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Abstract

In view of the increase in the number of Unmanned Aerial Vehicles (UAVs) in the com-
mercial and private sectors, it is imperative to make sure that such systems are safe, and
thus resilient to faults and failures. This paper considers the numerical design and practi-
cal implementation of a linear parameter-varying (LPV) sliding mode observer for Fault
Detection and Diagnosis (FDD) of a quadrotor minidrone. Starting from a nonlinear
model of the minidrone, an LPV model is extracted for design, and the observer synthesis
procedure, using Linear Matrix Inequalities (LMI), is detailed. Simulations of the observer
FDD show good performance. The observer is then implemented on a Parrot® Rolling
Spider minidrone and a series of flight tests is performed to assess the FDD capabilities
in real time using its on-board processing power. The flight tests confirm the performance
obtained in simulation, and show that the sliding mode observer is able to provide reliable
fault reconstruction for quadrotor minidrone systems.

1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) now permeate the commer-
cial and private sectors, and their low cost and ease of deploy-
ment indicate there is great potential for current and future
applications. The estimated value of the UAV market is expected
to grow by more than 30% from 2016 to 2020 [1]. Multicopters
are expected to play an important part in these figures, partic-
ularly in the commercial and private sectors, with uses rang-
ing from aerial filming and photography to agriculture, deliv-
ery and construction, to name but a few [1]. As their uses
increase, so does the fleet size, and agencies around the world
are pressing for regulations to improve privacy and, above all,
security. In contrast to what is found in civil aviation, where
the human factor is preponderant, analysis of incidents involv-
ing UAVs suggest that around 62% of safety issues originate in
equipment problems, with the main occurrences being opera-
tional damage and loss of control in flight [2]. This data shows
the importance of developing technology that allows UAVs
(and/or their pilots) to cope with faults and failure during
flight.
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Resilience against such events can be sought by means of
Fault-Tolerant Control (FTC) techniques. This area of research
continues to receive a great deal of attention from the commu-
nity due to its clear importance, especially in aerospace appli-
cations (see, e.g. [3] and references therein). In this paper, the
focus is on the problem of Fault Detection and Diagnosis
(FDD), which consists of reconstructing the faults affecting
the system. This allows the designer to take fault levels/signals
into account for the design of fault-tolerant controllers, thus
achieving more resilience to faulty conditions. The design of
FDD algorithms for multicopters using different strategies
has been considered in [4–8]. In this paper, the technique
considered for fault reconstruction is based on sliding mode
observers [9].

Sliding mode observers are a particular type of Variable
Structure Control Systems (VSCS), which are systems charac-
terized by the presence of feedback control laws together with
a decision rule [10]. Sliding mode observers attempt to estimate
the system’s states by ensuring that the observer’s dynamics
slide on a surface where the output estimation error is zero.
This allows the observer to estimate the plant’s internal states
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while tracking its measured output, with the added advantage of
achieving finite-time convergence of the state estimation error.
The use of the equivalent output injection signal to reconstruct
actuator and sensor faults was proposed in [11] and has been
exploited in different applications [12–14]. This approach was
later extended to account for uncertainties in [15] and to tackle
linear parameter-varying (LPV) systems [16]. The case of simul-
taneous actuator and sensor faults was considered in [17–19].
The reconstruction of simultaneous actuator/sensor faults
using other methods has also been reported in the literature
(see, e.g. [20–22]). The application of this class of sliding mode
observers for FDD in multicopters was considered in [23].
Flight tests of sliding mode FDD and FTC schemes have been
reported in [24, 25].

Despite the increased interest for FTC work especially using
SMC schemes, most of the existing work concentrated on simu-
lation. There is a small number of works that consider imple-
mentation on actual hardware (see, e.g. [24, 25]). However,
most of these works consider bespoke or expensive drones and
lab setup which is not available to most researchers. Further-
more, in most countries, there are restrictions and regulations
with regards to flight tests, especially for drones above certain
weight.

The inspiration of this paper is to mitigate the two issues
relating to cost and restrictions with regards to implementation
work of state of the art control schemes (especially FTC and
FDD). In this paper, a sliding mode observer is designed to pro-
vide fault detection and diagnosis for the Parrot® minidrone.
The Parrot minidrone is a low-cost drone (under £100) and
weighs only 68 g (thus avoiding flight restrictions due to its
relative small size and weight). The main contribution of this
paper is the implementation and flight testing of an LPV slid-
ing mode observer on an actual minidrone, with an assessment
of its in-flight FDD capabilities for simultaneous actuator and
sensor faults. The motivations of this paper are (1) to show
that the simultaneous actuator and sensor FDD scheme have
low computational load and is therefore implementable on the
on-board processor of the Parrot minidrone (which has lim-
ited processing power); (2) to show that implementation and
flight tests of state-of-the-art control schemes do not require
expensive setup (such as motion capture cameras and bespoke
drones) and can be implemented almost anywhere. for exam-
ple, in a small confined space. The implementation work using
the Parrot minidrone also take advantage of the official Mat-
lab/Simulink support which allows rapid prototyping of the
control schemes to be implemented quickly without the incon-
venience of writing the code from scratch. The results show that
the observer is able to estimate the system outputs with high
precision while also reconstructing actuator and sensor faults
with good accuracy.

The paper is structured as follows. Section 2 gives a descrip-
tion for the Parrot® Rolling Spider minidrone, with the updated
firmware and control structure used in the flight tests. The
observer design is discussed in Section 3, beginning with the
model description and ending with the numerical implementa-
tion. Finally, Section 4 presents some simulation and flight test
results obtained with the minidrone.

FIGURE 1 Parrot® rolling spider minidrone [26]

2 ROLLING SPIDER MINIDRONE

The Parrot® Rolling Spider is a small quadrotor developed for
educational and recreational purposes (see Figure 1). Its small
size allows it to be flown in confined spaces and ensures that
it is below the minimum weight threshold where pilot reg-
istration is required in many countries. Its educational voca-
tion was consolidated with the development of a hardware
support add-on for Matlab/Simulink [27], based on a tool-
box developed at the Massachusetts Institute of Technol-
ogy [28]. The add-on allows the design and simulation of algo-
rithms for flight control, estimation and observation using a
nonlinear model of the minidrone in Simulink. The devel-
oped algorithms can then be easily deployed to the minidrone
hardware via a Bluetooth connection and tested in actual
flight.

The Rolling Spider gains its name from the pair of wheels
that can be attached to it (see Figure 1). Their purpose is to
protect the drone from physical shocks, to prevent the blades
from causing harm, as well as allowing the minidrone to roll
above or below surfaces. The minidrone alone weighs around
55 g, and 68 g with its wheels attached. Each of the motors
provides 33 g of thrust, for a total of 132 g. It is controlled by
an Arm Cortex-A9, clocked at 800 MHz, that runs an embed-
ded Linux system [28] (as a comparison, a Raspberry Pi has a
64 bit quad-core ARM Cortex A-72 processor, clocked at 1500
MHz, which provides at least twice the speed of the proces-
sor in the Parrot® drone). A 6-axis accelerometer/gyroscope
serves as the inertial measurement unit (IMU), providing trans-
lational acceleration and angular velocity measurements. A pres-
sure sensor and a sonar are used for altitude measurements.
Finally, a 60-FPS downward-facing camera is used to provide
optical flow measurements to estimate horizontal positions and
velocities.

The Matlab/Simulink add-on [27] provides new firmware for
the flight control computer that adds an interface allowing users
to define custom flight control codes as well as new image pro-
cessing capabilities and optical flow handling. The control algo-
rithms are executed by the flight control computer with a sam-
pling rate of 200 Hz, which means a sample time of 5 ms.
The toolbox includes a framework for controller design and
simulation with a nonlinear model in Simulink. A pre-defined
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FIGURE 2 Simplified diagram of the controller structure [27]

controller structure is provided, based on the work reported
in [29]. A simplified diagram of the structure is shown in Fig-
ure 2. Sensor fusion is present to provide estimates of the
minidrone’s states using the raw sensor readings. After a pre-
processing, that handles the calibration offset and some pre-
liminary filtering, the sensor measurements are fed to a com-
plementary filter and to a Kalman filter [27, 29]. The former
is used to provide estimates of attitude and the latter to pro-
vide estimates of position and velocities. The controller receives
the resulting state from the sensor fusion block together with
commands that are pre-programmed by the user (such as posi-
tion/attitude references). The controller consists of a PID con-
troller for pitch/roll control; a PD controller for yaw control
and a PD controller for position control [27]. The controller
provides a reference value for the desired rotation of each of
the four rotors. The state estimates provided by the estima-
tor and the controller output are logged in the internal mem-
ory of the minidrone, and can be accessed post-flight. A set
of rules is present to handle errors during flight, such as a
fault in the optical flow measurements, for example, as well
as the take-off maneuver. The take-off maneuver consists of
a 1 s period during which a fixed command 20% above hover
thrust is given to each rotor and only the attitude control is
active [28].

In this paper, the focus is on the development and flight eval-
uation of a sliding mode observer with the goal of reconstruct-
ing actuator and sensor faults. For this reason, the original sen-
sor fusion block and the controller are not modified and are
directly used in the flight tests, in order to simplify the test cam-
paign. The output of the estimator will hence be used as the
output of the minidrone for the purpose of testing the devel-
oped observer.

3 MODELING AND OBSERVER
DESIGN

3.1 Model of the minidrone

In order to design the observer for the minidrone, a model of
its dynamics is needed. A number of assumptions are made for
this purpose [30]:

- the quadrotor is rigid and symmetric;
- the hub forces and rolling moments are neglected;
- the propellers are rigid;
- the ground effect is neglected;

- motors respond instantaneously.

Using the above (see, e.g. [30, 31]), a control-affine nonlinear
model of the quadrotor can be obtained:

Ẋ (t ) = fX (t ,X ) + gX (t ,X )𝜏(t ), (1)

where the state X is given by

X =
[
x y z 𝜙 𝜃 𝜓 ẋ ẏ ż p q r

]𝖳
,

(2)
with x, y and z being the position along the body x, y, z-axes;
𝜙, 𝜃 and 𝜓 being the roll, pitch and yaw angles; ẋ, ẏ and ż being
the velocity along the body x, y, z-axes; and p, q and r being the
roll, pitch and yaw rates. The input signal 𝜏(t ) is given by

𝜏(t ) = [ 𝜏z (t ) 𝜏𝜙(t ) 𝜏𝜃 (t ) 𝜏𝜓 (t ) ]𝖳, (3)

with 𝜏z representing the total thrust and 𝜏𝜙, 𝜏𝜃, 𝜏𝜓 the roll, pitch
and yaw torques. The nonlinear functions fX (⋅) and gX (⋅) are
given by

fX (t ,X ) =[
ẋ ẏ ż a𝜙(X) a𝜃 (X) a𝜓 (X) 0 0 g ap(X) aq (X) c8 pq

]𝖳
, (4)

and

gX (t ,X ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

06×6

c1bx (X ) 0 0 0

c1by (X ) 0 0 0

−c1bz (X ) 0 0 0

0 c4 0 0

0 0 c7 0

0 0 0 c9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where

a𝜙(X ) ∶= p + q sin(𝜙) tan(𝜃) + r cos(𝜙) tan(𝜃)

a𝜃 (X ) ∶= q cos(𝜙) − r sin(𝜙)

a𝜓 (X ) ∶= q sin(𝜙) sec(𝜃) + r cos(𝜙) sec(𝜃)

ap(X ) ∶= c2qr + c3Ωr (t )

aq (X ) ∶= c5 pr − c6Ωr (t )

bx (X ) ∶= cos(𝜙) sin(𝜃) cos(𝜓) + sin(𝜙) sin(𝜓)

by (X ) ∶= cos(𝜙) sin(𝜃) sin(𝜓) − sin(𝜙) cos(𝜓)

bz (X ) ∶= cos(𝜙) cos(𝜃).

(6)
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TABLE 1 Minidrone parameter definitions

Symbol Parameter Value Unit

m Mass 0.068 kg

Ixx Inertia on the x-axis 6.86 × 10−5 kg×m2

Iyy Inertia on the y-axis 9.20 × 10−5 kg×m2

Izz Inertia on the z-axis 1.37 × 10−4 kg×m2

b Thrust factor 4.72 × 10−8 N×s2

d Drag factor 1.139 × 10−10 N×m×s2

Jr Rotor inertia 1.021 × 10−7 kg×m2

l Moment arm length 4.412 × 10−2 m

and the constant parameters c1 to c9 are given by

c1 =
1
m

c2 =
Iyy − Izz

Ixx
c3 =

Jr

Ixx
c4 =

1
Ixx

c5 =
Izz − Ixx

Iyy
c6 =

Jr

Iyy
c7 =

1
Iyy

c8 =
Ixx − Iyy

Izz
c9 =

1
Izz

. (7)

The variable Ωr (t ) is the residual propeller angular velocity, and
is given by:

Ωr (t ) ∶= −Ω1(t ) +Ω2(t ) −Ω3(t ) +Ω4(t ), (8)

where Ωi (t ) is the angular rate of the ith motor. The definition
of the remaining physical constants is given in Table 1 (in Sec-
tion 3.1 below) along with the corresponding numerical values
for the Parrot® minidrone [27].

For the purposes of the observer design, the nonlinear model
of the quadrotor is rewritten as a linear parameter-varying (LPV)
model. This greatly simplifies the design approach and allows
the use of convex optimization methods with linear matrix
inequality (LMI) constraints to provide a systematic observer
synthesis procedure. In order to simplify the model and reduce
the number of parameters, it is assumed that (�̇�, �̇�, �̇�) ≈
(p, q, r ), that is, the deviations from hover are small [30, 31]. It
is also assumed that the thrust and drag are proportional to the
square of the rotor speed [30, 31]. The states x and y, along with
their respective derivatives, are not included in the LPV model
to reduce its complexity. This is also in accordance with stan-
dard practices for controller design, given that these states are
normally controlled via a second (outer) loop (see, e.g. [31]).
Based on the above, the quadrotor model can be written
as

ẋp(t ) = Ap(𝜌)xp(t ) + Bp(𝜌)u(t ) + Mp𝜉p(t , xp) + Ngg,

yp(t ) = Cpxp(t ) + dp(t ),
(9)

where Ap(𝜌) ∈ ℝ8×8 and Bp(𝜌) ∈ ℝ8×4 are parameter-varying
matrices, while Cp ∈ ℝ7×8, Mp ∈ ℝ8×2 and Ng ∈ ℝ8×1 are
fixed matrices. The time-varying parameters

𝜌(t ) ∶= [𝜌1 𝜌2 𝜌3 𝜌4] =
[
p(t ) q(t ) r (t ) bz (X )

]
,

(10)
are assumed to belong to a compact set Θ ⊂ ℝ4. The LPV
reduced state vector is given by

xp =
[
z 𝜙 𝜃 𝜓 ż p q r

]𝖳
∈ ℝ8, (11)

and the control input u is given by

u =
[
Ω2

1 Ω2
2 Ω2

3 Ω2
4

]𝖳
∈ ℝ4, (12)

with Ωi representing the angular velocity of the ith motor, and
the measured output is

yp =
[
z 𝜙 𝜃 𝜓 ż q r

]𝖳
∈ ℝ7. (13)

The parameter-varying state space matrices are given by

Ap(𝜌) =
⎡⎢⎢⎣
04 I4

04 Ap,22(𝜌)

⎤⎥⎥⎦ Bp(𝜌) =
⎡⎢⎢⎣

04

Bp,2(𝜌)

⎤⎥⎥⎦,

Cp =

[
I5 05×2

02×5 I2

]
,

(14)

with Ap,22(𝜌) and Bp,2(𝜌) defined as

Ap,22(𝜌) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0
c2
2
𝜌3

c2
2
𝜌2

0
c5
2
𝜌3 0

c5
2
𝜌1

0
c8
2
𝜌2

c8
2
𝜌1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bp,2(𝜌) =

⎡⎢⎢⎢⎢⎢⎣

−bc1𝜌4 −bc1𝜌4 −bc1𝜌4 −bc1𝜌4

blc4 blc4 −blc4 −blc4

blc7 −blc7 −blc7 blc7

−dc9 dc9 −dc9 dc9

⎤⎥⎥⎥⎥⎥⎦
.

(15)

The signal 𝜉p(t , xp) ∈ ℝ2 represents the uncertainty in the
model. In the present case, it is assumed that the residual pro-
peller angular speed Ωr (t ) is not perfectly known, and as such
its effect is embedded in the uncertainty as

𝜉p(t ) =
[
c3q(t )Ωr (t ) − c6 p(t )Ωr (t )

]𝖳
, (16)
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and then Mp is defined as

Mp =

[
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

]𝖳

. (17)

The gravitational constant is denoted by g and the matrix Ng

is simply used to distribute the gravitational action to the row
corresponding to the state ż , and is thus defined as

Ng =
[
0 0 0 0 1 0 0 0

]𝖳
. (18)

Finally, dp(t ) ∈ ℝ7 represents a corruption of the output sig-
nal due to imperfect measurement [16]. It is assumed to have a
fixed bandwidth with a first-order low pass filter structure given
by

ḋp(t ) = −ad dp(t ) + ad𝜑(t ), (19)

where ad is a positive scalar and 𝜑 is an unknown but bounded
input signal. Both the uncertainty 𝜉p and the disturbance dp are
assumed to be unknown but bounded. The physical parameters
of the Rolling Spider minidrone can be found in [27] and are
given in Table 1.

Note that the output matrix Cp is parameter independent, and
has full row rank (meaning that no output is simply a linear com-
bination of any other outputs). The input u(t ), the output yp(t )
and the scheduling parameters 𝜌(t ) are assumed to be known
and available to be used by the observer in real time.

3.2 Observer design

This section describes the design of the LPV sliding mode
observer for simultaneous actuator and sensor faults. The
methodology is based on [17].

3.2.1 Actuator and sensor faults

In this paper, it is assumed that the first and third rotors as well
as the vertical velocity sensor (ż) are prone to faults. Based on
this assumption, the LPV system (9) can be rewritten as

ẋp(t ) = Ap(𝜌)xp(t )+Bp(𝜌)u(t )+Hp fi (t )+Mp𝜉p(t , xp)+Ngg,

yp(t ) = Cpxp(t ) + Np fo(t ) + dp(t ),
(20)

with Hp ∈ ℝ8×2 and Np ∈ ℝ7×1. The actuator and sensor faults
are modeled as additive perturbations via the signals fi (t ) ∈ ℝ2

and fo(t ) ∈ ℝ. Consequentially the fault-free conditions are
given by fi ≡ 0 and fo ≡ 0. The actuator faults are assumed to
be deviations from the nominal angular speed of the first and
third motors of the quadrotor. This is modelled by choosing Hp

as the first and third columns of Bp(𝜌). Since the term bc1𝜌4 is
small in comparison to the others, it is neglected for the pur-

poses of the observer design, which yields

Hp =

[
0 0 0 0 0 blc4 blc7 −dc9
0 0 0 0 0 −blc4 −blc7 −dc9

]𝖳
. (21)

Among the outputs of the model, the measurement of velocity
along the body z-axis is assumed to be prone to faults. This
output is chosen as it is estimated based on measurements of
the position in the z-axis, and as such may be more sensitive
to measurement errors. This choice is reflected in the model by
setting

Np =
[
0 0 0 0 1 0 0 0

]𝖳
, (22)

so that the output fault fo(t ) is a scalar that only affects the out-
put channel related to the state ż .

For the design of the observer, the number of fault-prone
sensors (ż) is less than the number of outputs in (13). With a
permutation of the output order, the following canonical form
can be achieved:

ỹp(t ) =

[
yp,1(t )

yp,2(t )

]}
fault-free}
prone to fault

=

[
Cp,1

Cp,2

]
xp(t ) +

[
06×1

1

]
fo(t ) +

[
dp,1(t )

dp,2(t )

]
, (23)

with yp,2 = ż and yp,1 containing the remaining outputs.

3.2.2 Augmented system

In order to be able to reconstruct sensor faults, the approach
presented in [17] requires that the problem be recast as an input
fault formulation. This is achieved by adding a first-order filter
to the fault-prone output yp,2, thus creating a new state x f (t ) ∈
ℝ given (in this case) by

ẋ f (t ) = −A f x f (t ) + A f yp,2(t ), (24)

with A f ∈ ℝ+. By augmenting the state xp in (9) with x f

from (24) and using (23), the following augmented system is
obtained:

[
ẋp(t )

ẋ f (t )

]
⏟⎴⏟⎴⏟

ẋ(t )

=

[
Ap(𝜌) 0

A f Cp,2 −A f

]
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

A(𝜌)

[
xp(t )

x f (t )

]
⏟⎴⏟⎴⏟

x(t )

+

[
Bp(𝜌)

0

]
⏟⎴⏟⎴⏟

B(𝜌)

u(t )

+

[
Hp 0

0 A f

]
⏟⎴⎴⏟⎴⎴⏟

F

[
fi (t )

fo(t )

]
⏟ ⏟ ⏟

f (t )

+

[
Mp 0

0 A f

]
⏟⎴⎴⏟⎴⎴⏟

M

[
𝜉p(t , xp)

dp,2(t )

]
⏟⎴⎴⏟⎴⎴⏟

𝜉(t ,x )

+

[
Ng

0

]
⏟⏟⏟

N g

g.

(25)
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The output of the augmented system is composed of the origi-
nal fault-free output yp,1(t ) and the filtered version of the fault-
prone output yp,2, given by x f (t ):[

yp,1(t )

x f (t )

]
⏟⎴⏟⎴⏟

y(t )

=

[
Cp,1 0

0 I1

]
⏟⎴⎴⏟⎴⎴⏟

C

x(t ) +

[
dp,1(t )

0

]
⏟⎴⏟⎴⏟

d (t )

. (26)

In this paper, the augmented state vector x has a dimension of
9 while the augmented output y is of the same dimension as
yp. The augmented fault f (t ) ∈ ℝ3 now contains both actuator
and sensors faults, while there are no longer faults acting in the
output y. It is assumed that the augmented fault signal f (t ) is
bounded, that is, there exists a known function a ∶ ℝ+ → ℝ+

such that ‖‖‖ f (t )‖‖‖ ≤ a(t ), ∀t ∈ ℝ+. (27)

Finally, the augmented uncertainty 𝜉(t , x ) is of dimension 3.

3.2.3 LPV sliding mode observer

For the design of the observer, it is required that the state-space
representation of the augmented system be transformed into an
output canonical form, which is possible here since C is a fixed
matrix [16]. A condition for the existence of the required coordi-
nate transformation is that rank(Cp,1F ) = 2, which is satisfied in
this case. In the new coordinates, given by x(t ) ↦ Tox(t ) = x̃(t )
as detailed in [16], the state-space equations become

̇̃x(t ) = Ã(𝜌)x̃(t ) + B̃(𝜌)u(t ) + F̃ f (t ) + M̃𝜉(t , x̃ ) + Ñgg,

ỹ(t ) = C̃ x̃(t ) + d (t ),

(28)

and in this new representation, the output and the fault distri-
bution matrices have the special structure:

C̃ =
[
07×2 T

]
and F̃ =

[
02×3

F2

]
=

⎡⎢⎢⎢⎣
02×3

04×3

Fo

⎤⎥⎥⎥⎦, (29)

with T ∈ ℝ7×7 an orthogonal matrix and Fo ∈ ℝ3×3 a nonsin-
gular matrix. The proposed LPV sliding mode observer has the
following structure (in the new coordinate system x̃):

̇̂x(t ) = Ã(𝜌)x̂(t ) + B̃(𝜌)u(t ) − G̃l (𝜌)ey (t ) + G̃n𝜈(t ) + Ñgg

ŷ(t ) = C̃ x̂(t ),
(30)

where x̂(t ) ∈ ℝ9 is the estimated state and ey (t ) ∈ ℝ7 ∶=
ŷ(t ) − y(t ) is the output estimation error. The matrices

G̃l (𝜌), G̃n ∈ ℝ9×7 are the observer gains that will be designed.
Finally, the term 𝜈(t ) ∈ ℝ7 is given by

𝜈(t ) = −
Poey‖‖‖Poey

‖‖‖ , (31)

which represents the nonlinear injection signal that is used to
induce a sliding motion on the surface given by

 = {ẽ ∈ ℝ9 ∣ C̃ ẽ = 0}, (32)

in the state estimation error space. The matrix Po ∈ ℝ7×7 is
a symmetric positive definite matrix satisfying the Lyapunov
equation

(Ãs
22)𝖳Po + PoÃ

s
22 = −I7, (33)

where Ãs
22 ∈ ℝ7×7 is a stable matrix that is used as design free-

dom. In [16], it is shown that selecting the scalar gain  such
that

 >
‖‖‖C F

‖‖‖a(t ) + 𝜂0, (34)

with 𝜂0 a positive scalar and where a(t ) is the bound on
the augmented fault in (27), ensures that sliding is main-
tained on the surface  , despite the presence of faults and
uncertainties.

Let the state matrix in (30) be partitioned as

Ã(𝜌) =

[
Ã11(𝜌) Ã12(𝜌)

Ã21(𝜌) Ã22(𝜌)

]
, (35)

with Ã22(𝜌) ∈ ℝ7×7. The linear and nonlinear gains G̃l (𝜌) and
G̃n have the following structure [16]:

G̃l (𝜌) = T −1
L

[
Ã12(𝜌)T 𝖳 + LÃ22(𝜌)T 𝖳 − Ã11(𝜌)T 𝖳L

T Ã22(𝜌)T 𝖳 − T Ã21(𝜌)T 𝖳L − As
22

]
,

(36)

G̃n(𝜌) = T −1
L

[
02×7

I7

]
, (37)

where TL ∈ ℝ9×9 is given by

TL ∶=

[
I2 L

07×2 T

]
, (38)

with T given in (29) and

L =
[
L0 02×3

]
∈ ℝ2×7. (39)
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The matrix L0 ∈ ℝ2×4 is design freedom that will be leveraged
to ensure a stable sliding motion and to reduce the effect of

the uncertainties 𝜉(t ) and the measurement disturbance d (t ) on
the fault reconstruction performance [15, 16]. The fault recon-
struction is obtained through the notion of the equivalent out-
put injection 𝜈eq (t ), which can be understood as the average
instantaneous level that the nonlinear injection 𝜈(t ) has to take
in order to maintain sliding [32]. In [11], it is argued that, during
perfect sliding, 𝜈eq → F2 f (t ). This suggests that the equivalent
output injection can be used to estimate the aggregated fault
f (t ). In [15, 16], the proposed reconstruction signal is given by

f̂ (t ) = WT 𝖳𝜈eq (t ), (40)

where W ∈ ℝ3×7 is structured as

W =
[
W1 F −1

0

]
, (41)

with W1 ∈ ℝ3×4 being design freedom and Fo defined in (29).
The goal of the design is twofold: synthesize an observer via

the choice of L0 and W1 that is able to estimate the minidrone’s
states and reconstruct actuator and sensor faults while mini-
mizing the effect of uncertainties in the fault reconstruction. In
order to understand how that can be achieved, arguing as in [16],
the operator mapping the uncertainties to the fault reconstruc-
tion error can be written as

ėa (t ) = Aa (𝜌)ea (t ) + Ba𝜉a (t , x̃ ),

e f (t ) = Caea (t ) + Fa𝜉a (t , x̃ ),
(42)

where ea (t ) ∶= col(d̂p(t ), e1(t )) ∈ ℝ9, with d̂p(t ) ∶= T 𝖳dp(t )
and e1(t ) the first two elements of the state estimation
error x̂(t ) − x̃(t ); e f (t ) ∶= f̂ (t ) − f (t ) ∈ ℝ3 is the fault recon-

struction error and 𝜉a (t , x̃ ) ∶= col(𝜉(t , x̃ ), �̂�(t )) ∈ ℝ10, with
�̂� ∶= T 𝖳𝜑(t ) (where 𝜑 is defined in (19)). The matrices
Aa (𝜌),Ba,Ca (𝜌) and Fa are given by

Aa (𝜌) =

[
−ad I7 0

Ã12(𝜌) + LÃ22(𝜌) + ad L Ã11(𝜌) + LÃ21(𝜌)

]
,

Ba =

[
0 ad I7

−(M1 + LM2) −ad L

]
,

Ca (𝜌) =
[
−W Ã22(𝜌) − adW −W Ã21(𝜌)

]
,

Fa =
[
WM2 adW

]
,

(43)
where M1 ∈ ℝ2×3 and M2 ∈ ℝ7×3 are defined by the partition

M =

[
M1

M2

]
. (44)

Since both the uncertainty 𝜉(t , x̃ ) and the signal 𝜑(t ) are
assumed to be bounded, the system (42) describes an LPV
operator from 

10
2e

(ℝ+ ) into 
3
2e

(ℝ+ ). The operator is stable
provided that Ã11(𝜌) + LÃ21(𝜌) is stable via an appropriate
choice of L. Given that Ã(𝜌) depends affinely on the schedul-
ing parameters 𝜌 and that these are bounded, an equivalent
polytopic representation of the LPV operator can be found
by using the 24 vertices of Θ. Let 𝜌i denote the ith vertex of
the polytope defined by Θ, with i ∈  ∶= {1, … , 24}. Define
Aa,i and Ca,i as fixed matrices obtained by replacing 𝜌 by 𝜌i ,
that is, Aa,i = Aa (𝜌i ) and Ca,i = Ca (𝜌i ). Using the bounded real
lemma [16], an upper bound 𝛾 > 0 on the 2-gain from 𝜉a to
e f can be computed provided there exist matrices L0 ∈ ℝ2×4,
W1 ∈ ℝ3×4, Pad

∈ ℝ7×7 and P11 ∈ ℝ2×2 such that the follow-
ing problem can be solved:

Minimize 𝛾

subject to:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣
A𝖳

a,iP1 + P1Aa,i P1(BaΔ) C 𝖳
a,i

(BaΔ)𝖳P1 −𝛾I10 (FaΔ)𝖳

Ca,i (FaΔ) −𝛾I3

⎤⎥⎥⎥⎦ ≺ 0, ∀i ∈ .

P1 =

[
Pad

0

0 P11

]
≻ 0

(45)
In (45), the matrix Δ ∶= diag(𝛿1, 𝛿2), where 𝛿1 ∈ ℝ3×3 and

𝛿2 ∈ ℝ7×7 are diagonal matrices with positive elements. These
constitute a multiplicative weight to Ba and Fa to allow the
designer to tune the relative importance of the uncertainties

𝜉(t , x̃ ) and the measurement corruption d̂p(t ). Crucially, prob-
lem (45) is a convex optimization problem with linear matrix
inequality constraints [33], for which there are several commer-
cially available efficient solvers.

3.2.4 Design summary

In this section, a brief summary of the design procedure is pro-
vided.

1. Write the system dynamics in the LPV form of (9);
2. Select which actuators and sensors are prone to faults, and

permute the outputs so that the potentially fault-prone sen-
sors are the last elements of the output vector as in (23);

3. Select a matrix A f to filter the fault-prone sensors and
obtain x f (t ) in (24)—a filtered version of the output. Aug-
ment the LPV system with these filtered states to obtain the
augmented representation (25) and (26);

4. If necessary (and provided that rank(Cp,1F ) = 2), permute
the states and outputs to obtain the output canonical repre-
sentation where (29) is satisfied;
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5. Select a matrix As
22 in view of the desired dynamics before

sliding is attained, and solve (33) to obtain Po;
6. Choose an appropriate value for ad in view of the charac-

terization of the measurement corruption dp(t );
7. Choose appropriate diagonal entries for matrices 𝛿1 and 𝛿2

to form the weighting matrix Δ;
8. Select the compact subset Θ defining the validity of the

LPV model. Obtain from Θ a polytopic representation of
the LPV system with vertices in .

9. Solve the optimization problem (45) with an appropriate
numerical solver.

10. Obtain the linear and nonlinear gains G̃l (𝜌) and G̃n as well
as the reconstruction matrix W based on the optimization
solution.

11. Select an appropriate value for the injection gain  in view
of (27);

12. Simulate the observer, and fine tune the design by changing
As

22,A f , ad , Δ and  if necessary.
(Remark: the selection of tuning parameters in step 12 will
be described in detail in the subsequent subsection.)

3.3 Numerical synthesis and
implementation

In this section, the synthesis of the observer described in the
previous section is described for the Parrot® minidrone. First,
a limit of validity for the LPV model must be established via
the bounded set Θ for the resolution of Problem (45). Since the
construction of the LPV model is based on the assumption that
the perturbations from hover are small, the minimum and max-
imum bounds for p(t ), q(t ) and r (t ) are selected as ±1 rad/s.
Together with the natural bound on the term bz (X ), this yields
Θ = {𝜌i ∈ [−1, 1], for i = 1, … , 4}.

The LPV system is put in the canonical form (29) by apply-
ing the coordinate transformation x(t ) ↦ Tox(t ) and the output
permutation ỹ(t ) = T1y(t ), with

To =

⎡⎢⎢⎢⎣
0 I2 0

I4 0 0

0 0 I2

⎤⎥⎥⎥⎦ and T1 =

⎡⎢⎢⎢⎣
I4 0 0

0 0 I2

0 1 0

⎤⎥⎥⎥⎦. (46)

Here, the filter matrix A f in (24) is selected as A f = 1.
As discussed in [34], selecting A f with large diagonal values
increases the bandwidth of the output filter, and thus improves
the state estimation performance, while smaller values may
improve (reduce) the upper bound 𝛾 on the 2-gain from the
uncertainties to the fault reconstruction error. The latter is the
focus in this paper, and hence this is reflected in the tuning of
the A f parameter. The design matrix As

22 is chosen as −10I7
to help ensure that sliding is achieved in a short time. The
parameter ad in (19) can also be used by the designer as a “tun-
ing knob”. After tuning, here its value is chosen as ad = 0.01.
This characterizes a signal dp(t ) with a short bandwidth, but
does not affect the performance of the system. Finally, the scal-
ing weights are chosen as 𝛿1 = diag(1, 1, 50) × 10−4 and 𝛿2 =

TABLE 2 Flight test description matrix

Case

Simul. Flight Maneuver Fault

S0 F0 Step in x No faults

F1 Ramp in x and step in z Ramp fault in the sensor

F2 Triangle in x Loss of efficiency fault in both
actuators

F3 Ramp in 𝜓 Step faults in both actuators and
in the sensor

F4 Triangle in y Sine-wave fault in motor 3 and in
the sensor

FIGURE 3 Body coordinate frame and motor rotation

diag(1, 1, 1, 1, 1, 1, 1) × 10−4. This choice puts more weight into
the output fault reconstruction by giving more importance to
the channels related to the sensor fault.

The observer is synthesized in Matlab, where Problem (45) is
coded by means of the YALMIP parser [35] and numerically
solved with the MOSEK solver [36]. The numerical solution
yields 𝛾 = 1.9598, and the design matrices L0 and W 1 are given
by

L0=

⎡⎢⎢⎢⎢⎢⎢⎣

0.5454 1.8202 × 10−5

1.4595 × 10−6 6.6656

1.9579 × 10−6 8.8527

0 5.4673 × 10−6

⎤⎥⎥⎥⎥⎥⎥⎦

𝖳

,

W 1=

⎡⎢⎢⎢⎢⎢⎣

−9.3471 × 10−6 4.2673 × 10−6 −0.9990

1.4210 −1.4346 1.7172 × 10−3

−1.8756 1.9048 −3.8043 × 10−3

−7.6901 × 10−2 −7.6394 × 10−2 −3.0764 × 10−4

⎤⎥⎥⎥⎥⎥⎦

𝖳

.

(47)
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The linear and nonlinear gains G̃l (𝜌) and G̃n, computed as
in (36) and (37) and represented in the output canonical form,
are given by (48)

G̃l (𝜌) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.4540 1.4595 × 10−5 1.9579 × 10−5 0 0 0 0

0.00018202 66.656 88.527 5.4673 × 10−5 0.32507𝜌3 + 13.411 0.32507𝜌2 0

10.545 1.4595 × 10−6 1.9579 × 10−6 0 0 0 0

1.8202 × 10−5 16.666 8.8527 5.4673 × 10−6 1.3411 0 0

0 0 10 0 1 0 0

0 0 0 10.000 0 1 0

6.7269 × 10−6𝜌3 2.4634𝜌3 3.2717𝜌3 2.0205 × 10−6𝜌3 0.49563𝜌3 + 10 0.36957𝜌1 0

1.5591 × 10−6𝜌2 0.57092𝜌2 0.75825𝜌2 4.6829 × 10−7𝜌2 0.085652𝜌1 − 0.11487𝜌2 10 0

0.54540 1.4595 × 10−6 1.9579 × 10−6 0 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

and

G̃n =

[
−L

I7

]
, (49)

with L given in (39). Finally, the matrix Po is given by Po = 0.5I7.
For practical implementation, the nonlinear injection

term (31) is replaced by a smooth approximation with the goal
of reducing chattering. In this paper, a sigmoidal approximation
is used:

𝜈𝛿 (t ) = −
Poey (t )‖‖‖Poey (t )‖‖‖ + 𝛿0

, (50)

with 𝛿0 a small positive scalar so that 𝜈 depends smoothly on
ey. It is clear that 𝜈𝛿 → 𝜈 as 𝛿0 → 0, and thus 𝛿0 is chosen to
achieve a compromise between chattering and the absence of
sliding. In this paper, a value of 𝛿0 = 0.1 is considered (after
some tuning). The modulation gain  is chosen as  = 750 to
ensure that the observer is able to stay close to sliding even in
the presence of faults.

The observer is implemented in the flight control computer
of the Parrot® minidrone. As discussed in Section 2, the cus-
tom firmware of the Parrot® minidrone runs the control algo-
rithm at a sampling rate of 200 Hz. For this reason, the LPV
observer has been discretized in order to be implemented in
the hardware. A simple discretization using the Forward Euler
method [37] is used to limit the computation complexity at every
step. The applicability of this discretization method was verified
in simulations, which led to re-tuning of the observer parame-
ters 𝛿0 and  (the values given above are the final values used
in the hardware). The simulations in discrete time showed that
the performance was very close to what was assessed in con-

tinuous time. A simulation scenario is presented in the next
section.

4 SIMULATION AND FLIGHT TEST
RESULTS

In this section, two sets of verification results will be discussed.
The first set is based on simulations while the second set is
obtained in flight tests. Table 2 shows the different sets of results
(simulations and flight tests) considered in this paper. One simu-
lation test (S0) and four flight tests (F0–F4) are performed. The
simulation test is performed in similar conditions (with respect
to the maneuver and faults considered) to one of the flight tests,
and the numeration of the simulation test indicates to which
flight test it corresponds. A description for both sets of results
is given in the following sections.

4.1 Simulation

In this section the simulation results obtained using the designed
observer are presented. The simulations are done using the
flight simulation model provided in [27], which contains a
nonlinear model of the minidrone including rotor and sensor
dynamics. The test case is selected to correspond to one of
the flight test scenarios, see Table 2. As the paper focuses on
the quality of the simultaneous sensor and actuator fault esti-
mation when implemented on the flight control computer, the
existing controller was used to provide basic control without
any fault tolerant capabilities. For this reason, the faults were
only implemented at a software level before they were supplied
to the observer, and thus do not affect the controller feedback
loop (see Figure 4). This is done to maintain stability and control
performance of the minidrone, thus ensuring safety during the
flight tests and reducing the risk of damage to the minidrone. In
order to be consistent with the discussion in the previous sec-
tion, the actuator faults are added with an inverse sign. From the



10 WAITMAN ET AL.

point of view of the observer, both the online and offline cases
are strictly equivalent.

The reconstructed sensor fault can be directly related to the
additive fault in the output signal. Since the actuator fault is
modeled as an additive signal added to the rotation of the rotors,
the actual fault seen by the observer must account for the fact
that the model input is the squared angular velocity of the rotors.
Letting uc be the command signal at the output of the controller
and fi the additive input fault, the faulty command sent to the
observer is given by

u(t ) = (uc (t ) − fi (t ))2

= uc (t )2 + ( fi (t )2 − 2uc (t ) fi (t )). (51)

This means that the observer is actually estimating the signal
f̆i (t ) ∶= fi (t )2 − 2uc (t ) fi (t ). An estimation of the actual addi-
tive fault fi (t ), denoted f̂i (t ), can be recovered by means of the

relation f̂i (t ) = uc (t ) −
√

uc (t )2 − f̆i (t ), provided that f̆i (t ) ≤

uc (t )2.
The scenario considered in simulation is the nominal fault-

free case. The minidrone takes off from the ground to hover
at an altitude of 0.5 m, and a step of 2 m is sent to the x refer-
ence signal at 2 s. The 3-dimensional trajectory of the minidrone
is shown in Figure 5a. The references given to the controller
are shown in black dotted lines in the rightmost plots. The
minidrone starts at the ground (red dot) and takes off to reach
hover at an altitude of 0.5 m. The line color is used to represent
the flow of time during the test, as indicated in the colorbar,
going from light (begin) to dark (end) color. As discussed in Sec-
tion 2, the controller implemented in [27] is programmed such
that a dedicated take-off maneuver takes place during the first
second of flight. It can be seen that some overshoot is present in
the x and z channels due to the controller action. As described
earlier, this is the performance of the existing controller and no
modification was made. As the focus of this paper is to eval-
uate the performance of the simultaneous fault reconstruction
observer when implemented on the flight controller, the exist-
ing controller was used to provide some level of control.

The outputs of the sensor fusion (y(t ), in red solid lines)
and of the observer (ỹ(t ), in blue dashed lines) are shown in
Figure 5c. The z and x f plots are shown with opposed sign,
so that positive values represent the altitude of the drone with
respect to the ground. Figure 5c shows that the observer accu-
rately tracks the system’s output, with the exception of a small

FIGURE 4 Actuator and sensor fault implementation on the minidrone

FIGURE 5 Case S0
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spike seen in the 𝜙 channel. This could be due to the aggressive-
ness of the maneuvers at the start of the simulation (an increase
in altitude followed by forward motion in the x axis) within a
short period of time. Nonetheless, the ripple remains below 0.5
degrees and is quickly subdued.

Figure 5b shows the norm of the switching signal ey (t ). With
the exception of a spike at 2 s, the switching signal has a low
amplitude throughout the test, which indicates that sliding is
taking place along the surface ey (t ) = 0. The spike corresponds
to the difference between 𝜙 as given by the estimator and by the
observer (see Figure 5c).

The actuator and sensor faults reconstructed by the observer
are shown in Figure 5d. The actuator and sensor faults are rep-
resented by black dotted lines, and the fault reconstruction is
shown in blue solid lines. The observer is able to correctly esti-
mate the zero fault in the fault-free case, which is important
when the minidrone is flying in nominal conditions. A small
deviation can be seen in the sensor reconstruction during the
maneuver, but it quickly subsides after a few seconds.

4.2 Flight test results

The observer designed in the previous section is implemented
in the minidrone to run in real time during flight. A total of five
flight tests are performed to assess the performance of the fault
reconstruction capabilities of the sliding mode LPV observer.
All flight tests are performed indoors at a confined space of less
than 2×2×3 m (therefore gust effect is minimal) at room tem-
perature and with the minidrone taking off from the ground.
The list of test cases considered in this paper is given in Table 2.
The faults are added via software in the flight control code, to
simulate the effect of actual faults acting on the minidrone. In
this way, different fault profiles can be tested to assess the per-
formance of the observer in different cases.

4.2.1 Computational load

The ARM-core Cortex-A9 available in the Parrot minidrone has
a capability to execute a total of 0.372 giga-floating point oper-
ations per second (GFLOPs) [38, 39]. As a comparison, a mod-
ern PC processor, for example, Core i7-10710U, can execute a
total of 105.6 GFLOPs [40]. Using the tool proposed in [41],
the number of floating point operations related to the observer
reconstruction scheme that are executed on the processor at
each iteration is estimated to be 4126. Divided by the sampling
time of 5 ms, this yields a requirement of 8.25×10−4 GFLOPS,
which translates to less than 1% of the total processing power
of the processor. This indicates a low computational load of the
proposed scheme, on a relatively low-cost processor.

4.2.2 Case F0

The first flight test consists of a hovering maneuver with a 2 m
step in the x reference command at 2 s, for a total flight time

of 18 s (see Figure 6a). The same convention as in Section 4.1
is used for the plots, with the red dot showing the initial posi-
tion and the gradient line indicating the 3-dimensional trajectory
as time flows from beginning (light color) to end (dark color).
The references given to the controller are shown in black dotted
lines in the rightmost plots. No faults are introduced in this test,
with the goal of assessing the performance of the observer in
nominal conditions.

Figure 6c shows the evolution of the output of the system
(y(t )) and of the observer (ŷ(t )) during the test. The z and x f

plots are once again shown with opposed sign, so that posi-
tive values represent the height attained by the drone. The red
solid lines represent the output of the minidrone, while the blue
dashed lines are the outputs of the sliding mode observer. The
plots show that the observer is able to track the output of the
drone very accurately.

Figure 6b shows the norm of the output error signal ey, which
acts as the switching function of the sliding mode observer. This
means that perfect sliding happens when ey (t ) = 0. The plot
shows that the signal stays close to zero for the whole dura-
tion of the flight, and hence that sliding occurs. A small peak
can be seen around the 2 s mark, which is due to the aggressive
maneuver undertaken by the minidrone in response to the step
in the x reference signal (see Figure 6a).

The actuator and sensor faults reconstructed by the observer
are shown in Figure 6d. The plots show that the observer is able
to correctly estimate the zero fault in the no-fault case, which is
important when the minidrone is flying in nominal conditions.

4.2.3 Case F1

The second faulty scenario is considered in Case F1. This flight
test evaluates the fault reconstruction performance when only a
sensor fault is present. The 3-dimensional trajectory is shown
in Figure 7a. The minidrone takes off from the ground to
reach hover at an altitude of 0.5 m. After 2 s, a ramp ref-
erence signal is sent in the x direction, with a slope of 0.5
m/s. Finally, at 6 s, a step signal is sent in the z reference for
the minidrone to reach an altitude of 1 m. A ramp fault is
added to the ż measurement signal starting at 3 s, with a slope
of −0.25 m/s.

As in the previous cases, the outputs of the system and
observer are compared in Figure 7c. The observer is once again
capable of tracking the system outputs during the entire flight
test. The effect of the ramp fault can be seen in the plot of
−x f (t ), in the upper right corner. Even in the presence of
this fault, the output tracking remains satisfactory in all mea-
sured outputs.

The norm of the switching function ey (t ) is shown in Fig-
ure 7b. Despite some oscillation before 2 s, which can be asso-
ciated with the take-off maneuver, the observer is able to main-
tain sliding throughout most of the flight test. The fault recon-
struction by the observer is shown in Figure 7d. The plots show
that the observer is able to estimate ramp faults quite accurately,
without presenting false positives in the actuator fault recon-
struction.
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FIGURE 6 Case F0 FIGURE 7 Case F1
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4.2.4 Case F2

The second faulty scenario consists of loss of efficiency faults
in both actuators. The faults are activated at 2 s, and consist of
a 40% loss of efficiency in both motors 1 and 3 (see Figure 8d).
The maneuver consists of taking off from the ground to attain
hover at 0.5 m altitude, with a triangle reference in the x direc-
tion that causes the minidrone to advance 2 m and come back.
The 3-dimensional trajectory is shown in Figure 8a.

Figure 8c presents the comparison between the system out-
puts and the observer. The observer tracks the outputs with
good accuracy, and both signals are mostly superposed for the
duration of the test.

The norm of the switching signal ey (t ) is presented in Fig-
ure 8b. In this flight test, ‖ey (t )‖ remains quite close to zero,
meaning that sliding is maintained for the entire test duration.

The reconstructed faults are shown in Figure 8d. The added
actuator faults, shown in black dotted lines, consist of 40% of
the corresponding commanded values. During the maneuvers
in this test, the commanded angular velocity of motors 1 and 3
remain relatively constant, as seen by the corresponding faults.
The fault reconstruction signal is seen to once again track the
faults with very good accuracy.

4.2.5 Case F3

In the third flight test, simultaneous actuator and sensor faults
are evaluated. The minidrone is set to take-off and hover at
1 m altitude with a ramp on the 𝜓 reference signal. The 3-
dimensional trajectory undertaken by the minidrone is shown in
Figure 9a. An 800 rad/s step fault is added to each fault-prone
actuator, the first in motor 1 at 2 s and the second in motor 3
at 4 s. A negative unit step is also added to the estimated value
of ż at 2 s (see Figure 9d). Figure 9c shows the evolution of
the output of the system (red solid lines) and of the observer
(blue dashed lines). The performance of the observer is simi-
lar to what was seen in the fault-free case, with very accurate
tracking of the estimator output signals.

The switching function evolution is presented in Figure 9b.
In contrast to Figure 6b (relative to the fault-free case), in this
flight test the switching function is seen to deviate from the slid-
ing surface between 2 and 4 s, that is, between the instants where
the faults in motor 1 and 3 start. This is mostly due to a bias
in the q output signal due to the fault in motor 1. Nonethe-
less, the deviation from zero remains reasonable and, as seen in
Figure 9d below, the fault reconstruction is not affected. The
added faults (black dotted lines) and the corresponding recon-
struction given by the observer (blue solid lines) are shown in
Figure 9d. The plots show that the observer is able to accurately
identify concurrent faults in actuators and sensors, even when
they take place at the same instant. The maximum theoretical
angular velocity of the rotors is around 2631 rad/s, which means
that the added actuator faults represent about 30% of the maxi-
mum rotation. The fault identification presents a rapid response,
effectively tracking the step fault with a 250 ms response time.

FIGURE 8 Case F2
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FIGURE 9 Case F3

As seen in the fault-free case, the fault reconstruction remains
close to zero before the faults are active, which once again sug-
gests that the observer does not misidentify false positives.

4.2.6 Case F4

The final test considers simultaneous actuator and sensor fault
reconstruction with sine wave faults. In this scenario, the
minidrone reaches hover at an altitude of 0.5 m after take-off,
and a triangle reference is given in y direction, causing the drone
to move 2 m sideways and then come back to the original hov-
ering point (see Figure 10a). The two actuators and the ż mea-
surement are assumed to be faulty in this case, all with sinu-
soidal faults (see Figure 10d). The actuator fault consists of a
sinusoid with a frequency of 0.1 Hz and an amplitude of 1000
rad/s, which represents around 38% of the maximum angular
speed of the motor. The sensor fault is also a sinusoid with a fre-
quency of 0.25 Hz and an amplitude of 10 m/s. These faults are
more aggressive than the ones considered in the previous cases,
although the impact on the observer performance is small, as
seen in the comparison between the system and observer out-
puts (Figure 10c).

The switching function ey (t ), shown in Figure 10b, shows that
the observer is able to maintain sliding throughout the flight
test, despite the presence of more aggressive faults. Figure 10d
shows the fault reconstruction in this case. The observer tracks
both sinusoidal faults, albeit with a small phase offset. This
effect is more prominent in the actuator fault reconstruction
due to its response being slower than the sensor fault recon-
struction. Nonetheless, the phase offset is only 0.48 s, that is, a
phase difference of only around 18◦.

5 CONCLUSION

This paper presents the design and implementation of an LPV
sliding mode observer for simultaneous actuator and sensor
fault reconstruction in a Parrot® Rolling Spider minidrone. The
observer is designed using an LPV model of the minidrone
obtained from a 12 degree-of-freedom nonlinear model. The
design procedure and numerical synthesis are explained and
show how the observer can be obtained by solving a convex
optimization problem that can be efficiently solved by com-
mercially available software. The flight test results demonstrate
that the sliding mode observer is able to accurately track the
system’s outputs, even in the presence of simultaneous actu-
ator and sensor faults. The fault reconstruction is shown to
work satisfactorily even in the presence of acute faults dur-
ing flight. The successful implementation of this sliding mode
FDD scheme within the limited computational processing capa-
bility available on the Rolling Spider minidrone reinforces the
claim that this approach is numerically viable and powerful in
embedded systems with limited computing power. Future work
will be directed towards designing a fault-tolerant sliding mode
controller that can take into account the fault reconstructions
provided by the observer, thus improving the resilience of the
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FIGURE 10 Case F4

minidrone to faults. The implementation of higher-order and
super-twisting algorithms [42, 43] for fault detection in the
minidrone is also envisaged, with the goal of reducing chatter-
ing.
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