings were collected. 

Fringing reefs from two nearby islands: Badi (3.1B) and Bontosua (3.1C) were used. This 

figure is adapted from Gordon et al., (in review).  

 

months previously to the collection of data for this study and exhibited an 

increased coral cover (A: 79.1% ± 3.9; B: 66.5% ± 3.8) over the newly restored 

site (25.6% ± 2.6) established <12 months previously. Further details are in 

Gordon et al. (in review). 

Two-hundred and sixty-two one-minute soundscape recordings were produced 

across the seven sites using SoundTrap hydrophones (SoundTrap 300 STD, 

Ocean Instruments, Auckland, NZ) by Gordon et al. (in review). These 

hydrophones were suspended 0.5 m above the seabed and set to record at a 
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sampling rate of 48 kHz. The recordings were collected using a regime which 

sampled sites three days across the 2018 new moon (September 10th) and five 

days across the following full moon (August 26th) during daylight (09:00–15:00) 

 

Figure 3.2. Representative habitat and coral cover images from the four habitat classes 

at which soundscape recordings were taken. (A) Degraded, (B) healthy, (C) newly 

restored and (D) mature restored. This figure originates from Gordon et al. (in review). 

and night time periods (half an hour either side of: sunrise, sunset and midnight). 

The 262 samples were produced by sub-sampling five non-overlapping one-

minute segments from each of these hour long periods at random. Only samples 

which were recorded under calm conditions (wind speed <20 km h-1) and which 

were clear of motorboat noise were included in the sample set. As a limited 

number of hydrophones were available these were rotated between sites, for 

which an approximately even spread between each period was attempted, further 

details should be obtained from Gordon et al. (in review). 

 

Processing recordings 

Each one-minute recording from the 262 strong sample set was band-pass 

filtered using a short-term Fourier transform filter into three frequency bands: a 

low band (5–800 Hz), a medium band (2–7 kHz) and a full band (0.05–20 kHz). 
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The first two bands were selected in accordance with Gordon et al. (in review) 

which utilised a low band to encompass the known fish vocalisations present 

within the recording and a high band dominated by invertebrate sound. The 

additional full band produced for this investigation was selected to encompass 

the full spectrum of potentially relevant frequencies and is typically used in coral 

reef soundscape investigations (Kaplan et al., 2015; Lyon, 2018). Frequencies 

<0.05 kHz were excluded from low and full band recordings to reduce the impact 

of low frequency shipping noise and geophonic noise from waves (Curtis et al., 

1999). A new audio file for every recording in each frequency band was written 

to produce tracks filtered using a uniform method for subsequent analysis. All 

processing was performed in R (v3.4.2. R Development Core Team, 2020), audio 

files were read and written using the tuneR (v.1.3.3) package and the filter was 

implemented using Seewave (v2.1.6).  

 

Calculating eco-acoustic indices  

Twelve eco-acoustic indices were obtained (Table 3.1.). Every index was 

calculated for all three frequency bands with two exceptions. The first was snap 

rate which was only calculated for the middle and full bands as this index is 

designed to detect the sound of snapping shrimp cavitation bubbles which do not 

preside at lower frequencies (Bohnenstiehl et al., 2016). The second was the 

normalised difference soundscape index (NDSI). In the terrestrial context this 

index is typically used to quantify discrepancies in amplitude between an 

anthropogenic noise band up to 1 kHz and a biophonic noise band at selected 

higher frequencies (Kasten et al., 2012). For the first time, this index was 

implemented in the marine environment to instead quantify differences in the 1 

kHz band where fish noise dominates, and the 2–5 kHz band where snapping 

shrimp sound is reportedly at its highest intensity (Au and Banks, 1998). This was  
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Index Mechanism Software Settings Citation

Acoustic 

Complexity 

Index (ACI)

Measures varibility in intensity 

of frequencies across time.
Seewave  in R 

Window size = 512; type = Hamming; 

overlap = 0.
(Pieretti 2011)

Acoustic 

Entropy (H)

Measures randomness across 

temporal and spectral domains.
Seewave  in R 

Window size = 512; 

envelope = Hilbert.
(Sueur 2008)

Acoustic 

Eveness 

Index (AEI)

Measures diversity across 

frequency bands.

Soundecology 

in R

Max freq = audio tracks maximum; 

freq step = max freq/10; 

threshold = -50 dB.

(Villanueva-Rivera 

2011)

Amplitude 

Index (M)

Measures median of amplitude 

envelope.
Seewave  in R Envelope = Hilbert. (Sueur 2008)

Acoustic 

Richness 

(AR)

Ranks recordings based on 

amplitude multiplied by 

randomness across the 

temporal domain.

Seewave  in R Envelope = Hilbert. (Depraetere 2012)

Bioacoustic 

Index 

(BI)

Measures cumalitive intensity 

across frequency bands.

Soundecology 

in R

Min and max freq matched to track 

as approproate; window size = 512.
(Boelman 2007)

Normalised 

mean difference

index (NDSI)

Measures ampltitude difference 

between two selected 

frequency bands.

Seewave  in R
Min and max freq matched to track 

as approproate; window size = 512.
(Kasten 2012)

Number of 

peaks

Number of major frequency 

peaks on obtained from a mean 

spectrum

Seewave  in R
Window size = 512; type = Hanning; 

overlap = 0.
(Sueur 2008)

Spectral entropy 

(sh)

Measures randomness across 

the frequency domain.
Seewave  in R No settings required. (Sueur 2008)

Temporal 

Entropy 

(th)

Measures randomness across 

the temporal domain.
Seewave  in R No settings required. (Sueur 2008)

Snap Rate
Measures rate of snapping 

shrimp snaps.
MATLAB Custom script. (Gordon 2018)

Sound Pressure 

Level (SPL)

Calibrated measure of root 

mean squared sound pressure 

level

paPAM in 

MATLAB

Window length = 1024; type = 

Hamming; Overlap = 50%
(Nedelec 2016)

Table 3.1. The 12 eco-acoustic indices calculated from recordings. A summary description of the 

mechanistic principle, the software used and the respective settings employed is detailed for each. 

 



81 
 

 

therefore implemented on the full band recordings alone, to capture both the fish 

and shrimp bands. Therefore, for each of the original 262 samples, a feature set 

of 33 index values were created across the three frequency bands. All indices 

were calculated using the R package Seewave where possible and 

Soundecology (v.1.3.3) for remaining indices. 

 

Comparison of indices to phonic richness and habitat class 

Phonic richness scores were obtained from Gordon et al. (in review) for each 

recording. This novel metric quantified the diversity of fish sounds present within 

recordings and demonstrated an ability to discriminate between healthy and 

degraded habitat types using the same recordings from which indices were 

calculated for this study. A relationship between the full set of index results from 

all 262 recordings and phonic richness was tested for one by one for each of the 

33 indices. This was performed using a Pearson’s correlation test between each 

respective index and phonic richness. Note that Gordon et al. (in review) only 

used phonic richness scores from 100 recordings in their investigation to maintain 

a balanced design, however, phonic richness assessments had been completed 

for 262 recordings.  

The results for each index were also plotted against each other to compare the 

degree of overlap between the distribution of results from healthy and degraded 

habitats. If little to no overlap was observed between the two classes for any 

index, then the respective index would provide a very promising measure with 

which to differentiate between healthy and degraded habitats. Additionally, the 

difference between the results of each of the 33 indices calculated from healthy 

habitats (n = 81) and those calculated from degraded habitats (n = 71) was also 

tested for using a Mann-Whitney U test.  
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Applying machine learning to soundscape data 

The novel approach applied here attempted to develop a supervised machine 

learning model which could be used to accurately assign recordings to either 

healthy or degraded habitat classes. This was performed using a selection of 

indices in combination, referred to as a ‘compound index’ (Eldridge et al., 2018). 

Three key steps to develop the models were undertaken: (i) a suitable machine 

learning algorithm for the task was selected, (ii) feature selection was performed 

to select the optimum combination of indices with which to construct the 

compound index, (iii) the algorithm was trained and tested using the compound 

index results from sub-samples of the full dataset. The finalised model was 

implemented on the full dataset of healthy and degraded recordings to assess 

the models ‘skill’; its ability to correctly classify new data when presented with it. 

It was also implemented on recordings from the three restored sites to provide a 

prospective assessment of the progress that restored sites had made towards 

converging with the soundscape of the healthy sites. 

 

Selecting a machine learning approach 

The first step involved selecting an algorithm able to deliver a predictive 

classification of samples into one of two habitat states using the continuous 

features available. This could be conducted using supervised learning, as the 

correct classification of each sample was known prior to its input and could 

therefore be used by the model to self-train on the data. Predictive discriminant 

analysis fulfils these requirements, of which there are three commonly 

implemented options: linear (LDA), quadratic (QDA) and regularised (RDA). An 

important assumption of the first two options is the absence of collinearity 

between features meaning there should be little to no correlation between each 

of the eco-acoustic indices input. A Pearson’s correlation test was therefore 
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performed between each index, as in Gordon et al. (in review). The results (Supp. 

3.3) indicated many of the features selected exhibit a high level of collinearity 

between one another. RDA was therefore selected as this test is robust to 

collinearity in features (Friedman, 1989). 

RDA makes less assumptions than LDA and QDA. RDA’s three assumptions are: 

(i) an approximately equal distribution of samples across the classes specified by 

the user; (ii) the minimum number of samples within a class is greater than the 

number of features; (iii) features are continuous and normally distributed within 

each separate class. For healthy and degraded sites 81 and 71 samples were 

available which was deemed satisfactory to pass the first assumption, and 

surpassed the maximum number of features available (n = 33), satisfying the 

second assumption. A Shapiro-Wilks test was implemented on all features from 

the datasets of both habitat classes to determine whether normal distributions 

were present. Only eight features from degraded habitats and nine from healthy 

habitats satisfied this assumption (p>0.05). However, histogram analysis 

revealed the remaining features exhibited sub-Gaussian distributions, with long 

tails on one or both sides that did not deviate considerably from a normal 

distribution. Discriminant analysis has been shown to be robust to violations of 

these four assumptions, including the normality of feature sets, allowing 

predictive models to be assembled without significantly detrimental effects to their 

accuracy (Lachenbruch and Goldstein, 1979). Deviations from these 

assumptions over and above what can be tolerated will result in a model with a 

high misclassification rate. If present, this will be revealed when the performance 

of the model is tested. 

 

Feature selection 

The next step was the selection of appropriate features from the 33 available to 

be used as a compound index with which to construct the most accurate model. 
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It is desirable to select an optimised combination of features to prevent 

overtraining, where the model becomes over fitted to the training data and no 

longer responds accurately to new data, as well as reducing computation time 

(Kuhn and Johnson, 2013). Two tests were performed to gather suggested 

feature combinations. The first was recursive feature elimination (RFE). This 

operates by selecting subsets of features and adding or removing a small number 

of other features progressively over multiple iterations until an optimised 

combination is found (Kuhn and Johnson, 2019). The second approach used was 

a multivariate adaptive regression spline (MAR) which constructs models using 

the specified algorithm (RDA in this instance) with different combinations of 

features. It then progressively adds the remaining features and scores the 

associated increase or decrease in parameters, such as the predictive error in 

the model, to determine the importance of a feature (Kuhn and Johnson, 2019).  

One-hundred iterations of each approach were performed. The list of suggested 

features from the RFE included eight index/frequency band combinations; these 

were: ACI full, H middle, NDSI full, BI middle, th full, H full, ACI middle and th 

middle (details in Table 3.1). This was highly congruent with rankings obtained 

from the relative importance scores using the MAR (Fig. 3.3). From here, further 

trial and error was used by executing the full model (outlined below) to select a 

final feature set with the lowest misclassification rate. This was performed by 

sequential removal and addition of highly correlated features and features with a 

middle of the range relative importance score and above, using re-iterations of 

the model to test each new combination. This led to the discarding of th in both 

the full and middle bands and introduction of low band ACI and middle band AR 

into the final set (ACI low, ACI mid, AR middle, BI middle, ACI full, H full, NDSI 

full). Feature selection was performed using the R packages mlbench (v2.1.1) 

and Caret (v.6.0-86). 
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Figure 3.3. Relative importance rankings of indices obtained from the MAR analysis. 

The eight recommendations obtained from the RFE analysis are indicated by the black 

line. The top eight indices of the MAR analysis were congruent with the RFE’s eight 

recommendations, though the order was not conserved. Black dots to the right of bars 

indicate features which were selected for the final model after further trial and error. 
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Constructing the final model 

Using the healthy and degraded datasets, an RDA could then be executed.  The 

model’s prediction for each sample was reported enabling a classification error 

to be produced. This error is the proportion of samples that were assigned to the 

incorrect class; habitat type in this case, and is an indicator of the model’s skill.  

However, it is important to note that models constructed using the full dataset 

available typically overestimate their own accuracy. It is therefore essential to 

perform cross-validation of the model if a more representative estimate of its 

accuracy is required. Cross-validation involves splitting the data into two groups. 

The first is a ‘training set’ in which the model is provided with samples and 

informed of the correct classification for each, enabling it to construct its 

predictors which will be used to classify new data. The second is a ‘test set’, upon 

which the model is executed whilst blind to the true class of each sample. This 

yields a prediction of the class for each sample within the test set, allowing the 

accuracy of the model to be obtained when presented with new data that was not 

used in its construction (Stone, 1974). There are several varieties of cross-

validation. In this instance, K-fold cross validation using 10 folds was identified 

as a suitable and conservative technique for estimating error (Hastie et al., 2009). 

This split the data into 10 groups, treating nine of the ten as the training set and 

then testing the model on the remaining fold which acted as the test set. This 

process was then repeated for all combinations of the initial 10 folds and the 

accuracy reported.  

Importantly, like many machine learning approaches, RDA employs random 

processes in its establishment of a model (Wu et al., 1996). Combined with the 

random division points used to sample the data in cross-validation, this leads to 

a classification error which is not fixed and varies with each re-iteration of the 

model. To better report on the accuracy it is recommended to construct multiple 

iterations of the cross-validated model (Kuhn and Johnson, 2013). Results from 
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these can then be used to produce pooled values for the mean and standard error 

that better reflects the level of accuracy, and potential variability of this. This can 

inform the user asto the likely accuracy that can be expected, and the associated 

level of variance, when selecting one final instance of the model to implement on 

further datasets; in this case the compound index results for the restored reefs. 

One-thousand repeats of the cross-validated model construction were therefore 

performed to provide a suitable level of depth for accuracy to be assessed (Rao 

et al., 2008). The RDA model was constructed using the R packages MASS 

(v.7.3-53) and KlaR (v.0.6-15). 

The next step was then to repeat this process now using the full dataset to 

construct 1000 models which could be used to classify the 110 audio samples 

from the three restored sites. However, the suitability of the restored data for entry 

into the model also had to be confirmed. Should the restored sites exhibit 

soundscape properties highly distinct from both healthy and degraded sites, the 

model would be forced to attempt to fit them into a classification that is 

inappropriate. The presence of divergence from both classes was therefore 

explored using cluster analysis. This employed a principal component analysis 

(PCA) conducted on the feature set of the eight selected indices and pairs plot 

which was also performed in R between every combination of two indices against 

one another (Supp. 3.4).  

 

3.3 Results 

Comparing indices to phonic richness 

Results from the Pearson’s correlation test between each index and phonic 

richness revealed no strong relationship between phonic richness and any of the 

33 indices trialled (Fig. 3.4). The strongest finding was a negative correlation with 
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the acoustic entropy index (H) in the full band (Pearson correlation; rho = -0.43; 

p<0.001), with all others reporting weaker correlations.  

Figure 3.4. This heat map shows results from the Pearson correlation test between eco-

acoustic index and phonic richness scores for the full set of 262 recordings in the three 

frequency bands employed. Strength of correlation is indicated by the colour bar. Cells 

marked with an asterisk indicate those with a significant correlation (p<0.05). Blank cells 

indicate indices for which values from the corresponding frequency band were not 

calculated (see methods).  

 

Comparing indices between healthy and degraded sites 

Results from the Mann-Whitney U test between healthy and degraded habitat 

index scores revealed there was a significant difference between 15 of the 33 

indices between these two habitats (Supp. 3.5). The strongest significant 

difference was observed for medium band H (Mann-Whitney U; U = 1.98; 

p<0.001). Violin plots of the three most significantly different index results 

between the healthy and degraded sites show a large overlap between the 

distributions of the values between both classes (Fig. 3.5). This revealed that no 

index was able to differentiate between the two classes as a randomly selected 

value from one class has a high chance of also originating from the other.  
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Figure 3.5. Violin plots of the three indices with the strongest significant differences 

between healthy and degraded habitat sites. (A) Medium band H (Mann-Whitney U; U = 

1.98, p<0.001), (B) Full band ACI (U = 1.78, p<0.001), (C) Medium band th (U = 1.63, 

p<0.001). 

 

Machine learning  

From the 1000 repeated constructions of the cross-validated model using the 152 

recordings taken across healthy and degraded sites, the pooled mean 

misclassification rate was 8.27% (± 0.84, SE). Results from the confusion matrix 

of these repeats showed that, of the 81 recording samples taken from the two 

healthy sites, 72.96 (± 0.11) of these were correctly classified as healthy, with 

8.04 (± 0.11) misclassified as degraded. Of the 71 recordings taken from the two 

degraded sites, 67.22 (± 0.09) of these were classified as degraded, with 3.74 

(± 0.09) misclassified as healthy. Individual results for each recording sample 

were also reported (Fig. 3.6). 

Cluster analysis using the principal component analysis (Fig. 3.7) and pairs plot 

(Supp. 3.4) were then used to examine whether the 110 samples taken from 

recordings of the three restored sites were suitable for the model. Results from  
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Figure 3.6. Habitat classifications predicted by the machine learning model. Each cell indicates a single one minute recording from the 152 that were 

available across healthy and degraded habitats. The model was executed 1000 times on the dataset, generating a new habitat class prediction each time 

for every recording. Values within cells represent the proportion of these 1000 iterations in which the recording was predicted as originating from a healthy 

site, with the remaining being predicated as degraded, also represented by the colour code. Recordings taken on the left of the partition were taken during 

the day and recordings to the right were taken during crepuscular or night time periods. Although frequent gaps were present in the sampling regime, the 

order with which cells are presented within their respective blocks conserves the overall order with which they were sampled across time. 
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Figure 3.7. Plot from the principal component analysis of PC1 and PC2 for the Healthy and 

Degraded site recording samples. Samples from recordings of Restored sites are overlaid on 

this to help determine whether these conform with either of the two existing classes or whether 

the properties of their soundscape are distinct. Ellipses indicate the zone within which a new 

sample can be assigned to a class using the two principle components presented in this figure 

alone. Overlapping areas indicate ambiguous results which cannot be differentiated but 

nonetheless fit one of the existing classes. 

 

the plots showed a strong overlap with both the healthy and degraded habitat classes. 

For the Mature Restored and Newly Restored sites 70/81 and 70/71 samples 

respectively fell within one or both of the predictive ellipses for the two existing classes. 

This indicates that the soundscapes of the restored sites did not diverge from the 

soundscape present on the other two habitat types when using the properties 

investigated here. This supports the inputting of restored samples into the model as 

this is likely to generate an estimation of classification with a similar level of accuracy 

observed for the original two sites from which it was constructed. Additionally, the PCA 
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showed that 61/81 samples from the Mature Restored sites fell within the ellipse that 

could be used to predict healthy sites, whereas 24/27 samples of recordings from the 

Newly Restored site fell within the ellipse that can be used to predict degraded sites. 

However, it is important to note that there was a large region of overlap between the 

healthy and degraded class, with most of the ellipse of the degraded classes 

encompassed by that of the healthy class as well.  

Execution of the model on the restored site samples was therefore performed in the 

same manner (Fig. 3.8). A key observation from the results of this is the majority 

classification of samples from mature restored sites as healthy, and samples from the 

newly restored site as degraded. A more decisive classification of Mature Restored 

site B was reported over Mature Restored site A, with 37/38 and 33/39 samples 

reporting a majority classification of healthy respectively. The six samples which 

reported a majority classification as degraded on Mature Restored site A occurred 

consecutively on the new moon at night. On the Newly Restored site, 27/33 samples 

reported a majority classification as degraded, all of these were during the full moon 

(though only four new moon samples were available) and five of these were at night. 
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Figure 3.8. Habitat classification predictions by the machine learning model for the restored site recording samples. Each cell indicates a single 

one-minute recording from the 110 that were taken from restored sites. The model was executed 1000 times on the dataset, generating a new 

habitat class prediction each time for every recording. Values within cells represent the proportion of these 1000 iterations in which the recording 

was predicted as originating from a healthy site, with the remaining being predicated as degraded, also represented by the colour scale. 

Recordings taken on the left of the partition were taken during the day and recordings to the right were taken during crepuscular or night time 

periods. Although frequent gaps were present in the sampling regime, the order with which cells are presented within their respective blocks 

conserves the overall order with which they were sampled across time.
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3.4 Discussion 

This investigation set out to determine whether computational analysis of 

soundscape data collected using passive acoustic monitoring (PAM) from tropical 

coral reefs could be used to perform rapid classification of these habitats into two 

eco-sates: healthy or degraded. Eco-states were classified using coral cover as 

a measure of this and the soundscapes of two sites from both of these classes 

were sampled over the new and full moon periods to build a dataset with which 

to test this hypothesis. Findings from this investigation support previous work 

which suggests no single eco-acoustic index can be used to discriminate between 

these two eco-states. However, use of a supervised machine learning approach 

that considered an optimised set of multiple indices in unison demonstrated an 

ability to accurately predict habitat class from randomly drawn acoustic samples 

with a misclassification rate of just 8.27% (± 0.84). To the author’s knowledge, 

this is the first successful demonstration of combining PAM with machine learning 

to monitor coral reef habitats, highlighting the potential of this approach.  

Furthermore, this model was executed on soundscape recordings taken from 

nearby coral reef habitats that had been actively restored (Williams et al., 2019). 

This was used to demonstrate the ability of this approach to perform a rapid 

assessment of these restored sites using one-minute soundscape recordings as 

an indicator. This has strong implications for marine restoration practitioners 

interested in using PAM to monitor the progress of restored sites against 

reference habitats. More generally, it also demonstrates the potential for further 

applications of machine learning using PAM data from coral reef habitats. Such 

applications could be used to investigate other aspects of reef ecology that may 

be represented in the soundscape. These kind of advances are needed to help 

marine practitioners capitalise on the ability of PAM to collect data over broad 

temporal resolutions using easily reproducible low effort surveying methods. 
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Relationship between eco-acoustic indices and manual listening  

Previous work by Gordon et al. (in review) used phonic richness, a novel manual 

listening technique, to quantify the diversity of fish noise within the recording 

samples used for this investigation. Their results showed that phonic richness 

significantly outperformed two existing eco-acoustic indices (ACI and SPL) in 

discriminating between healthy and degraded habitats. This supports findings 

from previous investigations which have shown results from manual assessments 

of fish noise diversity can relate to other factors such as diversity of fishes or their 

distribution within distinct habitats (McWilliam et al., 2017; Desiderà et al., 2019). 

However, the scoring of phonic richness is labour intensive due to the demanding 

process of manual listening and annotation, and is restricted by the requirement 

of a single human assessor to produce consistent results. The development of 

computational approaches that can rapidly produce comparable results to this 

method is therefore highly desirable.  

The present investigation therefore expanded on work from Gordon et al. (in 

review) by running a more comprehensive suite of 12 acoustic indices on the 

same recordings across three alternative frequency bands. Whilst 15 of the 33 

indices showed a significant correlation (Fig. 3.4), these were all weak, with the 

strongest being the acoustic entropy index (H) in the full band (Pearson 

correlation; rho = -0.43; p<0.001). This suggests that it may be an unrealistic 

assumption that the diversity of fish noise present in a recording is a direct driver 

of results generated by any of the acoustic indices currently available. This has 

been an assumption of numerous investigations to date which act on the 

hypothesis that certain indices are quantifying the diversity of fish noise (Bertucci 

et al., 2016; Buxton et al., 2018).  

However, it is important to note that the phonic richness score assessed the 

diversity of fish noise by noting the number of unique fish sounds present within 

a recording, but did not quantify the frequency of occurrence of each of these 



96 
 

within a recording. Previous research has shown that frequency of occurrence of 

fish sounds can have a significant impact on the values of eco-acoustic indices 

taken from naturally occurring coral reef soundscapes (Staaterman et al., 2017). 

Other investigation have also tested the robustness of certain indices to simulated 

recordings with alternative levels of fish vocalisations. They report similar findings 

that show indices can be sensitive to both diversity and frequency of occurrence 

of fish sounds making it difficult to discern between these variables (Bohnenstiehl 

et al., 2018; Bolgan et al., 2018). A combined diversity and abundance metric for 

fish noise may reveal a stronger relationship between indices and these 

assessments. 

Additionally, the 50–800 Hz band consistently reported the weakest correlation 

between phonic richness and the suite of indices trialled (Fig. 3.4). This band fully 

encompasses the range of audible fish sounds within the recordings used to 

generate phonic richness scores (Gordon et al., in review). It is therefore 

interesting to note that indices in the higher frequency band and full band reported 

slightly stronger correlations. This further supports the hypothesis that indices are 

not directly quantifying the diversity of fish sound. Instead a combination of 

diversity ad abundance of fish produced sounds, and/or other elements of the 

soundscape that may be captured in these alternative bands. However, this does 

open the possibility that these two elements are still related, meaning that a 

recording with a high diversity of fish sound may also be likely to exhibit some 

other unknown traits to which indices are more sensitive. Future studies that 

further explore this hypothesis using simulated tracks may help reveal more about 

these observations. 

 

Using eco-acoustic indices to compare healthy and degraded sites 

Having failed to show a strong correlation with phonic richness, a suite of eco-

acoustics indices calculated for each recording sample was also compared 
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directly between healthy and degraded habitats. This was done to determine 

whether any of the indices could reliably be used to discriminate between these 

two habitat states. Of the 33 index and frequency band combinations trialled, 15 

reported a significant difference between the two habitats classes (Supp. 3.5).   

The present investigation trialled a greater number of indices than previous 

tropical reef soundscape studies. However, it was clear from these results that 

no single index demonstrated the ability to discriminate between healthy and 

degraded sites with the desired power. The high test statistic values from the 

Mann-Whitney U tests (Supp. 3.5) highlighted that the separability between both 

classes was still low; for any given value from one habitat there was still a high 

chance it would overlap with values reported for the other habitat. Violin plots of 

the three most significant results help to visualise this by revealing the high 

degree of overlap between the results of each habitat class (Fig. 3.8). This shows 

that a single recording could not reliably be used to discriminate between the two 

habitat classes.  

This is congruent with findings from previous research. Studies directly reporting 

on the difference between index values of healthy and degraded tropical reef 

habitats revealed significant differences between the two habitat classes using 

extensively replicated samples (Butler et al., 2016; Gordon et al., 2018). 

However, once again their results show high within-group variability that 

precludes the use of any single index to report a reliable habitat classification on 

individual samples alone. Additional investigations have explored the relationship 

between indices and other aspects of reef ecology that can be strong indicators 

of overall reef health such as: fish diversity, structural complexity, algal cover and 

more (Nedelec et al., 2015; Freeman and Freeman, 2016; Buxton et al., 2018; 

Elise et al., 2019). Once again these studies consistently reported that indices do 

not constitute reliable indicators of these other aspects of reef ecology without 

extensive replication, and often they still fail to provide any discriminatory power 
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when previous investigations did report this (Kaplan et al., 2015; Harris et al., 

2016).   

 

Evaluating the features selected for the machine learning model 

Although no single index demonstrated an ability to accurately classify individual 

recordings as degraded or healthy, many revealed an ability to perform this when 

considered as part of a larger dataset.  

The first stage of this process was the feature selection step which reduced the 

full set of 33 indices to a smaller optimised set that best captured the soundscape 

properties of interest whilst reducing the risk of overtraining. Of the eight indices 

selected for the final feature set (Fig. 3.3), the Acoustic Complexity Index (ACI) 

was the only index to be included from all three frequency bands. This index has 

become one of the predominant indices with which to compare reef soundscapes 

(Harris et al., 2016; Bolgan et al., 2018) and its selection across all three bands 

further supports its value for assessing reef recordings. The individual index with 

the highest importance ranking from the multivariate adaptive regression spline 

(MAR), and also the strongest significant difference between healthy and 

degraded sites as revealed by the Mann-Whitney U tests, was medium band H. 

This index has seen less use than ACI in reef soundscape ecology investigations 

thus far, but, has been found to reveal useful trends in some studies (Staaterman 

et al., 2014; Harris et al., 2016). Investigations into the have shown this index is 

driven by snapping shrimp and fish chorusing (Staaterman et al., 2014; Kaplan 

et al., 2015; Siddagangaiah et al., 2019). Next in the MAR importance rankings 

was th in the medium and full bands. However, this index was highly correlated 

with H (Supp. 3.3) and was therefore excluded from the final feature set. Whilst 

the findings here support its use in discriminating between healthy and degraded 

recordings, the results suggest future users conducting a similar investigation 

may wish to consider H in its place if necessary. Both medium band BI and AR 
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were also included in the final feature set. BI has seen little use on reef habitats, 

however, a recent investigation found it outperformed other indices when being 

used to indicate planktivorous fish abundance and laminar, foliose and helmet 

shaped coral abundance (Elise et al., 2019). AR has also seen limited use but 

has previously been shown to significantly differ between pre-bleaching and 

bleached coral reef sites as well as being an indicator of fish diversity in certain 

settings (Harris et al., 2016; Gordon et al., 2018).  

The last index included in the final feature set was the normalised mean 

difference index (NDSI), which was used on a tropical reef soundscape for the 

first time in this investigation. This index was used to quantify differences between 

the 0.05–1 kHz band, which includes most sounds produced by fish (Gordon et 

al. in review), and the 2–5 kHz band where snapping shrimp are reportedly at 

their most intense (Coquereau et al., 2016). Several indices did not feature, most 

notably of which is sound pressure level (SPL). This index is the most utilised 

index for assessing the soundscapes of reef habitats (Pieretti et al., 2017; 

Lindseth and Lobel, 2018). However, when a broad suit of indices are utilised it 

does not necessarily come out as the strongest performer for testing ecosystem 

functions (Elise et al., 2019). A reporting bias due to its frequent use may be 

responsible for its prevalence as an ecological indicator. Further research into its 

performance against other indices may be useful in determining whether this 

should be considered a default index of choice for studies on reef soundscapes 

in the way it has been in the past (Nedelec et al., 2015; Bertucci et al., 2020). 

It is important to note that findings during the feature selection stage of this 

investigation are specific to the data and questions under consideration here. 

These should be applied with caution in other studies. However, with that in mind, 

these findings may offer a useful starting place for future work performing similar 

investigations. Comparing and contrasting optimised feature sets of alternative 

models addressing similar questions may help elucidate indices and frequency 
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bands that consistently yield useful findings over other combinations. Further 

research into this aspect of reef PAM and machine learning will be necessary to 

properly explore these comparisons.  

Future research may also find success using alternative indices for capturing 

acoustic features, in addition to the indices trialled here. A recent study used 

machine learning to estimate the species richness of marine mammal 

communities in two different Southern Ocean habitats. They used a similar index 

approach to the one applied here, and also a second approach which split 

recordings into 256 evenly spaced frequency bands up to 2.5 kHz, from which 

they input amplitude values for each bin into a random forest algorithm. They 

found both approaches delivered similar results, suggesting this additional 

method may be worth trialling on reef habitats as well. Another approach worth 

considering was demonstrated in a study which used recordings of forest 

habitats. Here, researchers utilised a 128 feature set and cross-convolutional 

neural network (CNN) developed by Googles DeepMind team that was created 

using sound samples from AudioSet, a database of 70 million labelled audio files 

taken from YouTube (Hershey et al., 2017). This enabled the soundscape 

ecologists to apply this CNN using an unsupervised machine learning approach 

on 2750 hrs worth of recordings taken from several different forest habitats 

around the globe. This was able to assign samples to many key categories, 

enabling the team to observe divisions between samples taken from different 

habitats around the globe as well as habitat quality and temporal cycles within 

individual forests (Sethi et al., 2020). 

 

Assessing model skill 

When assessing the model’s overall accuracy to discriminate between the two 

eco-states it is important to note that limited spatial replication was used in this 

investigation. Only two healthy and two degraded sites were explored, which 
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does not constitute an extensively representative sample set of similar habitats. 

However, with this in mind, the effectiveness of the final model showed an 

impressive ability to discriminate between the two classes of habitat that separate 

these sites. Across the 1000 iterations of the cross-validated model, the habitat 

class for each of 152 recording samples taken across both habitats were 

predicted with just an 8.27% (± 0.84) misclassification rate.  

To explore how the models skill could have been improved further it is worth 

considering the sources of the observed error rate. The presence of this error 

could be due to several factors in isolation or in combination. As highlighted in 

the methods, the sub-Gaussian distribution of several of the feature sets 

technically violates an assumption of the RDA (Wu et al., 1996). This effect was 

likely due to the inclusion of samples from alternative times of day and multiple 

sites. Diel trends are frequently observed in reef soundscapes and this is 

reflected in the output of eco-acoustic indices (Kaplan et al., 2015; Bertucci et al., 

2020; Carriço et al., 2020). Assessing the discrepancy between the nocturnal and 

diurnal periods has even been proposed as a useful indicator of certain 

ecosystem functions (Kaplan et al., 2015). Additionally, reef soundscapes are 

known to differ over small spatial scales (Putland et al., 2017). Considering 

samples were taken from spatially separated sites to provide replicates, it is to be 

expected that differences across the same habitat class will have occurred. Both 

of these factors may have skewed the distributions of the feature sets. 

Furthermore, the dataset used to train the model itself was likely imperfect and 

will have contained natural outliers through ecological randomness that cannot 

be resolved at the sampling resolution employed. A recording regime will never 

truly be representative of the soundscape of the habitat for which it is employed 

unless every minute of every day is recorded at each site for the duration of the 

study, and after termination of this it is no longer necessarily representative into 

the future. Even if such a strict regime was employed, ecological randomness 
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that cannot be explained will likely still impact results. For many investigations 

hoping to study broader temporal periods this level of sampling is impractical and 

as such compromises are made which include the loss of data that could fill gaps 

needed to explain observed trends, increasing the chance that randomness 

impacts results further.  

 

Application of the model on restored sites 

The misclassification rate reported by the 1000 cross-validation iterations was 

considered low enough for the model to be proficient at performing preliminary 

classifications of samples taken from the restored sites. However, it was first 

important to confirm whether the samples from the restored sites could be fitted 

to the samples on which the model was trained. If the properties of this new test 

data were highly divergent then it may not be appropriate to apply the model to 

them. For example, if a model was trained to classify recordings from healthy and 

degraded coral reef sites, and was then used to classify recordings of the open 

ocean, or even a terrestrial habitat, the model would of course be inappropriate 

as there would be no meaningful similarity between the properties of these 

soundscapes.  

Results from the principal component analysis (Fig. 3.7) and pairs plot (Supp. 

3.4) revealed a high degree of overlap between the training data and the restored 

sites. This indicates that the new test data, in the form of the restored samples, 

appeared appropriate for entry into the model. As discussed, conclusions from 

this assessment may need to be considered with caution given the low spatial 

replication used to train the model. However, some interesting observations were 

made when studying the results taken from 1000 iterations of the model on the 

restored site recording samples. 
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One of the key observations from these results was the apparent disparity 

between the Mature Restored sites and the Newly Restored site. Of the recording 

samples from the two Mature Restored sites, 70/77 were given a majority 

classification of healthy, whereas only 6/33 samples from the Newly Restored 

sites received this (Fig. 3.7). The Mature Restored sites off Badi and Bontosua 

islands were established >24 months prior to recordings and a higher percentage 

coral cover was observed on these (A: 79.1% ± 3.9; B: 66.5% ± 3.8) compared 

to <12 month old Newly Restored site off Bontosua (25.6% ± 2.6). Once again, 

the spatial replication performed on restored sites was low, with just two and one 

Mature and Newly restored sites respectively. This limits the confidence that can 

be given to conclusions associated with this data. However, of the data available, 

this supports the hypothesis that the stage of recovery these sites have reached 

can indeed be indicated by their soundscape and that this can be detected using 

a machine learning approach. This therefore offers an exciting new way for 

marine conservationists and restoration practitioners to monitor the progress of 

their efforts on similar tropical reef habitats, and perhaps elsewhere. Future 

research to further validate these findings and develop tools to assess this is 

therefore essential. 

If this hypothesis is correct, it would suggest there exists a point, between the 

stages of recovery observed on the Mature and Newly Restored sites, at which 

the soundscape begins to converge more closely with healthy sites. It is likely 

that this is not a sudden switch, and the convergence happens gradually. This 

would be observable when inspecting the classification predictions, which may 

also reveal the stage at which samples report this switch is dependent on when 

recordings are taken, such as alternative lunar or diel periods. Whilst such a trend 

is observed in the data reported here, more samples would be needed to verify 

this. 
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Further development of machine learning approaches 

This investigation demonstrates that a model based on marine soundscape 

properties can be constructed using machine learning and used to make reliable 

predications of which eco-state (healthy or degraded) a recording most closely 

aligns with. This offers exciting prospects to expand the utility of PAM on reef 

habitats. In theory, if time was taken to collect training data from appropriate sites, 

a model could then be constructed and used to perform a much more rapid 

assessment of additional sites within the same reef network using significantly 

reduced sampling regimes. This could overcome the limitation of equipment 

availability and greatly increase the number of sites that could be tested, allowing 

informative indications of their health, or other functions, to be obtained. For 

example, an investigation such as this, could first collect a robust dataset from 

which to construct a model to quantify an ecological attribute of interest. Short 

term deployments just minutes in length could then be performed on a larger 

rotation of sites, capturing snapshots of each from which a classification could be 

obtained. An increased confidence in these conclusions could be delivered 

through repeats on these across broader temporal scales, perhaps through 

performing repetitive cycles a few minutes in length over many sites during one 

day. Further validation of this method against traditional survey techniques would 

certainly be needed. But, if continued success is seen, this would allow mapping 

of ecosystem functions which can be predicted using soundscape properties to 

be performed over entire reef networks more rapidly than traditional survey 

techniques. 

Future investigations employing the approach used here could develop this 

further in a number of ways. Firstly, this study employed a binary classification of 

reef health. In reality reefs exist on a broad gradient of eco-states that are not as 

simplified as this classification (Downs et al., 2005; Smith et al., 2008). Recording 

samples used in this investigation therefore could only be assigned to one of two 
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classes. This overlooks a broad level of variability possible within each class and 

makes it difficult to handle sites which lie somewhere in between this as neither 

class is fully appropriate. One work around in this situation may be to sample 

multiple recordings from sites across different times of day and lunar phases to 

observe how many of these samples were assigned to each class, allowing this 

to be placed on a discrete scale dependant on these results. However, an 

improved approach would be to have applied the same level of sampling depth 

completed on each site in this investigation across many more sites on this sliding 

gradient of eco-states. An alternative machine learning algorithm such as random 

forests, neural networks or logistic regression could then be trained on these data 

to produce models which can make predictions on a continuous scale.  

Further quantification of reef health beyond coral cover alone could also have 

been employed. Coral cover can be a strong indicator of overall reef health (Smith 

et al., 2016; Dietzel et al., 2020). However, other attributes should be considered 

to properly determine the eco-state of a site to appraise whether these were truly 

comparable across the sites sampled here. For example, fish abundance can be 

an important consideration in assessing reef health. A previous investigation into 

fish abundance at these sites found that the introduction of Reef Stars 

significantly increased the number of fish present within one month, and can 

double fish abundance after four years (Seraphim et al., 2018). Research into the 

relationship of this attribute and the soundscape of natural and restored reefs 

may reveal new ways to rapidly estimate fish abundance at these sites.  

Additionally, other variables universally applicable to reef sites, such as depth or 

reef zone (e.g., fore, back, flat), could also have been included in model 

development. Existing research supports the premise that these factors can have 

an impact on soundscape (McWilliam et al., 2018; Elise et al., 2019). The model 

presented here therefore cannot be applied to reefs with qualities that significantly 

diverge from the sites used to collect training data without reducing the level of 
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confidence in its predictions. However, if additional sites with these variations 

were sufficiently sampled to provide training data from these sites, a model could 

potentially be constructed which accounts for this. Although, if described using 

categorical data, an alternative algorithm able to accommodate this would be 

needed. 

Additionally, the model in this investigation was trained on 81 healthy and 71 

degraded recording samples across the new and full moon periods. Across the 

four sites this may be an adequate level of sampling to minimise the risk of 

overtraining whilst delivering sufficient predictive skill in this instance. However, 

to increase the confidence in the applicability of this method over neighbouring 

reef systems, increased spatial replication using a similar sampling depth to this 

on each new site could have been applied. 

It may also be desirable to sample across a broader temporal scale. However, 

this depends on the intended output of such an investigation. Samples could have 

been taken across the full month allowing the lunar phase to be included as a 

feature. But, this would have required further sampling across the full month to 

collect a dataset with which to train the model. Considering that this technique 

offers the ability to obtain classifications using rapidly obtained snapshot samples 

from other sites of interest, it may not be necessary to go to such efforts when 

sampling if the desired outcome is achievable with less. However, if additional 

ecological attributes were under investigation using more complex models, these 

narrow periods may not necessarily contain detectable acoustic fingerprints 

which could be used to quantify such attributes. For example, if eco-state were 

to be classified over a gradient, or fish diversity was assessed on a continuous 

scale, information on these attributes may only be contained in soundscapes over 

broader temporal periods, if at all. The discriminant analysis approach used here 

can be used to predict multiple categories which may be sufficient for some 

applications. However, once again other machine learning algorithms can offer 
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more precision in these assessments through prediction of continuous values. 

Further research into the application of these will reveal more about the utility of 

such approaches and contribute important steps towards unlocking the full 

potential of PAM and machine learning on reef habitats.  

 

Conclusion 

Modern investigations attempting to advance the field of PAM in the marine 

environment recognise that computationally obtained metrics from acoustic 

recordings may hold the potential to rapidly assess habitats. To date, existing 

studies have primarily assessed the utility of individual eco-acoustic indices to 

predict ecosystem attributes such as diversity or benthic cover. This investigation 

outlines a novel approach which combines multiple indices to deliver an 

improvement upon the predictive capacity of any single index, offering a 

potentially significant development in the field, with future investigations likely to 

benefit from adopting a similar approach. This investigation also revealed 

valuable insights to marine practitioners attempting to restore large areas of reef 

in the Spermonde Archipelago. The findings here reveal that acoustic recordings  

can be used to give additional evidence, alongside coral cover, to track the 

progress of restored sites, and that mature sites (>24 months old) appear to be 

converging with naturally healthy sites. 
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3.5 Supplementary information 

Supplementary 3.3. Results from a Spearmans collinearity test between all 12 indices in each of three frequency bands: low (0.05 – 0.8 kHz), medium (2 – 7 

kHz), full (0.05 – 20 kHz). Darker cells represent a stronger correlation. Blank cells indicate values = -0.01 – 0.01. 
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Supplementary 3.4. Scatterplots between each of the eight indices selected for inclusion as features in the final model. Values from healthy and 

degraded sites alongside values from restored sites are included to enable divergence between these two groups to be observed if present. 
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Supplementary 3.5. Results from the Mann-Whitney U test between the index scores of healthy (n = 81) and degraded (n = 71) site recordings. 

Indices not calculated for specific frequency bands are left blank. 

 

  AI AEI ACI AR BI H 

  u-score p-value u-score p-value u-score p-value u-score p-value u-score p-value u-score p-value 

Full 0.54253 0.015255 0.173825 0.436942 1.777053 1.91E-15 1.076803 1.47E-06 0.326178 0.144644 1.446746 9.80E-11 

Medium 0.620978 0.005485 0.597857 0.007502 1.383988 6.04E-10 1.073501 1.58E-06 1.183326 1.21E-07 1.980192 8.32E-19 

Low 0.037985 0.865108 0.242776 0.2776 0.911648 4.56E-05 0.346823 0.120893 0.090009 0.687293 0.195707 0.381449 

                          

  NDSI   NP SE Snap Rate SPL TE 

  u-score p-value u-score p-value u-score p-value u-score p-value u-score p-value u-score p-value 

Full 1.39142 4.89E-10 0.307273 0.169389 0.320398 0.151897 0.109001 0.625926 0.309259 0.16665 1.622635 3.97E-13 

Medium     0.303865 0.17417 0.225435 0.313371 0.090009 0.687293 0.047069 0.833277 1.631718 2.94E-13 

Low     0.056349 0.801039 0.047069 0.833279     0.209745 0.34824 0.752275 0.000767 
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4.1 Advances needed in PAM 

Passive acoustic monitoring (PAM) and soundscape ecology are receiving a 

growing level of attention as a means by which to study the marine environment. 

The attraction to these approaches primarily stems from the low effort required to 

collect large amounts of data. Recorders can be left to autonomously monitor 

habitats for long periods of time, offering a significant advantage over traditional 

in-water surveying methods which can be logistically challenging and labour 

intensive. PAM can collect data across broader temporal scales with ease, 

allowing this approach to better capture information on the state of marine 

habitats across the natural cycles present. It also reduces the requirement of the 

advanced training needed to conduct these surveys and eliminates complications 

that arise when comparing underwater visual census data collected using 

different techniques and survey teams. 

The end goal of developing this field is to provide a valuable tool which is of use 

to the understanding and proper management of our marine environment. For 

example it could be used to assess habitat health or the progress of restoration, 

as demonstrated in Chapter Three. It could also be used to quantify the success 

of conservation approaches such as MPAs or other management practices 

(Bertucci et al., 2016). Additoinaly, PAM has been found to be an indicator of the 

scale of disturbance events, such as bleaching and cyclones (Gordon et al., 
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2019). It also offers a tool with which fisheries could be assessed (Lindseth and 

Lobel, 2018; Elise et al., 2019). 

However, two key limitations have been preventing PAM from achieving 

widespread uptake. These are: (i) the requirement of expensive high specification 

equipment, and (ii) the lack of rapid analytical approaches that can reliably be 

used to ascertain habitat attributes from recordings. This thesis contributes 

significant advancements towards overcoming both these obstacles. 

 

4.2 Low cost recorders 

Existing marine soundscape investigations have relied on high specification 

hydrophone recorders. This is likely in part due to the lack of alternatives and has 

subsequently become an established norm that has not been re-considered. 

However, lower specification recorders are frequently used with success in the 

terrestrial environment (Whytock and Christie, 2017; Sethi et al., 2020). Chapter 

Two of this thesis therefore set out to identify whether alternative options do exist. 

We used consumer grade GoPro action cameras that can be deployed 

underwater. Soundscape recordings captured by these devices contain many 

identifiable biophonic, geophonic and anthropogenic sounds characteristic of the 

marine environment. 

This investigation formally demonstrated that these devices are indeed capable 

of collecting recordings that exhibit many of the same properties as those 

collected by research grade hydrophones. It also showed that some 

computational indices, which are gaining significant traction due to the rapidity 

with which they can be calculated, can also be extracted from these recordings. 

Future study that is able to use these devices to generate ecological data of 

relevance to a broader investigation would help to further test the extent of their 

utility. 
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GoPros have several unique advantages, including their ability to simultaneously 

record video data, and their widespread possession by marine practitioners and 

potential citizen scientists. However, other acoustic recorders offer advantages 

specific to acoustics. One of these is the AudioMoth recorder recently developed 

for terrestrial habitats which we have begun to test in the marine setting (Hill et 

al., 2018). This open source device with a case, batteries and SD card is 30 times 

cheaper than existing hydrophones and three times cheaper than GoPros. 

Importantly, it is also able to record for much greater durations than GoPros (up 

to nine days at 20 kHz sampling frequency) due to its improved battery and 

memory capacity (Hill et al., 2019). These smart recorders also offer a duty 

cycling capability enabling the length of period over which they can sample to be 

greatly expanded. Further still, these devices can be programmed to 

automatically generate metrics from recordings in real time, including eco-

acoustic indices. Importantly, this removes the two most computationally limiting 

steps in analysis currently: (i) the need to upload hundreds to thousands of hours 

of recordings to a computer, (ii) the need to calculate all indices in one stage. In 

the future, smart recorders such as these are likely to become the dominant 

technology amongst those entering the field of PAM to monitor their habitats. 

Further investigations that continue to explore these emerging technologies will 

help other researchers, marine practitioners and citizen scientists to begin 

capitalising on the benefits offered by PAM. 

 

4.3 PAM data analysis with machine learning 

The use of machine learning to analyse soundscape data is and emerging 

practice in terrestrial investigations (Buxton et al., 2018; Eldridge et al., 2018; 

Metcalf et al., 2020). Some uses of machine learning have been made in the 

marine environment, primarily in attempts to produce identifiers for vocalisations 

of specific organisms (Noda et al., 2016; Lin et al., 2018; Roca and Van 
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Opzeeland, 2019), but no existing study has used this approach to ascertain other 

habitat related metrics from recordings. However, a few dozen published 

investigations have attempted to produce these outcomes using traditional 

methods that compare individual eco-acoustic metrics or use labour intensive 

manual listening to compare habitats (see reviews: Lindseth and Lobel, 2018; 

Mooney et al., 2020, Pieretti and Danovaro, 2020). As demonstrated in Chapter 

Three, novel machine learning algorithms offer previously unobtainable levels of 

accuracy using rapidly obtained computational indices and intelligent algorithms.  

Machine learning algorithms offer a new approach for analysis that future studies 

may wish to consider. This also offers the opportunity to revisit many existing 

datasets from previous studies that may yet reveal further insights from raw 

recording and index data. Using both new and existing datasets, the capacity of 

models to predict other habitat attributes should be further explored. This may 

include classifiers able to assign habitats to specified categories, as 

demonstrated in this thesis, or, regression based models which can make 

predictions along a gradient to better predict specific ecological attributes.  

 

4.4 Combining advances from this thesis 

Together, contributions from this thesis to the field of PAM in the marine 

environment have the potential to help overcome two of the biggest obstacles to 

the fields expansion. Low cost recorders will help expand the scale of data 

collection possible, and machine learning provides improved analytical 

techniques that can maximise ecological inferences that can be made.  

However, low cost recorders make data collection easier, whereas advanced 

analytical processes such as machine learning can make this stage more 

complex. This puts the field is at risk of a data deluge. Marine practitioners and 

scientists not firmly rooted in soundscape ecology and machine learning may 
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struggle to extract the full potential from the data they are collecting. 

Standardisation is therefore required.  

As these datasets build, unsupervised models offer an opportunity to simplify the 

analytical process. These use algorithms such as convolutional neural networks 

that generate an extensive set of common features that can be used to 

discriminate between recordings. For example, Google’s DeepMind team 

recently published work outlining a new approach which used a cross-

convolutional nueral network (CNN) on 5.24 million hours of recordings from 

YouTube. This CNN generated a 128 strong feature set that best captures the 

variation across 30’871 specific video labels used (e.g speech, lawn mower, etc) 

(Hershey et al., 2017). This feature set has subsequently been found to also have 

relevance in an ecological context. This was revealed by an investigation which 

calculated ran the full feature set on 2750 hours of terrestrial soundscape 

recordings (Sethi et al., 2020). This enabled the investigators to find strong 

relationships between the feature set and accompanying ecological data such as 

temporal periods and habitat quality using random forest machine learning 

algorithms. They were also able to identify anamolous events such as logging or 

shotgun blasts used in poaching. This approach could just as easily be applied 

to existing marine soundscape datasets to test its utility here. Universal feature 

sets such as these could help standardise methods used in this field. Software or 

centralised systems which enable practitioners to upload their acoustic data and 

receive feature set values for recordings could then significantly advance the 

ease with which this data can be obtained. Further software or workflows which 

enables users to apply the corresponding labels to this data (e.g habitat quality, 

species diversity, etc) and then implement the most appropriate machine learning 

algorithms would further support soundscape ecologists with this kind of 

advanced analysis. 
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Furtherstill, smart recorders could be programmed to calculate these kind of 

acoustic features on the go, without keeping the computationally costly raw 

recordings, streamlining the process further. This numeric feature data of feature 

could be easily uploaded to the Web, unlike the terabytes of acoustic recordings 

that soundscape ecologists currently have to work with. This would allow online 

tools to perform the analysis once given the appropriate inputs and large 

collaborative datasets to be assembled with ease. 

With continued progress, PAM in the marine environment may be able to realise 

this potential in the near future. These advances would help PAM become a 

valuable tool that could significantly improve the scale of ecological monitoring 

that can occur in important marine habitats, allowing feedback on management 

practices to be gathered.  
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