
Multi-Head Self-Attention via
Vision Transformer for Zero-Shot Learning

Faisal Alamri and Anjan Dutta

Department of Computer Science, University of Exeter, United Kingdom

Abstract

Zero-Shot Learning (ZSL) aims to recognise unseen object classes, which are not observed during the
training phase. The existing body of works on ZSL mostly relies on pretrained visual features and lacks
the explicit attribute localisation mechanism on images. In this work, we propose an attention-based model
in the problem settings of ZSL to learn attributes useful for unseen class recognition. Our method uses
an attention mechanism adapted from Vision Transformer to capture and learn discriminative attributes by
splitting images into small patches. We conduct experiments on three popular ZSL benchmarks (i.e., AWA2,
CUB and SUN) and set new state-of-the-art harmonic mean results on all the three datasets, which illustrate
the effectiveness of our proposed method.

Keywords: Generalised zero-shot learning, Inductive learning, Attention, Semantic embedding, Vision
Transformer.
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Figure 1: Our method embeds each attribute-
based feature with the semantic space. It learns
the visual discriminative features through multi-
head attention. Best to view in colour: colours in
the image correspond to the same-colour attribute
in the semantic space.

Relying on massive annotated datasets, significant progress
has been made on many visual recognition tasks, which is
mainly due to the widespread use of different deep learning
architectures [Ren et al., 2015, Dosovitskiy et al., 2021,
Khan et al., 2021]. Despite these advancements, recognis-
ing any arbitrary real-world object still remains a daunt-
ing challenge as it is unrealistic to label all the ex-
isting object classes on the earth. Zero-Shot Learn-
ing (ZSL) addresses this problem, requiring images from
the seen classes during the training, but has the ca-
pability of recognising unseen classes during the infer-
ence [Xian et al., 2019a, Xie et al., 2019, Xu et al., 2020,
Federici et al., 2020]. Here the central insight is that all the
existing categories share a common semantic space and the
task of ZSL is to learn a mapping from the imagery space to the semantic space with the help of side informa-
tion (attributes, word embeddings) [Xian et al., 2017, Mikolov et al., 2013, Pennington et al., 2014] available
with the seen classes during the training phase so that it can be used to predict the class information for the
unseen classes during the inference time.

Most of the existing ZSL methods [Xian et al., 2018, Schönfeld et al., 2019] depends on pretrained vi-
sual features and necessarily focus on learning a compatibility function between the visual features and se-
mantic attributes. Although modern neural network models encode local visual information and object parts
[Xie et al., 2019], they are not sufficient to solve the localisation issue in ZSL models. Some attempts have also



been made by learning visual attention that focuses on some object parts [Zhu et al., 2019]. However, designing
a model that can exploit a stronger attention mechanism is relatively unexplored.

Therefore, to alleviate the above shortcomings of visual representations in ZSL models, in this paper, we
propose a Vision Transformer (ViT) [Dosovitskiy et al., 2021] based multi-head self-attention model for solv-
ing the ZSL task. Our main contribution is to introduce ViT for enhancing the visual feature localisation to
solve the zero-shot learning task. Without any object part-level annotation or detection, this is the first attempt
to introduce ViT into ZSL. As illustrated in Figure 1, our method maps the visual features of images to the
semantic space with the help of scaled dot-product of multi-head attention employed in ViT. We have also per-
formed detailed experimentation on three public datasets (i.e., AWA2, CUB and SUN) following Generalised
Zero-Shot Learning (GZSL) setting and achieved very encouraging results on all of them, including the new
state-of-the-art harmonic mean on all the datasets.

2 Related Work

Zero-Shot Learning: ZSL is employed to bridge the gap between seen and unseen classes using semantic
information, which is done by computing similarity function between visual features and previously learned
knowledge [Romera-Paredes and Torr, 2015]. Various approaches address the ZSL problem by learning prob-
abilistic attribute classifiers to predict class labels [Lampert et al., 2009, Norouzi et al., 2014] and by learning
linear [Frome et al., 2013, Akata et al., 2015, Akata et al., 2016], and non-linear [Xian et al., 2016] compatibil-
ity function associating image features and semantic information. Recently proposed generative models syn-
thesise visual features for the unseen classes [Xian et al., 2018, Schönfeld et al., 2019]. Although those models
achieve better performances compared to classical models, they rely on features of trained CNNs. Recently,
attention mechanism is adapted in ZSL to integrate discriminative local and global visual features. Among
them, S2GA [Yu et al., 2018] and AREN [Xie et al., 2019] use an attention-based network with two branches
to guide the visual features to generate discriminative regions of objects. SGMA [Zhu et al., 2019] also applies
attention to jointly learn global and local features from the whole image and multiple discovered object parts.
Very recently, APN [Xu et al., 2020] proposes to divide an object into eight groups and learns a set of attribute
prototypes, which further help the model to decorrelate the visual features. Partly inspired by the success of
attention-based models, in this paper, we propose to learn local and global features using multi-scaled-dot-
product self-attention via the Vision Transformer model, which to the best of our knowledge, is the first work
on ZSL involving Vision Transformer. In this model, we employ multi-head attention after splitting the image
into fixed-size patches so that it can attend to each patch to capture discriminative features among them and
generate a compact representation of the entire image.

Vision Transformer: Self-attention-based architectures, especially Transformer [Vaswani et al., 2017] has
shown major success for various Natural Language Processing (NLP) [Brown et al., 2020] as well as for Com-
puter Vision tasks [Alamri et al., 2021, Dosovitskiy et al., 2021]; the reader is referred to [Khan et al., 2021]
for further reading on Vision Transformer based literature. Specifically, CaiT [Touvron et al., 2021] intro-
duces deeper transformer networks, and Swin Transformer [Liu et al., 2021] proposes a hierarchical Trans-
former, where the representation is computed using self-attention via shifted windows. In addition, TNT
[Han et al., 2021] proposes transformer-backbone method modelling not only the patch-level features but also
the pixel-level representations. CrossViT [Chen et al., 2021] shows how dual-branch Transformer combining
different sized image patches produce stronger image features. Since the applicability of transformer-based
models is growing, we aim to expand and judge its capability for GZSL tasks; to the best of our knowledge,
this is still unexplored. Therefore, different from the existing works, we employ ViT to map the visual in-
formation to the semantic space, benefiting from the great performance of multi-head self-attention to learn
class-level attributes.
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Figure 2: ViT-ZSL Architecture. An image is split into small patches fed into the Transformer encoder after
attaching positional embeddings. During the training the output of the encoder is compared with the semantic
information of the corresponding image via MSE loss. At inference the encoder output is used to search for the
nearest class label.

3 Vision Transformer for Zero-shot Learning (ViT-ZSL)

We follow the inductive approach for training our model, i.e. during training, the model only has access to the
images and corresponding image/object attributes from the seen classes S = {x,y|x ∈ X ,y ∈ Ys}, where
x is an RGB image and y is the class-level attribute vector annotated with M different attributes, as provided
with the dataset. As depicted in Figure 2, a 224 × 224 image x ∈ RH×W×C with resolution H ×W and C
channels is fed into the model. The model follows ViT [Dosovitskiy et al., 2021] as closely as possible; hence
the image is divided into a sequence of N patches denoted as xp ∈ RN×(P 2.C), where N = H.W

P 2 . Each patch
with a resolution of P ×P is encoded into a patch embedding by a trainable 2D convolution layer (i.e., Conv2d
with kernel size=(16, 16) and stride=(16, 16)). Position embeddings are then attached to the patch embeddings
to preserve the relative positional information of the order of the sequence due to the lack of recurrence in
the Transformer. An extra learnable classification token (z00 = xclass) is appended at the beginning of the
sequence to encode the global image representation. Patch embeddings (z) are then projected thought a linear
projection E to D dimension (i.e., D = 1024) as in Eq. 1. Embeddings are then passed to the Transformer
encoder, which consists of Multi-Head Attention (MHA) (Eq. 2) and MLP blocks (Eq. 3). Before every block,
a layer normalisation (Norm) is employed, and residual connections are also applied after every block. Image
representation (ŷ) is produced as in Eq. 4.

z0 = [xclass;x
1
pE;x2

pE;x3
pE; . . . ;xN

p E] +Epos, E ∈ R(P 2.C)×D,Epos ∈ R(N+1)×D (1)

z′` = MHA(Norm(z`−1)) + z`−1, ` = 1 . . . L (L = 24) (2)

z` = MLP(Norm(z′`)) + z′`, ` = 1 . . . L (3)

ŷ = Norm(z0L) (4)

In terms of MHA, self-attention is performed for every patch in the sequence of the patch embeddings
independently; thus, attention works simultaneously for all the patches, leading to multi-head self-attention.
Three vectors, namely Query (Q), Key (K) and Value (V ), are created by multiplying the encoder’s input (i.e.,
patch embeddings) by three weight matrices (i.e., WQ, WK and W V ) trained during the training process to
compute the self-attention. The Q and K vectors undergo a dot-product to output a scoring matrix representing
how much a patch embedding has to attend to every other embedding; the higher the score is, the more attention
is considered. The score matrix is then scaled down and passed into a softmax to convert the scores into
probabilities, which are then multiplied by the V vectors, as in Eq. 5, where dk is the dimension of the K
vectors. Since the multi-attention mechanism is employed, self-attention matrices are then concatenated and



fed into a linear layer and passed to the regression head.

Attention(Q, K, V) = softmax(
QKT

√
dk

)V (5)

We argue that self-attention allows our model to attend to image regions that can be semantically relevant for
classification and learns the visual features across the entire image. Since the standard ViT has one classification
head implemented by an MLP, it has been edited to meet our model objective: to predictM number of attributes
(i.e., depending on the datasets used). The motivation behind this is that the network is assumed to learn the
notion of classes to predict attributes. For the objective function, we employed the Mean Squared Error (MSE)
loss, as the continuous attributes are used as in Eq. 6, where yi is the observed attributes, and ŷi is the predicted
ones.

LMSE =
1

M

M∑
i=1

(yi − ŷi)
2 (6)

During testing, instead of applying the extensively used dot product as in [Xu et al., 2020], we consider the
cosine similarity as in [Gidaris and Komodakis, 2018] to predict class labels. The cosine similarity between the
predicted attributes and every class embedding is measured. The output of the similarity measure is then used
to determine the class label of the test images.

4 Experiments

Implementation Details: All images used in training and testing are adapted from the ZSL datasets mentioned
below and sized 224 × 224 without any data augmentation. We employ the Large variant of ViT (ViT-L)
[Dosovitskiy et al., 2021], with input patch size 16 × 16, 1024 hidden dimension, 24 layers, 16 heads on each
layer, and 24 series encoder. There are 307M parameters in total in this architecture. ViT-L is then fine-tuned
using Adam optimiser with a fixed learning rate of 10−4 and a batch size of 64. All methods are implemented
in PyTorch1 on an NVIDIA RTX 3090 GPU, Xeon processor, and a memory sized 32GB.

Datasets: We have conducted our experiments on three popular ZSL datasets: AWA2, CUB, and SUN, whose
details are presented in Table 1. The main aim of this experimentation is to validate our proposed method, ViT-
ZSL, demonstrate its effectiveness and compare it with the existing state-of-the-arts. Among these datasets,
AWA2 [Xian et al., 2017] consists of 37, 322 images of 50 categories (40 seen + 10 unseen). Each category
contains 85 binary as well as continuous class attributes. CUB [Wah et al., 2011] contains 11, 788 images
forming 200 different types of birds, among them 150 classes are considered as seen, and the other 50 as
unseen, which is split by [Akata et al., 2016]. Together with images CUB dataset also contains 312 attributes
describing birds. Finally, SUN [Patterson and Hays, 2012] has the largest number of classes among others. It
consists of 717 types of scene, divided into 645 seen and 72 unseen classes. The SUN dataset contains 14, 340
images with 102 annotated attributes.

Table 1: Dataset statistics in terms of granularity, number of classes (seen + unseen classes) as shown within
parenthesis, number of attributes and number of images.

Datasets Granularity # Classes (S + U) # Attributes # Images
AWA2 [Xian et al., 2017] coarse 50 (40 + 10) 85 37,322
CUB [Wah et al., 2011] fine 200 (150 + 50) 102 11,788
SUN [Patterson and Hays, 2012] fine 717 (645 + 72) 312 14,340

Evaluation: In this work, we train our ViT-ZSL model following the inductive approach [Wang et al., 2019].
Following [Xian et al., 2019a], we measure the top-1 accuracy for both seen as well as unseen classes. To

1Our code is available at: https://github.com/FaisalAlamri0/ViT-ZSL



capture the trade-off between both sets of classes performance, we use the harmonic mean, which is the primary
evaluation criterion for our model. Following the recent papers (e.g., [Xu et al., 2020], [Chao et al., 2016]), we
apply Calibrated Stacking [Chao et al., 2016] to evaluate the considered methods under GZSL setting, where
the calibration factor γ is dataset dependant and decided based on a validation set.

Quantitative Results: We consider the AWA2, CUB and SUN datasets to show the performance of our pro-
posed model and compare the performance with related arts. Table 2 shows the quantitative comparison be-
tween the proposed model and various other GZSL models. The performance of each model is shown in terms
of Seen (S) and Unseen (U) classes and their harmonic mean (H).

Table 2: Generalised zero-shot classification performance on AWA2, CUB and SUN

Models
AWA2 CUB SUN

S U H S U H S U H
DAP [Lampert et al., 2009] 84.7 0.0 0.0 67.9 1.7 3.3 25.1 4.2 7.2
IAP [Lampert et al., 2009] 87.6 0.9 1.8 72.8 0.2 0.4 37.8 1.0 1.8
DeViSE [Frome et al., 2013] 74.7 17.1 27.8 53.0 23.8 32.8 30.5 14.7 19.8
ConSE [Norouzi et al., 2014] 90.6 0.5 1.0 72.2 1.6 3.1 39.9 6.8 11.6
SSE [Zhang and Saligrama, 2015] 82.5 8.1 14.8 46.9 8.5 14.4 36.4 2.1 4.0
SJE [Akata et al., 2015] 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8
ESZSL [Romera-Paredes and Torr, 2015] 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8
LATEM [Xian et al., 2016] 77.3 11.5 20.0 57.3 15.2 24.0 28.8 14.7 19.5
ALE [Akata et al., 2016] 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3
SAE [Kodirov et al., 2017] 82.2 1.1 2.2 54.0 7.8 13.6 18.0 8.8 11.8
AREN [Xie et al., 2019] 92.9 15.6 26.7 78.7 38.9 52.1 38.8 19.0 25.5
SGMA [Zhu et al., 2019] 87.1 37.6 52.5 71.3 36.7 48.5 - - -
APN [Xu et al., 2020] 78.0 56.5 65.5 69.3 65.3 67.2 34.0 41.1 37.6
*GAZSL [Zhu et al., 2018] 86.5 19.2 31.4 60.6 23.9 34.3 34.5 21.7 26.7
*f-CLSWGAN [Xian et al., 2018] 64.4 57.9 59.6 57.7 43.7 49.7 36.6 42.6 39.4
Our model (ViT-ZSL) 90.0 51.9 65.8 75.2 67.3 71.0 55.3 44.5 49.3

S, U, H denote Seen classes (Ys), Unseen classes (Yu), and the Harmonic mean, respectively. For each scenario, the
best is in red and the second-best is in blue. * indicates generative representation learning methods.

DAP and IAP [Lampert et al., 2009] are some of the earliest works in ZSL, which perform poorly compared
to other models. This is due to the assumptions claimed in these approaches regarding attributes dependency.
In real-world animals with attributes ‘terrestrial’ and ‘farm’ are dependent but are assumed independent by
such models, which are noted as incorrect by [Akata et al., 2016]. Our model ViT-ZSL does not assume this,
but rather it considers the correlation between attributes, which self-attention helps to achieve by considering
both positional and contextual information of the entire sequence of patches. DeViSE [Frome et al., 2013]
and ConSE [Norouzi et al., 2014] learn a linear mapping between images and their semantic embedding space.
They both make use of the same text model trained on 5.4B words from Wikipedia to construct 500-dimensional
word embedding vectors. Both use the same baseline model, but DeViSE replaces the last layer (i.e., softmax
layer) with a linear transformation layer. In contrast, ConSE keeps it and computes the predictions via a
convex combination of the class label embedding vectors. ConSE, as presented in Table 2 outperforms DeViSE,
but DeViSE is generally performing better on the unseen classes. Similarly, SJE [Akata et al., 2015] learns
a bilinear compatibility function using the structural SVM objective function to maximise the compatibility
between image and class embeddings. ESZSL [Romera-Paredes and Torr, 2015] uses the square loss to learn
bilinear compatibility. Although ESZSL is claimed to be easy to implement, its performance, in particular
for GZSL, is poor. ALE [Akata et al., 2016], which belongs to the bilinear compatibility approach group,
performs better than most of its group member. LATEM [Xian et al., 2016], instead of learning a single bilinear
map, extends the bilinear compatibility of SJE [Akata et al., 2015] as to be an image-class pairwise linear by
learning multiple linear mappings. It performs better than SJE on unseen classes but with a lower harmonic



Figure 3: Representative examples of attention. First row: Original images, Middle: Attention maps, and
last: Attention fusions. From left to right, ViT-ZSL is able to focus on object-level attributes and learn objects
discriminative features when objects are partly captured (first three columns images), occluded (fourth column
images) or fully presented (last two columns images).

mean due to its poor performance on seen classes. Generative ZSL models such as GAZSL [Zhu et al., 2018],
and f-CLSWGAN [Xian et al., 2018] are seen to reduce the effect of the bias problem due to the inclusion of
synthesised features for the unseen classes. However, this does not apply to our method, as no synthesised
features are used in our case; instead, solely the features extracted from seen classes are used during training.
AREN [Xie et al., 2019], SGMA [Zhu et al., 2019] and APN [Xu et al., 2020] are non-generative ZSL models
focusing on object region localisation using image attention. They are the most relevant works to ours as
attention mechanism is included in these models architecture. However, they consist of two branches in their
models, where the first learns local discriminative visual features and the second captures the image’s global
context. In contrast, our model uses only one compact network, where the input is the image patches so that
the global and local discriminative features can be learned using the multi-head self-attention mechanism.

Our model ViT-ZSL, as shown in Table 2, achieves the best harmonic mean on AWA2. It also performs
as the third best on both seen and unseen classes. Compared with the other models, it scores 90.02%, where
the highest is the highest is AREN with 92.9% accuracy. As the comparison illustrated follows the GZSL
setting using the harmonic mean as the primary evaluation metric for GZSL models, ViT-ZSL outperforms all
state-of-the-art models. In terms of the CUB dataset, our method achieves the second-highest accuracy for seen
classes, but the highest for unseen. In addition, our ViT-ZSL obtains the best harmonic mean score among all
the reported approaches. On SUN datasets, which has the most significant number of object classes among
other datasets, our model performs as the best for both seen and unseen classes, achieving a harmonic mean of
47.9%, the highest compared to all other models.

Attention Maps: In Figure 3, we show how our model attends to image regions semantically relevant to the
object class. For example, in the images of the first three columns, the entire objects’ shapes are absent (i.e.,
only the top part is captured), and in the image in the fourth column, the groove-billed ani bird is impeded by a
human hand. Although these images suffer from occlusion, our model accurately attends to the objects in the
image. Thus, we believe that ViT-ZSL definitely benefits from the attention mechanism, which is also involved
in the human recognition system. Clearly, we can say that our method has learned to map the relevance of
local regions to representations in the semantic space, where it makes predictions on the visible attribute-based
regions. Similarly, in the last two columns images of Figure 3, it can be noticed how the model pays more
attention to some object-level attributes (i.e., Deer: forest, agility, furry etc., and Vermilion Flycatcher: solid
and red breast, perching-like shape, notched tail). It can also be noticed that the model focuses on the context
of the object, as in the second column images. This can be due to the guidance of some attributes (i.e., forest,
jungle, ground and tree) which are associated with leopard class. However, as shown in the first column, the
model did not pay much attention to the bird’s beak compared to the head and the rest of the body, which



needs to be investigated further and building an explainable model as in [Xian et al., 2019b] could be a way to
accomplish this.

5 Conclusion

In this paper, we proposed a Vision Transformer-based Zero-Shot Learning (ViT-ZSL) model that specifically
exploits the multi-head self-attention mechanism for relating visual and semantic attributes. Our qualitative
results showed that the attention mechanism involved in our model focuses on the most relevant image regions
related to the object class to predict the semantic information, which is used to find out the class label during
inference. Our results on the GZSL task, including the highest harmonic mean scores on the AWA2, CUB and
SUN datasets, illustrate the effectiveness of our proposed method.

Although our method achieves very encouraging results for the GZSL task on three publicly available
benchmarks, the bias problem towards seen classes remains a challenge, which will be addressed in future
work. Training the model in a transductive setting, where visual information for unseen classes could be
included, is a direction to be examined.
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