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Flight Evaluation of an LPV Sliding Mode
Observer for Sensor FTC

Lejun Chen, Halim Alwi, Christopher Edwards and Masayuki Sato

Abstract—This paper develops a sliding mode sensor fault
tolerant control scheme for a class of LPV systems. It incorpo-
rates a sliding mode observer which reconstructs the unknown
sensor faults based on only the system inputs and outputs. The
reconstructed sensor faults are used to compensate the corrupted
sensor measurements before they are used in the feedback
controller. Provided accurate fault estimates can be computed,
near nominal control performance can be retained without any
controller reconfiguration. Furthermore, the closed-loop stability
of the FTC scheme, involving both a sliding mode controller and
a sliding mode observer, is rigorously analysed. The proposed
scheme is validated using the Japan Aerospace Exploration
Agency’s Multi-Purpose Aviation Laboratory (MuPAL-α) re-
search aircraft. These flight tests represent the first validation
tests of a sliding mode sensor FTC scheme on a full scale aircraft.

Keyword: sliding mode control, fault tolerant control, fault detec-
tion and diagnosis, flight test.

I. INTRODUCTION

DESPITE all the research interest in fault detection and di-
agnosis (FDD) and fault tolerant control (FTC) [1], there

exists a significant theory/practice gap. In recent years, a series
of European funded projects have sought to develop a range
of model based approaches in an effort to narrow this gap [2].
As argued in [26], although the signal-based FDD methods do
not require the knowledge of models, the design parameters
could be insensitive to the models. In addition, under poor
excitation, the issues corresponding to model observability
and parameter identifiability need to be addressed. Driven by
the aerospace industry interest, in this paper, a model based
approach is adopted. In most application areas – often because
of their safety critical nature – new model based FDD and
FTC are only tested by simulations. This is particularly true in
the aerospace sector: literature describing the testing of model
based estimation schemes in-flight, or on full scale piloted
aircraft (as opposite to UAVs), is limited. Recent European
projects validated a range of model based FDD schemes at
a system integration level using Airbus’s actuator ‘integration
bench’ and the ‘Iron-bird’ platform [3]. The methods tested
included sliding mode methods [11], a geometric design [12],
H−/H∞ filters [6], and a physical model based approach
[7]. In the follow-up project (RECONFIGURE), integrated
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FTC/FDD approaches were validated and demonstrated using
the Airbus desktop simulator [4].

Despite the advancements in Technology Readiness Levels
(TRLs) achieved during the European projects ADDSAFE
and RECONFIGURE, only one FDD scheme, based on an
extended Kalman filter formulation, was flight tested and
certified on the A350-XWB aircraft [18]. Such a validation
is usually considered the final ‘top level’ check in the avi-
ation industrial validation process. The recent H2020/Japan
co-funded project ‘Validation of Integrated Safety-enhanced
Intelligent flight cONtrol’ (VISION) sought to validate FDI
schemes via flight tests on the Japan Aerospace Exploration
Agency (JAXA)’s Multipurpose Aviation Laboratory (MuPAL-
α) aircraft [8], [21]. Sliding mode, H∞ and adaptive estima-
tion schemes have been developed within the VISION project,
and some initial results were reported in [5], [9], [10]. In [5],
an actuator FTC scheme involving a state feedback sliding
mode controller was flight validated under the assumption that
all sensors were assumed to be fault free.

It is well known that sliding mode observers (SMOs) have
the capability to track plant measurements whilst simultane-
ously reconstructing the internal unmeasurable signals includ-
ing the system states [14]. This unique property distinguishes
SMOs from other types of observers, such as high gain
observers [15] and H∞ fault detection filters [16]. Another
important property of SMOs is they can provide finite time
convergence of the state estimation errors to zero. Once the
sliding mode is attained, the so-called ‘equivalent output error
injection’ signal, required to maintain sliding [14], can be used
to reconstruct the unknown signals (in this case faults) in the
FDD problem. In a sensor fault scenario, if they are well
reconstructed by the SMO, a ‘virtual sensor’ can be created by
correcting the corrupted measurement using the fault estimate
[13]. Using the virtual sensor as part of the feedback loop
(rather than the corrupted measurement) helps retain close to
nominal fault free closed-loop performance in the presence of
faults, without reconfiguring the underlying baseline control
law [11]. In recent years several SMO based FTC schemes
have been developed. In [23], [24], the perturbations and
the faults were identified using a higher order sliding mode
(HOSM) differentiator and a dynamic sliding surface was
developed to deal with unmatched perturbations. The work in
[25] describes a strategy based on a combination of a feedback
linearisation and a quasi-continuous HOSM controller.

In this paper, a sensor FTC scheme based on an SMO
is developed and flight tested on JAXA’s MuPAL-α aircraft.
The first order SMO used in this paper follows the general
formulation of [22], [19]. However, the work in [22] mitigates
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the effects of erroneous scheduling parameters through an
adaptation scheme, whilst the work in [19] considers the
simultaneous optimization of the SMO gains and the H∞
controller gains. The flight tests focus on the lateral-directional
dynamics, and various yaw rate sensor fault scenarios are
considered. A yaw rate sensor fault is critical since it leads to
non-trim offsets of the control surfaces and a non-optimised
aerodynamic configuration. It also represents one of the sce-
narios needed to be certified by the aviation industry [3].

The main contribution of this paper is it describes, as far
as the authors are aware, the first flight validations of an
SMO based FTC scheme on a piloted aircraft in the presence
of sensor faults. Compared with [5], the emphasis of this
flight validation was on the observer performance in the face
of sensor faults. Furthermore from theoretical point of view,
in this paper, the closed-loop stability of the FTC scheme,
including both a sliding mode observer component and a
sliding mode control component, is rigorously investigated.
In [5], no observer is employed (and hence there is no con-
troller/observer stability analysis) but instead the robustness of
the sliding mode controllers are exploited in an actuator fault
scenario.

II. VISION AND FAULT SCENARIOS

The H2020/Japan co-funded project VISION seeks to de-
velop and validate in-flight FDD/FTC techniques for aircraft
guidance, navigation and control, with the key objective of in-
creasing TRLs. The proposed architecture of the FTC scheme
developed and discussed in this paper is a simple one (see
Fig. 1).
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Fig. 1. The scheme of sensor FTC using SMO

In Fig. 1, an SMO reconstructs the unknown sensor fault f ,
based only on the inputs up and outputs yp. The reconstructed
sensor faults f̂ are then used to compensate the corrupted
sensor measurements before they are fed back to the controller
such that near nominal control performance can be retained in
the face of the sensor faults, without the need of reconfiguring
the controller. The augmented closed loop system in Fig. 1
must be analysed taking into account the observer dynamics.
This is the main theoretical contribution of this paper.

III. LPV SLIDING MODE OBSERVER DESIGN

Consider an uncertain LPV system affected by sensor faults

ẋp(t) = Ap(ρ)xp(t) +Bp(ρ)up(t) +Mp(ρ)ξ(xp, t)

yp(t) = xp(t) +Hpf(t)
(1)

where, Ap(ρ) ∈ Rn×n, Bp(ρ) ∈ Rn×m, Mp(ρ) ∈ Rn×k and
Hp ∈ Rn×q where q < n. Here Hp represents the sensor fault

distribution matrix and it is assumed to be rank q. Furthermore
the columns of Hp are assumed to belong to the standard
basis for Rn. In (1) it is assumed that up(t) and yp(t) are
measurable, and that yp(t) represents the measured state xp(t)
(potentially corrupted by the sensor faults represented by f(t)).
The signal f(t) is assumed to be piecewise differentiable
and unknown, and subject to ‖f(t)‖ ≤ α. Finally, the
signal ξ(xp, t) denotes lumped (possibly unmatched) system
uncertainty which is assumed to be bounded according to
‖ξ(·)‖ ≤ c1‖xp(t)‖ + c2(t) where c1 is a known positive
fixed scalar and the function c2(t) is unknown but is subject
to ‖c2(t)‖ ≤ d where d is a known positive scalar. In this
paper, it is assumed the scheduling parameters ρ ∈ Ω ⊂ Rr

are perfectly measurable and belong to a compact set Ω.
Furthermore, all the system matrices Ap(ρ), Bp(ρ) and Mp(ρ)
in (1) are assumed to be affinely dependent on ρ.

Since by assumption Hp is composed of columns from the
standard basis for Rn, by permutating the components of yp
and partitioning, it is easy to obtain the form[

yp,1(t)
yp,2(t)

]
=

[
C1

C2

]
xp(t) +

[
0
Iq

]
f(t) (2)

where C1 ∈ R(n−q)×n has full row rank and C2 ∈ Rq×n. In
(2), yp,2(t) denotes the outputs which are potentially corrupted
by sensor faults whereas the subset yp,1(t) are fault free. The
observer proposed in [19] will now be described to estimate
the faults f(t). As in [14], define a (stable) filter in the form

żf (t) = −Afzf (t) +Afyp,2(t) (3)

where zf (t) ∈ Rq and the matrix Af is symmetric positive
definite (s.p.d). From (1) and (3) create an augmented system
with state vector

[
xT
p zTf

]T
. Exploiting the fact that the rows

of C1, are rows from In, define

Ta =

[
Ts 0
0 Iq

]
(4)

where the permutation matrix Ts ∈ Rn×n has the property
that C1T

−1
s =

[
0 In−q

]
. Applying this to the augmented

system with outputs y :=
[
yTp,1 zTf

]T
yields a system

ẋa(t) = A(ρ)xa(t) +B(ρ)up(t) +Df(t) +M(ρ)ξ(·)
y(t) = Cxa

(5)

where xa ∈ Rn+q and, in particular, C = [0 In] and
D = [0 Af ]

T . Notice that, (5) now constitutes a classical
unknown input formulation. Introducing (3) is a convenient
way to pose the problem so that SMOs can be deployed
[14]. The selection of a good choice of Af is important as
it impacts on the performance of the system with respect to
any unmatched uncertainties [14]. The system in (5) will be
used as the starting point for the design of an observer.

The sliding mode observer considered here has the structure

ż(t) = A(ρ)z(t) +B(ρ)up(t) +Gl(ρ)ey(t) +Gnν(t) (6)

where z ∈ Rq+n represents the state estimate of xa [19]. In
(6) ey(t) = C(z(t)−xa(t)) is the output estimation error and
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ν(t) represents the discontinuous output error injection vector
used to induce the sliding motion. Here as in [19],

ν = −k(t)
ey

∥ey∥ if ey 6= 0 (7)

where the modulation function k(·) will be defined later. In (5),
decompose the augmented system and disturbance matrices as

A(ρ) :=

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

]
M(ρ) :=

[
M1(ρ)
M2(ρ)

]
(8)

where A11(ρ) ∈ Rq×q , M2(ρ) ∈ Rn×k and note that A21(ρ)
has the following structure as explained in [19]:

A21(ρ) =

[
A211(ρ)
A212

]
(9)

where A211(ρ) ∈ R(n−q)×q and A212 ∈ Rq×q . Define the
observer gains in (6) as

Gl(ρ) =

[
A11(ρ)L−A12(ρ) + k2L
−A22(ρ) +A21(ρ)L− k2I

]
, Gn =

[
−L
In

]
(10)

where k2 is a positive design scalar and the design freedom
L ∈ Rq×n has the structure

L =
[
L1 0

]
(11)

and L1 ∈ Rq×(n−q).
Assumption 3.1: The pair (A11(ρ), A211(ρ)) is assumed to

be quadratically detectable, i.e. there exists a s.p.d matrix P1

and a gain L1 such that

P1(A11(ρ)+L1A211(ρ))+(A11(ρ)+L1A211(ρ))
TP1<0 (12)

for all ρ ∈ Ω. It can be shown that (A11(ρ), A211(ρ)) is
quadratically detectable if (Ap(ρ), C1) is quadratically de-
tectable.

Define the state estimation error as e = z−xa = [eT1 eTy ]
T ,

where e1 ∈ Rq , then define another coordinate transformation
ẽ = TLe where

TL =

[
Iq L
0 In

]
(13)

and as a result ẽ = [ẽT1 eTy ]
T where ẽ1 = e1 + Ley . From

Assumption 3.1, as argued in [19], for any positive k2, there
exists a positive scalar p2 > 0 such that P = diag(P1, p2In)
satisfies

PÃe(ρ) + Ãe(ρ)
TP +Q0 < 0 ∀ρ ∈ Ω (14)

where Q0 > 0 is s.p.d and Ãe(ρ) = TL(A(ρ)+Gl(ρ)C)T−1
L .

Choose η1(·), depending on the upper bound on the faults as

‖ξ‖ ≤ c1‖xp‖+ d ≤ η1(yp, d) (15)

Let a21(t) = ‖Ã21(ρ)‖, m2(t) = ‖M2(ρ)‖ and define the
scalar function χ(t) to be the solution of

χ̇(t) = −q0χ(t) + ‖P 1
2TLM(ρ)‖η1(yp, d), χ(0) = 0 (16)

where the scalar q0 = 1
2λmin(P

− 1
2Q0P

− 1
2 ) > 0 and λmin(·)

denotes the minimum eigenvalue. Finally define

χ̃(t) := (χ(t) + χ0)/
√
λmin(P ) (17)

where χ0 is a positive design scalar. As argued in [19], χ̃(t) in
(17) is an upper bound on the evaluation of the state estimation
error ‖ẽ(t)‖, i.e. there exists a t0 ≥ 0 such that for all t ≥ t0

χ̃(t) ≥ ‖ẽ(t)‖ ≥ ‖ẽ1(t)‖ (18)

Since χ̃(t) is known, define the modulation function in (7) as

k(t) = a21(t)χ̃(t) + ‖Af‖α+m2(t)η1(yp, d) + η (19)

where η is a positive scalar. From [19], a sliding motion on

So = {ẽ(t) ∈ Rn+q : Cẽ(t) = ey(t) = 0} (20)

can be enforced in finite time. Consider as a fault estimate

f̂ = Wνeq (21)

where νeq is the equivalent output error injection signal [19]
and the gain W =

[
0 A−1

f

]
where Af is the system matrix

of the filter in (3). It can be shown during sliding [19] that

˙̃e1 = Ã11(ρ)ẽ1 − M̃1(ρ)ξ

ef = −A−1
f A212ẽ1

(22)

where the fault estimation error ef = f̂ − f , the system
matrix Ã11(ρ) = A11(ρ)+L1A211(ρ) and M̃1(ρ) = M1(ρ)+
LM2(ρ). When there is no uncertainty ξ = 0 and ẽ1 → 0
asymptotically. Consequently ef → 0 as t → ∞. However
in the presence of uncertainty, the fault estimation error no
longer tends to zero.

IV. CONTROLLER DESIGN AND CLOSED-LOOP ANALYSIS

To introduce tracking in the controller in Fig. 1, integrator
states will be introduced associated with the controlled outputs

yc(t) = Ccxp(t) (23)

where Cc ∈ Rl×n. In the FTC scheme as shown in Fig. 1, the
estimated sensor fault is used to correct the measured states
and this ‘corrected’ version of (23) is defined as

x̂p(t) = xp(t) +Hpf(t)−Hpf̂(t) = xp(t)−Hpef (t) (24)

Consequently the integral action states evolve according to

ẋr(t) = r(t)−Ccx̂p(t) = r(t)−Ccxp(t)+CcHpef (t) (25)

where r(t) is the (differentiable) command signal which
satisfies the pre-filter equations

ṙ(t) = Γ(r(t)−Rc) (26)

In (26), Rc represents a fixed exogenous command refer-
ence vector and Γ ∈ Rl×l is a stable design matrix. Let
xc(t) = [xT

r (t) xT
p (t)]

T and consider the augmented state
space system obtained from combining (1) and (25):

ẋc(t)=Ac(ρ)xc(t)+Bc(ρ)up(t)+Brr(t)+Mc(ρ)ξ(·)+Hcef (t)
(27)

where Ac(ρ), Bc(ρ), Br, Mc(ρ) are of appropriate dimensions
and the gain

Hc =
[
(CcHp)

T 0
]T

(28)
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The definition of these matrices can be found in [5]. Here as
in [5], it is assumed that Bc(ρ) can be factorized as

Bc(ρ) = BvB2(ρ) (29)

where Bv ∈ R(l+n)×l is a fixed matrix, and B2(ρ) ∈ Rl×m

is a matrix with varying components where rank(B2(ρ)) = l
for all ρ ∈ Ω and rank(Bv) = l. Since rank(Bv) = l there
exists a coordinate change xc 7→ Tcxc = x̃ where

Tc =

[
Il 0
0 Tn

]
(30)

and Tn ∈ Rn×n is a nonsingular matrix with the property that

B̃v = TcBv =

[
0
Il

]
(31)

In the new coordinate system, (27) can be written as

˙̃x(t)=Ãc(ρ)x̃(t) + B̃v ṽ(t) + B̃rr(t) + M̃c(ρ)ξ(·) + H̃cef (t)
(32)

where H̃c = Hc and the virtual control ṽ(t) ∈ Rl satisfies

ṽ(t) = B2(ρ)up(t) (33)

To analyse the closed-loop under FTC, define

x̂(t) = x̃(t) +

[
0

TnHp

]
︸ ︷︷ ︸

H̃p

ef (t) (34)

where Tn is defined in (30). Then from (32) and (34)

˙̂x(t)=Ãc(ρ)x̂(t) + B̃v ṽ(t) + B̃rr(t) + M̃c(ρ)ξ(·)
+(H̃c − Ãc(ρ)H̃p)ef (t) + H̃pėf (35)

Since from (22)

ėf = −A−1
f A212

˙̃e1 = −A−1
f A212(Ã11(ρ)ẽ1 − M̃1(ρ)ξ) (36)

it follows that equation (35) can be written as

˙̂x=Ãc(ρ)x̂+ B̃v ṽ + B̃rr + M̂(ρ)ξ(·) + Ĥ(ρ)ẽ1 (37)

where

Ĥ(ρ)=(Ãc(ρ)H̃p−H̃c)A
−1
f A212−H̃pA

−1
f A212Ã11(ρ)

M̂(ρ)=M̃c(ρ) + H̃pA
−1
f A212(M1(ρ) + LM2(ρ))

(38)

Here a parameter-dependent switching function is defined as

ŝ(t) = S(ρ)x̂(t) (39)

where S(ρ) =
[
N(ρ) Il

]
and N(ρ) represents the design

freedom. Clearly S(ρ)Bv = Il and it follows from (37) that

˙̂s(t) = S(ρ)(Ãc(ρ)x̂(t) + B̃rr(t) + M̂(ρ)ξ(·) + Ĥ(ρ)ẽ1(t))

+ṽ(t) + Ṡ(ρ)x̂(t) (40)

Choose the sliding mode control law as in [5]

ṽ(t) = ṽl(t) + ṽn(t) (41)

where

ṽl(t)=−S(ρ)(Ãc(ρ)x̂(t)+B̃rr(t))−Ṡ(ρ)x̂(t)+Φŝ(t) (42)

and Φ ∈ Rl×l is a Hurwitz matrix. The component ṽn(t) will
be defined in the sequel. It follows from (40) and (42) that

˙̂s(t) = ṽn(t) +Φŝ(t) + S(ρ)(M̂(ρ)ξ(·) + Ĥ(ρ)ẽ1(t)) (43)

Note that in (43) whilst ξ and ẽ1 are unknown, upper bounds
on ‖ξ‖ and ‖ẽ1‖, used to construct the modulation function
k(t) in (19), are known and defined in (15) and (18). Let

ṽn(t) = −K(t, yp)
P2ŝ(t)

∥P2ŝ(t)∥ if ŝ(t) 6= 0 (44)

where the symmetric positive definite matrix P2 satisfies

P2Φ+ ΦTP2 = −Il (45)

A suitable modulation gain K(t, yp) is given by

K(t, yp) = m(t)η1(yp, d) + h(t)χ̃(t) + η2 (46)

where m(t) = ‖S(ρ)M̂(ρ)‖, h(t) = ‖S(ρ)Ĥ(ρ)‖ and η2
denotes a positive scalar. Note that since Ω is compact, ρ is
bounded and therefore both m(t) and h(t) are bounded since
both M̂(ρ) and Ĥ(ρ) are affine with respect to ρ.

Proposition 4.1: The choice of the modulation gain in (46)
ensures sliding takes palace on

Sc = {x̂ : S(ρ)x̂ = 0} (47)

Proof: Define a candidate Lyapunov equation according
to V̂ = 1

2 ŝ
TP2ŝ. It follows from (43) and (44) that

˙̂
V = ŝTP2(ṽn +Φŝ+ S(ρ)M̂(ρ)ξ(·) + S(ρ)Ĥ(ρ)ẽ1)

≤ ‖P2ŝ‖(−K(t, x̂) +m(t)η1(yp, d) + h(t)χ̃(t))
(48)

since by construction χ̃(t) in (17) is an upper bound of ‖ẽ1‖. If
K(t, yp) is chosen as in (46), ˙̂

V ≤ −η2‖P2ŝ‖ and this ensures
sliding takes place in finite time and is maintained.

Recalling the full order dynamics in (37), define

Ãc(ρ) =

[
Ãc11(ρ) Ãc12(ρ)
Ac21(ρ) Ac22(ρ)

]
M̂(ρ) =

[
M̂1(ρ)

M̂2(ρ)

]
(49)

and

Ĥ(ρ) =

[
Ĥ1(ρ)

Ĥ2(ρ)

]
B̃r =

[
B̃r1

0

]
(50)

In (49), Ãc11(ρ) ∈ Rn×n and the other matrices are partitioned
conformal with this. Also define x̂=[x̂T

1 x̂T
2 ]

T where x̂2 ∈ Rl.

Assumption 4.1: Assume there exists a s.p.d matrix P̃1 and
a gain N(ρ) so that for all ρ ∈ Ω

P̃1(Ãc11(ρ)−Ãc12(ρ)N(ρ)︸ ︷︷ ︸
Âs

11(ρ)

)+(Ãc11(ρ)−Ãc12(ρ)N(ρ))T P̃1<0

Remark 4.1: The synthesis of N(ρ) is based on an LMI
formulation involving the vertices of Ãc(ρ) [17]. Here if the
vertices of Ap(ρ) are written as {Ai

p} for i = 1, . . . , 2r and
Bvp represents the bottom n rows of Bv , then provided each
of the LTI systems (Ai

p, Bvp, Cc) for i = 1, . . . , 2r does not
have any invariant zeros at the origin, the algorithm in [17]
can be employed. (The presence of invariant zeros at the origin
causes pole/zero cancellation during the augmentation of the
integral action states.)
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During sliding on Sc, from (39), x̂2 = −N(ρ)x̂1 and the
reduced order motion is given by

˙̂x1 = Âs
11(ρ)x̂1 + Ĥ1(ρ)ẽ1 + M̂1(ρ)ξ + B̃r1r (51)

Define ẑ = [x̂T
1 ẽT1 ]

T , then it follows the overall dynamics
during sliding are governed by (22) and (51) and can be written

˙̂z =

[
Âs

11(ρ) Ĥ1(ρ)

0 Ã11(ρ)

]
︸ ︷︷ ︸

As(ρ)

ẑ +

[
M̂1(ρ)

M̃1(ρ)

]
︸ ︷︷ ︸

Ms(ρ)

ξ +

[
B̃r1

0

]
r (52)

In the presence of uncertainty, since by assumption ξ is cone
bounded with respect to xp, and hence to ẑ, a small gain
approach will be adopted to prove stability. By construction

xc = T−1
c x̃ =

[
Il 0
0 T−1

n

]
x̃ (53)

and then since xp represents the last n rows of xc as shown
in (27), it follows

xp =
[
0 T−1

n

]
x̃ (54)

By definition
x̃ = x̂+ H̃pA

−1
f A212ẽ1 (55)

then during sliding, since x̂2 = −N(ρ)x̂1, it follows that

x̂ =

[
I

−N(ρ)

]
x̂1 (56)

Therefore from (54)-(56)

xp=
[
0 T−1

n

][ [
I

−N(ρ)

]
H̃pA

−1
f A212

]
︸ ︷︷ ︸

Cs(ρ)

[
x̂1

ẽ1

]
(57)

Since by assumption ‖ξ‖ < c1‖xp‖ + c2(t), the stability of
(52) result follows from the use of the small gain theorem, if

G :

{
˙̂z = As(ρ)ẑ +Ms(ρ)ξ
xp = Cs(ρ)ẑ

(58)

has an L2 gain no more than 1/c1. Now the problem becomes
easy to solve by directly applying the Bounded Real Lemma
to the LPV system in (58); and L and the vertices of N(ρ)
can be calculated by solving a finite number of LMIs [20].

V. OBSERVER AND CONTROLLER DESIGN RESULTS

The theoretical developments in Sections II-IV were em-
ployed to create an SMO based sensor fault FTC scheme
for JAXA’s MuPAL-α aircraft (see Fig. 3). The MuPAL-α is
based on the twin-propeller engine Dornier Do228-202 aircraft
modified to include a research FBW system and Direct Lift
Control (DLC) flaps [8], [21]. An LPV model of MuPAL-α
was created via interpolation of LTI models verified from real
flight data provided by JAXA. The scheduling parameters are
chosen as

ρ =
[
ρ1 ρ2

]
:=

[
veas v2eas

]
(59)

where veas represents the equivalent airspeed [21]. Regulatory
constraints mean usually the test flights take place at a similar
altitude and the aircraft set up in terms of mass and the
position of the centre of gravity do not change significantly.

Therefore, the scheduling parameter is set only as veas. For
design purposes, the conservative assumption was made that
the scheduling parameters ρ1 and ρ2 are independent of each
other. This paper focuses on the lateral-directional dynamics.

After re-ordering the system outputs so that the sensor
considered potentially prone to faults (i.e. the yaw rate sensor)
appears as the last component of the output vector, the system
states are roll angle ϕ, sideslip angle β, roll rate and yaw rate.
In this paper, it is assumed that all system states are measured.
In (1), the system inputs up are given by up =

[
δa δr

]T
where δa and δr represent the aileron and rudder surface
deflections, respectively. Consequently, n = 4, q = 1. The
disturbance distribution matrix Mp(ρ) is assumed to be fixed
and to take the form

Mp(ρ) =
[
02×2 I2

]T
(60)

which models uncertainty/disturbances ξ(·) affecting the roll
rate and yaw rate channels. Here the matrix is used as
(indirect) design freedom during the synthesis of L from (11).

Remark 5.1: For this testing campaign, pragmatically, ‘chan-
nels’ in the system representation in (1) have been estab-
lished/chosen to capture the plant-model mismatch. In such
a situation, parameterizing the uncertainty channels in terms
of ρ provides no great added value. Consequently, here, the
fixed matrix M represents the ‘channels’, and the effect of
changes in ρ are incorporated into the uncertainty signal ξ.
In terms of the observer design, the filter parameter Af =
0.01. The bandwidth of the filter is important and affects the
robustness of the fault estimate: for a detailed discussion see
page 216 in [14]. The scalar k2 in (10) is chosen as k2 = 0.1,
and L from (11) is calculated using YALMIP with the SeDuMi
LMI solver. For this particular design an upper-bound on the
L2 gain in (58), computed via the Bounded Real Lemma, is
1.2918. Here because the design freedom N(ρ) is chosen as
fixed, the representation in (58) is affine with respect to ρ. An
LMI approach ([20], [5]) has been used to compute the upper-
bound on the L2 gain. This gain gives a robustness margin to
the uncertainty structure in which c1 = 1/1.2918.

The observer modulation gain k(t) in (7) was chosen as
0.8. The small positive scalar selected for the sigmoidal
approximation [17] to the discontinuous injection term in the
observer in (7) is 0.01. The modulation gain must be chosen
large enough to ensure a sliding motion can be maintained
even in the presence of faults. This requires a-priori knowledge
of the level of faults the scheme will be able to handle and
provide fault tolerance. An unnecessarily large value of k(t)
will increase the level of chattering and will amplify noise
and will make the extraction of a smooth equivalent output
error injection signal more difficult to obtain. Typically these
values would be tuned during simulations. The modulation
gain k(t) comprises three main elements: a term to bound
the evolution of the unknown error e1(t) (particularly initially
mismatches between the initial conditions of the observer and
their unknown true plant values), a bound on the lumped
disturbances capturing the plant model mismatches and any
unmodelled external disturbance ξ impacting on the plant; and
a term to bound the magnitude of the unknown faults.
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In this example the error term e1(t) is a scalar and has
physical meaning, and so in this situation it is possible to
make a good initial guess for the initialization of the observer
to ensure e1(0) is small. Thus the dominating terms are
associated with the evaluation of e1(t) resulting from the plant
model mismatched captured by ξ and the size of the faults.
To estimate the effects of plant model mismatch, the observer
was run (off-line) on flight data obtained from the experiments
in [5] which constitutes real sensor fault-free data. Results for
different choices of k(t) are illustrated in Fig. 2. This suggests
a choice of k(t) = 1.2. The remaining design freedom is
associated with the allowable magnitude of sensor faults to
be accommodated. Here a-priori, for safety reasons, it was
determined that the magnitude of the sensor faults would be
less that 5deg/s. This was used as the basis for the choice
of α = 0.1rad. The final value of k(t) was decided upon
following extensive pre-flight ground testing on the MuPAL-
α aircraft configured in a Hardware-in-the-Loop (HIL) setup
[8]. The results encapsulated in Fig. 2 represent ‘open-loop’
tests since the reconstructions from the observer do not affect
the control signals applied to the aircraft. (‘old’ flight test data
based on other flight experiments was used). When testing the
complete FTC strategy shown in Fig. 1 on the HIL set up,
the closed-loop response was found to improve if a reduced
value of k(t) was employed. This interaction between the FDI
scheme (estimating the sensor faults) and the feedback control
loop is not unexpected and arises from the lack of a true
separation principle, because of the coupling introduced by
the uncertainty. This coupling is a studied phenomenon in the
FDI/FTC literature [27]. Ultimately a value of k(t) = 0.8 was
selected – which although not optimal with respect to Fig. 2,
only represents a 12.5% degradation in performance from the
open-loop optimal value near k(t) = 1.2 but yields better
closed loop performance.
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Fig. 2. An example of a fine-tuning of the modulation gain

The controller design implemented here is the one described
in detail in [5]. The controller in [5] was developed specifically
to provide actuator fault tolerance, but in this paper has been
embedded with the scheme in Fig. 1. Extensive tuning of the
controller was undertaken in the HIL environment discussed
in [5]. For details of the controller tuning on the HIL and the
trade-offs involved, see [5].

VI. FLIGHT TEST ON MUPAL-α
The FBW configuration of MuPAL-α allows new flight

control strategies to be implemented (on the FBW flight

control computer) and then evaluated either on the ground
(as part of a HIL configuration) or by actual piloted flight
evaluation.

Fig. 3. MuPAL-α aircraft

The sensor FTC scheme (as described in Sections II-IV)
was written in C-code using a template provided by JAXA
to comply with the input-output interface of the FBW sys-
tem. Once HIL testing is successfully completed, the control
scheme is ‘burned’ into the FBW computer. The sensor FTC
scheme was implemented on the FBW system using an explicit
Euler solver based on a sample rate of 50Hz.

The results presented here were obtained from flight cam-
paigns supervised by a crew of JAXA and Nikanihon Air
Service personnel, between 16-26 April 2018. The flight tests
took place in Sagami Bay, south-west of Tokyo.

During the flight test campaign, the FTC sliding mode
scheme developed in Sections II-IV was used to achieve
lateral-directional performance. Longitudinal control of alti-
tude and speed was manually maintained by the evaluation
pilot using column and throttle lever inputs. In order to demon-
strate nominal fault free performance can be retained in the
presence of sensor faults, a coordinated ‘S-turn’ manoeuvre,
involving a roll angle command of approximately 20deg to
−20deg followed by a sideslip command of −2deg to 3deg,
was conducted manually by the evaluation pilot. During the
flight tests, faults were set to occur 30 sec after the FBW
system was engaged.

A. Sensor fault tolerant control flight tests

1) Fault free: The flight test results are shown in Fig. 4 in
the presence of wind/gusts. A coordinated ‘S-turn’ manoeuvre
described previously was considered here. The trajectories
of the aircraft states associated with the lateral-directional
motion and wind/gusts are shown in Fig. 4(a). It is clear from
Fig. 4(a) that sideslip and roll angle tracking performance are
good. The aileron and rudder surface deflections are shown
in Fig. 4(b). The observer performance is shown in Fig. 4(c)
where ‖ey‖ is seen to be small which indicates good sliding
mode performance, and that the observer output estimation
error is small. Fig. 4(c) (bottom left) also shows the fault
reconstruction error is close to zero in the fault free condition,
which indicates good reconstruction performance.

2) Yaw rate sensor fault – slow drift: Here a set of results
are shown when a slow drift fault occurs on the yaw rate sensor
from 30sec onwards with a drift rate of 0.1deg/s2 as shown
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(a) The trajectories of the system states and wind/gusts
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(b) Control surface deflections
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(c) Observer performance

Fig. 4. Fault-free case

in Fig. 5. For safety reasons, during flight tests, the maximum
allowable amplitude of the fault is set to be 5deg/s. The trajec-
tories of the lateral-directional states and wind/gusts are shown
in Fig. 5(a) where the same coordinated ‘S-turn’ manoeuvres
with ±20deg roll angle and ±2deg sideslip commands were
created by the evaluation pilot. The aileron and rudder surface
deflections are shown in Fig. 5(b), which are similar to the

fault free case. Clearly, although a yaw rate sensor fault is
present, the proposed sensor FTC scheme can still retain good
roll and sideslip tracking performance (similar in level to the
fault free condition). In Fig. 5(c) (top left), the ‘true’ yaw
rate represents the actual true yaw rate experienced under the
fault tolerant control scheme and the ‘corrupted’ signal is the
sum of true yaw rate and the additive yaw rate fault. It is
clear that the yaw rate sensor measurement is corrupted by a
slow drift and that the fault can be well reconstructed with the
fault reconstruction error close to zero (Fig. 5(c) bottom left).
Furthermore, Fig. 5(c) (bottom right) shows that, during the
flight tests, sliding is maintained as ‖ey‖ is close to zero.

3) Yaw rate sensor fault – fast drift: Fig. 6 shows the
results associated with a fast runaway sensor fault. Similar
to the slow drift in the previous test, the fault is set to
occur from 30sec onwards – except now at a faster rate of
0.4deg/s2. Again, for safety reasons during the flight test,
the maximum amplitude of the runaway is limited to 5deg/s.
The same manual pilot input coordinate ‘S-turn’ is considered
here for consistency. Fig. 6(a) shows the sensor fault FTC
scheme managed to maintained fault-free performance in the
presence of wind/gust and sensor faults. Fig. 6(a) shows good
controller tracking performance, and the state responses are
similar to the fault free case. The control surface deflections
in Fig. 6(b) also show similar behaviour to the fault free case.
Fig. 6(c) (top right) shows the fault estimation performance
and demonstrates the fault reconstruction error is close to zero
(bottom left) . Fig. 6(c) (bottom right) also shows that sliding
motion ‖ey‖ is maintained is close to zero despite the presence
of faults and wind.

4) Yaw rate sensor fault – sine wave: Fig. 7 shows the flight
evaluation results when an additive sine wave fault occurs
on the yaw rate sensor from 30sec onwards. The faulty sine
wave signal has a frequency of 0.02Hz and the amplitude
of the fault is 2deg. The same, manual pilot coordinated ‘S-
turn’ manoeuvre, is also considered here. The trajectories of
the lateral-directional states of the MuPAL-α and associated
wind/gusts are shown in Fig. 7(a) and demonstrate that fault
free tracking performance of roll angle and sideslip angle can
be maintained despite the yaw rate sensor corruptions. The
aileron and rudder surface deflections are shown in Fig. 7(b)
and indicate similar behaviour to the fault free case. Fig. 7(c)
(top left) shows that the additive sine wave fault appears
in the yaw rate sensor measurement from 30sec onwards.
Nevertheless, the fault can be well reconstructed (Fig. 7(c) top
right) and both the sliding surface and the fault reconstruction
error are close to zero (Fig. 7(c) bottom left and right).

5) Pilot feedback: After debriefing, the evaluation pilot
indicated that he did not perceive any noticeable difference
in performance during the flight tests, regardless of whether
the tests were fault free or included fault conditions. Note that
the exact time when sensor fault occurred was not disclosed to
the pilot to avoid the pilot anticipating the fault and affecting
the judgement of the pilot.

VII. CONCLUSION

This paper has developed a new LPV sliding mode sensor
FTC scheme which aims to maintain near nominal lateral-
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(a) The trajectories of the system states and wind/gusts
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Fig. 5. Slow drift fault

directional control performance in the face of yaw rate sen-
sor faults. This is achieved based on only knowledge from
measured system inputs and outputs. The proposed scheme
has been implemented on the Japan Aerospace Exploration
Agency’s Multi-Purpose Aviation Laboratory (MuPAL-α) re-
search aircraft and validated in a series of flight tests. The
illustrated flight test results show that, during the steady turn
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Fig. 6. Fast drift fault

manoeuvre induced by the evaluation pilot, various yaw rate
sensor faults are accurately reconstructed and roll and sideslip
tracking performance is maintained despite the faults.
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