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Abstract
We adapt the Monte-Carlo wavefunction (MCWF) approach to treat the open-system spin
dynamics of radical pairs subject to spin-selective recombination reactions. For these systems,
non-Lindbladian master equations are widely employed, which account for recombination via the
non trace-preserving Haberkorn superoperator in combination with reaction-dependent exchange
and singlet–triplet dephasing terms. We show that this type of master equation can be
accommodated in the MCWF approach, by introducing a second type of quantum jump that
accounts for the reaction simply by suitably terminating the propagation. In this way, we are able
to evaluate approximate solutions to the time-dependent radical pair survival probability for
systems that have been considered untreatable with the master equation approach until now. We
explicate the suggested approach with calculations for radical pair reactions that have been
suggested to be relevant for the quantum compass of birds and related phenomena.

1. Introduction

Interest in spin dynamics to explain biophysical phenomena has grown markedly in recent years, with a
particular focus on magnetoreception [1–3], which is a cornerstone of the emerging field of quantum
biology [4, 5]. For these systems, magnetosensitivity emerges from the reaction dynamics of radical systems,
subject to coherent evolution, predominantly under Zeeman and hyperfine interactions, and spin-selective
recombination [3, 6–9]. The quantum dynamics of the associated spin-degrees of freedom generally have to
be considered in the presence of decoherence, relaxation and chemical reaction processes to give a realistic
account of magneto-biological effects [10–14]. Further, it has been shown that toy models are often
insufficient to adequately describe these systems, as peculiar effects can arise from many-spin interactions,
e.g. the emergence of spiky features in models of the radical-pair based compass [12], or often neglected
interactions, e.g. the electron–electron dipolar coupling [11, 15]. In fact, the study of simple models can
mislead, as sometimes effects emerge that do not generalize to radical systems under realistic conditions,
e.g. with many coupled nuclear spins or the open quantum system-setting. For example, long-lived
entanglement has been attributed a role in radical-pair magnetoreception, but simulations with many
coupled nuclei suggest a swift decay and no essential function [16]. While some studies have started to
approach more comprehensive systems/interaction levels, this typically applies to one
interaction/phenomenon at a time and none can be said to have realized a truly comprehensive theoretical
description of a realistic, biologically relevant radical pair system. Furthermore, new magnetic field effects
have been predicted to result from the electron–electron dipolar interaction and radical scavenging in
systems of more than two radicals, which demonstrates the demand to simulate ever larger systems
[10, 15, 17–19].

The challenge with spin dynamics in general is that the size of Hilbert space grows exponentially with
the number of considered spins. This is particularly stringent for the dynamics of open quantum systems
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which do not preserve pure states and thus mandate a formulation in Liouville space, which scales
quadratically in Hilbert space dimension [20]. This often leaves theoreticians with the choice between
modelling small, but often biologically irrelevant, processes or systems of moderate size that are simplified
to an extent that they are unrealistic.

For typical open quantum systems, i.e. master equations of the standard Lindblad form, a significant
step toward solving (more) realistic problems came with the introduction of the Monte Carlo wave function
(MCWF) approach [21–23]. The MCWF method, which is also known as the quantum jump method,
substitutes the evolution of the density matrix with an ensemble average over individual quantum
trajectories of wave functions evolved under a pseudo-Hamiltonian and subject to quantum jumps, i.e.
discontinuous modifications of the wavefunction, which together account for the openness of the system.
Unfortunately, the most popular approach to the spin dynamics of radical pairs does not conform to
standard Lindblad form if asymmetric (i.e. different in the singlet and triplet configurations) reactivity is
included [13, 24–26]. This means that the MCWF approach cannot be robustly applied to solve large spin
dynamics problems. The aim of this contribution is to overcome this problem by extending the MCWF
approach to also include non-trace-preserving master equations associated with the asymmetric
recombination of radical pairs. This facilitates a new numerical approach to model the spin dynamics of
large radical systems that is applicable to the solution of larger spin dynamics problems as they are occur in
realistic biologically relevant radical reactions that are too large to be treated by other current tools.

2. Background

Spin-selective recombination processes are an integral part of the spin dynamics of radical systems [6–9].
Various ways to include this aspect in the master equations have been discussed in the recent literature [13,
25–28]. The traditional approach, due to Haberkorn [24], suggests that singlet (rate constant kS) and triplet
(kT) recombination are to be accounted for by the superoperator

ˆ̂Kρ = −kS

2
{PS, ρ} − kT

2
{PT, ρ} , (1)

where PS,T are the singlet and triplet projection operators, respectively. This gives rise to a non-trace
preserving equation of motion of the (concentration-weighted) density operator, for which the trace of ρ
gives the survival probability of the radical (pair) systems. The form of equation (1) has been debated
[25–32] and confirmed [33–35]. Recently, Fay et al have suggested a series of quantum master equations of
the recombining radical pair, which they derive from a microscopic description of the electron transfer
reaction using the Nakajima–Zwanzig projector approach [13]. To second order in the electronic coupling
of radical pair and product states (i.e. in the non-adiabatic limit), the authors recover the Haberkorn term,
but augmented by an additional reactive exchange coupling term, which was also discussed in [36]. In the
fourth order in the coupling (i.e. for more adiabatic reactions) an additional singlet–triplet dephasing
(S/T-dephasing) term [37] of the form

ˆ̂
K ′ρ = −kST (PSρPT + PTρPS) (2)

appears, the rate kST of which depends on the details of the system. It is noteworthy that additional
S/T-dephasing earlier emerged from Kominis’ theory [27, 28, 38]. The quantum measurement approach to

radical pair recombination by Jones and Hore can also be interpreted as a result of the combined effect of ˆ̂K

and
ˆ̂
K ′, in this case with the particular choice of kST = (kS + kT)/2 [25, 26]. This suggests a central role of

the Haberkorn reaction term augmented by additional S/T dephasing for the spin dynamics of radical
systems, which is in fact reflected in the widespread use of this combination for the modelling of
experimental data [37, 39, 40].

If ˆ̂K from equation (1) is the only non-coherent term in the master equation, the spin dynamics of the
system can still be evaluated comparably cheaply, as ρ(t) can be constructed from an approach based on the
propagation of wavefunctions under a non-Hermitian, effective Hamiltonian [of the form given by
equation (9) below] [14]. Thus the simulation process can be handled entirely in the comparably small

Hilbert space. Singlet–triplet dephasing as given by
ˆ̂
K ′ in equation (2), however, does not allow for this

quasi-pure state evolution approach. Using PS = 1 − PT, we can however rewrite equation (2) in many
equivalent ways, one of which is

ˆ̂
K ′ρ = 2kST

(
PSρPS −

1

2

{
P†

SPS, ρ
})

. (3)
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As equation (3) is of the form of a Lindblad dissipator, the dynamics it induces can in principle be
accounted for by the MCWF approach [21–23]. However, for this to provide a feasible approach to the spin
dynamics of radical systems, we require a means to extend the MCWF approach to also include the
non-unitary contributions associated with the asymmetric recombination of radical pairs as described by
equation (1).

Note that quantum trajectories have previously been suggested for the modelling of radical pair
dynamics [38]. However, it has been argued that Haberkorn’s theory cannot be cast in terms of quantum
trajectories [30]. Our extension to the MCWF approach allows it to be applied to non-Lindbladian master
equations resulting from terms of the form of equation (1). This broadens the applicability of MCWF to the
spin dynamics of radical systems subject to spin-selective reactivity. The approach accommodates
singlet–triplet dephasing, and thus applies to the description of chemical radical pair reactivity beyond the
Haberkorn approach. It is also applicable to models that apply the Haberkorn reaction operator (or its
extensions) to the dynamics of open quantum systems of Lindblad form, e.g. random field relaxation or
Redfield type relaxation superoperators of arbitrary genesis [10, 11, 41, 42]. In the limit of infinite samples,
the MCWF model agrees exactly with the direct integration of the master equation. We show that the
approach allows us to obtain estimates of the magnetic field effects of large spin systems, which we consider
(currently) intractable by the direct integration method.

This manuscript is structured as follows: first, we present a derivation of the extended MCWF approach
and explain the unique steps taken to make it applicable to the non-Lindbladian recombination term, as
shown in equation (1). Then, we present some results obtained with this approach, and demonstrate their
equivalence to those obtained with the direct integration of the master equation, showing also the
comparison between the efficiency and numerical error of both methods. Finally, we suggest applications
for the approach, and ways to further increase its capability.

3. Derivation

The MCWF method aims to reconstruct the equation of motion of the (spin) density operator from the
ensemble average of stochastic quantum trajectories of state vectors [21–23]. The approach predominantly
provides a computational tool, the efficiency of which rests on the reduction in dimensionality (associated
with treatment of Hilbert space state vectors instead of density operators) and the fact that often a relatively
small (relative to the Hilbert space dimension) number of samples is sufficient to adequately reconstruct the
observables of interest [14]. While individual MCWF trajectories do not necessarily convey reality, they
have occasionally been interpreted to do just that, i.e. to reflect the behaviour of single realisations of
quantum systems. We consider the master equation:

dρ

dt
= −i[H, ρ] + ˆ̂Dρ+ ˆ̂Kρ

= −i[H, ρ] +
M∑
m

(
JmρJ†m − 1

2
{J†mJm, ρ}

)
− 1

2

N∑
n

{Kn, ρ} . (4)

Here, square (curly) brackets denote the (anti-) commutator. The first term accounts for the coherent

evolution under Hamiltonian H (in angular frequency units). The second term, ˆ̂Dρ, is in so-called
Lindblad-form and describes decoherence processes in the Born–Markov approximation [20]. The sum
extends over M quantum jump or collapse operators, Jm, the maximal number of which is one smaller than

the square of the Hilbert space dimension [43]. The third term, ˆ̂Kρ, here assumed in Haberkorn form, is
unique to the treatment of the spin dynamics of radical systems. It describes chemical transformations of
the radicals, i.e. their spin-selective recombination to form various reaction products. Typically, the Kn

relate to the singlet or triplet projection operators of the reactive pair (i, j) of radicals:

Kn = k(i,j)
S,T P(i,j)

S,T , (5)

with

P(i,j)
S =

1

4
− Si · Sj, (6)

and
P(i,j)

T = 1 − P(i,j)
S , (7)

where Si denotes the spin vector operator (in multiples of �) of spin i. For recombination terms Kn of the
form of equation (5), Kn = K†

nKn applies and the recombination operator assumes a form that, except for

3
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one term missing, is reminiscent of the Lindbladian. However, as a consequence of the presence of ˆ̂Kρ the
dynamics do not preserve the trace of the ρ, i.e. ρ is actually the density operator weighted by the
probability that the radical system has not yet recombined. In principle, this peculiarity can be avoided by
introducing shelfing states, which allows one to recover the classical Lindblad form throughout [44].
However, this comes at the cost of enlarging the Hilbert space by product states, the spin degrees of freedom
of which are assumed unobserved. Also note that by absorbing the singlet–triplet dephasing in the Jm s,
equation (4) applies to various approaches to treat reactive radical systems, including the Jones–Hore
model and the quantum master equation approach [13, 25, 26]. The equation of motion can be
re-expressed in the form:

dρ

dt
= −i

(
Heffρ− ρH†

eff

)
+

M∑
m

JmρJ†m, (8)

with Heff denoting the effective Hamiltonian:

Heff = H − i

2

N∑
n

Kn −
i

2

M∑
m

J†mJm, (9)

which marks the starting point of the MCWF approach. As Heff is non-Hermitioan, it induces a
non-structure-preserving map in the Hilbert space of the system. The algorithm starts out from an
ensemble of state-vectors, {|φ(0)〉}, that appropriately sample the initial density operator ρ(0). The state
vectors are assumed to evolve under the effective Hamiltonian Heff according to

d

dt
|φ(t)〉 = −iHeff |φ(t)〉 (10)

and undergo occasional quantum jumps (to be described below). Closely following the exposition of [21],
we shall consider the evolution of |φ(t)〉 to |φ(t + δt)〉, where the time increment δt is arbitrary, but
sufficiently small such that terms including δt of order 2 and higher can be neglected. Under this
assumption, the non-unitary evolution produces the state:∣∣φ(1)(t + δt)

〉
≈ (1 − iHeffδt) |φ(t)〉 . (11)

The square of the l2 norm of the state decreases during this evolution from its value at t, 〈φ(t)|φ(t)〉 = l2,
to: 〈

φ(1)(t + δt)
∣∣φ(1)(t + δt)

〉
=

(
1 − δp

)
l2, (12)

where to first order in δt:

δp =
iδt

l2
〈φ(t)|Heff − H†

eff |φ(t)〉

≡
M∑
m

δpm +

N∑
n

δp′n. (13)

We later show that the squared norm l2 cancels, so this is no significant divergence from the original
approach, which assumes l2 = 1. Yet, the more general assumption of l2 �= 1 was impelled here by the
intrinsic non-trace preserving formulation of the dynamics in the presence of spin-selective recombination
processes as described by equation (4). δp is interpreted as the probability that a quantum jump occurs
within time interval δt. The probability that this jump involves the mth Lindblad term and the nth reaction
term is given by δpm and δp′n, respectively:

δpm =
δt

l 2
〈φ(t)| J†mJm |φ(t)〉

δp′n =
δt

2l 2
〈φ(t)|K†

n + Kn |φ(t)〉

=
δt

l 2
〈φ(t)|Kn |φ(t)〉 , (14)

where the last equality in the expression of δp′
n applies for Hermitian Kn (e.g. reaction terms composed

from singlet and triplet projection operators). It is implied here that δp � 1 (as δt is small), which
guarantees that the probability of two jumps occurring within one timestep δt is negligible. Quantum
jumps are introduced into the time evolution of the state vectors as a stochastic element, thereby mimicking
the physically expected, uncertainty of quantum processes. To this end, a quasi-random number u between
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zero and one is drawn from the continuous uniform distribution. If, as in the vast majority of cases by
construction, δp < u, no jump has occurred and the state vector is renormalized and propagated on. If,
however, δp � u, a quantum jump is executed. The actual jump process is again selected at random from
the M Lindblad and N kinetic terms, whereby the relative probability is δpm/δp and δp′n/δp, respectively.
This leaves us with three distinct events to consider in the time-evolution of the state vector: no jump,
Lindbladian jump, and recombination/reaction. In the event of no jump, which occurs with probability
1 − δp, the re-normalized state vector at t + δt, |φ(t + δt)〉, can be chosen as

|φ(t + δt)〉 |no jump = l

∣∣φ(1)(t + δt)
〉

‖ |φ(1)(t + δt)〉 ‖ . (15)

Alternatively, in the event of a jump associated with Jm (occurring with probability δpm), the re-normalized
wavefunction is obtained from

|φ(t + δt)〉 |jump = l
Jm |φ(t)〉

‖Jm |φ(t)〉 ‖ . (16)

So far, this entirely equals the established MCWF approaches. We have extended the method by
explicitly considering the case of reaction/termination, which occurs with probability δp′n. As the associated
superoperator is not of Lindblad form, this event requires an approach that differs from MCWF algorithm
as traditionally implemented. We physically reason that a termination reaction should eliminate the
trajectory upon which it occurs, rather than propagating it. Thus we choose, for the termination state, the
new state vector to be the zero function:

|φ(t + δt)〉 |reaction = 0 (17)

for t + δt and all subsequent times. This is equivalent to stating that all expectation values following the
reaction event are equated to zero, i.e. the quantum state is whence absent from the population weighted
ensemble.

We demonstrate equivalence between this extended MCWF approach and the master equation approach
by showing that the master equation, equation (4), can be recovered from the ensemble average of MCWF
trajectories. We begin by considering a pure state with density operator σ(t) = |φ(t)〉 〈φ(t)|. We find this
quantity at the later time t + δt by averaging over many MCWF trajectories. This will give rise to the time
averaged σ(t + δt), here denoted σ̄(t + δt), as a linear combination of the state-vector diads from above,
each weighted by the associated probability:

σ̄(t + δt) = l2(1 − δp′)

∣∣φ(1)(t + δt)
〉 〈

φ(1)(t + δt)
∣∣

‖ |φ(1)(t + δt)〉 ‖2
+
∑

m

l2δpm
Jm |φ(t)〉 〈φ(t)| J†m

‖Jm |φ(t)〉 ‖2
+

N∑
n

δp′n 0. (18)

We have deliberately included δp′n multiplied by its zero generator to make clear the distinction between this
method and the previous MCWF implementation. Using equations (11) and (17), this simplifies to:

σ̄(t + δt) =
∣∣φ(1)(t + δt)

〉 〈
φ(1)(t + δt)

∣∣+ δt
M∑
m

Jm |φ(t)〉 〈φ(t)| J†m, (19)

which can be written to first order in δt as:

σ̄(t + δt) = (1 − iHeffδt) σ(t)
(

1 + iH†
effδt

)
+ δt

M∑
m

Jmσ(t)J†m

= σ(t) − iδt
(

Heffσ̄(t) − σ̄(t)H†
eff

)
+ δt

M∑
m

Jmσ(t)J†m. (20)

Finally, in the limit δt → 0 we recover equation (8) for the pure initial state. The approach also holds for any
convex combination of initial states, if the initial state is sampled from these states and is thus general. This
completes the proof.

In summary, by imposing that a reaction event terminates the trajectory that is being propagated we
have demonstrated the equivalence between an adapted version of the MCWF approach and the master
equation that governs radical pair dynamics, or more generally, radical system dynamics, with
recombination terms of non-Lindbladian form. Details of our implementing this approach including the
sampling of nuclear spin states from the over-complete set of spin coherent states [14] have been
summarized in the supporting information (https://stacks.iop.org/NJP/22/083064). Finally, note that our
approach of removing recombining trajectories from the ensemble is in line with previous works employing
quantum trajectories for radical pair reactions described in the Kominis framework [38].
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4. Results

We have implemented the MCWF approach for spin dynamic calculations on radical pairs as outlined in
the supporting information. Here, we present an assessment of its performance established in terms of two
prototypical radical pair systems with putative relevance to magnetoreception [12, 40, 45]. These radical
pairs involve a semi-reduced flavin adenine dinucleotide, FAD, non-covalently bound in the protein
cryptochrome, i.e. FAD•−, and a partner radical. In vitro, the combination of FAD•− and an oxidized
tryptophan radical, W•+, is known to convey magnetosensitivity [40, 46]. In vivo, the identity of the second
radical is less clear and currently fiercely debated [10, 45]. In model calculations, systems of so called
reference-probe character have been found to elicit large anisotropic magnetic field effects [45, 47]. The
prototypical system of this kind is [FAD•− Z•], where the flavin is combined with a radical devoid of
hyperfine interactions, Z•. A radical of this kind could possibly result from a reoxidation reaction of the
fully reduced FAD cofactor with molecular oxygen [48–50]. Note that many details of cryptochrome
magnetoreception are as yet unknown and no definite picture has emerged from the combined literature.
However, this shall not burden us here, where the purpose is to discuss MCWF approach for recombining
radical pairs as treated within the Haberkorn, respectively quantum master equation, framework. For these
oriented systems, the typical Hamiltonian is of the form

H = H1 + H2, (21)

where
Hk =

μBgj

�

�B ·�Sk +
∑

i

�Sk · Aki ·�Ik,i. (22)

Here, �B is the applied magnetic field, gk the g-factor (g-anisotropy is neglected here, because we focus on
organic radicals in comparably weak magnetic fields), Aki is the hyperfine tensor and �Sk and�Ik,i are the
individual electron and nuclear spin operators, respectively. As is commonly done, we have neglect
exchange and electron–electron dipolar interaction here for simplicity [15, 51]. The radical pair systems
considered here can either recombine in the singlet configuration (with rate kb) or proceed in a non-spin
selective process to a reaction product (rate kf ), which in the context of magnetoreception is thought to
involve a protein structure rearrangement, whence innervating a signalling cascade [52]. The kinetic

superoperator ˆ̂K is thus of the form
ˆ̂Kρ = −kb

2
{PS, ρ} − kfρ, (23)

which is tantamount to setting kS = kf + kb and kT = kf in equation (1). We assume that the radical pairs
are subject to S/T-dephasing [see equation (2) above; dissipation rate kST = γST) as a result of the reactive
encounter process and/or the modulation of the exchange and electron–electron dipolar interaction terms
by molecular motion. In addition, we assume random field relaxation, which is accounted for by a Lindblad
dissipator with uncorrelated noise associated with the Cartesian spin operators of the two radicals
Jm ∈ {Sk,x, Sk,y, Sk,z} [10, 42]. Assuming that the dissipation rates for all directions are equal to γRF,k, this
gives rise to the combined term for radical k of the form

ˆ̂Rkρ = γRF,k

⎡
⎣ ∑
α∈{x,y,z}

Sk,αρSk,α −
3

4
ρ

⎤
⎦ . (24)

Furthermore, we assume that the radical pair is generated in the singlet state, e.g. by a swift,
spin-conserving electron transfer reaction of diamagnetic precursors, and, thus, ρ(0) = PS/Tr[PS].

We follow the singlet probability, pS(t) = Tr[PSρ(t)] or the survival probability, p1(t) = Tr[ρ(t)] of the
radical pair over time, from which the yields of the recombination, YS and escape/signalling product, Y1 can
be calculated from

YS = kb

∫ ∞

0
ps(t) dt, (25)

and

Y1 = kf

∫ ∞

0
p1(t) dt, (26)

respectively. Evaluating p1(t) from the MCWF approach is particularly straight forward, as it is derived from
sampling the recombination time only. In particular, no evaluation of expectation values on a regular time
grid (in addition to the usual following of the trace of ρ for the purpose of identifying the moments of
quantum jumps) is necessary. This allows for a particularly efficient implementation.

6



New J. Phys. 22 (2020) 083064 R H Keens and D R Kattnig

Figure 1. Transformed survival probability, f1(1) = p1(t)exp(kf t), as a function of time for the [FAD•− W•+] system with 8 + 8
nuclear spins, subject to S/T-dephasing at the rate γST = 11 μs−1 and a magnetic field of B = 1 mT. A recombination rate of
kb = 0.5 μs−1 was assumed. (a) Shows the reconstruction of the time-dependence of f1(t) for many trajectories using the MCWF
approach. The solid red line shows the eventually converged mean; every gray curve, a single of which has been highlighted in
black, corresponds to 80 samples. Here, B = 1 mT is aligned with the ẑ-axis of FAD. (b) Summarizes the converged results for or
different field directions in the absence and presence of S/T-dephasing. Note that S/T-dephasing strongly attenuates the
anisotropy of the response to magnetic field.

Here, we report on our attempts of applying the MCWF approach to the two radical pair systems
[FAD•− W•+] and [FAD•−Z•] subject to the outlined scenario, whereby a variable number of
hyperfine-coupled nuclei was taken into account. The relevant hyperfine parameters, up to 12 for FAD•−

(including two nitrogens with I = 1) and up to 8 (one nitrogen) for W•+, are summarized in the
supporting information to this text. For the simulations with a variable number of hyperfine-coupled
nuclear spins reported here, the hyperfine interactions in FAD•− were added in the order N5, N10, H6, 3 ×
H8, Hβ1, Hβ2, H9, and 3 × H7. For W•+ the order was N1, H1, Hβ2, H4, H2, H6, Hβ1, H7 and H5.
Figure 1 shows exemplary results for [FAD•− W•+] subject to S/T-dephasing at the rate γST = 11 μs−1 and
a magnetic field of B = 1 mT. Data for B = 0 mT are shown in the supporting information (figure S1). A
recombination rate of kb = 0.5 μs−1 was assumed, which is typical for this kind of system. We show the
transformed survival probability f1(t) = p1(t)exp(+kf t) as a function of time, which is independent of kf as

by the form of ˆ̂K , equation (23), the forward reaction induces a simple exponential decay of the density
matrix. Typical values of kf would be of the order of 1 μs−1. Figure 1(a) shows how the MCWF approach
re-constructs the time-dependence of an observable from many trajectories; 80 individual runs are
combined in one grey line; the eventually converged average is shown as red solid line. Figure 1(b) shows
converged results for different orientations of the magnetic field with and without S/T-dephasing. Note that
in the absence of S/T-dephasing the dynamics populate states which are part of the kernel of the Liouvillian
and thus do not decay. S/T-dephasing breaks the longevity of the associated radical pair population.
Figure 2 features the [FAD•−Z•] spin system with 14 spins under random field relaxation [cf equation (24)]
with rate γRF = 0.2 μs−1. Here, we have assumed B = 50 μT, which is of the order of the geomagnetic field
at mid-latitude. Figure 2(a) shows f1(t) for different orientations of the magnetic field and the dependence
of the magnetic anisotropy, assessed in terms of the difference of the escape yield for the magnetic field
aligned with the ẑ and ŷ-direction, on the rate kf . To this end, the yield was obtained by numerically
integrating p1(t) up to a cut-off time of tmax = 24 μs. f1(t) for a smaller number of samples and the
convergence behaviour of ΔY1 for this system are shown in the supporting information (figures S2 and S3).

For smaller spin systems, we have compared the accuracy of the method to the result obtained from
direct integration of the master equation using Tsitouras’ Runge–Kutta pairs of order 5(4) with adaptive
time stepping to ascertain a relative and absolute error of 10−8. For the [FAD•−Z•] problem with random
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Figure 2. (a) The test case used here was the [FAD•−Z•] system, with 14 spins under random field relaxation with rate γRF = 0.2
μs−1 and kb = 2 μs−1. Here, we have assumed B = 50 μT, which is of the order of the geomagnetic field at mid-latitude. The
insert shows the dependence of the magnetic anisotropy for this system, evaluated as the difference of Y1 when the field is in the ŷ
and ẑ-direction, respectively, on the forward rate constant kf . (b) Shows f1(t) on a logarithmic scale. tmax = 24 μs and
N = 476 800 Monte Carlo samples have been collected.

field relaxation (γRS = 0.2 μs−1) and 10 coupled nuclei (including two nitrogen atoms), figure 3 illustrates
the deviation of the direct integration and the MCWF approach when 160 000 Monte Carlo samples are
drawn. The maximal deviations are of the order of 10−3—invisible to the eye when comparing
f1(t) = p1(t)exp(kbt) in the range from 0 to 1. Figure 4 shows similar data for [FAD•− W•+] with 4
hyperfine-coupled nuclear spin in every radical when 16 000, ten times fewer, samples are averaged in the
MCWF approach. Analogous data for S/T-dephasing are provided in the supporting information (figure
S4). These data show that the two approaches provide congruent results. Naturally, the accuracy of the
MCWF method depends on the number of accumulated trajectories. Figure 5 shows the root-mean-square
error

Ei =

√
1

tmax

∫ tmax

0

(
fi,MCWF − fi,ME

)2
dt (27)

of fi(t) = pi(t)exp(kf t) as a function of the number of MC samples. ME stands for the direct, i.e. naïve,
integration of the master equation. tmax was set to 24 μs. The error bars indicate two times the standard
deviation of the mean of Ei evaluated from 4 to 94 independent repeats (depending on the sample number)
of the error calculation. Both f1 and fS decrease approximately with N−1/2, as is expected for the standard
error of Monte Carlo estimators. Importantly, for the studied systems, no systematic difference between the
MCWF and ME method became apparent, which is expected for an implementation based on equation (S3)
provided that the error tolerances associated with the numerical integration and quantum jump time
localisation are chosen sufficiently low. We have also compared different approaches of sampling the initial
nuclear spin wavefunction (see supporting information for details). In addition to the spin coherent state
sampling described above, we have randomly picked nuclear spin wave function in the {I2

i , Ii,z}-basis and
used a complete set of basis functions, i.e. all {I2

i , Ii,z}-basis states were sampled in succession. We could not
discern a significant difference of the error of f1(t), i.e. the standard deviation associated with the sampling
process (which is larger than the indicated standard deviations of the mean of the sampled error) exceeded
the differences of the approaches. This indifference is reassuring, as it suggests that the error introduced by
stochastically sampling the nuclear spin functions from the spin coherent states—our standard
approach—does not lead to undue error compared with complete sampling, where it is possible. The
approach based on spin coherent states is valuable as for large spin systems drawing less than Z samples is
often unavoidable or, in fact, desirable, which is where this method is expected to offer good convergence
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Figure 3. (a) Deviation of the direct ME integration and MCWF approach with 160 000 samples drawn, for the [FAD•−Z•]
problem with random field relaxation (γRS = 0.2 μs−1), kb = 2 μs−1 and 10 coupled nuclei (including two nitrogen atoms) for
different orientations of the magnetic field (B = 50 μT) as indicated. (b) The transformed survival probability of this system as a
function of time. The ME and MCWF approaches are indistinguishable on the image scale.

Figure 4. (a) Deviation of the direct ME integration and MCWF approach with 16 000 samples drawn, for the [FAD•− W•+]
with 4 hyperfine-coupled nuclear spin in every radical, random field relaxation (γRS = 0.2 μs−1), B = 1 mT and kb = 2 μs−1. (b)
The transformed survival probability of this system as a function of time.

[14]. Based on the results here, however, we cannot answer the question of whether spin coherent state
sampling is superior to the random picking of the finite set of states. For fS the analogous conclusions apply.
It is interesting to note that for the system analysed here the ratio of the errors ES/E1 appears to be
systematically smaller for the spin coherent state sampling than the other implemented approaches (whilst
the differences are again smaller than the standard deviations). This might indicate a small inherent
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Figure 5. RMS error of the transformed singlet and survival probability within the implementation of the MCWF approach
compared to the numerical implementation of the direct integration of the master equation as a function of the number of
Monte Carlo samples N. (a) Applies to the 5 spin system FAD•− W•+] system; (b) collects data for an 8 spin system of the same
type. The errors ES and E1 are shown in green and blue, respectively. Different sampling strategies of the initial nuclear spin
configurations are encoded by line styles: solid lines: spin coherent state sampling; dashed lines: random sampling of nuclear spin
states in the Zeeman basis; and dotted lines: complete sampling. The arrow indicates the slope of the expected N−1/2-dependence.
Linear fits to the data are in agreement with this expectation within statistical error. The error bars indicate two standard
deviations of the mean error Ei evaluated from 94 to 4 independent repeats for a given sample size N. All additional parameters
are as for figure 3.

advantage of the spin coherent state when singlet yields are observed. This observation will require more
detailed studies to substantiate.

The MCWF approach’s strength lies in its applicability to comparably large spin system for which the
ME approach cannot realistically be applied. This advantage becomes obvious when comparing the CPU
times to generate a solution for the two approaches as a function of the number of coupled spins, as it is
summarized in figure 6, with a further result for the S/T-dephasing scenario shown in the supporting
information (figure S5). Here, we have started out from a basic [FAD•−Z•] or [FAD•− W•+] system that
comprised all nitrogen spins. Adding one proton spin at a time, the runtime dependence as given in the
figure is obtained. For the ME approach, the elapsed time scales according to O(4n) to O(4.5n), where n is
the number of considered nuclear spins, while for the MCWF approach scales as O(2.4n). Overall, the
O(4n) scaling of the ME method quickly renders the calculation formidable. E.g. for only 4 + 4 nuclear
spins, the integration of the [FAD•− W•+] system up to 12 μs already requires 31 h. The direct integration
of the systems shown in figures 1 and 2 can be considered intractable by the current means as it would
require 48 days for the smaller [FAD•−Z•] system or even 453 years for the [FAD•− W•+] system (provided
the memory requirements could be met). On the other hand, the weaker O(2.4n) of the MCWF approach
found here allows much larger spins systems, realistically up to 20 spins, to be integrated. Here, the key
question is not only the Hilbert space dimension but in addition the required accuracy of the solution. If
high accuracies are required, the MCWF method can also be arbitrarily expensive as the O(N1/2) scaling of
the error of the averaged quantities mandates potentially huge sample sizes. For this reason, for small
systems, the direct integration is preferred.

5. Discussion

The great advantage of the Monte Carlo wavefunction method for obtaining time-dependent quantum
expectation values is that systems of greater complexity are amenable to this treatment than is possible
using the direct integration of the master equation. This advantage stems from the fact that the method
rests on the propagation of wavefunctions. For a Hilbert space dimension d, the number of wave function
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Figure 6. Comparison of the CPU time required to generate a solution for both the integration of the ME and the
implementation of the MCWF approach, as a function of the number of coupled spins in the system. Panel (a) shows a
[FAD•− W•+] system that comprised all nitrogen spins and a variable number of proton spins, and panel (b) shows a basic
[FAD•−Z•] system. Simulation parameters are as given in figures 1 and 2 for the respective systems. 216 samples have been drawn
for the MCWF approach and tmax = 12 μs. The MCWF method used the Dormand–Prince 5/4 Runge–Kutta method with an
absolute error tolerance of 10−8 and a relative error tolerance of 10−6.

components is equal to d while the number of density matrix components is equal to d2. In the worst case,
i.e. for dense operators, the propagation would scale quadratically in the number of components.
Practically, the sparsity of Heff caters for a more favourable scaling (for both approaches). In particular, we
expect an ideal scaling of O(d ln d) for the propagating of a state vector, as (a) the bilinear combination of
spin operators of the form Sk,αIki,β (with {α,β} ∈ x, y, z) directly couple at most five states and that (b)
there are O(ln d) such terms. Regardless of the actual scaling, the MCWF propagation will turn out to be
exceedingly more efficient than directly integrating the master equation, as the latter requires O(d)
applications of Heff and therefore O(d2 ln d) operations. Practically, we found a scaling of O(d1.26) for the
MCWF method applied to the [FAD•− W•+] radical pair and O(d2.2) for the direct integration.

The primary disadvantage of the MCWF method is that the calculated quantities contain a statistical
uncertainty, which needs to be reduced to an application-specific limit. The uncertainty results from the
variability of the initial nuclear spin configuration and the stochasticity of the quantum jumps. It has to be
contained by sampling, which however, comes at a significant cost of computation time, as the statistical
error decreases as N−1/2 with increasing number of samples N. Fortunately, the method inherits a
remarkable scaling behaviour from wavefunction-based approaches to spin dynamics for closed quantum
system, which suggest that for large spin systems significantly fewer samples than d/4, the number of
nuclear spin configurations, are often sufficient to arrive at adequately converged observable trajectories
[53]. Practically, a constant number of samples, independent of problem dimension, proves to work well,
suggesting that the scaling behaviour as predicted above still applies to the MCWF approach on the whole.
For more than approximately 10 spins, the MCWF method quickly becomes the only feasible approach to
integrate equation (4). For small systems, on the other hand, the added overhead of averaging a large
number of stochastic trajectories to obtain the open system dynamics, outweighs the benefit of a moderate
memory saving. Master equation methods are therefore generally more efficient when Hilbert space
dimensions are on the order of a couple of hundred states or smaller.

Alternative approaches to simulate the dynamics of relaxing systems could in principle be built on the
closed-system dynamics of spin systems. To this end, one would have to engineer a time-dependent
stochastic process such that the coherent dynamics sampled over this process will give rise to the dynamics
as predicted by the master equation (4) [14]. Up to second order, this could e.g. be realized in the
framework of the Redfield approach [20]. However, this strategy does not overcome the problem that many
trajectories have to be sampled and comes at the conceptual disadvantage that a particular, mostly arbitrary,
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realisation of the stochastic process modulating the spin Hamiltonian will have to be conjured up. E.g. in
order to realize S/T-dephasing, one could assume a stochastically modulated exchange or electron–electron
dipolar interaction, but the modulation process, interaction strength, etc would have to be chosen
subjectively [11]. While the result will in second order in the perturbation only depend on the second
moment of the interaction strength and the correlation time, high order contributions will be difficult to
rule out in general, which renders the process idiosyncratic. In particular, for systems for which the
microscopic details are unclear, this introduces an unnecessary (and possibly deceptive, if contributions of
order higher than 2 should become relevant) arbitrariness, where a description in terms of effective
parameters, as contained in the Lindblad master equation might be preferred. One will furthermore have to
ensure that the chosen process does not induce other processes, e.g. T/T-dephasing, if this is not desirable at
the stage of the calculation. The advantage of this closed-system approach lays in the fact that
well-established approaches for propagating closed radical pair systems subject to Haberkorn recombination
can be utilized, either on the quantum level, or, if very large spin systems are to be addressed, on the
semiclassical level [53–55]. In fact, the quantum propagation of the closed systems is expected to be more
efficient than the MCWF approach, as it does not require the event detection of quantum jumps. Thus, the
integration methodology can be optimized to the sampling of the relevant observables on a regular time
grid instead, which has e.g. been realized efficiently by using exponential integrators based on the Arnoldi
method [56].

Despite the advents of the MCWF method, the integration of open spin systems is a time-consuming
process for all but simplistic systems of a few spins only. The fact that a large number of trajectories has to
be accumulated, is however offset by the prospect that these calculations can be carried out in parallel. In
fact, as only a few state-vectors need to be stored, the individual resource requirements are modest and a
massively parallel implementation on high-performance clusters is easily realized. Furthermore, when
time-dependent observables, e.g. p1(t) or pS(t), are to be evaluated for the purpose of comparing with
experiments, an integration accuracy of 10−2 to 10−3 might be sufficient (to realize results that are
converged when plotted on the full scale of the calculation/experiment), which can often be realized with as
little as 1000 samples. While this is encouraging, the calculation of reaction yields, e.g. Y1 and YS, does
typically require more samples to converge to the required (experimental) precision.

We also note that the scaling behaviour of the MCWF approach, while growing weaker than that of the
ME approach, is still exponential in the number of coupled spins. While algorithms for simulating spin
dynamics that scale polynomially in the number of spins have become popular in the field of theoretical
magnetic resonance spectroscopy, these methods do not usually provide sufficiently accurate solutions for
the radical pair dynamics in weak magnetic fields [57–59]. Here, we expect that the MCWF approach can
fill the gap that exists for open quantum system dynamics between the toy systems that are
straight-forwardly treated by the ME approach and the realm of semiclassical approaches (possibly with
direct inclusion of the bath degrees of freedom) [53–55].

For systems for which the effective Hamiltonian factors due to the existence of constants of motion, e.g.
as is the case for isotropic spin systems, large savings of CPU time can be realized by utilizing the block
structure of operators. Likewise, marked improvements of the runtime and its scaling are to be expected for
problems for which the effective Hamiltonian can still be diagonalized, but a description of the open state
dynamics is aimed for (e.g. to include the effect of S/T-dephasing). In these cases, an efficient approach
could be realized by implementing the main propagation step in between quantum jumps in the eigenbasis
of the effective Hamiltonian. This is expected to provide a significant speed-up for the large class of systems
of intermediate size, i.e. systems that are non-trivial in terms of the open system dynamics but too small to
be well-described by semiclassical approaches. While we here have not explored this idea further, we expect
that future application focused on actual applications will profit from this or similar tactics. In fact, here we
have not considered the symmetry decomposition of the Hilbert space that could have been realized as the
three protons in the methyl groups at C7 and C8 of the flavin radical anion are completely equivalent and
could thus be treated in a coupled spin basis. In this sense, the presented results are representative of the
worst case scenario, where the structure of the effective Hamiltonian cannot be utilized in any particular
way. Actual application might profit from additional efficiency boosts within the outlined MCWF approach
and exceed our current application.

Eventually, while we here do not aim for new insights into the radical pair dynamics putatively
underpinning magnetoreception, we want to point out a novel observation. As illustrated in figure 1,
S/T-dephasing appears to strongly attenuate the anisotropy of the magnetic field effect, i.e. in the presence
of this relaxation process with γST = 11 μs−1 the orientational differences in f1(t) are essentially washed out.
While obviously more detailed studies of this effect are mandated, this once again highlights the importance
of focusing on the study of open system dynamics to unravel the true nature of biological magnetic field
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effect. Indeed, so far no credible demonstration of magnetic anisotropy has been realized for the
[FAD•− W•+] radical pair.

6. Conclusions

We have shown that the quantum MCWF approach can be extended to the non-Lindbladian master
equations relevant to the spin dynamics of radical systems. We achieved this by stipulating that when
radicals recombine they are no longer active in the interactions of the system, and thus the path describing
them should be terminated upon a recombination occurring which was added into the MCWF framework
by the introduction of an additional ‘quantum jump’ to describe the termination step. We have tested this
new approach against the benchmark of direct integration of the master equation with a Runge–Kutta
approach, and find that the asymptotic time-complexity of the MCWF approach is O(2.4n) compared to
the master equation scaling of O(4.5n), where n is the number of protons in the system. This speed-boost
allows large, open spin systems of up to twenty fully-interacting spins to be integrated, where previously
this was computationally unfeasible. Small spin systems, on the other hand, are better treated using the
traditional, direct integration of the master equation. We expect that the MCWF method will become a
useful asset in the study of magnetoreception and other biological magnetic field effects that are discussed
in the context of the emerging discipline of quantum biology. In this context, the complexity of the radical
systems of biological relevance in terms of the large number of hyperfine coupled nuclear spins has so far
precluded the study of open system dynamics for realistic scenarios. Here, we expect the delineated
approach to significantly broaden the range of problems that can be routinely analysed.
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