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Abstract

This thesis aims to develop a unified runtime analysis of: EA1 with no mutation
and with a standard crossover, (1 + 1) EA, and EA with both a mutation and
a standard crossover. To this end, we determined for each algorithm a class
of problems they efficiently solve. Polynomially quasi-concave problems on the
Hamming (resp. Manhattan) space, that are already known to be easy for EA
with no mutation and with a non-standard crossover, were shown to be easy for
EA with no mutation and with a standard crossover. A class of problems that is
determined by its balls of radius ρ, is defined for each the following algorithms:
(1 + 1) EA and EA with both a mutation and a standard crossover. Each of these
classes is shown to only contain easy problems for an instantiation of a gener-
alization of the algorithm they correspond to. Unlike the class of quasi-concave
fitness landscapes, these classes are not affected by the choice of representation.
We conclude that if the definition of a class of problems is built upon particular
metrics, then the runtime result is affected by the choice of representation.

1In this thesis, ‘evolutionary algorithm’ and ‘evolutionary algorithms’ will both be written as ‘EA’.
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Chapter 1

Introduction

Evolutionary algorithms (EAs) [Hol75] are randomized algorithms that use a heuris-
tic approach inspired by Darwinian evolution to solve a given problem. Namely,
an initial set of solutions is evolved until an optimal solution is eventually found.
Indeed, an EA is usually equipped with :

• A selection scheme to choose the solutions that will be evolved,

• One or two distinct genetic operators are used to create new solutions from
the previously selected solutions,

• A replacement strategy to decide whether or not the new population con-
tains solutions from the previous generation.

An illustration is given in Figure 1.1.

Selection

There exist various types of selection schemes in the literature.

• Ranking [Bak87] consists of selecting an individual in proportion with its
fitness.

Population Parents

Offspring

Selection

Replacement Evolution

Figure 1.1: A typical EA
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• Fitness proportion [Hol75] is a particular ranking where the selection prob-
ability of an individual is directly proportional to its fitness value.

• Tournament [Bac95, BT95] consists of randomly sampling a fixed number
of solutions and selecting the best individual in the batch.

• Uniform selection [Sch95, BS02] consists of giving all individuals the same
probability to be selected.

Genetic Operators

In order to evolve the parents, genetic operators are used. There are two differ-
ent types of genetic operators: mutation and crossover (also called recombina-
tion). The mutation operator generates an offspring from a single parent, while
the crossover operator generates an offspring from a population of parents. An
EA uses at least one type of genetic operator and uses at most both types.

Replacement

There exist different sorts of replacement strategies that define a particular type of
EA. Indeed, for a constant population size µ and a constant number λ of selected
individuals from the previous population:

• A (λ + µ) EA corresponds to a population whose individuals are selected
from the set of λ+µ individuals formed by the union of parents and offspring.

• A (λ, µ) EA corresponds to a population whose individuals are selected from
the set of µ offspring that were previously generated.

• An elitist EA always keeps the current fittest individual in the replacement
step.

1.1 Representation and Genetic Operators

Depending on the problem considered, solutions can be encoded as binary strings,
strings on a finite alphabet, permutations, trees, etc ... Different representations
give rise to different instances of EA and to different genetic operators. There are
mainly three categories of representations: genetic algorithms, genetic program-
ming, and evolution strategies. As this thesis is restricted to problems on discrete
search spaces, we will only describe the first two representations.
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A = {0, 1} A = N
Mutation Bit flip Random resetting

- -
- Creep mutation [Dav91]

Crossover 1-point crossover [Hol75, DJ75] 1-point crossover
N -point crossover N -point crossover

Uniform crossover [Sta02, Sys89] Uniform crossover
- -

Table 1.1: Genetic operators for binary and integer representations

1.1.1 Genetic algorithm

A genetic algorithm (GA) [Hol75, Gol89] is an EA in which solutions are repre-
sented as finite strings of same length over an alphabet A. We can distinguish
three types of GA:

• binary representation for A = {0, 1} [Hol75],

• integer representation for A = N [Dav91],

• permutation representation where solutions are strings of length n over the
alphabetA = {1, 2, . . . , n} with no repeating letters [GL+85, Dav91, OSH87,
BFM97].

Binary and Integer Representations

Each type of GA has its own mutation operator and its own crossover operator as
summarized in Table 1.1. Operators with similar actions are placed on the same
line.

Permutation Representation

The operators of a GA on permutations are nothing alike the operators of GA
on common strings. Indeed, an operator must keep S closed (i.e., the value
returned by a genetic operator must be an element of S) [SM91]. In this regard,
the mutation and crossover operators of a GA on permutations must always return
a permutation. The main operators that are used for a GA on permutations are
described below.

• Mutation

– Swap and Insert mutations both work with two random letters of the
parent permutation. While swap mutation swaps the two letters, insert
mutation moves the right most chosen letter to the position right after
the left most chosen letter.

– Scramble and Inversion mutations both work on a random substring of
the parent permutation. While scramble mutation randomly scrambles

13



the letters of the substring, inversion mutation reverses the order of the
substring (the left most letter becomes the right most one).

• Crossover

– Both the PMX (partially mapped crossover) [GL+85] and the order
crossover [Dav91] create offspring by changing a randomly chosen
substring of one parent into the substring of the other parent at the
same positions. The PMX uses the mappings defined by the randomly
chosen substrings to determine the values that the remaining positions
of the offspring should take. The order crossover fills in the blank from
the right most position in an increasing order.

– Cycle crossover [OSH87] works on the cycles defined by the two par-
ents. The letters appearing in a randomly chosen cycle are kept and
the remaining positions are filled with the other parent’s letters at these
positions.

– Edge crossover [BFM97] consists of seeing the permutations as cycle
graphs whose nodes are the letters (e.g., the permutation 312 is the
cycle graph whose nodes are 1, 2 and 3 and whose edges are {3, 1},
{1, 2}, and {2, 3}). This gives a list of neighbours for each letter of a
permutation (e.g., the neighbours of the letter 1 are 3 and 2 for the
permutation 312). The lists of neighbours per letter of the two parents
are merged, and one permutation is randomly created by assigning a
neighbour to each letter.

1.1.2 Genetic programming

In a genetic programming (GP) [Koz92, Koz94, PLMK08], solutions are repre-
sented as syntax trees. The internal nodes of the tree are operations and the
leaves of the tree are constants and variables. Trees do not necessarily have
the same number of nodes. Mutation consists of substituting a randomly chosen
subtree with a random one [Ang97]. Crossover consists of exchanging randomly
chosen subtrees [Koz92] of their parents.

1.1.3 Representation and Fitness Landscapes

An EA is used to maximize/minimize a fitness function f , that assigns a fitness
value to each element of the search space S. A fitness landscape corresponding
to the problem f is defined by endowing the search space S with a notion of
connectedness [Sta02].
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• A notion of connectedness that is induced by one of the operators of the
EA of interest [J+95] is obtained by defining the set of offspring that can be
obtained from the application of the operator to any set of parents.

• A notion of connectedness that is solely dependent on the search space S
[PA12] is obtained by defining a metric function D on the search space S.

Regardless of the notion of connectedness considered, the representation used
always impacts the resulting fitness landscape. The notion of connectedness that
is solely dependent on the search space S will be used throughout this thesis.

1.2 Relevance and Importance

Representations not only affect the operators of the EA, but they also determine
how the problem to be solved will be encoded. As a result, it seems impossible
to avoid representations while analyzing EAs. However, in order to reach a more
global understanding of EAs it is necessary to develop an analysis that unifies
EAs across representations [DJ06].

A first unifying runtime analysis has been developed in [MS17], for EAs with
no mutation and with a particular recombination operator. This was done in three
steps. First, a formal EA with no mutation called Convex evolutionary Search (CS)
has been defined. The generalization of the algorithm consisted of finding the ge-
ometrical object that is described by its operator across representations. Then, a
class of fitness landscapes called quasi-concave has been defined. Finally, the
runtime of the CS on a quasi-concave problem has been estimated. At this point,
both the algorithm and the problem are considered from a representation free per-
spective. This yields a runtime result that can be viewed as representation free.
This representation free runtime result mostly remains useless for practitioners
until the representation used for the solutions (i.e., strings, permutations, etc ...)
and the metric used to endow the corresponding search space with, are specified.
In [MS17], the runtime result was only instantiated to strings of the metric spaces
Md,HD = ({0, 1, . . . , d − 1}n,HD) and Md,MD = ({0, 1, . . . , d − 1}n,MD) where HD

and MD respectively denote the Hamming and the Manhattan distances.

1.3 Questions and Objectives

The aim of this thesis is to extend the unifying runtime analysis of [MS17] to: EA
with no mutation and with a standard crossover, (1 + 1) EA, and EA with both a
mutation and a standard crossover.

15



Definition 1. A problem is easy for an algorithm if the expected runtime upper
bound for the algorithm to find a global optimum is at most polynomial in the
solution size.

A unifying runtime analysis of a given algorithm can be used to identify a class
of easy problems for this algorithm. Hence, by extending the unifying runtime
analysis of [MS17], we aim to answer the following:

• Are polynomial quasi-concave problems easy for the CS, regardless of the
representation used?

• Are polynomial quasi-concave problems easy for EA with no mutation and
with a standard crossover, regardless of the representation used?

• What problems are easy for (1 + 1) EA?

• What problems are easy for EA with both a mutation and a standard crossover?

The first question is answered for the CS through the instantiation of the runtime
analysis of [MS17] to the usual metric spaces of permutations. However, new
runtime analyses need be developed to answer the last three questions. Namely,
a generalization across representations of each EA must be determined in the
manner of [MS17]: the geometrical object described by the operator(s) of each
algorithm across representations is determined. Then, a class of fitness land-
scapes that are efficiently solved by the instantiations of the generalized algorithm
must be found.

1.4 Organisation of the Thesis

The summary of the runtime analysis of the CS on quasi-concave fitness land-
scapes on the metric spaces Md,HD and Md,MD done by [MS17], is given in Chap-
ter 3. We show in Chapter 4 that quasi-concave fitness landscapes on the usual
metric spaces of permutations, with at most polynomially many level sets, need
not be efficiently solved by the CS.

The runtime analysis of the SES on quasi-concave landscapes is done in
Chapter 5. We show in Chapter 6 that quasi-concave fitness landscapes on the
metric spaces Md,HD and Md,MD, with at most polynomially many level sets, are
efficiently solved by the SES for a well chosen population size. We show in Chap-
ter 7 that the analysis of the CS on quasi-concave fitness landscapes on the usual
metric spaces of permutations does not extend to the SES. Hence, we bring the
problem back to common strings by considering a bijection between permutations
and common strings.
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In Chapter 8, any polynomially ρ-improving fitness landscape with at most
polynomially many level sets is shown to be efficiently solved by an instantiation
of the generalized (1 + 1) EA for a well chosen mutation parameter.

In Chapter 9, any ρ-improving fitness landscape with at most polynomially
many level sets is shown to be efficiently solved by an instantiation of the gener-
alized EA with a mutation and a standard crossover for a well chosen population
size.

1.5 Publication

The contents of Chapters 5 and 6 form an extension of the early ideas published
in the paper [MM19], for which I am a lead author. We showed in [MM19] that
the SES can be seen as a particular CS, on metric spaces where the union of all
segments that can be formed from any subset is always a convex set.
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Chapter 2

Literature Review

In the context of EAs analysis, a theory that can be instantiated to different rep-
resentations will be referred to as a unifying theory. A number of unifying theo-
ries have been developed to understand the working principles of EAs. These
unifying theories use techniques from areas ranging from Biology, Physics, to
Mathematics. The genetic operator(s) of EAs are defined from the mutation and
the crossover operators found in Biology, regardless of the representation consid-
ered. The modelization of the evolving population can be studied through dynam-
ical systems and statistical mechanics, for different representations. Represen-
tation free EAs can be formalized using Mathematical tools such as equivalence
relations or geometry. We will look at different existing unifying theories, with a
particular interest in the unifying theories on the runtime analysis of EAs.

2.1 Unifying Theories on the Analysis of EA

Genetic algorithms [Hol75], evolution strategies [Sch81], and genetic program-
ming [Koz92] are different types of EA. While it is clear that these EA all use a
mutation operator and/or a recombination operator, those operators often differ
between representations. In [SR96], a formal EA that can be instantiated to any
representation is defined using the findings of [Rad91]. The convex evolution-
ary search algorithm (CS) of [Mor11] is another formal EA with no mutation that
unifies the algorithms across discrete search spaces. Unlike the formal EA of
[SR96], the CS of [Mor11] is defined through geometry. The formalization of EAs
across representations is one of many unifying theories on the analysis of EAs.

2.1.1 Schema Theory

Holland’s schema theorem [Hol75] is the main result on the increase in the num-
ber of strictly improving solutions in one generation. It says that we can find some
template (called schema) corresponding to a subset of fit solutions in each gen-
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eration, that increases in size in the next generation. Holland’s schema theorem
can only be applied to problems where schemata can be defined and only holds
for infinitely large populations. The schema theorem has been criticized in [Alt95]
for only taking into account the case where a given schema is lost because of the
disruptive effect of the genetic operators. Most importantly, the weakness of the
schema theorem is due to the limitation of its scope to the one step variation in
the number of individuals with a given schema [Vos99].

Radcliffe [Rad91] extended Holland’s schema theorem to general non-string
representations using equivalence relations. In [LP13], Holland’s schema theo-
rem has been extended to Genetic Programming (GP).

2.1.2 Convergence of the Population Sequence

The convergence of the population sequence is defined differently by different au-
thors. In [Rud94a], the population sequence converges when a population whose
best individual is a global optimum is obtained. In [Rud94b], populations of size
one are studied. The population sequence converges when its corresponding
sequence of fitness values converges. In [Mor11], the population sequence con-
verges when a population whose individuals are all clones of each other is ob-
tained. Notice that the (initial) population sequence may converge before a global
optimum is found, in the last two cases. This is referred to as a premature conver-
gence. Also, only the definition of convergence given in [Mor11] does not require
the use of a fitness function. As a fitness function can only be defined when
solutions are represented in some ways, the only definition of convergence that
is representation free is the one given in [Mor11]. We will use this definition of
convergence throughout the thesis.

2.1.3 Dynamics of the Adaptation Process

The main results that describe how an EA generates solutions that are fitter than
their parents can be divided into three distinct categories: building block analysis,
modelization of the evolving population, and fitness landscape theory.

Building Block Analysis

According to Godlberg [Gol89], there exist schemata whose elements always
generate offspring that are fitter than their parents. In particular, Goldberg’s “build-
ing blocks” are short, low order, and highly fit schemata. By using an exact evolu-
tion equation, [SW99] determined the “building blocks” of a GA and showed that
they need not be as Goldberg’s. Initial steps towards the theoretical analysis of
building blocks for GP have been taken in [BAW+15].
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Modelization of the Evolving Population

The evolution of a population has been modelized as a dynamical system for GA
[VL91, NV92] and GP [Koz92]. The initial population corresponds to the initial
state. The total number of states is given by the number of generations. The pop-
ulation (or state) corresponding to the t-th generation determines the population
(or state) corresponding to the (t + 1)-th generation. A unifying framework that
links the dynamics of the population of a GA to the dynamics of the population of
a GP has been given in [SZ03].

In [J+95], a directed graph (called landscape graph) has been used to model
the effect of each operator of the EA of interest on the search space. A vertex
of this direct graph corresponds to a multiset whose elements are taken from
the search space. If the application of the operator to a multiset generates a
multiset, then an edge must be drawn from the parent multiset to the offspring
multiset. The effect of the EA on the search space is therefore modelized by a
larger directed graph containing the landscape graphs of each operator of the EA.
This model can be applied to any representation. Another graph modelization of
the dynamics of EAs is given in [ZTV+18] as a complex system.

In [PB97], statistical mechanics have been used to see all possible populations
as points whose union makes up the phase space. Then, the evolution of a
population can be seen as a trajectory in this phase space. This model is not
limited to GA.

Fitness Landscape Theory

Fitness landscape theory can be used to determine how the choice of landscape
affects the evolution of the population [RS02].

In genetics, epistasis is the interaction between genes [Cor02]. This notion
has been adapted to the study of EA to measure the difficulty of a fitness land-
scape. Davidor [Dav90] was among the first to notice the potential of epistasis in
measuring fitness landscape difficuly for GA. In [HW99], the use of epistasis is
applied to fitness functions with a mathematical expression. It has been shown
that the difficulty at which a GA solves a fitness landscape can be predicted in
this case. Namely, a low order fitness function corresponds to an easy problem
for GA.

A different approach [JF+95] where a GA is identified to a heuristic search,
showed that fitness landscapes with a high Fitness Distance Correlation (FDC)
are often easily solved by GA.

The topography of a fitness landscape can also be analyzed to estimate the
difficulty of searching it [MF00]. The ruggedness of a fitness landscape is de-
fined differently by different authors. Ruggedness can correspond to the number
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of local optima [Pal93]. The trend of the fitness values of points along a random
walk is another measure of the ruggedness of a fitness landscape: a good cor-
relation implies a smoother landscape in the investigated area [Jon95, Wei90].
The average length of a path that is strictly going downhill (resp. upnhill) within a
basin can also be used as a ruggedness measure [FSBB+93]. We recall that a
basin of a local minimum (resp. maximum) [Sta02], is the union of the solutions
forming a path that is strictly going downhill (resp. upnhill) to the local minimum
(resp. maximum). Roughly speaking, the difficulty of a fitness landscape for an
EA is “proportional” to the ruggedness of the fitness landscape. This however
need not be true. In [QRSS98], ridge functions have be shown to be easy for
GA despite corresponding to a rugged fitness landscape (as classified as highly
misleading by the FDC). In [MBK99], Job Shop Scheduling Problems have be
shown to be difficult for GA despite corresponding to smooth fitness landscapes
for harder instances.

Other studies focused on comparing the fitness landscapes induced by differ-
ent operators. The fitness landscape induced by recombination and the fitness
landscape induced by mutation have been shown to be homomorphic for GA
(resp. GP) in [GW96]. A similar result was obtained in [SW97] through a different
approach.

Artificial parametrized class of fitness landscapes can be defined for the sole
purpose of being tested with EA. This is for instance the case of Nk-landscapes
[DJFS97] and quasi-concave landscapes [Mor11].

Finally, dynamic fitness landscape analysis has been defined in [Ric13].

2.1.4 Runtime

In runtime analysis, we are interested in estimating the number of fitness evalua-
tions needed by an EA to find the first optimal solution in a fitness landscape. In
fact, runtime analysis can be seen as a mathematical proof for the performance
of an EA on a fitness landscape. In this regard, research is focused on improving
runtime analysis methods to obtain the most accurate possible result. However,
these methods are often applied separately for different representations. To our
knowledge, the first unifying runtime analysis method has been given in [MS17].
This was made possible by the development of a method for the runtime analy-
sis of a formal EA (i.e., a generalization of EA across representation) on a class
of fitness landscapes (i.e., a model of landscapes that can suit problems from
different representations). Nonetheless, this unifying runtime analysis has only
been applied to a particular formal EA with no mutation that does not perform
standard crossover. We aim to extend this unifying runtime analysis to EA with
both a mutation and a standard crossover.
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2.2 Methods for Runtime Analysis

An overview on the different methods of runtime analysis can be found in [Weg03].
Some methods were specifically designed for a particular EA, a particular prob-
lem, and a particular representation. This is for instance the case of the Coupon
Collector and the Gambler’s ruin methods, which are well-suited to the study of
(1 + 1) EA on binary strings. Other methods are restricted to a single repre-
sentation, such as the family tree technique [Wit06] that can only be used on
pseudo-Boolean problems. There exist also broader techniques that are neither
limited to specific EA nor limited to a particular representation.

2.2.1 Artificial fitness levels

The artificial fitness levels method [Weg03] is a general approach that uses a par-
tition of the search space into fitness levels. It has been initially used to analyze
the (1 + 1) EA on various pseudo-Boolean problems in [Weg03]. Nonetheless,
it is a powerful tool that can be used to analyze any EA on any representation.
Indeed, the artificial fitness levels method has been used in [MS17] to analyze
the runtime of a formal EA with no mutation on a class of fitness landscapes.
The artificial fitness levels method has been improved into level-based analysis
in [CDEL17].

The artificial fitness levels method is used for the runtime analysis of a (1 + 1)

EA on a fitness function f : S −→ R, that can take q + 1 distinct values, in the
following manner. Let a0 < a1 < · · · < aq be the different values that the fitness
function can take. A fitness level Ai is the subset of the search space S containing
all individuals whose fitness value is equal to ai. The search space S is therefore
partitioned into fitness levels:S = A0 ∪ A1 ∪ · · · ∪ Aq,

Ai ∩ Aj = ∅ if i 6= j.

The probability that a randomly chosen point belongs to Ai is denoted P (Ai). An
element of Ai is said to leave Ai when its offspring belongs to Ai+1∪Ai+2∪· · ·∪Aq.
An illustration can be found in Figure 2.1. The probability that an element a of Ai
leaves Ai is denoted s(a). Let Xt be the random variable corresponding to the
population at the t-th generation, and let τ = min{t|Xt ∈ Aq} be the first hitting
time of Aq. We have:
∑

1≤i≤m−1
P (Ai)

max{s(a) | a ∈ Ai}
≤ E[τ ],

E[τ ] ≤
∑

1≤i≤m−1 P (Ai)

(
1

min{s(a) | a ∈ Ai}
+ · · ·+ 1

min{s(a) | a ∈ Aq−1}

)
.
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A1 A2 A3 A4 · · · Am

Figure 2.1: Leaving fitness level A3: the arrows show fitness levels where the
offspring might end up.

A Unifying Runtime Analysis of a particular EA with no mutation

To develop a unifying runtime analysis of a formal EA with no mutation, an arti-
ficial fitness levels method using the geometric properties of the recombination
operator of the formal EA has been introduced in [MS17]. The recombination
operator samples an offspring on the convex hull of the parents and the search
performed by the formal EA with no mutation in the Euclidean space is illustrated
in Figure 2.2. Using the same notations as in Section 2.2.1, the probability for
conquering Ai+1 ∪ Ai+2 ∪ . . . ∪ Aq from Ai ∪ Ai+1 ∪ . . . ∪ Aq is the probability that:

• the parents are contained in Ai ∪ Ai+1 ∪ . . . ∪ Aq,

• the convex hull of the parents intersects Ai+1 ∪ Ai+2 ∪ . . . ∪ Aq.

In the worst case, the convex hull of the parents contains the union Ai ∪ Ai+1 ∪
. . .∪Aq. The probability of conquering Ai+1∪Ai+2∪· · ·∪Aq from Ai∪Ai+1∪· · ·∪Aq
replaces the probability of leaving Ai.

This unifying runtime analysis method need not hold for formal EA other than
the one it has been designed for. Hence, similar methods need be developed
for: formal EA with no mutation and with a standard crossover, formal EA with no
crossover, and formal EA with a mutation and a standard crossover.

2.2.2 Potential functions

The potential function method [Weg03] is an extension of the artificial fitness lev-
els method. It is used when computing the probability of leaving a fitness level is
too costly. We first work with an easier function (which is the potential function),
then we take into account the difficult fitness function. The potential function is
used to measure the algorithm’s progress, while the fitness function is used to
decide whether an offspring is accepted or not.
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Figure 2.2: Convex search for an Euclidean distance [Mor11]

2.2.3 Drift Analysis

The drift analysis method [HY01] is a particular case of the potential function
method. It uses a particular distance function d, to measure how far from the
global optimum a population is. Let Xt denote the random variable corresponding
to the population at the t-th generation, and let d(Xt) be the random variable
corresponding to the distance of the population at the t-th generation to the global
optimum. The drift analysis method consists of bounding the one-step mean drift

E[d(Xt)− d(Xt+1)|d(Xt) > 0] (2.1)

from below, in order to get an upper bound of the expectation E[τ |X0] of the
running time τ = min{t|Xt ∈ Eo} of the EA, where Eo is the set of populations
containing the global optimum.

Depending on the form of the positive lower bound of the one-step mean drift,
different types of drift analysis are defined:

• For an additive drift [HY01], the lower bound does not depend on d(Xt).

• For a variable drift [MRC09, Joh11], the lower bound is a function of d(Xt).

• A multiplicative drift [DJW10, FOV08] is a variable drift where the lower
bound is a multiple of d(Xt).

A negative drift is also introduced in [Leh10].
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Chapter 3

Background

The convex search algorithm is a generalization across representations of EAs
with no mutation that has been introduced in [Mor11]. This generalization is based
on the notion of geodesic convexity, that extends the traditional notion of convex-
ity of Euclidean spaces to combinatorial spaces. A fitness landscape where off-
spring are at least as fit as their worst parent and whose canonical level sets are
geodesically convex is quasi-concave [MS17]. The class of quasi-concave land-
scapes generalizes traditional quasi-concave functions on continuous domains to
combinatorial spaces. We summarize the runtime analysis of the convex search
algorithm on a quasi-concave landscape done in [MS17]. We first recall the no-
tions of segments and geodesically convex sets in Section 3.1. Then, we recall
the convex search algorithm in Section 3.3. After this, we recall the definition of
a quasi-concave landscape in Section 3.4. We do this by explaining the notion of
canonical level sets. Finally, we give a summary of the runtime analysis of [MS17]
in Section 3.5.

3.1 Segments and Convex sets

Let S be a search space endowed with a metricD. We recall that a metric function
D is a mapping from S × S −→ R+ that satisfies for any x, y and z in S:

1. D(x, y) = D(y, x),

2. D(x, z) ≤ D(x, y) +D(y, z),

3. D(x, y) = 0 if and only if x = y.

We start by recalling the notions of segments and convex sets in a discrete metric
space (S, D). The discrete metric space (S, D) can be seen as a graph. The
elements of (S, D) are the nodes of the graph and the distance between any two
nodes is the length of the shortest paths between them. This length is the number
of edges in the path.
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Definition 2 (Segment). Let (S, D) be a metric space, and let x and y be elements
of S. The segment between x and y is the union of the shortest paths between x
and y. That is, [x, y]D = {z ∈ S | D(x, z) +D(z, y) = D(x, y)}. The points x and y
are extremes of the segment [x, y]D.

Example 1. In the two-dimensional Hamming space ({0, 1}2,HD), the segment
[00, 11] is the union of the shortest paths between 00 and 11. The shortest
paths between 00 and 11 are: {00, 01, 11} and {00, 10, 11}. Hence, [00, 11] =

{00, 01, 10, 11}. Consequently, the same segment can have more than a pair of
extremes, unlike the case of the Euclidean space. For instance, we have that
[00, 11] = [01, 10].

We shall now recall the notion of convexity in a discrete metric space.

Definition 3 (Geodesic Convexity [vDV93]). Let (S, D) be a metric space. A
subset C of S is geodesically convex if all shortest paths between any two points
of C are included in C. That is, [x, y]D ⊆ C for all x, y in C.

Example 2. Let n ≥ 2, the set {0, 1}n is geodesically convex for the Hamming
(resp. Manhattan) distance. All singletons and segments of length one are
geodesically convex for the Hamming (resp. Manhattan) distance.

We will use the term convex set for geodesically convex set in the rest of the
thesis. Let A be a subset of the metric space (S, D). We finally recall the notion
of convex hull of a subset A, which is central to the analysis of the Convex Search
algorithm.

Definition 4 (Convex hull [vDV93]). Let (S, D) be a metric space. The convex
hull of a subset A of S is the smallest convex set containing A. In particular, it is
the intersection of all convex sets containing A. The convex hull of A is denoted
co(A).

Example 3. Let HD denote the Hamming distance. In the metric space ({0, 1}2,HD),
the convex hull of the set {01} is co({01}) = {01}. The convex hull of the set
{00, 10} is itself and is equal to the segment [00, 10]. The convex hull of the set
{01, 10} is co({01, 10}) = {0, 1}2.

3.2 Schemata for Strings

We start by recalling the notion of schemata [H+92] for strings on a finite alphabet.

Definition 5. A schema in the set {0, 1, . . . , d− 1}n is a template with n positions
where a position is either:

• Free to take any value in the set {0, 1, . . . , d− 1},
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• Restricted to take values in a non-empty strict subset of {0, 1, . . . , d− 1}.

A free position is denoted ∗, whereas a restricted position is denoted ∗A where A
is the set of admissible values.

Example 4. All the elements of the set {0, 1, 2}5 match the schema ∗ ∗ ∗ ∗ ∗. The
smallest schema matching the elements 00123 and 21103 is ∗{0,2} ∗{0,1} 1 ∗{0,2} 3 =

∗02 ∗01 1 ∗02 3.

A schema can be seen as subset of the search space, whose elements are
those matching it.

3.2.1 Hamming distance

Recall that the Hamming distance between x and y is the number of differing
positions between them:

HD(x, y) =
n∑
k=1

[1− δx(k),y(k)], (3.1)

where δi,j is the Kronëcker delta. That is, δi,j =

0 if i 6= j,

1 otherwise.

Proposition 1. In the metric space ({0, 1, . . . , d − 1}n,HD), a segment [x, y] is a
schema such that the admissible values at position i are x(i) and y(i).

Proof. Let S be the schema whose admissible values at position i are x(i) and
y(i). We are going to show that S = [x, y].

• ‘[x, y] ⊆ S’: Let z ∈ [x, y], we have:

HD(x, z) + HD(z, y) = HD(x, y). (3.2)

That is, z differs from x in exactly HD(x, z) positions and takes the values of
y in these positions. Therefore, z belongs to the schema S.

• ‘S ⊆ [x, y]’: Let z ∈ S. For each position i, the value of z(i) is either x(i) or
y(i). This means that there exists 0 ≤ k ≤ n such that z differs from x in
exactly k positions and takes the values of y in these positions. As a result,
z ∈ [x, y].

Proposition 2. In the metric space ({0, 1, . . . , d − 1}n,HD), the convex hull of a
finite set of points {x1, x2, . . . , xm} is a schema such that the set of admissible
values at position i is {x1(i), x2(i), . . . , xm(i)}.
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Proof. Let A = {x1, x2, . . . , xm} and let S denote the schema whose set of ad-
missible values at position i is {x1(i), x2(i), . . . , xm(i)}. We are going to show that
S = co(A). To this end, we will show that S is a the smallest convex set containing
A.

Any element x of A belongs to S because the value x(i) of x at position i

always belongs to the set of admissible values at position i of S. Let x and y be
two elements of S. We show that [x, y] is contained in S. Let z ∈ [x, y], the value
of z(i) is either x(i) or y(i). As x(i) and y(i) belong to the set of admissible values
at position i of S, so does z(i). Therefore, z ∈ S. As a result, [x, y] is contained in
S. We conclude that S is a convex set containing A.

It remains to show that S is the smallest convex set containing A. To this end,
we show that by removing a single element of S the set A is no longer contained
in S.

Let z ∈ S, the removal of z yields a new schema S ′ whose admissible values
at position i are {x1(i), x2(i), . . . , xm(i)}\{z(i)}. For each position i, z(i) is one
of the admissible values at positions i of S. That is, there exists an index mi ∈
{1, 2, . . . ,m} such that:

z(i) = xmi(i). (3.3)

The removal of xmi(i) at position i breaks the belonging of the element xmi in the
set A. Hence, the set A is not contained in the new schema S ′. Therefore, S is
the smallest convex set containing A.

3.2.2 Manhattan distance

Recall that the Manhattan distance between x and y is

MD(x, y) =
n∑
k=1

| x(k)− y(k) | . (3.4)

Proposition 3. In the metric space ({0, 1, . . . , d − 1}n,MD), a segment [x, y] is a
schema such that the admissible values at position i are the k ∈ {0, 1, . . . , d− 1}
such that:

min[x(i), y(i)] ≤ k ≤ max[x(i), y(i)]. (3.5)

Proof. Let S be the schema whose admissible values at position i are as in Equa-
tion (3.5). We are going to show that S = [x, y].

• ‘[x, y] ⊆ S’: Let z ∈ [x, y], we have:

MD(x, z) + MD(z, y) = MD(x, y). (3.6)
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That is,

n∑
i=1

| x(i)− z(i) | +
n∑
i=1

| z(i)− y(i) |=
n∑
i=1

| x(i)− y(i) |,

n∑
i=1

{| x(i)− z(i) | + | z(i)− y(i) | − | x(i)− y(i) |} = 0.

Therefore, at each position i we have:

| x(i)− z(i) | + | z(i)− y(i) | − | x(i)− y(i) |= 0,

| x(i)− z(i) | + | z(i)− y(i) |=| x(i)− y(i) | .

As all the values are positive, this implies that:

min[x(i), y(i)] ≤ z(i) ≤ max[x(i), y(i)], (3.7)

for each position i. Hence, z ∈ S.

• ‘S ⊆ [x, y]’: Let z ∈ S. For each position i, the value of z(i) is included
between x(i) and y(i). This means that for each position i we have:

| x(i)− z(i) | + | z(i)− y(i) |=| x(i)− y(i) | . (3.8)

As a result,

n∑
i=1

| x(i)− z(i) | +
n∑
i=1

| z(i)− y(i) | =
n∑
i=1

| x(i)− y(i) |,

MD(x, z) + MD(z, y) = MD(x, y).

Thus, z ∈ [x, y].

Proposition 4. In the metric space ({0, 1, . . . , d − 1}n,MD), the convex hull of a
finite set of points {x1, x2, . . . , xm} is a schema such that the set of admissible
values at position i is the set of consecutive values between the smallest and the
largest elements of {x1(i), x2(i), . . . , xm(i)}.

Proof. Let A = {x1, x2, . . . , xm} and let S denote the schema whose set of admis-
sible values at position i is the set of consecutive values between the smallest
and the largest elements of {x1(i), x2(i), . . . , xm(i)}. We are going to show that
S = co(A). To this end, we will show that S is a the smallest convex set containing
A.

Any element x of A belongs to S because the value x(i) of x at position i

always belongs to the set of admissible values at position i of S. Let x and y
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be two elements of S. We show that [x, y] is contained in S. Let z ∈ [x, y], the
value of z(i) is between min{x(i), y(i)} or max{x(i), y(i)} (extremes included). As
minx,y∈A{x(i), y(i)} ≤ min{x(i), y(i)} and maxx,y∈A{x(i), y(i)} ≤ maxx,y∈A{x(i), y(i)},
z(i) belongs to [minx,y∈A{x(i), y(i)},maxx,y∈A{x(i), y(i)}]. Therefore, z ∈ S. As a
result, [x, y] is contained in S. We conclude that S is a convex set containing A.

It remains to show that S is the smallest convex set containing A. To this end,
we show that by removing a single element of S either breaks its convexity of the
inclusion of A.

Let z ∈ S, the removal of z yields a new schema S ′ whose admissible values at
position i are [minx,y∈A{x(i), y(i)},maxx,y∈A{x(i), y(i)}] \{z(i)}. For each position
i, z(i) is one of the admissible values at positions i of S. That is, z(i) is an element
of [minx,y∈A{x(i), y(i)},maxx,y∈A{x(i), y(i)}].

• If z ∈ A, then its removal breaks its belonging to A. Thus, S ′ does not
contain A.

• If z /∈ A, then minx,y∈A{x(i), y(i)} < z(i) < maxx,y∈A{x(i), y(i)}. Its removal
breaks the convexity of the set of admissible values at position i. Thus, S ′

is not a convex set.

We conclude that S is the smallest convex set containing A.

3.3 Convex Search Algorithm (CS)

EAs with no mutation and with an unusual population-based crossover are con-
vex search algorithms. The convex search algorithm [MS17] is presented in this
section. We start by defining the search operator used by the convex search
algorithm.

Definition 6 (Convex hull recombination [MS17]). The (uniform) convex hull re-
combination returns an offspring sampled uniformly at random from the convex
hull formed by its parents.

A pseudo-code corresponding to the Convex Search Algorithm [MS17] is shown
in Algorithm 1.
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Algorithm 1 Convex Search Algorithm
1: Input: µ, population size
2: Output: individual in the last population
3: Initialise population uniformly at random
4: while population has not converged to the same individual do
5: Rank individuals on fitness
6: if there are at least two fitness values in the current population then
7: remove all individuals with the worst fitness
8: end if
9: Create new population:

10: for counter in {1, 2, . . . , µ} do
11: Apply the CONVEX HULL RECOMBINATION to the remaining individuals in

the current population to create an individual
12: end for
13: end while
14: Return any individual in the last population

Let us denote P ′ the set of parents that are selected from a population P . The
set of reachable solutions R(P ′) from the set of parents P ′ is the set of solutions
that can be reached by repeated application of a search operator to the set of
parents P ′. In particular, the set RCS(P ′) of reachabale solutions for the convex
hull recombination is:

RCS(P ′) = co(P ′). (3.9)

The offspring distribution is uniform on RCS(P ′) for the Convex Search Algorithm.
The probability for sampling an offspring in RCS(P ′) is:

1

| RCS(P ′) |
=

1

| co(P ′) |
. (3.10)

3.4 Quasi-concave fitness landscapes

Quasi-concave landscapes [MS17] are a generalisation across representations
of quasi-concave functions on continuous domain to combinatorial spaces.

Definition 7 (Canonical fitness level set [MS17]). Let S denote the search space,
and let f be a fitness function on S. The codomain of the fitness function f is
finite with values a0 < a1 < · · · < aq. The canonical level set A≥j is defined for
0 ≤ j ≤ q as {x ∈ S|f(x) ≥ aj}.

This definition is different from Wegener’s [Weg03], as Wegener’s level set
corresponds to Aj = A≥j\A≥j+1 = {x ∈ S|f(x) = aj}.
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Example 5. Let ‘∗’ denote the don’t care symbol. In the search space {0, 1}4,
the canonical level sets of LeadingOnes are: A0 = {0, 1}4, A1 = 1 ∗ ∗∗, A2 =

11 ∗ ∗, A3 = 111∗, and A4 = {1111}.

Definition 8 (Quasi-concave Landscape [MS17]). A problem belongs to the class
of quasi-concave problems iff:

1. All its canonical level sets are convex sets,

2. For a maximizing quasi-concave problem, we have for all sets C ⊆ S that
f(z) ≥ minx∈C f(x) if z ∈ co(C).

Example 6. Using the same example as above, we can see that each canonical
level set of LeadingOnes satisfies:

Ai = 1 · · · 1︸ ︷︷ ︸
i times

∗ · · · ∗︸ ︷︷ ︸
4−i times

,

' {0, 1}4−i.

That is, Ai is isomorphic to the set {0, 1}4−i. As the set {0, 1}4−i is convex for
the Hamming (resp. Manhattan) distance, LeadingOnes belongs to the class of
quasi-concave problems.

The notion of convexity requires a metric D on the search space S. Therefore,
the resulting triplet (S, f,D) forms a fitness landscape [RS02]. A quasi-concave
fitness landscape is determined by:

• The total number q + 1 of distinct canonical level sets,

• The minimum ratio r between the size of two consecutive canonical level
sets:

r = min
0≤j≤q

| A≥j+1 |
| A≥j |

. (3.11)

Example 7. Let n ≥ 2, in the metric space ({0, 1}n,HD) (resp. ({0, 1}n,MD)) the
quasi-concave problem LeadingOnes is determined by:

• q + 1 = n+ 1,

• r = 0.5.

3.5 Runtime Analysis Method

In a quasi-concave landscape, two fit parents always produce a fit offspring.
Namely, the offspring is at least as fit as the worst parent [MS17]. An upper
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bound on the runtime of the convex search algorithm on a quasi-concave land-
scape has been given in [MS17]. As both the convex search algorithm and the
quasi-concave landscape are representation free, the resulting runtime analysis
is also representation free. Consequently, the general runtime result needs to be
instantiated to a specific metric space for a particular representation.

3.5.1 Summary of the Analysis

The runtime analysis used in [MS17] is based on the fitness levels method [Weg01].
The search space S is partitioned with respect to the fitness values of its ele-
ments. However, a fitness level is defined to contain all individuals with a fitness
larger than or equal to some existing fitness value. This gives rise to a chain of
level sets ordered by inclusion. The smallest level set in this chain corresponds to
the set of global optima. Given m individuals sampled uniformly at random from
a level set A≥j, the probability PCov

A≥j
(m) that the convex hull of these m elements

covers A≥j is also estimated. Using the same notations as in [MS17], we have:

PCov
A≥j

(m) = Pr[co(P ′) = A≥j | P ′ = Unifm(A≥j)], (3.12)

≥ Pr[co(P ′) = S | P ′ = Unifm(S)], (3.13)

= PCov
S (m). (3.14)

A lower bound on the expected number m of strictly improving offspring in each
level set is computed, by finding a lower bound on the probability to hit a higher
level set. [MS17] showed that the probability to hit a higher level set is at least 1

r
.

They also showed that for a population size of µ, the expected number of strictly
improving offspring in each level set is at least µr. As the probability that the
expected number of strictly improving offspring in each level set is less than µr

4

is exponentially small, [MS17] defined the worst-case typical behaviour to have
exactly µr

4
strictly improving offspring in each level set. The worst case probability

for finding a global optimum is therefore given by:

Theorem 1. [MS17] The Convex Search Algorithm with population size µ finds a
global optimum within q generations and µq fitness evaluations with probability at
least [

PCov
S

(µr
4

)]q+1

− q exp

(
−9µr

32

)
. (3.15)

3.6 CS on Strings on a Finite Alphabet

The general runtime analysis of the convex search algorithm on a quasi-concave
landscape has been thoroughly isntantiated to strings on a finite alphabets for the
Hamming and the Manhattan distances in [MS17]. We recall their results in this
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section. We consider d-ary strings of length n on the alphabet {0, 1, 2, . . . , d − 1}
and two different metrics on the set {0, 1, 2, . . . , d− 1}n:

• The Hamming distance HD,

• The Manhattan distance MD.

3.6.1 Hamming distance

The probability PCov
Md,HD

(m) is the probability that the schema matching all the m

elements of P ′ with respect to the Hamming distance is ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸
n times

.

Lemma 1. [MS17] We assume that d ≥ 2, for any convex set C of the metric
space Md,HD we have PCov

C (m) ≥ PCov
Md,HD

(m) where,

PCov
Md,HD

(m) ≥ 1− dn
(

1− 1

d

)m
. (3.16)

A lower bound on the population size for which the success probability is at
least 0.5 has been estimated in [MS17] using Theorem 1. The formula shown
below is adapted from the formula of Theorem 11 and the formula of Corollary 12
of [MS17], where q + 2 should read 2q + 1.

Theorem 2. [MS17] Let d ≥ 2, if the population size µ is at least:

4d

r
ln[2dn(2q + 1)], (3.17)

then the convex search algorithm finds a global optimum on a quasi-concave
landscape on the metric space Md,HD with probability at least 0.5 within µq fitness
evaluations.

3.6.2 Manhattan distance

The probability PCov
Md,MD

(m) is the probability that the schema matching all the m

elements of P ′ with respect to the Manhattan distance is ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸
n times

.

Lemma 2. [MS17] We assume that d ≥ 2, for any convex set C of the metric
space Md,MD we have PCov

C (m) ≥ PCov
Md,MD

(m) where,

PCov
Md,MD

(m) ≥ 1− 2n

(
1− 1

d

)m
. (3.18)

A lower bound on the population size for which the success probability is at
least 0.5 has been estimated in [MS17] using Theorem 1. The formula shown
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below is adapted from the formula of Theorem 14 and the formula of Corollary 15
of [MS17], where q + 2 should read 2q + 1.

Theorem 3. [MS17] Let d ≥ 2, if the population size µ is at least:

4d

r
ln[4n(2q + 1)], (3.19)

then the convex search algorithm finds a global optimum on a quasi-concave
landscape on the metric space Md,MD with probability at least 0.5 within µq fitness
evaluations.

3.7 Summary

The convex search algorithm is a generalization across representations of EAs
with no mutation. The crossover operator of the convex search algorithm is
population-based. A level set is defined to contain all individuals with a fitness
greater than or equal to some existing fitness value. This gives rise to a chain of
level sets ordered by inclusion. The smallest level set in this chain is the set of
global optima, whereas the largest level set is the entire search space. We con-
sider fitness landscapes where offspring are at least as fit as their worst parent
and whose level sets are all convex. They make up the class of quasi-concave
landscapes. A general analysis of the runtime of the convex search algorithm on
a quasi-concave landscape has been developed in [MS17]. A lower bound on the
population size for which the success probability is at least 0.5 has been com-
puted. The corresponding runtime upper bound has also been estimated. The
representation free analysis has been specified to strings on a finite alphabet for
two distinct metrics: the Hamming and the Manhattan distances. The explicit
computation of the specific parameters for these spaces was possible by noticing
that the search space {0, 1, 2, . . . , d−1}n is equal to the schema ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸

n times

for both

metrics.
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Chapter 4

CS on Permutations

We specify the runtime analysis of the CS on a quasi-concave landscape of
[MS17] to permutations. We are aiming to determine whether the runtime re-
sult obtained in [MS17] for strings on a finite alphabets (wrt the Hamming and
the Manhattan distances) holds for permutations (wrt the Kendall’s τ , Cayley, the
Ulam metrics, and the reversal distance).

We start by recalling algebraic properties of permutations in Section 4.1. Then
we define the metrics that will be used in our analysis in Section 4.2. We show
that the Kendall’s τ and the Cayley metrics are respectively linked to the left weak
order and the strong right order in Section 4.3. This will be useful in Section
4.4, where we determine the convex sets corresponding to each metric. The
runtime analysis is done in Section 4.5. We show that a permutation is uniquely
determined by a common string in Section 4.6. We study permutations through
their string form in Section 4.7.

4.1 Permutation Group

The set of the permutations of the elements of [n] = {1, 2, . . . , n} is denoted Sn.
We recall that a permutation of Sn is a rearrangement of the elements of [n]. Let ◦
denote the composition law. We recall some known properties of the group (Sn, ◦)
that can be found in [Sag13]. We will start with the definition of a group.

Definition 9 (Group). A group (G, .) is a set G equipped with a binary operation
. : G×G −→ G that satisfies the following properties:

• There exists an identity element e ∈ G such that:

a.e = e.a = a, (4.1)

for all a ∈ G.
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• Each element a ∈ G has an inverse denoted a−1 such that:

a.a−1 = a−1.a = e. (4.2)

• The binary operation ‘.’ is associative:

a.(b.c) = (a.b).c, (4.3)

for any elements a, b and c of G.

• The set G is closed under the binary operation ‘.’ :

a.b ∈ G, (4.4)

for any a and b in G.

Example 8. The set of integers Z equipped with ‘+’ is a group. The identity
element is 0 and the inverse of an integer n is the integer (−n). The sum of two
integers remains an integer and ‘+’ is associative.

The set Sn of the permutations of the elements of [n] = {1, 2, . . . , n} becomes
a group when equipped with a composition law ◦ : Sn × Sn −→ Sn. Indeed, two
permutations σ and τ of Sn can be composed into a permutation σ ◦ τ of Sn.

Example 9. Let σ = 53241 and let τ = 35241 be two permutations of S5. The
permutation σ◦τ is obtained by finding out where 1, 2, 3, 4, and 5 are respectively
sent by first going through τ and then through σ. We have:

1
τ−→ 3

σ−→ 2,

2
τ−→ 5

σ−→ 1,

3
τ−→ 2

σ−→ 3,

4
τ−→ 4

σ−→ 4,

5
τ−→ 1

σ−→ 5.

Thus, σ ◦ τ = 21345.

In the group (Sn, ◦), the identity element is 123 . . . n. The computation of the
inverse of a permutation requires the notion of transpositions. A transposition of
Sn is a permutation that only rearrange two elements of [n] = {1, 2, . . . , n}.

Example 10. The permutation 15342 of S5 is a transposition.

In fact, any permutation of Sn can be obtained through the composition of
transpositions of Sn for n ≥ 2. This composition of transpositions need not be
unique.
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Example 11. The permutation σ = 53421 can be written as (15) ◦ (23) ◦ (34).
Indeed, we have:

1
σ−→ 5

σ−→ 1,

2
σ−→ 3

σ−→ 4
σ−→ 2.

That is, σ = (15) ◦ (234). Thus, by splitting (234) into a product of transpositions
we obtain that σ = (15) ◦ (23) ◦ (34).

We say that the group (Sn, ◦) is generated by its transpositions. This result
enables us to:

• compute the inverse of any given permutation,

• compute the composition of any two permutations more easily.

By abuse of language we use the term ‘product’ instead of ‘composition’ while
referring to transpositions. Moreover, the notation ‘◦’ is omitted while composing
transpositions.

Transpositions Product Rules

We recall the product rules of transpositions. Let 1 ≤ i < j ≤ k < l ≤ n be
integers, the product of two tranpositions follows the following rules:

• For any transposition (ij),
(ij)−1 = (ij). (4.5)

• For any transpositions (ij) and (kl),

[(ij)(kl)]−1 = (kl)−1(ij)−1, (4.6)

= (kl)(ij). (4.7)

• If the sets {i, j} and {k, l} are disjoint then:

(ij)(kl) = (kl)(ij). (4.8)

We say that (ij) and (kl) commute.

Example 12. The inverse of the permutation σ = 53421 in Example 11 is given
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by:

σ−1 = 53421−1,

= [(15)(23)(34)]−1,

= [(23)(34)]−1(15)−1,

= (34)−1(23)−1(15),

= (34)(23)(15),

= 54231.

Example 13. Let σ = 53241 and let τ = 35241 be the two permutations of Example
9. We recompute σ ◦ τ using transpositions:

σ ◦ τ = 53241 ◦ 35241,

= [(15)(23)](1325),

= (15)(23)(1325),

= (15)(23)(13)(32)(25),

= 21345.

We ended up to the same result as Example 9 without drawing any diagram.

Right and Left Transpositions

There are two different ways to compose (ij) with a permutation σ of Sn. The right
transposition consists of composing (ij) with σ from the right (i.e., doing σ ◦ (ij)).
Whereas, the left transposition consists of composing (ij) with σ from the left (i.e,
doing (ij) ◦ σ). The right transposition swaps the letters at positions i and j in σ.
Whereas, the left transposition swaps the letters i and j in σ.

Example 14. In the group (S5, ◦), we have (13)◦45213 = 45231 and 45213◦(13) =

25413.

We are now ready to define the Kendall’s τ , the Cayley, the Ulam metrics, and
the reversal distance on the set Sn.

4.2 Metrics for Permutations

We shall consider four distinct metrics on Sn: the Kendall’s τ metric K [Ken48,
Cri12], the Cayley metric T [DH98, Cri12], the Ulam metric UL [AD99, Ula72], and
the reversal distance R [BP96]. Each of these metrics uses the group property of
(Sn, ◦).
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123

213 132

231 312

321

(S3, K)

123

213 132

231 312

321

(S3, T )

123

213 132

231 312

321

(S3, UL)

Figure 4.1: Illustration of the metric space (S3, D) for different metrics D. An edge
is drawn between two permutations whose distance from each other is one.

4.2.1 Kendall’s τ metric

A tranposition that rearranges two consecutive values is called adjacent.

Example 15. The transpositions (23) = 13245 and (45) = 12354 of S5 are adja-
cent. Whereas, the transpositions (25) = 15342 and (13) = 32145 are not adja-
cent.

The definition of the Kendall’s τ metric uses right adjacent transpositions.

Definition 10 (Kendall’s τ metric [Ken48, Cri12]). Let σ1 and σ2 be permutations
in Sn. The Kendall’s τ distance K(σ1, σ2) between σ1 and σ2 is the minimum
number of right adjacent transpositions needed to obtain σ2 from σ1.

This means that for the Kendall’s τ metric a 1-neighbour is obtained by swap-
ping any two letters whose positions are adjacent.

Example 16. The permutation 54123 is a 1-neighbour of the permutation 51423

(i.e., their Kendall’s τ distance is one) because one permutation is obtained from
the other by swapping two letters whose positions are adjacent. More precisely:

54123 = 51423 ◦ (23),

51423 = 54123 ◦ (23).

The Kendall’s τ distance between two permutations σ1 and σ2 is therefore
given by the minimum number of adjacent transpositions whose composition
yields the permutation σ−11 ◦ σ2.
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Example 17. Let σ1 = 32145 and let σ2 = 45312, we have:

σ−11 ◦ σ2 = 32145−1 ◦ 45312,

= (13)−1(14)(25),

= (13)(14)(25),

= [(12)(23)(12)][(12)(23)(34)(23)(12)][(23)(34)(45)(34)(23)],

= (12)(34)(23)(12)(23)(34)(45)(34)(23),

= (34) (12)(23)(12)︸ ︷︷ ︸(23)(34)(45)(34)(23),

= (34)(23)(12)(23)(23)(34)(45)(34)(23),

= (34)(23)(12)(34)(45)(34)(23).

The minimum number of adjacent transpositions whose composition yields the
permutation σ−11 ◦ σ2 is 7. Hence, the Kendall’s τ distance between these two
permutations is 7. Notice that this need not be the unique way to write σ−11 ◦ σ2.

A more practical way to compute the Kendall’s τ distance between two per-
mutations σ1 and σ2 of Sn is given in [Ken48] as follows:

K(σ1, σ2) ={(i, j) ∈ [n]× [n] | [σ1(i) < σ1(j) AND σ2(i) > σ2(j)]

OR [σ1(i) > σ1(j) AND σ2(i) < σ2(j)]}.

In particular, maxσ,τ∈Sn K(σ, τ) = (n−1)n
2

.

4.2.2 Cayley metric

The definition of the Cayley metric uses left tranpositions.

Definition 11 (Cayley metric [DH98, Cri12]). Let σ1 and σ2 be permutations in Sn.
The Cayley distance T (σ1, σ2) between σ1 and σ2 is the minimum number of left
transpositions needed to obtain σ2 from σ1.

This means that for the Cayley metric a 1-neighbour is obtained by swapping
any two values.

Example 18. The permutation 52314 is a 1-neighbour of the permutation 54312

(i.e., their Cayley distance is one) because one permutation is obtained from the
other by swapping the values 2 and 4. More precisely:

52314 = (24) ◦ 54312,

54312 = (24) ◦ 52314.
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The Cayley distance between two permutations σ1 and σ2 is therefore given by
the minimum number of transpositions whose composition yields the permutation
σ2 ◦ σ−11 .

Example 19. Let σ1 = 32145 and let σ2 = 45312, we have:

σ2 ◦ σ−11 = 45312 ◦ 32145−1,

= (14)(25)(13)−1,

= (14)(25)(13).

The minimum number of transpositions whose composition yields the permutation
σ2 ◦ σ−11 is 3. Hence, the Cayley distance between these two permutations is 3.
Notice that this need not be the unique way to write σ2 ◦ σ−11 .

A more practical way to compute the Cayley distance between two permuta-
tions σ1 and σ2 consists of determining the number of (disjoint) cycles in σ2 ◦ σ−11

[DH98]. That is:
T (σ1, σ2) = n− | {Cycles in σ2 ◦ σ−11 } | . (4.9)

Example 20. Using the same permutations as in the previous example, we have
that:

σ2 ◦ σ−11 = 45312 ◦ 32145−1,

= (14)(25)(13),

= (14)(13)(25),

= (134)(25).

Hence, σ2◦σ−11 has two disjoint cycles. It follows that the Cayley distance between
σ1 and σ2 is 5− 2 = 3

In particular, maxσ,τ∈Sn T (σ, τ) = n− 1.

4.2.3 Ulam metric

A letter displacement consists of deleting a letter then inserting it in a different
position. The definition of the Ulam metric uses letter displacements. A letter can
be displaced through a chain of right transpositions.

A chain of right transpositions corresponding to a letter displacement keeps
track of the consecutive positions taken by the moving letter until it reaches its final
position. Hence, a letter of a permutation σ that moves from position i to position
j > i is the right composition of (i i + 1 · · · j) = (i i + 1)(i + 1 i + 2) . . . (j − 1 j)

(position counting starts at 1) with σ. A permutation of the form (i i + 1 · · · j) is
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called an adjacent cycle [BD12]. The definition of the Ulam metric makes use of
right adjacent cycles.

Definition 12 (Ulam metric [AD99, Ula72]). Let σ1 and σ2 be permutations in Sn.
The Ulam distance UL(σ1, σ2) between σ1 and σ2 is the minimum number of right
adjacent cycles (or letter displacements) needed to obtain σ2 from σ1.

This means that a 1-neighbour is obtained through the displacement of one
letter to a different position.

Example 21. The permutations 25314 and 23154 are 1-neighbour (i.e., their Ulam
distance is one) because one permutation is obtained from the other through the
displacement of the letter 5. In particular,

23154 = [25314 ◦ (23)] ◦ (34),

= 25314 ◦ [(23)(34)],

= 25314 ◦ (234).

This shows that the letter at position 2 is first displaced to position 3, then dis-
placed to position 4. All the transpositions appearing in the chain (23)(34) are
adjacents.

The Ulam distance between two permutations σ1 and σ2 is therefore given by
the minimum number of adjacent cycles whose composition yields the permuta-
tion σ−11 ◦ σ2.

Example 22. Let σ1 = 32145 and let σ2 = 45312, we have:

σ−11 ◦ σ2 = 32145−1 ◦ 45312,

= (13)−1(14)(25),

= (13)(14)(25),

= [(12)(23)(12)][(12)(23)(34)(23)(12)][(23)(34)(45)(34)(23)],

= (34)(23)(12)(34)(45)(34)(23),

= (34)(23)(12)(345)(34)(23),

= (34)(23)(345)(12)(34)(23),

= (34)(2345)(34)(12)(23),

= (34)(2345)(34)(123).

The minimum number of adjacent cycles whose composition yields the permuta-
tion σ−11 ◦ σ2 is 4. Hence, the Ulam distance between these two permutations is
4. Notice that this composition need not be unique.
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A more practical way to compute the Ulam distance between two permuta-
tions is not known yet. However, it has been shown that the Ulam metric is well
approximated by edit distances on non repetitive strings of the same length (See
[AN10]).

4.2.4 Reversal distance

A reversal consists of reversing the order of the values between two distinct posi-
tions of a permutation [BP96]. The definition of the reversal distance uses rever-
sals. A reversal can be performed through a chain of disjoint left transpositions.

A chain of disjoint left transpositions corresponding to a reversal keeps track
of the different pair of values that are consecutively swapped. Hence, reversing
the values of a permutation σ between position i and j (where σ(j) > σ(i)) is the
left composition of

(σ(i)σ(j))(σ(i) + 1 σ(j)− 1) . . .
(
σ(i) +

[
σ(j)−σ(i)

2

]
σ(j)−

[
σ(j)−σ(i)

2

])
(4.10)

with σ, where
[
σ(j)−σ(i)

2

]
denotes the integer part of σ(j)−σ(i)

2
. A permutation of this

form will be referred to as a reversal.

Definition 13 (Reversal distance [BP96]). Let σ1 and σ2 be permutations in Sn.
The reversal distance R(σ1, σ2) between σ1 and σ2 is the minimal number of re-
versals needed to obtain σ1 from σ2.

This means that a 1-neighbour is obtained through one reversal.

Example 23. The permutations 13425 and σ = 12435 are 1-neighbour (i.e., their
reversal distance is one) because one permutation is obtained from the other
through the reversal of the values between positions 2 and 4 (position counting
starts at 1). In particular,

13425 =
(
σ(2) +

[
σ(4)−σ(2)

2

]
σ(4)−

[
σ(4)−σ(2)

2

])
◦ σ,

= (23) ◦ 12435.

The reversal distance between two permutations σ1 and σ2 is therefore given
by the minimum number of reversals whose composition yields the permutation
σ2 ◦ σ−11 .
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Example 24. Let σ1 = 32145 and let σ2 = 45312, we have:

σ2 ◦ σ−11 = 45312 ◦ 32145−1,

= (14)(25)(13)−1,

= (14)(13)(25),

= (134)(25),

= (13)(34)(25),

= [(13)(22)][(25)(34)].

The minimum number of reversals whose composition yields the permutation σ2 ◦
σ−11 is 2. Hence, the reversal distance between these two permutations is 2.
Notice that this composition need not be unique.

4.3 Order on Permutations

The permutations of the elements of [n] = {1, 2, . . . , n} can be partially ordered.
There are two well known partial orders on the set Sn: the weak left order and the
strong right order. We show that these partial orders are respectively linked to
the Kendall’s τ and the Cayley metrics. In particular, these partial orders define
convex subsets of the partially ordered set. We shall see that for the weak left
order, convex subsets of the partially ordered set are convex subsets of the metric
space (Sn, K). This is not true for the strong right order and the metric space
(Sn, T ). However, the converse is always true: a convex subset of the metric
space (Sn, T ) (resp. (Sn, K)) is a convex subset of the partial ordered set wrt the
strong right (resp. weak left) order.

The notion of order convexity [Pel13] is not new. Moreover, it is not difficult
to notice the relationship between the Kendall’s τ (resp. Cayley) metric and the
weak left (resp. strong right) order on Sn. However, the relationship between the
Kendall’s τ (resp. Cayley) metric convex sets and the left weak (resp. strong right)
order convex sets in Sn is a new contribution. The new results presented in this
section are not intermediate results to another main conclusion. Instead, they are
useful tools for finding convex sets in the metric spaces (Sn, K) and (Sn, T ).

We start by recalling the notions of partial order and lattice.

Definition 14 (Partial order). A partial order on a set S is a binary relation ≺ that
is:

1. Reflexive
x ≺ x for any x ∈ S, (4.11)

45



∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

Hasse diagram of ({a, b, c},⊆)

123

213 132

231 312

321

Hasse diagram of (S3,≺)

Figure 4.2: Examples of partially ordered sets.

2. Antisymmetric

If x ≺ y and y ≺ x, then x = y for any x, y ∈ S, (4.12)

3. Transitive

If x ≺ y and y ≺ z, then x ≺ z for any x, y, z ∈ S. (4.13)

Example 25. The inclusion ⊆ is a partial order on the elements of the set {a, b, c}.
The ordering of the elements of {a, b, c} with respect to ⊆ can be represented in
a Hasse diagram. See Figure 4.2.

Definition 15 (Lattice). A partially ordered set (S,≺) is a lattice if each pair of
elements has a unique least upper bound and a unique greatest lower bound.

Example 26. The pair ({a, b, c},⊆) forms a lattice.

In particular, any non empty subset of a lattice has a least upper bound and a
greatest lower bound.

4.3.1 Weak Left Order

Let ≺w denote the weak left order (also called weak order in [Dra05]). The weak
order is a partial order on Sn that is defined as follows:

Definition 16. [YO69] Let σ and τ be two elements of Sn. We say that τ covers σ
and write σ w−→ τ iff there exists a positive integer i < n such that:

σ(i) = τ(i+ 1) < σ(i+ 1) = τ(i) and σ(k) = τ(k) for k 6= i, i+ 1. (4.14)
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An element υ is said to be not smaller than σ with respect to ≺w (i.e., σ ≺w υ) iff
there exist σ1, σ2, . . . , σm−1 in Sn such that:

σ = σ0
w−→ σ1

w−→ σ2
w−→ σ3

w−→ · · · w−→ σm−1
w−→ σm = υ. (4.15)

The weak order can be defined using the Kendall’s τ distance. To this end,
let us first recall from [Dra05] that an inversion in a permutation σ is a a pair of
values (σ(i), σ(j)) such that: σ(i) > σ(j) and i < j.

We can see that a permutation τ covers a permutation σ with respect to the
weak order iff the Kendall’s τ distance between the two permutations is one and
τ has exactly one more inversion than σ. Therefore, the weak order can be used
to order the elements of Sn by taking into account their Kendall’s τ distance from
each other. In this case, if σ ≺w τ then the Kendall’s τ segment between σ and τ
is simply:

[σ, τ ]K = {ν | σ ≺w ν ≺w τ}, (4.16)

= [σ, τ ]≺w . (4.17)

The weak order ≺w can be used to define convex subsets of the partially ordered
set (Sn,≺w). Namely, a subset C of Sn is convex iff for any σ ≺w τ in C we have:

σ ≺w ν ≺w τ ⇒ ν ∈ C. (4.18)

Or equivalently,
[σ, τ ]≺w ⊆ C. (4.19)

Theorem 4. A convex set of Sn with respect to the Kendall’s τ metric is a convex
subset of the partially ordered set (Sn,≺w). Conversely, a convex subset of the
partially ordered set (Sn,≺w) is a convex set of Sn with respect to the Kendall’s τ
metric.

Proof. Let C be a convex set of Sn with respect to the Kendall’s τ metric. For any
σ and τ in C, the segment [σ, τ ]K is contained in C because C is convex. Now, let
σ′ and τ ′ be two elements of C such that σ′ ≺w τ ′. We have:

[σ′, τ ′]K = {ν ∈ Sn | σ′ ≺w ν ≺w τ ′},

= [σ′, τ ′]≺w ,

⊆ C.

Thus, C is a convex subset in the partially ordered set (Sn,≺w).

Conversely, let C be a convex subset in the partially ordered set (Sn,≺w). For
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any σ ≺w τ in C, the set

[σ, τ ]≺w = {ν ∈ Sn | σ ≺w ν ≺w τ}, (4.20)

is always contained in C. Let us now consider two elements σ′ and τ ′ of C.

If the elements σ′ and τ ′ are comparable with respect to the weak order, then
the Kendall’s τ segment they form is contained in C. Indeed, without loss of
generality let σ′ ≺w τ ′. We have that [σ′, τ ′]K = [σ′, τ ′]≺w and is contained in C.

If the elements σ′ and τ ′ are not comparable with respect to ≺w, then we
use the lattice property of (Sn,≺w) [YO69] to show that the Kendall’s τ segment
[σ′, τ ′]K they form is either of the form:

• [LUB(σ′, τ ′), GLB(σ′, τ ′)]≺w ,

• [LUB(σ′, τ ′), σ′]≺w ∪ [LUB(σ′, τ ′), σ′]≺w ,

• [σ′, GLB(σ′, τ ′)]≺w ∪ [τ ′, GLB(σ′, τ ′)]≺w ,

where GLB (resp. LUB) denotes the Greatest Lower Bound (resp. Lowest Upper
Bound). Since σ′ and τ ′ are already contained in C, it remains to show that the
greatest lower bound (GLB) and the lowest upper bound (LUB) of the pair (σ′, τ ′)

belong to C.

C is a convex subset in the partially ordered set (Sn,≺w) that contains σ′ and
τ ′. If GLB(σ′, τ ′) is not contained in C, then both the segments [σ′, GLB(σ′, τ ′)]≺w

and [τ ′, GLB(σ′, τ ′)]≺w are not contained in C. Hence, the convex set C is either
the set {σ′} or the set {τ ′}. Either way, the convex set C can not contain both
σ′ and τ ′ unless σ′ = τ ′. This contradicts the initial assumption. Consequently,
GLB(σ′, τ ′) must be contained in C. We show in a similar way that LUB(σ′, τ ′) is
contained in C.

As a result, the segment [σ′, τ ′]K is always contained in C whenever σ′ and τ ′

are elements of C. Thus, C is a convex set of Sn with respect to the Kendall’s τ
metric.

Corollary 1. Let σ ≺w τ be two permutations of Sn, the set [σ, τ ]≺w is convex (with
respect to the Kendall’s τ metric) and is equal to co({σ, τ}).

Proof. Since σ ≺w τ , we have:

[σ, τ ]≺w = [σ, τ ]K .

As [σ, τ ]≺w is a convex set of the metric space (Sn, K), the segment [σ, τ ]K is
also a convex set of the metric space (Sn, K). Since σ and τ both belong to the
set co({σ, τ}), then the segment [σ, τ ]K must be contained in the set co({σ, τ})
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because of its convexity. The smallest convex set containing both σ and τ being
co({σ, τ}) by definition, we must have that:

[σ, τ ]K = co({σ, τ}).

The result follows.

4.3.2 Strong Right Order

Let ≺ denote the strong right order (also called Bruhat order in [Inc04]). The
strong order is a partial order on Sn that is defined as follows:

Definition 17. [Inc04] Let σ and τ be two elements of Sn. We say that τ covers σ
and write σ 1−→ τ iff there exist two distinct positions k1 < k2 such that:

σ(k1) = τ(k2) < σ(k2) = τ(k1), and σ(i) = τ(i) for all i 6= k1, k2, (4.21)

and for all k1 ≤ k ≤ k2 the value σ(k) does not satify

σ(k1) ≤ σ(k) ≤ σ(k2). (4.22)

An element υ is said to be not smaller than σ with respect to ≺ (i.e., σ ≺ υ) iff
there exist σ1, σ2, . . . , σm−1 in Sn such that:

σ = σ0
1−→ σ1

1−→ σ2
1−→ σ3

1−→ · · · 1−→ σm−1
1−→ σm = υ. (4.23)

We can see that a permutation τ covers a permutation σ with respect to the
strong order iff the Cayley distance between the two permutations is one and τ

has exactly one more inversion than σ. Therefore, the strong order can be used
to order the elements of Sn by taking into account their Cayley distance from each
other. In this case, if σ ≺ τ then the Cayley segment between σ and τ is simply:

[σ, τ ]T = {ν | σ ≺ ν ≺ τ}, (4.24)

= [σ, τ ]≺. (4.25)

The strong order ≺ can be used to define convex subsets of the partially ordered
set (Sn,≺). Namely, a subset C of Sn is convex iff for any σ ≺ τ in C we have:

σ ≺ ν ≺ τ ⇒ ν ∈ C. (4.26)

Or equivalently,
[σ, τ ]≺ ⊆ C. (4.27)
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Theorem 5. A convex set of Sn with respect to the Cayley metric is a convex
subset of the partially ordered set (Sn,≺), but the converse is not true in general.

Proof. The proof to show that a convex set of Sn with respect to the Cayley metric
is a convex subset of the partially ordered set (Sn,≺) is similar to the first part of
the proof of Theorem 4.

The converse is not always true since the partially ordered set (Sn,≺) is not a
lattice for n ≥ 3 [Rea02].

Example 27. The segment [123, 312]≺ is a convex subset of the partially ordered
set (S3,≺) but it is not a convex set of S3 with respect to the Cayley metric. Indeed,
213 and 132 belong to [123, 312]≺ but the element 231 of the segment [213, 132]T

is not in [123, 312]≺. See Figure 4.2.

4.4 Segments and Convex Hulls of Permutations

The convex hulls of the metric spaces of permutations considered in this thesis
have not yet been determined in any previous study. Even if a full knowledge
of the definitions of these convex hulls is not necessary to the runtime analysis,
these sets are determined for completeness and for novelty. The following met-
rics on Sn are considered : Kendall’s τ , Cayley, Ulam metrics, and the reversal
distance. These metrics are referred to as length metrics [Dia88]. As such, they
are bound to the group (Sn, ◦) where ‘◦’ is the composition law. The results pre-
sented in this section are not the first to contribute to both convex analysis and
abstract algebra (see for instance [AA18]). Nevertheless, the results presented
in this section are the first to focus on the convex hulls of the metric spaces:
(Sn, K), (Sn, T ), (Sn, UL), and (Sn, R).

4.4.1 Kendall’s τ metric

The Kendall’s τ metric uses right adjacent transpositions. We shall use subgroups
of (Sn, ◦) that are generated by adjacent transpositions to determine convex sets
of the metric space (Sn, K).

Lemma 3. Let σ and τ be two permutations of Sn, and let Pat(σ−1◦τ) be the set of
all possible ways to write σ−1 ◦ τ as a minimal product of adjacent transpositions.
An element ν of the segment [σ, τ ]K is of the form:

ν = σ ◦
k∏
i=1

τi, (4.28)

where k ≤ K(σ, τ),
∏0

i=1 τi = id, and
∏K(σ,τ)

i=1 τi ∈ Pat(σ−1 ◦ τ).
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Proof. Let σ and τ be two permutations of Sn. The minimum number of right
adjacent transpositions needed to transform σ into τ (and conversely) is therefore
K(σ, τ). Therefore, we can find K(σ, τ) transpositions τi such that:

K(σ,τ)∏
i=1

τi = σ−1 ◦ τ. (4.29)

Let Zσ−1◦τ be the centralizer of σ−1 ◦ τ , that is:

Zσ−1◦τ = {ν ∈ Sn | ν ◦ (σ−1 ◦ τ) ◦ ν−1 = σ−1 ◦ τ}. (4.30)

There are | Zσ−1◦τ | different ways to write σ−1 ◦ τ as a product of disjoint cycles.
Therefore, there may be more than one product of K(σ, τ) adjacent transpositions
that yield the permutation σ−1 ◦ τ . We denote Pat(σ−1 ◦ τ) the set of all distinct
products of K(σ, τ) adjacent transpositions yielding the permutation σ−1 ◦ τ .

If a permutation ν belongs to the segment [σ, τ ]K , then the minimum number
of right adjacent transpositions needed to transform σ into ν is:

K(σ, ν) = K(σ, τ)−K(ν, τ).

Thus, K(σ, ν) ≤ K(σ, τ). That is, there exists a product of K(σ, ν) adjacent trans-
positions such that:

ν = σ ◦
K(σ,ν)∏
i=1

τ ′i . (4.31)

Similarly, there exists a product of K(ν, τ) adjacent transpositions that transform
ν into τ :

τ = ν ◦
K(ν,τ)∏
i=1

τ ′′i ,

= σ ◦

K(σ,ν)∏
i=1

τ ′i ◦
K(ν,τ)∏
i=1

τ ′′i

 .
Necessarily, there exists a product p in Pat(σ−1 ◦ τ) such that:

p =

K(σ,ν)∏
i=1

τ ′i ◦
K(ν,τ)∏
i=1

τ ′′i . (4.32)

As a result,
∏K(σ,ν)

i=1 τ ′i is obtained from p by deleting the right most K(ν, τ) trans-
positions. This means that any element ν of the segment [σ, τ ]K whose distance
from τ is k is of the form σ ◦ p′, where p′ is obtained from one of the minimal
adjacent transpositions product expression of σ−1 ◦ τ by deleting its k right most
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transpositions.

Let us denote Aat(σ−1 ◦ τ) the set:

{id} ∪
K(σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
K(σ,τ)∏
i=1

τi ∈ Pat(σ−1 ◦ τ)

 . (4.33)

Proposition 5. In the metric space, (Sn, K) the segment formed by σ and τ is
given by:

[σ, τ ]K = {σ ◦ a | a ∈ Aat(σ−1 ◦ τ)}. (4.34)

Proof. By Lemma 3, we have:

[σ, τ ]K =

K(σ,τ)⋃
k=0

σ ◦
k∏
i=1

τi

∣∣∣∣∣∣k ≤ K(σ, τ) and

K(σ,τ)∏
i=1

τi ∈ Pat(σ−1 ◦ τ)

 ,

= {σ ◦ a | a ∈ Aat(σ−1 ◦ τ)}.

Theorem 6. In the metric space (Sn, K), a segment [σ, τ ]K is convex iff Aat(σ−1 ◦
τ) is a subgroup of (Sn, ◦).

Proof. The segment [σ, τ ]K is convex iff for any ν and ν ′ in [σ, τ ]K , the segment
[ν, ν ′]K is always contained in the segment [σ, τ ]K . Let ν and ν ′ belong to the
segment [σ, τ ]K . There exist a and a′ in Aat(σ−1 ◦ τ) such that:

ν = σ ◦ a,

ν ′ = σ ◦ a′.

Let ν ′′ be an element of the segment [ν, ν ′]K . There exists a′′ ∈ Aat(ν−1 ◦ ν ′) such
that:

ν ′′ = ν ◦ a′′,

= (σ ◦ a) ◦ a′′,

= σ ◦ aa′′.

Since

ν−1 ◦ ν ′ = (σ ◦ a)−1 ◦ (σ ◦ a′),

= a−1 ◦ a′,

then Aat(ν−1 ◦ ν ′) = Aat(a−1 ◦ a′). Hence, a′′ in Aat(a−1 ◦ a′). Thus,

aa′′ ∈ Aat(σ−1 ◦ τ)Aat(a−1 ◦ a′). (4.35)
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Notice that
a−1 ◦ a′ ∈ [Aat(σ−1 ◦ τ)]−1Aat(σ−1 ◦ τ). (4.36)

As a result,

Aat(a−1 ◦ a′) ⊆ [Aat(σ−1 ◦ τ)]−1 ∪ [Aat(σ−1 ◦ τ)]−1Aat(σ−1 ◦ τ). (4.37)

Therefore,

[Aat(σ−1 ◦ τ)]−1 ∪ [Aat(σ−1 ◦ τ)]−1Aat(σ−1 ◦ τ) ⊆ Aat(σ−1 ◦ τ), (4.38)

iff Aat(σ−1 ◦ τ) is a group for the composition law. In this case, aa′′ ∈ Aat(σ−1 ◦ τ)

and ν ′′ = σ ◦ aa′′ is in the segment [σ, τ ]K . That is, for any ν, ν ′ ∈ [σ, τ ]K the
segment [ν, ν ′]K is always contained in [σ, τ ]K . Thus, the segment [σ, τ ]K is a
convex set for the Kendall’s τ metric.

Let 〈Aat(σ−1 ◦ τ)〉 denote the smallest subgroup of (Sn, ◦) containing the set
Aat(σ−1 ◦ τ). We can see that this subgroup is generated by the adjacent trans-
positions appearing in a factorization of σ−1 ◦ τ into a product (with respect to ◦)
of K(σ, τ) adjacent transpositions. We have the following result:

Corollary 2. In the metric space (Sn, K), the convex hull of two elements σ and
τ is the left coset σ 〈Aat(σ−1 ◦ τ)〉.

Proof. We start with the result of Proposition 5, namely:

[σ, τ ]K =
{
σ ◦ a

∣∣a ∈ Aat(σ−1 ◦ τ)
}
.

Then, we use Theorem 6 to deduce that the smallest convex set containing the
segment [σ, τ ]K is obtained from the smallest group containing the setAat(σ−1◦τ).
That is:

co([σ, τ ]K) =
{
σ ◦ g

∣∣g ∈ 〈Aat(σ−1 ◦ τ)
〉}
. (4.39)

The result follows as co({σ, τ}) = co([σ, τ ]K).

Corollary 3. In the metric space (Sn, K), the convex hull of m elements is the
convex hull formed by the greatest lower bound and the least upper bound of
these m elements with respect to the weak order ‘≺w’:

co({σ1, σ2, . . . , σm}) = co({σ, τ}), (4.40)

where σ = GLB1≤i≤m{σi} and τ = LUB1≤i≤m{σi}.

Proof. As (Sn,≺w) is a lattice, the set {σ1, σ2, . . . , σm} has a greatest lower bound
σ = GLB1≤i≤m{σi} and a lowest upper bound τ = LUB1≤i≤m{σi} such that:

[σ, τ ]K = {ν ∈ Sn | σ ≺w ν ≺w τ}. (4.41)
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It follows that co({σ1, σ2, . . . , σm}) is contained in co([σ, τ ]K) = co({σ, τ}).
Conversely, we show that σ and τ belong to the set co({σ1, σ2, . . . , σm}). Let

us consider σ = GLB1≤i≤m{σi}. If σ = σi0 for some 1 ≤ i0 ≤ m, then σ ∈
co({σ1, σ2, . . . , σm}) and we are done. If σ 6= σi for all 1 ≤ i ≤ m, then there exists
two distinct indices i0 and i1 such that σi0 and σi1 are not comparable and σ =

GLB(σi0 , σi1). Therefore, σ ∈ [σi0 , σi1 ] and thus is an element of co({σ1, σ2, . . . , σm}).
We show in a similar way that τ is an element co({σ1, σ2, . . . , σm}). As a result,
co({σ, τ}) is contained in co({σ1, σ2, . . . , σm}).

Corollary 4. Any convex set of the metric space (Sn, K) is of the form [σ, τ ]≺w ,
where σ ≺w τ .

Proof. By Corollary 3, any convex set is of the form co({σ, τ}) where σ ≺w τ . By
Corollary 1, co({σ, τ}) is equal to [σ, τ ]≺w .

Covering Sn using the Kendall’s τ metric.

The lowest element of (Sn,≺w) is the identity permutation id because it does not
contain any inversion. The greatest element of (Sn,≺w) is nn − 1 . . . 321 as it
contains all the possible inversions. Thus,

Sn = [id, n n− 1 . . . 321]≺w , (4.42)

= co({id, n n− 1 . . . 321}). (4.43)

Example 28. The lowest and greatest elements of (S3,≺w) are respectively id

and 321. Hence,

S3 = [id, 321]≺w ,

= co({id, 321}).

Any element of S3 can be obtained from id by gradually adding inversions through
right adjacent transpositions. Moreover, S3 can be recovered through (the convex
hull of) the elements id and 321 only.

4.4.2 Cayley metric

The Cayley metric uses left transpositions. We shall use subgroups of (Sn, ◦) that
are generated by transpositions to determine convex sets of the metric space
(Sn, T ).

Lemma 4. Let σ and τ be two permutations of Sn, and let Pt(τ ◦ σ−1) be the set
of all possible ways to write τ ◦ σ−1 as a minimal product of transpositions. An
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element ν of the segment [σ, τ ]T is of the form:

ν =
k∏
i=1

τi ◦ σ, (4.44)

where k ≤ T (σ, τ),
∏0

i=1 τi = id, and
∏T (σ,τ)

i=1 τi ∈ Pt(τ ◦ σ−1).

Proof. Similar to that of Lemma 3 where minimal products of transpositions yield-
ing τ ◦ σ−1 are considered instead of minimial products of adjacent transpositions
yielding σ−1 ◦ τ .

Let us denote At(τ ◦ σ−1) the set:

{id} ∪
T (σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
T (σ,τ)∏
i=1

τi ∈ Pt(τ ◦ σ−1)

 . (4.45)

Proposition 6. In the metric space, (Sn, T ) the segment formed by σ and τ is
given by:

[σ, τ ]T = {a ◦ σ | a ∈ At(τ ◦ σ−1)}. (4.46)

Proof. By Lemma 4, we have:

[σ, τ ]T =

T (σ,τ)⋃
k=0


k∏
i=1

τi ◦ σ

∣∣∣∣∣∣k ≤ T (σ, τ) and

T (σ,τ)∏
i=1

τi ∈ Pt(τ ◦ σ−1)

 ,

= {a ◦ σ | a ∈ At(τ ◦ σ−1)}.

Theorem 7. In the metric space (Sn, T ), a segment [σ, τ ]T is convex iff At(τ ◦σ−1)
is a subgroup of (Sn, ◦).

Proof. Similar to that of Theorem 6.

Let 〈At(τ ◦ σ−1)〉 denote the smallest subgroup of (Sn, ◦) containing the set
At(τ ◦ σ−1). We can see that this subgroup is generated by the transpositions
appearing in a factorization of τ ◦ σ−1 into a product (with respect to ◦) of T (σ, τ)

transpositions. We have the following result:

Corollary 5. In the metric space (Sn, T ), the convex hull of two elements σ and τ
is the right coset 〈At(τ ◦ σ−1)〉 σ.

Proof. We start with the result of Proposition 6, namely:

[σ, τ ]T =
{
a ◦ σ

∣∣a ∈ At(τ ◦ σ−1)} .
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Then, we use Theorem 7 to deduce that the smallest convex set containing the
segment [σ, τ ]T is obtained from the smallest group containing the set At(τ ◦σ−1).
That is:

co([σ, τ ]T ) =
{
g ◦ σ

∣∣g ∈ 〈At(τ ◦ σ−1)〉} . (4.47)

The result follows as co({σ, τ}) = co([σ, τ ]T ).

Corollary 6. In the metric space (Sn, T ), the convex hull of m ≥ 2 elements
σ1, σ2, . . . , and σm is:

co

(⋃{〈
At(τ ◦ σ−1)

〉
σ

∣∣∣∣σ ∈ S min,≺
1≤i≤m

(σi) and τ ∈ Smax,≺
1≤i≤m

(σi)

})
, (4.48)

where Smax,≺
1≤i≤m

(σi) (resp. S min,≺
1≤i≤m

(σi)) is the set of largest (resp. smallest) elements

of the set {σ1, σ2, . . . , σm} wrt to the strong order ≺.

Proof. We use the partial order≺ on Sn to order the elements of {σ1, σ2, . . . , σm}.
Once the largest and smallest elements are found, any element of the previous
set belongs to a segment [σ, τ ]≺ where σ is a smallest element and τ is a largest
element. Thus, {σ1, σ2, . . . , σm} is always contained in the union of the seg-
ments [σ, τ ]≺. The first inclusion is obtained by considering their respective con-
vex hulls. Conversely, co([σ, τ ]≺) is always contained in co({σ1, σ2, . . . , σm}) since
co([σ, τ ]≺) = co({σ, τ}) and σ and τ are elements of {σ1, σ2, . . . , σm}. Thus,

co({σ1, σ2, . . . , σm}) = co

(⋃{
co([σ, τ ]≺)

∣∣∣∣σ ∈ S min,≺
1≤i≤m

(σi) and τ ∈ Smax,≺
1≤i≤m

(σi)

})
,

= co

(⋃{
co({σ, τ})

∣∣∣∣σ ∈ S min,≺
1≤i≤m

(σi) and τ ∈ Smax,≺
1≤i≤m

(σi)

})
,

= co

(⋃{〈
At(τ ◦ σ−1)

〉
σ

∣∣∣∣σ ∈ S min,≺
1≤i≤m

(σi), τ ∈ Smax,≺
1≤i≤m

(σi)

})
.

Covering Sn using the Cayley metric.

The lowest element of the partially ordered set (Sn,≺) is id as it does not contain
any inversion. The greatest element of (Sn,≺) is nn − 1 . . . 321 as it contains all
the possible inversions. We have:

Sn = [id, n n− 1 . . . 321]≺, (4.49)

= co ({id} ∪ {c}) , (4.50)
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where c = (c1c2 . . . cn) is a n-cycle of Sn. Indeed,

co ({id} ∪ {c}) = co ([id, c]T ) ,

=
{
g ◦ id

∣∣g ∈ 〈At(c ◦ id−1)
〉}
,

= 〈(c1c2), (c2c3), . . . , (cn−1cn)〉 ,

= Sn.

Example 29. The lowest and greatest elements of (S3,≺) are respectively id and
321. We have:

S3 = [id, 321]≺,

= co ({id, (123)}) ,

= co ({id, (132)}) .

Any element of S3 can be obtained from id by gradually adding inversions through
left transpositions. Moreover, S3 can be recovered through (the convex hull) of id

and a 3-cycle of S3. Notice also that:

co ({id, 321}) =
{
g ◦ id

∣∣g ∈ 〈At(321 ◦ id−1)
〉}
,

= 〈(13)〉 ,

6= S3.

4.4.3 Ulam metric

The Ulam metric uses right adjacent cycles. We shall use subgroups of (Sn, ◦)
that are generated by adjacent cycles to determine convex sets of the metric
space (Sn, UL).

Lemma 5. Let σ and τ be two permutations of Sn, and let Pac(σ−1 ◦ τ) be the set
of all possible ways to write σ−1 ◦ τ as a minimal product of adjacent cycles. An
element ν of the segment [σ, τ ]UL is of the form:

ν = σ ◦
k∏
i=1

τi, (4.51)

where k ≤ UL(σ, τ),
∏0

i=1 τi = id, and
∏UL(σ,τ)

i=1 τi ∈ Pac(σ−1 ◦ τ).

Proof. Similar to that of Lemma 3 where minimal products of adjacent cycles
yielding σ−1 ◦ τ are considered instead of minimial products of adjacent transpo-
sitions.
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Let us denote Aac(σ−1 ◦ τ) the set:

{id} ∪
UL(σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
UL(σ,τ)∏
i=1

τi ∈ Pac(σ−1 ◦ τ)

 . (4.52)

Proposition 7. In the metric space (Sn, UL), the segment formed by σ and τ is
given by:

[σ, τ ]UL = {σ ◦ a | a ∈ Aac(σ−1 ◦ τ)}. (4.53)

Proof. By Lemma 5, we have:

[σ, τ ]UL =

UL(σ,τ)⋃
k=0

σ ◦
k∏
i=1

τi

∣∣∣∣∣∣k ≤ UL(σ, τ) and

UL(σ,τ)∏
i=1

τi ∈ Pac(σ−1 ◦ τ)

 ,

= {σ ◦ a | a ∈ Aac(σ−1 ◦ τ)}.

Theorem 8. In the metric space (Sn, UL), a segment [σ, τ ]UL is convex iffAac(σ−1◦
τ) is a subgroup of (Sn, ◦).

Proof. Similar to the proof of Theorem 6.

Let 〈Aac(σ−1 ◦ τ)〉 denote the smallest subgroup of (Sn, ◦) containing the set
Aac(σ−1 ◦ τ). We can see that this subgroup is generated by the adjacent cycles
appearing in a factorization of σ−1 ◦ τ into a product (with respect to ◦) of UL(σ, τ)

adjacent cycles. We have the following result:

Corollary 7. In the metric space (Sn, UL), the convex hull of two elements σ and
τ is the left coset σ 〈Aac(σ−1 ◦ τ)〉.

Proof. We start with the result of Proposition 7, namely:

[σ, τ ]UL =
{
σ ◦ a

∣∣a ∈ Aac(σ−1 ◦ τ)
}
.

Then, we use Theorem 8 to deduce that the smallest convex set containing the
segment [σ, τ ]UL is obtained from the smallest group containing the set Aac(σ−1 ◦
τ). That is:

co([σ, τ ]UL) =
{
σ ◦ g

∣∣g ∈ 〈Aac(σ−1 ◦ τ)
〉}
. (4.54)

The result follows as co({σ, τ}) = co([σ, τ ]UL).

Corollary 8. In the metric space (Sn, UL), the convex hull of m ≥ 2 elements
σ1, σ2, . . . , and σm is the smallest convex set containing the union of all possible
left coset σi

〈
Aac(σ−1i ◦ σj

〉
:

co({σ1, σ2, . . . , σm}) = co

( ⋃
1≤i<j≤m

σi
〈
Aac(σ−1i ◦ σj

〉)
. (4.55)

58



Proof. We have that:

co({σ1, σ2, . . . , σm}) = co

( ⋃
1≤i<j≤m

co({σi, σj})

)
,

= co

( ⋃
1≤i<j≤m

σi
〈
Aac(σ−1i ◦ σj)

〉)
.

Covering Sn using the Ulam metric.

The Ulam metric does not induce a partial order on Sn in the same way the
Kendall’s τ and the Cayley metrics do. Nonetheless, we have that:

Sn = co({σ, (12 . . . n)}), (4.56)

where σ is an adjacent transposition. Indeed,

co({σ, (12 . . . n)}) = co([σ, (12 . . . n)]UL),

=
{
σ ◦ g

∣∣g ∈ 〈Aac(σ−1 ◦ (12 . . . n))
〉}
,

= 〈σ, (12 . . . n)〉 ,

= Sn.

4.4.4 Reversal distance

The reversal distance uses (left) reversals. We shall use subgroups of (Sn, ◦) that
are generated by reversals to determine convex sets of the metric space (Sn, R).

Lemma 6. Let σ and τ be two permutations of Sn, and let Pr(τ ◦ σ−1) be the set
of all possible ways to write τ ◦σ−1 as a minimal product of reversals. An element
ν of the segment [σ, τ ]R is of the form:

ν =
k∏
i=1

τi ◦ σ, (4.57)

where k ≤ R(σ, τ),
∏0

i=1 τi = id and
∏R(σ,τ)

i=1 τi ∈ Pr(τ ◦ σ−1).

Proof. Similar to that of Lemma 3 where minimal products of reversals yielding
τ ◦ σ−1 are considered instead of minimial products of adjacent transpositions
yielding σ−1 ◦ τ .
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Let us denote Ar(τ ◦ σ−1) the set:

{id} ∪
R(σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
R(σ,τ)∏
i=1

τi ∈ Pr(τ ◦ σ−1)

 . (4.58)

Proposition 8. In the metric space, (Sn, R) the segment formed by σ and τ is
given by:

[σ, τ ]R = {a ◦ σ | a ∈ Ar(τ ◦ σ−1)}. (4.59)

Proof. By Lemma 6, we have:

[σ, τ ]R =

R(σ,τ)⋃
k=0


k∏
i=1

τi ◦ σ

∣∣∣∣∣∣k ≤ R(σ, τ) and

R(σ,τ)∏
i=1

τi ∈ Pr(τ ◦ σ−1)

 ,

= {a ◦ σ | a ∈ Ar(τ ◦ σ−1)}.

Theorem 9. In the metric space (Sn, R), a segment [σ, τ ]R is convex iff Ar(τ ◦σ−1)
is a subgroup of (Sn, ◦).

Proof. Similar to that of Theorem 6.

Let 〈Ar(τ ◦ σ−1)〉 denote the smallest subgroup of (Sn, ◦) containing the set
Ar(τ ◦ σ−1). We can see that this subgroup is generated by the reversals ap-
pearing in a factorization of τ ◦ σ−1 into a product (with respect to ◦) of R(σ, τ)

reversals. We have the following result:

Corollary 9. In the metric space (Sn, T ), the convex hull of two elements σ and τ
is the right coset 〈Ar(τ ◦ σ−1)〉 σ.

Proof. We start with the result of Proposition 8, namely:

[σ, τ ]R =
{
a ◦ σ

∣∣a ∈ Ar(τ ◦ σ−1)} .
Then, we use Theorem 9 to deduce that the smallest convex set containing the
segment [σ, τ ]R is obtained from the smallest group containing the set Ar(τ ◦σ−1).
That is:

co([σ, τ ]R) =
{
g ◦ σ

∣∣g ∈ 〈Ar(τ ◦ σ−1)〉} . (4.60)

The result follows as co({σ, τ}) = co([σ, τ ]R).

Corollary 10. In the metric space (Sn, R), the convex hull of m ≥ 2 elements
σ1, σ2, . . . , and σm is the smallest convex set containing the union of all possible
right coset

〈
Ar(σj ◦ σ−1i )

〉
σi:

co({σ1, σ2, . . . , σm}) = co

( ⋃
1≤i<j≤m

〈
Ar(σj ◦ σ−1i )

〉
σi

)
. (4.61)
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Proof. We have that:

co({σ1, σ2, . . . , σm}) = co

( ⋃
1≤i<j≤m

co({σi, σj})

)
,

= co

( ⋃
1≤i<j≤m

〈
Ar(σj ◦ σ−1i )

〉
σi

)
.

Covering Sn using the reversal distance.

The reversal distance does not induce a partial order on Sn in the same way the
Kendall’s τ and the Cayley metrics do. Let

ri,j = (i j)(i+ 1 j − 1) . . .
(
i+
[
j−i
2

]
j −

[
j−i
2

])
. (4.62)

We have that:
Sn = co ({σ, r1,n . . . r1,3r1,2 σ}) .

Indeed,

co ({σ, r1,n . . . r1,3r1,2 σ}) = co ([σ, r1,n . . . r1,3r1,2 σ]R) ,

=
〈
Ar(r1,n . . . r1,3r1,2 σ ◦ σ−1)

〉
σ,

= 〈Ar(r1,n, . . . , r1,3, r1,2)〉 σ,

= 〈r1,n, . . . , r1,3, r1,2〉 σ,

= Sn.

4.5 Specification of the Analysis to Permutations

The runtime analysis of the CS on a quasi-concave landscape introduced in
[MS17] and summarized in Chapter 3, is applied to permutations for the Kendall’s
τ , the Cayley, the Ulam metrics, and the reversal distance. We consider the set
Sn of the permutations of the elements of [n] = {1, 2, . . . , n}.

We recall that PCov
(Sn,D)(m) denotes the probability that the convex hull (with

respect to the metric D) of m elements sampled uniformly at random from Sn

covers Sn:
PCov
(Sn,D)(m) = Pr[co(P ′) = Sn | P ′ = Unifm(Sn)]. (4.63)
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4.5.1 Kendall’s τ metric

We saw in Section 4.4.1 that Sn can be recovered through the convex hull of id

and nn − 1 . . . 321 for the Kendall’s τ metric. We shall use this result to estimate
PCov
(Sn,K)(m).

Lemma 7. For any convex set C of the metric space (Sn, K), we have PCov
C (m) ≥

PCov
(Sn,K)(m) where:

PCov
(Sn,K)(m) ≥ 1− 2

(
1− 1

n!

)m
. (4.64)

Proof. The probability PCov
(Sn,K)(m) is bounded below by the probability for sampling

id and nn− 1 . . . 321 at least once from m trials.
Both id and nn − 1 . . . 321 have probability 1

n!
to be sampled. The probability

that id or nn− 1 . . . 321 is never sampled over the m trials is therefore 2
(
1− 1

n!

)m.
Hence, the probability that they both appear at least once is:

1− 2

(
1− 1

n!

)m
. (4.65)

We apply Theorem 1 to a quasi-concave landscape on the metric space (Sn, K).

Theorem 10. Let us consider a quasi-concave landscape on (Sn, K), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. The CS with population size µ finds
a global optimum within at most q generations and µq fitness evaluations with
probability at least:

1− 3(q + 1) exp
(
− µr

4n!

)
, (4.66)

where r = min0≤j≤q
|A≥j+1|
|A≥j |

.

Proof. We estimate a lower bound on
[
PCov
(Sn,K)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
.

[
PCov
(Sn,K)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
,

≥

[
1− 2

(
1− 1

n!

)µr
4

]q+1

− q exp

(
−9µr

32

)
,

≥ 1− 2(q + 1)

(
1− 1

n!

)µr
4

− q exp

(
−9µr

32

)
,

≥ 1− 2(q + 1) exp
(
− µr

4n!

)
− q exp

(
−9µr

32

)
,

≥ 1− [2(q + 1) + q] exp
(
− µr

4n!

)
,

≥ 1− 3(q + 1) exp
(
− µr

4n!

)
.
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The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.

Corollary 11. Let us consider a quasi-concave landscape on (Sn, K), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 4n!

r
ln[6(q + 1)], (4.67)

finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. The result follows from solving in µ the inequality:

1− 3(q + 1) exp
(
− µr

4n!

)
≥ 1

2
.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 11, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.5.2 Cayley metric

We saw in Section 4.4.2 that Sn can be recovered through the convex hull of id

and a n-cycle for the Cayley metric. We shall use this result to estimate PCov
(Sn,T )

(m).

Lemma 8. For any convex set C of the metric space (Sn, T ), we have PCov
C (m) ≥

PCov
(Sn,T )

(m) where:

PCov
(Sn,T )(m) ≥ 1− 2

(
1− 1

n!

)m
. (4.68)

Proof. The probability PCov
(Sn,T )

(m) is bounded below by the probability for sampling
id and a n-cycle at least once from m trials.

The probability to sample id is 1
n!

. The probability to sample a n-cycle is (n−1)!
n!

because Sn has exactly (n− 1)! n-cycles.
The probability that id is never sampled over the m trials is

(
1− 1

n!

)m. The
probability that a n-cycle is never sampled over the m trials is

(
1− 1

n

)m. Hence,
the probability that id and all n-cycles are never sampled over the m trials is
therefore: (

1− 1

n!

)m
+

(
1− 1

n

)m
. (4.69)

Thus, the probability to sample id and a n-cycle at least once each is:

1−
(

1− 1

n!

)m
−
(

1− 1

n

)m
≥ 1− 2

(
1− 1

n!

)m
. (4.70)
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We apply Theorem 1 to a quasi-concave landscape on the metric space (Sn, T ).

Theorem 11. Let us consider a quasi-concave landscape on (Sn, T ), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. The CS with population size µ finds
a global optimum within at most q generations and µq fitness evaluations with
probability at least:

1− 3(q + 1) exp
(
− µr

4n!

)
, (4.71)

where r = min0≤j≤q
|A≥j+1|
|A≥j |

.

Proof. Similar to that of Theorem 10.

Corollary 12. Let us consider a quasi-concave landscape on (Sn, T ), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 4n!

r
ln[6(q + 1)], (4.72)

finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. Similar to that of Corollary 11.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 12, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.5.3 Ulam metric

We saw in Section 4.4.3 that Sn can be recovered through the convex hull of
(12 . . . n) and an adjacent transposition for the Ulam metric. We shall use this
result to estimate PCov

(Sn,UL)
(m).

Lemma 9. For any convex set C of the metric space (Sn, UL), we have PCov
C (m) ≥

PCov
(Sn,UL)

(m) where:

PCov
(Sn,UL)(m) ≥ 1− 2

(
1− 1

n!

)m
. (4.73)

Proof. The probability PCov
(Sn,UL)

(m) is bounded below by the probability for sam-
pling (12 . . . n) and an adjacent transposition at least once from m trials.

The probability to sample (12 . . . n) is 1
n!

. The probability to sample an adjacent
transposition is n−1

n!
because Sn has exactly n− 1 adjacent transpositions.
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The probability that (12 . . . n) is never sampled over the m trials is
(
1− 1

n!

)m.
The probability that an adjacent transposition is never sampled over the m trials
is
(
1− n−1

n!

)m. Hence, the probability that (12 . . . n) and adjacent transpositions
are never sampled over the m trials is therefore:(

1− 1

n!

)m
+

(
1− n− 1

n!

)m
. (4.74)

Thus, the probability to sample (12 . . . n) and an adjacent transposition at least
once each is:

1−
(

1− 1

n!

)m
−
(

1− n− 1

n!

)m
≥ 1− 2

(
1− 1

n!

)m
. (4.75)

We apply Theorem 1 to a quasi-concave landscape on the metric space (Sn, UL).

Theorem 12. Let us consider a quasi-concave landscape on (Sn, UL), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. The CS with population size µ finds
a global optimum within at most q generations and µq fitness evaluations with
probability at least:

1− 3(q + 1) exp
(
− µr

4n!

)
, (4.76)

where r = min0≤j≤q
|A≥j+1|
|A≥j |

.

Proof. Similar to the proof of Theorem 10.

Corollary 13. Let us consider a quasi-concave landscape on (Sn, UL), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 4n!

r
ln[6(q + 1)], (4.77)

finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. Similar to that of Corollary 11.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 13, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.5.4 Reversal distance

We saw in Section 4.4.4 that Sn can be recovered through the convex hull of a
permutation σ and the permutation r1,n . . . r1,3r1,2 σ for the reversal distance. We
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shall use this result to estimate PCov
(Sn,R)(m).

Lemma 10. For any convex set C of the metric space (Sn, R), we have PCov
C (m) ≥

PCov
(Sn,R)(m) where:

PCov
(Sn,R)(m) ≥ 1− 2

(
1− 1

n!

)m
. (4.78)

Proof. The probability PCov
(Sn,R)(m) is bounded below by the probability for sampling

a permutation σ and the permutation r1,n . . . r1,3r1,2 σ at least once from m trials.
Both permutations have probability 1

n!
to be sampled. The rest of the proof is

similar to that of Lemma 7.

We apply Theorem 1 to a quasi-concave landscape on the metric space (Sn, R).

Theorem 13. Let us consider a quasi-concave landscape on (Sn, R), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. The CS with population size µ finds
a global optimum within at most q generations and µq fitness evaluations with
probability at least:

1− 3(q + 1) exp
(
− µr

4n!

)
, (4.79)

where r = min0≤j≤q
|A≥j+1|
|A≥j |

.

Proof. Similar to that of Theorem 10.

Corollary 14. Let us consider a quasi-concave landscape on (Sn, R), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 4n!

r
ln[6(q + 1)], (4.80)

finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. Similar to that of Corollary 11.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 14, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.6 Schemata for Permutations

The notion of schemata [H+92] is used to define the convex canonical level sets
of a quasi-concave landscape in [MS17]. While the schemata used in [MS17]
are focused on strings on a finite alphabet, the schemata defined below focus on
permutations.

66



We recall that a permutation of Sn is a reordering of the elements 1, 2, . . . , n.
Hence, a permutation σ can be seen as the list of pairs of distinct positions (i, j)

where the order of the values σ(i) and σ(j) differs from the order of i and j. We
say that an inversion occurred between the positions i and j.

Let 1Inv(i, j) denote the indicator function of an inversion occuring between
the positions i and j. That is:

1Inv(i, j) =

0 if no inversion occurs,

1 otherwise.
(4.81)

Definition 18. The matrixMInv of the inversions of a permutation of Sn is a (n−
1)× (n− 1) upper triangular matrix such that:

MInv(i, j − 1) = 1Inv(i, j), (4.82)

for 0 ≤ i ≤ n− 2 and 1 ≤ j ≤ n− 1.

Example 30. The permutation 24315 of S5 can be written as:

1Inv(0, 1) 1Inv(0, 2) 1Inv(0, 3) 1Inv(0, 4)

1Inv(1, 2) 1Inv(1, 3) 1Inv(1, 4)

1Inv(2, 3) 1Inv(2, 4)

1Inv(3, 4)

=

0 0 1 0

1 1 0

1 0

0

(4.83)

Definition 19. A mapping ψ from Sn to {0, 1, . . . , n− 1} × {0, 1, . . . , n− 2} × . . .×
{0, 1} is defined as follows:

ψ : Sn −→ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 2} × . . .× {0, 1}

σ 7−→

(
n−2∑
j=0

MInv(0, j),
n−2∑
j=1

MInv(1, j), . . . ,MInv(n− 2, n− 2)

)

Example 31. We have:
ψ(24315) = (1, 2, 1, 0).

Lemma 11. The mapping ψ is a bijection.

Proof. As the size of the domain and the codomain of ψ are both equal to n!, it
remains to show that ψ is injective. That is ψ(σ) = ψ(σ′) implies that σ = σ′. We
use a proof by induction on n ≥ 2.

• For n = 2, we have ψ(12) = 0 and ψ(21) = 1. Hence, ψ is injective.

• Similarly, ψ is injective for n = 3 as:
ψ(123) = (0, 0), ψ(213) = (1, 0), ψ(132) = (0, 1), ψ(231) = (1, 1),

ψ(312) = (2, 0), ψ(321) = (2, 1).
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• We assume that ψ is injective for n.

• Let us show that ψ remains injective for n+ 1. If ψ(σ) = ψ(σ′), then:(
n−1∑
j=0

MInv(0, j),
n−1∑
j=1

MInv(1, j), . . . ,MInv(n− 1, n− 1)

)

=

(
n−1∑
j=0

M′
Inv(0, j),

n−1∑
j=1

M′
Inv(1, j), . . . ,M′

Inv(n− 1, n− 1)

)
.

That is: n−1∑
j=0

j 6=n−2

MInv(0, j),
n−2∑
j=1

j 6=n−2

MInv(1, j), . . . , 0,MInv(n− 1, n− 1)


+

(
MInv(0, n− 2),MInv(1, n− 2), . . . ,

n−1∑
j=n−2

MInv(n− 2, j), 0

)

=

 n−1∑
j=0

j 6=n−2

M′
Inv(0, j),

n−2∑
j=1

j 6=n−2

M′
Inv(1, j), . . . , 0,M′

Inv(n− 1, n− 1)


+

(
M′

Inv(0, n− 2),M′
Inv(1, n− 2), . . . ,

n−1∑
j=n−2

M′
Inv(n− 2, j), 0

)
.

Let νn−1 (resp. ν ′n−1) denote the subsequence of length n that is obtained
from σ (resp. σ′) by deleting the position n − 1. Let also τj (resp. τ ′j) de-
note the subsequence of length 2 that is obtained from σ (resp. σ′) by only
keeping the positions j and n, where 0 ≤ j ≤ n− 1. We have:

0 = ψ(τ ′n−1)− ψ(τn−1). (4.84)

By assumption, ψ is injective for permutations of length less than or equal
to n. Therefore, τn−1 = τ ′n−1.

Let now νn−2 (resp. ν ′n−2) denote the subsequence of length n that is ob-
tained from σ (resp. σ′) by deleting the position n−2. By a similar reasoning
as above we find that τn−2 = τ ′n−2.

More generally, by considering the subsequence νj (resp. ν ′j) of length n

that is obtained from σ (resp. σ′) by deleting the position j and using the
same reasoning as above we find that τj = τ ′j for 0 ≤ j ≤ n− 1.

As the permutations σ and σ′ share the same subsequence of length 2 when
only positions j and n−1 are kept for 0 ≤ j ≤ n−1, then they are necessarily
equal. Consequently, the mapping ψ is injective for permutations of length
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n+ 1.

Thus, ψ is always injective.

As a result, ψ is a bijection.

Consequently, a permutation of Sn is uniquely determined by the (n− 1)-uplet
corresponding the sum of the lines of its inversion matrix. This result gives a
template for the permutations of ψ(Sn).

Theorem 14. A schema corresponding to ψ(Sn) is a template with n−1 positions,
where the admissible values at position n− i are: 0, 1, . . . , i− 1. That is,

ψ(Sn) = ∗[0,n−1] ∗[0,n−2] · · · ∗[0,1], (4.85)

where [0, i] denotes the set {0, 1, . . . , i}.

Proof. By Lemma 11, a permutation of Sn can be identified to the (n− 1)-uplet of
the sums of the rows of its matrix of inversionsMInv through ψ. The rows ofMInv

have respectively: 1, 2, · · · , n − 1 entries. Therefore, the sum of the row with i

entrie(s) is at least 0 and at most i.

4.7 Permutations as strings of the Hamming and

Manhattan spaces

A permutation of Sn is uniquely determined by a (n−1)-uplet of {0, 1, . . . , n−1}×
{0, 1, . . . , n−2}× . . .×{0, 1}, which is a strict subset of {0, 1, . . . , n−1}n−1. Hence,
one can work on the metric spaces:

• ({0, 1, . . . , n− 1} × {0, 1, . . . , n− 2} × . . .× {0, 1},HD),

• ({0, 1, . . . , n− 1} × {0, 1, . . . , n− 2} × . . .× {0, 1},MD).

Example 32. Let us consider S3 = {123, 213, 132, 231, 312, 321}. We have that:
ψ(123) = (0, 0), ψ(213) = (1, 0), ψ(132) = (0, 1), ψ(231) = (1, 1), ψ(312) =

(2, 0), ψ(321) = (2, 1). To ease the notation, each 2-uplet (a, b) will simply be
written as ab. We have:

{00, 10, 01, 11, 20, 21} = {0, 1, 2} × {0, 1},

= {ab | ab ∈ {0, 1, 2} × {0, 1}},

= {ψ(σ) | σ ∈ S3},

= ψ(S3).

The set S3 can therefore be seen as the set {0, 1, 2} × {0, 1}. The latter can be
endowed with the Hamming (resp. Manhattan) distance. See Figure 4.3.
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ψ(312)

ψ(321)

ψ(231)

ψ(132)

ψ(123)

ψ(213)

(ψ(S3),HD) = ({0, 1, 2} × {0, 1},HD)

ψ(132)ψ(123)

ψ(213) ψ(231)

ψ(321)ψ(312)

(ψ(S3),MD) = ({0, 1, 2} × {0, 1},MD)

Figure 4.3: Illustration of the metric space (ψ(S3), D) for different metrics D. An
edge is drawn between two strings whose distance from each other is one.

By studying (ψ(Sn),HD) (resp. (ψ(Sn),MD)), we bring the problem back to strings
of the Hamming (resp. Manhattan) space. Indeed, the case of Md,HD (resp.
Md,MD) has already been dealt with in Section 3.6 of Chapter 3.

We shall now analyse the runtime of the CS on a quasi-concave landscape
of permutations, by seeing each permutation of Sn as the string of {0, 1, . . . , n −
1}× {0, 1, . . . , n− 2}× . . .×{0, 1} that uniquely determines it. Two metrics will be
considered: the Hamming and the Manhattan distance.

We recall that PCov
(ψ(Sn),D)(m) denotes the probability that the convex hull (with

respect to the metric D) of m elements sampled uniformly at random from ψ(Sn)

covers ψ(Sn):

PCov
(ψ(Sn),D)(m) = Pr[co(P ′) = ψ(Sn) | P ′ = Unifm(ψ(Sn))]. (4.86)

The schema corresponding to ψ(Sn) is ∗ ∗[0,n−2] · · · ∗[0,1]. Therefore, PCov
(ψ(Sn),D)(m)

is the probability for obtaining the schema ∗ ∗[0,n−2] · · · ∗[0,1] from the convex hull of
m elements (sampled uniformly at random) from ψ(Sn). To ease the notation, we
will simply write PCov

ψ(Sn)
(m) instead of PCov

(ψ(Sn),D)(m). The metric D will be specified
by the context.
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4.7.1 Hamming distance

We start by noticing that all schemata correspond to a convex set in the metric
space (ψ(Sn),HD).

Corollary 15. Any schema in the metric space (ψ(Sn),HD) is a convex set.

Proof. Similar to that of Corollary 23 by noticing that the metric space (ψ(Sn),HD)

is contained in the metric space ({0, 1, . . . , n− 1}n−1,HD).

We estimate PCov
ψ(Sn)

(m) which is a lower bound on the probability for covering
a convex set C of (ψ(Sn),HD) with m samples from C.

Lemma 12. For any convex set C of the metric space (ψ(Sn),HD), we have
PCov
C (m) ≥ PCov

ψ(Sn)
(m) where:

PCov
ψ(Sn)(m) ≥ 1− n2

(
1− 1

n

)m
. (4.87)

Proof. We saw in Corollary 15 that any schema corresponds to a convex set in
the metric space (ψ(Sn),HD). In particular, the schema corresponding to the
entire search space is the only schema with the largest number of positions that
are free to take more than one value. Moreover, each of these free positions take
the maximum number of possible values. Therefore, the schema corresponding
to any other convex set has at most n − i free positions as position i (counting
starts at 1).

Let us now compute the probability for covering the entire search space from
sampling m points from it. The schema corresponding to the entire search space
is ∗ ∗[0,n−2] · · · ∗[0,1].

The symbol ∗[0,i] is obtained at position n−i, when each of the values 0, 1, . . . , i

appears at least once at this position. The probability that a value appears at this
position is 1

n
. The probability that this value never appears at this position is there-

fore 1− 1
n
. The probability that this value never appears at this position in m trials

is therefore: (
1− 1

n

)m
. (4.88)

The probability that the value 0 never appears at this position OR the value 1 OR
... OR the value i is:

(i+ 1)

(
1− 1

n

)m
. (4.89)

Hence, the probability that each value appears at least once at that position is:

1− (i+ 1)

(
1− 1

n

)m
. (4.90)

71



Thus, the probability for obtaining the schema ∗ ∗[0,n−2] · · · ∗[0,1] is:

n−1∏
i=1

[
1− (i+ 1)

(
1− 1

n

)m]
≥
[
1− n

(
1− 1

n

)m]n−1
, (4.91)

≥ 1− (n− 1)n

(
1− 1

n

)m
, (4.92)

≥ 1− n2

(
1− 1

n

)m
, (4.93)

using Bernoulli’s inequality in (4.92). The result follows.

We apply Theorem 1 to a quasi-concave landscape on the metric space (ψ(Sn),HD),
whose parameters r and q are defined as in Section 3.4.

Theorem 15. Let us consider a quasi-concave landscape on (ψ(Sn),HD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size µ finds a global optimum within at most q generations and µq
fitness evaluations with probability at least:

1− 2(q + 1)n2 exp
(
−µr

4n

)
. (4.94)

Proof. We estimate a lower bound on
[
PCov
ψ(Sn)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
.

[
PCov
ψ(Sn)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
,

≥

[
1− n2

(
1− 1

n

)µr
4

]q+1

− q exp

(
−9µr

32

)
,

≥ 1− (q + 1)n2

(
1− 1

n

)µr
4

− q exp

(
−9µr

32

)
,

≥ 1− (q + 1)n2 exp
(
−µr

4n

)
− q exp

(
−9µr

32

)
,

≥ 1− [(q + 1)n2 + q] exp
(
−µr

4n

)
,

≥ 1− (q + 1)(n2 + 1) exp
(
−µr

4n

)
,

≥ 1− 2(q + 1)n2 exp
(
−µr

4n

)
.

The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.

Corollary 16. Let us consider a quasi-concave landscape on (ψ(Sn),HD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 8n

r
ln
(

2n
√
q + 1

)
, (4.95)
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finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. The result follows from solving in µ the inequality:

1− 2(q + 1)n2 exp
(
−µr

4n

)
≥ 1

2
.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 16, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.7.2 Manhattan distance

We start by finding all schemata corresponding to a convex set in the metric space
(ψ(Sn),MD).

Corollary 17. Let [k, l] denote the set {k, k + 1, . . . , l − 1, l}. The only convex
schemata of the metric space (ψ(Sn),MD) are those that use symbols ∗[k,l] such
that [k, l] ⊆ [0, i] at position n− i, for 1 ≤ i ≤ n− 1.

Proof. Similar to that of Corollary 24 by noticing that the metric space (ψ(Sn),MD)

is contained in the metric space ({0, 1, · · · , n− 1}n−1,MD).

We estimate PCov
ψ(Sn)

(m) which is a lower bound on the probability for covering
a convex set C of (ψ(Sn),MD) with m samples from C.

Lemma 13. For any convex set C of the metric space (ψ(Sn),MD), we have
PCov
C (m) ≥ PCov

ψ(Sn)
(m) where:

PCov
ψ(Sn)(m) ≥ 1− 2(n− 1)

(
1− 1

n

)m
. (4.96)

Proof. We saw in Corollary 17 that schemata corresponding to convex sets only
use a symbol ∗[k,l] such that [k, l] ⊆ [0, n − i] at position i (counting starts at 1).
In particular, the schema corresponding to the entire search space is the only
schema with the largest number of free positions. Moreover, each of these free
positions takes the maximum number of possible values.

Let us now compute the probability for covering the entire search space from
sampling m points from it. The schema corresponding to the entire search space
is ∗[0,n−1] ∗[0,n−2] · · · ∗[0,1].
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The symbol ∗[0,n−i] is obtained at position i, when each of the values 0 and
n − i appears at least once at this position. The probability that a value appears
at this position is 1

n
. The probability that this value never appears at this position

is therefore 1− 1
n
. The probability that this value never appears at this position in

m trials is therefore: (
1− 1

n

)m
. (4.97)

The probability that the value 0 never appears at this position OR the value n− i
never appears at this position is:

2

(
1− 1

n

)m
. (4.98)

Hence, the probability that each value appears at least once at that position is:

1− 2

(
1− 1

n

)m
. (4.99)

Thus, the probability for obtaining the schema ∗ ∗[0,n−2] · · · ∗[0,1] is:

n−1∏
i=1

[
1− 2

(
1− 1

n

)m]
≥
[
1− 2

(
1− 1

n

)m]n−1
, (4.100)

≥ 1− 2(n− 1)

(
1− 1

n

)m
, (4.101)

using Bernoulli’s inequality in the last line. The result follows.

We apply Theorem 1 to a quasi-concave landscape on the metric space (ψ(Sn),MD),
whose parameters r and q are defined as in Section 3.4.

Theorem 16. Let us consider a quasi-concave landscape on (ψ(Sn),MD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size µ finds a global optimum within at most q generations and µq
fitness evaluations with probability at least:

1− 2n(q + 1) exp
(
−µr

4n

)
. (4.102)
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Proof. We estimate a lower bound on
[
PCov
ψ(Sn)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
.

[
PCov
ψ(Sn)

(µr
4

)]q+1

− q exp

(
−9µr

32

)
,

≥

[
1− 2(n− 1)

(
1− 1

n

)µr
4

]q+1

− q exp

(
−9µr

32

)
,

≥ 1− 2(n− 1)(q + 1)

(
1− 1

n

)µr
4

− q exp

(
−9µr

32

)
,

≥ 1− 2(n− 1)(q + 1) exp
(
−µr

4n

)
− q exp

(
−9µr

32

)
,

≥ 1− [2(n− 1)(q + 1) + q] exp
(
−µr

4n

)
,

≥ 1− [2(n− 1) + 1](q + 1) exp
(
−µr

4n

)
,

≥ 1− 2n(q + 1) exp
(
−µr

4n

)
.

The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.

Corollary 18. Let us consider a quasi-concave landscape on (ψ(Sn),MD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The CS
with population size:

µ ≥ 2n

r
ln[8n(q + 1)], (4.103)

finds a global optimum within at most q generations and µq fitness evaluations
with probability at least 0.5.

Proof. The result follows from solving in µ the inequality:

1− 2n(q + 1) exp
(
−µr

4n

)
≥ 1

2
.

Let one run of the CS be performed in q generations. If the population size
satisfies the condition of Corollary 18, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

4.8 Application Example

Let us consider the metric space (Sn, K) and a fixed minimal product
∏l

i=1 τi of
l = n(n−1)

2
adjacent transpositions yielding the permutation n n− 1 · · · 321.
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Example 33. For n = 4, we have:

4321 = (12)(23)(34)(23)(12)(23). (4.104)

This is one of the many ways to write 4321 as the minimal product of 6 = 4(4−1)
2

adjacent transpositions.

Let us call each adjacent transposition τi a letter and let the product
∏l

i=1 τi be
a word. A suffix is obtained from the word

∏l
i=1 τi by deleting its first k ≤ l letters.

Example 34. (23)(12)(23) is a suffix of (12)(23)(34)(23)(12)(23), that is obtained
by deleting its first three letters (12)(23)(34).

We shall now define a fitness function on the set of permutations Sn. First, we
fix a minimal product P =

∏l
i=1 τi of l = n(n−1)

2
adjacent transpositions yielding

the permutation n n − 1 · · · 321. Then, the fitness SXP(ν) of a permutation ν is
given by the length of the longest suffix of P that appears as a suffix in a writing
of ν as a minimal product of adjacent transpositions.

Example 35. In S4, let us consider the minimal product P = (12)(23)(34)(23)(12)(23)

and let ν = 3142. The permutation ν has exactly two distinct writings as a minimal
product of adjacent transpositions:

ν = (34)(12)(23),

= (12)(34)(23).

The longest suffix of P = (12)(23)(34)(23)(12)(23) appearing as a suffix in a writ-
ing of ν as a minimal product of adjacent transpositions is therefore (12)(23). It
appears in the first writing. As a result, the fitness of ν is SXP(ν) = 2.

Proposition 9. Let P be a fixed minimal product of l = n(n−1)
2

adjacent transposi-
tions yielding the permutation n n− 1 · · · 21. The fitness landscape (Sn, SXP , K)

is quasi-concave with parameters r ≥ 1
n

and q =

 l
2
− 1 if l is even,

l−1
2
− 1 if l is odd.

Proof. It is enough to define the canonical level sets of the problem and to show
that they are convex sets in the metric space (Sn, K). Let

∏l
i=1 τi denote the

fixed minimal product P. The possible lengths of a suffix of the word
∏l

i=1 τi

are: l, l − 1, . . . , 2, 1, and 0 when the suffix is the identity 12 · · ·n = id. A
permutation of Sn can be written as a minimial product of either: 0, 1, . . ., or l
adjacent transpositions. The identity permutation can not be written as a product
of adjacent transpositions.

Let A≥j be the canonical level set containing all permutations whose fitness
value is at least j. This means that an element of A≥j that can be written as a
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minimal product of k0 adjacent transpositions can be written as:

τ ′l−k0+1 · · · τ ′l−jτl−j+1 · · · τl−1τl, (4.105)

where j ≤ k0 ≤ l. Let σ denote the permutation n n − 1 · · · 21. We have the
following results:

A≥0 = [id, σ]K

A≥1 = [τl, τ1 ◦ σ]K

A≥2 = [τl−1τl, τ2τ1 ◦ σ]K

· · ·

A≥k = [τl−k+1 · · · τl−1τl, τk · · · τ2τ1 ◦ σ]K

· · ·

If l is even then k ≤ l−2
2

. Otherwise, k ≤ l−3
2

if l is odd. Each canonical level set
is a segment of the metric space (Sn, K), built in such a way that one extreme is
always smaller than the other with respect to the weak left order ≺w. By Corollary
1, this implies that the canonical level sets are convex sets of the metric space
(Sn, K). Moreover, A≥j+1 is always contained in A≥j by construction:

τl−j+1 · · · τl−1τl ≺w τl−(j+1)+1 · · · τl−1τl, (4.106)

τj+1 · · · τ2τ1 ◦ σ ≺w τj · · · τ2τ1 ◦ σ. (4.107)

The number q + 1 of distinct level sets is therefore l
2

if l is even and l−1
2

if l
is odd. The number of distinct level sets is always polynomial in n. The small-
est ratio r between the sizes of two consecutive canonical level sets is still an
open problem. Indeed, a closed form for the cardinality of a segment of length
k of (Sn, K) is not known yet. We shall therefore estimate a lower bound on r

instead. Let us consider the level sets A≥k and A≥k−1. The length of the segment
[τl−k+1 · · · τl−1τl, τk · · · τ2τ1 ◦ σ]K = A≥k is denoted lk. By construction, the length
of the segment [τl−k+2 · · · τl−1τl, τk−1 · · · τ2τ1 ◦ σ]K = A≥k−1 is lk + 2. The smallest
number of points that need to be added to A≥k to obtain A≥k−1 is two. The largest
number of points that need to be added to A≥k to obtain A≥k−1 is bounded above
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τk−1

τl−k+1

A≥k

A≥k−1 ⊆ (Sn, K)

τk−1

τl−k+1

Cn−2· · ·C1A≥k

A≥k−1 ⊆ (Sn, K)

Figure 4.4: A≥k−1 is obtained from A≥k by adding two extra nodes. The extremes
of the possible structures of A≥k−1 are illustrated above, where Ci is a convex
segment with the same length as the segment yielding A≥k. There are at most
n − 1 distinct adjacent transpositions that can be used in Sn. One of them is
already used to connect one of the extra nodes to A≥k. Hence, there are at most
n− 2 other possible connections from that extra node left.

by (n− 2) | A≥k | +2. An illustration is given in Figure 4.4. Hence, we have:

r = min
0≤k≤q

| A≥k |
| A≥k−1 |

, (4.108)

≥ min
0≤k≤q

| A≥k |
(n− 2) | A≥k | +2

, (4.109)

≥ min
X>1

X

(n− 2)X + 2
, (4.110)

≥ 1

n
. (4.111)

Remark 1. Segments need not be convex sets in the metric spaces: (Sn, T ),
(Sn, UL) and (Sn, R). Therefore, segments can not be used as canonical level
sets in these metric spaces.

Theorem 17. In the metric space (Sn, K) where n(n−1)
2

is even, if the population
size is at least:

µ ≥ 4n!n ln

[
3n(n− 1)

2

]
, (4.112)

then the CS finds the fixed minimal product of n(n−1)
2

adjacent transpositions
(yielding the permutation n n− 1 · · · 21) with probability at least 0.5, while search-
ing for longest common suffixes with the fixed minimal product of n(n−1)

2
adjacent

transpositions.

Proof. By Proposition 9 and Corollary 11.

Let one run of the CS be performed in q = n(n−1)
4
− 1 generations. If the

population size satisfies the condition of Theorem 17, then the expected number
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of runs before finding a global optimum (i.e., the expected hitting time) is at most
1
0.5

= 2. Hence, the expected number of generations and the expected number
of fitness evaluations needed for finding a global optimum are respectively 2q =
n(n−1)

2
− 2 and 2µq = O (n!n3 ln [2n]).

4.8.1 From Permutations to Strings

Using the bijection ψ : Sn −→ {0, 1, . . . , n − 1} × {0, 1, . . . , n − 2} × . . . × {0, 1}
of Definition 19, we bring the problem of permutations to strings. We shall now
consider the metric space (ψ(Sn),HD) and a fixed string a1a2 · · · an−1 of ψ(Sn).

Example 36. In ψ(S4) = {0, 1, 2, 3} × {0, 1, 2} × {0, 1}, 201 is a fixed string.

The fitness SXa(b) of a string b is given by the length of the longest suffix of a
that is also a suffix of b.

Example 37. In ψ(S5), let a = 2311 and let b = 4321. The longest suffix of a that
is also a suffix of b is 1. Hence, the fitness SXa(b) of b is 1.

Proposition 10. Let a be a fixed string of ψ(Sn). The fitness landscape (ψ(Sn), SXa,HD)

(resp. (ψ(Sn), SXa,MD)) is quasi-concave with parameters q = n−1 and r = 1
n+1

.

Proof. It is enough to define the canonical level sets of the problem and to show
that they are convex sets in the metric space (ψ(Sn),HD) (resp. (ψ(Sn),MD)). Let
a = a1a2 · · · an−1, the possible lengths of a suffix of a are: n− 1, n− 2, . . . , 2, 1,

and 0.
Let A≥j be the canonical level set containing all strings whose fitness value is

at least j. This means that an element of A≥j is of the form:

a′1 · · · a′n−j−1an−j · · · an−2an−1, (4.113)

where 1 ≤ j ≤ n− 1. We have the following results, using the same notations as
in Theorem 14:

A≥0 = ∗[0,n−1] ∗[0,n−2] · · · ∗[0,1]
A≥1 = ∗[0,n−1] ∗[0,n−2] · · · ∗[0,2] an−1
A≥2 = ∗[0,n−1] ∗[0,n−2] · · · ∗[0,3] an−2an−1
· · ·

A≥k = ∗[0,n−1] ∗[0,n−2] · · · ∗[0,k+1] an−k · · · an−1
· · ·

A≥n−1 = {a1a2 · · · an−1}

By a similar proof to that of Proposition 2 (resp. Proposition 4), we find that
each canonical level set is a convex set in the metric space (ψ(Sn),HD) (resp.
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(ψ(Sn),MD)). Moreover, A≥j+1 is always contained in A≥j by construction. The
number q+ 1 of distinct level sets is therefore n. The smallest ratio r between the
sizes of two consecutive canonical level sets is 1

n+1
.

Remark 2. Let a be a fixed string of ψ(Sn). For any string b of ψ(Sn), let SPa(b) be
the length of the longest prefix of a that is also a prefix of b. Using the same rea-
soning as above, we also find that the fitness landscape (ψ(Sn), SPa,HD) (resp.
(ψ(Sn), SPa,MD)) is quasi-concave.

Theorem 18. In the metric space (ψ(Sn),HD), if the population size is at least:

µ ≥ 8n(n+ 1) ln(2n
√
n), (4.114)

then the CS finds the longest suffix of a fixed string of ψ(Sn) appearing as a suffix
in a writing of a permutation σ as a string ψ(σ), with probability at least 0.5.

Proof. By Proposition 10 and Corollary 16.

Let one run of the CS be performed in q = n− 1 generations. If the population
size satisfies the condition of Theorem 18, then the expected number of runs
before finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2.

Hence, the expected number of generations and the expected number of fitness
evaluations needed for finding a global optimum are respectively 2q = 2(n − 1)

and 2µq = 16(n− 1)n(n+ 1) ln(2n
√
n).

4.9 Summary

We showed that the runtime analysis of the CS on a quasi-concave landscape
that has been introduced in [MS17] can be specified to permutations.

We showed that for the metrics considered (Kendall’s τ , Cayley, Ulam metrics,
and reversal distance), the convex hulls can only be formed from the permutations
involved. This is different from the convex hulls of strings on a finite alphabet (wrt
the Hamming and the Manhattan distance), which can be formed from ‘pieces’ of
strings that do not necessarily equal the strings involved.

Consequently, the runtime result for strings on a finite alphabets (wrt the
Hamming and the Manhattan distance) does not extend to permutations (wrt the
Kendall’s τ , the Cayley, the Ulam metrics, and the reversal distance).

We also found that a permutation of Sn is uniquely determined by a (n − 1)-
uplet of [0, n − 1] × [0, n − 2] × · · · × [0, 1], where [0, i] = {0, 1, 2, . . . , i − 1, i}.
This enabled us to bring back the study of permutations to that of strings of the
Hamming (resp. Manhattan) space.

We conclude that the runtime analysis of the CS on a quasi-concave land-
scape of [MS17] can be specified to any representation whose metric space is
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discrete. However, its runtime result may differ for the representations whose
convex hulls can not be formed from ‘pieces’ of solutions.
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Chapter 5

Standard Evolutionary Search
Algorithm 1 (SES)

EA with crossover and no mutation have been generalized across representations
as Convex Search Algorithms (CS) [Mor11]. The search operator used by the CS
samples the convex hull of the selected population. Whereas, [Mor08] showed
that most crossover operators sample the metric segment of two parents. In
particular, the geometric crossover [MP04] has been defined as a generalization
across representations of crossover operators sampling the metric segment of
two parents. Hence, a more accurate generalization of EA with crossover and no
mutation across representations should make use of geometric crossover. We
aim to introduce a unifying runtime analysis of EA with no mutation and with a
standard crossover, by:

• defining a generalization of EAs with crossover and no mutation across rep-
resentations that makes use of geometric crossover,

• analyzing its runtime using a similar approach to that used for the CS in
[MS17].

The general algorithm is given in Section 5.2. The runtime analysis is done in
Section 5.3. We will start by studying the properties of the set where metric
segments are sampled from in Section 5.1.

5.1 Union Seg(A) of the segments of a set A

Let A be a subset of the metric space (S, D). A segment whose extremes are
elements of A is referred to as a segment of A. We start by defining the set of
points belonging to a segment of A.

1This algorithm is different from the algorithms with the same name that can be seen in other
papers such as [MS02]. Indeed, here the word ‘standard’ refers to the standard crossover which
is the only genetic operator used by the EA.
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Definition 20. Let (S, D) be a metric space and let A ⊆ (S, D). The set Seg(A)

is the union of all the segments of A. That is, the union of all the segments that
can be made out of the elements of the set A.

Example 38. In the two-dimensional Hamming space ({0, 1}2,HD), let us con-
sider the subset A = {00, 01, 11}. The set Seg(A) is the union of the segments
[00, 00], [01, 01], [11, 11], [00, 01], [00, 11] and [01, 11]. Hence, Seg(A) = {0, 1}2.

5.1.1 Relationship between Seg(A) and co(A)

Proposition 4.1.2. of [vDV93] gives the following result for any subset A of a metric
space (S, D):

co(A) = A ∪ Seg(A) ∪ Seg(Seg(A)) ∪ · · · ∪ Seg(· · · (Seg(A)) · · · ) ∪ · · ·

This implies the following proposition:

Proposition 11. Let (S, D) be a metric space and let A be a subset of S. The set
Seg(A) is always included in the set co(A).

Besides the proof of Proposition 4.1.2. given in [vDV93], an alternative proof
for Proposition 11 is given below for the sake of clarity.

Proof. By definition, co(A) is the smallest convex set containing A. Hence A ⊆
co(A). It follows that Seg(A) ⊆ Seg(co(A)). Since the set co(A) is convex, all
segments whose extremes are points of co(A) are included in co(A). Therefore,
Seg(co(A)) ⊆ co(A). Thus, Seg(A) ⊆ co(A).

Lemma 14. Let (S, D) be a metric space and let A be a subset of S, we have
co(Seg(A)) = co(A).

Proof. On the one hand, we have Seg(A) ⊆ co(A) by Proposition 11. This im-
plies that co(Seg(A)) ⊆ co(co(A)) = co(A). On the other hand, A ⊆ Seg(A) ⊆
co(Seg(A)). As a result, co(Seg(A)) is a smaller convex set that contains A. Nec-
essarily, co(Seg(A)) = co(A).

Theorem 19. Let (S, D) be a metric space and let A be a subset of S. The
following statements are equivalent:

1. Seg(A) is a convex set,

2. Seg(A) = co(A).

Proof. On the one hand, if Seg(A) = co(A) then the set Seg(A) is convex as co(A)

is. On the other hand, if Seg(A) is a convex set then Seg(A) = co(Seg(A)). The
result follows from Lemma 14.
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This result will be useful in comparing the SES with the CS. In particular,
we will be interested in metric spaces where the set Seg(A) is always convex
regardless of the choice of the subset A.

5.1.2 Ratio of segments of A strictly contained in co(A)

Let A be a finite set in a discrete metric space. We aim to compute a lower bound
on the probability for sampling a pair of elements of A forming a segment that is
strictly included in co(A) when pairs are uniformly distributed. To this end, we first
estimate the ratio of segments of A covering its convex hull co(A).

Lemma 15. The ratio of segments of A equating co(A) is bounded above by 1/3

whenever A contains at least two distinct elements.

Proof. Let [x1, y1] and [x2, y2] be two segments of A equating co(A).

• We show that if two segments equating co(A) share an endpoint then they
must share the other endpoint.

If x1 = x2 and y1 6= y2, then the segment [y1, y2] is included in co(A). This is
because both yi belong to co(A) and co(A) is a convex set. We have,

[x1, y1] = [x1, y2] and [y1, y2] ⊆ [x1, y1]. (5.1)

Therefore, y2 ∈ [x1, y1]. As [x1, y1] = [x1, y2], then y2 must be equal to y1.
This contradicts the initial assumption. Therefore, whenever x1 = x2 then
y1 = y2 when [x1, y1] and [x2, y2] are both equal to co(A).

• Let x1 6= x2, y2 and y1 6= x2, y2. The segments [x1, y1] and [x2, y2] do not share
any endpoint (though they may be equal in some specific metric spaces).
We show that if [x1, y1] and [x2, y2] are both equal to co(A), then the seg-
ments [x1, x2], [y1, y2], [x1, y2], and [x2, y1] are not equal to co(A).

Without loss of generality, let us show that [x1, x2] is not equal to co(A). Let
us assume that [x1, x2] = co(A). We have,

[x1, x2] = [x1, y1], (5.2)

because [x1, y1] = co(A) by assumption. This implies that x1 = y2. Since,
[x1, y1] = [x2, y2] we have:

[y2, y1] = [x2, y2], (5.3)

by replacing x1 by y2 in the left hand side. Consequently, x2 = y1. As a
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result we have: x1 = y2,

x2 = y1,
(5.4)

which contradicts the initial assumption. Therefore, [x1, x2] is not equal to
co(A).

We conclude that whenever two segments of A that do not share endpoints are
both equal to co(A), there exist at least four segments of A that are not equal to
co(A). Thus, the ratio of segments of A equating co(A) is at most 2

2+4
= 1

3
.

If A = {x1, x2, x3} where the three elements are distinct, and the segment
[x1, x2] is equal to co(A), then the segments [x2, x3] and [x3, x1] can not be equal
to co(A). Indeed, if they were they would be equal to [x1, x2] and A would only
contain two distinct elements instead of three. Hence, the ratio of segments of A
equating co(A) is at most 1

3
.

If A = {x1, x2} where the two elements are distinct, and the segment [x1, x2] is
equal to co(A), then the segments [x1, x1] = {x1} and [x2, x2] = {x2} can not be
equal to co(A). Hence, the ratio of segments of A equating co(A) is 1

3
.

Theorem 20. We assume that the pairs of elements of A are uniformly distributed
on co(A). If A contains at least two distinct elements, then the probability for
sampling a pair of elements of A forming a segment equating co(A) is bounded
above by 1/3.

Proof. The probability for sampling a pair of elements of A forming a segment
that is equal to co(A) is the ratio of segments of A equating co(A). By Lemma 15,
this ratio is bounded above by 1/3. The result follows.

Corollary 19. We assume that the pairs of elements of A are uniformly distributed
on co(A). If A contains at least two distinct elements, then the probability for
sampling a segment of A that is strictly included in co(A) is bounded below by
2/3.

Proof. This is the complementary of the event of sampling a segment of A equat-
ing co(A). As the probability of its complementary is at most 1/3, its probability is
at least 1− 1/3 = 2/3.

5.2 Standard Evolutionary Search Algorithm

In [MS17], the convex evolutionary search algorithm (CS) is defined as the EA
with no mutation with a convex hull recombination. We define the standard evo-
lutionary search algorithm (SES) as the EA with no mutation with a standard
crossover. Standard crossovers are instantiations of the geometric crossover in a
specific representation [MP04].
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Definition 21 (Geometric crossover [MP04]). The (uniform) geometric crossover
returns an offspring sampled uniformly at random from the segment formed by its
two parents.

Example 39. Let us consider the elements x = 010 and y = 110 of the metric
space ({0, 1}3,HD). The segment [x, y] is equal to the schema ∗10. The ge-
ometric crossover of the elements x and y consists of sampling an element of
∗10 = {010, 110} uniformly at random.

A pseudo-code corresponding to the SES [MM19] is shown in Algorithm 2.

Algorithm 2 Standard Evolutionary Search Algorithm
1: Input: µ, population size
2: Output: individual in the last population
3: Initialise population uniformly at random
4: while population has not converged to the same individual do
5: Rank individuals on fitness
6: if there are at least two fitness values in the current population then
7: remove all individuals with the worst fitness
8: end if
9: Create new population:

10: for counter in {1, 2, . . . , µ} do
11: Randomly and uniformly pick two individuals from the remaining individ-

uals in the current population
12: Recombine them through GEOMETRIC CROSSOVER to create a new indi-

vidual
13: end for
14: end while
15: Return any individual in the last population

Lines 11 and 12 tell us that a pair of individuals is sampled uniformly at ran-
dom out of the set of all possible pairs of selected individuals. This means that
the distribution of pairs of selected individuals is uniform on the set of selected
individuals.

Offspring are sampled from a segment. As the notion of segment can be
defined for any representation, the SES is representation independent.

5.2.1 Offspring distribution

Let us denote P ′ the set of parents that are selected from a population P . The
set of reachable solutions R(P ′) from the set of parents P ′ is the set of solutions
that can be reached by repeated application of a search operator to the set of
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parents P ′. In particular, the set RSES(P ′) of reachable solutions for the geometric
crossover is the union of all the segments that can be formed out of the elements
of P ′:

RSES(P ′) = Seg(P ′). (5.5)

The offspring distribution need not be uniform on RSES(P ′). Indeed, if x and y are
elements of P ′ then the probability for sampling an offspring in the segment [x, y]

is 1
|[x,y]| . Let αs,P ′ be the number of pairs of elements of P ′ yielding the segment s.

The total number of pairs that can be formed out of the elements of P ′ is | P ′ |2.
Hence, the probability for sampling the segment s is not uniform and is given by:

αs,P ′

| P ′ |2
. (5.6)

Example 40. In ({0, 1}2,HD), let P ′ = {00, 01, 10, 11}.

• Let s be the segment [00, 11]. We have αs,P ′ = 4. Indeed,

s = [00, 11] = [11, 00] = [01, 10] = [10, 01]. (5.7)

The probability for sampling the segment s is therefore 4
42

= 1
4
.

• Let s00 be the segment [00, 00], we have αs00,P ′ = 1. The probability for
sampling s00 is therefore 1

42
. This is also the probability for sampling each of

the segments s01, s10 and s11.

• Let s{00,10} be the segment [00, 10], we have αs{00,10},P ′ = 2. The probabil-
ity for sampling the segment s{00,10} is 2

42
. This is also the probability for

sampling each of the segments s{00,01}, s{10,11}, and s{01,11}.

There are 9 distinct segments that can be formed out of the elements of P ′. Those
segments are: s, s00, s01, s10, s11, s{00,10}, s{00,01}, s{10,11}, and s{01,11}. We obtain
one by adding up the probabilities for sampling each one of them. In particular,
we have:

Seg(P ′) = s ∪ s00 ∪ s01 ∪ s10 ∪ s11 ∪ s{00,10} ∪ s{00,01} ∪ s{10,11} ∪ s{01,11}. (5.8)

More generally, the set Seg(P ′) can be rewritten as the union of the distinct
segments that can be formed out of the elements of P ′. That is, there exists
p ≤| P ′ |2 such that:

Seg(P ′) =

p⋃
i=1

si. (5.9)

As s1, s2, . . . , sp are the only segments that can be formed out of the elements
of P ′, we have:

p∑
i=1

αsi,P ′

| P ′ |2
= 1. (5.10)

87



Theorem 21. Let z be a reachable solution and let 1s be the indicator function on
the segment s. The probability for sampling z is given by:

Pr(z ∈ Seg(P ′)) =

p∑
i=1

αsi,P ′

| P ′ |2
· 1si(z)

| si |
. (5.11)

We also have:

∑
z∈Seg(P ′)

Pr(z ∈ Seg(P ′)) =
∑

z∈Seg(P ′)

p∑
i=1

αsi,P ′

| P ′ |2
· 1si(z)

| si |
, (5.12)

= 1. (5.13)

5.2.2 Recycling the analysis of the CS for the SES

In metric spaces where the sets Seg(A) and co(A) coincide for all A, the analysis
of the CS on quasi-concave landscapes can be reused to analyse the SES on
quasi-concave landscapes.

Recall that the search operator used by the CS returns an offspring sampled
uniformly at random from the convex hull formed by the selected individuals (see
Definition 6). Moreover, the convex hull formed by the selected individuals forms
the set of reachable solutions for the CS (see Equation (3.9)).

For the SES, the set of reachable solutions is only convex in metric spaces
where the sets Seg(A) and co(A) coincide for all A. In particular, for the same
set of parents P ′ the sets of reachable solutions for the CS and SES both coin-
cide with co(P ′). However, the distribution of the reachable solutions on co(P ′)

differs for both algorithms. Offspring are uniformly distributed on co(P ′) for the CS
[Mor11]. Whereas, offspring are not uniformly distributed on co(P ′) for the SES
(see Equation (5.11)).

Consequently, we must restrict our study to metric spaces where the sets
Seg(A) and co(A) coincide for all A in order to reuse the analysis of the CS on
quasi-concave landscapes for the SES on quasi-concave landscapes.

5.3 Runtime Analysis

We compute an upper bound on the runtime of the SES on a quasi-concave
landscape in a metric space where Seg(A) = co(A) for any subset A, where the
analysis used in [MS17] for the CS can be used as a guideline.

The SES finds a global optimum if the convex hull formed by the selected
individuals always covers a higher level set than the one containing them. As
level sets form a decreasing chain of sets with respect to the ‘contains’ order (see
Definition 7), the condition above is satisfied whenever the convex hull formed
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by the selected individuals is always equal to the level set containing them. In
combinatorial spaces, the latter happens with probability at least 0.5 for a well
chosen population size. Indeed, the distribution of the offspring is not uniform on
the level set. However, the distribution of pairs of parents is uniform on the level
set and each offspring is created from a pair of parents. In this case, the SES
finds a global optimum within 2q generations where q + 1 is the total number of
distinct level sets.

We start by estimating a lower bound on the probability of sampling a strictly
improving offspring in a quasi-concave landscape. We recall that:

r = min
0≤j≤q−1

(
| A≥j+1 |
| A≥j |

)
. (5.14)

Theorem 22. The probability for sampling a strictly improving offspring from any
selected population with at least two distinct individuals is bounded below by
2r2/3.

Proof. Let P ′ denote the set of selected individuals. We assume that P ′ is con-
tained in the canonical level set A≥j. In the worst case, co(P ′) is equal to the
level set A≥j containing it. In this case, the probability for sampling an offspring
belonging to A≥j+1 (which is a strict subset of A≥j) is given by:

∑
z∈A≥j+1

p∑
i=1

αsi,P ′

| P ′ |2
· 1si(z)

| si |
(5.15)

=

p∑
i=1

∑
z∈A≥j+1

αsi,P ′

| P ′ |2
· 1si(z)

| si |
, (5.16)

=

p∑
i=1

αsi,P ′

| P ′ |2
· | A≥j+1 ∩ si |

| si |
, (5.17)

=
∑

si⊆A≥j+1

αsi,P ′

| P ′ |2
· | A≥j+1 ∩ si |

| si |
(5.18)

+
∑

si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

| P ′ |2
· | A≥j+1 ∩ si |

| si |
, (5.19)

≥
∑

si⊆A≥j+1

αsi,P ′

| P ′ |2
. (5.20)

The bound in Inequality (5.20) is the probability to sample a segment of P ′ that
is strictly included in A≥j = co(P ′). By Corollary 19, the probability for sampling
a segment of P ′ that is strictly included in co(P ′) is bounded below by 2/3 given
that Seg(P ′) = co(P ′) and P ′ contains at least two distinct elements. Pairs are
sampled uniformly at random from the set of all possible pairs that can be made
out of the elements of P ′ ⊆ A≥j. Thus, the probability for sampling a pair that is
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included in A≥j+1 is given by:(
| A≥j+1 |
| A≥j |

)2

≥
[

min
0≤j≤q−1

(
| A≥j+1 |
| A≥j |

)]2
, (5.21)

= r2. (5.22)

Consequently, the probability to sample a segment of P ′ that is strictly included in
A≥j = co(P ′) is bounded below by 2r2

3
given that Seg(P ′) = co(P ′) and P ′ contains

at least two distinct elements.

Corollary 20. The expected number of strictly improving offspring for a population
size of µ is at least:

2r2µ

3
, (5.23)

if at least two distinct individuals are selected at each generation.

Proof. In the worst case, all strictly improving offspring of the selected population
have the same least probability of Theorem 22 to be sampled. The total number
of offspring that is created is given by the population size µ. Consequently, the
expected number of strictly improving offspring among the µ offspring is at least
2r2µ
3

.

The offspring are not uniformly distributed on Seg(P ′) as seen in Equation
(5.11). In metric spaces where the sets Seg(A) and co(A) coincide for any subset
A, any offspring has a non-zero probability to be sampled. This is because the
sets Seg(P ′) and co(P ′) coincide, where co(P ′) is the level set containing the
offspring.

Let m be a positive integer and let C be a non empty convex set whose ele-
ments are distributed as in Equation (5.11). The set of m points drawn from C is
denoted NonUnifm(C).

Definition 22. Let C be a convex set in a metric space (S, D) whose elements
are distributed as in Equation (5.11). The probability that the union of all the
segments that can be made out of m points drawn from C equals C is:

PCov
C,Seg(m) = Pr[Seg(P ) = C | P = NonUnifm(C)]. (5.24)

In metric spaces where Seg(A) = co(A) for any subset A, the probability
PCov
C,Seg(m) is equal to the probability that the convex hull of m points drawn from C

equals C. That is:

PCov
C,Seg(m) = Pr[Seg(P ) = C | P = NonUnifm(C)], (5.25)

= Pr[co(P ) = C | P = NonUnifm(C)], (5.26)

≥ min
C∈CS

Pr[co(P ) = C | P = NonUnifm(C)], (5.27)
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where CS denotes the set of convex sets on the entire search space S. Let us
denote PCov

S (m) the probability minC∈CS Pr[co(P ) = C | P = NonUnifm(C)]. As in
[MS17], the probability PCov

S (m) is monotone increasing in m because additional
samples can only increase the convex hull.

We assume a quasi-concave fitness function on the metric space (S, D) with
fitness levels A≥0, A≥1, . . . , A≥q. Let P ′t denote the parents of generation t. The
following lemma gives a lower bound on the probability that co(P ′t+1) is equal to
some A≥j given that co(P ′t) is equal to A≥i and i < j.

Lemma 16. The probability that the next generation of parents covers a higher
level set than the level set covered by the current generation of parents is at least:

PCov
S

(
2r2µ

3

)
− exp

(
−r

2µ

18

)
. (5.28)

Proof. The probability PCov
S (m) is monotone increasing in m. For a population

size of µ, m is at least 2r2µ
3

by Corollary 20. Hence, PCov
S

(
2r2µ
3

)
is a lower bound

on PCov
S (m). Using Chernoff bound [MR95], the probability that the number of

strictly improving offspring is smaller than 2r2µ
3

, is at most:

Pr

(
| P ′ |≤ 2r2µ

3

)
≤ exp

[
−r

2µ

2
·
(

1

3

)2
]
. (5.29)

We define the worst-case typical behaviour to have exactly 2r2µ
3

strictly improving
offspring in each level set as in Corollary 20.

Theorem 23. The SES with population size µ finds a global optimum within q

generations and µq fitness evaluations with probability at least[
PCov
S

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
. (5.30)

Proof. The reasoning is the same as in [MS17]. We assume that the probability
for covering different level sets are independent. Each level set is visited tak-
ing into account A≥0. Then, the probability that less than 2r2µ

3
strictly improving

offspring are generated is removed at each step.

The next step is to explicitly compute

PCov
C (m) = Pr[co(P ) = C | P = NonUnifm(C)] (5.31)

for specific representations.
When the selection of the m elements of C is uniform, then they equally con-

tribute to the creation of their convex hull co(P ). This is for example the case for
the CS [MS17].
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When the m elements of C are not selected uniformly at random, they need
not equally contribute to the creation of their convex hull co(P ). Each element
must contribute at least once in the making of their convex hull co(P ). It remains
to determine the maximum number of contributions. To this end, we introduce
the notion of weight to measure the number of contributions of each of the m

elements of C.

Definition 23. Let e1, e2, . . . , em be m samples from a non-empty convex set
C. For each e ∈ C, we denote p(e) the probability to select e. The weight of the
element ei of C is defined as:

wi = p(ei) · lcde∈Cp(e), (5.32)

where lcd stands for least common denominator.

Example 41. For the CS, samples are selected uniformly at random from a non-
empty level set A≥j [MS17]. Each of them has the same probability p(e) = 1

|A≥j+1|

to be selected. Indeed, an element e ∈ A≥j is selected if it belongs to A≥j+1.
Hence, p(e) is the probability to sample an element e ofA≥j given that this element
belongs to A≥j+1. The result follows as offspring are uniformly distributed on A≥j
with probability 1

|A≥j |
. We have:

w = p(e) · lcde∈Cp(e), (5.33)

= 1. (5.34)

Those m samples correspond to the selected individuals that will make up the
set of parents of the next generation. This means that they are strictly improving
offspring with respect to the current set of offspring. Hence, the selection proba-
bility (of the m selected individuals) is the probability to sample a strictly improving
offspring in the convex hull of the current selected population.

Let P ′t be the current selected population. The elements of Seg(P ′t) = co(P ′t)

are distributed as in Equation (5.11). Moreover, the set co(P ′t) is equal to a level
set A≥j in our case study. That is, P = P ′t+1 and C = A≥j+1 in Equation (5.31).
The selection probability is therefore the probability for sampling an element of
A≥j that belongs to A≥j+1.

Proposition 12. The selection probability of elements of A≥j is at least:

1

| A≥j+1 | +1
. (5.35)

Proof. We assume that the offspring are distributed on co(P ′) = A≥j as in (5.11).
Let t be the current generation, we have P ′ = P ′t . The parents P ′t+1 of the next
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generation are selected from A≥j+1. The probability to select an offspring z0 from
co(P ′t) = A≥j that belongs to A≥j+1 is given by:

∑p
i=1

αsi,P ′

|P ′|2 ·
1si (z0)

|si|∑
z∈A≥j+1

∑p
i=1

αsi,P ′

|P ′|2 ·
1si (z)

|si|

=

∑p
i=1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|∑p

i=1

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si|

. (5.36)

We determine a lower bound on (5.36).∑p
i=1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|∑p

i=1

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si|

,

=

∑
si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si| +

∑
si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|∑

si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si| +

∑
si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si|

.

By Corollary 19, the probability for sampling a segment si that is strictly included
in A≥j is bounded below by 2/3 when P ′ contains at least two distinct individuals.
Hence, a segment si is either contained in A≥j+1 or equal to A≥j+1 in the typical
case. Therefore,

∑
si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

| P ′ |2
· | A≥j+1 ∩ si |

| si |
≤

∑
si⊆A≥j+1

αsi,P ′

| P ′ |2
· | A≥j+1 ∩ si |

| si |
. (5.37)

Consequently, a lower bound on (5.36) is given by:∑
si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|∑

si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si| +

∑
si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si|

,

≥
∑

si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|[∑

si⊆A≥j+1

αsi,P ′

|P ′|2 ·
|{z0}∩si|
|si|

]
max si⊆A≥j+1

si∩{z0}6=∅

|A≥j+1∩si|
|{z0}∩si| +

∑
si*A≥j+1

si∩A≥j+1 6=∅

αsi,P ′

|P ′|2 ·
|A≥j+1∩si|
|si|

,

≥ 1

max si⊆A≥j+1

si∩{z0}6=∅

|A≥j+1∩si|
|{z0}∩si| + 1

,

≥ 1

| A≥j+1 | +1
.

Proposition 13. The selection probability of elements of A≥j is at most:

2

| A≥j+1 | +1
. (5.38)

Proof. The probabilities for selecting an offspring belonging to A≥j+1 add up to
one for each element of A≥j+1. An upper bound on the probability for selecting
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an offspring belonging to A≥j+1 is obtained when all the remaining | A≥j+1 | −1

offspring have the least probability of Proposition 12 to be selected. Hence, the
largest probability for selecting an offspring belonging to A≥j+1 (i.e., a parent for
the next generation) is:

1− | A≥j+1 | −1

| A≥j+1 | +1
=

2

| A≥j+1 | +1
.

By Proposition 12 and Proposition 13 we have:

Corollary 21. The weight of a sample is at most two for the SES.

Proof. The lcd of all the probabilities for selecting a parent (i.e., an offspring be-
longing to A≥j+1) is given by the denominator of the least possible probability
given in Proposition 12. Any other probability is bounded above by the largest
possible probability given in Proposition 13. Hence, all weights are bounded
above by:

2

| A≥j+1 | +1
· (| A≥j+1 | +1) = 2.

As a result, each of the m samples of Equation (5.31) contributes between
once and twice in the making of their convex hull in our analysis.

5.4 Summary

We defined a generalization of EAs with no mutation and with a standard two-
parents crossover, called SES. By restricting our analysis to metric spaces where
the sets Seg(A) and co(A) coincide for all A, we computed an upper bound on
the runtime of the SES on a quasi-concave landscape by adjusting the analysis
of [MS17] on the CS.

The SES finds a global optimum if each set of offspring generates the level set
containing them at each generation. We determined a lower bound on the proba-
bility for sampling a strictly improving offspring in a selected population. The latter
was used to determine a lower bound on the expected number of strictly improv-
ing offspring for a given population size. Then, we used that result to estimate
a lower bound on the success probability of the SES. Finally, we estimated the
selection probability in order to specify the runtime results to specific representa-
tions.

It remains to find a new analysis across representations of the SES on quasi-
concave landscapes, that can deal with metric spaces where the sets Seg(A) and
co(A) do not necessarily coincide for all A.
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Chapter 6

SES on Strings on a Finite Alphabet

We specify the analysis of the SES on quasi-concave landscapes to strings on
finite alphabets in metric spaces where the sets Seg(A) and co(A) coincide for
any subset A. We will consider the same metrics used in [MS17] for the analysis
of the CS:

• The Hamming distance HD,

• The Manhattan distance MD.

We aim to compare the runtime result of the SES to that of the CS. The metric
space ({0, 1, 2, · · · , d− 1}n, D) is denoted Md,D.

We first determine whether the sets Seg(A) and co(A) coincide for any sub-
sets for each of the metric spaces Md,HD and Md,MD in Section 6.1. Then, we
determine the schemata corresponding to convex sets for each of the metrics
considered in Section 6.2. The runtime analysis is done in Section 6.3. Finally,
the SES and the CS are compared in Section 6.4.

6.1 Convexity of the Set of Reachable Solutions

We study the convexity of the set of reachable solutions in the metric spaces
Md,HD and Md,MD. That is, we determine whether the sets Seg(A) and co(A)

always coincide for any subset A.

6.1.1 Hamming distance

We show that Seg(A) = co(A) for any subset A of the metric space M2,HD =

({0, 1}n,HD). We also show that Seg(A) need not be equal to co(A) for any subset
A of the metric space Md,HD = ({0, 1, . . . , d− 1}n,HD) where d > 2.

Proposition 14. Any segment of the metric spaceMd,HD = ({0, 1, . . . , d−1}n,HD)

is a convex set.
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Proof. Any segments of the n-dimensional Hamming space ({0, 1, . . . , d−1}n,HD)

is the Cartesian product of n segments of the one-dimensional space ({0, 1, . . . , d−
1},HD) [vDV93]. A segment of ({0, 1, . . . , d − 1},HD) is either a single element
or the union of two distinct elements. Hence, a segment of ({0, 1, . . . , d− 1},HD)

is always a convex set. Since a Cartesian product of convex sets remains con-
vex [vDV93], any segment of the n-dimensional Hamming space ({0, 1, . . . , d −
1}n,HD) is also a convex set.

Let A be a set in the metric space Md,HD = ({0, 1, . . . , d − 1}n,HD) and let
s1, s2, . . . , sp be the p distinct segments that can be formed out of the elements of
A:

Seg(A) =
⋃

1≤j≤p

sj. (6.1)

A segment sj = [xj, yj] corresponds to the schema ∗Asj (1) ∗Asj (2) . . . ∗Asj (n), where
Asj(i) = {xj(i), yj(i)} is the set of admissible values at position i. We also recall
that in the schema corresponding to co(A), the admissible values at position i are
the elements of

⋃
1≤j≤pAsj(i). We have the following result:

Lemma 17. The union Seg(A) of all the segments that can be formed out of the
elements of A is a convex set if there exists 1 ≤ j ≤ p such that:⋃

1≤j≤p

Asj(i) = Asj(i), (6.2)

at each position i.

Proof. If Equation (6.2) is satisfied then there exists a segment sj such that
co(A) = sj. Consequently, co(A) is contained in Seg(A) =

⋃
1≤j≤p sj. Therefore,

the sets co(A) and Seg(A) are necessarily equal.

Corollary 22. In the metric space Md,HD, the set Seg(A) :

• is always convex for any subset A when d = 2,

• need not be convex for any subset A when d > 2

Proof. In M2,HD, the set
⋃

1≤j≤pAsj(i) contains either one or two elements. In both
cases, we have: ⋃

1≤j≤p

Asj(i) = {xj(i)} ∪ {yj(i)}, (6.3)

= Asj(i). (6.4)

Consequently, the set Seg(A) is always convex in M2,HD.
When d > 2, the set

⋃
1≤j≤pAsj(i) may contain more than two elements. In

this case, it can not correspond to a set Asj(i). As a result, the set Seg(A) need
not be convex in Md,HD when d > 2.
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Example 42. In the metric space ({0, 1, 2}4,HD), let A = {0012, 2110, 2011}. We
have that:

Seg(A) = [0012, 2110] ∪ [0012, 2011] ∪ [2110, 2011], (6.5)

= ∗02 ∗01 1 ∗02 ∪ ∗02 01 ∗12 ∪ 2 ∗01 1∗01, (6.6)

and co(A) = ∗02 ∗01 1∗. We can see that 0111 ∈ co(A) but 0111 /∈ Seg(A). Hence,
Seg(A) ( co(A).

6.1.2 Manhattan distance

We show that Seg(A) = co(A) for any subset A in the metric space Md,MD =

({0, 1, . . . , d− 1}n,MD).

Proposition 15. Any segment in the metric spaceMd,MD = ({0, 1, . . . , d−1}n,MD)

is a convex set.

Proof. Any segments of the n-dimensional Manhattan space ({0, 1, . . . , d−1}n,MD)

is the Cartesian product of n segments of the one-dimensional space ({0, 1, . . . , d−
1},MD) [vDV93]. A segment of ({0, 1, . . . , d − 1},MD) is either a single element,
two consecutive elements, three consecutive elements, ..., or d consecutive ele-
ments. Hence, a segment of ({0, 1, . . . , d− 1},MD) is always a convex set. Since
a Cartesian product of convex sets remains convex [vDV93], any segment of the
n-dimensional Manhattan space ({0, 1, . . . , d− 1}n,MD) is also a convex set.

Let A be a set in the metric space Md,MD = ({0, 1, . . . , d − 1}n,MD) and let
s1, s2, . . . , sp be the p distinct segments that can be formed out of the elements of
A:

Seg(A) =
⋃

1≤j≤p

sj. (6.7)

A segment sj = [xj, yj] corresponds to the schema ∗Asj (1) ∗Asj (2) . . . ∗Asj (n), where
Asj(i) = [min{xj(i), yj(i)},max{xj(i), yj(i)}] is the set of admissible values at po-
sition i. We also recall that in the schema corresponding to co(A), the admissible
values at position i are the elements of [minx,y∈A{x(i), y(i)},maxx,y∈A{x(i), y(i)}].
We have the following result:

Lemma 18. In the metric space Md,MD = ({0, 1, . . . , d− 1}n,MD), the set Seg(A)

is convex for any subset A.

Proof. In the schema corresponding to co(A), the admissible values at position
i are the elements of [minx,y∈A{x(i), y(i)},maxx,y∈A{x(i), y(i)}]. This means that
there exists a segment sj such that co(A) = sj. As a result, Seg(A) = co(A) and
is therefore a convex set.
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Theorem 24. Let A be a set, the union Seg(A) of all the segments that can be
formed out of the elements of A is equal to the convex hull co(A) of A in the metric
space Md,MD = ({0, 1, . . . , d− 1}n,MD).

Proof. Since the set Seg(A) is convex, it is equal to the set co(A) by Theorem
19.

Example 43. In the metric space ({0, 1, 2}4,MD), let A = {0012, 2110, 2011}. We
have that:

Seg(A) = [0012, 2110] ∪ [0012, 2011] ∪ [2110, 2011], (6.8)

= ∗ ∗01 1 ∗ ∪ ∗ 01 ∗12 ∪ 2 ∗01 1∗01, (6.9)

and co(A) = ∗ ∗01 1∗. We can see that co(A) = [0012, 2110] and Seg(A) = co(A).

6.2 Schemata corresponding to Convex Sets

The notion of schemata [H+92] is used to define the convex canonical level sets
of a quasi-concave landscape [MS17]. Schemata corresponding to convex sets
of the metric space ({0, 1, . . . , d − 1}n,HD) and the metric space ({0, 1, . . . , d −
1}n,MD) are determined. We shall:

• Prove that any schema corresponds to a convex set for the Hamming dis-
tance,

• Determine the schemata corresponding to a convex set for the Manhattan
distance.

6.2.1 Hamming distance

We first show that all schemata are convex sets in the metric space ({0, 1, . . . , d−
1}n,HD).

Corollary 23. Any schema in the metric space Md,HD is a convex set.

Proof. Let S be a schema in the metric space Md,HD, whose admissible values at
position i are the elements of a subset AS(i) of {0, 1, . . . , d− 1} for 0 ≤ i ≤ n− 1.
Let x and y be two elements of S. We show that the segment [x, y] is contained
in S.

Let z ∈ [x, y], the value of z(i) is either x(i) or y(i). As both x and y belong to
S, then x(i) and y(i) belong to the set AS(i) of admissible values at position i of
S. Hence, z(i) also belongs to AS(i). Thus, [x, y] is contained in S. Therefore, the
schema S is a convex set.
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6.2.2 Manhattan distance

We now determine the schemata that are convex sets in the metric space ({0, 1, . . . , d−
1}n,MD).

Corollary 24. Let 0 ≤ k ≤ l ≤ d−1 and let [k, l] denote the set {k, k+1, . . . , l−1, l}.
The only convex schemata of the metric space ({0, 1, . . . , d− 1}n,MD) are those
that only use symbols ∗[k,l] and/or ∗ and/or fixed values.

Proof. Let S be a schema in the metric space Md,MD, whose admissible values at
position i are the elements of a subset AS(i) of {0, 1, . . . , d− 1} for 0 ≤ i ≤ n− 1.

Let x and y be two elements of S. We determine the conditions under which
the segment [x, y] is contained in S.

Let z ∈ [x, y], the value of z(i) belongs to [min{x(i), y(i)},max{x(i), y(i)}]. As
both x and y belong to S, then x(i) and y(i) belong to the set AS(i) of admissible
values at position i of S. Hence, z(i) belongs to AS(i) if:

[min{x(i), y(i)},max{x(i), y(i)}] ⊆ AS(i). (6.10)

In order to ensure that [x, y] is contained in S for any x, y ∈ S, we must ensure
that the inclusion above holds for any x(i), y(i) ∈ AS(i). Necessarily, AS(i) must
be a set of consecutive values such that:

AS(i) =

[
min

x(i),y(i)∈AS(i)
{x(i), y(i)}, max

x(i),y(i)∈AS(i)
{x(i), y(i)}

]
. (6.11)

Consequently, the number of distinct level sets A≥j is at most q = n when
the only symbol used is ∗ along with fixed values. In this case, the smallest ratio
between the size of two consecutive level sets is:

r = min
0≤j≤n−2

{| A≥j+1 | / | A≥j |},

=| {0, 1, . . . , d− 1}n−1 | / | {0, 1, . . . , d− 1}n |,

= 1/d.

An illustration is given in Figure 6.1 for ({0, 1, 2}5,MD).

6.3 Specification of the Runtime Analysis to Strings

on a Finite Alphabet

We specify the runtime result of the SES on a quasi-concave landscape of Chap-
ter 5 to strings on a finite alphabet, by considering the metric spaces M2,HD and
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A≥5 A≥4 A≥1 A≥0 = {0, 1, 2}5

1 1 ∗ ∗

1 1 1 ∗

2 2 ∗. . . ∗

0 ∗ ∗ ∗

2 2 ∗ ∗

( ( (. . . (

Increasing fitness

Figure 6.1: Convex canonical level sets in the metric space ({0, 1, 2}5,MD). A
position that can take any value belonging to {0, 1, 2} is marked with ∗. Two
different positions may be fixed to the same value or to two distinct values.

Md,MD for d ≥ 2.

6.3.1 Hamming distance

The sets Seg(A) and co(A) coincide for any subset A of the metric space M2,HD.
This need not be the case in the metric spaces Md,HD, where d ≥ 3. Thus, we
restrict our analysis to the metric space M2,HD.

We first estimate PCov
M2,HD

(m) which is a lower bound on the probability for cov-
ering a convex set C of M2,HD with m samples from C.

Lemma 19. For any convex set C of the metric space M2,HD we have PCov
C (m) ≥

PCov
M2,HD

(m), where:

PCov
M2,HD

(m) ≥ 1− 2n

(
1− 1

4

)m
.

Proof. We will estimate:

PCov
Md,HD

(m) = Pr[co(P ) = Md,HD | P = NonUnifm(Md,HD)], (6.12)

for d = 2.

We saw in Corollary 23 that any schema corresponds to a convex set in the
metric space Md,HD. In particular, the schema corresponding to the entire search
space is the only schema with the largest number of positions that are free to take
more than one value. Moreover, each of these free positions take the maximum
number of possible values. Therefore, the schema corresponding to any other
convex set has at most n free positions. Each of these positions is free to take at
most d values.
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Let us now compute the probability Pr[co(P ) = Md,HD | P = NonUnifm(Md,HD)]

for covering the entire search space from sampling m points from it. The schema
corresponding to the entire search space is ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸

n times

.

The don’t care symbol is obtained at some position when each of the values
0, 1, . . . , d− 1 appears at least once at this position. The probability that a value
appears at this position in ei is 1

dwi
. The probability that this value never appears at

this position in ei is therefore 1− 1
dwi

. The probability that this value never appears
at this position in e1, e2, ..., and em is therefore:

m∏
i=1

(
1− 1

dwi

)
. (6.13)

The probability that the value 0 never appears at this position OR the value 1 OR
... OR the value d− 1 is:

d
m∏
i=1

(
1− 1

dwi

)
≤ d

(
1− 1

dmax1≤i≤m wi

)m
. (6.14)

Hence, the probability that each value appears at least once at that position is:

1− d
m∏
i=1

(
1− 1

dwi

)
≥ 1− d

(
1− 1

dmax1≤i≤m wi

)m
. (6.15)

Thus, the probability for obtaining the don’t care symbol at n positions is:[
1− d

m∏
i=1

(
1− 1

dwi

)]n
≥
[
1− d

(
1− 1

dmax1≤i≤m wi

)m]n
. (6.16)

Hence, the probability for obtaining the schema ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸
n times

is at least:

[
1− d

(
1− 1

dmax1≤i≤m wi

)m]n
≥ 1− dn

(
1− 1

dmax1≤i≤m wi

)m
, (6.17)

using Bernoulli’s inequality. The probability for obtaining a schema with n′ free
positions where each free position can take at most d′ values is at least:

1− d′n′
(

1− 1

dmax1≤i≤m wi

)m
. (6.18)

As d′ ≤ d and n′ ≤ n, we have:

1− d′n′
(

1− 1

dmax1≤i≤m wi

)m
≥ 1− dn

(
1− 1

dmax1≤i≤m wi

)m
. (6.19)

By Corollary 21, all weights are bounded above by two. The result follows.

101



Theorem 25. Let us consider a quasi-concave landscape onM2,HD, whose canon-
ical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The SES with
population size µ finds a global optimum within at most q generations and µq

fitness evaluations with probability at least:

1− 2n(2q + 1) exp

(
− 1

18
· r2µ

)
. (6.20)

Proof. We estimate a lower bound on
[
PCov
Md,HD

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
for

d = 2. [
PCov
Md,HD

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
,

≥

1− dn
(

1− 1

d2

)2r2µ
3

q+1

− q exp

(
−r

2µ

18

)
,

≥

1− dn(q + 1)

(
1− 1

d2

)2r2µ
3

− q exp

(
−r

2µ

18

)
,

≥ 1− dn(q + 1) exp

(
−2r2µ

3d2

)
− q exp

(
−r

2µ

18

)
,

≥ 1− dn(2q + 1) exp

[
−min

(
2

3d2
,

1

18

)
· r2µ

]
.

The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.

Corollary 25. Let us consider a quasi-concave landscape onM2,HD, whose canon-
ical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The SES with
population size:

µ ≥ 18 ln [4n(2q + 1)]

r2
. (6.21)

finds a global optimum within 2q expected generations and 2µq expected fitness
evaluations with probability at least 0.5.

Proof. The result follows from solving in µ the inequality:

1− 2n(2q + 1) exp

(
− 1

18
· r2µ

)
≥ 1

2
. (6.22)

Let one run of the SES be performed in q generations. If the population size
satisfies the condition of Corollary 25, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,
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the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

6.3.2 Manhattan distance

We first estimate the probability PCov
Md,MD

(m) which is a lower bound on the proba-
bility for covering a convex set C of Md,MD with m samples from C.

Lemma 20. We assume that d ≥ 2, for any convex set C of the metric space
Md,MD we have PCov

C (m) ≥ PCov
Md,MD

(m), where:

PCov
Md,MD

(m) ≥ 1− 2n

(
1− 1

d2

)m
.

Proof. We saw in Corollary 24 that schemata using only the symbol ∗ and/or ∗[k,l]
and/or fixed values correspond to a convex set in the metric space Md,MD. In par-
ticular, the schema corresponding to the entire search space is the only schema
with the largest number of positions that are free to take more than one value.
Moreover, each of these free positions take the maximum number of possible val-
ues. Therefore, the schema corresponding to any other convex set has at most n
symbols ∗.

Let us now compute the probability Pr[co(P ) = Md,MD | P = NonUnifm(Md,MD)]

for covering the entire search space from sampling m points from it. The schema
corresponding to the entire search space is ∗ ∗ ∗ · · · ∗︸ ︷︷ ︸

n times

.

The don’t care symbol is obtained at some position when each of the values
0 and d − 1 appears at least once at this position. The probability that a value
appears at this position in ei is 1

dwi
. The probability that this value never appears

at this position in ei is therefore 1 − 1
dwi

. The probability that this value never
appears at this position in e1, e2, ..., and em is therefore:

m∏
i=1

(
1− 1

dwi

)
. (6.23)

The probability that the value 0 never appears at this position OR the value d− 1

never appears at this position is:

2
m∏
i=1

(
1− 1

dwi

)
≤ 2

(
1− 1

dmax1≤i≤m wi

)m
. (6.24)

Hence, the probability that each value appears at least once at that position is:

1− 2
m∏
i=1

(
1− 1

dwi

)
≥ 1− 2

(
1− 1

dmax1≤i≤m wi

)m
. (6.25)
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Thus, the probability for obtaining the don’t care symbol at n positions is:[
1− 2

m∏
i=1

(
1− 1

dwi

)]n
≥
[
1− 2

(
1− 1

dmax1≤i≤m wi

)m]n
, (6.26)

≥ 1− 2n

(
1− 1

dmax1≤i≤m wi

)m
, (6.27)

using Bernoulli’s inequality in the second line. The probability for obtaining a
schema with n′ free positions is at least:

1− 2n′
(

1− 1

dmax1≤i≤m wi

)m
. (6.28)

As n′ ≤ n, we have:

1− 2n′
(

1− 1

dmax1≤i≤m wi

)m
≥ 1− 2n

(
1− 1

dmax1≤i≤m wi

)m
. (6.29)

By Corollary 21, the largest wi is bounded above by two. The result follows.

Theorem 26. Let us consider a quasi-concave landscape onMd,MD, whose canon-
ical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The SES with
population size µ finds a global optimum within at most q generations and µq

fitness evaluations with probability at least:

1− 2n(2q + 1) exp

[
−min

(
2

3d2
,

1

18

)
· r2µ

]
. (6.30)

Proof. We estimate a lower bound on
[
PCov
Md,MD

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
.

[
PCov
Md,MD

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
,

≥

1− 2n

(
1− 1

d2

)2r2µ
3

q+1

− q exp

(
−r

2µ

18

)
,

≥

1− 2n(q + 1)

(
1− 1

d2

)2r2µ
3

− q exp

(
−r

2µ

18

)
,

≥ 1− 2n(q + 1) exp

(
−2r2µ

3d2

)
− q exp

(
−r

2µ

18

)
,

≥ 1− 2n(2q + 1) exp

[
−min

(
2

3d2
,

1

18

)
· r2µ

]
.

The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.
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Corollary 26. Let us consider a quasi-concave landscape onMd,MD, whose canon-
ical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The SES with
population size:

µ ≥ ln [4n(2q + 1)]

min
(

2
3d2

, 1
18

)
· r2

. (6.31)

finds a global optimum within 2q expected generations and 2µq expected fitness
evaluations with probability at least 0.5.

Proof. The result follows from solving in µ the inequality:

1− 2n(2q + 1) exp

[
−min

(
2

3d2
,

1

18

)
· r2µ

]
≥ 1

2
. (6.32)

Let one run of the SES be performed in q generations. If the population size
satisfies the condition of Corollary 26, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

6.3.3 Application to Leading Ones

Leading Ones (that we denote LO) is a pseudo-boolean function that returns
the number of leading ones in a binary string. In the metric space M2,HD =

({0, 1}n,HD), the canonical level sets of Leading Ones are of the form:

A≥j = {x ∈ {0, 1}n | LO(x) ≥ j}, (6.33)

= 11 · · · 1︸ ︷︷ ︸
j times

∗ ∗ · · · ∗︸ ︷︷ ︸
n−j times

. (6.34)

Leading Ones is therefore a quasi-concave problem where q = n and r = 0.5

[MS17].

Theorem 27. In the metric space M2,HD = ({0, 1}n,HD), Leading Ones is solved
in O(n lnn) fitness evaluations by the SES when the population size is at least
72 ln[4n(2n+ 1)].

Proof. We apply the result of Corollary 25 to Leading Ones by replacing q and r
with their respective values for Leading Ones and by replacing d with 2.

6.3.4 Other Applications

The fitness SXa(b) of a string b is given by the length of the longest suffix of a that
is also a suffix of b.
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Example 44. In {0, 1, 2}4, let a = 2011 and let b = 1021. The longest suffix of a
that is also a suffix of b is 1. Hence, the fitness SXa(b) of b is 1.

Proposition 16. Let a be a fixed string of {0, 1, · · · , d−1}n. The fitness landscape
({0, 1, · · · , d−1}n, SXa,MD) (resp. ({0, 1, · · · , d−1}n, SXa,HD)) is quasi-concave
with parameters q = n and r = 1

d
.

Proof. It is enough to define the canonical level sets of the problem and to show
that they are convex sets in the metric space ({0, 1, · · · , d − 1}n,MD). Let a =

a1a2 · · · an, the possible lengths of a suffix of a are: n, n− 1, . . . , 2, 1, and 0.
Let A≥j be the canonical level set containing all strings whose fitness value is

at least j. This means that an element of A≥j is of the form:

a′1 · · · a′n−jan−j+1 · · · an−1an, (6.35)

where 1 ≤ j ≤ n. We have the following results, using the same notations as in
Theorem 14:

A≥0 = ∗ ∗ · · · ∗

A≥1 = ∗ ∗ · · · ∗ an
A≥2 = ∗ ∗ · · · ∗ an−1an
· · ·

A≥k = ∗ ∗ · · · ∗ an−k+1 · · · an
· · ·

A≥n = {a1a2 · · · an}

By a similar proof to that of Proposition 4), we find that each canonical level set
is a convex set in the metric space ({0, 1, · · · , d − 1}n,MD). Moreover, A≥j+1 is
always contained in A≥j by construction. The number q + 1 of distinct level sets
is therefore n + 1. The smallest ratio r between the sizes of two consecutive
canonical level sets is 1

d
. The same reasoning is used along Proposition 2 for the

metric space ({0, 1, · · · , d− 1}n,HD)).

Remark 3. Let a be a fixed string of {0, 1, · · · , d − 1}n. For any string b of
{0, 1, · · · , d − 1}n, let SPa(b) be the length of the longest prefix of a that is also a
prefix of b. Using the same reasoning as above, we also find that the fitness land-
scape ({0, 1, · · · , d − 1}n, SPa,MD) (resp. ({0, 1, · · · , d − 1}n, SPa,HD)) is quasi-
concave. In particular, for d = 2 and a = 11 · · · 1 the fitness function SPa is Leading
Ones.

Theorem 28. In the metric space ({0, 1, · · · , d − 1}n,MD), if the population size
is at least:

µ ≥ d2

min
(

2
3d2
, 1
8

) ln[4n(2n+ 1)], (6.36)
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then the SES finds the longest suffix of a fixed string of {0, 1, · · · , d−1}n appearing
as a suffix, with probability at least 0.5.

Proof. By Proposition 16 and Corollary 26.

Let one run of the SES be performed in q = n generations. If the population
size satisfies the condition of Theorem 28, then the expected number of runs
before finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2.

Hence, the expected number of generations and the expected number of fitness
evaluations needed for finding a global optimum are respectively 2q = 2n and
2µq = 3d4n ln[4n(2n+ 1)] for d ≥ 3.

6.4 SES versus CS

We compare the SES to the CS by looking at the probability for covering the
search space entirely, and the smallest population size for which a global optimum
is found.

6.4.1 Hamming distance

M2,HD = ({0, 1}n,HD) is the only metric space on strings on finite alphabets where
the sets Seg(A) and co(A) coincide for any subset A. As a result, the analysis of
the SES can only be done on M2,HD while the analysis of the CS can be done on
Md,HD for d ≥ 2.

Probability for covering the search space entirely

The probability PCov
M2,HD

(m) that the convex hull of m elements sampled uniformly
at random from {0, 1}n is equal to {0, 1}n is bounded below by

1− 2n

(
1− 1

4

)m
for the SES, while it is bounded below by

1− 2n

(
1− 1

2

)m
for the CS. The probability for covering {0, 1}n entirely is higher for CS.

Population Size Threshold for finding a Global Optimum

We saw that when the population size of the CS (resp. SES) exceeds a certain
threshold µ0, then the probability for finding a global optimum also exceeds 0.5.
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In particular, if one run of the CS (resp. SES) is performed in q generations,
then the expected number of generations and the expected number of fitness
evaluations needed for finding a global optimum are respectively 2q and 2µ0q. We
are interested in comparing the population size threshold of the CS to that of the
SES.The population size threshold of the SES is

µ0 =
18 ln [4n(2q + 1)]

r2
,

while the population size threshold of the CS is

µ0 =
8 ln[4n(2q + 1)]

r
.

The smallest population size threshold is obtained for the CS.

6.4.2 Manhattan distance

The sets Seg(A) and co(A) coincide for any subsetA of the metric spaceMd,MD for
d ≥ 2. Hence, the analysis of the SES does not require any dimension restriction.

Probability for covering the search space entirely

The probability PCov
Md,MD

(m) that the convex hull of m elements sampled uniformly
at random from {0, 1, . . . , d−1}n is equal to {0, 1, . . . , d−1}n is bounded below by

1− 2n

(
1− 1

d2

)m
for the SES, while it is bounded below by

1− 2n

(
1− 1

d

)m
for the CS. The probability for covering {0, 1}n entirely is higher for CS.

Population Size Threshold for finding a Global Optimum

We saw that when the population size of the CS (resp. SES) exceeds a certain
threshold µ0, then the probability for finding a global optimum also exceeds 0.5.
In particular, if one run of the CS (resp. SES) is performed in q generations,
then the expected number of generations and the expected number of fitness
evaluations needed for finding a global optimum are respectively 2q and 2µ0q. We
are interested in comparing the population size threshold of the CS to that of the
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SES.The population size threshold of the SES is

µ0 =
ln [4n(2q + 1)]

min
(

2
3d2

, 1
18

)
· r2

,

while the population size threshold of the CS is

µ0 =
4d ln[4n(2q + 1)]

r
.

The smallest population size threshold is obtained for the CS when d ≥ 5.

6.4.3 Summary

Due to the restrictions imposed by the choice of analysis used, the SES has only
been studied on M2,HD for the Hamming distance. For the Manhattan distance
however, the SES could be studied on any metric space Md,MD for d ≥ 2.

The probability for covering the search space entirely is larger for the CS for
both metric spaces. The smallest population size threshold for which a global
optimum is found is smaller for the CS in M2,HD. In the metric space Md,MD, the
smallest population size threshold for which a global optimum is found:

• depends on the values of d and r when 2 ≤ d ≤ 4,

• is obtained for the CS for d ≥ 5.

In the metric space ({0, 1}n,HD), both the CS and the SES solve Leading Ones
within O(n lnn) fitness evaluations.

We conclude that in general, the CS and the SES need not be equivalent on a
quasi-concave landscape of strings for the Hamming and the Manhattan distance.
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Chapter 7

SES on permutations

We aim to specify the analysis of the SES on quasi-concave landscapes to per-
mutations, in metric spaces where the sets Seg(A) and co(A) coincide for any
subset A. However, none of the usual metrics on Sn satisfy this property. Hence,
we bring the problem back to strings by considering a bijection ψ between Sn and
a subset of {0, 1, . . . , n−1}n−1. We will consider the same metrics used in [MS17]
for the analysis of the SES:

• The Hamming distance HD,

• The Manhattan distance MD.

We then compare the runtime result of the SES to that of the CS.
We show that the sets Seg(A) and co(A) do not coincide for all subsets of the

metric spaces (Sn, T ), (Sn, UL) and (Sn, R) in Section 7.1.1. We show that the
metric space (ψ(Sn),MD) is the only metric space satisfying the desired property
for n ≥ 2 in Section 7.1.2. The runtime analysis is then done in Section 7.2.
Finally, the SES and the CS are compared in Section 7.2.1.

7.1 Convexity of the Set of Reachable solutions

For the needs of our analysis, we must restrict our study to metric spaces where
the set of reachable solution is always a convex set. That is, the set Seg(A)

always coincides with the set co(A) for any subset A. Hence, we will test various
metrics on permutations for this property. We will also test the Hamming and the
Manhattan distance, which are metrics on the string-form of permutations (see
Section 4.7 of Chapter 4).

7.1.1 Usual metrics on Permutations

We study the convexity of the set of reachable solutions in the metric spaces
(Sn, K), (Sn, T ), (Sn, UL), and (Sn, R). That is, we determine whether the sets
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Seg(A) and co(A) coincide for any subset A.

Kendall’s τ metric

We show a condition on a subset A of the metric space (Sn, K) under which the
sets Seg(A) and co(A) coincide. Recall that ≺w denotes the weak order on Sn.

Proposition 17. Let A be a subset in the metric space (Sn, K). The union Seg(A)

of all the segments that can be formed out of the elements of A is equal to the
convex hull co(A) of A if both the lowest upper bound (LUB) and the greatest
lower bound (GLB) of A (with respect to the weak order ≺w) belong to A.

Proof. As LUB(A) ≺w GLB(A), we have:

[LUB(A),GLB(A)]K = [LUB(A),GLB(A)]≺w . (7.1)

We also have that:
A ⊆ [LUB(A),GLB(A)]≺w . (7.2)

By Theorem 4, [LUB(A),GLB(A)]≺w is a convex set with respect to the Kendall’s
τ metric. Hence,

co(A) ⊆ [LUB(A),GLB(A)]≺w . (7.3)

If both LUB(A) and GLB(A) belong to A, then [LUB(A),GLB(A)]≺w is contained
in Seg(A). In this case, Seg(A) and co(A) must coincide as the set Seg(A) is
always contained in the set co(A) for any subset A.

Cayley metric

We show that there exist subsets A of the metric space (Sn, T ) such that the sets
Seg(A) and co(A) do not coincide. Recall that ≺ denotes the strong order on Sn.

Proposition 18. Let σ and τ be two elements of the metric space (Sn, T ) such
that σ ≺ τ . The set Seg({σ, τ}) = [σ, τ ]T need not be equal to the set co({σ, τ}).

Proof. Let σ and τ be two elements of Sn such that α ≺ τ , we have:

[σ, τ ]T = [σ, τ ]≺. (7.4)

By Theorem 5, [σ, τ ]≺ need not be a convex set with respect to the Cayley metric.
As a result, Seg({σ, τ}) need not be equal to co({σ, τ}).
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Ulam metric

We show that there exist subsets A of the metric space (Sn, UL) such that the
sets Seg(A) and co(A) do not coincide. Recall that Aac(σ−1 ◦ τ) is the set:

{id} ∪
UL(σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
UL(σ,τ)∏
i=1

τi ∈ Pac(σ−1 ◦ τ)

 ,

where Pac(σ−1 ◦ τ) is the set of all possible ways to write σ−1 ◦ τ as a minimal
product of adjacent cycles.

Proposition 19. Let σ and τ be two elements of the metric space (Sn, UL) such
that τ = σc1c2, where the ci are two disjoint adjacent cycles. The set Seg({σ, τ}) =

[σ, τ ]UL is not equal to co({σ, τ}).

Proof. By Theorem 8, [σ, τ ]UL is a convex set iff Aac(σ−1 ◦ τ) is a subgroup of
(Sn, ◦). As the cycles ci are disjoint, the only other way to write the product c1c2 is
c2c1. Thus,

Aac(σ−1 ◦ τ) = {id, c1, c2, c1c2}. (7.5)

The set Aac(σ−1 ◦ τ) can never be a subgroup of (Sn, ◦). Indeed, the only possible
inverse for c1 is c1c2. In this case, the inverse of c2 has to be c21 and c21 is not in the
set.

Reversal metric

We show that there exist subsets A of the metric space (Sn, R) such that the sets
Seg(A) and co(A) do not coincide. Recall that Ar(τ ◦ σ−1) is the set:

{id} ∪
R(σ,τ)⋃
k=1


k∏
i=1

τi

∣∣∣∣∣∣
R(σ,τ)∏
i=1

τi ∈ Pr(τ ◦ σ−1)

 ,

where Pr(τ ◦ σ−1) is the set of all possible ways to write τ ◦ σ−1 as a minimal
product of reversals.

Proposition 20. Let σ and τ be two elements of the metric space (Sn, R) such that
τ = r1r2σ, where the ri are two disjoint reversals. The set Seg({σ, τ}) = [σ, τ ]R is
not equal to the set co({σ, τ}).

Proof. By Theorem 9, [σ, τ ]R is a convex set iffAr(τ ◦σ−1) is a subgroup of (Sn, ◦).
Each reversal ri is a product of disjoint transpositions. As the reversal are them-
selves disjoint, the only other way to write the product r1r2 is r2r1. Thus,

Ar(τ ◦ σ−1) = {id, r1, r2, r1r2}. (7.6)
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The set Ar(τ ◦ σ−1) can never be a subgroup of (Sn, ◦). Indeed, the only possible
inverse for r1 is r1r2. In this case, the inverse of r2 has to be r21 and r21 is not in the
set.

7.1.2 Hamming and Manhattan distances

Recall that a permutation of Sn is uniquely determined by a (n − 1)-uplet of
{0, 1, . . . , n−1}×{0, 1, . . . , n−2}×. . .×{0, 1}, which is a strict subset of {0, 1, . . . , n−
1}n−1. The bijection ψ between Sn and {0, 1, . . . , n − 1} × {0, 1, . . . , n − 2} ×
. . . × {0, 1} has been defined in Definition 19. By studying (ψ(Sn),HD) (resp.
(ψ(Sn),MD)), we bring the problem back to strings of the Hamming (resp. Man-
hattan) space.

We study the convexity of the set of reachable solutions in the metric spaces
(ψ(Sn),HD) and (ψ(Sn),MD). That is, we determine whether the sets Seg(A) and
co(A) coincide for any subset A.

Hamming distance

We show that the equality of the sets Seg(A) and co(A) depends on n:

Proposition 21. Let A be a subset in the metric space (ψ(Sn),HD). The set
Seg(A) need not be equal to co(A) for n > 3.

Proof. The metric space (ψ(Sn),HD) is contained in the metric space ({0, 1, . . . , n−
1}n−1,HD). Let A be a subset in the metric space ({0, 1, . . . , n − 1}n−1,HD). By
Corollary 22, the set Seg(A) need not be convex when n− 1 > 2. As a result, the
sets Seg(A) and co(A) need not coincide.

Manhattan distance

We have the following result:

Proposition 22. Let A be a subset in the metric space (ψ(Sn),MD). The set
Seg(A) is always equal to the set co(A).

Proof. The metric space (ψ(Sn),MD) is contained in the metric space ({0, 1, . . . , n−
1}n−1,MD). By Theorem 24, the set Seg(A) is always convex for any subset A
of ({0, 1, . . . , n− 1}n−1,MD). As a result, the sets Seg(A) and co(A) always coin-
cide.

7.2 Runtime Analysis

Among all the metric spaces considered, we showed that the set of reachable
solutions is always convex for the metric spaces: (ψ(S2),HD), (ψ(S3),HD), and
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(ψ(Sn),MD). Hence, we will restrict the analysis of the SES to the metric space
(ψ(Sn),MD).

We first estimate the probability PCov
ψ(Sn)

(m) which is a lower bound on the prob-
ability for covering a convex set C of (ψ(Sn),MD) with m samples from C.

Lemma 21. We assume that n ≥ 2, for any convex set C of the metric space
(ψ(Sn),MD) we have PCov

C (m) ≥ PCov
ψ(Sn)

(m), where:

PCov
ψ(Sn)(m) ≥ 1− 2(n− 1)

(
1− 1

n2

)m
.

Proof. We saw in Corollary 17 that schemata corresponding to a convex set of
the metric space (ψ(Sn),MD), only use a symbol of the form ∗[k,l] where [k, l] ⊆
[0, n − i] at position 1 ≤ i ≤ n − 1. The schema corresponding to the entire
search space is ∗ ∗[0,n−2] ∗[0,n−3] · · · ∗[0,1]. It is the only schema with the largest
number of positions that are free to take more than one value in the metric space
(ψ(Sn),MD). Moreover, each of its free positions takes the maximum number of
possible values. Therefore, the schema corresponding to any other convex set
has at most n− i possible values at position i (counting starts at 1).

Let us now compute the probability Pr[co(P ) = ψ(Sn) | P = NonUnifm(Sn)] for
covering the entire search space from sampling m points from it.

The symbol ∗[0,n−i] is obtained at position i when each of the values 0 and n−i
appears at least once at this position. The probability that a value appears at this
position in a sample ei is 1

nwi
, where wi denotes the weight of the sample ei. The

probability that this value never appears at this position in ei is therefore 1 − 1
nwi

.
The probability that this value never appears at this position in m samples e1, e2,
..., and em is therefore:

m∏
i=1

(
1− 1

nwi

)
. (7.7)

The probability that the value 0 never appears at this position OR the value n− i
never appears at this position is:

2
m∏
i=1

(
1− 1

nwi

)
≤ 2

(
1− 1

nmax1≤i≤m wi

)m
. (7.8)

Hence, the probability that each value appears at least once at that position is:

1− 2
m∏
i=1

(
1− 1

nwi

)
≥ 1− 2

(
1− 1

nmax1≤i≤m wi

)m
. (7.9)

Thus, the probability for obtaining the symbol ∗[0,n−i] at each position 1 ≤ i ≤ n−1
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is: [
1− 2

m∏
i=1

(
1− 1

nwi

)]n−1
≥
[
1− 2

(
1− 1

nmax1≤i≤m wi

)m]n−1
, (7.10)

≥ 1− 2(n− 1)

(
1− 1

nmax1≤i≤m wi

)m
, (7.11)

using Bernoulli’s inequality in the second line. By Corollary 21, the largest wi is
bounded above by two. The result follows.

Theorem 29. Let us consider a quasi-concave landscape on (ψ(Sn),MD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The
SES with population size µ finds a global optimum within at most q generations
and µq fitness evaluations with probability at least:

1− 2(n− 1)(2q + 1) exp

[
−min

(
2

3n2
,

1

18

)
· r2µ

]
. (7.12)

Proof. We estimate a lower bound on
[
PCov
ψ(Sn)

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
.

[
PCov
Mψ(Sn)

(
2r2µ

3

)]q+1

− q exp

(
−r

2µ

18

)
,

≥

1− 2(n− 1)

(
1− 1

n2

)2r2µ
3

q+1

− q exp

(
−r

2µ

18

)
,

≥

1− 2(n− 1)(q + 1)

(
1− 1

n2

)2r2µ
3

− q exp

(
−r

2µ

18

)
,

≥ 1− 2(n− 1)(q + 1) exp

(
−2r2µ

3n2

)
− q exp

(
−r

2µ

18

)
,

≥ 1− 2(n− 1)(2q + 1) exp

[
−min

(
2

3n2
,

1

18

)
· r2µ

]
.

The third line follows from Bernouilli’s inequality. The fourth line is due to the fact
that ln(1 + x) is bounded above by x whenever x < 0.

Corollary 27. Let us consider a quasi-concave landscape on (ψ(Sn),MD), whose
canonical level sets are: A≥0, A≥1, . . . , Aq. Let also r = min0≤j≤q

|A≥j+1|
|A≥j |

. The
SES with population size:

µ ≥ ln [4(n− 1)(2q + 1)]

min
(

2
3n2 ,

1
18

)
· r2

. (7.13)

finds a global optimum within 2q expected generations and 2µq expected fitness
evaluations with probability at least 0.5.
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Proof. The result follows from solving in µ the inequality:

1− 2(n− 1)(2q + 1) exp

[
−min

(
2

3n2
,

1

18

)
· r2µ

]
≥ 1

2
. (7.14)

Let one run of the SES be performed in q generations. If the population size
satisfies the condition of Corollary 27, then the expected number of runs before
finding a global optimum (i.e., the expected hitting time) is at most 1

0.5
= 2. Hence,

the expected number of generations and the expected number of fitness evalua-
tions needed for finding a global optimum are respectively 2q and 2µq.

7.2.1 SES versus CS

We compare the SES to the CS by looking at the probability for covering the
search space entirely, and the smallest population size for which a global optimum
is found.

Probability for covering the search space entirely

The probability PCov
ψ(Sn)

(m) that the convex hull of m elements sampled uniformly
at random from ψ(Sn) is equal to ψ(Sn) is bounded below by

1− 2(n− 1)

(
1− 1

n2

)m
for the SES, while it is bounded below by

1− 2(n− 1)

(
1− 1

n

)m
for the CS. The probability for covering ψ(Sn) entirely is higher for CS.

Population Size Threshold for finding a Global Optimum

We saw that when the population size of the CS (resp. SES) exceeds a certain
threshold µ0, then the probability for finding a global optimum also exceeds 0.5.
In particular, if one run of the CS (resp. SES) is performed in q generations,
then the expected number of generations and the expected number of fitness
evaluations needed for finding a global optimum are respectively 2q and 2µ0q. We
are interested in comparing the population size threshold of the CS to that of the
SES.The population size threshold of the SES is

µ0 =
ln [4(n− 1)(2q + 1)]

min
(

2
3n2 ,

1
18

)
· r2

,
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while the population size threshold of the CS is

µ0 =
2n

r
ln[8n(q + 1)].

The smallest population size threshold is obtained for the CS.

7.3 Summary

Due to the restrictions imposed by the choice of analysis used, the SES has
only been studied on (ψ(Sn),MD). The probability for covering the search space
entirely is larger for the CS. Moreover, the smallest population size threshold for
which a global optimum is found is obtained for the CS. We conclude that in
general, the CS and the SES need not be equivalent.
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Chapter 8

Generalized (1 + 1) EA

We aim to introduce a unifying runtime analysis of (1 + 1) EA across representa-
tions, by:

• defining a generalization of (1 + 1) EA across representations,

• defining a class of fitness landscapes that are solved in polynomial time by
instantiations of the generalized (1 + 1) EA.

To this end, we will use metric spheres and metric balls whose notions are re-
called in Section 8.1. The class of improving fitness landscapes that are parametrized
by a radius ρ > 0 is defined in Section 8.2. The generalization of (1+1) EA across
representations is given in Section 8.3. Finally, the runtime analysis is done in
Section 8.4. We find that the expected runtime of the generalized (1 + 1) EA on a
polynomially ρ-improving fitness landscape with at most polynomially many level
sets, is at most polynomial for a well chosen mutation parameter. The runtime
result is specified to metric spaces of strings on a finite alphabet and to a metric
space of permutations.

8.1 Spheres and Balls

We recall the notions of sphere and ball in a metric space (S, D), that are central
to the study of the generalized (1 + 1) EA.

Definition 24 (Sphere). Let R ≥ 0 and let x be a point of the metric space (S, D).
The sphere of radius R centred at x is the set of points of S whose distance to x
equals R:

Sx(R) = {y ∈ S | D(x, y) = R}. (8.1)

The notion of sphere can then be used to define the notion of ball.

Definition 25 (Ball). Let R ≥ 0 and let x be a point of the metric space (S, D).
The (closed) ball of radius R centred at x is the set of points of S whose distance
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to x is less than or equal to R:

Bx(R) = {y ∈ S | D(x, y) ≤ R}, (8.2)

=
⋃

0≤l≤R

{y ∈ S | D(x, y) = l}, (8.3)

=
⋃

0≤l≤R

Sx(l). (8.4)

8.1.1 Strings on a finite alphabet

Let d ≥ 2, we shall determine the spheres and the balls of the metric space
Md,D = ({0, 1, . . . , d− 1}n, D) for two different metrics:

• the Hamming distance,

• the Manhattan distance.

Hamming distance

Let x be an element of the metric space Md,HD. The sphere Sx(R) is the set of
strings of length n that differ from x by exactly R positions.

Example 45. Let n = 3, and x = 002 is an element of M3,HD, we have:

Sx(2) = ∗12 ∗12 2 ∪ ∗120 ∗01 ∪ 0 ∗12 ∗01.

The ball Bx(2) is therefore given by:

Bx(2) =
⋃

0≤l≤2

Sx(2),

= Sx(0) ∪ Sx(1) ∪ Sx(2),

= {002} ∪ (∗1202 ∪ 0 ∗12 2 ∪ 00∗01) ∪ (∗12 ∗12 2 ∪ ∗120 ∗01 ∪ 0 ∗12 ∗01).

Manhattan distance

Let x be an element of the metric space Md,MD. The sphere Sx(R) is the set of
strings y of length n that satisfy:

n∑
i=1

| xi − yi |= R. (8.5)

Example 46. Let n = 3, and x = 002 is an element of M3,MD, we have:

Sx(2) = {202, 022, 112, 011, 101}.
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The ball Bx(2) is therefore given by:

Bx(2) =
⋃

0≤l≤2

Sx(2),

= Sx(0) ∪ Sx(1) ∪ Sx(2),

= {002} ∪ {001, 102, 012} ∪ {202, 022, 112, 011, 101}.

8.1.2 Permutations

We shall determine the spheres and the balls of the metric space (Sn, D), for the
following metrics:

• The Kendall’s τ metric,

• The Cayley metric,

• The Ulam metric,

• The reversal distance.

Kendall’s τ metric

Let σ be an element of the metric space (Sn, K). The sphere Sσ(R) is the set of
permutations of Sn that are obtained from σ by swapping a minimum of R pairs of
values whose positions are adjacent (see Definition 10).

Example 47. Let σ = 213 be an element of (S3, K), we have:

Sσ(2) = {132, 321}.

The ball Bσ(2) is therefore given by:

Bσ(2) =
⋃

0≤l≤2

Sσ(2),

= Sσ(0) ∪ Sσ(1) ∪ Sσ(2),

= {213} ∪ {123, 231} ∪ {132, 321}.

Cayley metric

Let σ be an element of the metric space (Sn, T ). The sphere Sσ(R) is the set of
permutations of Sn that are obtained from σ by swapping a minimum of R pairs of
values (see Definition 11).

Example 48. Let σ = 213 be an element of (S3, T ), we have:

Sσ(2) = {132, 321}.
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The ball Bσ(2) is therefore given by:

Bσ(2) =
⋃

0≤l≤2

Sσ(2),

= Sσ(0) ∪ Sσ(1) ∪ Sσ(2),

= {213} ∪ {123, 231, 312} ∪ {132, 321},

= S3.

Ulam metric

Let σ be an element of the metric space (Sn, UL). The sphere Sσ(R) is the set
of permutations of Sn that are obtained from σ by performing a minimum of R
character displacements (see Definition 12).

Example 49. Let σ = 213 be an element of (S3, UL), we have:

Sσ(2) = {312}.

The ball Bσ(2) is therefore given by:

Bσ(2) =
⋃

0≤l≤2

Sσ(2),

= Sσ(0) ∪ Sσ(1) ∪ Sσ(2),

= {213} ∪ {123, 231, 132, 321} ∪ {312},

= S3.

Reversal distance

Let σ be an element of the metric space (Sn, R). The sphere Sσ(R) is the set
of permutations of Sn that are obtained from σ by performing a minimum of R
reversals (see Definition 13).

Example 50. Let σ = 213 be an element of (S3, R), we have:

Sσ(2) = {132, 321}.

The ball Bσ(2) is therefore given by:

Bσ(2) =
⋃

0≤l≤2

Sσ(2),

= Sσ(0) ∪ Sσ(1) ∪ Sσ(2),

= {213} ∪ {123, 231, 312} ∪ {132, 321},

= S3.
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Notice that the spheres and the balls of the metric space (Sn, R) coincide with the
spheres and the balls of the metric space (Sn, T ) for n = 3. This need not be true
for n larger than or equal to 4.

8.2 ρ-improving fitness landscapes

Recall that a landscape is rugged if the number of local optima is high [GT12]. We
define a parametrized class of fitness landscapes that that captures the number
of local optima per metric ball of some fixed radius. We shall consider two distinct
parameters:

• A radius ρ that delimits the size of the metric balls of interest,

• The minimal number of strictly fitter solutions in a metric ball of radius ρ.
Fitnesses are compared to the fitness of the centre of the ball.

We will start with the following definition:

Definition 26. Let ρ > 0, a solution x in a fitness landscape (S, f,D) is ρ-
improving iff there exists a strictly fitter solution y (with respect to x) on the sphere
Sx(ρ).

We can use the word increasing (resp. decreasing) instead of the word im-
proving for a maximizing (resp. minimizing) problem.

Example 51. In the fitness landscape ({0, 1}3,LeadingOnes,HD), the solution 010

is 1-increasing. Indeed, 110 is a strictly fitter solution than 010 and HD(010, 110) =

1.

Definition 27. A fitness landscape (S, f,D) is ρ-improving iff all its elements that
can improve (i.e., that are not global optima) are l-improving for 0 < l ≤ ρ.

Indeed, a global maximum (resp. minimum) can not get any more fitter for a
maximizing (resp. minimizing) problem. Let Impx(l) denote the number of solu-
tions y that are strictly fitter than x and such that D(x, y) = l.

Definition 28. A polynomially ρ-improving landscape is a ρ-improving landscape
such that the number of strictly fitter solutions on a sphere of radius l is at least a
polynomial fraction of the size of the sphere Sx(l) for 0 < l ≤ ρ.

The number of local optima in a ball of radius ρ of a polynomially ρ-improving
fitness landscape, is at least a polynomial fraction of the size of the largest ball of
radius ρ.

We shall now give examples of polynomially ρ-improving landscapes from the
litterature.
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8.2.1 Strings on a finite alphabet

Let d ≥ 2, we shall consider fitness landscapes on the metric space Md,HD =

({0, 1, . . . , d− 1}n,HD).

Leading Ones

Leading Ones returns the largest number of successive ones starting from the
first position of a binary string.

Lemma 22. Let x be an element of the fitness landscape ({0, 1}n,LeadingOnes,HD).
The number of solutions y that are strictly fitter than x and satisfying HD(x, y) = 1,
is denoted Impx(1). We have:

Impx(1) ≥ 1, (8.6)

for any solution x that is not the global maximum.

Proof. We shall determine the minimal number of strictly fitter solutions, with re-
spect to an element x of the fitness lanscape ({0, 1}n,LeadingOnes,HD), on the
sphere Sx(1). We will consider a maximizing problem.

In the metric space M2,HD, the sphere Sx(1) has
(
n
1

)
distinct elements. Indeed,

HD(x, y) = 1 iff x and y differ in 1 position. Moreover, there is 2 − 1 value to
choose from for each differing position of y (the value that is already taken by x
must be removed). Among these

(
n
1

)
elements of Sx(1), a strictly fitter (or higher)

solution y is obtained when LeadingOnes(y) is strictly larger than LeadingOnes(x).
We shall determine the smallest number of strictly higher solutions that can be
obtained overall x in the fitness landscape ({0, 1}n,LeadingOnes,HD).

• If xi = 1 for all positions i, then x is the global maximum and Impx(1) = 0.

• If there exists at least least one position i0 such that xi0 = 0, then Impx(1) ≥
1.

Thus, Impx(1) ≥ 1 unless x is the global maximum.

Theorem 30. The fitness landscape ({0, 1}n,LeadingOnes,HD) is polynomially
1-increasing.

Proof. We estimate the ratio |Sx(1)|
Impx(1)

for any solution x that is not a global maxi-
mum, by using the results of Lemma 22. We have:

| Sx(1) |
Impx(1)

=
n

Impx(1)
,

≤ n.

Hence, |Sx(1)|
Impx(1)

is at most polynomial in n for any solution x that is not a global
maximum. The result follows.
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Linear functions

Let w0, w1, . . . , wn be non-zero real numbers. We consider the following linear
function [DJS11]:

f : {0, 1, . . . , d− 1}n −→ R,

x 7−→ w0 +
n∑
i=1

wixi.

Lemma 23. Let x be an element of the fitness landscape ({0, 1, . . . , d−1}n, f,HD).
The number of solutions y that are strictly fitter than x and satisfying HD(x, y) = l,
is denoted Impx(l). We have:

• If xi = 0 for all wi < 0 and xi = d − 1 for all wi > 0, then x is a global
maximum and Impx(l) = 0.

• If xi = d − 1 for all wi > 0 and there exists at least one wi0 < 0 such that
xi0 6= 0, then:

Impx(l) ≥
(

#{wi < 0}
l

)
. (8.7)

• If xi = 0 for all wi < 0 and there exists at least one wi0 ≥ 0 such that
xi0 6= d− 1, then:

Impx(l) ≥
(

#{wi > 0}
l

)
. (8.8)

• If there exists at least one wi0 < 0 such that xi0 6= 0 and there exists at least
one wi1 ≥ 0 such that xi1 6= d− 1, then:

Impx(l) ≥
(

#{wi < 0}
l

)
+

(
#{wi > 0}

l

)
. (8.9)

Proof. We shall determine the minimal number of strictly fitter solutions, with re-
spect to an element x of the fitness lanscape ({0, 1, . . . , d − 1}n, f,HD), on each
of the spheres Sx(l) for 0 < l ≤ n. We will consider a maximizing problem.

Let us fix a radius l. In the metric space Md,HD, the sphere Sx(l) has (d−1)l
(
n
l

)
distinct elements. Indeed, HD(x, y) = l iff x and y differ in l positions. Moreover,
there are d − 1 values to choose from for each differing position of y (the value
that is already taken by x must be removed). Among these (d − 1)l

(
n
l

)
elements

of Sx(l), a strictly fitter (or higher) solution y is obtained when f(y) is strictly larger
than f(x). We shall determine the smallest number of strictly higher solutions that
can be obtained overall x in the fitness landscape ({0, 1, . . . , d − 1}n, f,HD). We
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have:

f(x) = w0 +
n∑
i=1

wixi, (8.10)

= w0 +
∑
wi>0

| wi | xi −
∑
wi<0

| wi | xi. (8.11)

We aim to increase the value of f(x) by changing the values at l positions of x. If
the position changed corresponds to a positive coefficient wi, then xi must take a
larger value. There are therefore (d − 1) − xi possible new values for a position
corresponding to a positive coefficient wi. If the position changed corresponds to
a negative coefficient wi, then xi must take a smaller value. There are therefore
xi possible new values for a position corresponding to a negative coefficient wi.
The l changing positions are taken from the n positions of x. A position either
corresponds to a positive coefficient, or to a negative coefficient.

The number of strictly higher solutions y with respect to x such that HD(x, y) =

l is therefore given by:

Impx(l)

=
l∑

k=0


(∑
wi<0

xi

)l−k(∑
wi>0

(d− 1)− xi

)k (
#{wi < 0}
l − k

)(
#{wi > 0}

k

) ,

≥

(∑
wi<0

xi

)l(
#{wi < 0}

l

)
+

(∑
wi>0

(d− 1)− xi

)l(
#{wi > 0}

l

)
.

The result follows.

Theorem 31. The fitness landscape ({0, 1, . . . , d − 1}n, f,HD) is polynomially ρ-
increasing for any constant ρ ≥ 1.

Proof. We estimate the ratio |Sx(l)|
Impx(l)

for any radius 0 < l ≤ n and any solution
x that is not a global maximum, by using the results of Lemma 23. Then, we
determine the values of l for which |Sx(l)|

Impx(l)
is at most polynomial in n.

• If xi = d − 1 for all wi > 0 and there exists at least one wi0 < 0 such that
xi0 6= 0, then:

| Sx(l) |
Impx(l)

≤
(d− 1)l

(
n
l

)(
#{wi<0}

l

) ,
≤

(d− 1)l
(
n
l

)(
#{wi<0}

1

) ,
≤

(d− 1)l
(
n
l

)
#{wi < 0}

,

≤ (d− 1)l
(
n

l

)
.
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• If xi = 0 for all wi < 0 and there exists at least one wi0 ≥ 0 such that
xi0 6= d− 1, then:

| Sx(l) |
Impx(l)

≤
(d− 1)l

(
n
l

)(
#{wi>0}

l

) ,
≤

(d− 1)l
(
n
l

)(
#{wi>0}

1

) ,
≤

(d− 1)l
(
n
l

)
#{wi > 0}

,

≤ (d− 1)l
(
n

l

)
.

• If there exists at least one wi0 < 0 such that xi0 6= 0 and there exists at least
one wi1 ≥ 0 such that xi1 6= d− 1, then:

| Sx(l) |
Impx(l)

≤
(d− 1)l

(
n
l

)(
#{wi<0}

l

)
+
(
#{wi>0}

l

) ,
≤

(d− 1)l
(
n
l

)(
#{wi<0}

1

)
+
(
#{wi>0}

1

) ,
≤

(d− 1)l
(
n
l

)
#{wi < 0}+ #{wi > 0}

,

≤
(d− 1)l

(
n
l

)
2

.

It follows that |Sx(l)|
Impx(l)

is polynomial in n if l is a constant.

Remark 4. The fitness landscape ({0, 1, . . . , d−1}n, f,HD) is also polynomially ρ-
decreasing for any constant ρ ≥ 1. This can be seen by noticing that the number
of strictly lower solutions y with respect to a solution x such that HD(x, y) = l is
given by:

Impx(l)

=
l∑

k=0


(∑
wi<0

xi

)l−k(∑
wi>0

(d− 1)− xi

)k (
#{wi > 0}
l − k

)(
#{wi < 0}

k

) .

Hence, the global minimum is obtained when xi = 0 for all wi > 0, and xi = d− 1

for all wi < 0.

Case of OneMax

OneMax is a linear function where d = 2, w0 = 0, and wi = 1 for all 1 ≤ i ≤ n.
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Lemma 24. Let x be an element of the fitness landscape ({0, 1}n,OneMax,HD).
The number of solutions y that are strictly fitter than x and satisfying HD(x, y) = l,
is denoted Impx(l). We have:

• If xi = 0 for all wi, then x is a global maximum and Impx(l) = 0.

• If there exists at least one wi0 such that xi0 6= 1, then:

Impx(l) ≥
(

#{wi > 0}
l

)
. (8.12)

Proof. Similar to the proof of Lemma 23.

Theorem 32. The fitness landscape ({0, 1}n,OneMax,HD) is polynomially ρ-increasing
for any constant ρ ≥ 1.

Proof. We estimate the ratio |Sx(l)|
Impx(l)

for any radius 0 < l ≤ n and any solution
x that is not a global maximum, by using the results of Lemma 24. Then, we
determine the values of l for which |Sx(l)|

Impx(l)
is at most polynomial in n.

If there exists at least one wi0 such that xi0 6= d− 1, then:

| Sx(l) |
Impx(l)

≤
(
n
l

)(
#{wi>0}

l

) ,
≤

(
n
l

)(
#{wi>0}

1

) ,
≤

(
n
l

)
#{wi > 0}

,

=

(
n
l

)
n
.

It follows that Impx(l)
|Sx(l)| is at least a polynomial fraction in n for any constant l ≥ 1.

Pseudo-Boolean monotone increasing polynomial

Let the wA’s be positive real numbers. We consider the following pseudo Boolean
monotone increasing polynomial [WW05]:

f : {0, 1}n −→ R,

x 7−→
∑

A⊆{1,2,...,n}

wA
∏
i∈A

xi.

The degree of a monomial
∏

i∈A xi is simply | A |. Whereas, the degree of f is
given by:

deg(f) = max
wA>0

| A | . (8.13)
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We recall the notions of activation and deactivation used in [WW05]. A monomial∏
i∈A xi is activated when all its xi’s are 1’s. A monomial is deactivated when at

least one of its xi’s is 0.

Lemma 25. Let x be an element of the fitness landscape ({0, 1}n, f,HD). The
number of solutions y that are strictly fitter than x and satisfying HD(x, y) = l, is
denoted Impx(l). We have:

• If x deactivates all the monomials, then x is a global minimum and

Impx(l) = 0.

• If x activates at least one monomial, then

Impx(l) ≥
(

minwA>0 | A |
l

)
. (8.14)

Proof. We shall determine the minimal number of strictly fitter solutions, with re-
spect to an element x of the fitness lanscape ({0, 1}n, f,HD), on each of the
spheres Sx(l) for 0 < l ≤ n. We will consider a minimizing problem.

Let us fix a radius l. In the metric space M2,HD, the sphere Sx(l) has
(
n
l

)
distinct elements. Indeed, HD(x, y) = l iff x and y differ in l positions. Moreover,
there is only one value to choose from for each differing position of y (the value
that is already taken by x must be removed). Among these

(
n
l

)
elements of Sx(l),

a strictly fitter (or lower) solution y is obtained when f(y) is strictly smaller than
f(x). We shall determine the smallest number of strictly lower solutions that can
be obtained overall x in the fitness landscape ({0, 1}n, f,HD). We have:

f(x) =
∑

A⊆{1,2,...,n}

wA
∏
i∈A

xi. (8.15)

We aim to decrease the value of f(x) by changing the values at l positions of x. If
the position changed corresponds to an activated monomial (i.e., xi appears in at
least one of the activated monomials), then xi is a 1. Changing xi into a 0 deacti-
vates all activated monomials in which it appears. Moreover, changing xi into a 0

can not activate any of the deactivated monomials in which it appears. Therefore,
changing a value at a position corresponding to an activated monomial always
yields a solution with a smaller fitness. If the position changed does not corre-
spond to an activated monomial (i.e., xi does not appear in any of the activated
monomials), then changing xi can not deactivate any of the activated monomi-
als. However, changing xi may activate the deactivated monomials in which it
appears. Consequently, changing a value at a position that does not correspond
to any activated monomial never yields a solution with a smaller fitness. A posi-
tion either corresponds to an activated monomial (A.M.) or not. The number of
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strictly lower solutions y with respect to x such that HD(x, y) = l is therefore given
by:

Impx(l) =

(
#{xi | xi appears in an A.M.}

l

)
.

We obtain the following results:

• If x deactivates all the monomials, then x is a global minimum and the set
of A.M. is empty. Thus, Impx(l) = 0.

• If x activates at least one monomial, then #{xi | xi appears in an A.M.} is at
least the degree of this activated monomial. Thus,

Impx(l) ≥
(

minwA>0 | A |
l

)
. (8.16)

Theorem 33. The fitness landscape ({0, 1}n, f,HD) is polynomially ρ-decreasing
for any constant ρ ≥ 1.

Proof. We estimate the ratio |Sx(l)|
Impx(l)

for any radius 0 < l ≤ n and any solution
x that is not a global minimum, by using the results of Lemma 25. Then, we
determine the values of l for which |Sx(l)|

Impx(l)
is at most polynomial in n.

If x activates at least one monomial, then:

| Sx(l) |
Impx(l)

=

(
n
l

)(
minwA>0|A|

l

) ,
=

n(n− 1) . . . (minwA>0 | A | +1)

(n− l)(n− l − 1) . . . (minwA>0 | A | −l + 1)
.

Impx(l)
|Sx(l)| is at least a polynomial fraction in n if l is a positive constant.

Remark 5. The fitness landscape ({0, 1}n, f,HD) is not ρ-increasing for any ρ <
minwA>0 | A |. Indeed, increasing the fitness consists of activating at least one
monomial. However, all the factors of a monomial must be set to 1 in order to
activate it. This means that the shortest distance between a solution x and a
strictly higher solution y is minwA>0 | A |.

8.2.2 Permutations

We shall consider a fitness landscape on the metric space (Sn, R), where R is the
reversal distance (see Definition 13).
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Euclidean TSP (cities in convex position)

We consider a set of n cities, that are in convex position in the Euclidean space.
In other words, each city is a vertex of the convex hull formed by the n cities in
the Euclidean space (R2, d).

The Euclidean TSP consists of minimizing the fitness function:

f : Sn −→ R,

σ 7−→ d(xσ(n), xσ(1)) +
n−1∑
i=1

d(xσ(i), xσ(i+1)).

[DHO+06] showed that all permutations that respect the ordering of the cities
around their convex hull are global minima.

Lemma 26. Let σ be an element of the fitness landscape (Sn, f, R). The number
of solutions τ that are strictly fitter than σ and satisfying R(σ, τ) = 1, is denoted
Impσ(1). We have:

Impσ(1) ≥ 1, (8.17)

for any solution σ that is not a global minimum.

Proof. We shall determine the minimal number of strictly fitter solutions, with re-
spect to an element σ of the fitness lanscape (Sn, f, R), on the sphere Sσ(1). We
will consider a minimizing problem.

In the metric space (Sn, R), the sphere Sσ(1) has
(
n
2

)
distinct elements. In-

deed, R(σ, τ) = 1 iff σ is obtained from τ through one reversal. As a reversal
reverses the order of the xi between two distinct positions, the number of rever-
sals that can be applied to a permutation of Sn is

(
n
2

)
. Among these

(
n
2

)
elements

of Sσ(1), a strictly fitter (or lower) solution τ is obtained when f(τ) is strictly smaller
than f(σ). We shall determine the smallest number of strictly lower solutions that
can be obtained overall σ in the fitness landscape (Sn, f, R).

• If σ = x1x2 · · ·xn is a global minimum, then any reversal will increase the
distance travelled. Hence, Impσ(1) = 0.

• If σ = x1x2 · · ·xn is not a global minimum, then it must contain at least
one pair of distinct positions (i1, i2) such that reversing the order of the xi

between them yields a shorter distance travelled. Hence, Impσ(1) ≥ 1.

Thus, Impσ(1) ≥ 1 unless σ is a global minimum.

Theorem 34. The fitness landscape (Sn, f, R) is polynomially 1-decreasing.

Proof. We estimate the ratio |Sσ(1)|
Impσ(1)

for any solution σ that is not a global minimum,
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by using the results of Lemma 26. We have:

| Sσ(1) |
Impσ(1)

=

(
n
2

)
Impσ(1)

,

≤ n2.

Hence, |Sσ(1)|
Impσ(1)

is at most polynomial in n for any solution σ that is not a global
minimum. The result follows.

8.2.3 Representation-Independent Solutions

We shall consider a fitness landscape on a metric space (S, D), where S is the
search space and D is a metric on S. The solutions considered in this section en-
compass all possible representations: strings on a finite alphabet, permutations,
etc ...

Cone Fitness Landscape

Cone fitness landscapes [Mor08] are simple examples of representation-independent
classes of landscapes, that were introduced to capture the notion of simple uni-
modal landscape across representations.

Let x∗ denoted a fixed element of S. The fitness function of a cone fitness
landscape on the metric space (S, D) is:

f : S −→ R+,

x 7−→ D(x∗, x).

Lemma 27. Let x be an element of the fitness landscape (S, f,D). The number
of solutions y that are strictly fitter than x and satisfying D(x, y) = l, is denoted
Impx(l). We have:

• If x = x∗ or l = 0, then x is a global minimum and Impx(l) = 0.

• If D(x, x∗) ≥ min{D(x, y) | D(x, y) > 0}, then Impx(l) ≥ 1 for any l ≥
min{D(x, y) | D(x, y) > 0}.

Proof. We shall determine the minimal number of strictly fitter solutions, with re-
spect to an element x of the fitness lanscape (S, f,D), on each of the spheres
Sx(l) for 0 < l ≤ maxx,y∈S D(x, y). We will consider a minimizing problem.

Let us fix a radius l. In the metric space (S, D), the sphere Sx(l) has | Sx(l) |
distinct elements. Among these elements of Sx(l), a strictly fitter (or lower) solu-
tion y is obtained when f(y) is strictly smaller than f(x). We shall determine the
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smallest number of strictly lower solutions that can be obtained overall x in the
fitness landscape (S, f,D). We have:

f(x) = D(x, x∗). (8.18)

We aim to decrease the value of f(x) by replacing x with a solution y such that
D(x, y) = l. This is satisfied when y ∈ [x∗, x]D∩Sx(l). The number of strictly lower
solutions y with respect to x such that D(x, y) = l is denoted Impx(l). We obtain
the following results:

• If x = x∗ or l = 0, then Impx(l) = 0.

• Otherwise, the set [x∗, x]D ∩ Sx(l) strictly contains {x}.
In this case, Impx(l) =| [x∗, x]D ∩ Sx(l) | and is bounded below by one. The
strict inclusion is guaranteed when:

D(x, x∗) ≥ min{D(x, y) | D(x, y) > 0}. (8.19)

Theorem 35. The fitness landscape (S, f,D) is ρ-decreasing for any ρ ≥ min{D(x, y) |
D(x, y) > 0}.

Proof. Follows from Lemma 27.

8.3 Generalized (1 + 1) EA

In a local search algorithm, individual offspring are always sampled within a ball
centered at the parent. This is called a ball mutation [MP04].

Definition 29 (Ball mutation [MP04]). Let R > 0, a ball mutation of radius R

samples an offspring from a ball of radius R centred at the parent.

A ball mutation is uniform [MP04] when each element of the ball has the same
probability to be sampled. Otherwise, the ball mutation is not uniform.

In the literature, (1+1) EAs are the simplest example of EAs with no crossover.
We will show that the mutation of a (1 + 1) EA can be seen as a ball mutation with
non-uniform probability distribution. Let us first recall the pseudo code of a (1 + 1)

EA.
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Algorithm 3 (1 + 1) EA
1: Sample an individual x uniformly at random in the search space
2: parent← x

3: while x is not a global optimum do
4: y ← Mutate(x)

5: if y is at least as fit as x then
6: parent← y

7: end if
8: end while

In order to determine the probability distribution of the ball mutation of a (1+1)

EA, we shall look at the mutation of (1 + 1) EA for two different representations:
binary strings and permutations.

8.3.1 Binary Strings

The traditional bit-wise mutation operator over binary strings can be seen as a
non-uniform ball mutation, where the radius follows a binomial distribution.

Let us consider binary strings of the metric space M2,HD = ({0, 1}n,HD) and
let 0 < p < 1 be the mutation probability. Given a binary string x, Mutate(x) flips
each bit of x with probability p. Let Y be the random variable corresponding to
the number of bits of x that are flipped. We have:

P (Y = k) =

(
n

k

)
pk(1− p)n−k. (8.20)

LetX be the random variable for the distance between x and its offspring Mutate(x).
As the Hamming distance between x and Mutate(x) is the number of bits of x that
has been flipped to obtain Mutate(x), we have X = Y and :

P (X = k) =

(
n

k

)
pk(1− p)n−k. (8.21)

Hence, a (1 + 1) EA with a traditional bit-wise mutation performs a non-uniform
ball mutation in the metric space M2,HD = ({0, 1}n,HD). Indeed, an offspring is
always sampled from the ball of radius n centred at its parent. The probability for
sampling an offspring depends on its distance 0 ≤ X ≤ n to its parent.

8.3.2 Permutations

The 2-opt-mutation [SN12] over permutations can be seen as a non-uniform ball
mutation, where the radius minus one follows a Poisson distribution.
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Let us consider permutations of the metric space (Sn, R) where R denotes the
reversal distance. Given a permutation σ, a number s is drawn from a Poisson
distribution of parameter L = 1. Then, Mutate(σ) performs s + 1 reversals con-
secutively on the permutation σ. Let Y be the random variable corresponding to
the number of reversals applied to σ, we have:

P (Y = s+ 1) = P (Y − 1 = s), (8.22)

=
e−1

s!
. (8.23)

LetX be the random variable for the distance between σ and its offspring Mutate(σ).
If the number k ≥ 1 of reversals applied to σ is equal to the reversal distance be-
tween σ and Mutate(σ) then X = k and we have:

P (X = k) = P (Y = k), (8.24)

=
e−1

(k − 1)!
. (8.25)

Indeed, the number of reversals applied to a permutation σ in order to obtain a
permutation τ need not be equal to the reversal distance between σ and τ in
general. This is because the reversal distance between σ and τ is the minimal
number of reversals needed to transform σ into τ .

Example 52. Let us consider the permutation 123 of (S3, R). The 3 following
reversals can be performed consecutively on 123: 123 → 213 → 312 → 321.
However, a single reversal suffices to obtain 321 from 123. Hence, the reversal
distance between 123 and 321 is one. One is different from three, the number of
reversals applied to 123 in order to obtain 321.

Hence, a (1+1) EA with a 2-opt-mutation performs a non-uniform ball mutation
in the metric space (Sn, R). Indeed, an offspring Mutate(σ) is always sampled
from the ball of radius maxσ,τ∈Sn R(σ, τ) centred at its parent σ. The probability for
sampling an offspring depends on its distance to its parent.

8.3.3 Generalization of the (1 + 1) EA

We generalize the (1 + 1) EA of Algorithm 3 across representations. The gen-
eralization is done through the definition of a non-uniform ball mutation, that is a
probability distribution on the radius of the ball mutation. In the representations
considered above:

• the radius of the ball mutation follows a binomial distribution for binary strings,

• the radius minus one of the ball mutation follows a Poisson distribution for
permutations.
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Let S denote the search space, D is a metric on S, and X is the random variable
corresponding to the distance between a parent and its offspring in the metric
space (S, D). In other words, X is the random variable corresponding to the
radius of the ball mutation of the generalized (1+1) EA. As the Poisson distribution
is a limit of the binomial distribution, we set the probability distribution of X to a
Poisson law of parameter L > 0:

P (X = k) =
Lke−L

k!
, (8.26)

for 0 ≤ k ≤ maxx,y∈S D(x, y). This makes the generalized (1+1) EA a non-uniform
ball mutation, whose radius follows a Poisson distribution of parameter L > 0.

Algorithm 4 Generalized (1 + 1) EA
1: Input a parameter L > 0

2: Sample an individual x uniformly at random in the search space
3: parent← x

4: while x is not a global optimum do
5: Draw a radius k from a Poisson distribution of parameter L
6: if k ≤ maxx,y∈S D(x, y) then
7: Sample an offspring y on the sphere Sx(k) uniformly at random
8: if y is at least as fit as x then
9: parent← y

10: end if
11: end if
12: end while

The Poisson distribution is defined for any radius k ≥ 0, while the distance
between a parent and its offspring lies between 0 and maxx,y∈S D(x, y) in the
metric space (S, D). Therefore, the generalized (1 + 1) EA may sample a radius
k > maxx,y∈S D(x, y) corresponding to an empty sphere. In this case, we keep
making new samplings until a radius k ≤ maxx,y∈S D(x, y) is obtained.

Lemma 28. Let R denote a random variable following the Poisson law of parame-
ter L > 0 and let ρ be a positive integer such that ρ > L. The probability to sample
a value that is strictly smaller ρ is at least 0.5 if:

L ≤ (−1 +
√

2) · ρ. (8.27)

Proof. Let R denote a random variable following the Poisson law of parameter
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L > 0. We have:

P (0 ≤ R < ρ) = P

(
0 ≤ R < L+

ρ− L√
L
·
√
L

)
, (8.28)

= P

(
| R− L |< ρ− L√

L
·
√
L

)
, (8.29)

= 1− P
(
| R− L |≥ ρ− L√

L
·
√
L

)
, (8.30)

≥ 1− L

(ρ− L)2
, (8.31)

for any ρ > L. Indeed, the equality in (8.29) follows as a random variable following
a Poisson law can only take values that are greater than or equal to zero. And
the inequality on the last line follows from Bienaymé-Chebychev’s inequality. The
result follows from solving in L the inequality:

1− L

(ρ− L)2
≥ 1

2
. (8.32)

Corollary 28. The expected waiting time for sampling a radius strictly less than
ρ, is at most two for a generalized (1 + 1) EA of parameter

0 < L ≤ (−1 +
√

2) · ρ. (8.33)

Proof. Follows from Lemma 28.

8.4 Runtime of the Generalized (1 + 1) EA

Let ρ > 0, we compute an upper bound of the expected runtime of the generalized
(1+1) EA on a polynomially ρ-improving fitness landscape using the fitness levels
method [Weg01]. A global optimum is found if a strictly fitter solution is sampled
from a sphere of radius less than or equal to ρ at each step. We set the parameter
L of the generalized (1 + 1) EA as follows:

0 < L ≤ (−1 +
√

2) · (ρ+ 1). (8.34)

By Corollary 28, this ensures that the expected waiting time for sampling a radius
less than or equal to ρ is at most two.

Waiting time for a single improvement

Let x be an element of the polynomially ρ-improving fitness landscape, that can
still improve (i.e., x is not a global optimum). The expected waiting time for sam-
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pling a strictly fitter solution on the sphere Sx(l) is at most:

max
x impr.
0<l≤ρ
Sx(l)6=∅

| Sx(l) |
Impx(l)

. (8.35)

Therefore, the expected waiting time for sampling a strictly fitter solution on a
sphere Sx(l) where x is not a global optimum and 0 < l ≤ ρ is at most:

2 max
x impr.
0<l≤ρ
Sx(l)6=∅

| Sx(l) |
Impx(l)

. (8.36)

Runtime Upper Bound

We obtain the following result through the fitness levels method [Weg01].

Theorem 36. A generalized (1 + 1) EA of parameter 0 < L ≤ (−1 +
√

2) · (ρ+ 1)

finds a global optimum of a polynomially ρ-improving fitness landscape with q + 1

distinct level sets within at most:

2q · max
x impr.
0<l≤ρ
Sx(l)6=∅

| Sx(l) |
Impx(l)

, (8.37)

fitness evaluations.

Proof. An upper bound on the expected runtime is obtained by multiplying the
expected waiting time by the largest number of distinct level sets that can be
visited.

Corollary 29. A generalized (1 + 1) EA of parameter 0 < L ≤ (−1 +
√

2)(ρ + 1)

finds a global optimum of a polynomially ρ-improving fitness landscape with at
most polynomially many distinct level sets in polynomial time.

Proof. Follows from Theorem 36.

We apply the runtime result to various polynomially ρ-improving fitness land-
scapes from the literature. Then, we compare the runtime results whenever pos-
sible.

8.4.1 Strings on a finite alphabet

Let d ≥ 2, we shall consider fitness landscapes on the metric space Md,HD =

({0, 1, . . . , d− 1}n,HD).
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Leading Ones

Leading Ones returns the largest number of successive ones starting from the
first position of a binary string.

Corollary 30. The generalized (1 + 1) EA of parameter 0 < L ≤ 2(−1 +
√

2) finds
the global maximum of leading ones within 2n2 fitness evaluations.

Proof. The fitness landscape ({0, 1}n,LeadingOnes,HD) is polynomially 1-increasing.
For any solution x that is not a global maximum, |Sx(1)|

Impx(1)
is bounded above by

(
n
1

)
.

The result follows from Theorem 36 as LeadingOnes has q + 1 = n + 1 distinct
level sets.

The upper bound for the expected runtime of the generalized (1+1) EA is tight
for Leading Ones. Indeed, the upper bound for the expected runtime of the (1+1)

EA for Leading Ones in [Weg03] is e · n2.

Linear functions

Let w0, w1, . . . , wn be non-zero real numbers. We consider the following linear
function [DJS11]:

f : {0, 1, . . . , d− 1}n −→ R,

x 7−→ w0 +
n∑
i=1

wixi.

Corollary 31. The generalized (1 + 1) EA of parameter 0 < L ≤ 2(−1 +
√

2) finds
a global maximum of a linear function with q + 1 distinct level sets within at most:

2(d− 1)2n2, (8.38)

fitness evaluations.

Proof. The fitness landscape ({0, 1, . . . , d−1}n, f,HD) is polynomially 1-increasing.
For any solution x that is not a global maximum, |Sx(1)|

Impx(1)
is bounded above by

(d− 1)
(
n
1

)
.

In order to estimate the number q of level sets to be visited, we shall extend the
technique used in [Weg03] for pseudo-Boolean linear functions to linear functions
on a finite alphabet {0, 1, · · · , d− 1} where d ≥ 2.

Recall that:
f(x) = w0 +

∑
wi>0

| wi | xi −
∑
wi<0

| wi | xi. (8.39)
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By replacing all the xi such that wi < 0 with x̄i = xi − (d − 1), we obtain a new
linear function g such that:

g(x) = w0 +
∑
wi>0

| wi | xi +
∑
wi<0

| wi | [(d− 1)− xi]. (8.40)

The generalized (1 + 1) EA has the same behaviour on both f and g. Thus, the
number of level sets of f is equal to the number of level sets of g. Hence, we shall
estimate the number of level sets of g.

For 1 ≤ i ≤ n, each term of g(x) that is not w0 takes one of the values:
0, | wi |, 2 | wi |, . . . , (d− 1) | wi |. By ordering and numbering these values in a
non-increasing order, we obtain a sequence of at most (d− 1)n positive numbers
when removing 0 from the list. Thus, the number q of fitness levels to be visited
from any level set is at most (d− 1)n.

The result follows from Theorem 36.

The upper bound for the expected runtime of the generalized (1 + 1) EA is
tight for pseudo-Boolean linear functions. Indeed, [Weg03] showed that the num-
ber q of of level sets to be visited in this case is at most n. We recall that the
upper bound for the expected runtime of the (1 + 1) EA for pseudo-Boolean linear
functions in [Weg03] is e · n2.

The upper bound for the expected runtime of the generalized (1 + 1) EA is
loose for linear functions on the finite alphabet {0, 1, 2}. The upper bound for
the expected runtime of the (1 + 1) EA for linear functions on the finite alpha-
bet {0, 1, 2} in [DJS11] is O(n log n). It is worth noticing however that [DJS11]
did not use the fitness level method to derive this upper bound. They used the
multiplicative drift theorem.

Case of OneMax

OneMax is a linear function where d = 2, w0 = 0, and wi = 1 for all 1 ≤ i ≤ n.

Corollary 32. The generalized (1 + 1) EA of parameter 0 < L ≤ 2(−1 +
√

2) finds
the global maximum of OneMax within at most 2n fitness evaluations.

Proof. OneMax is a particular linear function with at most n distinct level sets to
visit from any starting level set. Moreover, the corresponding fitness landscape is
polynomially 1-increasing. We have:

| Sx(1) |
Impx(1)

=

(
n
1

)
#{wi > 0}

,

=

(
n
1

)
n
,

= 1.
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The result follows.

The upper bound for the expected runtime of the generalized (1+1) EA is tight
for OneMax. Indeed, the upper bound for the expected runtime of the (1 + 1) EA
for OneMax in [Weg03] is e · n · (lnn+ 1).

Pseudo-Boolean Monotone Increasing function

Let the wA’s be positive real numbers. We consider the following pseudo Boolean
monotone increasing polynomial [WW05]:

f : {0, 1}n −→ R,

x 7−→
∑

A⊆{1,2,...,n}

wA
∏
i∈A

xi.

Corollary 33. The generalized (1 + 1) EA of parameter 0 < L ≤ 2(−1 +
√

2)

finds a global minimum of a pseudo-Boolean monotone increasing function with
N non-vanishing weights within at most:

2N · n, (8.41)

fitness evaluations.

Proof. The fitness landscape ({0, 1}n, f,HD) is polynomially 1-decreasing. We
have:

| Sx(1) |
Impx(1)

=

(
n
1

)(
minwA>0|A|

1

) ,
=

n

minwA>0 | A |
,

≤ n.

By ordering and numbering the non-vanishing weights in a non-decreasing order,
[Weg03] showed that the number q of fitness levels to be visited is at most the
number of non-vanishing weights N . The result follows from Theorem 36.

The upper bound for the expected runtime of the generalized (1+1) EA is tight
for pseudo-Boolean monotone increasing functions. Indeed, the upper bound for
the expected runtime of the (1+1) EA for a pseudo-Boolean monotone increasing
function with N non-vanishing weights in [Weg03] is e.ndeg(f).N .

In [WW05], the expected runtime of the (1+1) EA for a pseudo-Boolean mono-
tone increasing function f with N non-vanishing weights is at most:

O
(
N · (n/ deg(f)) · 2deg(f)

)
, (8.42)
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if deg(f) ≤ 2 log n− 2 log log n− α for some constant α.

8.4.2 Permutations

We shall consider a fitness landscape on the metric space (Sn, R), where R is the
reversal distance (see Definition 13).

Euclidean TSP (cities in convex position)

We consider a set of n cities, that are in convex position in the Euclidean space.
In other words, each city is a vertex of the convex hull formed by the n cities in the
Euclidean space (R2, d). This class of Euclidean TSP is solvable in polynomial
time.

The Euclidean TSP consists of minimizing the fitness function:

f : Sn −→ R,

σ 7−→ d(xσ(n), xσ(1)) +
n−1∑
i=1

d(xσ(i), xσ(i+1)).

We shall use the same notations as [SN12], where dmax and dmin are respectively
the maximal and minimal Euclidean distances between any two cities. For any
three cities u, v, and w, θ denotes the angle formed by the line from u to v and
the line from v to w. The angle ε satisfies 0 < ε < θ < π − ε. Moreover,

γ(ε) =

(
dmax − dmin

dmin

)(
cos ε

1− cos ε

)
. (8.43)

Corollary 34. The generalized (1 + 1) EA of parameter 0 < L ≤ 2(−1 +
√

2) finds
a global minimum of an Euclidean TSP, where the cities are in convex position,
within at most:

n3 · γ(ε), (8.44)

fitness evaluations.

Proof. The fitness landscape (Sn, f, R) is polynomially 1-decreasing. For any so-
lution σ that is not a global minimum, |Sσ(1)|

Impσ(1)
is bounded above by

(
n
2

)
. The result

follows from Theorem 36 as an upper bound on the number level sets to be visited
is given in [SN12] as:

q = n

(
dmax − dmin

2dmin

)(
cos ε

1− cos ε

)
,

=
n

2
· γ(ε).
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The upper bound for the expected runtime of the generalized (1+1) EA is tight
for the Euclidean TSP with cities in convex position. Indeed, the upper bound
for the expected runtime of the (1 + 1) EA for the same problem in [SN12] is
O(n3 · γ(ε) + n · γ(ε)).

8.5 Summary

We generalized the (1 + 1) EA across representations as a non-uniform ball mu-
tation whose radius follows a Poisson law of parameter L > 0.

We defined a class of fitness landscapes parametrized by ρ > 0, called polyno-
mially ρ-improving. This landscape captures the number of solutions per sphere
of radius 0 < l ≤ ρ, that are strictly fitter than the centre of the sphere. For a
polynomially ρ-improving fitness landscape, this number is at least a polynomial
fraction of the size of the sphere.

We found that the generalized (1+1) EA of parameter 0 < L ≤ (−1+
√

2)·(ρ+1)

finds a global optimum of any polynomially ρ-improving fitness landscape with at
most polynomially many distinct level sets in polynomial time.

We specified the runtime results to polynomially ρ-improving fitness landscapes
from the literature. The upper bound for the expected runtime of the generalized
(1+1) EA is always tight when compared to runtime upper bounds derived through
the fitness level method. However, the upper bound for the expected runtime of
the generalized (1 + 1) EA is loose when compared to a runtime upper bound
derived through drift analysis.

As we used the fitness level method throughout the analysis, we conclude that
the generalized (1 + 1) EA captures well the behaviour of a (1 + 1) EA regardless
of the representation used.

It would be interesting to re-do the analysis with a drift analysis instead of the
fitness level methods. Indeed, this may yield a tighter upper bound.
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Chapter 9

A Representation free EA with both
a Mutation and a Crossover

We aim to introduce a unifying runtime analysis of EA with both a mutation and a
standard crossover across representations, by:

• defining a representation free EA with both a mutation and a standard crossover
operators,

• finding a class of fitness landscapes that are solved in polynomial time by
instantiations of the representation free EA with both a mutation and a stan-
dard crossover operators.

To this end, we use the mutation operator of the generalized (1+1) EA of Chapter
8 and the crossover operator of the SES (see Chapter 5) to define the represen-
tation free EA with both a mutation and a standard crossover in Section 9.1. The
notion of ρ-improving fitness landscapes that has been introduced in Chapter 8,
is recalled in Section 9.2. Then, the runtime analysis of the representation free
EA on ρ-improving fitness landscapes is done in Section 9.3. We find that the
representation free EA solves a ρ-improving fitness landscape with q + 1 distinct
level sets in 2q fitness evaluations for a well chosen population size. The run-
time result is then specified to strings on a finite alphabet in Section 9.3.1 and
to permutations in Section 9.3.2, by considering polynomially ρ-improving fitness
landscapes from the literature. We find that Leading Ones, linear functions (in-
cluding OneMax), pseudo-Boolean functions, and Euclidean TSP with cities in
convex positions are solved in polynomial time by the representation free EA for
any population size larger than or equal to one.

9.1 A Representation free EA

We defined a generalized mutation operator in Section 8.3 of Chapter 8. The mu-
tation offspring is sampled uniformly at random on a sphere centred at the parent.
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The radius of the sphere is sampled from a Poisson law. A generalized standard
two-parents crossover called geometric crossover has been defined by [MP04]
(see Section 5.2 of Chapter 5). The crossover offspring is sampled uniformly
at random from the metric segment formed by the two parents. Each parent is
sampled uniformly at random from the selected population. In this section, we
define a representation free EA from the generalized mutation operator of Chap-
ter 8 and the geometric crossover of [MP04]. A pseudocode corresponding to the
representation free EA is given in Algorithm 5.

Let S denote the search space and let D denote a metric on S. We recall that
Sx(l) denotes the sphere centred at x ∈ S and of radius l > 0:

Sx(l) = {z ∈ S | D(x, z) = l}. (9.1)

Algorithm 5 Representation free EA
1: Input: population size µ, generalized mutation parameter L
2: Output: individual in the last population
3: Initialise population uniformly at random
4: while optimum is not in the population do
5: Rank individuals on fitness
6: if there are at least two distinct fitness values in the current population then
7: remove all individuals with the worst fitness
8: end if
9: for counter in {1, 2, . . . , µ} do

10: Randomly and uniformly pick two individuals from the remaining individ-
uals

11: Recombine them through GEOMETRIC CROSSOVER to create a new indi-
vidual x

12: Draw a radius l from a Poisson distribution of parameter L
13: Sample an offspring y uniformly at random on Sx(l)
14: end for
15: end while
16: Return the best individual in the population

An offspring is sampled uniformly at random on a sphere, whose center is an
element of a segment of the selected population P ′. The center of the sphere is
sampled uniformly at random on the segment. The extremes of the segment are
also sampled uniformly at random from P ′. However, the sphere is not sampled
uniformly at random from the set of all spheres with the same centre. Indeed, the
radii of the spheres sharing the same center follow a Poisson law of parameter L.
By abuse of language, spheres sharing the same centre follow a Poisson law of
parameter L by identifying a sphere with its radius.
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The set of reachable solutions from a set P ′ of selected individuals, is there-
fore the union of all the spheres of any possible radii whose centres belong to a
segment of P ′. Let δ(S) denote 0 ≤ l ≤ maxx,y∈S D(x, y), we have:

R(P ′) =
⋃

x∈[p1,p2]
p1,p2∈P ′

 ⋃
0≤l≤δ(S)

Sx(l)

 , (9.2)

=
⋃

x∈Seg(P ′)

 ⋃
0≤l≤δ(S)

Sx(l)

 , (9.3)

=
⋃

x∈Seg(P ′)

Bx(δ(S)). (9.4)

We saw in Section 5.2.1 of Chapter 5 that the probability to sample a crossover
offspring x in Rcross.(P

′) = Seg(P ′) is:

Pr(x ∈ Rcross.(P
′)) =

p∑
i=1

αsi,P ′

| P ′ |2
· 1si(x)

| si |
, (9.5)

where αsi,P ′ is the number of pairs of elements of P ′ yielding the segment si and
Seg(P ′) = s1 ∪ s2 ∪ · · · ∪ sp. Each crossover offspring x then becomes a mutation
parent.

Let X denote the random variable corresponding to the radius of the ball mu-
tation of the generalized (1 + 1) EA of Chapter 8. The random variable X follows
a Poisson law of parameter L:

P (X = l) =
Lle−L

l!
. (9.6)

The probability to sample a mutant offspring z in Rmut.(P
′) =

⋃
x∈P ′ Bx(δ(S)) is:

Pr(z ∈ Rmut.(P
′)) =

∑
x∈P ′

∑
0≤l≤δ(S)

P (X = l)
1Sx(l)(z)

| Sx(l) |
, (9.7)

=
∑
x∈P ′

P (X = d(x, z))

| Sx(d(x, z)) |
. (9.8)

Consequently, the probability to sample a mutant offspring z whose parent is a
crossover offspring x is given by:

Pr(z ∈ R(P ′)) =
∑

x∈Seg(P ′)

P (X = d(x, z))

| Sx(d(x, z)) |
, (9.9)

=
∑

x∈Rcross.(P ′)

P (X = d(x, z))

| Sx(d(x, z)) |
, (9.10)

= Pr(z ∈ Rmut.(Rcross.(P
′))). (9.11)
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The offspring distribution on R(P ′) is not uniform and is reminiscent of the off-
spring distribution ofRmut.(P

′) in Equation (9.8) where P ′ is replaced withRcross.(P
′).

9.2 ρ-improving fitness landscapes

We recall from Section 8.2 of Chapter 8 that a ρ-improving fitness landscape
(S, f,D) with q + 1 distinct fitness values, is a fitness landscape where any solu-
tion x that is not a global optimum is l-improving (i.e., there exists a strictly fitter
solution y with respect to x on the sphere Sx(l)) for any radius 0 < l ≤ ρ. The
number of l-improving solutions on the sphere Sx(l) is denoted by:

Impx(l). (9.12)

Hence, the ratio of l-improving solutions on the sphere Sx(l) is:

Impx(l)

| Sx(l) |
. (9.13)

When this ratio is at least a polynomial fraction for 0 < l ≤ ρ, then the fitness
landscape is said to be polynomially ρ-improving.

Let A0 = S, A1, . . . , Aq denote the q + 1 distinct level sets of the fitness
landscape (S, f,D). A canonical level set A≥j [MS17] is the union of the level
sets Aj, Aj+1, . . . , Aq. Moreover, the canonical level sets form a chain :

S = A≥0 ) A≥1 ) · · · ) A≥q−1 ) Aq,

where Aq is the set of global optima. We no longer require the canonical level
sets to be convex sets with respect to the metric D as in Chapter 8. The following
examples of ρ-improving landscapes have been given in Section 8.2 of Chapter
8.

Example 53. The fitness landscape ({0, 1}n,LeadingOnes,HD) is polynomially 1-
increasing.

Example 54. Let f be a linear function, the fitness landscape ({0, 1, . . . , d −
1}n, f,HD) is polynomially ρ-increasing for any constant ρ ≥ 1.

Example 55. The fitness landscape ({0, 1}n,OneMax,HD) is also polynomially
ρ-increasing for any constant ρ ≥ 1.

Example 56. Let f be a pseudo-Boolean function, the fitness landscape ({0, 1}n, f,HD)

is polynomially ρ-decreasing for any constant ρ ≥ 1.

Example 57. Let f : Sn → R denote the objective function of an Euclidean TSP,
where the n cities are in convex positions. The set Sn is endowed with the reversal
distance R. The fitness landscape (Sn, f, R) is polynomially 1-decreasing.
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9.3 Runtime Analysis

We use the fitness levels method [Weg01] to estimate an upper bound on the ex-
pected runtime of the representation free EA on a ρ-improving fitness landscape.

We first compute a lower bound on the probability for sampling a strictly im-
proving solution. That is, if the population of selected individuals is contained
in the canonical level set A≥j then we compute the probability for sampling an
offspring that belongs to A≥j+1.

Lemma 29. The probability for sampling a strictly improving offspring is at least:

Le−L min
x impr.
0<l≤ρ
Sx(l) 6=∅

Impx(l)

| Sx(l) |
. (9.14)

Proof. We assume that the selected population P ′ is included in A≥j. Assuming
that the offspring are uniformly distributed on R(P ′) with the least probability of
Equation (9.9), the probability to sample a strictly improving offspring is at least:

∑
z∈A≥j+1

∑
x∈Seg(P ′)

P [X = d(x, z)]

| Sx[d(x, z)] |
,

≥
∑

z∈A≥j+1

∑
x∈Seg(P ′)

P [X = d(x, z)]

| Sx[d(x, z)] |
· 1Bx(ρ)(z),

=
∑

x∈Seg(P ′)

∑
0≤l≤δ(S)
Sx(l) 6=∅

 ∑
z∈{A≥j+1|d(x,z)=l}

P (X = l)

| Sx(l) |
· 1Bx(ρ)(z)

 ,
=

∑
x∈Seg(P ′)

∑
0≤l≤ρ
Sx(l)6=∅

[
P (X = l)

| Sx(l) |
· | Sx(l) ∩ A≥j+1 |

]
,

≥
∑

x∈Seg(P ′)∩A≥j+1

∑
0≤l≤ρ
Sx(l) 6=∅

[
P (X = l)

| Sx(l) |
· | Sx(l) ∩ A≥j+1 |

]
,

=
∑

x∈Seg(P ′)∩A≥j+1

∑
0≤l≤ρ
Sx(l)6=∅

[
P (X = l) · Impx(l)

| Sx(l) |

]
,

=
∑
0≤l≤ρ
Sx(l)6=∅

P (X = l)
∑

x∈Seg(P ′)∩A≥j+1

Impx(l)

| Sx(l) |

 ,
≥
∑
0<l≤ρ
Sx(l)6=∅

[
P (X = l) · min

x impr.

Impx(l)

| Sx(l) |

]
,
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≥ min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |
∑
0≤l≤ρ
Sx(l) 6=∅

P (X = l),

≥Le−L min
x impr.
0<l≤ρ
Sx(l) 6=∅

Impx(l)

| Sx(l) |
.

Indeed, in any discrete metric space (S, D) the set {l | Sx(l) 6= ∅} of all possible
radii of a sphere is given by {0, 1, 2, · · · , δ(S)} where δ(S) is the diameter of S.

Lemma 30. The probability for sampling at least one strictly improving offspring
is at least:

1−

1− Le−L min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |


µ

, (9.15)

for a population size µ.

Proof. The probability for never sampling a strictly improving offspring among the
µ individuals of the resulting population is at most:1− Le−L min

x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |


µ

. (9.16)

The result follows.

Lemma 31. The expected waiting time for sampling at least one strictly improving
offspring is at most two, if the population size is at least:

µmin(L, ρ) =
1

2

1− Le−L min x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)
|Sx(l)|

 . (9.17)

Proof. It is enough to solve in µ the inequality:

1−

1− Le−L min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |


µ

≥ 1

2
. (9.18)

The result follows as the left hand side is a lower bound on the probability for
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sampling at least one strictly improving offspring. We have:

1−

1− Le−L min
x impr.
0<l≤ρ
Sx(l) 6=∅

Impx(l)

| Sx(l) |


µ

≥ 1

2
,

1

2
≥

1− Le−L min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |


µ

≥ 1− µ

1− Le−L min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |

 ,

µ

1− Le−L min
x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)

| Sx(l) |

 ≥ 1

2
,

µ ≥ 1

2

1− Le−L min x impr.
0<l≤ρ
Sx(l)6=∅

Impx(l)
|Sx(l)|

 .

An upper bound on the expected runtime is estimated through the fitness lev-
els method [Weg01].

Theorem 37. A representation free EA of mutation parameter L and with a pop-
ulation size µ ≥ µmin(L, ρ), finds a global optimum of a ρ-improving fitness land-
scape with q + 1 distinct level sets within at most 2q fitness evaluations.

Proof. In the worst case, each level set is visited before finding a global optimum.

Corollary 35. A representation free EA of mutation parameter L and with a pop-
ulation size µ ≥ µmin(L, ρ), finds a global optimum of a ρ-improving fitness land-
scape with at most polynomially many distinct level sets in polynomial time.

Proof. Follows from Theorem 37.

Remark 6. In Theorem 37 and Corollary 35, the value of the parameter ρ is at
least one. This is because the smallest strictly positive radius in a discrete metric
space is one.

We apply the runtime result to various polynomially ρ-improving fitness land-
scapes from the literature, that are also ρ-improving.

9.3.1 Strings on a finite alphabet

Let d ≥ 2, we shall consider fitness landscapes on the metric space Md,HD =

({0, 1, . . . , d− 1}n,HD).
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Leading Ones

Leading Ones returns the largest number of successive ones starting from the
first position of a binary string.

Corollary 36. The representation free EA of parameter L = 1 finds the global
maximum of leading ones within 2n fitness evaluations if the population size is at
least:

µ ≥ 1

2
(
1− 1

en

) . (9.19)

Proof. The fitness landscape ({0, 1}n,LeadingOnes,HD) is polynomially 1-increasing.
For any solution x that is not a global maximum, |Sx(1)|

Impx(1)
is bounded above by

(
n
1

)
.

The result follows from Theorem 37 as LeadingOnes has q + 1 = n + 1 distinct
level sets.

The upper bound for the expected runtime of the representation free EA is
smaller than the upper bound for the expected runtime of the generalized (1 + 1)

EA for Leading Ones. We recall that the expected runtime of the generalized
(1 + 1) EA for Leading Ones is 2n2.

Linear functions

Let w0, w1, . . . , wn be non-zero real numbers. We consider the following linear
function [DJS11]:

f : {0, 1, . . . , d− 1}n −→ R,

x 7−→ w0 +
n∑
i=1

wixi.

Corollary 37. The representation free EA of parameter L finds a global maximum
of the linear function f within at most 2(d−1)n fitness evaluations if the population
size is at least:

µ ≥ 1

2
[
1− L

eL(d−1)n

] . (9.20)

Proof. The fitness landscape ({0, 1, . . . , d−1}n, f,HD) is polynomially 1-increasing.
For any solution x that is not a global maximum, |Sx(1)|

Impx(1)
is bounded above by

(d− 1)
(
n
1

)
.

In order to estimate the number q of level sets to be visited, we shall extend the
technique used in [Weg03] for pseudo-Boolean linear functions to linear functions
on a finite alphabet {0, 1, · · · , d− 1} where d ≥ 2.

Recall that:
f(x) = w0 +

∑
wi>0

| wi | xi −
∑
wi<0

| wi | xi. (9.21)
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By replacing all the xi such that wi < 0 with x̄i = xi − (d − 1), we obtain a new
linear function g such that:

g(x) = w0 +
∑
wi>0

| wi | xi +
∑
wi<0

| wi | [(d− 1)− xi]. (9.22)

The representation free EA has the same behaviour on both f and g. Thus, the
number of level sets of f is equal to the number of level sets of g. Hence, we shall
estimate the number of level sets of g.

For 1 ≤ i ≤ n, each term of g(x) that is not w0 takes one of the values:
0, | wi |, 2 | wi |, . . . , (d− 1) | wi |. By ordering and numbering these values in a
non-increasing order, we obtain a sequence of at most (d− 1)n positive numbers
when removing 0 from the list. Thus, the number q of fitness levels to be visited
from any level set is at most (d− 1)n.

The result follows from Theorem 37.

The upper bound for the expected runtime of the representation free EA is
smaller than the upper bound for the expected runtime of the generalized (1 + 1)

EA for the linear function f . We recall that the expected runtime of the generalized
(1 + 1) EA for the linear function f is 2(d− 1)2n2.

Case of OneMax

OneMax is a linear function where d = 2, w0 = 0, and wi = 1 for all 1 ≤ i ≤ n.

Corollary 38. The representation free EA of parameter L = 1 finds the global
maximum of OneMax within at most 2n fitness evaluations if the population size
is at least:

µ ≥ 1

2
(
1− 1

e

) . (9.23)

Proof. OneMax is a particular linear function with at most n distinct level sets to
visit from any starting level set. Moreover, the corresponding fitness landscape is
polynomially 1-increasing. We have:

| Sx(1) |
Impx(1)

=

(
n
1

)
#{wi > 0}

,

=

(
n
1

)
n
,

= 1.

The result follows.

The representation free EA and the generalized (1 + 1) EA have the same
expected runtime upper bound for OneMax. We recall that the expected runtime
of the generalized (1 + 1) EA for OneMax is 2n.
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Pseudo-Boolean Monotone Increasing function

Let the wA’s be positive real numbers. We consider the following pseudo Boolean
monotone increasing polynomial [WW05]:

f : {0, 1}n −→ R,

x 7−→
∑

A⊆{1,2,...,n}

wA
∏
i∈A

xi.

Corollary 39. The representation free EA of parameter L = 1 finds a global min-
imum of a pseudo-Boolean monotone increasing function with N non-vanishing
weights within at most 2Nfitness evaluations if the population size is at least:

µ ≥ 1

2
(
1− 1

en

) . (9.24)

Proof. The fitness landscape ({0, 1}n, f,HD) is polynomially 1-decreasing. We
have:

| Sx(1) |
Impx(1)

=

(
n
1

)(
minwA>0|A|

1

) ,
=

n

minwA>0 | A |
,

≤ n.

By ordering and numbering the non-vanishing weights in a non-decreasing order,
[Weg03] showed that the number q of fitness levels to be visited is at most the
number of non-vanishing weights N . The result follows from Theorem 37.

The upper bound for the expected runtime of the representation free EA is
smaller than the upper bound for the expected runtime of the generalized (1 + 1)

EA for a pseudo-Boolean function with N non-vanishing weights. We recall that
the expected runtime of the generalized (1 + 1) EA for a pseudo-Boolean function
with N non-vanishing weights is 2N · n.

9.3.2 Permutations

We shall consider a fitness landscape on the metric space (Sn, R), where R is the
reversal distance (see Definition 13).

Euclidean TSP (cities in convex position)

We consider a set of n cities, that are in convex position in the Euclidean space.
In other words, each city is a vertex of the convex hull formed by the n cities in the
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Euclidean space (R2, d). This class of Euclidean TSP is solvable in polynomial
time.

The Euclidean TSP consists of minimizing the fitness function:

f : Sn −→ R,

σ 7−→ d(xσ(n), xσ(1)) +
n−1∑
i=1

d(xσ(i), xσ(i+1)).

We shall use the same notations as [SN12], where dmax and dmin are respectively
the maximal and minimal Euclidean distances between any two cities. For any
three cities u, v, and w, θ denotes the angle formed by the line from u to v and
the line from v to w. The angle ε satisfies 0 < ε < θ < π − ε. Moreover,

γ(ε) =

(
dmax − dmin

dmin

)(
cos ε

1− cos ε

)
. (9.25)

Corollary 40. The representation free EA of parameter L = 1 finds a global
minimum of an Euclidean TSP, where the cities are in convex position, within at
most n · γ(ε) fitness evaluations if the population size is at least:

µ ≥ 1

2

[
1− 1

e(n2)

] . (9.26)

Proof. The fitness landscape (Sn, f, R) is polynomially 1-decreasing. For any so-
lution σ that is not a global minimum, |Sσ(1)|

Impσ(1)
is bounded above by

(
n
2

)
. The result

follows from Theorem 36 as an upper bound on the number level sets to be visited
is given in [SN12] as:

q = n

(
dmax − dmin

2dmin

)(
cos ε

1− cos ε

)
,

=
n

2
· γ(ε).

The upper bound for the expected runtime of the representation free EA is
smaller than the upper bound for the expected runtime of the generalized (1 +

1) EA for the Euclidean TSP with cities in convex position. We recall that the
expected runtime of the generalized (1 + 1) EA for the Euclidean TSP with cities
in convex position is n3 · γ(ε).

9.4 Summary

We defined a representation free EA with:
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• a truncation selection [SVM93] that removes all individuals with the worst
fitness value,

• the crossover operator of the SES,

• the mutation operator of the generalized (1 + 1) EA that is parametrized by
L > 0.

We defined a class of fitness landscapes parametrized by ρ > 0, called ρ-
improving. This landscape captures the number of solutions per sphere of radius
0 < l ≤ ρ, that are strictly fitter than the centre of the sphere. For a ρ-improving
fitness landscape of a discrete metric space, this number is at least one.

We found that there exists a lower bound µmin(L, ρ) on the population size,
such that ρ-improving fitness landscapes with at most polynomially many level
sets are solved in polynomial time by the representation free EA with both a mu-
tation and a standard crossover when the population size is at least µmin(L, ρ).

We specified the runtime result to polynomially ρ-improving fitness landscapes
from the literature, that are also ρ-improving: Leading Ones, linear functions (in-
cluding OneMax), pseudo-Boolean functions, and Euclidean TSP with cities in
convex position. We found that for any population size µ ≥ 1, each of these prob-
lems is solved in 2q expected fitness evaluations, where q+1 denotes the number
of level sets of the problem. Moreover, the upper bound of the expected runtime
of the representation free EA is smaller than or equal to that of the generalized
(1 + 1) EA for each of these problems. As bounds can not be used to compare
algorithms, we can not yet conclude that the representation free EA outperforms
the generalized (1 + 1) EA on polynomially ρ-improving fitness landscapes. How-
ever, our result shows that the representation free EA solves any ρ-improving
fitness landscape with at most polynomially fitness level sets in polynomial time.
Whereas, the generalized (1 + 1) EA only solves polynomially ρ-improving fitness
landscape with at most polynomially fitness level sets in polynomial time. In met-
ric spaces where polynomially ρ-improving fitness landscapes are ρ-improving
fitness landscapes, the representation free EA solves at least as many problems
as the (1 + 1) EA. It remains to investigate how the representation free EA com-
pares to EAs (with both a mutation and a standard two-parents crossover) from
the literature, in particular (λ, µ) EAs.
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Chapter 10

Conclusion

We defined:

• a representation free (1 + 1) EA that generalizes (1 + 1) EA on strings and
(1 + 1) EA on permutations,

• a representation free EA with no mutation and with a standard two-parents
crossover (called SES) that generalizes EA with no mutation and with a
standard two-parents crossover on strings and EA with no mutation and
with a standard two-parents crossover on permutations,

• a representation free EA with the mutation operator of the generalized (1+1)

EA and the crossover operator of the SES.

Easy problems (of a given algorithm) were defined to be solved (by the algorithm)
within at most polynomial time in the solution size. Then, a collection (or a class)
of easy problems has been determined for each representation free algorithm.
We obtained the following results:

• Polynomially ρ-improving problems (where ρ ≥ 1) with at most polynomially
many level sets, have been shown to be easy for (1 + 1) EA on strings and
(1 + 1) EA on permutations.

• Quasi-concave problems with at most polynomially many level sets have
been shown to be easy for EA with no mutation and with a standard crossover
on strings. However, quasi-concave problems with at most polynomially
many level sets need not be easy for EA with no mutation and with a stan-
dard crossover on permutations.

• ρ-improving problems (where ρ ≥ 1) with at most polynomially many level
sets, have been shown to be easy for the instantiations of the representation
free EA with both a mutation and a standard crossover to strings and to
permutations.
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This divergence in the results is due to the difference in which the class of prob-
lems have been determined.

The class of quasi-concave problems has been obtained through the obser-
vation of specific problems on strings on a finite alphabet. Indeed, the class of
quasi-concave problems was defined to contain these specific problems. Hence,
the definition of the class of quasi-concave problems implicitly depends on repre-
sentations where solutions are strings.

However, the class of ρ-improving problems has been defined using balls. A
ball can be defined for any representation. Hence, the definition of the class of
ρ-improving problems, does not depend on a particular representation.

10.1 Contributions of the Thesis

We defined a class of fitness landscapes that is parametrized by a radius ρ > 0

and determined by the balls of radius ρ that are not centred at a global optimum.
We are particularly interested in the spheres of these balls (i.e., the spheres con-
tained in a ball and having the same centre as the ball) and in the elements of the
spheres which are strictly fitter than their centre.

• A polynomially ρ-improving fitness landscapes is obtained if the number of
strictly fitter solutions on each sphere (of a ball of radius ρ that is not cen-
tred at a global optimum) is at least a polynomial fraction of the size of the
sphere.

• A ρ-improving fitness landscapes is obtained if the number of strictly fitter
solutions on each sphere (of a ball of radius ρ that is not centred at a global
optimum) is at least one.

We showed that in the metric space ({0, 1}n,HD) the fitness landscapes of
Leading Ones, OneMax, and a pseudo-Boolean function are respectively poly-
nomially 1-increasing, polynomially ρ-increasing for any ρ ≥ 1, and polynomially
ρ-decreasing for any ρ ≥ 1.

In the metric space ({0, 1, . . . , d − 1}n,HD), the fitness landscape of a linear
function is polynomially ρ-increasing for any ρ ≥ 1.

In the metric space (Sn, R) where R denotes the reversal distance on permu-
tations, the fitness landscape of an Euclidean TSP is polynomially 1-decreasing.

Each of these fitness landscapes are also ρ-improving for ρ ≥ 1.

10.1.1 EA with no mutation

We generalized EA with no mutation and with a standard crossover across rep-
resentations, as to generate offspring on the metric segment of its two parents.
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Moreover, the probability distribution of the possible offspring on the metric seg-
ment is set to be uniform. This new generalized EA with no mutation is referred
to as a Standard Evolutionary Search (SES).

We showed that the unifying runtime analysis of the CS can only be extended
to the SES for problems on metric spaces where convex sets are union of seg-
ments. As a result, polynomial quasi-concave problems on the metric spaces
Md,HD and Md,MD are efficiently solved by the SES. Moreover, the unifying run-
time analysis of the CS could not be extended to the SES for problems on the
usual metric spaces of permutations. This is because convex sets need not be
union of segments in these metric spaces.

By specifying the unifying runtime analysis of the CS to permutations, we
found that polynomial quasi-concave problems on the usual metric spaces of per-
mutations need not be efficiently solved by the CS.

10.1.2 (1 + 1) EA

We generalized (1 + 1) EA across representations by considering a mutation that
describes a metric ball centred at the parent: the centre of the ball is the par-
ent and the radius of the ball is the largest possible. The probability distribution
of the possible offspring on the ball is a function of their metric distance to the
centre of the ball. We approximated this probability distribution with a Poisson
law of parameter L for the generalized (1 + 1) EA, after determining the probabil-
ity distributions obtained for a (1 + 1) EA on binary strings and a (1 + 1) EA on
permutations.

We showed that any polynomially ρ-improving fitness landscape with at most
polynomially many level sets is efficiently solved by an instantiation of the gener-
alized (1 + 1) EA for a well chosen mutation parameter. Moreover, the runtime
upper bounds obtained are tight when compared to the runtime upper bounds
obtained through the fitness levels method in the literature.

10.1.3 EA with both a mutation and a standard crossover

We defined a representation free EA with both a mutation and a crossover as to
have:

• the same mutation operator as the generalized (1 + 1) EA,

• the same crossover operator as the SES.

We showed that any ρ-improving fitness landscape with at most polynomially
many level sets is efficiently solved by an instantiation of the generalized EA for a
well chosen population size.
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10.2 Limitations

• The analysis of the SES presented in this work only holds on metric spaces
where the union of the segments that can be formed from any subset is
always a convex set. Hence, the current analysis of SES could not cover
the case of problems on the usual metric spaces of permutations.

• The runtime upper bounds obtained for the instantiations of the generalized
(1 + 1) EA were tight with respect to the runtime upper bounds obtained
for the (1 + 1) EA from the literature, when restricting the runtime results
to those obtained through the fitness levels method. However, the runtime
upper bound of an instantiation of the generalized (1+1) EA was looser than
the runtime upper bound of its literature counterpart that has been deduced
from a multiplicative drift method.

• We defined a representation free EA with both a mutation and a crossover.
Then, we determined a class of problems whose elements are easy for an
instantiation of the algorithm. However, we can not yet tell how the instanti-
ations of the representation free algorithm compare with (λ, µ) EA from the
literature.

10.3 Recommendations for Future Work

• Determine a class of easy problems for the SES using a similar approach
to that used for (1 + 1) EA and EA with both a mutation and a standard
crossover.

• Determine how the chosen runtime analysis method affects the runtime re-
sult, by using drift analysis instead of the fitness levels method for the unify-
ing runtime analysis.

• Compare the instantiations of the representation free EA with a mutation
and a crossover to (λ, µ) EAs from the literature by:

– finding papers on the runtime analysis of (λ, µ) EAs using the fitness
levels method,

– determining whether the problems that are efficiently solved by the
(λ, µ) EAs are ρ-improving for some ρ ≥ 1 and with at most polyno-
mially many level sets,

– comparing the runtime upper bounds of the papers to the runtime up-
per bounds of the instantiations of the representation free EA with a
mutation and a crossover.
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