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This paper investigates the complex dynamical behavior of a rigid block structure under

harmonic ground excitation, thereby mimicking, for instance, the oscillation of the sys-

tem under seismic excitation or containers placed on a ship under periodic acting of sea

waves. The equations of motion are derived assuming a large frictional coefficient at the

interface between the block and the ground, in such a way that sliding cannot occur. In

addition, the mathematical model assumes a loss of kinetic energy when an impact with

the ground takes place. The resulting mathematical model is then formulated and stud-

ied in the framework of impulsive dynamical systems. Its complex dynamical response

is studied in detail using two different approaches, based on direct numerical integration

and path-following techniques, the latter implemented via the continuation platform COCO

(Dankowicz & Schilder). Our study reveals the presence of various dynamical phenomena,

such as branching points, fold and period-doubling bifurcation of limit cycles, symmetric

and asymmetric periodic responses, as well as chaotic motion. By using basin stability

method we also investigate the properties of solutions and their ranges of existence in

phase and parameters spaces. Moreover, the study considers ground excitation conditions

leading to the overturning of the block structure and shows parameters regions wherein

such behavior can be avoided.

a)Electronic mail: y.liu2@exeter.ac.uk

1

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
40

96
2



The dynamics of the rocking block has been studied for more than 60th years, and still,

we can find new inspiring, complex phenomena in such a simple system. Numerous struc-

tures are modeled as rocking blocks, i.e., tall buildings, free-standing power transformers,

cell towers, silos, and containers. The rocking block is used to mimic the slander structure,

which is not or badly connected to the ground. Hence, the transversal movements of the

foundation can lead to the appearance of the so-called rocking motion. The rocking motion

will cause an overturn or structure’s damage for some sets of the system’s excitation param-

eters. We distinguish two main types of excitation. The first one is an earthquake, and it

affects the system placed on the ground. In contrast, the second one is the sea wave acting

on the container ships. As it is easy to see, both of them have significantly different proper-

ties. The earthquake has a relatively high and broad frequency spectrum, and it didn’t last

long. Hence, it affects the structure in a short time with a very harsh forcing. Usually, it

results in damage or overturns of the system. On the other hand, the sea wave has a lower

frequency, lasts for a long time and varies slowly. Therefore, in addition to the damage or

overturn, we can observe a stable oscillatory motion. This paper focuses on the second type

of excitation, and we model it as a periodic function acting on the rigid block. Of course, in

extreme events, the sea wave excitation has similar or worst properties as the earthquake,

and one should study such cases assuming forcing with the complex signal. The rocking

motion is modeled as rotations with respect to the structure’s left and right bottom corner.

The impacts occur during the motion, so the model is not only nonlinear but also piecewise.

Due to discontinuity, we observe various dynamical phenomena, including bifurcations and

the coexistence of solutions. We describe the bifurcation scenario leading from steady-state

to chaos via grazing, fold, symmetry breaking, and period-doubling bifurcations. We show

the bifurcation borders in two parameters space, i.e., the amplitude and frequency of the

excitation. Such projection allows presenting ranges where the given solution is stable and

its destabilization scenario. In the considered system, we always observe the coexistence of

at least two solutions (overturn and equilibrium/periodic/chaotic). To reveal the structure

of the multistable phase space, we investigate the system with sample-based methods. Pre-

sented results describe the properties of solutions and their ranges of existence in phase and

parameter spaces. We show the probability of the existence of solutions as a function of ini-

tial conditions and parameter values. Hence, we can see the influence of those quantities on

the appearance of solutions and define the ranges where the given state is the most or the less
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probable.

I. INTRODUCTION

The rocking response of slender rigid structures due to the excitation at its base, e.g. during an

earthquake, has been the subject of great interest for many researchers, see 1–3. Such a rocking

motion in large engineering structures, such as buildings, free standing power transformers and cell

towers can cause catastrophic failures as a consequence of overturning, both from an economical

and human perspective. One of the first systematic studies in this area was pioneered by Housner4

who has established a rocking block model that has been widely used by many researchers in the

past. His study suggests that the survival of a tall slender structure during earthquakes depends

on a scale effect making the structure more stable against overturning. The block equations of

motion were described by piecewise-smooth equations depending on the sign of its rotation angle.

Despite its apparent simplicity, the problem poses serious difficulties from an analytical point of

view. Therefore, the majority of previous works has employed numerical approaches to analyze

the underlying structure, e.g., 5–13, most of which are based on studies relying on direct numerical

simulations. Therefore, in the present work we will undertake a comprehensive parametric study

of the block structure under ground excitation using specialized numerical techniques, based on a

numerical continuation approach.

Past numerical works in this research mainly focused on understanding the fundamental prop-

erties of the rocking block model. For example, Yim el al.5 studied the rocking response of rigid

blocks subjected to earthquake ground motion, and developed a numerical procedure to solve the

nonlinear equations of motion governing the rocking motion. They also studied the problem from a

probabilistic point of view with the ground motion modelled as a random process. Their numerical

results suggest that the response of the block is sensitive to small changes in its size and slender-

ness ratio, as well as the features of the ground motion. Ishiyama6 developed a computer program

to simulate the motion of a rigid body subjected to horizontal and vertical ground motions. It was

found that the criteria for overturning of the body depended on the horizontal acceleration and

the velocity of the ground. Hogan7 analyzed a rigid block undergoing harmonic forcing without

damping. An in-depth analytical and numerical study has been performed for the slender struc-

tures because in this case, it is possible to linearize equations of the motion and find their exact
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solutions. However, such a specific ratio between the rocking block dimensions is not typical for

real-world systems and do not give a comprehensive overview of most existing system’s dynamics.

Hogan presented the stability of resonant periodic orbits in the amplitude-frequency of the excita-

tion plane for different restitution coefficient values. The values of these parameters significantly

influence ranges of the resonant periodic solutions’ existence. Hence, its proper selection is crucial

for the correctness of modeling of the system’s behavior. Then, the Author presented the numer-

ical study of the nonlinear equations of motion for slander and non-slender rocking blocks. He

showed the asymmetric solutions and period-doubling sequence leading to chaos. Then, we can

find one basin of attractions with fractal properties, which confirms that multiple solutions coexist

in this system. Finally, we see the analysis of the system response to a short time excitation which

simulate areal earthquake. Hogan assumed that an earthquake has a finite time of duration, and

based on such study, one can predict the conditions leading to non-toppling or toppling states. The

following paper by Hogan14 extended the above-described results and focused on the coexistence

of resonant periodic solutions in the system. He proved that for adjacent initial conditions, one

can observe transitions to different solutions, hence the system is multistable. At the end of the

paper, the comparison of theoretical results with experiments by Tso and Wong15,16 is presented.

The matching of results is satisfactory, and simulations help to explain experimental observations.

Hogan also investigated the effect of damping on rigid block motion under harmonic forcing in 9.

The study is analytical and bases on linearized equations of the motion, hence it assumes a slender

rigid block. The Author showed several two parameters plots showing the stability of resonant pe-

riodic solutions for four parameters of the system, i.e., the amplitude and frequency of the forcing,

restitution and damping coefficients. Then, he supported his study with numerical computation of

the nonlinear equations of the motion and showed the multiple solutions, asymmetric responses,

period- and impact-doubling cascades. This study shows that the rocking block under harmonic

excitation has complex dynamics, and a plethora of different behavior can occur. It is a motivation

to study the system with new numerical tools to have a more general overview of dynamics, the

structure of the phase space and bifurcation scenarios.

Lenci and Rega17 developed a method to eliminate the heteroclinic intersections embedded in

the block’s dynamics by controlling the periodic excitation. In 10, a comprehensive experimental

investigation was carried out to study the rocking response of four blue granite stones with dif-

ferent geometrical characteristics under free, harmonic, and random vibrations. In particular, two

simulation approaches, one through Lagrangian formalism and the second one employing discrete
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element model, were used to identify the models’ parameters and study the rigid-block structure’s

dynamic response. In 11, Dimitrakopoulos and DeJong introduced new closed-form solutions and

original similarity laws which can shed light on the fundamental aspects of the rocking block.

The focus was on the transient dynamics of the rocking block under finite-duration excitations. In

12, closed-form expressions were obtained for the dynamic response of a rocking block, whereas

rigorous overturning criteria were established for conditions with and without impact. Later on,

Brzeski et al.13 studied the influence of tuned mass absorbers on the dynamics of rigid block in

order to prevent overturning. The presented method was used to optimise tuned mass absorber’s

parameters to achieve the highest chance that the block will remain standing. Final results con-

firmed that it was possible to design and tune the stabilising device in such a way that it was highly

effective regardless of the rigid block asymmetry. The influence of the excitation’s initial phase on

the response of the structure has been studied for four selected values of the phase by Lenci and

Rega18. The authors show how the dynamics of the system varies and which phase shift is the best

for stabilization of the rocking block. While in 19 the response of the rigid block on sine or cosine

impulse is presented. Moreover, the authors show the analysis of values of initial conditions on the

response of the structure. However, the selection of possible values of initial conditions is limited

to values close to zero.

This paper presents a detailed numerical study of the dynamical response of the rocking block

model with a special focus on its symmetric and asymmetric solutions. We are particularly in-

terested in the periodic solutions of the system and the evolution of such responses under the

changing parameters of base excitation. When non-smooth nonlinearity, i.e. impacts in this sys-

tem, is involved, the dynamical study of systems of this type (see 20–22) brings well-known

challenges from a numerical point of view. In order to study the behavior of the rocking block, we

will adopt two different types of numerical approaches, namely, direct numerical integration and

path-following methods for non-smooth dynamical systems23. For this kind of systems, the state

space can be divided into disjoint subregions, so the rocking block model in each region can be

described by a smooth vector field. Hence, a special care needs to be considered in order to get

reliable numerical approximations of the system response in an efficient way24.

Path-following (continuation) methods are well-established techniques in applied mathematics25,

which allow a systematic analysis of a system response under the variation of control parame-

ters. For piecewise-smooth systems, specialized computational tools for continuation, such as

SlideCont26, TC-HAT27 and COCO28, have been developed, and the latter will be adopted in the
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current work for the numerical study of the rocking block model. The MATLAB-based numeri-

cal platform COCO supports the continuation and bifurcation detection of multi-segment periodic

orbits, a feature that has been extensively used in the past for the numerical bifurcation study of

piecewise-smooth dynamical systems. For example, it was used to study the robustness of a con-

troller for controlling the multistability in a vibro-impact capsule system29. In 21, it was adopted

to determine the optimal control parameters in an impacting system in terms of its energy expen-

diture due to the control signal and transient behavior of the control error. Liu et al.30 employed

the continuation platform COCO to investigate the dynamical response of a higher order drift-

ing oscillator. By using the platform, the authors were able to eliminate the bistability observed

in the system and improve system’s performance with respect to its rate of penetration. In the

current work, we will formulate the rocking block model in the framework of piecewise-smooth

dynamical systems and employ the continuation platform COCO to study its complex dynamical

response in detail. Our main concern will be to understand the bifurcation structure of the model,

which will reveal the presence of branching points, fold and period-doubling bifurcation of limit

cycles, symmetric and asymmetric periodic responses, as well as chaotic motion. In addition,

one of the main concerns will be to identify ground oscillation modes leading to overturning and

how to avoid them by considering suitable parameter regions where such events can be avoided.

This work can then be used as starting point for developing effective control strategies to prevent

overturning during rocking motion of the rigid block.

The second method applied to study the dynamics of the system considered in this paper is a

basin stability method31,32. It enables to quantify the stability of solutions based on the proba-

bility of reaching given attractor from random initial conditions. To calculate the basin stability

measure one has to perform a significant number of Bernoulli trials and classify final solution

reached in each trial. The efficiency of the basin stability method in comparison to the basins of

attractions is especially visible when the dimension of phase space is larger than two. In such

a case, the classical approach requires much larger computational effort and interpretation of re-

sults is very complex (necessity of projections of results on two dimensional cross-sections of

multi-dimensional phase space)33–35. The basin stability method gives statistical information on

existing solutions (the volume of basins of attractions in relation to the total volume of considered

phase space) and their location in the phase space. Moreover, drawing of inital conditions allows

to monitor the probability to reach given solution. We also have more certainty that all existing

attractors have been detected and no rare solutions have been overlooked36–39. In our previous
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papers 40–42 we extend the basin stability approach assuming that values of system parameters

are also somehow random. It allows the fast scanning of the initial conditions and the parameter

spaces to find all meaningful solutions that exist in the system and the ranges of their existence.

Thus, we can determine where the system is mono-stable/multi-stable or which perturbation or pa-

rameter mismatch can lead to destabilization of the system43. The important data can be obtained

from two dimensional diagram, which shows the probability of given solution as a function of two

variables. Such data is important in practical applications because in many cases parameters of

the system are varying or it is impossible to identify their precise values and we must be sure that

there is no danger of sudden jump to another solution or appearance of bifurcation44. In this paper,

we used this method to investigate the structure of the phase space, and identified the regions of

multi-stability and the dependence of a given type of solution on the system parameters.

The rest of the paper is organized as follows. In Section 2, the physical model and equations

of motion of the rocking block are derived. Section 3 introduces the mathematical formulation

of the rocking block model as a piecewise-smooth dynamical system. Then, a detailed numerical

investigation using the continuation methods via COCO, including one- and two-parameter stud-

ies, is presented in Section 4. In Section 5 we show the solutions coexisting in the system and

their probability of occurrence using basin stability method. Finally, some concluding remarks are

drawn in Section 6.

II. PHYSICAL MODEL

A. Equations of motion

In the current work the system presented in Fig. 1 is considered, where a rigid block with

the mass M stands on the base subjected to periodic excitation with infinite rigidity. Here, we

posit only horizontal motion of the base, ẍ = AΩ2 sin(Ωt), is considered, so x = −Asin(Ωt), and

the coefficient of friction between the block and the base is sufficiently large to prevent sliding.

Therefore, the block stands still or performs oscillations around one of its corners (i.e. point O+ or

O−) that is currently in contact with the ground. The angular position of the block is given by the

generalized coordinate ϕ , which describes its angular deflection from the standing still position.

We assume that the distances between the center of mass and its corners are equal, given by the

length R. The slenderness of the block is described by θb, which is the angle between the lower
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edge of the block and the line that connects block’s center of mass with its corner. If there is no

external excitation, the block will overturn for angles larger than π
2
− θb, and we define it as the

critical angle for the block.

FIG. 1. Model of the rigid rocking block.

When ϕ > 0, the block is rocking around the point O+ the equation of motion is given by:

(Ic +MR2)ϕ̈ −MRsin(θb +ϕ)AΩ2 sin(Ωt)

+gMRcos(θb+ϕ)+ cbϕ̇ = 0,
(1)

while for ϕ < 0,

(Ic +MR2)ϕ̈ −MRsin(θb −ϕ)AΩ2 sin(Ωt)

−gMRcos(θb−ϕ)+ cbϕ̇ = 0,
(2)

where cb is the viscous damping coefficient in the pivot points of the block, g is the acceleration

due to gravity.

The block will start rotation around one of the pivot point (O+ or O−) depending on its accel-

eration ẍ. This motion continues up to the moment when the block overturns or until falls back to

the standing position ϕ = 0 knocking the ground. Here, we assume that there is no bouncing from

the block, so after the collision, the rotation of the block continues around one of the pivot points,

and the angular momentum of the system is conserved. To model the contact between the block

and the ground, the impact law5 is adopted as

ϕ̇+ = eϕ̇−, (3)
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where ϕ̇− and ϕ̇+ are the angular velocities of the block just before and after the impact, respec-

tively. The corresponding restitution coefficient e is defined as

e = 1− 3
2

sin2
(

π
2
−θb

)
, (4)

which is determined from the conservation of angular momentum5 and depends on the slenderness

of the block θb only. It is worth noting that the energy loss due to the contact depends on the

material property of the block and the base. However, for the idealized rigid block and base,

formula (4) can give a good approximation of the restitution coefficient which has been widely

adopted. The mathematical model described above will be investigated for the parameter values

given in Table I, which correspond to a realistic physical scenario.

TABLE I. Parameter values for the rocking block model.

Parameters Values/Range Units

M 20×103 kg

cb 101 Nms

g 9.81 m/s
2

R 3.764 m

θb 0.8795 rad

A (0,4] m

Ω
[

π
4
,2π

]
rad/s

For our numerical investigation, it is convenient to write the equations of motion in non-

dimensional form according to the formulae

Ω0 =

√
g

R
, t̃ = Ω0t, ω =

Ω

Ω0
,

ξ =
cb

MR2Ω0
, α =

A

R
.

(5)

By using these transformations, we obtain a set of dimensionless equations for the motion of the

rocking block as follows. For ϕ > 0, we have

ϕ ′′− 3
4
αω2 sin(θb +ϕ)sin(ω t̃)

+3
4

cos(θb +ϕ)+ 3
4
ξ ϕ ′ = 0,

(6)
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while for ϕ < 0, it gives

ϕ ′′− 3
4
αω2 sin(θb −ϕ)sin(ω t̃)

−3
4

cos(θb −ϕ)+ 3
4
ξ ϕ ′ = 0,

(7)

where the prime symbol denotes differentiation with respect to the non-dimensional time t̃. In

what follows, tildes will be dropped for the sake of simplicity.

III. DESCRIPTION OF THE MODEL AS A NON-SMOOTH DYNAMICAL SYSTEM

The rocking block model (3), (6), (7) introduced in the previous section belongs to the class

of non-smooth dynamical systems23. Such class of systems naturally arises when the underlying

governing laws of a certain problem include non-smooth phenomena, for instance (hard or soft)

impacts, friction, switches, etc. The equations of motion in these cases can be written in terms of

a piecewise-smooth vector field in combination with a set of jump laws, hence producing discon-

tinuities in the solution and in its first or higher-order derivatives. In the considered rocking block

model, a discontinuity in the solution is produced by the restitution law assumed in (3), which

accounts for the instantaneous velocity change when the block hits the ground (ϕ = 0).

In general, a non-smooth dynamical system can be characterized by three main components: a

set of (smooth) vector fields, event functions and jump functions. In this way, a system trajectory

is defined by a collection of operation modes whose evolution is described by a specific smooth

vector field. The termination condition of a given operation mode is defined in terms of the zeroes

of a particular event function (ϕ = 0 in our case). Then, the initial point for the next operation

mode is determined by a given jump function, which maps the terminal point of the current mode

to the initial point of the next one. In our case, the jump function defines the angular velocity of

the block just after an impact with the ground occurs, according to the restitution law (3). This

formulation enables the application of specialized numerical techniques for the analysis of non-

smooth dynamical systems, for instance via path-following (continuation) methods27,28.

For the study of the rocking block model via path-following methods, it is convenient to write

the governing equations in autonomous form. To this end, we will employ a self-excited, nonlinear
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oscillator given by 25:





r′(t) = r(t)+ωs(t)− r(t)
(
r(t)2+ s(t)2

)
,

s′(t) = s(t)−ωr(t)− s(t)
(
r(t)2+ s(t)2

)
,

(8)

which possesses the asymptotically stable solution r(t) = sin(ωt), s(t) = cos(ωt), for all t ≥ 0.

In this way, we can write the periodically forced rocking block model in autonomous form, which

then allows us to study the model via numerical continuation methods.

FIG. 2. Periodic response of the rocking block model (9), obtained for the parameter values ω = 1.3,

α = 0.66, θb = 0.8795 and ξ = 0.00022. (a) Phase portrait of the periodic solution and (b) time series

showing the angular position ϕ and angular velocity ψ . Here, the impact boundary ϕ = 0 is depicted as a

dotted line. The colors red and blue mark the solution segments for which ϕ < 0 and ϕ > 0, respectively.

The vertical arrows represent the instantaneous change in the angular velocity when the block hits the

ground (ϕ = 0).

Let us define λ := (ω,α,ξ ,θb) ∈ (R+)
4

and z := (ϕ,ψ,r,s)T ∈
[
−π

2
+θb,

π
2
−θb

]
×R

3 as

the parameters and state variables of the system, respectively, where ψ will capture the angular

velocity (see Eqns. (9)–(11) below). In this setting, the rocking block model (3), (6), (7) introduced
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in the previous section can be written as a non-smooth dynamical system as follows






z′(t) = f+(z(t),λ ), ϕ(t)> 0,

z′(t) = f−(z(t),λ ), ϕ(t)< 0,

(ϕ(t+),ψ(t+),r(t+),s(t+)) = (ϕ(t−),eψ(t−),r(t−),s(t−)), ϕ(t) = 0, ϕ ′(t) 6= 0,

(9)

where the vector fields are defined as

f+(z,λ ) :=




ψ

3
4

(
αω2r sin(θb +ϕ)− cos(θb +ϕ)− ξ ψ

)

r+ωs− r
(
r2 + s2

)

s−ωr− s
(
r2 + s2

)




, (10)

f−(z,λ ) :=




ψ

3
4

(
αω2r sin(θb −ϕ)+ cos(θb −ϕ)− ξ ψ

)

r+ωs− r
(
r2 + s2

)

s−ωr− s
(
r2 + s2

)




. (11)

In addition, for our numerical investigation we will consider the following solution measure

Amp := max
0≤t≤T0

|ϕ(t)|, (12)

computed for a given T0-periodic solution. In this way, we will be able to detect critical points

defined by the condition ϕ = −π
2
+θb or ϕ = π

2
−θb. They define static boundaries where block

overturning can occur. For the numerical implementation, the quantity defined in (12) is computed

from the discretized solution, using the max function.

IV. NUMERICAL STUDY OF THE PERIODICALLY EXCITED ROCKING BLOCK

In this section our main goal will be the numerical investigation of the rocking block motion

subject to periodic base excitation, introduced in Section II. As mentioned earlier, the considered

physical model may represent a number of practical scenarios, such as buildings, silos, containers,

scaffoldings, free standing power transformers, etc., and one of the main questions in this matter

is to determine the conditions under which overturning of the object occurs. For the considered

physical configuration, we will pay close attention to solutions crossing the boundaries ϕ = θb−
π
2
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FIG. 3. (a) One-parameter continuation of the periodic response of the rocking block model (9) with respect

to the angular frequency ω , computed for the parameter values given in Fig. 2. The solid and dashed

branches denote stable and unstable solutions, respectively. The black segment of the bifurcation diagram

corresponds to the continuation of the symmetric solution shown in Fig. 2(a), while the green segment

results from the continuation of the asymmetric orbit as the one shown here in panel (c). The labels BPi and

SNi stand for branching points and fold bifurcations of limit cycles, respectively. The point GR1 represents

a grazing bifurcation of an unstable solution, with the impact boundary ϕ = 0. The points SBi represent

the parameter values for which the periodic orbit intersects tangentially the static boundaries ϕ = θb −
π
2

,

ϕ = π
2
− θb. The orbit shown in panel (b) corresponds to a stable solution computed at the test point P1

(ω = 0.95). The orbit depicted in panel (c) shows a solution for which a tangential contact with the static

boundaries occurs, computed at SB2 (ω ≈ 2.6635). The solution depicted in panel (d) corresponds to a

block motion where overturning takes place, computed for ω = 0.902, a point located to the left of the fold

bifurcation SN1 (ω ≈ 0.9096) with initial conditions: (ϕ , ψ , r, s)=(−0.2254, −0.1597, −0.7778, 0.6284).

and ϕ = π
2
− θb (see Fig. 1), which can lead to overturning if, for instance, the base excitation

suddenly stops. In our numerical investigation, the parameter values given in Table I will be

employed, which correspond to a realistic physical scenario.

In Fig. 2 an initial reference solution of the rocking block model (9) is plotted, computed for
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FIG. 4. (a) One-parameter continuation of the periodic response of the rocking block model (9) with respect

to the amplitude of excitation α , computed for the parameter values given in Fig. 2. The line and color codes

are as in Fig. 3. In addition, the red branch represents the numerical continuation of period-2 orbits, which

originate from the period-doubling bifurcation PD1 (α ≈ 0.7365). Along this branch, a period-doubling

bifurcation of a period-2 solution is found at PD2 (α ≈ 0.7542). The panels (b), (c) and (d) show phase

plots computed at the test points P1 (α = 0.5), P2 (α = 0.65) and P3 (α = 0.71), respectively.

the parameter values given in Table I. This corresponds to a periodic trajectory showing (odd)

symmetry, as can be seen from the time plots given in panel (b). As expected, the resulting

solution presents points of discontinuity, owing to the restitution law assumed in (3), thereby

producing recurrent discontinuities in the angular velocity. At such points (occurring when the

rocking block hits the ground ϕ = 0), the angular velocity is instantaneously reduced by a factor

e, corresponding to the assumed restitution coefficient. This piecewise-smooth periodic solution

will be used in our investigation as starting point.
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FIG. 5. (a) Bifurcation diagram computed via direct numerical integration of the rocking block model

(9), obtained for the same parameter values used in Fig. 4. The vertical red lines mark the bifurcation

points BP3, PD1 and PD2 encountered in Fig. 4(a). (b) Blow-up of the boxed region shown in panel (a).

Panels (c)–(e) depict different types of periodic solutions found during the computations, obtained for P1

(α = 0.761), P2 (α = 0.7651) and P3 (α = 0.7737), respectively. A chaotic solution is plotted in panel (f),

for P4 (α = 0.779).
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A. One-parameter analysis of the system response

As mentioned earlier, the periodic solution depicted in Fig. 2 will be used as starting point for

our numerical study. It corresponds to a rocking block motion with odd symmetry, and we will

investigate first how this solution is affected when the frequency of ground excitation ω changes.

For this purpose, we will employ numerical continuation methods for non-smooth dynamical sys-

tems, implemented via the continuation platform COCO28. The result of this process is presented

in Fig. 3, showing the behavior of the solution measure Amp (see (12)) with respect to ω . In panel

(a) the resulting bifurcation diagram is depicted, where the black branch represents the continu-

ation of symmetric periodic solutions, as the one shown in panel (b), computed at the test point

P1 (ω = 0.95). The solid lines represent branches of asymptotically stable solutions, while the

dashed lines stand for families of unstable orbits.

As can be seen in the bifurcation diagram (Fig. 3(a)), the stable branch containing the test

point P1 is limited by the critical points BP1 and SN1, corresponding to a branching point and

fold bifurcation of limit cycles, respectively. At the branching point, the original stable symmetric

solution loses stability, while a solution branch of stable asymmetric periodic orbits is born (green

curve), as the one shown in Fig. 3(c). This green branch persists for a wide window of ω-values

and terminates at another branching point BP2. Here, the asymmetric solutions disappear and the

family of symmetric solutions (black branch) recovers stability. In addition, two critical points SB1

and SB2 are detected during the numerical continuation, corresponding to ω-values for which the

periodic solution makes tangential contact with the critical overturning boundary ϕ =±(θb −
π
2
).

In this way, we can identify a branch in the bifurcation diagram (between SB1 and SB2) where

overturning can occur, as discussed before. An example of such a critical solution is given in Fig.

3(c), computed at SB2 (ω ≈ 2.6635).

Next, we will analyze the behavior of the rocking block when the amplitude of the base ex-

citation α is varied, while keeping the excitation frequency constant. As before, we will carry

out the investigation via numerical continuation methods for non-smooth dynamical systems, us-

ing the solution shown in Fig. 2 as starting point. The result of this process is displayed in Fig.

4. In this case, we identify three different branches, plotted in black, green and red. The black

and green curves, as before (see Fig. 3), represent families of symmetric and asymmetric periodic

solutions, respectively. These two curves intersect each other at a branching point BP3 found for

α ≈ 0.6279. On the green branch (asymmetric solutions) two additional critical points are found,
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labeled SB3 (α ≈ 0.6819) and PD1 (α ≈ 0.7365), where the periodic solution touches tangentially

the overturning boundary ϕ =±(θb−
π
2
) and a period-doubling bifurcation of limit cycles occurs,

respectively. At the PD1 point the original period-1 solution loses stability, while a branch of sta-

ble period-2 orbits is born. The numerical continuation of these orbits is given by the red branch

shown in Fig. 4. Further numerical investigations reveal that the period-2 solution bifurcates once

more via another period-doubling point (PD2, α ≈ 0.7542), hence producing periodic solutions

with four times the original period.

In order to gain a deeper understanding of the dynamics of the rocking block model (9), we

will carry out a parametric investigation of the system via direct numerical integration as follows.

First, we fix an initial value for the amplitude (α = 0.5) and then integrate the system over 300

periods of excitation in order to eliminate transients. Then, we extend the numerical integration

for a range of 100 periods and store samples of the obtained solution at every t = 0,2π ,4π , . . .,

after which α is increased by a small amount and the process is repeated, using the last sample

as starting value for the next step. The result of this numerical process is presented in Fig. 5(a)

and (b), showing the angular velocity ψ on the vertical axis. The picture confirms the numerical

predictions obtained via numerical continuation described above, in particular the period-doubling

bifurcations detected during continuation (labeled PD1 and PD2). As can be seen in Fig. 5(b),

the numerical investigation reveals the presence of a period-doubling cascade producing periodic

solutions of increasing period, leading to chaotic behavior, as shown in Fig. 5(c)–(f).

B. Two-parameter analysis of the system response

In the previous section, our main concern was to investigate the behavior of the rocking block

model (9) under one-parameter perturbations, in particular with respect to the frequency ω and

amplitude α of the ground oscillation. This study revealed the presence of critical parameter val-

ues (corresponding for instance to period-doubling and fold bifurcations) upon which the system

dynamics suffers significant changes. In the present section our main goal will be to investigate

how these critical points are distributed in the α-ω plane, so as to be able to classify the system

dynamics with respect to the excitation parameters. For this purpose, we will employ COCO’s nu-

merical routines for the two-parameter continuation of codimension-1 bifurcations. Specifically,

we will carry out the two-parameter continuation of the critical points found in Figs. 3(a) and 4(a),

with respect to ω and α .

17

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
40

96
2



OV5 OV6

OV4

OV3

OV2

OV1

P1 ( , )w a=2 =0.78

P2 ( , )w a=2.5 =0.7 P3 ( , )w a=3.2 =0.35

0.0 2.5 5.0 7.5 10.0

0

0 3 6 9 12

0 3 6 9 12

0.0 2.5 5.0 7.5 10.0

0.0 1.8 3.6 5.4 7.2

0.0 1.3 2.6 3.9 5.2

OV1 ( , )w a=0.79 =0.75 OV4 ( , )w a=1.8 =0.18

OV6 ( , )w a=3.4 =0.04

OV5 ( , )w a=2.5 =0.09

OV3 ( , )w a=1.38 =0.3

OV2 ( , )w a=1.02 =0.5

0

00

00

(e)

FIG. 6. (a) Two-parameter continuation of the PD (green), SB (red), BP (purple) and SN (orange) points,

found in Figs. 3(a) and 4(a), with respect to ω and α . The intersections of the horizontal (α = 0.66) and

vertical (ω = 1.3) lines with the depicted curves correspond to some of the critical points shown in Figs. 3(a)

and 4(a), respectively. The grey area represents the parameter region in which stable (period-1) asymmetric

solutions exist, as shown in panel (c). The yellow area gives the parameter values yielding stable (period-1)

symmetric solutions, as depicted in panel (d). Panel (b) shows a period-2 solution originating from the

period-doubling bifurcation found along the green curve. The time plots presented in panel (e) correspond

to solutions crossing the critical boundary ϕ =±π
2

where overturning occurs (initial conditions for all time

plots: (ϕ , ψ , r, s)=(−0.2254, −0.1597, −0.7778, 0.6284)).
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The outcome of the numerical procedure described above can be found in Fig. 6. Panel (a)

presents the resulting bifurcation diagram showing the continuation of period-doubling (green

curve), branching points (purple curve) and fold (orange curve) bifurcations. In addition, a red

curve is included that corresponds to the two-parameter continuation of the points SBi found be-

fore, which gives a parameter-dependent family of period-1 solutions making tangential contact

with the overturning boundary ϕ = ±(θb −
π
2
). Consequently, this red curve provides critical in-

formation regarding the rocking block dynamics, as in this way we can determine combinations

of frequency and amplitude of the ground oscillation that may lead to overturning of the structure.

Panels (c) and (d) in Fig. 6 illustrate the meaning of this curve, giving examples of period-1 so-

lutions with and without overturning possibility, respectively. These solutions also demonstrate

the meaning of the purple curve shown in the bifurcation diagram, which corresponds to the two-

parameter continuation of the branching points (labeled BP) found in Figs. 3(a) and 4(a). As ex-

plained before, this bifurcation defines the connection between symmetric and asymmetric period-

1 solutions, where the region producing such types of solutions is colored in yellow and grey in

Fig. 6(a), respectively. In panel (b), a phase portrait of a period-2 solution is depicted, owing its

presence to the period-doubling phenomena encountered in the system (green curve). Moreover,

notice that the numerical continuation of period-doubling (green curve) and fold (orange curve)

bifurcations define a region in the ω-α space (see Fig. 6(a)) of stable period-1 responses without

any crossing with the critical boundary ϕ =±π
2

, where overturning takes place. Further numerical

tests (shown in Fig. 6(e)) reveal that below the fold curve the system presents aperiodic responses

where overturning occurs, as confirmed at the test points OV1–OV6 shown in the figure. In this

way, the computed fold curve can also serve as a critical boundary in the parameter space so as to

determine under which oscillation conditions overturning phenomena can be avoided.

V. BASIN STABILITY ANALYSIS

In this section, we analyze previously presented results using basin stability approach. As

aforementioned, in case of single degree-of-freedom system, considered in this paper, the basin

stability approach can be used to calculate basins of attractions when we draw two initial con-

ditions (for fix parameter values of the system). Before the analysis of obtained results, we list

solutions types that exist in the system:

• Equilibrium - rocking block is not moving and ϕ = ψ = 0.0,

19

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
40

96
2



-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

y

j
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-1

-0.5

0

0.5

1

(a) (b) (c)

(d) (e) (f)

Period 1 asym +
Period 1 asym -

Period 1
Period 2

Chaos and period > 2
Equlibrium

Overturn + /2p
Overturn /2-p

y

j

y

j

y

j
y

j

y

j

FIG. 7. Basins of attractions calculated using basin stability method for al pha = 0.66 and varying ω equal

to 1.0 (a), 1.16 (b), 1.5 (c), 2.0 (d), 3.0 (e), 4.0 (f). Initial parameters are drawn from ϕ ∈ (−π/2+θb, π/2+

θb) and ψ ∈ (−1, 1). Colors of dots determine solutions.

• Period 1 symmetric solution - rocking block is oscillating periodically with symmetric orbit,

• Period 1 asymmetric solution - period 1 solution is shifted in a positive φ direction,

• Period 1 asymmetric solution - period 1 solution is shifted in a negative φ direction,

• Period 2 solution bifurcating from both asymmetric solutions (we do not distinguish the

asymmetric solution that it bifurcates),

• Chaotic solutions or periodic with a period above 2,

• Overturning solution where the block reaches φ = π/2,

• Overturning solution where the block reaches φ =−π/2,

Hence, we distinguish eight solutions. Due to the very narrow range of existence of solutions

with a higher period then 2, we decide to present them together with chaotic oscillations.
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To have overview of the structure of the phase space we perform analysis for six selected

values of ω (ω = 1.0, ω = 1.16, ω = 1.5, ω = 2.0, ω = 3.0 and ω = 4.0) and constant value of

the amplitude α = 0.66 (see bifurcation diagram in Fig. 4 and horizontal line in Fig. 6). In Fig. 7

we show calculated basins of attractions. Initial conditions are drawn from ranges: ϕ ∈ (−π/2+

θb, π/2+ θb) and ψ ∈ (−1, 1) and for each diagram we calculate 20000 Bernoulli trials. For

ω = 1.0 (panel (a)) we observe period 1 symmetric solution shown in yellow color. Most likely,

it occurs when the initial position is negative. For larger values of the initial velocity, we observe

domination of the overturning solution (ϕ = π/2, green area), while for negative initial position

and velocity we see the overturning of the block in the opposite direction (ϕ = −π/2) indicated

by purple area. Moreover, we observe a large range where the block is stable in the equilibrium

position and does not oscillate. In panel (b) the value of the frequency of excitation is equal to

ω = 1.16, and it is above the BP bifurcation line. Hence, we observe two period 1 asymmetric

solutions (red and blue colors). Similarly, as for ω = 1.0, positive values of the initial velocity

results in the overturning of the block. The range where the block reaches the equilibrium position

shrinks significantly, and this solution is less probable. Next, the plot (c) is computed for ω = 1.5,

and we see that with the increase of the excitation frequency, the probability of the overturning

is higher, while the equilibrium solution is no longer observed. For negative values of the initial

velocity, we see the domination of the period 1 asymmetric solution. Next, for ω = 2.0 (panel

(d)) we see that the range of the overturning in the positive direction (ϕ = π/2 ) is still increasing,

while the overturning via negative ϕ has a very low probability of occurrence. Other solutions are

moved toward negative values of the initial velocity. The same tendency is observed with a further

increase of ω presented in panels (e,f). The result presented in the last panel (f) is calculated for

ω = 4.0, which is below the BP bifurcation line; hence we observe period 1 symmetric solution

(yellow area). Summarizing, the basins of attraction are compact and only at their borders, we

observe complex structures. We calculate the probability of reaching all considered solutions.

For values of ω for which we observe asymmetric solutions, probabilities of their occurrence are

equal, hence neither of them is more likely to be observed assuming random initial state. For the

higher frequency of excitation, the probability of overturning the block increases and this solution

becomes dominant. For the analyzed set of the system parameters, many solutions coexist; hence

the system is multistable. Based on convergence analysis, we see that it is enough to calculate 5000

Bernoulli trials to have precise information about the phase space structure (we show more to have

a densly filled plot). Please note that important factor which influence the final solution is the form
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of the excitation function. In this paper, the excitation amplitude is harmonically modulated by

sin(ω t̃) function, which in the first phase of motion moves block into the right direction, hence

when the initial velocity is positive it can more easily cause the block to overturn.

(a) (b)

FIG. 8. Two dimensional diagrams for varying α and β with constant initial conditions (ϕ = 0.01, ψ = 0.0)

and two values of phase of the exaction β = 0 (a) and β = π/2 (b). Solid lines correspond to SN (orange),

BP (purple) and PD (green) bifurcations, respectively.

In next step we analyze the response of the system in two-parameter space (α , ω) in the follow-

ing ranges: α ∈ (0.1, 0.9) and ω ∈ (0.5, 4.0) for fixed initial conditions: ϕ = 0.01 and ψ = 0.0.

Hence, the block is slightly angled into the positive ϕ side. It allows to study which solutions are

reachable from values of initial conditions close to the equilibrium position, which has practical

importance. In the description of the previous figure, we conclude that the initial phase of the ex-

citation significantly influences the response of the system; thus we also take it into account in our

calculations. We introduce an initial phase of excitation β to harmonic modulation of the excita-

tion function: sin(ω t̃ +β ) (see Eqs (6) and (7)). The diagram obtained for β = 0 is shown in Fig.

8(a) and for β = π/2 in Fig. 8(b). To compare the ranges of solutions’ stability calculated based

on the basin stability method and the path-following analysis, we copy bifurcations lines from Fig.

6 - namely the SN (orange), the BP (purple) and the PD (green) line. In both plots, we do not

see the difference in the range where the equilibrium solution (black dots) exists. However, based

on bifurcation lines, we see the significant changes above the SN line. The basins od attractions

of other solutions for the two considered values of β differ significantly. In panel (a) above the

equilibrium solution, we observe the range of period 1 symmetric solution (yellow dots) which is
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FIG. 9. Probability of occurrence of four solutions: period 1 symmetric (a,b), period 1 asymmetric (c,d),

two overturning (e,f) and equilibrium (g,h) for the phase of the excitation β = 0 (left column) and β = π/2

(right column) in α and ω parameters space. Solid lines correspond to SN (orange), BP (purple) and PD

(green) bifurcations, respectively.
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bounded from the top by the BP bifurcation line and the overturning solution (green dots). Above

the BP bifurcation line we should observe the period 1 asymmetric solutions (red and blue dots),

but they are present only in a very narrow range. This confirms that the selected phase of exci-

tation leads to overturning of the block, especially for higher values of the excitation frequency.

Above the PD bifurcation line, we see the appearance of period 2 asymmetric solutions (we do not

distinguish the) and then fast transition to chaos via period doubling sequence. Above the chaotic

range, we observe overturning. For the second value of the excitation phase β = π/2 (panel (b))

period 1 symmetric solution is observed nearly in the whole range above the equilibrium solution

and below the BP bifurcation line (only in narrow range the overturning solution appears - purple

dots). Between the BP and the PD lines, period 1 asymmetric solutions (red and blue dots) exist

above ω ≈ 1.7, while below this value, we observe block overturning (purple dots). Crossing of

the PD bifurcation line results in a transition to period 2 solution and then via period doubling

sequence appearance of a chaotic solution. Further increase of α leads to overturning of the block

(green and purple dots). Presented plots show that the initial phase of the excitation is crucial for

the stability of the block. Hence, the initial phase of motion strongly affects the shape of basins of

attractions and the final state of the rocking block. The exception is the equilibrium solution that

is not sensitive to the initial phase of the excitation β .

FIG. 10. Probability of occurrence of five solutions for random initial conditions (ϕ ∈ (−π/2+θb, π/2+

θb) and ψ ∈ (−1, 1)) and parameters ( α ∈ (0.1, 0.9), ω ∈ (0.5, 4.0) and β ∈ (0.0, 2π)) as a function of

the initial deflection (a), the initial velocity (b) and the phase of the excitation β (c).

The subsequent analysis is devoted to the study of probability to reach previously presented

solutions. The obtained results are shown in Fig. 9. We draw initial conditions (ϕ ∈ (−π/2+

θb, π/2+θb) and ψ ∈ (−1, 1)) and two parameters values ( α ∈ (0.1, 0.9), ω ∈ (0.5, 4.0)) for

two values of the phase of the excitation (β = 0.0 (right column) and β = π/2 (left column)). For
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each value of β , we perform 1,000,000 Bernoulli trials, and we show probability plots in (ω −α)

plane for four solutions, namely, the period 1 symmetric, the period 1 asymmetric (two types to-

gether), the overturning (without distinguishing direction) and the equilibrium. We do not show

periodic solutions with period higher than 2 as well as neither periodic solutions because their

probabilities are low in comparison to the presented ones. To show the probability of occurrence

of each solution, we divide the whole range into 900 cells (30x30), and we calculate the proba-

bility to reach given solution for each cell. We also add the SN, the BP and the PD bifurcations

lines obtained via path-following. In panels (a,b) we present the period 1 symmetric solution, for

which the phase of the excitation β has a significant influence. For β = 0 it is less probable then

for β = π/2. Moreover, for β = 0 it exists closer to the SN bifurcation line then for β = π/2,

which is equally probable in the whole existence range. Next, we consider the period 1 asym-

metric solutions (panels (c,d)) and we see that for β = π/2 they are more likely to occur and the

probability is equally spaced between the bifurcations lines. Then, we investigate the occurrence

of the overturning solution (panels (e,f)). We see that for β = 0 with an increase of α , the over-

turning solution starts to dominate, and at the top of the plot, it is the only existing solution. In

case of β = π/2 the overturning is less probable and its higher probability is reached for α > 0.8

and between ω = 1 and ω = 3. Last two panels (g,h) show the equilibrium solution. We see that

there is no visible difference between both plots; hence, we claim that stabilization of the block in

the steady-state is independent on the phase of the excitation β . The main conclusion from this

analysis is the importance of initial phase of excitation that has a dominating role and significantly

changes the response of the system.

In the last considered case, we assume random initial phase of excitation. The results are shown

in Fig. 10. We draw initial conditions (ϕ ∈ (−π/2+θb, π/2+θb) and ψ ∈ (−1, 1)) and three pa-

rameters (α ∈ (0.1, 0.9), ω ∈ (0.5, 4.0) and β ∈ (0.0, 2π)) and we perform 2,000,000 Bernoulli

trials. We show the probability of five solutions (overturning, equilibrium, period 1 symmetric,

period 1 asymmetric and all other responses) as a function of the initial deflection (panel (a)), the

initial velocity (panel (b)) and the phase of the excitation (panel (c)). For that purpose, we divide

the span of a given parameter in 50 equal ranges and in each range we calculate probabilities to

reach all considered solutions. The number of trials in each section is approximately the same

(40,000 with standard deviation 242). For both initial conditions, we observe an increase in the

probability of the overturning solution when their values move away from zero. The opposite

tendency is observed for period 1 symmetric and equilibrium solutions. The last two solutions
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are nearly not affected by initial conditions imposed on the rigid block. In panel (c), we see the

significant dependence of solutions’ probabilities on parameter β . It is visible that when the ex-

citation starts from zero and increase in positive (β ≈ 0) or in negative (β ≈ π) the overturning

occurs more likely than in case when the excitation starts from maximum (β ≈ π/2) or minimum

(β ≈ 3π/2) values. A different response is observed for the period 1 symmetric and asymmetric

solutions. Equilibrium and other solutions are not affected by parameter β .

VI. CONCLUDING REMARKS

This paper carried out a detailed numerical study of the dynamical response of a rocking block

under ground motion. The considered physical model can represent several practical scenarios,

such as buildings, silos, containers, scaffoldings, and free standing power transformers. One of

the main concerns of this work was to determine the conditions under which overturning of the

underlying structure may occur. Therefore, special attention was paid to the periodic solutions of

the system and their evolution under the variation of base excitation. To study the behavior of the

model, two different types of numerical approaches, namely direct numerical integration and path-

following techniques for non-smooth dynamical systems, were adopted. The path-following anal-

ysis via COCO revealed the presence of critical parameter values (corresponding for instance to

period-doubling and fold bifurcations) upon which the system dynamics suffer significant changes.

In addition, branching points leading to symmetry breaking were detected, where families of sym-

metric and asymmetric periodic solutions collide. During this study, two critical boundaries were

defined (ϕ = ±(θb −
π
2
), labeled SBi), which give the critical angles beyond which overturning

can occur, for instance, when the base excitation suddenly stops. In this way, it is possible to

identify ground oscillation regimes with a risk of overturning.

Our work significantly extended results presented by Hogan7,9,14. The majority of his investiga-

tions were performed for the slander structures. Such assumption allows to linearize equations of

the motion and applies analytical methods. While, in our work, we assume that the ratio between

the breadth and height of the structure is equal to 1.21, which is a typical value for this class of sys-

tems. Based on comparing our work with Hogan’s results, we see that the structure’s slenderness

significantly influences the system’s response, thus showing the dynamics of the real structure one

has to study the full nonlinear model in this paper. Due to the limitation of the numerical methods

adopted in Hogan’s works, he showed a few simulations of non-slander systems’ behavior. Hence,
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he didn’t present a complete view of the dynamics in the frequency and amplitude of the excita-

tion space. Our numerical investigation revealed the complex dynamical behavior of the rocking

block model, in particular due to the presence of period-doubling cascades producing periodic

solutions of increasing period, leading to chaotic motion. Further studies were carried out using

two-parameter continuation of the codimension-1 bifurcations found before, using the frequency

and amplitude of base excitation as the main control parameters. A critical curve corresponding

to the two-parameter continuation of the points SBi found in one-parameter analysis was identi-

fied. It gave a parameter-dependent family of period-1 solutions making tangential contact with

the overturning boundary ϕ = ±(θb −
π
2
). This curve provides critical information regarding the

dynamics of the rocking block, since in this way a combination of frequency and amplitude of the

ground oscillation which may lead to overturning of the structure can be determined. The results

from the path-following method are supported with the basin stability analysis. We studied the

coexistence of solutions and the influence of the system parameters and initial conditions on the

probability of their occurrence. These are the further developments of this work based on Hogan’s

study7,14, where he reported existence of such behavior in the rocking block. We found that in

the considered range of the amplitude and the frequency of the excitation, the system is mostly

multi-stable and final solution strongly depends on initial conditions and initial phase of excita-

tion. It is especially essential from practical point of view because we usually do not have control

on the excitation signal. Thus, the parameters of the block should be carefully chosen based on

most probable excitation function.

This study provides crucial information regarding the periodic and non-periodic response of the

rocking rigid block subjected to excitation function with varying parameters. The obtained results

can be used for development and practical applications to obtain given type of stable oscillations

or prevent overturning under sea waves excitation.
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