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Originality-Significance Statement:

Understanding what structures microbial communities on plant roots is a major research
challenge. The originality of this study lies in taking a high throughput functional approach to
characterizing communities that considers phylogenetic context and structure. This functional
study emphasizes that bacterial traits are more important than phylogeny in determining

membership of communities, a conclusion that illustrates the limits of single gene methods of
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characterizing communities. On a broad scale it also demonstrates that different classes of trait
do not have the same importance in different communities — for instance competition-based traits
appear to more important in some communities than others. The richness of data generated in
this study also means that we have revealed patterns of applied interest- for example the narrow

phylogenetic distribution of phosphate solubilization and IAA production.

Summary: Rhizobacterial communities are important for plant health but we still have limited
understanding of how they are constructed or how they can be manipulated. High throughput
16S rRNA sequencing provides good information on taxonomic composition, but remains an
unreliable proxy for phenotypes. In this study, we tested the hypothesis that experimentally
observed functional traits would be better predictors of community membership than
phylogenetic origin. To test this hypothesis, we sampled communities on four plant species
grown in two soil types and characterized 593 bacterial isolates in terms of antibiotic
susceptibility, carbon metabolism, resource use, and plant growth-promoting traits. In support of
our hypothesis we found that three of the four plant species had phylogenetically diverse, but
functionally constrained communities. Notably communities did not grow best on complex
media mimicking their host of origin, but were distinguished by variation in overall growth
characteristics (copiotrophy/oligotrophy) and antibiotic susceptibility. These data, combined
with variation in phylogenetic structure, suggest that different classes of traits (antagonistic
competition or resource-based) are more important in different communities. This culture-based
approach supports and complements the findings of a previous high-throughput 16S rRNA

analysis of this experiment, and provides functional insights into the patterns observed with
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culture-independent methods.

Introduction

The rhizosphere is a hotspot for microbial activity, driving the evolution of a diverse set of
microbes (Reinhold-Hurek et al., 2015). At a fundamental level rhizosphere microbes have to be
able to exploit the nutrients in root exudates and also tolerate the secretion of any plant
secondary metabolites (Grayston et al., 1998; Bertin et al., 2003; Marschner et al., 2004; Kumar
et al., 2007; Berendsen et al., 2012). Plants have the ability to adjust root exudate composition
(Haney and Ausubel, 2015; Panke-Buisse et al., 2015), and this composition varies between
plant species and with environmental conditions (Haichar et al., 2008; Compant et al., 2010;
Bever et al., 2012; Philippot et al., 2013; Chaparro et al., 2014; Pérez-Jaramillo et al., 2016;

Pérez-1zquierdo et al., 2019).

However, there is a great deal we do not know about the rhizosphere community assembly, and
in particular how the ecology of these communities varies between host plant species. For
example, rhizosphere microbes need to be efficient competitors in addition to having the basic
metabolic functions for exploiting plant nutrients (Martinez-Granero et al., 2006). Competitive
interactions can occur in the rhizosphere via either resource-based or antagonistic interactions
(Whipps, 2001; Raaijmakers et al., 2009; Beneduzi et al., 2012) but the broad level importance
of competitive traits in the rhizosphere is poorly characterized. If competition can limit
colonization by plant pathogenic microbes (Berendsen et al 2012), it is also likely to limit
colonization of anthropogenic applications of rhizobacteria. Improving the functional

understanding of plant colonization would help us manipulate microbial succession and
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community assembly in the rhizosphere (Ho et al., 2013; Krause et al., 2014).

Understanding functional traits is therefore important, but we remain sceptical of approaches that
infer phenotypes from 16SrRNA phylogenies (Ma et al., 2015; Lopes et al., 2016; Utturkar et
al., 2016). These techniques assume that functional traits are tightly associated with 16S rRNA
phylogeny, and given that genes involved in bacterial secondary metabolism are often
horizontally mobile, these phylogenies are likely to be unreliable predictors of function (Kroll et
al., 2017). Shotgun sequencing of DNA from entire communities can be more instructive for
inferring function and has suggested important roles for functional categories including Fe and N
transport and metabolism, secretion systems, chemotaxis and motility (Sessitsch et al., 2012;
Mendes et al., 2014; Ofek et al., 2014; Bulgarelli et al., 2015). Nevertheless, this approach is
challenging due to the high diversity of bacteria living in and around roots, abundant plant DNA,
and the relatively poor annotation of genes identified in the plant rhizosphere, where 59% of the

microbial genes have no known function (Ofek et al., 2014).

On the other hand, sequencing data can be incorporated into phylogenetic analysis of rhizosphere
communities and this can help to generate hypotheses about the different ecological processes in
community assembly, a technique widely used in the eukaryote literature (Vamosi et al., 2009).
For example, the fact that rhizosphere bacteria represent a limited pool of the available soil
microbes implies that there is a functional filter (e.g. metabolic adaptation to root exudates) for
community membership. The fact that members are phylogenetically ‘clustered’ into a few
major groups also indicates that these functional attributes can be vertically inherited.
Conversely, if members are distributed evenly across phylogenetic trees this is consistent with a
pattern of competitive exclusion in which co-existence of near relatives is prevented by

competitive interactions between organisms with similar niches (Vamosi et al., 2009).
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Ultimately, specific hypotheses about the importance of different processes (competition,
functional filters) in community assembly can be tested by measuring traits (Vamosi et al.,

2009).

We can make further tests of community assembly hypotheses by growing plants in controlled
“common garden” designs that manipulate the source of microbes & physical growing conditions
and the plant species used to capture microbial species (Hacquard et al., 2015). The extent to
which plants capture similar communities between replicates and across growing conditions
allows us to test if plants are robustly associated with particular bacterial groups. A previous
culture independent study (using high throughput 16S rRNA sequencing) examined community
structure across two soil types and four crop plant species (Matthews et al., 2019). Here, we
used a culture-based approach to make a functional characterization of bacterial isolates from the
same experiment in order to complement the culture-independent approach. Cultured isolates
were also characterized by 16S sequencing so we could examine the phylogenetic structure of
different communities and make comparisons between traits and communities that take the non-

independence caused by evolutionary history into account (Orme et al., 2012).

Given the importance of horizontal gene transfer for ecological important bacterial traits our key
hypothesis was that functional traits would be better able to predict community membership that
simple phylogeny. This hypothesis therefore predicts that phylogeny will be a weak predictor of
morphological function at least for some traits, or more formally that traits can have low
phylogenetic signal. Another prediction that derives from this hypothesis is that different
communities would vary phenotypically in terms of their mean functional trait values. We also
planned to use phylogenetic analyses of communities to examine broad-scale differences in

structure between distinct ecological communities, i.e. to test for differences in clustering and
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evenness that might indicate the different importance of vertically inherited traits and

competition in community structure traits (Vamosi et al., 2009).

We explored the relative importance of competition, metabolism and host plant through our
choice of functional traits, selecting four broad trait classes that are proposed to contribute to
rhizosphere colonisation. First, antagonistic competition should select for high tolerance of
antimicrobials, so we scored differences in susceptibility to a panel of antibiotics. We also
examined resource-based ecological attributes by quantifying enzymatic activity on carbon
sources commonly produced by plant roots and by examining growth on complex resources. The
latter could test for variation in growth rate generally, for specialization on resources derived
from a subset of host plant species, as well as the extent to which isolates were adapted to high
nutrient (copiotrophy) or low nutrient environments (oligotrophy). Finally, plant growth-
promoting (PGP) traits (phosphate solubilization, heat tolerance, auxin production) have been
widely used to screen rhizobacterial isolates for plant beneficial attributes and remain good
candidates for functional traits that are important for host manipulation or selection. As a culture-
based methodology, this comes with limitations. Nevertheless, we argue that the coupling of
culture-dependent approaches with high throughput sequencing (Matthews et al., 2019) can be a
powerful means of exploring the specific functions involved in colonization of the rhizosphere

(Lugtenberg et al., 2002).

Results

Study context

Four crop species were grown in controlled experimental conditions in soils originating from two

different habitats (grassland and woodland), recovered from Silwood Park, UK (Matthews et al.,
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2019). In order to determine how these two environmental conditions interact to determine the
make-up of communities, we used a split plot design with 40 pots and each of the four species
grown in a single pot, subdivided by plastic inserts. Three 40 L soil samples were collected from
subsites across both habitats then, independently sifted, mixed and decanted, approximately 5L
per 7.5L pot. Per subsite 7 pots were filled to a total of 42 pots, 21 per soil type. Pots were
directly sown with, 20 onion, 6 pea, 10 tomato, and 6 sweet corn surface sterilised seeds.
Approximately 2 months later pots were sampled destructively over 3 weeks (Matthews et al.,
2019). The provenance of isolates in this study is known in terms of their soil origin: grassland or
woodland soils; and their isolation host species: Allium fistulosum L. var Ishikura (onion); Pisum
sativum L. var Twinkle (pea); Solanum lycopersicum L. var MicroTom (tomato); Zea mays L.
var Minipop (sweet corn). While previous work explored variation in bacterial community
structure via 16S amplicon sequencing, here we used culture on standard media to generate a

large collection (593) of bacterial isolates to examine both functional and phylogenetic variation.

Culturable isolate diversity was surveyed in three steps. First, we isolated six distinct
morphotypes from each bacterial cell enrichment produced from each species, per pot, for each
of 40 pots. Of these 960 isolates, 593 were isoclonal, experimentally tractable and provided
satisfactory 16S rDNA sequence data. Subsequently, a phenotypic survey was used to
characterize 19 traits and these data were combined in a comparative phylogenetic analysis

focusing on the associations between taxa and traits with hosts and soils.

General description of communities

Trait data, phylogeny and taxonomy of 593 isolates are summarised at genus level in Fig. 1A. A

genus level analysis comparing phylogenetic and functional classifications shows that phylogeny
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and function are relatively uncoupled, confirming our prediction that 16SrRNA sequences would
be poor predictors of phenotype (Fig 1B). This genus level analysis trades off taxonomic
resolution against sensitivity to trait variance (which can be high isolate to isolate, Figure S1).
Communities recovered from different plants and soils vary with respect to the total numbers of
isolates recovered and their taxonomic composition (Fig. 1C). Bacterial isolates were recovered
from 37 genera in four Phyla; predominantly y-Proteobacteria. The y-Proteobacteria alone

comprise 68% of the culturable bacteria, and are dominated by Pseudomonas and Enterobacter

spp..

Bacterial alpha diversity at the genus level shows no difference between soils (Table S1). On
average grassland communities comprise 8.58 genera, woodland communities 8.25 genera,
Welch Two Sample t-test (t = 0.2 df = 20.36 p = 0.78). Likewise, there is no significant
difference in alpha diversity between hosts. Communities where taxa are clumped on the
phylogeny tend to have a lower phylogenetic diversity (PD), because the isolates in these
communities capture a smaller part of the total phylogenetic diversity. For instance, PD is higher
in Solanum than Pisum communities, and lower in Zea compared to Allium or Solanum
communities. These patterns occur in spite of Zea communities comprising more isolates in both

soils (Fig. 1C).

Factors shaping community composition

We tested whether community membership (plant and soil origins of isolates) explained
variation in phylogenetic or functional traits. In support of our main hypothesis, functional traits
proved to be ecologically more informative than phylogeny in shaping communities. Although

phylogenetic and trait composition data were correlated (r = 0.77 p = 0.001) the multivariate
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analysis of communities by functional traits (Fig 2A, ADONIS AIC 59.2) has greater
explanatory power than that of phylogeny (Fig 2B, ADONIS AIC 97.8). The communities are
shown clustered by NMDS of phylogenetic distance (MNTD) (Fig. 2A), and Bray-Curtis
dissimilarity of Euclidian trait distances (Fig 2B). In both analyses, host species account for the
highest variation (ANOSIM-Phylogenetic: R =0.31 F = 2.9 p = 0.03; ANOSIM-Traits: R = 0.44
F =5.3 p =0.001). In contrast, relatively little variation between the isolate communities is
explained by differences between soil origin (ANOSIM-Phylogenetic: R=0.01 F=0.2 p =0.7),
(ANOSIM-Traits: R = 0.05, F = 1.2 p = 0.36). There is no support for an interaction between soil
and host (ANOSIM associated p > 0.7) and soil subsite has a variable contribution to
phylogenetic or trait structure (Table 1). Thus, phylogenetically and functionally, host plant has a

stronger impact on isolate community structure than soil type.

The relationship between phylogeny and function

Although phylogeny does not reliably predict phenotype (Fig 1B), traits typically showed
phylogenetic signal and were not randomly distributed across the phylogenetic tree (Table 2, see
Fig S2 for branch length analysis). However, phylogenetic signal did vary between traits and
was often weak, while there were traits with near random distributions. For example, estimates
of Pagel’s A approached 0 for traits such as erythromycin and polymyxin susceptibility,
suggesting no phylogenetic signal (Table 2). In contrast, p-D-glucosaminidase, streptomycin
susceptibility and phosphate solubilization had strong phylogenetic signal (Table 2). Most
carbon-metabolism traits and all PGP traits showed phylogenetic signal, although parameter
estimates were often modest. By inspection of phylogenies, we also observed that trait patterns

were highly variable within clades and not always divergent between clades (Fig. 1A).

This article is protected by copyright. All rights reserved.



Accepted Article

However, significant phylogenetic structure sometimes derives from signal in a limited region of
the tree. To address this, we explored how phylogenetic signal varied among five taxonomic
ranks. Of these ranks, family explained the majority of variation in most traits (Fig. S3) and
genus explained the least, i.e. the majority of variation in traits lies between families. For
example, the Streptomycetaceae exhibited low antibiotic susceptibility (Moran’s I range 0.41 -
0.52), while the Acinetobacteriaceae and Leclerciaceae are approximately 10 times more
susceptible to antibiotics (Moran’s I range 0.04 - 0.06). Moran’s I at a family level broadly
agreed with estimates of Pagel’s A, for example both Moran’s I and Pagel’s A identified a near-

random distribution for B-xylosidase and Zea root medium (Table 2).

Comparing phylogenetic structure between communities

Bacterial trait diversity (mean Euclidian distance) at the genus level showed no difference
between soils, being 0.25 in grassland soil and 0.2 in woodland soil (Welch Two Sample t-test t
=0.1df =20.4 p =0.90). Bacterial communities from Solanum roots are comparatively
phylogenetically even, meaning that individual members are more distantly related from each
other than expected by chance, (SES > 0), while communities from Zea were phylogenetically
clustered, being more closely related than expected by chance (SES < 0). In contrast to
phylogenetic diversity, trait diversity was more correlated between hosts (ANOVA F;3 5o = 3.374,
p = 0.0387). Trait diversity was lower than expected in Zea root communities (SES-MPD < 0),
although these communities had above average species richness (SR). Phylogenetic diversity
(PD) was also significantly higher in Zea than in Allium root communities (diff = 3 EDU post-

hoc Tukey HSD adjusted p = 0.025).

Ecological relationships between traits and communities
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We also sought to explore how communities differed from each other in terms of individual
traits, to complement multivariate and clustering analyses above. These analyses used
normalized means, which for growth data were the slope of productivity changes in response to
changes in concentration (Fig 3). Comparison used a phylogenetic-generalized least squares
approach (PGLS -see methods) which accounts for the fact that lineages may share similar
values through recent evolutionary history (non-independence). PGLS revealed significant
variation between communities in terms of antibiotic susceptibility and in terms of growth in
complex media and PGP function for a number of traits; metabolic traits were relatively similar

between communities (Fig 3).

Consistent with diversity analyses above, host was often the most important factor shaping trait
variation. Host plant significantly affected three of the six antibiotic susceptibility traits:
nalidixic acid (trait Nal, Fig 3; F3593 = 5.9, p < 0.001), streptomycin (Strep, Fig 3; F3593= 2.6, p
< 0.05), tetracycline (Tet, Fig 3; F3s93= 3.1, p < 0.05;) while typically Solanum communities
were less susceptible to antibiotics overall (Fig 3). In the case of nalidixic acid, for example,
Solanum communities were significantly less susceptible than Pisum (t = 3.4 p < 0.005, df =
585) or Zea communities (t = 3.3, p < 0.01, df =585; Fig 3). Both ampicillin and erythromycin
(Amp, Ery) had comparable weaker effects on microbial productivity at the highest dose tested

(Fig 3B).

After accounting for phylogeny, isolate communities differed significantly in three of the six
metabolic traits. ATP production differed with both host, and host interaction with soil (Host,
Fa503 =5.2 p =0.002; Host*Soil, Fss93 = 3.4 p =0.02). A similar pattern was shown by f3-
xylosidase activity (Host, F3593 = 5.8 p < 0.001: Host*Soil interaction Fgsg3 = 3.3 p < 0.05, Soil

p =0.1). For B-D-glucosaminidase activity, host, soil and their interaction contributed relatively
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equally as predictors (Host, F3593 = 3.1 p < 0.05; Soil, F3593 = 4.7 p < 0.05; Host*Soil Fgsg3 =

3.2 p < 0.05).

Host plant association affected growth on two of the four complex resource traits: tomato root
exudate medium (TREM) and Zea root medium (ZRM) (F4593 = 6.8, p <0.0001; F4503 =5p <
0.005 respectively), although there were similar trends in all the traits in that Pisum and Zea
communities were the most sensitive to declining nutrient conditions, a pattern indicating
copiotrophy. The oligotrophy/copiotrophy axis was most strongly tested with TREM media as
this supported least growth of all the complex media (Fig 3B). Zea root media supported similar
levels of growth to LB (Fig 3B). Here Zea communities did not suffer reduced growth as LB
was replaced with Zea root medium (ZRM slope = 0.45), but the Pisum community did and was
more sensitive to Zea root medium than the Solanum community (t = 3.4, p < 0.005, df = 585)
and the Zea community (t = 3.5, p < 0.005, df =585), see Fig 3A. Pisum communities also
showed declining productivity with increased Solanum root media concentration (Fig 3, trait

SRM) although this was not significant in the PGLS comparison.

All three PGP traits presented significant community variation in the PGLS analysis. Heat
tolerance (Htol) was strongly correlated with host (F4 593 = 3.43, p = 0.02) but not with soil (p >
0.1). Heat tolerance was significantly greater in Pisum than Solanum communities (t=2.9, p =
0.02, df = 585). Phosphate solubilisation (Psol) showed a phylogenetically significant interaction
between ecological groups (Host*Soil, Fgs93 = 4.6, p < 0.005). This interaction was largely due
to increased phosphate solubilisation in Grassland Zea compared to Woodland Pisum
communities (t = 3.3, p = 0.025, df = 585). IAA production, like phosphate solubilisation, also
showed a relatively strong interaction between host plant species and soil (Host*Soil Fgs93 = 3.9,

p < 0.01) but weaker main effects of host and soil (Host, F4593= 2.6, p = 0.052; Soil, F3593 = 4.0,
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p = 0.0456).

Correlations between traits

In order to explore whether there were common ecological or physiological factors affecting
similar traits among communities we performed a multivariate analysis of trait covariance on all
functional data. Pairwise correlations among traits were not always significant after accounting
for phylogenetic effects. For example, antibiotic susceptibility traits were for the most part
positively correlated with each other after accounting for phylogeny (Fig 4). In contrast, the raw
data suggested a positive correlation between metabolic traits associated with carbon

metabolism, but this was not robust after accounting for phylogenetic effects (Fig 4).

In addition, antibiotic susceptibility traits tended to be negatively correlated with ATP

production (ATP), B-xylosidase (B-xyl), and B-D-glucosaminidase activity (p-D-gluc-a). Two
antibiotic susceptibility traits were also negatively correlated with growth on Solanum root media
(Fig 4, Fig S4). We also observed correlations between heat tolerance and some antibiotic and
metabolic traits (Fig 4). A PCA analysis of trait covariation showed that metabolism and
antibiotic susceptibility traits correlate closely with PC1- the first axis of trait covariance,

explaining 22% of variation (Fig S4, S5).

Discussion

Here we analysed differences in bacterial abundance, diversity and functional traits in
rhizosphere communities. Bringing ecological, genotypic and functional trait information

together, we aimed to identify trade-offs among traits and the degree to which they covary with
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rhizosphere community ecology. Our main finding is that functional traits predict root-associated
bacterial communities better than phylogenetic identity alone, suggesting that phenotypes and
functional specificity are important for rhizosphere community assembly. Thus, isolates from
similar communities tend to share similar functional trait values even when their phylogenetic
composition differs. In this study Pisum, Solanum and Zea communities are relatively diverse
phylogenetically, but are functionally relatively conserved. Only one of the four communities
(that on Allium) was phylogenetically conserved and also more variable in the functional trait
values of community members (Fig 2). Previous high-throughput 16SrRNA gene sequencing of
this experiment has also shown that Allium communities were phylogenetically conserved and
that Zea and Pisum communities were variable (Matthews et al,. 2019) which confirms these
broad findings. However, insights into the limits on functional variation in communites, which
were independent of phylogenetic identity, would have been impossible without this

complementary phenotypic study.

Differences in resource availability between plant species and competition between microbes are
likely to be the dominant forces shaping rhizobacterial communities (Philippot et al., 2013;
Baltrus, 2017). This study does not provide straight-forward support for simple adaptation to
species-specific resources. For instance, there was very little variation between communities in
key enzymatic traits used to exploit complex root-associated carbon resources. This lack of
variation may arise because these traits are essential for membership of rhizobacterial
communities generally, but not important for species specificity. We might also expect
community members to have more efficient growth on the complex media derived from their
plant of origin. Instead, the overall pattern seen was that some communities tended to be more

productive overall (and more copiotrophic) while other communities fared better in less nutrient
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rich environments.

One explanation for this overall variation in growth is that there are trade-offs between different
classes of functional traits and different phylogenetic groups tend to sit in different places in
these trade-offs (Hibbing et al., 2010; Fierer, 2017; Ho et al., 2017). For instance, investment in
antibiotic tolerance and production (secondary metabolism) may trade off against metabolism.
In this study, antibiotic susceptibility traits tended to be negatively correlated with basal
metabolism. In our multivariate analyses of all trait values, the axis encompassing basal
metabolism and antibiotic susceptibility was the largest principal component, indicating the
importance of this trade-off in trait variation overall (Fig S4). This variation was driven by
phylogeny (Fig S4) so some groups such as Actinomycetales and Rhizobiales have low
metabolism, low antibiotic susceptibility and are more oligotrophic while the y-Proteobacteria
(Enterobacteriales, Xanthomonadales) tended to be at the other end of this spectrum (high
metabolism, high antibiotic susceptibility, copiotrophy). Thus, communities dominated by y-
Proteobacteria (eg Zea and Pisum communities) do less well on complex media and in lower
nutrient conditions, while communities with a higher proportion of Actinomycetales and
Rhizobiales (Solanum and Allium communities) and showed lower antibiotic susceptibility and

more robust growth in low nutrient conditions.

The likely importance of competitive interactions in community structuring was our motivation
for measuring antibiotic susceptibility. Antibiotics can mediate antagonistic species interactions,
benefiting producers in competitive, often nutrient-enriched, habitats (Williams and Vickers,
1986; Martinez et al., 2009). Antimicrobials have been shown to modulate transcription of genes

that influence nutrient acquisition, virulence, motility, antibiotic production and biofilm
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formation (Ryan and Dow, 2008; Kinkel et al., 2014; Lareen et al., 2016) and thus may play a
role in orchestrating microbe-microbe interactions in the rhizosphere, where complex
multispecies communities form biofilms at the root surface (Schlatter and Kinkel, 2015; Yang et
al., 2019). Thus antimicrobial production and tolerance may have complicated roles in
community assembly, perhaps affecting community composition before host selection occurs
(Romero et al., 2011; Cornforth and Foster, 2013). There are two lines of evidence suggesting
that competitive interactions might have different importance in different plant communities in
this study. First, Solanum and Pisum communities had distinct antibiotic susceptibility profiles
relative to the other communities, with Solanum isolates having low antimicrobial susceptibility.
Second, Solanum communities showed high phylogenetic evenness, a pattern associated with
strong competitive interaction preventing the co-existence of closely related members (Vamosi et

al., 2009).

Functional traits showed variation in phylogenetic signal. For instance, xylosidase activity,
which metabolises the xylose prevalent in hemicellulose, a major component of plant cell walls,
had no detectable phylogenetic signal, while p-D-glucosaminidase which is involved in the
breakdown of chitin, a microbial cell wall component predominant in fungi had a very strong
phylogenetic signal. This pattern may reflect widespread horizontal gene transfer, and host
coevolution with specific pathways, rather than specific lineages (Ling et al., 2016). The contrast
between PGP traits and use of complex resources is also interesting. All PGP traits showed
phylogenetic signal, 1AA (plant hormone) production and phosphate solubilisation are notable
given their use as markers for plant growth promotion (Rolli et al., 2017). At the family level,
the Enterobacteriaceae and Pseudomonadaceae have the largest values of both these traits (Fig

S4). The consequence of using such traits to identify plant growth-promoting bacteria is
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potentially to limit the taxonomic pool of isolates in any screening process. Given our results,
this may have the effect of excluding the more oligotrophic taxa such as the Actinomycetales,
even though these may be more competitive on some host species. In contrast to antibiotic and
metabolic functional traits, where the host is the dominant driver of communities, differences in
phosphate solubilisation and IAA production appear to be linked to different soils, the

implication being that these traits are not equally important in all habitats.

Culture-based studies inevitably imposes biases in terms of what can be sampled and grown.
Here we have the advantage of a high throughput 16S rRNA gene sequencing analysis of the
same experiment (Matthews et al., 2019). This means we can make some fruitful comparisons
between this culture and functional based study and a culture independent approach. Both studies
identified that plants, rather than soils, shape rhizosphere communities. However, as might be
expected, differences in bacterial community structure and composition between different host
and soil groups are more pronounced in the high-throughput 16S rRNA gene sequencing analysis
than in the culturable subset analysed here (Matthews et al., 2019). For example, culture-
independent community structure analysis of OTUs indicates a higher -diversity between hosts
than soils. Our estimates of the least diverse rhizosphere community, Grassland Allium, via next
generation 16S rRNA gene sequencing, are predictably, much larger than culturable estimates
(Mean observed OTUs = 690 + 63). However, culturable diversity is known to be a poor means
of estimating alpha diversity as it introduces uneven sampling or phylogenetic bias (Donachie et
al., 2007). Understanding bacterial root communities from a community ecology perspective
requires interdisciplinary approaches as they are inherently complex: diverse, dynamic, and
spatially heterogeneous (Hinsinger et al., 2005; Thompson et al., 2017). A different and deeper

understanding of community assembly emerges from having both high-throughput culture
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independent data and functional data on phenotypes: functional traits are more significant than
phylogeny alone. Given the prevalence of horizontal gene transfer in microbes, and our
incomplete understanding of DNA sequences, there is still much value to be extracted from

culture-based approaches.

Experimental Procedures

Genotypic characterisation. Isolates were genotyped by sequencing the variable region V1-V3
of the 16S rRNA gene. The following oligonucleotides were used for PCR: 27f 5°-

AGAGTTTGATCMTGGCTCAG -3 and 519r: 5°- GWATTACCGCGGCK- GCTG -3’ (Lane,
1991). PCR cycling conditions were as follows: initial denaturation at 95°C for 5 min, followed
by 3 loops each of 15 cycles of denaturation at 95°C, loop 1. 94°C, loop 2, 93°C loop 3, for 30s
respectively followed by annealing for 1min at 57°C and extension at 72°C, and a final extension
at 72°C for 7min. The PCR product was enzymatically cleaned by incubation for 15min at 37°C

followed by 15min at 80°C with 1.8l ExoSAP mix containing 0.1ul Exonuclease I and 0.1pl
Antarctic Phosphatase in 1.6ul Exol-Buffer (NewEngland Biolabs). Sequencing reactions were
conducted using BigDye terminator v3.1 cycle sequencing kit (Life Technologies Ltd. Paisley,
UK) using the 27f primer only. The sequencing product was cleaned using ethanol and sodium
acetate precipitation, and run on a 3130xI Genetic Analyzer (Applied Biosciences Inc, Foster

City CA). Electropherograms were quality checked and edited using Geneious (v5).

Antibiotic susceptibility: The first class of functional traits was growth in the presence of six
antibiotics chosen as representatives of the main antibiotic classes known in soil: ampicillin,

erythromycin, nalidixic acid, polymyxin, streptomycin and tetracycline. Isolate growth kinetics
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were surveyed in 96-well plates containing 198ul of media of one of four doses (0, 5, 10 &
20ug/ml) of each of six antibiotics described in detail in supplementary methods table SM1.
Plates were inoculated with 2ul of 1000x dilution overnight culture and read on a BioTek
Synergy 2 plate reader stacker (BioTek Instruments Inc.) recording optical density (OD) at
wavelength of 600nm every hour for 72 hours. Growth curve data were used to calculate

summary values for maximum growth rate, maximum density, total growth and doubling time.

Carbon metabolism: Each isolate was also assessed for overall metabolic rates and enzymatic
activities against substrates likely to be present in the rhizosphere (Lynch and Whipps, 1990;
Rudrappa et al., 2008; Bogino et al., 2013). Metabolic traits included: ATP production (overall
metabolism), a-Glucosidases, -Glucosidases, 3-D-cellobiosidases, Xylosidases and N-acetyl-f3-
Glucosaminidases activity. For each isolate relative metabolic activity was surveyed using
BacTiter-GloTM Microbial Cell Viability Assay (Cat No. G8230, Promega, hereafter BacTiter-
Glo). We determined relative ATP content within a sample, based on the luminous quantification
of ATP. 25ul BacTiter-Glo was automatically added using the plate reader’s reagent dispenser to
100ul of 1000x dilution of overnight culture in 0.85% (w/v) NaCl. Emitted log luminescence
was detected immediately and a total of 5 measurements were taken over 2 minutes using the
BioTek Synergy 2 luminosity plate reader. The maximum value of a curve fitted to these data is
our estimate of relative ATP content. The enzymatic activity assays for carbon sources used
fluorescent moiety bound substrates described in supplementary methods table SM2. This

details substrates, target enzymes, their general catabolic action and experimental protocols.

Complex resource use: Growth on four complex media traits were quantified: two synthetic

media Lysogeny Broth (LB) and Tomato Root Exudate Medium (TREM), after (Bertani, 1951;
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Meyer and Abdallah, 1978; Lugtenberg et al., 2002) and two naturally derived media, Zea mays
and Solanum lycopersicum root medias. Isolate growth kinetics were measured using the 96-well
plate method described for antibiotic dose response assays above. Here, we aimed to characterize
growth on species-specific media and to characterize isolates on a gradient of copiotrophy
(efficient growth on high nutrient conditions) and oligotrophy (efficient growth on low nutrient
conditions). We therefore measured how growth changed as LB was diluted and replaced with
water or less nutritious root media, hypothesizing that oligotrophs would maintain robust growth
as the high nutrient media (LB) was diluted. Data were summarised as slopes of change in area
under the curve (AUC) in response to changing concentration of media, details are included in
supplementary methods SM4. Methods for preparation of media including root derived media

are provided in supplementary methods SM3.

Plant growth-promoting functions: The PGP traits scored in this scheme included heat
tolerance, phosphate solubilisation and indole acetic acid (IAA) production (Kamilova et al.,
2005; Mendes et al., 2013; Rolli et al., 2017). Pasteurisation was used to screen for heat

tolerance. Isolates were cultured in 96-well flat-bottomed plates in 180ul of broth for 24 hours at

constant temperature 30°C and shaking at 150rpm. Three media were tested: 2%LB (w/v), DSM
(Nicholson and Setlow, 1990) and HCO (Lecadet et al., 1980). Detailed media recipes are

provided in Supplementary Methods SM5. An aliquot of 100ul, was transferred to PCR plates

and incubated at 55°C for 20 min. Tolerant cells were recovered by plating on LBA plates and
growth recorded after incubation for up to a week. Additionally, LB broth was returned to the
pasteurisation plate and the procedure was repeated after 24 hours further incubation. The ability
to solubilise phosphate was ranked 0-5 by comparison of the zone of insoluble tri-calcium

phosphate (TCP) clearance when colonies were grown for 5 days on Pikoviskaya Agar
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(Pikovskaya, 1948). IAA production was assayed by colour change in broth cultures grown with

excess tryptophan and treated with FeH2SO4 0.5M. Examples of spot test data are provided in

supplementary methods SM6.

Phylogenetic analysis: We produced a phylogeny for the 593 bacterial isolates using maximum
likelihood (ML) and the weighted neighbour joining method of (Bruno et al., 2000). The ML-
WEIBOR tree was annotated with names via alignment to the Ribosomal data base project
(RDP) classifier (infernal v10 16S rRNA DB) and Phylip (Felsenstein, 1989; Cole et al., 2014).
Additionally we created a genus level tree manually in Figtree v1.4.2 (Rambaut, 2012) and an
accompanying dataset comprising trait means. Details are provided in Supplementary Methods

SM7. Trait diversity was analysed at both the isolate and genus levels.

Community alpha diversity: We estimated phylogenetic relatedness and taxonomic richness in
culturable bacterial communities defined by their origin in terms of crop species and soil..

Phylogenetic diversity (PD), the total branch length spanned by a community’s sub-tree (Faith,
1992), and species richness (SR) were calculated with the pd function in picante (Kembel et al.,

2010).

Community composition: We measured patterns of phylogenetic relatedness among
communities using the comdist and comdistnt functions to estimate respectively the mean
pairwise distance MPD and mean nearest taxon distance MNTD (the mean distance separating
each species in the community from its closest relative) between pairs of isolates drawn from
different culturable communities. Non-metric multi-dimensional scaling (NMDS) ordinations of
community structure were computed from the resulting distance matrices and plotted in R using

ggplot2 version 1.0.1 (Wickham, 2010). To visualise sample relationships as clusters, two
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factors: Soil type, Host genus, were plotted and tested for significant structuring effects on root-
associated bacterial community diversity with ANOSIM and ADONIS. Correlation between
phylogenetic and functional data was assessed using Mantel tests while comparisons between
these data used permutation ANOVA tests on a thousand stochastic community matrices to
contrast simulated mean dissimilarity to that associated with the observed community matrix.

Tests were implemented in R via VEGAN version 2.0-10 (Oksanen et al., 2008).

We tested the similarity of communities in terms of traits by comparing the standardized effect
sizes (SES) of trait diversity measured as dissimilarity among co-occurring isolates, and
compared this observed trait diversity to a null model in which tips were shuffled randomly 1000
times. Pearson correlation tests were used to test the correlation between phylogeny and traits.
The function oecosimu was used to compare ADONIS models of trait and phylogeny-based

communities.

Trait phylogenetic signal: We measured phylogenetic signal, which is the tendency of related
organisms to resemble each other more than would be expected by chance, with two commonly
used indices: Pagel’s A and Moran’s I (Gittleman and Kot, 1990; Pagel, 1999). For each trait
clustered across the 16S rRNA gene tree we calculated Pagel’s A in the package ‘phylotools’
with the function phylosig (Harmon et al., 2008). Tests were conducted in R v3.6.0 (R
Development Core Team 2008). We tested the significance of A with log- likelihood ratio tests
to examine the significance of phylogenetic dependence by testing the null hypothesis that A =
0, which indicates indicate no phylogenetic signal in the trait data. The A value varies between 0
and 1 but it can exceed 1 depending on the shape of the phylogeny (Freckleton et al., 2002).

Details about the robustness of our analysis are presented in Supplementary Methods SM7.
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Phylogenetic signal at different taxonomic ranks: We tested traits for variation in phylogenetic
signal associated with taxonomic organisation using Moran’s I (Gittleman and Kot, 1990).
Moran’s | is an autocorrelation index and, unlike A, is not based on evolutionary models and is

thus able to make an independent estimate of phylogenetic structure.

Multivariate analysis of traits: We used principal component analysis (PCA) to explore
covariance and the relative importance of functional traits. PCA was performed in R with
princomp to reveal the main axis of variation in the traits based on eigenanalysis of a scaled
correlation matrix using the VEGAN package in R 3.1.0 (Oksanen et al., 2008); the first two

principal components were visualised in R with ggplot (Wickham, 2010).

Phylogenetic significance of interactions between traits and traits and communities: We tested
whether there is a significant relationship between traits using the phylogenetic generalised least
squares (PGLS) approach (Orme et al., 2012). This method assumes that lineages may be
similar based on recent shared phylogenetic history, and so are not independent. PGLS analysis
accounts for the fact that residual errors will be affected by this shared evolutionary history in
order to make unbiased consistent estimates of relationships. Ordinary least squares (OLS)
coefficients were compared to those of PGLS in which the tree structure was expected to affect
the covariance in trait values across taxa evolving by Brownian motion and thus the trait
covariance between any pair of taxa was assumed to decrease linearly with the time (in branch
length) since their divergence. The correlations were visualised as a coloured matrix using the
package ‘corrplot’ (Wei et al., 2017). PGLS correlation significance was manually annotated in

Gimp.

We tested whether a significant relationship between traits and communities was
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phylogenetically significant using a similar approach. PGLS models of traits were tested with
phylogenetic error structure ‘corBrownian’ and the general formula trait x = Host*Soil. Post hoc

Tukey comparisons of ecological factors in community trait means were calculated using the
package ‘Ismean’ (Lenth and Lenth, 2018). The data were visualised as normalised trait means,

calculated as (Community trait mean / Global trait mean).
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Figure 1: Summary of trait and isolate abundance. (A) Shows a genus level summary of the
isolate phylogeny coloured by Class. To the right genus level means of trait data are shown in
heat maps grouped by type of trait. (B) Represents a comparison of the clustering of bacterial
genera based on 16S rRNA gene phylogeny (left) and taxa re-sorted according to functional traits
(right). The consensus phylogenetic tree was made using a partial 16S rRNA gene alignment
with clades collapsed at the level of genus. Hierarchical clustering of traits was based on a Bray-
Curtis dissimilarity matrix of mean genus trait values. The grey lines connect genera, with
coloured bands indicating taxa groups coloured by Class. (C) Summarises the abundance of
isolates at the level of Class from different treatments: Grassland or Woodland soils isolated

from four host species: Allium fistulosum; Pisum sativum; Solanum lycopersicum; Zea mays.

Figure 2: Phylogenetic and functional characterization of root- associated culturable bacterial
communities. Two dimensional projections are shown clustered by a non-metric
multidimensional scaling analysis based on (A) Euclidian trait distance and (B) phylogenetic
mean nearest taxon distance (MNTD). The data are abundance scaled and in both cases values
indicating the degree of fit between the original distances in the matrix and the reproduced
distances within the ordination plots are acceptable (stress = 0.2). Each point represents a single
community, hosts are represented A = Allium (red) P = Pisum (green) S = Solanum (blue) Z =
Zea (purple). Ellipses represent 95% confidence intervals of host groups. Note that data coloured
by hosts are more obviously clustered by dissimilarities in functional traits (A) than phylogenetic

composition (B).

Figure 3: Variation in trait values between communities- (A) Communities are represented as
pooled means of isolates from independent soil samples used to set up 7 experimental pots. Data

are normalised trait means, communities < 1 were below the global mean, community means >1
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above it. (B) Community productivity at the highest concentration tested for antibiotic
susceptibility and complex resource use traits. The boxplots are coloured by host plant, with
means shown as thick horizontal bars, the body of the box is the lower and upper quartiles (25

and 75%), the whiskers show the 5-95% range and outliers are black points.

Figure 4: Isolate - trait interactions. The trait correlation matrix contrasts 19 traits listed down
the auto correlation line. Positive correlations are displayed in blue and negative correlations in
red. Colour intensity and the size of circle are proportional to the correlation coefficients: strong
OLS correlations are indicated by large circles, whereas weak correlations are indicated by small
circles. The colours of the scale bar denote the nature of the correlation with 1 indicating perfect
positive correlation (dark blue) and -1 indicating perfect negative correlation (dark red) between
two traits. Significance of correlation was assessed via PGLS tests that account for non-

independence among related lineages ***P<0.001, **P<0.01, *P<0.05.

Table 1: ANOSIM test results showing comparisons for culturable communities originating
from two different soil types, grassland and woodland, and associated with: Allium, Pisum,

Solanum and Zea plant roots.

Factor Df f R2 [

Trait dissimilarity (Bray-Curtis)

Soil 1,23 1.22 0.05 0.326
Host 3,23 5.32 0.44 0.001
Soil subsite 5,23 1.29 0.26 0.264
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Host*Soil 7,23 0.52 0.04 0.791

Phylogenetic dissimilarity (MNTD)

Soil 1,23 0.23 0.01 0.722
Host 3,23 2.96 0.31 0.032
Soil subsite 5,23 2.50 0.41 0.042
Host*Soil 7,23 0.57 0.07 0.67

Table 2: Variation in phylogenetic signal associated with 19 rhizobacterial traits. Pagel’s A
varies from 0-1, with O indicating that traits are distributed randomly across trees; the associated
likelihood ratio tests of the null hypothesis that A=0. Moran’s I is an autocorrelation index,
assessing the relationship between trait values and phylogenetic distanc, tests here use values
calculated at the family rank. Tests are based on a phylogenetic tree of all isolates (n= 593). All

associated p values summarised as: ***P < 0.001; **P < 0.01; *P < 0.05.

Trait A LR testA =0 |
Ampicillin (a) 0.013 4.93* 0.03**
Erythromycin (b) 6.6x10°° -0.01 0.07***
Nalidixic Acid (c) 0.05 41.5%** 0.16***
Polymyxin (d) 6.6x10™ -0.02 0.06***
Streptomycin (e) 0.34 88.5*** 0.20***
Tetracycline (f) 0.024 13.1%** 0.14***
ATP production (g) 0.0024 0.29 0.10***
a-D-glucopyranosidase (h) 0.071 28.6*** 0.39***
B-D-glucopyranosidase (i) 0.079 24.6%** 0.27***
B-D-cellobiosidase (j) 0.059 14.0%** 0.23***
B-xylosidase (k) 6.6x107 -0.02 0.01
B-D-glucosaminidase (1) 0.41 16.8*** 0.08***
Resource LB:H,O (m) 0.26***
Resource LB:TREM (n) 0.25***
Resource LB:SRM (0) 0.008 1.90 0.15***
Resource LB:ZRM (p) 0.00075 2.07 0.02
Heat Tolerance (q) 0.021 4.78* 0.15***
Phosphate Solubilization (r) 0.071 72.2%** 0.23***
IAA Production (s) 0.058 46.3*** 0.07***
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