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Abstract

Decisions agents make before and after matching can be strategically linked through

the match. We demonstrate this linkage in a game where universities either require stu-

dents to commit to majors before matriculating or allow students to pick majors during

their studies. The interaction between “matching forces” (competition for higher qual-

ity students) and “principal-agent forces” (moral hazard and adverse selection) leads

to two equilibria that mirror the admissions systems in the US and England. With

monetary transfers, our model provides insights into athletic scholarships. Payment

caps that restrict transfers to potential athletes who decide not to play sports can

maximize welfare.
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“You’re going to be studying the subject to a very high level for several years so

make sure you choose a course you’re passionate about and will really enjoy!”

-Cambridge University Undergraduate Study office, England1

“You are asked to choose a major by the time you achieve junior status... Even

after this point you may change your major if your interests shift.”

-Stanford University Office of the Registrar, USA2

1 Introduction

High school students applying to university face strikingly different systems depending on

where they live. In the United States, universities are what we will call aggregated, meaning

that they allow incoming students to wait until their second or third year before choosing

a major. In England (and many other countries), universities are disaggregated, which we

use to mean that they force students to commit to a major when applying and have bar-

riers restricting switching to another program after admission. Moreover, English students

specialize in their last years of high school, giving them more information on their proposed

course of study than American students.3 How is it that these two arrangements evolved

and why do these differences by country continue to exist? What factors lead to shifts in a

country from one system to another?

An initial hypothesis is that these two systems – the “English” system of students nar-

rowing their focus in high school before applying to disaggregated universities and the “US”

system of students keeping their studies broad in high school before applying to aggregated

universities – exist due to different institutions or are outcomes of a coordination game be-

tween students and universities. However, these hypotheses do not easily explain why some

universities under both systems fail to adhere to the aggregation decisions of the majority of

their peer institutions. In the US, certain universities partially disaggregate by disallowing

major transfers to business colleges or to certain majors;4 some engineering, music, and art

schools (e.g., Caltech, Juilliard, the Rhode Island School of Design) effectively disaggregate

1http://www.study.cam.ac.uk/undergraduate/apply/ 11/17/2014.
2http://studentaffairs.stanford.edu/registrar/students/declaring-major 11/17/2014.
3We review the evidence to support these claims in Appendix B.1.
4E.g., see https://www.bme.jhu.edu/undergraduate/apply/ for a discussion of admissions to Johns Hop-

kins’ biomedical engineering program.
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by offering a limited range of programs for study. In some predominantly disaggregated coun-

tries, there are recent examples of universities switching to more American-style admissions

systems, such as the University of Hong Kong, University of Melbourne,5 University College

London, University of Exeter, University of Birmingham, University of Kent, and King’s

College London, sometimes explicitly comparing themselves to an “American-style” liberal

arts degree. Coordination and institution-based hypotheses do not explain why English uni-

versities that have recently switched to aggregation have seen a 25% increase in applications

(Guttenplan 2013).6 A useful model must explain these trends and give predictions on how

such deviations change the overall equilibrium.

We propose a university/major admissions game played between students and universities

and show that the US and English systems are equilibrium outcomes of our model. Before

applying, students select whether to pay a cost to learn about their preferences over majors

and universities decide whether to aggregate or disaggregate. Our base model simplifies away

from many important aspects of university admissions to focus on one potentially important

driver of the current systems. We consider many realistic extensions of our model in the

appendix.7 Moreover, our model provides a framework for thinking about this question

and layering in additional complexities that we do not consider to understand how various

changes in the educational landscape could affect admissions.

Our analysis is built on two important features. First, students and universities some-

times disagree about which major the student should study. For example, a Math Olympiad

star may discover a passion for literature to the dismay of her university. That there are

differences between a student’s preference and her skill–what a university prefers her to

study8–appears true by revealed preference as English universities would be better off al-

lowing students to switch majors if this were not the case. The existence of major choice

disagreement is also supported by more direct evidence. Wiswall and Zafar (2015) find that

5Both the University of Hong Kong and University of Melbourne now allow for more general study
followed by more specialized study. For a critical take of the change by the University of Melbourne, see e.g.
https://theconversation.com/undergraduate-education-and-the-melbourne-model-993.

6Such models would also predict no change should a country deregulate its higher education system,
whereas ours suggests that deregulation could lead to substantial changes.

7The extensions we consider include differences in the overall popularity of universities and a benefit to
attending a disaggregated school, which are usually three year programs in England and four years in the
US.

8While we think of a student’s skill major as pertaining to her ability, there are many reasons why
universities may want a student to study a particular major. Professors may prefer interacting with more
proficient students, the presence of more able students may increase the prestige of a university, universities
that rely on alumni donations might want students to pursue more lucrative careers, or universities that rely
on governmental funding may feel pressure to demonstrate the impact their students have on society. Our
model implies that changes in universities’ funding models could have important equilibrium effects through
effects on university preferences.
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student tastes largely determine major choices above and beyond academic success and fu-

ture earnings, two measures that are presumably important to universities, especially those

that depend on alumni donations. Haggag et al. (2020) find that some American students

suffer from attribution bias and are significantly less likely to major in a subject if their first

class in that subject is scheduled at an inconvenient time. Our analysis shows that even

a small probability of disagreement can have a large impact on market conditions; in two

of our results, there is a discontinuity in the probability of disagreement at zero, with any

strictly positive probability of disagreement leading to the non-existence of the US system

as an equilibrium.

The second important feature is how agents’ payoffs depend on their partner(s) and the

major studied (the terms of the match). Each student receives a higher payoff from studying

her preferred major and each university receives a higher payoff when its students study

according to their skills. Agents on both sides of the market also have preferences over

partners beyond the terms of the match (e.g., a student prefers one university over another

if she can study the same major at each), so there is a trade-off between having a better

partner and having matches with better terms.

Students who are unsure of which major they want to study when they apply value the

guarantee that they will be able to study their favorite major at aggregated universities,

putting disaggregated universities at a competitive disadvantage. Aggregated universities

face a moral hazard cost of some enrolled students electing not to study how the university

wishes. The US equilibrium exists when the loss in competitiveness outweighs concerns over

which majors admitted students study.

In the English equilibrium, a university that deviates suffers from adverse selection with-

out any upside; when students know which major they want to study, providing them with

flexibility in their major choice is only useful to students who cannot gain admission under

their preferred major. Therefore, universities do not want to deviate. If required to choose

a major when applying, students will pay the cost to better learn their preferences in high

school to improve their application strategy if that cost is not too high.

To help explain why these two equilibria are prevalent around the world, we give con-

ditions under which they are the only pure strategy equilibria.9 Generically, the only other

pure strategy equilibria that can exist are ones in which students do not acquire informa-

tion about major preferences before matching and universities make (possibly) asymmetric

aggregation decisions. With sufficient competition between students for seats at universities

9That the aggregation policies of universities do not shift back and forth from year to year and are
largely homogeneous within a country (neither of which we would expect if universities were choosing their
aggregation policies according to mixed strategies) justifies restricting our analysis to pure strategy equilibria.
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and sufficient competition between universities for top students, such equilibria do not exist.

Our main result concerns which types of markets are conducive to one equilibrium over

the other as this helps both to understand current patterns and to project how changes in

fundamentals might cause structural shifts. The ability to sort into two equilibria is closely

related to competition in the market, which depends on the number of seats, the number

of students, and the number of universities. Theorem 1 finds that increasing the number

of universities makes the US equilibrium easier to support while increasing the number of

seats available (relative to the number of students) makes the English equilibrium easier to

support.

As discussed, not all agents necessarily abide by equilibrium strategies. We analyze the

robustness of equilibria when students select the “incorrect” decision regarding resolving

their preference uncertainty with small probability and when universities make incorrect

aggregation decisions with small probability. These deviations can represent, for example,

the presence of foreign students and specialized universities offering only one program of

study. We find that the US system is robust to small deviations on both sides of the

market and is not destablized by the presence of a few specialist schools or students who

know their preferences. The English system collapses when the probability of a university

deviating is sufficiently large relative to the probability of a student deviating, even when

both probabilities are small in absolute terms. This result suggests that markets may move

away from the English system over time, which may explain recent trends in predominantly

disaggregated countries.10

The second half of the paper uses our model to study how to optimally design markets

with monetary transfers. This provides a structure to discuss the impacts of limits on

tuition, merit-based scholarships, and athletic scholarships on university admissions.11 Under

aggregation, students receive different payments depending on the terms of the contract,

creating non-zero costs for “studying” against their skill.

When there are many universities, we show that competition removes the entire surplus

from enrolling desirable students compared to the marginal student who is not admitted

10It also calls into question a recent policy decision by the British government to limit the number of non-
EU students studying at English universities (Fazackerley 2016). Currently, over a quarter of foreign stu-
dents in the UK come from China (see http://www.thecompleteuniversityguide.co.uk/international/
international-students-the-facts/where-they-come-from/,7/26/2015). Because of China’s general-
studies high school education system, students often “have no idea of what their passions are” (Chen 2015).
As our Proposition 6 shows, reducing the number of uninformed students without also decreasing the number
of aggregated universities in the English system may have the possibly counter-intuitive effect of destabilizing
the equilibrium.

11For a recent discussion of the history of college athletics in the United States and arguments for why
student athletes should be paid competitive wages, please see Sanderson and Siegfried (2015).
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anywhere. This price competition eliminates the US equilibrium; a university would prefer

to stop competing for the top students, who are no longer preferable to other students due

to the expense of retaining them, and deviate to disaggregating, admitting lower quality

students and giving these students no scholarships.

In line with these results, many top universities in the United States collude against

offering merit based scholarships.12 Our result shows that a mechanism by which payments to

students are constrained may be necessary to maintain the US equilibrium. In US university

athletics, the NCAA caps the compensation universities can provide to student athletes at the

cost of tuition, room and board, fees, and a small stipend. Increasing the cap but enforcing

it as a “sports only” scholarship can lead to a Pareto improvement; the US equilibrium with

an appropriately selected transfer cap maximizes aggregate welfare.

Related literature

This paper relates to several strands of the literature. First, our work stems from the cen-

tralized matching literature started by Gale and Shapley (1962) and extended to include

contracts by Kelso and Crawford (1982), Fleiner (2003), and Hatfield and Milgrom (2005).

In this framework, Pakzad-Hurson (2021) finds that a centralized analogue of university ag-

gregation is necessary for the existence of a student efficient matching, which is corroborated

in Proposition 3 of the current paper. Yenmez (2018) studies a centralized clearinghouse

for college admissions, where contracts can specify majors or monetary transfers. Our pa-

per makes use of both interpretations; student-university matches must specify the intended

major of the student and in Section 4, they must also specify monetary transfers.

The second strand of the literature is the recent theoretical work on decentralized match-

ing, which is methodologically most similar to our paper. Lee (2009) and Avery and Levin

(2010) study early admissions. Chade et al. (2014) study a setting with costly applications

to universities. Che and Koh (2016) discuss admissions strategies of universities when there

is aggregate uncertainty regarding the popularity of universities and there is a high but

non-prohibitive cost to exceeding capacity. We study similar uncertainty in regards to the

popularity of different majors in Appendix C. Our paper is the first, to our knowledge, to

study the equilibrium decisions of universities and students when there are multiple majors.

We also consider monetary transfers from university to students.

12Ivy league universities faced charges from the US Justice Department in 1991 for colluding on financial
aid offers (http://www.nytimes.com/1991/05/23/us/ivy-universities-deny-price-fixing-but-agree-to-avoid-it-
in-the-future.html, 4/13/15). However, a 1993 ruling by the Third Circuit Court of Appeals allowed the
practice of allowing universities to collude on student aid offers for “procompetitive and social welfare
justifications” (http://law.justia.com/cases/federal/appellate-courts/F3/5/658/626013/, 4/13/2015).
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Third, our paper contributes to the literature on decentralized markets with a “pre-

match” phase. Many papers, including Acemoglu (1996), Cole et al. (2001a), Cole et al.

(2001b), Peters and Siow (2002), Mailath et al. (2013) and Nöldeke and Samuelson (2015)

study strategic investments agents make to improve their quality prior to matching. Rogerson

(1992), Bergemann and Välimäki (2003) and Hatfield et al. (2019) study costly information

acquisition by agents before arriving to market. Our paper combines the considerations

of these papers by allowing heterogeneous agents to either acquire costly information (stu-

dents can learn their preferences over majors) or improve their own quality (universities can

aggregate to become more attractive to students) before matching. Furthermore, we explic-

itly model what happens after the match is made, which drives pre-match decisions in our

setting.

While we believe ours to be the first primarily theoretical paper on the topic of disag-

gregation in matching markets, there are a number of empirical papers that study major

choice in university admissions. Bordon and Fu (2015) estimate a structural model of the

welfare impact of moving from a disaggregated system to an aggregated one using Chilean

data. Also looking at the Chilean system, Larroucau and Rios (2020) document that 15% of

Chilean students reapply even after being given their first choice placement, suggesting that

students are initially uncertain about their preferences.13 Altonji et al. (2012) investigate

returns to higher education dependent upon which major a student pursues. Several of our

modeling choices are similar to theirs (such as distinguishing between a student’s uncertain

preferences and her abilities). Other empirical papers focusing on major choice are discussed

in Appendix B.1.

The remainder of the paper is organized as follows. In Section 2, we set up the model.

Section 3 discusses equilibria without monetary transfers. Section 4 introduces monetary

transfers to the model and discusses market interventions. We conclude in Section 5. Proofs

are found in Appendix A. The appendix presents stylized facts of the two admissions systems

we study (Appendix B.1), contains a brief discussion of the historical development of the

two systems suggestive of the plausibility of our proposed explanation (Appendix B.2), and

introduces additional results, robustness checks and extensions of our model (Appendix C).

13This interpretation of uncertain preferences is based on surveys of students. The instabilities in Chile’s
centralized application system they document also raise the question of what would happen if applications
were decentralized, a question to which our model provides an answer.
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2 Model

We introduce a simple game of university/major admissions. The base game abstracts from

many important features in university admissions to illustrate the strategic implications of

aggregation. In Appendix C, we layer in additional complexities of the admissions process

and show that the principle forces in our game are present in more complicated and realistic

models.

2.1 Setting

There is a unit mass of students S. There is a set of universities N = {u1, . . . , un} with

n ≥ 2, and each u ∈ N comprises two colleges, Mu and Lu. Each college offers a single

major, either M (“Math”) or L (“Literature”).

Each student s ∈ S can either study a single major at a single college or not attend

university. A contract is a triplet specifying a student, the university she attends, and the

major she studies (which defines the college she attends within the university). The set

of contracts is X = S × N × {M,L}. For a given contract x ∈ X, xs is the associated

student, xu is the associated university, and xm is the associated major. The empty contract

∅ denotes that a student is unassigned to any college.

Each s ∈ S has a type (vs, θs, ρs, ws) ∈ [0, 1] × {M,L} × {M,L} × [0, 1]n. Student s’s

quality is denoted by vs ∈ [0, 1]. Each student s’s university preferred major is denoted by

θs ∈ {M,L}. We often refer to the university preferred major as the student’s skill type with

the impression that universities often want their students to study what they are good at;

however, one could imagine a variety of factors influencing which major a university wants

a given student to study and θs represents the combination of those factors. Each student

s also has a major preference ρs ∈ {M,L}. ws is an n dimensional vector representing s’s

cardinal preferences over universities, with ws(u) ∈ [0, 1] for each u ∈ N .

The distribution of student types is defined as follows. For any τ ∈ [0, 1]n+1, let S(τ) :=

{s|vs ≤ τ1, ws(u1) ≤ τ2, ..., ws(un) ≤ τn+1}. Let Si,j := {s|θs = i and ρs = j} for i ∈ {M,L}.
For any τ ∈ [0, 1]n+1,

|S(τ) ∩ SM,M | = |S(τ) ∩ SL,L| = α

2

n+1∏
k=1

τk

and

|S(τ) ∩ SM,L| = |S(τ) ∩ SL,M | = (1− α)

2

n+1∏
k=1

τk
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where α ∈ (1
2
, 1) is a given constant.

These marginals represent several features of the distribution of types. First, half of

all students have a skill type major of M and the other half of the students have a skill

type major of L. With probability α ∈ (1
2
, 1), θs = ρs; often, but not always, students and

universities agree on which major the student should study. We call a student s whose own

major preference matches that of universities (i.e. ρs = θs) consistent and a student whose

own major preference does not match that of the universities inconsistent. Independently

of all other components, each student’s quality and cardinal value for each university are

drawn from [0, 1]. Our qualitative results apply to general distributions with full support on

[0,1], but to give closed-form conditions, we take each distribution to be uniform.

Payoffs for students, universities, and colleges depend on enrollment and on student types.

For a given contract x ∈ X, the utility of student xs is Uxs(x) = wxs(xu) + b · 1{xm=ρxs}
where b ≤ 1

1−α is the added benefit a student receives if she studies her preferred major.14

We normalize the utility a student receives from not attending university to 0. Note that the

skill type major θs of a student s does not directly enter her objective function. Additionally,

each student s pays a cost c > 0 if and only if she resolves her uncertainty over her preferred

major ρs prior to matching, as we discuss further in the following section.

A college’s utility is derived from the quality and skill type of each student it enrolls.

Each college Mu can enroll students only to study program M. For each contract x ∈ X with

xm = M , college Mxu derives utility vxsdxs if θxs = M (i.e. M is the student’s skill type) and

δ(vxs)ds if θxs = L, where 0 ≤ δ(vxs) ≤ vxs (with the inequality strict for vxs ∈ (0, 1)) is an

absolutely continuous and strictly increasing discount function and dxs is an infinitesimal.

Analogously, each college Lu can enroll students only to study program L. For each contract

x ∈ X with xm = L, college Lxu derives utility vxsdxs if θxs = L and δ(vxs)dxs if θxs = M .

The fact that δ(vxs) < vxs almost everywhere means that colleges (almost always) derive

strictly higher utility from a student xs studying her skill-type major θxs .
15

Each college has a quota of q
2n

seats, with q < 1. We assume a prohibitively high cost

of exceeding the quota. Define Xiu ⊂ X as a feasible set for college iu for i ∈ {M,L} and

u ∈ N if all contracts x ∈ Xiu satisfy

14The assumption that b ≤ 1
1−α is not critical. As can be seen in Section 3, if b > 1

1−α then several
statements would have to be readjusted to avoid claiming events occur with probability greater than 1 or
less than 0.

15The difference between δ(vxs
) and vxs

can be arbitrarily small, meaning our model encompasses cases
in which colleges are nearly indifferent between the skill types. Alternatively, one could model students
as having an M specific quality and an L specific quality. θs could then be viewed as an indicator for
which quality is higher. To align such a model with ours, one would additionally need to assume a specific
relationship between a student’s M and L qualities, with the student’s quality type associated with their

skill type distributed as vs and the relation between their two quality types given by v
{M,L}\ρs
s = δ(vρss ).

8



• xu = u,

• xm = i,

• for all x, y ∈ Xiu , xs 6= ys, and

• the set Xs
iu ≡ {s|∃xs ∈ Xiu} is measurable with respect to the Lebesgue measure λ

and the measure of Xs
iu is weakly smaller than q

2n

The first two conditions require that the relevant college is named in all contracts in xiu .

The third condition requires that no student is assigned more than once to the college. The

final condition requires that the college does not exceed its capacity.

For any feasible set of contracts Xiu , college iu gets total utility

2n

q

ˆ
s∈Xs

iu

[
1{i=θs}vs + 1{i 6=θs}δ(vs)

]
dλ

where we normalize by the size of the college to facilitate comparisons when changing n.

We define a university’s utility as the average of the utilities of its constituent colleges.

For any two feasible sets XMu and XLu such that for all x ∈ XMu and all y ∈ XLu , xs 6= ys,

the university u ∈ U receives utility

n

q

∑
i∈{M,L}

ˆ
s∈Xs

iu

[
1{i=θs}vs + 1{i 6=θs}δ(vs)

]
dλ

All agents (students, colleges, and universities) maximize expected utility.

2.2 Timing and equilibrium selection

The game has five stages: Nature selects types, universities make aggregation decisions,

universities and colleges decide their admissions criteria, students select whether to learn

their preferences, and the final matching of students to a college is made.

First, Nature selects all student types according to the aforementioned distribution.

Second, each university u simultaneously selects whether to aggregate or disaggregate

without observing Nature’s selections. This decision impacts the next step, admissions.

Each university u’s first decision is represented by dui ∈ {agg, disagg} and the decisions of

all universities are given by the vector d ∈ {agg, disagg}n.

The third step is the admissions step. Let xi(s, u) be the contract with xs = s, xu = u,

and xm = i, i ∈ {M,L}. If university u is aggregated, u observes the profile of aggregation

decisions d and student quality vs for all s, and can either offer a student s no contract
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or a contract for both programs but cannot offer the student the contract for just one

of the programs. Each university u’s admission decision is therefore choosing a function

au(d, vs) ∈ {∅, {xM(s, u), xL(s, u)}}, which maps (d, vs) to either no contract involving s

and u or both contracts involving s and u. For each disaggregated university u, for i ∈
{M,L}, college iu observes the d and for each s the student’s quality vs and skill type

θs. iu’s admission decision is choosing a function aui (d, vs, θs) ∈ {∅, {xi(s, u)}}, which maps

(d, vs, θs) to either no contract or the contract involving major i. Throughout, we often

refer to “colleges” and “universities” as making admissions decisions rather than “aggregated

universities and individual colleges at disaggregated universities” for exposition compactness,

as the admitting body is determined entirely by the aggregation decision of the university.

Fourth, each student s, without observing any types (including her own) or the decisions

of the universities and colleges, simultaneously selects whether or not to resolve uncertainty

about which major is her preferred major (i.e., to learn ρs). If she does so, she pays a cost

c > 0.16

Fifth, students enroll in university by selecting at most one contract from the set of

all contracts they are offered. The enrollment stage is taken as mechanical and maximizes

students’ expected utility given knowledge of their skill type and of their preference type if

they resolved their uncertainty in the fourth stage. We assume students learn their pref-

erences after enrollment at no cost,17 so for a student s admitted to contract x where xu

is an aggregated university (and so she is accepted to the contracts for both majors at u),

enrolling at u gives the student expected utility ws(xu) + b as she can study her preference

type major with certainty. For a contract x that s is offered where xu is disaggregated,

a student’s expected utility is ws(xu) + 1θs=xmαb + 1θs 6=xm(1 − α)b if she has not learned

her preferences and ws(xu) + 1ρs=xmb if she has learned her preferences; students who have

not resolved their preference uncertainty prior to enrolling know only their skill type major,

which is more likely than not to be their preference major, while students who have resolved

know both.

We examine pure-strategy Perfect Bayesian equilibria of this game. To deal with pes-

simistic beliefs on the part of universities discussed below, we make the assumption that the

beliefs of universities and colleges over the types of students are the same at all information

sets at the admissions stage.

16In Appendix C we study an alternative model of preferences over majors in which a student can pay
a cost to specialize in one major and realize how much she likes that particular major but learns nothing
about the other.

17This can be relaxed to students viewing the cost to learn their preferences in the fourth stage as greater
than in this stage.
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Discussion of modeling choices

We make a few notes on our modeling choices, in particular the stages we choose to make

strategic and how we have modelled the admissions stage. These choices are driven by

our modeling of students as a continuum.18 The continuum presents two difficulties: first,

sequential equilibrium (which would eliminate equilibria supported by overly pessimistic off-

path beliefs) is not defined in this setting and second, measure zero sets of students do not

affect a university’s or college’s utility.

The former issue is a problem as PBE allows for equilibria supported by unrealistic off-

path beliefs. For example, various aggregation choices could be supported in equilibrium by

each university u believing that all students s ∈ S have ws(u) = 0 if (and only if) u does

not follow the equilibrium prescribed aggregation action. Our restriction that colleges’ and

universities’ aggregation decisions do not affect their beliefs over the distribution of student

types achieves the spirit of sequential equilibrium at the admissions stage. Making students’

enrollment and major selection choices mechanical serves a similar purpose.19

The latter issue of measure zero sets presents two difficulties. First, it leads to a mul-

tiplicity of equilibria as we can change the strategies by or concerning any measure zero

set of students in one equilibrium to arrive at another. As these “different” equilibria are

artifacts of our continuum assumption, we ignore indeterminancies of this sort and view two

outcomes of the game as identical if the only difference between which contracts are cho-

sen is over a measure zero set of students. Second, it necessitates our matching procedure

wherein aggregated universities and disaggregated colleges can admit any student (i.e., that

there is no application stage). In an expanded game in which students select where to apply

and universities and colleges admit subsets of applying students, we can construct equilibria

wherein students apply nowhere and universities admit no one; because no individual student

affects the overall utility of any college or university, the “threat” of admitting no student is

credible. Our current game form is similar to this expanded game while restricting attention

to equilibria in which students apply to all contracts, so the admissions decision is not re-

stricted by students’ application choices.20 Overall, we believe an interesting takeaway of our

18Itself a choice made for analytical tractability in calculating expected utilities.
19If students actively chose their contract in the fifth stage of the game, we could support unrealistic

resolution decisions in the fourth step by off-path beliefs that any deviating student is inconsistent with
probability 1. Alternatively, we could model students as actively choosing their contract in the fifth stage
of the game and also add an assumption that students’ beliefs about their own types do not vary based on
their resolution decision, similar to our assumption on universities’ and colleges’ beliefs.

20If students can apply to at most one college per university, then other than the proliferation of such
nuisance equilibria, the analysis of our paper is identical if students learn v immediately before the application
stage, as students know on path which colleges/universities will admit them.
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paper is that the prematch decisions are of first-order concern in higher-education markets;

we show that in addition to the various variants of the decentralized matching framework we

describe here that lead to the same equilibrium outcomes, so too does replacing the matching

stage with a “well-behaved” centralized matching mechanism (see Online Appendix C.5 for

details).

Our decision to model admissions decisions at disaggregated universities as being made

by individual colleges instead of by the university itself deserves mention. If a university

were able to observe students’ skill type and quality and select contracts with no restric-

tion, it could (possibly) improve its utility by admitting high-quality students only to study

their skill type. This would weaken the incentive of students to resolve their preference

uncertainty in the English equilibrium that we discuss below, suggesting that this assump-

tion is substantive. However, we feel this assumption is justified for three reasons. First,

real-world disaggregated universities typically allow departments to handle their own admis-

sions whereas university-wide admissions offices exist at aggregated universities. Second, a

richer model with an explicit application stage and individual students contributing a non-

infinitesimal utility to a university would lead to high-quality students applying to only one

major per university to avoid such coordination and any threats of rejecting students for

applying to the “wrong” major would not be credible.21 Third, we could obtain the same

results with different modeling choices, such as by removing the university as a player and

instead framing aggregation as a decision of the individual colleges at a university to commit

to admitting the same students.

The observability and timing of information also affects our results. We make the as-

sumption that the pre-match decisions effectively occur simultaneously. We believe this is

reasonable as universities do not observe the resolution decisions of individual students and

students must decide to learn their preference types by “specializing” their high school stud-

ies, which takes place over the course of several years in advance of applications. An excellent

example is Victorian College of the Arts (VCA). VCA announced roughly 8 months before

the admissions date that it would aggregate, and the VCA administration expressly denied

the intent to aggregate one month before the announcement was made.22 With minor modi-

fications, our analysis is unchanged if universities were to observe student resolution choices

21We would also need for students to improve their knowledge of their quality between the preference
resolution stage and the application stage, at least following a decision to learn one’s preferences. This
dependence of the English equilibrium hints at a certain fragility of the equilibrium, an idea which is expanded
on by Proposition 6.

22See https://web.archive.org/web/20080720032744/http://www.vcasu.org.au/2008/04/24/arts-college-
to-follow-us-model-2/ and https://web.archive.org/web/20080720033033/http://www.vcasu.org.au/2008/04/29/vice-
chancellor-lies-about-introduction-of-melbourne-model-at-vca/
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prior to making admission decisions. If students observe aggregation decisions prior to mak-

ing resolution decisions, our results would change as universities would have a “first-mover”

advantage in selecting a disaggregation equilibrium, but our analysis is approximately un-

changed when there are many universities.23 If students know their qualities precisely at

the beginning of the game, low-quality students would never resolve their uncertainty over

majors in any equilibrium, as they are not admitted to any universities, destabilizing the

English equilibrium discussed below. However, our results are not knife-edge and hold with

modifications to the exact conditions for partially informative signals of quality. This depen-

dence of the English-style equilibrium on students not knowing precisely their quality can

be understood as a prediction of how markets might change if students learn their qualities

earlier (e.g., as a result of more readily available comparisons from online sources).

We show that in any equilibrium, following any observed aggregation history, all M

colleges at disaggregated universities admit the same set of students as one another, all L

colleges at disaggregated universities admit the same set of students as one another, and

all aggregated universities admit the same set of students as one another. Additionally, we

show that the set of students admitted to disaggregated M and L colleges have the same

distribution of qualities, i.e. admissions standards are symmetric across colleges at disag-

gregated universities. This symmetry need not hold following certain histories if we allow

aggregated universities to observe student skill types and also allow the admissions functions

of aggregated universities to depend on skill type (i.e., if we instead allow universities to

pick a mapping au(d, vs, θs)). We do not make this assumption in our base model for two

reasons. First, as mentioned, admissions at aggregated universities are generally handled by

centralized offices which may not have the specialized knowledge needed to discern a stu-

dent’s particular skills. Second, the histories leading to the asymmetric admissions strategies

do not occur on path or one step off path in our two focal equilibria. Therefore, the analysis

in the more general model is more cumbersome and this assumption does not affect the main

intuitions of the paper.24

The symmetry in admissions standards also need not hold if we alter the distribution of

student types. Our base model assumes that the relative demand for both M and L colleges is

23To see this, consider a market with n = 2 universities, u1 and u2, with only u1 disaggregating and
students observing this prior to making their preference resolution decision. If a student ends up preferring
u1 to u2 (ws(u1) > ws(u2)), they must decide whether to attend the university they prefer but which restricts
their major choice or the university they prefer less but which gives them flexibility, making knowledge of
ones preferences beneficial. However, as n increases, a student can achieve expected utility arbitrarily close to
1 + b (the maximum possible student utility) by attending their favorite of the n− 1 aggregated universities,
meaning that the benefit of learning one’s preferences is eventually less than any fixed cost c.

24Such a change would necessitate an additional condition in the statement of Proposition 4.
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equal to the relative capacity of seats. We make this assumption to highlight what we believe

are the main strategic features in our environment. Nevertheless, important considerations

may be swept under the rug with these assumptions. For example, if the relative popularity

of different majors does not match the capacities of different colleges, aggregation may

lead to undesirable program unbalance. We study this and other extensions that relax our

symmetry assumptions in the online appendix and show that our main intuitions transfer to

those settings.

2.3 Preliminaries

In any equilibrium, the set of students with qualities weakly greater than 1− q matriculate.

Aggregated universities must consider the possibility students will study against their skill

types after enrolling. An aggregated university that admits a student who has learned her

major preferences and who has been admitted to a college at a disaggregated university must

worry that if it “wins” the student in question, the fact that she has chosen the aggregated

university implies that she is more likely to study against her skill type. Therefore, the

beliefs of universities of the probability that a given student enrolls and which major she will

study conditional on enrollment depend on the admissions and aggregation decisions of other

universities. However, in all histories such that either no student learns her major preference

or all universities make the same aggregation decision, each college sets a threshold and

admits all students whose application quality exceeds this threshold, where the application

quality of student s is defined as vs for the college of the student’s skill type and for an

aggregated university and δ(vs) for the college not of the student’s skill type.25

Lemma 1.

• In any equilibrium and following any history, a student s is admitted to one or more

universities if and only if vs ≥ 1− q.

• In any equilibrium and following any history and at any two disaggregated universities

u and u′, colleges Mu, Lu,Mu′ , and Lu′ all select the same threshold and admit all

students whose application qualities exceed it.

• In any equilibrium following any history such that either 1) no student learns her major

preferences before matching or 2) all universities make the same aggregation decision,

any two aggregated universities u and u′ also select the same threshold and admit all

students whose application qualities exceed it.
25We discuss in the appendix how colleges use a different type of “threshold” that takes into account

adverse selection following other histories of the game.
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3 Two equilibria

Throughout this section, we differentiate between an equilibrium of the game and what we

call a university admissions system. A system is defined as the prescribed actions for the

“pre-match” portion of the admissions game: the aggregation decisions of the universities

and the major preference uncertainty resolution decisions of the students. We say that a

system is supported by an equilibrium if there is an equilibrium with the specified pre-match

actions for all players. This distinction is most important in Section 3.4.3, when we examine

the resilience of the admissions systems used in the US and England (and elsewhere) to

shocks.

3.1 US equilibrium

We define an equilibrium of the university admissions game in which all colleges aggregate

and no student resolves her major preferences before matriculating as implementing the US

system. We call such an equilibrium a US equilibrium. In this section, we show that the

unique equilibrium outcome implementing the US system involves all universities aggregating

and no student learning her major preferences before matriculating at a university, students

with vs ≥ 1−q receiving their favorite contract, and all other students going unmatched. We

derive conditions under which this outcome is an equilibrium of the university admissions

game by specifying actions one-step off equilibrium path; see Lemma 2 in the appendix for the

general description of the admissions decisions at all other information sets in equilibrium.

We first calculate the utility of each university on path. As given by Lemma 1, each

university admits all students with v ≥ 1 − q and receives 1
n

of them. A 1 − α proportion

of enrolling students are inconsistent and elect to study against their skill types. Noting the

symmetry in the likelihood of each student having preference type M or L and using the

definitions of college and university utility given above, the expected utility of each university

is

1

q

1̂

1−q

[αv + (1− α)δ(v)] dv (1)

Suppose that u1 disaggregates. u1 is now less desirable since students who enroll are no

longer guaranteed to study their favorite majors. The students that do enroll do so under

their skill types because α > 1
2
. Letting ws(u1) and ws(umax) be the utilities that student s

has for u1 and for the university other than u1 at which she has the highest utility, she will

most prefer u1 if and only if ws(u1) > ws(umax) + (1− α)b.
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From Lemma 2, we know that both colleges at the deviating university set the same

admission threshold, tu1(n). Because u1 is now the “least popular” university, it must be the

case that tu1(n) is below the threshold used by all other universities, t−u1(n). Because there

are a total of q seats, tu1(n) = 1 − q. Therefore, u1 will enroll the entire mass of students

with quality vs ∈ [tu1(n), t−u1(n)).

Conditional on being admitted to all universities, a student will not enroll in u1 with

probability

1− Pr (ws(u1) > ws(umax) + (1− α)b) = 1−
[
(1− (1− α) b)n

(
1

n

)]
where we use the fact that ws(u1) is uniformly distributed to simplify the formula. The

admission threshold t−u1(n) for all other universities must make the university’s seat quota,

meaning the following equation must hold.

(1− t−u1) ·
1

n− 1

(
1−

[
(1− (1− α) b)n

(
1

n

)])
=
q

n

Solving,

t−u1(n) = 1− q(n− 1)

n
(
1−

[
(1− (1− α) b)n

(
1
n

)]) (2)

Therefore, u1’s utility is

(1− (1− α) b)n
(

1

q

) 1̂

v

t−u1

dv +
n

q

t−u1ˆ

1−q

v dv (3)

No university wants to deviate from the proposed equilibrium if and only if the (weighted)

shaded area in Figure 1 (a) is larger than the (weighted) shaded area in Figure 1 (b); that is,

universities do not wish to deviate if competition for better matches outweighs moral hazard

concerns. Formally, a necessary condition for the US equilibrium is

1̂

1−q

[αv + (1− α)δ(v)] dv ≥ (1− (1− α) b)n
1− t2−u1

2
+ n

t2−u1 − (1− q)2

2
. (4)

It is very easy to see that no student will deviate to paying cost c to learn her major

preferences, as there is no incentive to pay the cost to resolve uncertainty.

Proposition 1. There exists an equilibrium of the university admissions game in which
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Figure 1: University utility in US equilibrium vs deviation
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Figure 3: University utility in candidate American equilibrium.

Each university receives indicated portion of each shaded region.
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Figure 4: Utility of deviating university from candidate American equilibrium.

Deviating university receives indicated portion of each shaded region.
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(1− (1− α)b)n 1
n

2

Notes: Panel (a) represents university utility in the proposed US equilibrium outcome. Each university admits
all students with qualities ≥ 1−q and enrolls 1

n
of them. α proportion of students study their skill type majors.

Each university receives utility equal to 1
n

of the red region and α
n

of the grey region. Panel (b) represents the
utility that a university receives if it is the lone deviator from the US equilibrium. This deviating disaggregating
university admits all students with qualities weakly greater than 1 − q. It enrolls all students with qualities
below t−u1 (the grey region) and a (1 − (1 − α)b)n 1

n
fraction of students with qualities above t−u1 (the red

region), all to their skill type majors.
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all universities aggregate and no student resolves her uncertainty if and only if Inequality 4

holds.

3.2 English equilibrium

We define an equilibrium of the university admissions game in which all colleges disaggregate

and all students resolve their major preferences before matriculating as implementing the

English system. We call such an equilibrium a English equilibrium. Define δ−1(x) := sup{v ∈
[0, 1]|δ(v) < x} and let v̄ := δ−1(1−q). In the unique equilibrium outcome implementing the

English system, each student s such that vs ≥ v̄ is admitted to all colleges and so receives

her favorite contract (enrolls at her favorite university and studies her preferred major ρs).

Each student s such that vs ∈ [1 − q, v̄) is matched to her favorite university and studies

her skill type major θs. All other students are unmatched. This section derives conditions

under which this equilibrium exists by specifying actions one-step off equilibrium path; see

Lemma 2 in the appendix for the general description of the admissions decisions at all other

information sets in equilibrium. We first check that none of the students wish to deviate and

second that none of the universities wish to deviate.

Consider two groups of students: those with qualities vs ∈ [1 − q, v̄) and those with

qualities vs ≥ v̄. Those in the former group are only admitted to the colleges corresponding

to their skill types and enroll in their favorite universities. These students gain nothing by

realizing their major preferences earlier since they cannot use this information. Students

with quality greater than v̄ are admitted to all colleges, so knowing their major preferences

is useful information in case they are inconsistent. Students have to pay the cost to resolve

uncertainty before learning their quality. A student has a 1 − v̄ probability of being a top

student and a 1− α probability of being inconsistent. Therefore, every student resolves her

uncertainty if and only if

(1− v̄)(1− α)b ≥ c (5)

Consider universities. Suppose that u1 aggregates. u1 does not attract any more of the

top students in the market (those with quality greater than v̄), nor any of the consistent

students admitted to other universities. The only students who are more likely to attend u1

are those with qualities vs < v̄ who are inconsistent, meaning u1 gets utility δ(vs) from such

a student. Since δ(vs) < δ(v̄) = 1− q, each of these students is less valuable to u1 than any

student enrolling in u1 under the proposed equilibrium. There is a severe adverse selection

problem; the only students who are more likely to attend the aggregated university are those

who are sure to study against their skill types and are therefore less attractive than students
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the university could have enrolled.

Because universities never want to aggregate, the necessary condition Equation 5 is also

sufficient for the existence of the English equilibrium.

Proposition 2. There exists an equilibrium of the university admissions game in which all

universities disaggregate and all students resolve their uncertainty if and only if

(1− v̄)(1− α)b ≥ c.

3.3 Ranking of equilibria

How do universities and students rank the different equilibria? Both the US and English

equilibria can exist under the same parameters.26 In the US equilibrium, all students with

quality vs ≥ 1−q study their favorite major at their favorite university with certainty. In the

counterfactual English market with the same types, qualities, preferences over universities

and preferences over majors (which the students have paid cost c to attain), this is not the

case. While all students are still admitted to their favorite university, now a 1−α proportion

of students with vs ∈ [1− q, v̄) are not able to study their favorite major. Furthermore, all

students pay a cost of c, which they did not have to in the US equilibrium.

Consider the same scenario from the point of view of the universities. In both outcomes,

universities get the same utility from students with vs ≥ v̄. However, the English outcome

yields strictly higher utility from inconsistent students with vs ∈ [1−q, v̄] to every university

as these students are forced to study their skill types. Therefore, every university strictly

prefers the English equilibrium outcome to the US equilibrium outcome.27

Proposition 3. The US equilibrium outcome is Pareto preferred by students to any other

equilibrium outcome and every university strictly prefers the English equilibrium outcome to

the US equilibrium outcome.

While the observation that students prefer the American outcome to any other equilib-

rium outcome is straightforward, the proposition does not state that the English outcome

is the most preferred equilibrium outcome for all universities. The following example shows

this need not be the case. We provide parameters for which both the English equilibrium and

26Parameter c does not appear anywhere in the conditions for the existence of the US equilibrium. There-
fore, take any set of parameters for which the US equilibrium holds and then pick c arbitrarily small so that
the requirement for the English equilibrium is satisfied. We give an example of parameters that support
both equilibria in the online appendix.

27If universities have concerns different than what we assume, this point might not hold. See Appendix C
for variations on the university utility function.

19



an equilibrium with asymmetric aggregation decisions exist. We show that the aggregated

university receives higher utility in the asymmetric equilibrium than (either) disaggregated

university does in the English equilibrium.

Example 1. : Let there be 2 universities, b = 1/(1− α), q = 1/2, α = 3/4, c = 1/5, and

δ(v) =


εv v ∈ [0, .75),

.5−.75ε
ε

(v − .75) + .75ε v ∈ [.75, .75 + ε],

.5 + ε(v − .75− ε) v ∈ [.75 + ε, 1).

There exists E > 0 such that for all ε ∈ (0, E], there is an equilibrium in which one uni-

versity aggregates, one university disaggregates, and no student resolves major uncertainty.

In this equilibrium, the aggregated university receives higher utility than a university in the

English equilibrium with the same parameters.

The proof of this example is given in the appendix. The aggregated university does better

in this mixed aggregation equilibrium than in the English equilibrium due to its competitive

advantage over the disaggregated university, letting it admit only high quality students.

This improvement in the quality of its enrolled students outweighs the “loss” of letting these

students choose their major.

3.4 Which outcome do we expect to see?

Which system do we expect to see in different markets? We answer this in three ways.

First, we provide conditions under which the US and English systems are the only systems

supported by pure-strategy equilibria. Second, we study the effects of parameter changes on

the sustainability of these systems. Third, we analyze whether the two systems are stable

in markets that feature small mistakes by participants.

3.4.1 Uniqueness of equilibria

There are three broad classes of equilibria to consider: those in which all agents on both

sides of the market play symmetric strategies (such as the US and English equilibria), those

in which all agents on only one side of the market play symmetric strategies, and those in

which agents on neither side of the market play symmetric strategies.

The US and English equilibrium outcomes are often unique. Generically (that is, for

an open and dense subset of the parameter space), the only other equilibrium outcomes
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that can be supported involve no students learning their major preferences and the univer-

sities taking asymmetric actions pre-match. Example 1 is one such equilibria; we give a

sufficient condition for the non-existence of this type of equilibrium here.28 The sufficiency

condition focuses on the US outcome (as all other cases can be handled without additional

conditions to the existence requirements we derive above) and ensures that disaggregating

is not attractive regardless of the aggregation decisions of other universities when students

have not paid to resolve their uncertainty over their preferences by ensuring that the cost to

disaggregating outweighs the benefit. The “cost” to disaggregating depends on the benefit

students receive from attending an aggregated university (which is (1−α)b) and the benefit

to disaggregating is the guarantee that students study their skill type (and so dependent on

δ and α). q plays a part as a university deviating to disaggregation from the US equilibrium

fills disproportionately with lower quality students.

Proposition 4. For any set of parameters, there exists a pure-strategy equilibrium of the

university admissions game. Generically, the only pure-strategy equilibria where agents on

the same side of the market play asymmetric strategies on path are with no student resolving

her uncertainty and universities making different aggregation decisions. If δ(1 − q) > 1 −
q

2(1−α)

(
1− α

1−((1−α)b)n+(1−α)bn

)
and (1− v̄)(1−α)b > c, then the US and English equilibrium

outcomes are unique.

As discussed in greater detail below in the context of Theorem 1, the existence of the

US equilibrium outcome is closely related to the extent of competition between universities,

which depends on n. As shown in an example in Online Appendix C, the US equilibrium need

not be unique when n is small even when it is unique for sufficiently large n, suggesting that

market size promotes the uniqueness of our focal equilibrium outcomes. The reason for this

is that the competitive loss to disaggregating increases with n because the difference between

a student’s first and second most preferred universities (i.e., the two universities for which

ws(u) are highest) goes to 0 as n grows. As a result, the probability that a disaggregated

college is chosen by a student admitted to all universities goes to 0 exponentially in n.

This exponential loss in competitive edge both complicates the analysis of “small” mar-

kets as we must keep track of how a deviating university’s popularity with the highest

quality students changes with the number of deviators but also suggests that the number

of universities need not be overly many for a “large” market approximation.29 This large

28The condition we provide is sufficient but not necessary as it compares the worst case for the in-
equilibrium utility to the best case for the deviation utility. A weaker (though still not necessary) condition
is given in Corollary 1.

29Consider the ratio of the probability that a given aggregated university is chosen by a student with
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market approximation allows us to focus on the tradeoffs to disaggregation between ensuring

students study a certain major and attracting higher quality students.

As a first example of this improved ability to focus on the main tradeoff, we simplify and

weaken the sufficiency condition from Proposition 4. Rather than having to compare the

lowest value of δ against the highest possible value of the deviation as we do in Proposition 4,

the large market result allows us to compare aggregation to disaggregation on a more equal

footing, resulting in a weaker condition on δ.30 We return to this simplification again later.

Corollary 1. Holding the other parameters fixed, there is an n∗ such that the US equilib-

rium outcome is the unique equilibrium outcome with students not resolving their uncertainty

over their preferences if n > n∗ and δ(v) > v − q
2(1−α)

for all v ∈ [1− q, 1].

One application of Proposition 4 is graduate schools, which almost universally admit

students to a particular program. To explain this with our framework, we note that students

in both US and English systems have either paid a cost in high school to learn their true

preferences over majors or learned their preferences over majors after enrolling in an under-

graduate university. Therefore, by the time of application to graduate school, all students

know their preferences over majors.

Corollary 2. Let c = 0. For any other parameters, any equilibrium in undominated

strategies yields the English equilibrium outcome.

3.4.2 Comparative statics

We ask what happens to existence of both equilibria when, fixing all other parameters,

we make the market more competitive on the university side by increasing the number of

universities (n) or on the student side by decreasing the available seats (q).

The necessary and sufficient condition for the English equilibrium does not depend on

n, so it is neither easier nor harder to maintain this equilibrium as n increases. However,

unresolved preferences when M universities are disaggregated to the probability the aggregated university
is chosen if those M universities did not exist, 1

n−M . With M = 0.5n, α = 0.75 and b = 0.5 (so that the a
priori benefit of attending an aggregated university is 0.125), this ratio is effectively 1 when n ≥ 50. Another
way to see this point is to hold the number of aggregated universities fixed and increase the number of
disaggregated universities. As the disaggregated universities are less attractive to students, these additional
competitors crowd out other disaggregated universities more than they do aggregated universities. Using
the same α and b parameters and fixing the number of aggregated universities at 25, a given student (again
admitted to all universities) is only 2% as likely to attend a given disaggregated university as they are to
attend a given aggregated university when there are 50 universities in total.

30It is important to note that the sufficiency condition of Proposition 4, although not vacuous, is a fairly
strict requirement.
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increasing n makes it easier to support the US equilibrium, suggesting that the US equi-

librium is more likely to be found in larger markets (those with more universities) because

a disaggregating university suffers a larger loss in competitiveness for the best students as

the guarantee to be able to study one’s preferred major at an aggregated university is more

likely to sway the student’s enrollment selection. As a result, a deviating university admits

a stochastically dominated set of applicants for larger n. As n→∞, the US equilibrium can

be sustained if and only if the average utility derived from enrolling students in equilibrium

is greater than 1− q, the quality of the marginal student not admitted in equilibrium.31

Although the existence of the English equilibrium is unaffected by n, it is highly de-

pendent on the mass of total available seats, q. Increased competition on the student side

(achieved by decreasing q) makes admission to university more difficult and reduces the

chance (ex-ante) that a student can be admitted to study against her skill type at a disag-

gregated university. Therefore, the benefit of paying the cost c to learn one’s major preference

increases with q.

Changes in q affect the US equilibrium in a less straightforward manner as q interacts

with δ. Increasing q lowers the quality of the marginally admitted students, with whom

a deviating university disproportionately fills. However, if the students newly admitted in

equilibrium as q increases are of sufficiently low expected value, which happens if δ(1 − q)
decreases quickly with q, deviating can become relatively more attractive. We present a

condition on δ that ensures this is not the case. In both Theorem 1 and Proposition 5,

statements of the form “the set of parameters increases/decreases” are made in the sense of

set inclusion.

Theorem 1 (Effect of changes in market size). As n increases, the set of parameters that

sustain the US system in equilibrium also increases. There exists n∗ such that for all n > n∗

the US system can be sustained in equilibrium if and only if
1́

1−q
δ(v)dv > q − q2

(
1−α

2

1−α

)
.

As q increases, the set of parameters that sustain the English system in equilibrium also

increases. If δ(x) > x(2−α)−1
1−α for all x ∈ [0, 1], then there exists n∗∗ such that if n > n∗∗,

increasing q increases the set of parameters that sustain the US system in equilibrium.

We make comparative statics statements regarding preference alignment between univer-

31This condition is weaker than the condition in Corollary 1, which can be seen in two ways. First, the
right-hand side of the condition in Corollary 1 integrates to the right-hand side of the referenced condition
in Theorem 1, so any δ which satisfies the condition of Corollary 1 satisfies this condition while there are δ
functions which satisfy the condition in Theorem 1 but not the one in Corollary 1. Second, the condition in
Corollary 1 is derived by considering incentives to disaggregate when any proportion of the other universities
are disaggregated, whereas the condition in Theorem 1 only considers incentives when no other universities
are disaggregated.
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sities and students and other parameters of our model to illustrate how our model can be

used to anticipate the consequences of changes in market fundamentals; these results are

immediate from the conditions given in Propositions 1 and 2. We say that δ̂(·) ≥ δ(·) if and

only if δ̂(v) ≥ δ(v) for all v.

Proposition 5 (Effects of other parameters). Increasing δ(·) increases the set of parameters

that sustain the US system in equilibrium and the set of parameters that sustain the English

system in equilibrium. As α increases, the set of parameters that sustain the English system

in equilibrium decreases. There exists n∗ such that for n > n∗, the set of parameters that

sustain the US system in equilibrium increases.

Increasing b increases the set of parameters that sustain the US system in equilibrium and

the set of parameters that sustain the English system in equilibrium. The effect of increasing

b on the set of parameters that sustain the US system in equilibrium vanishes as n grows.

Decreasing c increases the set of parameters that sustain the English system in equilibrium.

This proposition shows which changes in fundamentals are conducive to both equilibria

(though for different reasons, with the US equilibrium usually strengthened on the univer-

sity side and the English equilibrium strengthened on the student side32) and which act in

opposite directions. The impact of a change in α is the most subtle. Increasing α weakens

the incentive of students to learn their major preferences because their skill type is more

likely to be their major preference, harming the English equilibrium. For the US equilib-

rium, increasing α has two effects; it increases the utility to a university to aggregating by

decreasing the likelihood that an enrolled student uses the option to study against her skill

type but it also decreases the competitive loss when a university deviates to disaggregation.

For sufficiently large n (and for reasons similar to those discussed after Proposition 6), the

former effect wins out as n grows.

3.4.3 Robustness to small deviations

We do not always observe all universities and students following the aggregation and in-

formation gathering choices of the majority within different countries, motivating a study

of which systems are supported by equilibria when there are agents making non-strategic

pre-match decisions–the aggregation decision for universities and the preference resolution

decision for students–with low but non-zero probability. These non-strategic decisions could

be due to mistakes, experimentation, new technologies or feasibility constraints (e.g., new

32For example, increasing b increases the competitive loss to deviating to disaggregating in the US equi-
librium and increases the value to resolving major preference uncertainty in the English equilibrium.
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universities that do not yet have all programs or foreign students who are educated in their

home countries) and it is important to understand whether these “dissenters” can shift the

equilibrium outcome, particularly as it pertains to the system the equilibrium supports.33

We call a system stable if agents do not change their pre-match decisions in the presence

of few dissenters. We find that the English system is not stable but that the US system

is, which may explain recent aggregation choices by universities in majority-disaggregated

countries and foreshadow a move away from disaggregation.

To conduct the robustness analysis, we fix the probability of an initial non-strategic

action and then study the existence of equilibria supporting the US and English systems

when there are many universities. Universities and students all choose their strategies but

with probability 2p, a given university’s aggregation choice is replaced by a non-strategic rule

that picks aggregation with probability 1
2
. Therefore, a “mistake” occurs with probability p.

Similarly, a mass r of students have their resolution decision replaced by “not resolve” and

a mass r have their resolution decision replaced by “resolve.” All other parts of the chosen

strategy are unaffected.

Let hn,r,p be a vector of parameters (excluding n, r, and p) of the game with n uni-

versities and pre-match mistakes with probabilities r and p. A system is supported by

hn,r,p if there exists an equilibrium of the game with all agents choosing the strategies for

aggregation and resolution corresponding to the system of interest, and any deviation in

aggregation/resolution leads to a strictly lower (expected) payoff for that agent.

Definition 1. A system e is stochastically stable if there exists a vector hn,0,0 that supports

e and for any hn,0,0 that supports e, there exists r∗, p∗ > 0 such that for all 0 < r < r∗ and

0 < p < p∗, there is n(r, p) such that for all n∗ > n(r, p), e is supported by hn∗,r,p.

We apply this definition of stochastic stability to our two focal systems, the US and

English. This definition requires that there be 1) a set of parameters of the game without

mistakes that supports the given system and that 2) fixing some sufficiently small likelihood

of mistakes, the system continues to be supported for large enough n.

If we instead fix n and merely consider the limit as r and p go to zero, any system

supported by an equilibrium under hn,0,0 (with strict incentives for the chosen pre-match

action of each agent), will also be supported by an equilibrium under hn,r,p for r, p sufficiently

small; the arguments used in the proof of the following result can be re-purposed to show

33Our focus on the stability of systems rather than of equilibria is motivated by the fact that universities’
admissions decisions may react to the presence of these “dissenters” even if their aggregation decisions do
not. As our paper is motivated by the systems used in the US and England and aims to understand how
various changes to the higher education landscape could lead to systemic changes, the focus on system is
natural.
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that for a fixed n, if p is sufficiently small, then it is as if no universities deviate and that the

admission sets of universities are continuous in r around 0. Therefore, the original system can

be supported in equilibrium. The dependence on n in our definition leads to more nuanced

results.

Proposition 6. The US system is stochastically stable; the English system is not.

In light of Theorem 1 and Proposition 3, it is not surprising that the US system is

stochastically stable as increasing n strengthens the incentives of universities to aggregate

and students most prefer the US system. What is more subtle is that the English system

is not, given the lack of dependence of the existence of the English equilibrium on n. The

cause of the instability is students’ incentives to resolve their preferences.

The way students’ incentives lead to instability underscores the nature of many-to-one

matching in our setting. The driver of our result is that students care only about the “best”

university they can be matched with whereas universities care about the average quality of

the (many) students they enroll, so students care about the number of universities aggregating

and the universities care about the proportion of students resolving. The difference between

a student’s university-specific utility (ws(u)) for her favorite disaggregated university and

for her favorite aggregated university goes in probability to 0 as the number of aggregators

and disaggregators grows large. This occurs when n grows large when a fixed proportion of

universities aggregate. When the percentage of universities aggregating is large relative to

the mass of students not resolving their preference uncertainty (even when both are small

in absolute terms), high-quality students can be confident that they will be admitted to all

colleges and universities and that at least one of the aggregated universities is almost as

good as their favorite disaggregated university, destroying the incentive of students to learn

their major preferences.

As emphasized also by Theorem 1 and Proposition 3, this proposition shows that the US

system can be thought of as the “competitive” outcome. Theorem 1 shows that increasing

competition on the university-side promotes the US system but had nothing to say about

the English system. Proposition 6 makes clear that this is not true once mistakes are allowed

for, with the English system becoming more fragile as the number of universities grows.

4 Equilibrium with monetary transfers

In this section, we allow agents to exchange money. Payments can be conditioned on which

major students ultimately study. By conditioning payments on the major studied, universi-

ties can create incentives for students to study their skill-type majors even under aggregation.
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Therefore, this section studies a situation in which the cost to switching majors is endoge-

nously determined in the model.34

We believe this model is helpful in analyzing athletic scholarships in the United States,

in which a student can be thought as being inconsistent if she prefers to focus on academic

pursuits instead of athletics.35 Although there are many factors that affect a student’s

choice to participate in athletics (for example, successful student athletes may be able to go

on to lucrative careers as professional athletes), we believe our simple model sheds light on

the equilibrium effects of introducing price competition. Here, we study the case in which

transfers are restricted to being weakly positive payments from universities to students, and

in the online appendix we consider the unrestricted case.

We allow universities and colleges to make non-negative payments to students. Simulta-

neously with the decision of which contracts to offer to students, the deciding body (i.e. the

university itself if the university has aggregated, or the individual colleges at a disaggregated

university) offers a contingent payment to the student for any contract it offers. Payments

can depend on the student’s quality (vs), her skill type (θs) and the major she studies (xm)

and cannot be reneged upon. We denote payments pu(vs, θs, xm) ≥ 0.36 Student s’s utility

from contract x is given by wxs(xu) + b · 1{xm=ρxs} + pu(vs, θs, xm). For any feasible set of

contracts Xiu that does not violate the capacity constraint, college iu gets total utility

2n

q

ˆ
s∈Xs

iu

[
1{i=θs}vs + 1{i 6=θs}δ(vs)− pu(vs, θs, i)

]
dλ

We define a university’s utility as the average of the utilities of its constituent colleges.

For any two feasible sets XMu and XLu such that for all x ∈ XMu and all y ∈ XLu , xs 6= ys,

then university u ∈ U receives utility

n

q

∑
i∈{M,L}

ˆ
s∈Xs

iu

[
1{i=θs}vs + 1{i 6=θs}δ(vs)− pu(vs, θs, i)

]
dλ

Formally, we modify the game so that in the third step, each aggregated university selects

for each vs ∈ [0, 1] to either reject student s or admit her with payment pu(vs, θs,M) ≥
0 and pu(vs, θs, L) ≥ 0, respectively, to both colleges Mu and Lu. Each college iu at a

34Aggregated universities may invest in costly institutions, e.g., mandatory “weed out” courses in each
major, designed to incentivize students to study their skill-type majors. However, an aggregated university
cannot stop a student from changing majors, differentiating it from a disaggregated university even in the
presence of transfers.

35Alternatively, a student can be “inconsistent” if she is injured and has to pay cost b to rehabilitate her
injury.

36We assume that money enters with equal weight in all agents’ utility functions. This equal weighting of
money is not a substantive assumption with the exception of welfare optimizing calculations.
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disaggregated university selects for each (vs, θs) ∈ [0, 1] × {M,L} whether to admit s with

payment pu(vs, θs, iu) ≥ 0 or to reject s. Note that both aggregated and disaggregated

universities can make payments contingent on which major is eventually studied. As before,

each student s accepts the contract that maximizes her expected utility, with ties broken

arbitrarily. We continue to use “US equilibrium” to refer to equilibria in which all universities

aggregate and no student resolves major uncertainty and use “English equilibrium” to refer to

equilibria in which all universities disaggregate and all students resolve their major preference

uncertainty.

We study the existence and properties of equilibria when n is sufficiently large. Focusing

on this case has three advantages. First, it allows for analytic tractability. We show that

payments made in equilibrium are capped endogenously when n exceeds a certain threshold,

leading to a cleaner analysis. Second, when n exceeds a certain threshold, disparities between

the English and US equilibria are heightened, allowing us to explore differences between these

systems. Third, as we have argued before, the number of universities in a “large” market

need not be prohibitively large; as we are primarily concerned with exploring university

admissions within (large) countries, we believe that the case of n “sufficiently large” is the

most relevant case. Throughout the analysis and in the appendix, we explicitly solve for the

necessary n threshold when appropriate. Elsewhere, we discuss convergences, and in this

section all convergences mentioned are with regards to n.

We show that pu(vs, θs, xm) must obey a constant profit condition; all admitted students

must be worth the same (in expectation) to the admitting university or college. Otherwise,

the university or college could slightly increase its payments for desirable students and fill

its seats with these students. Due to capacity constraints, the constant profit condition

is relative to the highest quality student not admitted anywhere because any university or

college can always enroll this student and pay her nothing.

Let us consider a potential English equilibrium. As before, the admissions threshold at

every college is 1 − q. Consider symmetric payments from each college, wherein for any

student studying her skill type major the payment offer at university u satisfies

p∗u(vs, θs, xm = θs) ∈ argmax
pu

(v − pu) · Pr(pu + w(u) > p+ w(uj))
n−1 (6)

s.t. v − pu ≥ 1− q

where p is the payment offered by other universities. Noting that the random variable

w(uj) − w(u) follows a standard triangular distribution, the above can be solved for the
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unconstrained maximizer (i.e. ignoring the restriction v − p∗u(vs, θs, xm = θs) ≥ 1− q) as

v − pu =
F (pu − p)

(n− 1)f(pu − p)
where F and f are the CDF and PDF of the standard triangular distribution, respectively.

By imposing pu = p we arrive at

v − pu =
1

2(n− 1)

For any v > 1 − q there exists n sufficiently large such that the constraint will bind, in

which case the equilibrium payment equals v − (1− q).
The above exercise can be completed for students (with qualities greater than v̄) who

study against their skill types. The following equation summarizes equilibrium payments for

sufficiently large n.

p∗u(vs, θs, xm) =

vs − (1− q) if xm = θs

max{0, δ(vs)− (1− q)} if xm 6= θs
(7)

Students with vs ∈ [1− q, v̄) remain unable to study against their skill types as they are

only admitted to the colleges corresponding to their skill type. However, universities “bribe”

inconsistent students with qualities greater than v̄ to study their skill types if vs− δ(vs) ≥ b

(if the gap in payments is greater than the benefit to studying one’s preferred major). These

bribes make it more difficult to sustain the English system. Even if vs−δ(vs) < b, a student’s

outside option of not resolving (and enrolling at the college of her skill type) has improved,

meaning there is less of an incentive for students to resolve their major uncertainty. In the

appendix, we complete the existence proof by considering actions following a lone university

deviating to aggregation and also show that students do not have an incentive to deviate

under the condition given in Proposition 7.

The US system suffers a bigger breakdown. Following a similar argument, equilibrium

transfers must make each university indifferent between enrolling students with quality vs >

1− q and enrolling students with vs = 1− q and paying them nothing. A student of quality

1− q is worth α(1− q) + (1−α)δ(1− q) in expectation to universities because she may elect

to study against her skill type.37

37This assumes that α(1 − q) + (1 − α)δ(1 − q) ≥ 1 − q − b. If not, then the marginal student is worth
1− q− b to an aggregated university as it can pay her b if she studies her skill type and 0 otherwise to bribe
her to study her skill type. The logic of the remainder of the argument is largely unchanged in this case and
we formally address this case in the appendix.
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There is a multiplicity of payment schemes each university can make to students. How-

ever, fixing the expected utility a student receives from attending a particular university,

the university wants to align the student’s incentives to study her skill type with that of

the university. When the expected payment a student receives is weakly greater than b, the

university can bribe this student to study her skill type regardless of her preferred major by

setting pns (vs, θs, xm = θs)− pns (vs, θs, xm 6= θs) ≥ b. Note also that all such students must be

bribed to study their skill type majors on path in any potential equilibrium; any university

that does not do so will be at a competitive disadvantage for these students.

The following payment scheme represents one plan which fulfills these equilibrium re-

quirements for sufficiently large n.

p∗u(vs, θs, xm) =


vs − α(1− q)− (1− α)δ(1− q) if xm = θs, vs − (α(1− q) + (1− α)δ(1− q)) ≥ b

0 if xm 6= θs, vs − (α(1− q) + (1− α)δ(1− q)) ≥ b

vs − (1− q) if xm = θs, vs − (α(1− q) + (1− α)δ(1− q)) < b

δ(vs)− δ(1− q) if xm 6= θs, vs − (α(1− q) + (1− α)δ(1− q)) < b

(8)

In this payment scheme, each university earns α(1−q)+(1−α)δ(1−q) expected utils from

each student it enrolls in the candidate equilibrium. Consider the deviation of a university

disaggregating and filling its seats with students of quality arbitrarily close to 1−q. As these

students are all arbitrarily close in quality to the marginally admitted student, almost no

payments are required. As a result, the university receives ≈ 1−q > α(1−q)+(1−α)δ(1−q)
utils from each student it enrolls and fills its seats. Therefore, the US equilibrium does not

exist. Intuitively, the US equilibrium existed without transfers because universities were

willing to allow students to study against their skill types so that they could attract higher

quality students. With transfers, universities are indifferent (in expectation) between all

students they enroll, so the dominant effect is the desire to force students to study their skill

types, which is accomplished by disaggregating.38

Proposition 7. There exists n∗ such that for all n > n∗, the US system cannot be sustained

in equilibrium and the English system can be sustained in equilibrium if and only if

(1− v̄)(1− α) (b− E [min {b, vs − δ(vs)} |vs ≥ v̄]) > c

Turning to welfare comparisons, universities are better off under the US equilibrium

38In Appendix C.11 we show that in a model of buyers and sellers without qualities and capacities, the
US equilibrium can be sustained, demonstrating the importance of these features.
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without transfers than the English equilibrium with transfers. This follows because the US

equilibrium without transfers occurs when the average utility each university receives from

students is greater than 1 − q; in the English equilibrium with transfers, each university

receives exactly 1− q from every admitted student.

4.1 Market interventions

One way to retain the US (and English) equilibrium is to place an exogenous cap on trans-

fers.39 A sufficiently low transfer cap raises the average utility from admitted students above

1− q, allowing the US equilibrium to exist. With transfer caps, top students in the English

system are less likely to be bribed into studying their skill types so there is more of an in-

centive to resolve uncertainty over major preferences compared with the unbounded positive

transfers case.

We study the properties of two different transfer cap schemes. An unconditional transfer

cap Tu restricts that for all admitted students p∗u(vs, θs, xm) ≤ Tu. A conditional transfer cap

Tc restricts that for all admitted students p∗u(vs, θs, xm = θs) ≤ Tc and p∗u(vs, θs, xm 6= θs) = 0.

In words, conditional transfers allow scholarships up to a value of Tc only if the student

studies her skill type and zero otherwise, while an unconditional transfer only requires that

no student is paid more than Tu.

Consider transfer caps in the English equilibrium. Proposition 7 characterizes the pay-

ments that are made in equilibrium without caps. Similar logic dictates that with an un-

conditional cap Tu, transfers pTuu (vs, θs, xm)→ min {Tu, p∗u(vs, θs, xm)} where p∗u(vs, θs, xm) is

given in Equation 7. Similarly, with a conditional cap Tc, it must hold that pTcu (vs, θs, xm =

θs)→ min {Tc, p∗u(vs, θs, xm = θs)} .
The US system is more complicated. Uncertain students value transfers for both majors;

competition between universities forces transfers to spill over from one major to the other

when the cap binds, acting as a form of insurance for students. As a result, students are

always compensated such that universities either value them at α(1− q) + (1−α)δ(1− q) or

the cap binds regardless of major chosen. With a conditional cap, this insurance dynamic

disappears; the payment for a student studying her skill type satisfies pTcu (vs, θs, xm = θs)→
min {Tc, vs − α(1− q) + (1− α)δ(1− q)} .

What are the welfare maximizing transfer scheme and system? Transfers from universities

to students do not directly affect total welfare, but may bribe high quality, inconsistent

students to study their skill types. When student s is bribed to study her skill type, aggregate

39This transfer cap could be enforced endogenously in a repeated game by punishing deviators with a
“grim trigger” strategy of playing the English equilibrium without a transfer cap.
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utility increases by vs − δ(vs) − b. Noting that universities will never successfully bribe

students to study their skill types when vs − δ(vs) < b, the optimal transfer scheme is one

that maximizes the set of students universities bribe. This suggests that the US equilibrium

should be selected, as some students in the English equilibrium are unable to study against

their skill types. Furthermore, the level of the cap selected must be T ≥ b. Also, since an

unconditional cap causes the difference between payments for studying different majors to

decrease relative to a conditional cap of the same amount, the latter bribes weakly more

students.

This reasoning allows us to consider policy implications of switching from an uncondi-

tional to a conditional cap and adjusting the level of the cap. When it is very valuable for

students to study their skill types (i.e. b is sufficiently small relative to vs − δ(vs)), it is

possible to improve the utilities of both the university and student by slightly increasing the

transfer limit and switching to a conditional cap. The university is able to pay the student

more money when she studies her skill type, which is more valuable to the student than any

insurance provided in the unconditional transfer scheme. The university is made better off

because it is able to bribe the student to study her skill type at minimal cost.

Theorem 2.

1. The US equilibrium with a conditional cap of Tc ≥ b yields the welfare-maximizing

allocation.

2. There exists b∗ > 0 such that for all b < b∗ and for any unconditional transfer cap Tu,

there exists a conditional transfer cap T
′
c ≥ min

{
b, Tu + 1−α

α
· b
}

such that all univer-

sities and (ex-ante) all students prefer the conditional cap of T
′
c in either equilibrium.

Because the no transfers case corresponds to an unconditional transfer cap of Tu = 0,

Theorem 2 shows that for small b, a conditional transfer cap of Tc = b is Pareto improving.

We return to US university athletics. Revenues and, due to the cap on payments stu-

dents can receive, profits have grown to eight figures and beyond for certain programs.40

Universities are forbidden to pay market clearing wages for top athletes. To gain or retain a

competitive edge against their peers, many universities have begun considering guaranteed

scholarships (the spillover dynamic between majors described with unconditional transfers)

which pay for the education and stipend of student athletes even if they do not compete

on an athletic team. In 2014, the Universities of Maryland, Indiana, and Southern Califor-

nia announced scholarship guarantees for athletes in certain sports, and The Big Ten and

40http://www.usatoday.com/sports/college/schools/finances/, 11/7/2015.
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Pacific-12 conferences have endorsed the move to guaranteed scholarships.41 Our analysis

indicates that all parties may be better off and more students may participate in athletics

if universities were forced to offer conditional scholarships with a slightly higher stipend.

While there are other important aspects of student athletics that we have not considered,

this model gives caution to the assertion that moving to guaranteed scholarships or removing

all caps on scholarships will lead to better outcomes.

Extensions of the model

We have made several simplifying assumptions in our model for clarity, but the qualitative

predictions are robust to many complexities that are present in the real world. To demon-

strate this, we give parametric restrictions under which US and English equilibria can be

maintained under several perturbations of our model in the limiting large market case. We

see that for each of these extensions, our original findings of the existence of both equi-

libria hold. Formal statements of these results and all proofs are relegated to Appendix

C.5. We consider the following extensions of our model: heterogeneous intensities of student

preferences over the two majors, non-identical university preferences, interdependent univer-

sity/student preferences, heterogenous major popularity and yield management, arbitrarily

many majors, non-homogeneous sizes and popularities of universities, and markets without

intrinsic agent qualities.

5 Conclusion

We study the conflict that arises when universities and students–and more broadly, agents

on different sides of a market–have different preferences over the terms of matching ex-

post. As a result, before matching, universities decide whether to give their students the

flexibility to pick their majors after matriculating and students decide whether to pay a cost

to learn their preferences over majors. These choices endogenize the value of a match for

both parties. Accurately analyzing this market requires a marriage of a matching framework

to a principal-agent model.

The US system of full university aggregation and uncertain students is an equilibrium

outcome of the university admissions game, with universities discouraged from deviating

since they would appear less attractive to students without the option value of studying the

41http://www.washingtonpost.com/blogs/terrapins-insider/wp/2014/08/19/maryland-to-guarantee-
lifetime-athletic-scholarships/, 11/7/15.
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ex-ante less preferred major. The English system of full disaggregation and certain students

is also an equilibrium outcome, with universities discouraged from deviating by the concern

of adverse selection. Students prefer the US equilibrium as it allows them to study their

favorite major without having to pay a cost to discover their preference over majors at the

beginning of the game. Universities prefer the English equilibrium as it forces second-tier

students to study the major preferred by the university.

These two equilibria are often unique, which sheds light on why we do not observe coun-

tries with substantial partial disaggregation. The US equilibrium is easier to maintain with

more universities, whereas the English equilibrium becomes harder to maintain when there

are more students (equivalently, fewer seats at universities). The US equilibrium is robust to

small mistakes and experimentation by agents; the English equilibrium is not. Our frame-

work is useful for understanding the consequences of real-world deviations of universities

in their admissions systems, of changes in national educational policies, and of changes in

fundamentals such as students’ information sets or market size.

One aspect we have not formally studied is which equilibrium is selected when both the

US and English systems are viable. A path-dependent explanation seems plausible, with

new entrants in the market adopting the admissions policies of their predecessors. Historical

reasons for the starting points of these paths may exist, as we discuss in Appendix B.2.

In particular, the differences in the social and political climates in the United States and

England in the 19th and 20th centuries may have had a large role in selecting each country’s

equilibrium; varying high school standards and a young education system in the United

States may have led to a more broad educational standard, while a desire for strong national

efficiency coupled with a relatively centralized secondary education administration could

have fostered a more narrowly focused scheme in England. Of course, there may be other

historical reasons that contribute to the current university admissions differences between

these two countries and a richer consideration of these points may yield new insights.

Our model gives a novel perspective into the debate on whether student athletes should

be paid market wages. Universities compete away the surplus from matching with the top

athletes. As a result, universities would prefer to disaggregate, avoid competition with other

universities and instead force admitted students to participate in athletics. Interestingly,

top universities in the United States collude against providing merit-based scholarships and

athletic scholarships are capped by the NCAA. As we discuss, this is necessary to maintain

the US equilibrium. Granting scholarships to students only if they participate in athletics

makes it easier to sustain the US equilibrium and, if the level of the cap is chosen carefully,

can lead to a welfare-maximizing outcome. From a policy perspective, Theorem 2 suggests
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that allowing universities to honor athletic scholarships even if a student does not participate

in athletics may not be an optimal way to design the market for athletic scholarships.

Taking a broader view of our model, the aggregation and resolution of major uncertainty

decisions give two dimensions along which universities and students can compete, and ul-

timately, sort into different equilibria. When one of these dimensions is hindered, through

students who know their preferences costlessly in graduate admissions or through universi-

ties competing away the surplus from desirable students with merit based scholarships, we

find that the US equilibrium can no longer be sustained without market interventions. This

matches what we observe in the real world.

While the analysis of the paper focuses on university admissions (both with and without

money), we believe our model provides a framework for understanding other markets that

feature pre- and post-match decisions related to aggregation. Some examples of such markets

include:

• Vendor return policies: Sellers must decide whether to allow buyers to return items.

Buyers can learn about the specifics of an item before buying it, or learn about it

through use after buying it. Accepting a return represents a cost for a seller, but is

valuable for a buyer who has changed her mind about the purchase or bought the item

for a particular task that has since been completed.

• Worker-to-firm matching: Different firms and industries offer workers varying levels

of self-direction. One example is tenure for academics, which allows a professor to

control her own research agenda even when it differs from the preferred research agenda

of the university. In spot markets, however, workers are hired for a narrowly defined

task. Before matching, workers can learn of their preferences for terms.

• Refugee settlement: Are refugees free to relocate after being accepted into a coun-

try? In the United States, refugees are allowed to do so, which has led to a large

Somali community in Lewiston, Maine, despite initial efforts to settle these refugees in

different parts of the country.42 Discouraging refugees from relocating (as is the case

in certain countries, such as Germany) may increase incentives for refugees to gather

information about the country to which they seek admission.43

42http://www.politico.eu/article/migrants-arent-widgets-europe-eu-migrant-refugee-crisis/ 11/17/2014.
43Delacrétaz et al. (2016) study centralized matching mechanisms to improve refugee settlement without

the notions of relocation within country.

35



Acknowledgements

We are very grateful to Kwesi Adofo-Mensah, Caroline Hoxby, Matthew Jackson, Yash

Kanoria, Jinwoo Kim, Fuhito Kojima, Scott Kominers, Maciej Kotowski, Jon Levin, Muriel

Niederle, Al Roth, seminar participants at Stanford, Oxford and the World Congress of the

Econometric Society, and the comments of two anonymous referees and the associate editor.

This research did not receive any specific grant from funding agencies in the public, com-

mercial, or not-for-profit sectors.

References

Acemoglu, Daron (1996). “A Microfoundation for Social Increasing Returns in Human Cap-

ital Accumulation”. In: Quarterly Journal of Economics 111.3, pp. 779–804.

Adelman, Clifford (2004). “Principal Indicators of Student Academic Histories in Postsec-

ondary Education, 1972-2000”. In: U.S. Department of Education, Institute of Education

Sciences.

Altonji, Joseph G, Erica Blom, and Costas Meghir (2012). “Heterogeneity in Human Capital

Investments: High School Curriculum, College Major, and Careers”. In: Annual Review

of Economics 4.1, pp. 185–223.

Anderson, RD (2009). “The Growth of a System”. In: The History of Higher Education.

Ed. by Roy Lowe. Vol. 1. Routledge, pp. 220–235.

Arcidiancono, Peter, Esteban M Aucejo, and Ken Spenner (2012). “What Happens After

Enrollment? An Analysis of the Time Path of Racial Differences in GPA and Major

Choice”. In: IZA Journal of Labor Economics 1.5.

Ashby, Eric (2009). “Idea of a University”. In: The History of Higher Education. Ed. by Roy

Lowe. Vol. 2. Routledge, pp. 241–252.

Avery, Christopher and Jonathan Levin (2010). “Early Admissions at Selective Colleges”.

In: American Economic Review 100, pp. 2125–2156.
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Delacrétaz, David, Scott Duke Kominers, and Alexander Teytelboym (2016). “Refugee Re-

settlement”. In: mimeo.

Espenshade, Thomas J., Lauren E. Hale, and Chang Y. Chung (2005). “The Frog Pond

Revisited: High School Academic Context, Class Rank, and Elite College Admission”.

In: Sociology of Education 78.4, pp. 269–293.

Fazackerley, Anna (2016). “UK considers plans to nearly halve international student visas”.

In: https://www.theguardian.com/education/2016/dec/12/uk-halve-international-student-

visa-tougher-rules.

Fleiner, Tamás (2003). “A fixed-point approach to stable matchings and some applications”.

In: Mathematics of Operations Research 28.1, pp. 103–126.

Gale, David and Lloyd S. Shapley (1962). “College Admissions and the Stability of Marriage”.

In: The American Mathematical Monthly 69.1, pp. 9–15.

George-Jackson, Casey E and Eric J Lichtenberger (2012). “College Confidence: How Sure

High School Students Are of Their Future Majors”. In: Illinois Education Research Coun-

cil.

Guttenplan, D. D. (2013). “In Britain, a Return to the Idea of the Liberal Arts”. In:

https://www.nytimes.com/2013/05/13/world/europe/in-britain-a-return-to-the-idea-of-the-

liberal-arts.html? r=0.

Haggag, Kareem, Richard W. Patterson, Nolan G. Pope, and Aaron Feudo (2020). “Attri-

bution Bias in Major Decisions: Evidence from the United States Military Academy”. In:

Journal of Public Economics, Forthcoming.

Hatfield, John W. and Paul R. Milgrom (2005). “Matching with Contracts”. In: American

Economic Review 95.4, pp. 913–935.

Hatfield, John William, Fuhito Kojima, and Scott Duke Kominers (2019). “Strategy-Proofness,

Investment Efficiency, and Marginal Returns: An Equivalence”. In: mimeo.

37



Kelso, Alexander S. and Vincent P. Crawford (1982). “Job Matching, Coalition Formation,

and Gross Substitutes”. In: Econometrica 50.6, pp. 1483–1504.

Kerr, Clark (2009). “The Idea of a Multiversity”. In: The History of Higher Education. Ed.

by Roy Lowe. Vol. 2. Routledge, pp. 306–328.

Larroucau, Tomas and Ignacio Rios (2020). “Dynamic college admissions and the determi-

nants of students’ college retention”. In: mimeo.

Lee, Sam-Ho (2009). “Jumping the Curse: Early Contracting with Private Information in

University Admissions”. In: International Economic Review 50.1, pp. 1–38.

Mailath, George J., Andrew Postlewaite, and Larry Samuelson (2013). “Pricing and invest-

ments in matching markets”. In: Theoretical Economics 8, pp. 535–590.

Malamud, Ofer (2010). “The Structure of European Higher Education in the Wake of the

Bologna Reforms”. In: American Universities in a Global Market. Ed. by Charles Clot-

felter. NBER.

Moberley, Walter (2009). “Changing Conceptions of the University’s Task”. In: The History

of Higher Education. Ed. by Roy Lowe. Vol. 2. Routledge, pp. 150–166.
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A Proofs

Proof of Lemma 1

We prove a result more general than presented in the main body. To begin, let r be the

proportion of students who have resolved uncertainty, du ∈ {agg, disagg} represent whether

university u has disaggregated or not, and d represent the vector of such decisions for every

university. For each university u, let (σMu (vs, θs), σ
L
u (vs, θs)) be a pair of functions mapping

quality vs and skill type θs into admission probability to colleges Mu and Lu, respectively. If

u is aggregated, it must be the case that the admissions outcomes for σMu (vs, ·) and σLu (vs, ·)
for all vs are perfectly correlated, so we represent this admission probability function as

σu(vs).

Define Ru(vs, θs, r, d, σ−u) as the expected value of a student of quality vs and skill type

θs to university u, defined as the university’s expected (infinitesimal) payoff from admit-

ting the student conditional on her enrolling, where σ−u represents the vector of admissions

probability functions for all other universities and colleges. For any disaggregated college

iu, i ∈ {M,L}, we similarly define Riu(vs, θs, r, d, σ−iu) as the expected value of a student of

quality vs and skill type θs to iu, defined as the college’s expected (infinitesimal) payoff from

admitting the student, conditional her enrolling, where σ−u represents the vector of admis-

sions probability functions for all universities and colleges. Note that for any disaggregated

college iu,

Riu(vs, θs, r, d, σ−iu) =

v if i = θs

δ(vs) if i 6= θs

because iu can only admit students to the contract specifying major iu, that is, disaggregated

colleges do not suffer from a winner’s curse.

Assuming no capacity constraints are violated, the utility of disaggregated college iu from

admitting a subset of students S ′ ⊂ [0, 1]× {M,L} according to function σiu given σ−iu is

2n

q

ˆ

s∈S′

[
P (σ−iu(vs, θs)) ·Riu(vs, θs, r, d, σ−iu) · σiu(vs, θs)

]
dλ

where P (σ−iu(vs, θs)) is the probability a student of quality vs and of skill type θs enrolls in

college iu conditional on being admitted. Each aggregated university u’s utility is given by

n

q

ˆ

s∈S′

[P (σ−u(vs, θs)) ·Ru(vs, θs, r, d, σ−u) · σu(vs)] dλ
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where P (σ−u(vs, θs)) is the probability a student of quality vs and of skill type θs enrolls in

university u conditional on being admitted.

Due to capacity constraints, each university’s (college’s) utility is concave in its own

admissions probability function σu (σiu), so no university (college) can benefit by mixing

between admission probability functions.

We show that each aggregated university picks a threshold and admits all students with

expected value exceeding the threshold. That is, let SRu := {s|σu(vs) > 0 and P (σ−u(vs, θs)) >

0}. Let τu be the infimum expected value conferred to u by students s ∈ SRu . Then in equi-

librium,

σu(vs) =

1 if Ru(vs, θs, r, d, σ−u) ≥ τu

0 otherwise

Similarly, we show that each disaggregated college picks a threshold and admits all stu-

dents with expected value exceeding the threshold. That is, let SRiu := {s|σiu(vs, θs) >

0 and P (σ−iu(vs, θs)) > 0}. Let τiu be the infimum expected value conferred to iu by stu-

dents s ∈ SRiu . Then in equilibrium,

σiu(vs, θs) =

1 if Riu(vs, θs, r, d, σ−iu) ≥ τiu

0 otherwise

We first consider disaggregated colleges. Note that each disaggregated college iu must

fill all of its seats under σiu as due to the continuum of students, there is no aggregate

uncertainty, so if a college is oversubscribed it will merely admit fewer students and if it is

under subscribed it will admit more students. Suppose that σiu is not a threshold policy for

some disaggregated iu. Then for some ν there is a positive measure set S1 ⊂ [0, 1]×{M,L}
with expected values Riu ≥ ν for all s1 ∈ S1 who are admitted with probability less than 1.

Furthermore, there is some positive measure set S2 ⊂ [0, 1] × {M,L} with expected values

Riu < ν for all s2 ∈ S2 who are admitted with non-zero probability. Consider the following

“tatonnement” process: for some small δ1 > 0, reject the lowest δ1 value students in S2.

Meanwhile, admit the top δ2 students in S1, where δ2 is defined to maintain the capacity

constraint with equality. Clearly, such δ1 and δ2 exist and the utility of each is increased by

the adjustment. Contradiction.

Moreover, any two disaggregated M colleges must have the same threshold and any

two disaggregated L colleges must have the same threshold, that is, for any disaggregated

u, u′, τiu = τiu′ for i ∈ {M,L}. This is because for any such colleges, the functions
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Riu(vs, θs, r, d, σ−iu) = Riu′
(vs, θs, r, d, σ−iu′ ) so that if the thresholds are different either one

college is not filling all of its seats or one college is overfilled.

Finally, we show that τMu = τLu for any disaggregated university u, which completes

the claims regarding these universities. Recall that at any disaggregated universities u, u′,

τiu = τiu′ and that at any aggregated university u′′ σu′′(vs) does not depend on θs. Therefore,

because of the symmetric distribution of student types with respect to M and L if WLOG

τMu > τLu either all disaggregated colleges Mu will not fill all of its seats, or all disaggregated

colleges Lu will not fill all of its seats overfilled.

We now consider aggregated universities. Because all disaggregated colleges pick the

same threshold, each college at aggregated universities u also meets its capacity constraint

with equality under this admission threshold policy σiu. This is because by the symmetry

of the distribution of student types and the continuum of students, there is no aggregate

uncertainty, so if a university is oversubscribed it will merely admit fewer students and if it

is under subscribed it will admit more students. The remainder of the argument that shows

that each aggregated university sets the same admissions threshold is nearly identical to the

argument for colleges at disaggregated universities.

It is also easy to see that a student is admitted to university if and only if her quality

weakly exceeds 1 − q. That is, suppose there is some positive measure set of students S3

with qualities above 1 − q who are not admitted to any university. Note that because

these students have not been admitted elsewhere, there is no winner’s curse associated with

admitting them. In other words Ru(vs, θs, r, d, σ−u) = αvs + (1− α)δ(vs) at any aggregated

university for each s ∈ S3. Therefore, these students have higher expected values than some

admitted students, and so universities would rather drop others and admit students from

S3. The fact that aggregate capacity is 1− q and no seats are left vacant in any equilibrium,

by our earlier argument, shows that all students with quality weakly greater than 1− q are

admitted.

Similarly, the cases in which either no student has resolved major uncertainty, or all

universities are aggregated means that Ru(vs, θs, r, d, σ−u) = αvs+(1−α)δ(vs) for all (vs, θs).

Disaggregated colleges do not suffer from a winner’s curse, as discussed earlier. These special

cases, combined with the general proof presented here, imply the statement in the main body.

�

Lemma 2. In equilibrium (both on and off path) disaggregated colleges use thresholds in

application quality and the admissions sets of aggregated universities are identical.

First, colleges at disaggregated universities know exactly the contribution a given ad-

mitted student will make conditional on enrolling as there is no room for adverse selection.
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That is, for colleges at a disaggregated university, the expected value of a student is equal

to her application quality. Thus, colleges at disaggregated universities use application qual-

ity thresholds in equilibrium strategies by Lemma 1. Note that this result implies that if a

student is admitted to only one college at a disaggregated university, it will be to the college

corresponding to her skill type.

For aggregated universities, the admissions decision is less straightforward, as students

who have resolved their preference uncertainty and are inconsistent as well as students who

have not resolved their preference uncertainty perceive a benefit to an aggregated university

and so are more likely to enroll conditional on admission than students who have resolved

their preference uncertainty and are consistent. Thus, the expected value to an aggregated

university of admitting a student of quality vs must take into account the information con-

tained in the student’s enrollment decision.

The probability that a given student who has not resolved her preference uncertainty

chooses an aggregated university um+1 when she is admitted by n′ universities, of which m

are disaggregated is

ωan′,m ≡ Prob(ws(um+1)+b > max{ws(u1)+αb, . . . , ws(um)+αb, ws(um+2)+b, . . . , ws(un′)+b})

Note that ωan′,m is increasing in m (holding n′ fixed) as increasing m lowers the arguments

of the max function, increasing the probability. One can calculate this probability given our

assumption of the uniform distribution of the ws(u) terms. After some simplification, this

becomes

ωan′,m =
1− (1− (1− α)b)n

′−m

n′ −m +
m∑
k=0

(
m

k

)
((1− α)b)k(1− (1− α)b)n

′−k

n′ − k

For a student who has resolved her preference uncertainty, consider first the case of a

consistent student. She has no reason to prefer an aggregated university over a disaggregated

one as if she is admitted to at least one college at a disaggregated university, it will be to her

skill type. So, the probability that a given university receives the student when n′ universities

admit her is
1

n′

regardless of the mix of aggregation in the admitting universities.

For an inconsistent student, the calculation for the probability of enrollment is much the

same as for an unresolved student but with the added benefit to attending a university that is
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either aggregated or whose colleges have both admitted her equal to b rather than (1−α)b.44

Thus, the probability that such a student enrolls in either of those two university types when

n′ universities admit her but m of them admit her only to the college corresponding to her

skill type is

ωcn′,m =
1− (1− b)n′−m

n′ −m +
m∑
k=0

(
m

k

)
((1− b)k(1− (1− b)n′−k

n′ − k

Using Bayes’ formula, the expected value to an aggregated university of admitting a

student of quality vs conditional on the student enrolling given n′ total universities admit

her, of which m are disaggregated and of which m′ ≤ m admit the student only to the

college of her skill type and when a portion r of students have resolved their preference

uncertainty,45 is

EV [n′,m,m′, vs] =
ωan′,m(1− r)

ωan′,m(1− r) + 1
n′
rα + ωcn′,m′r(1− α)

(αvs + (1− α)δ(vs))+

1
n′
rα

ωan′,m(1− r) + 1
n′
rα + ωcn′,m′r(1− α)

vs+

ωcn′,m′r(1− α)

ωan′,m(1− r) + 1
n′
rα + ωcn′,m′r(1− α)

δ(vs) (9)

where the three fractions are Prob(student is not resolved|student enrolls), Prob(student is

resolved and consistent|student enrolls), and Prob(student is resolved and inconsistent|student

enrolls), respectively.46

Note that given the symmetry in the disaggregated colleges’ admissions decisions dis-

cussed above, a student is either admitted to only the college of her skill type or admitted

to both colleges at all disaggregated universities. Thus, m′ = 0 or m′ = m. In the former

case, we have EV [n′,m, 0, vs] = αvs + (1−α)δ(vs) (as resolved, inconsistent students are no

more likely to choose an aggregated university over a disaggregated university).

44The other difference between unresolved students and resolved, inconsistent students is that resolved,
inconsistent students view aggregated universities as equal to disaggregated universities to which they’ve been
admitted to both colleges in terms of the ability to study their preference type major. Unresolved students
do not know which college corresponds to their preference type, so view all disaggregated universities equally.
Given that all disaggregated universities admit a student of a given skill type to the same number of colleges,
this difference does not matter for the calculations below.

45Which, given the timing of the game, cannot depend on the student’s quality.
46We note here that EV [n′,m,m′, vs] is a similar term to Ru(vs, θs, r, d, σ−iu). We use the new notation

here to highlight that given Lemma 1, we know that in equilibrium the EV term does not depend on θs, nor
are university’s admissions strategies random.
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Given the equations for the ω terms above, it can be shown that EV [n′ + 1,m,m′, vs] >

EV [n′,m,m′, vs] by showing that the last term, Prob(student is resolved and inconsistent|student

enrolls), decreases faster than the other two terms (and that the expected value is never

greater than αvs + (1 − α)δ(vs), so that decreasing this term improves the expected value

regardless of the relative changing of the other two terms).

Intuitively, this result can be understood as follows. As mentioned, ωcn′,m can be thought

of as the extreme case of ωan′,m with α = 0; additionally, the probability that a student enrolls

conditional on being resolved and consistent can be thought of as the extreme case of ωan′,m
with α = 1. As α increases, an aggregated universities’ “effective” competitors increases.

For example, with b = 1, an inconsistent, resolved student will never pick a disaggregated

university at which they’ve been admitted to only one college if possible, whereas a consistent,

resolved student views all universities equally. As the reduction in the probability that a

student enrolls at a given university caused by an additional university admitting that student

depends on the number of universities already admitting that student,47 the reduction for

inconsistent, resolved students will be the biggest.

There are two important implications of this monotonicity in EV [n′,m, vs]. The first is

that we can specify admissions functions in the US and English equilibria at all information

sets (i.e., for all disaggregation profiles d) by assuming that all aggregated universities admit

the same set of students and maximizing the value of this set given the expected value equa-

tion above and subject to seat capacities. The monotonicity ensures that we can accomplish

this maximization by using the following algorithm:

1. Assume that all disaggregated colleges admit all students with application quality

greater than or equal to 1− q.

2. Based on the enrollment probabilities, determine the quality cutoff v1 such that all

aggregated universities meet their seat quota if they admit all students with actual

qualities vs ≥ v1. As all students are weakly more likely to attend an aggregated

university than a disaggregated university and some students are strictly so, v1 > 1−q.

3. Based on the expected values given these admission decisions, determine the quality

v2 such that EV [n,m,m, v2] = α(1 − q) + (1 − α)δ(1 − q). This is the student for

which the aggregated universities are indifferent between admitting (while competing

with the disaggregated colleges) and deviating to admitting the marginal student not

admitted anywhere (for which there is no adverse selection, so whose expected value

is the RHS).

47That is, it acts like 1
n , and 1

n − 1
n−1 is decreasing in n

45



4. If v2 < v1, the admissions decisions for the aggregated universities is to admit all

students with quality greater than v1 and the admissions decisions for the disaggregated

colleges is to admit all students with application quality greater than or equal to 1− q.

5. If v2 > v1, as the aggregated universities will not admit any students with quality

below v2 which the disaggregated colleges also admit, the admissions decisions for

the aggregated universities is to admit students with quality above v2 and to find a

v3 ∈ (1 − q, v2) such that only aggregated universities admit students with quality in

[1 − q, v3] and aggregated universities meet their seat quotas. Disaggregated colleges

admit all students with application quality greater than or equal to v3. Note that

this means that only students with actual quality greater than or equal to δ−1(v3) are

admitted to both colleges at a disaggregated university.

The second important implication of this monotonicity is that this is not the only possible

equilibrium admission function. That is, it can be the case that there is an admission function

that is a part of an equilibrium strategy that involves aggregated universities leaving a gap in

the quality interval in their admissions functions even though all would prefer to rearrange

their admissions to include the students in the quality gap; however, no one aggregated

university will change its admission function as it will suffer heavily from adverse selection

in the gap.48 We ignore such possibilities as, given the nature of our results and that the

ability of such punishment off-path is to enforce disaggregation, such constructions are not

of use to us.

This concept of a “coordination” outcome at the admissions stage (wherein aggregated

universities lessen the impact of adverse selection by admitting the same set of students but

that set need not be the highest quality students) is also what causes issues if aggregated

universities know students’ skill types at the time of admission. Following as in the proof of

Lemma 1, it can be shown in this case that all disaggregated colleges of the same major type

still use the same application quality threshold; however, the threshold used by L colleges

can differ from that used by M colleges if more high-quality θs = L students are admitted by

aggregated universities. There is a possibility that there is an equilibrium with aggregated

universities coordinating on which students to admit by their skill type, leading to just such

an imbalance. For this construction to work, there must be students who have resolved their

major preference uncertainty, so the main area of our paper where such a concern could lead

to complications is in Proposition 4, concerning the uniqueness of the English outcome in

the presence of resolved students.

48This is similar to the discussion in the proof of Proposition 2 below, but with the important distinction
that this gap might not be the utility maximizing outcome for the aggregated universities.
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Proof of Proposition 1:

The proof is as given in the main text.

Proof of Proposition 2:

There are two cases to consider, following the proof of Lemma 1. First, the expected value

threshold corresponds to a quality threshold for the aggregated university, so that it admits

all students with qualities greater than some cutoff tu1(n). Second, the expected value

threshold does not correspond to a quality threshold for the aggregated university. The

aggregated university chooses not to compete with the disaggregated universities for students

below some quality, due to a winners’ curse, and instead enrolls students not admitted

elsewhere.49

In the first case, u1’s aggregation makes no difference to consistent students and all

students with qualities above v̄ since these students are always able to study their favorite

majors. We therefore pay special attention to inconsistent students with vs < v̄ who plan to

study against their skill types if they enroll in u1. Let ws(u1) and ws(umax) be the cardinal

utilities that student s has for u1 and the university other than u1 at which she has the the

highest utility. She prefers u1 if and only if ws(u1) > ws(umax) − b. Thus, the probability

that an inconsistent student admitted to all universities enrolls in u1 is

Pr (ws(u1) > ws(umax)− b) =

Pr (ws(umax) < b) +

1̂

b

Pr (ws(u1) > y − b) · f(y)dy = b+
1

n
(1− bn)

(10)

Because the aggregated university is more popular, t−u1(n) < tu1(n) for all n. Since a total

mass of q seats exists in this market, t−u1(n) = 1 − q as otherwise at least one university

does not enroll exactly a q
n

mass of students.

Now we calculate the threshold tu1(n). Since students with vs ≥ v̄ are able to study their

favorite majors at any university, tu1(n) < v̄. For our purposes, there are three types of

49That is, there will be some set of low quality students that only the deviating university admits, followed
by a set of higher quality students which only non-deviating universities admit, then the set of highest quality
students which all universities admit.
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students to consider:

1. Students with vs ≥ v̄. u1 will get 1
n
(1 − v̄) students from this region, as they are no

more attracted to u1 than they were before.

2. Students with v̄ > vs ≥ tu1(n) who are consistent. u1 will get 1
n
α(v̄ − tu1(n)) students

from this region, as they do not find u1 any more attractive since they do not wish to

study against their skill types.

3. Students with v̄ > vs ≥ tu1(n) who are inconsistent. As calculated above, u1 will get[
b+ 1

n
(1− bn)

]
(1− α)(v̄ − tu1(n)) students from this region.

Summing over the mass of students u1 gets, we can solve for tu1(n) to match the quota. The

result is that

tu1(n) = v̄ − q + v̄ − 1

α + (1− α) [bn+ 1− bn]
(11)

Since u1 gets the same mass of (and same utility from) students with qualities vs ≥ v̄, for

the purposes of comparing this deviation to the proposed equilibrium, we need only consider

those students with qualities strictly less than v̄. Focusing on those students and eliminating

the normalizing constants in the utility functions, we derive the necessary condition for the

English equilibrium as

1

n

v̂̄

1−q

vdv =
v̄2 − (1− q)2

2n
>

v̂̄

tu1

[
α

1

n
v + (1− α)

[
b+

1

n
(1− bn)

]
δ(v)

]
dv (12)

where the left-hand side comes from the utility in equilibrium and the right-hand side comes

from the utility to deviating to aggregating. This condition is always satisfied, as explained

in the main text.

It remains to show that universities do not wish to deviate in the second case in which

the winner’s curse causes a deviating university to enroll some students not admitted to

the disaggregated univerisites. We begin by calculating the beliefs the deviating university

has for students who cannot be admitted to a disaggregated university under both majors.

From Equation (10) we know that the probability an inconsistent student most prefers the

aggregated university is b + 1
n

(1− bn) . A consistent student most prefers the aggregated

university with probability 1
n
. Noting that α proportion of students are consistent, applying
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Bayes’ rule, the belief that an applying student is consistent is

1

1 + (nb+ (1− bn)) 1−α
α

(13)

Therefore, the aggregating university would prefer to admit a marginal student not admitted

anywhere than incur the winner’s curse if

1

1 + (nb+ (1− bn)) 1−α
α

vs+

(
1− 1

1 + (nb+ (1− bn)) 1−α
α

)
δ(vs) < α(1− q) + (1−α)δ(1− q)

(14)

holds for some admitted student with quality vs. Note that the right hand side arises due to

the fact that the aggregated university does not suffer from the winner’s curse from students

who are not admitted to disaggregated universities. Because no student with quality vs < 1−
q is admitted in equilibrium it must be the case that when the aggregated university credibly

wishes to withhold offers of admission to some students and instead admit marginal students,

the disaggregated universities raise their own thresholds (for otherwise they would overfill),

allowing the aggregated university to enroll students with qualities above 1 − q without

competition and suffering from the winner’s curse. Therefore, we construct the following off-

path actions: Define T ∗ such that the student with quality T ∗ satisfies Equation (14) with

equality (this corresponds to v2 from Lemma 2). The aggregated university competes only for

students with qualities weakly greater than T ∗. The disaggregated universities adjust for this

lack of competition by increasing their cutoffs from 1− q to TD where the latter cutoff is set

to match their capacities (TD corresponds to v3 from Lemma 2). The aggregated university

then admits all students with qualities between 1 − q and TD without competition. Note

that ¯̄v ≡ δ−1(TD) > δ−1(1 − q) = v̄, meaning that fewer students are able to study either

major at disaggregated universities. It is easy to see that 1 − q < TD < T ∗ < v̄ < ¯̄v. The

following figure demonstrates the utility of the aggregated universities.

We again see that consistent students with qualities weakly greater than T ∗ are no more

likely to attend the aggregated university, nor are inconsistent students with qualities weakly

greater than ¯̄v. The aggregated university admits more inconsistent students with qualities

vs ∈ [T ∗, ¯̄v) and all students with qualities vs ∈ [1 − q, TD), and admits fewer (0) students

with qualities vs ∈ [TD, T
∗). Since T ∗ < v̄, all previously admitted students with qualities

vs ∈ [TD, T
∗) were admitted under their skill types, so they are each more valuable than

any additional students admitted with quality vs ∈ [1− q, TD). Furthermore, the additional

inconsistent students with qualities vs ∈ [T ∗, ¯̄v) are each worth less the to aggregated univer-
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Figure A.1: Utility of deviating English university with non-connected admit region
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Figure 7: Utility of deviating university with non-connected admit region.

Deviating university receives indicated portion of each shaded region.

α
n
1
n

5

Notes: This figure represents the utility that a university receives if it is the lone deviator from the English
equilibrium with a non-connected admit region. This university admits all students with qualities between 1−q
and TD and above T ∗. All students with qualities between 1− q and TD enroll in the deviating university and
α proportion of them study their skill type majors. Consistent students with qualities weakly above T ∗ and all
students with qualities weakly above ¯̄v are no more or less likely to attend the deviating university than any
other. Inconsistent students with qualities between T ∗ and ¯̄v are more likely to attend the deviating university
and study against their skill type majors. As a result, the deviating university enrolls 1

n
(1− bn)(1−α) + b+ α

n
students who study against their skill types in the green region (the area bounded to the left by T ∗, to the right
by ¯̄v and above by δ(v).
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sity then the previously admitted students with qualities vs ∈ [TD, T
∗) since δ(¯̄v) = TD. This

means that the newly admitted students are each worth less to the aggregated university

than the students given up. In other words, deviation leads to a stochastically dominated

set of students in terms of expected value, leaving the deviating university worse off.

�

Proof of Proposition 3:

Proof given in main text.

Proof of Example 1

As ε → 0, δ(·) converges pointwise to a step function. This functional form is made purely

for computational simplicity.50

To show that the asymmetric outcome is supported in equilibrium, we need to check that

the disaggregated university does not want to deviate to aggregation, which would result in

the US equilibrium, that the aggregated university does not want to disaggregate, and that

students do not want to pay to learn their preference types.

We first investigate university deviations. WLOG assume that u1 disaggregates in the

proposed equilibrium, and u2 aggregates. b = 1/(1 − α) implies that no student admitted

to u2 would rather attend u1. Thus, it must be that u1 enrolls all students with qualities

vs ∈ [1 − q, 1 − q/2] = [0.5, 0.75) while u2 enrolls all students students with qualities vs ∈
[1−q/2, 1] = [0.75, 1]. All students who attend u1 study their skill-type major, since α > 1/2

and students have not learned their major preferences.

Under the proposed equilibrium, u1 receives utility

2

0.5

ˆ 0.75

0.5

v dv =
5

8

If u1 deviated to aggregation, it would lead to the US outcome. Each university would

50Of primary importance for the purpose of this example is to ensure that the disaggregated university
does not want to aggregate by making the gains from competing with the (currently) aggregated university
for the top students less than the benefit of forcing students with quality in the interval 0.5 to 0.75 to study
their skill type; this δ makes these students particularly unattractive if they study against their skill type.
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then receive

2

0.5

1

2

ˆ 1

0.5

αv + (1− α)δ(v) dv =
5

8
− 1

8
ε+ ε

(
3

32
+

1

16
ε+

1

4
ε2
)

(15)

ε→0→ 2

0.5

(
1

2

ˆ 1

0.5

3

4
v dv +

1

2

ˆ 1

0.75

1

8
dv

)
=

5

8

The utility of each aggregated university in the US outcome approaches the limit of 5
8

from below as δ approaches 0.5 from below at v = 0.75 and ε goes to zero sufficiently quickly

to ensure that the contributions to the aggregated utility from the [0.5, 0.75] and [0.75 + ε, 1]

regions in excess of the approximation by the step function are smaller than the loss in the

[0, 75, 0.75 + ε] region. Therefore, u1 does indeed prefer disaggregation for any ε > 0.51

We now check that u2 does not want to disaggregate. In the proposed equilibrium, it

receives utility:

2

0.5

ˆ 1

0.75

αv + (1− α)δ(v) dv
ε→0→ 2

0.5

(ˆ 1

0.75

3

4
v dv +

ˆ 1

0.75

1

8
dv

)
= 0.78125 (16)

If it were to disaggregate, it would receive utility

2

0.5

1

2

ˆ 1

0.5

v dv = 0.75 (17)

where all students enroll in their skill-type major since they have not learned their major

preferences. Thus, u2 will follow the proposed equilibrium strategy.

We now investigate student deviations. As we have argued, in the proposed equilibrium,

u1 sets an admissions threshold of 0.5. This implies that, as ε→ 0, v̄ → 0.75. Any student s

who does not resolve her uncertainty over majors will attend u2 in the proposed equilibrium

if vs ≥ 0.75 (i.e. she is accepted to u2) and will attend u1 if vs ∈ [0.5, 0.75). In the latter

case, she studies her skill-type major. Therefore, her expected utility from not resolving her

uncertainty over majors is

(E(w(u2)) + b)(1− 0.75) + (E(w(u1)) + αb)(0.75− 0.5) = 0.25 · (1 + (1 + α)b) (18)

Any student s who resolves her uncertainty over majors will attend her favorite university

and study her preferred major if vs ≥ v̄ = 0.75 + ε or if vs ≥ 0.75 and she is consistent, will

51The equality of the u1’s utility with the universities’ limiting utility under the US equilibrium is not
necessary, it simply provides an example with convenient parameters.
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attend u2 if vs ∈ [0.75, v̄) and she is inconsistent (because b > 1, such a student will prefer to

study her favorite major than attend her favorite university), and attends u1 and studies her

skill type if vs ∈ [0.5, 0.75). Therefore, her expected utility from resolving her uncertainty

over majors is

(E(max{w(u1), w(u2)}) + b)(0.25 + ε(α− 1)) +

E(w(u2) + b)(1− α)ε+ E(w(u1) + αb)0.25− c ε→0→
0.25 · E(max{w(u1), w(u2)}) + b) + 0.25 · E(w(u1) + αb)− c = (19)

0.25 · (7/6 + (1 + α)b)− c

Therefore, comparing Equations 18 and 19, student will deviate to resolving her uncer-

tainty (for sufficiently small ε) if c < 1/24. As we have assumed c = 1/5, we have completed

showing the existence of the asymmetric equilibrium.

To show that the English equilibrium is not the Pareto dominant equilibrium for univer-

sities, first note that the English equilibrium exists as

(1− v̄)(1− α)b
ε→0→ (1− 0.75) · 1 = 1/4 > c = 1/5

Then, note that the aggregated university in the constructed asymmetric equilibrium

achieves a higher utility than it would in either the US equilibrium (0.78125 > 5/8, see

Equations 16 and 15) or in the English equilibrium (0.78125 > 0.75, see Equations 16 and

17, where 0.75 is a weak upper bound on universities’ payoff in the English equilibrium as

0.75 is the payoff to each university when both disaggregate and all students study their skill

types).

�

Proof of Proposition 4:

First we prove existence of equilibrium. Consider any set of parameters. If (1−v̄)(1−α)b ≥ c

then the English equilibrium exists, as we have shown. If (1 − v̄)(1 − α)b < c, then it is

easy to see that no student will pay cost c to learn her preferences over majors, regardless of

the aggregation decisions of universities. Disaggregation is strategically complementary for

universities. This is because aggregated universities are more popular than disaggregated

universities for uncertain students, since they allow the student to always study her favorite

major.
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Consider n universities, m of which are disaggregated. A student will select a disaggre-

gated university, WLOG um, if and only if

wums + αb > max{wu1s + αb, ..., wum−1
s + αb, wum+1

s + b, ...wuns + b} (20)

Since the w terms are distributed independently of the aggregation decision, a disaggre-

gated university is less likely to be chosen by a student as m increases. This means that the

aggregated universities set a higher threshold the higher N is, resulting in higher utility for

a disaggregated university as N increases.

So consider the following algorithm to show existence of equilibrium.

Step 1. Suppose all other universities aggregate. Does an arbitrary university wish to dis-

aggregate? If no, terminate the algorithm. If yes, let it disaggregate, and go to Step 2.

...

Step t. Suppose exactly t− 1 universities disaggregate. Does an arbitrary aggregator wish

to disaggregate? If no, terminate the algorithm. If yes, let it disaggregate and go to

Step t+1.

At any step, a disaggregating university will not want to “go back” to aggregating because

its utility is increasing in the number of other universities that disaggregate. So, eventually

this process stops at an equilibrium, either when all universities are disaggregated, or with

partial disaggregation.

�

We prove the conditional uniqueness results by considering 5 exhaustive cases.

1. Generically, there are no pure-strategy equilibria in which agents on both

sides of the market make asymmetric pre-match actions: Suppose for contra-

diction that there is an equilibrium in pure strategies in which some agents on both

sides of the market differ in their pre-match actions. Then it must be the case that

students are indifferent between resolving uncertainty and not resolving uncertainty,

i.e. (1 − v̄)B(n
′
) = c where B : {1, 2, ..., n} → R+ is a decreasing function mapping

the number of aggregated universities into the expected benefit that a student with

quality greater than v̄ receives from paying the cost. Importantly, B(·) can only take

on n different values, meaning that generically, it is not the case that (1− v̄)B(n
′
) = c

for any n
′ ∈ {1, 2, ..., n}. Contradiction.
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2. Any equilibrium in which no student resolves her uncertainty over major

preferences yields the US system if δ(1− q) > 1− q
2(1−α)

(
1− α

1−((1−α)b)n+(1−α)bn

)
To arrive at this condition, we compare the utility of a disaggregated university when

m of n universities are disaggregated to the utility of an aggregated university when

m − 1 of n universities are disaggregated (for m > 1 and conditional on no student

resolving her uncertainty). So long as the latter is always strictly greater than the

former, the conclusion follows.

To express the utility of a disaggregated university, it is useful to consider the aggre-

gated university analogue to Equation 20. Consider an aggregated university i when

m of n universities are disaggregated. Then (letting the first m universities be the

disaggregated universities and i = m+ 1 WLOG),

ωan,m ≡ Prob(wuis + b > max{wu1s + αb, . . . , wums + αb, wum+2
s + b, . . . , wuns + b}) (21)

Note that ωan,m is increasing in m as increasing m lowers the arguments of the max

function, increasing the probability. One can calculate this probability given our as-

sumption of the uniform distribution of the wus terms. After some simplification, this

becomes

ωan,m =
1− (1− (1− α)b)n−m

n−m +
m∑
k=0

(
m

k

)
((1− α)b)k(1− (1− α)b)n−k

n− k (22)

The utility of a university is the average value of its enrolled students. For a disag-

gregated university, this average can be broken down into the weighted average of the

average value of students who are admitted only to disaggregated universities and the

average value of students who are admitted to all universities. To compute this, we first

need to determine the threshold used by aggregated universities; denote this thresh-

old tm,n (so students with v ≥ tn,m are admitted to all universities and students with

v ∈ [1− q, tn,m) are admitted only to disaggregated universities). Using the condition

that supply equals demand for an aggregated university, we have

(1− tn,m)ωan,m =
q

n

Rearranging, this is

tn,m = 1− q

nωan,m
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Of the students with v ∈ [1 − q, tn,m), each disaggregated university gets 1
m

of them

as no disaggregated university is more popular than another. Thus, the portion of a

disaggregated university’s seats taken by these “low” quality students is

1
m

(tn,m − (1− q))
q
n

Rearranging, this is
n

m
(1− 1

nωan,m
)

Consequently, the portion of a disaggregated university’s seats that are taken by “high”

quality students (i.e. students with v ∈ [tn,m, 1]) is 1 minus this value. As students

will study their skill type at the disaggregated university (as α > 1
2
, so unresolved

students find it more likely that their preference type is the same as their skill type),

the average value a disaggregated university gets from a given (quality) interval of

students is just the midpoint of that interval. Putting this all together, the utility of

a given disaggregated university is

Ud
n,m =

n

m
(1− 1

nωan,m
)

(
1− q + tn,m

2

)
+ (1− n

m
(1− 1

nωan,m
))

(
tn,m + 1

2

)
After some rearranging, this simplifies to

Ud
n,m =

tn,m + 1

2
− qn

2m
(1− 1

nωan,m
) (23)

For aggregated universities, we do not need to weight two different intervals, but we

do need to account for whether a student is consistent (and to take the average value

of δ over [tn,m, 1]). This means that the utility of a given aggregated university is

Ua
n,m = α

1 + tm,n
2

+ (1− α)Avg[δ, tn,m, 1] (24)

where

Avg[δ, tn,m, 1] ≡ 1

1− tn,m

ˆ 1

tn,m

δ(v) dv

For the US equilibrium to be the unique equilbrium in which students do not resolve

their uncertainty, we need

Ud
n,m < Ua

n,m−1 (25)
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Substituting in the given expressions and rearranging, this becomes

2(1− α)Avg[δ, tn,m−1, 1] > 1− α + tn,m − αtn,m−1 −
qn

m
(1− 1

nωan,m
)

Substituting in the expressions for tn,m and rearranging, this inequality becomes

Avg[δ, tn,m−1, 1] > 1 +
q

2(1− α)

[
α

nωan,m−1

− 1

nωan,m
+

1

mωan,m
− n

m

]
(26)

The LHS is bounded from below by δ(1−q). To find a sufficient condition for inequality

25 to hold, we need an upper bound on the RHS. To do this, note that it suffices

to maximize the two differences in the brackets. For both differences, it suffices to

look at m = n given the formula for ωan,m; in this case, we use the convention that

ωan,n = 1, which both is the natural continuation of Equation 22 and ensures the correct

calculation of Equation 23. Then, we can bound the RHS by substituting in the formula

for ωan,n−1 in the first term in the brackets and simplify to have the following sufficient

condition for Inequality 26 to hold.

δ(1− q) > 1− q

2(1− α)

(
1− α

1− ((1− α)b)n + (1− α)bn

)
(27)

3. Any equilibrium in which all universities aggregate yields the US system:

This is easy to see, as there is no benefit to a student learning her preferences over

majors ex-ante, but there is a cost to doing so.

4. Any equilibrium in which every student resolves her uncertainty yields the

English system: Suppose that every student resolves her preference uncertainty.

Lemma 2 provides the expected value conditional on enrollment of a student of quality

vs for a university that deviates from disaggregation to aggregation, and the algorithm

there provides the admissions decisions for both aggregated universities and disaggre-

gated colleges.

Given a set number of aggregating and disaggregating universities, consider a given

university’s utility to aggregating vs disaggregating. The exact same argument as

presented in the proof of Proposition 2 holds here.52 Namely, comparing consistent

52Given at least one other college is aggregating, the argument from Proposition 2 is in fact stronger
here as the v2 from Lemma 2 is decreasing in the number of aggregating universities as the expected value
conditional on enrollment is increasing in the proportion of aggregating universities. Thus, by switching from
aggregation to disaggregation, more high quality students are admitted to both colleges at disaggregated
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students, an aggregated university holds no greater appeal than a disaggregated uni-

versity, so again a university gains no more of these students by aggregating than by

disaggregating, The only difference between the enrollees in an aggregated university

and the disaggregated university is that the disaggregated university enrolls a greater

portion of inconsistent students who apply knowing that they will definitely study the

major that is not their skill type.

5. Any equilibrium in which all universities disaggregate yields the English

system: As before, the required condition to sustain the English equilibrium from the

student’s side is (1 − v̄)(1 − α)b > c. Now suppose that some proportion of students

p does not resolve uncertainty. Then these students apply under their type to every

university. Note, however, that this does not change the equilibrium threshold for

the universities, and therefore, does not change the condition for students to maintain

equilibrium. Since every student faces the same cost and expected benefit to learning

her preferences, the equilibrium in which all students learn their preferences ex-ante is

unique conditional on all universities disaggregating and (1− v̄)(1− α)b > c.

�

Proof of Corollary 1:

We begin with a short lemma.

Lemma 3. In any equilibrium with no student resolving her preferences and a fraction m
n
≡ µ

universities choosing to disaggregate, limn→∞ tn,m = 1− (1− µ)q.

From the previous proof, we have

tn,m = 1− q

nωan,m

where

ωan,m =
1− (1− (1− α)b)n−m

n−m +
m∑
k=0

(
m

k

)
((1− α)b)k(1− (1− α)b)n−k

n− k

universities, the consistent students among which will now find aggregated universities no more appealing
than disaggregated universities and reducing the only potential upside to aggregating.
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To prove the lemma, it suffices to prove that

lim
n→∞

nωan,m =
1

1− µ

This follows from the definition of ωan,m and the fact that (1 − α)b ∈ (0, 1), so after

distributing n, the first term of nωan,m goes to the stated limit and the second term goes

to zero (as can be seen by bounding the summation by the greatest term in the sum and

showing that that goes to zero faster than 1
n
).

�

Returning to the main proof, to see the condition for the large market, we can use the

lemma to write the limit of Equation 23 as n→∞ while holding µ constant as

Ud
µ =

tµ + 1− q
2

and the limit of Equation 24 as

Ua
µ = α

1 + tµ
2

+ (1− α)Avg[δ, tµ, 1]

where tµ = 1 − (1 − µ)q, the threshold used by aggregated universities, which is derived

from equating the supply of seats provided by aggregated universities with the demand from

students with quality above tµ.

Repeating the steps as in Proposition 4, we get the condition

Avg[δ, tµ, 1] >
1

2
(1 + tµ)− q

2(1− α)

We can then rewrite this as

ˆ 1

tµ

δ(v) dv >
1

2
(1− t2µ)− q(1− tµ)

2(1− α)

Because tµ varies from 1 − q to 1 as µ varies from 0 to 1, we can think of this condition

in terms of tµ rather than in µ. A sufficient condition for this inequality to hold for all

tµ ∈ [1 − q, 1] is found by solving for the function for which this condition just holds and

then noting that so long as δ(·) is always above this function, the condition will always hold.

Doing this results in

δ(v) > v − q

2(1− α)
for v ∈ [1− q, 1]
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�

Proof of Corollary 2:

As given by Proposition 4, the only equilibria involve students making the same resolution

decisions. Given c = 0, it is a dominated strategy for students to not resolve their preference

uncertainty (as it leads to a worse payoff in the case of universities disaggregating). A second

application of Proposition 4 then provides the result.

�

A.1 Proof of Theorem 1:

As we normalize universities’ and colleges’ utilities for the number of universities n, the

average utility of each university in equilibrium is the same regardless of n, so our strategy is

to show that the utility to deviation is declining in n by showing that a deviating university

receives a decreasing share of the higher quality students for which it is competing with other

universities.

Consider university u1 deviating. As shown in Section 3.1, the deviating university gets
1
n
(1 − (1 − α)b)n of these students. As a portion of u1’s enrolled students, this goes to 0

monotonically as n increases.

Thus, as n increases, there is a set of (high) quality students, of which a deviating

university university gains a smaller share. There is a second set of (middle) quality students

which, since the threshold of the non-deviating universities is decreasing in n, a deviating

university previously enrolled with probability 1 but is now competing for as n increases,

and there is the set of (low) quality students which a deviating university continues to enroll

with probability 1. Since the deviating university loses the potion of its utility coming from

high quality students as n increases, the US equilibrium becomes easier to support.

We now find the necessary and sufficient condition for existence of the US equilibrium as

n → ∞. We know that a disaggregating university admits all students above quality 1 − q
and tn → 1 − q as n → ∞. An important piece of the puzzle is the limiting utility of the

disaggregating university. WLOG assume that u1 disaggregates. To find this, we consider

the proportion of students enrolling in u1 that are not admitted to any other university. This

quantity is:

lim
n→∞

tn − (1− q)
q
n

= lim
n→∞

n− n− 1

1− [1− (1− α)b]n 1
n

= lim
n→∞

n− n+ 1 = 1
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The second equality comes from substituting in the value for tn in Equation 4 of Section

3.1. This means that in the limit, the disaggregated university fills none of its seats with

students who are admitted to the other universities. Since tn → 1 − q as n → ∞, we

see that the average utility u1 receives from each student it enrolls approaches 1 − q (from

above). Therefore, plugging this average utility into the right hand side of the derivation

from Proposition 1, the necessary condition is:

1

q

1̂

1−q

[αv + (1− α)δ(v)] dv > 1− q (28)

Rearranging yields the desired result.

To derive the condition on δ that ensures that increasing q improves utility in equilibrium

more than in deviation, take the derivative of both sides of Equation 4 in the main text.

Rearranging, this becomes:

δ(x) ≥ x((2− α− (1− (1− α)b)n)n− 1 + α(1− (1− α)b)n)− (n− 1)(1− (1− (1− α)b)n)

(1− α)(n− (1− (1− α)b)n)

and taking the limit as n → ∞ gives the desired results. Because university utility in

equilibrium and in the potential deviation both change continuously in parameters α and b,

if the condition holds and q is increased, then there is some ε such that if the US equilibrium

exists for {α, b} then it exists for {α− ε, b+ ε}.

�

Proof of Proposition 5:

For the effect of increasing δ(·), note that v̄ is (weakly) decreasing in δ(·), increasing the

left-hand side of the necessary and sufficient inequality for the existence of the English

equilibrium. For the US equilibrium, note that increasing δ(·) has no impact on the value

to deviating to disaggregating as it does not impact the threshold used by aggregating

universities nor does it enter the utility of the deviating university. Increasing δ(·) does

increase the equilibrium university utility, establishing the claim.

Increasing α decreases the left-hand side of the necessary and sufficient condition for the

English equilibrium. The result for the US equilibrium comes from Theorem 1; the right-

hand side of the necessary and sufficient condition for the US equilibrium for sufficiently large

n is decreasing in α. In slightly more detail, consider the condition for the US equilibrium
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(Inequality 4). On the left-hand side, the marginal effect of α is constant at
´ 1

1−q v− δ(v) dv.

On the right-hand side, α enters directly and in t−u1 . In both cases, the marginal impact

of increasing α goes to 0 (exponentially quickly). Thus, there exists an n large enough that

the derivative of the left-hand side w.r.t. α is larger than that of the right-hand side.

Increasing b increases the left-hand side of the necessary and sufficient inequality for

the existence of the English equilibrium. For the US equilibrium, increasing b increases

the threshold used by aggregating universities in the presence of a deviator and decreases

the probability that a student admitted to all universities will choose the disaggregating

university, both of which decrease the utility to disaggregating; increasing b has no effect on

the utility of universities in the US equilibrium. Moreover, note that b enters as (1−(1−α)b)n

in both the threshold and probability mentioned, so the effect of increasing b goes to 0

exponentially in n.

Decreasing c decreases the right-hand side of the necessary and sufficient inequality for

the existence of the English equilibrium.

�

Proof of Proposition 6:

US equilibrium

As in the definition of stochastic stability, assume that the US system is supported by an

equilibrium when the parameters are hn,0,0. By Theorem 1, the US system is supported by

an equilibrium for all parameters hn′,0,0 for n′ ≥ n and the utility of aggregating can be

compared to the utility of disaggregating given all other universities are aggregating and no

students resolve their preferences as in Inequality 28, with the inequality holding strictly by

the assumption of the definition of stochastic stability. Let ∆ be the difference between the

left and right hand sides of Inequality 28.

Our method is to show that for sufficiently large n, the corresponding comparison for the

market with small mistakes can be made arbitrarily close to the inequality for the market

with no mistakes by taking the mistakes sufficiently small. That is, we show that the limiting

value as n→∞ of aggregating when all other universities intend to aggregate and the value

to disaggregating when all other universities intend to aggregate can be made arbitrarily close

to the no mistakes case by choosing r and p sufficiently small. As we know the inequality

with no mistakes holds, so will the inequality for the market with mistakes.

As discussed in Lemma 2, all disaggregated universities make symmetric admissions deci-

sions and all aggregated universities make symmetric admissions decisions. From Equation 9
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we have the expected value (to an aggregated university) of a student of quality vs admitted

to m disaggregated universities and n−m aggregated universities.

Consider what happens when a portion µ of universities are disaggregated.53 By multi-

plying the expected value by n
n

and taking the limit as n goes to infinity, we can write the

limit of the expected value conditional on enrollment to an aggregated university of students

admitted only to their skill type at disaggregated universities as

EV [n,m,m, vs]→
(1− r)/(1− µ)

(1− r)/(1− µ) + r(1− α)/(1− µ) + rα
(αvs + (1− α)δ(vs)) (29)

+
r(1− α)/(1− µ)

(1− r)/(1− µ) + r(1− α)/(1− µ) + rα
δ(vs)

+
rα

(1− r)/(1− µ) + r(1− α)/(1− µ) + rα
vs

As discussed in Lemma 2, the expected value conditional on enrollment to an aggregated

university of students admitted to both colleges at disaggregated universities is

EV [n,m, 0, vs] = αvs + (1− α)δ(vs) (30)

The expected value for students admitted only to aggregated universities is (as always)

EV [n, 0, 0, vs] = αvs + (1− α)δ(vs) (31)

We are showing that we can implement the US system, so the only disaggregating universities

will be those making mistakes. By the law of large numbers, µ
prob→ p as n → ∞. Lemma 2

provides an algorithm mapping the expected value conditional on enrollment for each student

(here given by Equations 29-31) to the utility of each university. This mapping is continuous.

As Equation 29 is a continuous function of µ, the continuous mapping theorem states that

the utility of an aggregated university goes in probability to the output of algorithm provided

in Lemma 2 with µ = p in Equation 29 as n→∞.

By the definition of convergence in probability, we can make the probability that the

realized µ differs from p by more than ε′ arbitrarily small by choosing n large enough. We can

bound the worst payoff a university gets when the fraction of universities that disaggregate

differs by more than ε′ from p by 0. Likewise, by the continuity of the universities’ utilities in

µ, we can choose ε′ small enough that the difference between its value at p and its infimimum

over [p−ε′, p+ε′] can be made arbitrarily small. Thus, we can focus on the case of comparing

53We ignore integer constraints as we can bound all relevant calculations by dµ · ne and bµ · nc and the
difference between these bounds approaches 0 as n→∞.
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utilities to aggregation and disaggregation when a fraction p of universities disaggregate

because we can pick n large enough that a university’s expected value to aggregating or

disaggregating is arbitrarily close to the value when exactly p proportion of universities

disaggregate. Call the n needed for this difference to be no greater than ε for either the

aggregated or disaggregated utility n1(r, p, ε).

Using the algorithm from Lemma 2, we can make v2 (the quality such that the expected

value conditional on enrollment of a student admitted to all universities but only to the col-

lege of her skill type at disaggregated universities is equal to α(1− q) + (1−α)δ(1− q)) arbi-

trarily close to 1−q by taking (r, p) sufficiently small. We can do this because EV [n,m,m, vs]

is increasing in vs and limr→0+ limn→∞EV [n,m,m, vs] = limp→0+ limn→∞EV [n,m,m, vs] =

αvs + (1− α)δ(vs).

As in the proof of Theorem 1, we can make the portion of a disaggregated university’s

seats taken by unresolved students arbitrarily close to 0 by picking n sufficiently large. Using

the notation of the proofs of Lemma 2 and Proposition 6, we can thus get a disaggregated

university’s utility arbitrarily close to

r(1− δ−1(v3))

q

(
α

1 + δ−1(v3)

2
+ (1− α)Avg[δ, δ−1(v3), 1]

)
+

rα(δ−1(v3)− v2)

q

(
v2 + δ−1(v3)

2

)
+

q − r(1− δ−1(v3))− rα(δ−1(v3)− v2)

q

v3 + v2

2

where the first line is the utility coming from students admitted to both colleges at all disag-

gregated universities and to all aggregated universities, the second line is the utility coming

from resolved, consistent students admitted only to their skill type college at disaggregated

universities and to aggregated universities, and the third line is the utility coming from stu-

dents admitted only to their skill type college at disaggregated universities. Note that as

v3 ∈ [1−q, v2], v2 → 1−q implies v3 → 1−q. By first taking r sufficiently small (which both

sends v3 and v2 to 1 − q and reduces the contributions of the first two lines) and then by

taking n sufficiently large, we can make the utility to deviating to disaggregation arbitrarily

close to 1−q. Let the n large to ensure that the difference between the disaggregated univer-

sity’s utility and the approximation of that utility with it receiving only students admitted

to disaggregated universities is less than ε be n2(r, p, ε).

Likewise, we can approximate the value to aggregating by considering only students with

quality above v2. Again, as in the proof of Theorem 1, the fraction of unresolved students

with qualities greater than v2 that enroll in aggregated universities goes to 1 as n → ∞.
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Define n3(r, p, ε) to be the n large enough to ensure that the difference between the value of

admitting this set of students (who are also admitted to disaggregated universities) and their

value when all but the resolved, consistent students and the resolved, inconsistent students

with quality greater than δ−1(v3) are admitted only to aggregated universities is less than ε.

As discussed above, we can pick r and p sufficiently small so that v2 is arbitrarily close to

1− q. We can also make the contribution of resolved students to an aggregated university’s

utility arbitrarily small by taking r sufficiently small. Then, we can pick p small enough

that the utility contributed to aggregated universities by students with quality below v2 is

arbitrarily small. Combined, this means that we can first take (r, p) small and then n3(r, p, ε)

to make the difference between the LHS of Inequality 28 and the expected utility to choosing

to aggregate less than ε.

Finally, we can first pick (r∗, p∗) small enough that the two differences mentioned at the

end of the previous two paragraphs are both less than ∆
8

and pick

n(r∗, p∗) = max{n1(r∗, p∗,
∆

8
), n2(r∗, p∗,

∆

8
), n3(r∗, p∗,

∆

8
)}.

As a reminder, n1 ensures that the difference between the actual expected value and the

approximation assuming exactly p proportion of universities is small. n2 ensures that the

difference between the utility to disaggregating and the approximation of 1 − q is small.

n3 ensures that the difference between the utility to aggregating and the approximation of

admitting only unresolved students with quality above v2 is small. Thus, we can first take

(r∗, p∗) small and then take n large to ensure that the expected utilities to aggregating and

disaggregating are sufficiently close to the LHS and RHS of Inequality 28 to ensure that the

former is greater than the latter and that choosing to aggregate is optimal.

English equilibrium

We show that for any fixed p > 0, we can find an r sufficiently close to 0 such that the

English equilibrium does not hold for sufficiently large n, regardless of other parameters.

This then implies the proposition.

For contradiction, suppose that the English equilibrium is stochastically stable. This first

implies that all universities who do not make mistakes continue to choose to disaggregate, so

that the only aggregated universities are those universities making mistakes. The aggregating

universities have pq+o( 1
n
) seats to fill (where the o( 1

n
) term comes from the uncertainty over

the number of universities which make a mistake, the variance of which goes to 0 as n→∞
by the LLN). Sharing the logic of the proof of the stochastic stability of the US equilibrium,
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the mass of students who are uncertain about their preferred major and most prefer an

aggregating university is r − o( 1
n
) (where the o( 1

n
) comes from ωan,m in Lemma 2, such that

the probability that a student with unresolved preference uncertainty who is admitted to all

colleges will enroll in an aggregated university goes to 1 when m
n

is held fixed). The students

who learn their major preferences and are admitted to all colleges are equally likely to most

prefer any university, so a p+ o( 1
n
) fraction of them prefer an aggregated university over any

disaggregated university. From this, it follows that the aggregated universities fail to fill all

their seats with students of quality vs ≥ v̄ with probability converging to 1 in n if

(r + (1− r)p)(1− v̄) < pq (32)

Rearranging, this becomes

1 +
r − rp
p

<
q

1− v̄ (33)

For any fixed p, this inequality will hold for a sufficiently small r since the right hand side is

strictly greater than 1 and the left hand side approaches 1 as r → 0. Then the equilibrium

breaks down because each student with quality above v̄ can enroll in an aggregated university

for which her expected utility draw is arbitrarily close to 1, meaning the benefit to learning

her major preferences goes to zero but the cost is fixed at c > 0, so no student will choose

to resolve.

�

A.2 Proofs of transfers results

We begin with a lemma underpinning our focus on the marginally unadmitted student in

large markets. The lemma states that as the number of universities increases, the contribu-

tions of all students to a university’s utility converges to the value the university would get

from the marginally unadmitted student.

We write Ru(vs, θs, f, d, σ−u, ps) to denote the (infinitesimal) expected equilibrium value

that student s gives to aggregated university u conditional on attending, net of expected

payment, where p reflects the vector of payments offered to s. Note that Ru implicitly

depends on n through its terms and in the calculation of the expected value.

From previous lemmas, we know that exactly students with quality greater than or equal

to 1− q are admitted to a university, meaning that the marginally unadmitted student has

quality 1− q and expected value Ru(1− q, θs, f, d, σ−u).
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Lemma 4. Let S ′(ε) = {s|R(vs, θs, f, d, σ−u, ps) > Ru(1− q, θs, f, d, σ−u, ps) + ε}. In any

equilibrium in which all universities play the same pre-match action and for any ε > 0 and

γ > 0, there exists N∗ such that for all n > N∗,

|S ′(ε)| < γ.

Proof:

Suppose not. Clearly, no positive measure of students with vs ≥ 1−q providesR(vs, θs, r, d, σ−u, ps) <

Ru(1 − q, θs, r, d, σ−u, σ) since each such student would then be valued below replacement

level. Therefore, no student with vs < 1 − q + ε is a member of S ′(ε). Consider any

university which admits students with quality vs < 1 − q + ε in the proposed equilib-

rium. Fix λ < ε. Instead, this university make payments to some s ∈ S ′(ε) such that

R(vs, θs, r, d, σ−u, ps) > Ru(1 − q, θs, r, d, σ−u, ps) − ε + λ, and withhold admissions offers

from some students with qualities vs < 1− q + ε. Note that, similarly to Proposition 2 this

university will enroll at least γ + 1
n
(1− γn) of such students, yielding a profitable deviation.

Since the capacity of each university is q
n
, the university can fill an arbitrarily large portion

of its seats through this method. Contradiction.

�

We pin down the limit of the payments used by universities as n grows in the following

proof by using this lemma to know that the value from each student approaches the value

of the marginally unadmitted student.

Proof of Proposition 7:

English equilibrium

Consider the on-path payments discussed in the text:

p∗u(vs, θs, xm) =

vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

To show that students resolve uncertainty if and only if

(1− v̄)(1− α) (b− E [min {b, vs − δ(vs)} |vs ≥ v̄]) ≥ c
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we follow the same logic of Proposition 2 and note that the benefit to a student s (with

vs ≥ v̄) by studying her preferred major when she is inconsistent is b − (pns (vs, θs, xm =

θs)− pns (vs, θs, xm 6= θs)) as she loses pns (vs, θs, xm = θs)− pns (vs, θs, xm 6= θs) in transfers by

doing so. When b < pns (vs, θs, xm = θs)− pns (vs, θs, xm 6= θs), s will be “bribed” to study her

skill-type major θs, and so she derives no value from resolving her preferences over majors.

Therefore, the expected benefit she receives from resolving her uncertainty over majors

before enrolling in university is b−E[min {b, pns (vs, θs, xm = θs)− pns (vs, θs, xm 6= θs)} |vs ≥ v̄].

Noting that pns (vs, θs, xm = θs)−pns (vs, θs, xm 6= θs) = vs−δ(vs) verifies the desired condition.

Also note that no alternative payment scheme can weaken this condition. Lemma 4

implies that for all u and almost all s

pns (vs, θs, xm)→

vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

Therefore, any payment scheme will fail to give students the incentive to resolve their

major uncertainty if (1− v̄)(1− α) (b− E [min {b, vs − δ(vs)} |vs ≥ v̄]) < c.

It remains only to pin down equilibrium strategies following any history such that a single

university switches to aggregation, and show that the deviator is worse off. We show this

for two exhaustive cases. To do so, we define vb := b+ 1− q, where as we discuss below, all

inconsistent students with qualities vs < vb will strictly prefer to study their preferred major

conditional on attending the lone aggregating university.

Case 1: vb ≥ v̄

We hypothesize that on the path of play following a lone aggregator, each disaggregated

college will set an application quality threshold of 1 − q. Under this hypothesis, let the

payments offered by disaggregated universities in any history following a lone aggregator,

pd(vs, θs, xm) satisfy

pd(vs, θs, xm) =

vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

which, for sufficiently large n, satisfies sequential rationality as discussed in the main text.

The lone aggregator selects TA ≤ v̄ and admits all students with qualities weakly greater

than TA(n) and makes payments pa(vs, θs, xm) to all admitted students satisfying
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pa(vs, θs, xm) =


vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

0 if xm 6= θs and vs < v̄

pa(vs, θs, xm) and TA < v̄ are sequentially rational; given pd(vs, θs, xm) and the assump-

tion that the admission threshold for disaggregated universities is 1 − q, the constrained

maximization argument given in the text pins down pa(vs, θs, xm) for all students s who

study their skill types, and those who study against their skill types but have vs ≥ v̄. A

0 payment to students s who study against their skill type and have vs < v̄ is also pinned

down as these students are below replacement level; the aggregator suffers a “loss” from

these students relative to the other students it enrolls, and so it will minimize payments to

avoid attracting them.

Since all students have learned their preferred majors before enrolling, all students s

satisfying one of the following conditions will select the same university, given the same

choice set, as she does following the path of play (in which all universities disaggregate):

• ρs = θs: such students receive the same payments from studying their preferred major,

and

• ρs 6= θs and vs ≥ v̄: such students receive the same payments from studying their

preferred major.

The lone aggregator is more popular among students s for whom ρs 6= θs and vs < v̄.

But note that each of these students gives the aggregated university a utility no greater than

1− q. Therefore, there is no incentive to deviate.

To complete the argument, we must show that our assumption that the admission thresh-

old of 1 − q for disaggregated universities satisfies sequential rationality following a history

where a single university aggregates. Because v̄ < vb, the payment pa(vs, θs, xm = θs) for any

s with vs < v̄ < vb is strictly smaller than b, which follows from pa(vs, θs, xm) = vs−(1−q) be-

ing strictly decreasing in vs. This implies that all inconsistent students with qualities vs ≤ v̄

who enroll in the aggregated university study their preferred major. As argued above, these

are the only students who are more likely to enroll in the deviating university compared to

on the path of play.

As n → ∞, TA(n) → v̄, that is, the aggregating university fills its (remaining) seats

disproportionately with students who have quality ≈ v̄ and are inconsistent. This follows by
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considering Equation 11 and sending n → ∞.54 By continuity of δ(·) these students yield

expected value converging in n to δ(v̄) = 1− q. Marginal students who are not admitted to

any college or university have quality 1−q, and therefore yield expected value α(1−q)+(1−
α)δ(1−q) to the aggregating university. Because δ(1−q) < 1−q, the aggregating university

has no incentive to enroll the marginal students. Therefore, it must admit all students with

quality weakly exceeding a cutoff TA(n).

Case 2: v̄ > vb

Let N1 be the smallest n such that the constraint in Equation 6 binds, that is, N1 =⌈
1− 1

2(1−q)

⌉
. We partition universities into three groups: the lone aggregated university, N1

disaggregated universities, and all remaining disaggregated universities. We call these sets

A,D1, and D2, respectively.

We hypothesize that on the path of play following a lone aggregator, the lone aggregator

A admits all students with vs ≥ TA, where TA solves

q

n
=

1− v̄
n

+
v̄ − TA
N1 + 1

(34)

and offers the following transfers to all admitted students

pA(vs, θs, xm) =


vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

0 if xm 6= θs and vs < v̄

All N1 universities in the second partition element u ∈ D1 admit all students s with

vs ≥ v̄ to both colleges, and all students s with vs ∈ [TA, v̄) to her skill type college only,

and offer the following transfers to all admitted students

pD1(vs, θs, xm) =

vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

All n − N1 − 1 universities u ∈ D2 admit all students s with vs ≥ v̄ to both colleges,

and all students s with vs ∈ [1 − q, TA) to her skill type college only, ad offer the following

transfers to all admitted students

54The exact condition replaces b with b− (vs − (1− q)) in Equation 11 to account for payments students
receive at disaggregating universities for studying their skill types. Because b − (vs − (1 − q)) > 0 for all
vs ≤ v̄ by assumption, the limit of TA(n) as n→∞ is v̄.
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pD2(vs, θs, xm) =

vs − (1− q) if xm = θs

δ(vs)− (1− q) if xm 6= θs and vs ≥ v̄

We note several important points. First, for sufficiently large n it must be that TA > vb.

This follows from Equation 34 because 1− v̄ and N1 do not grow in n. Second, all colleges

fill all of their seats according to the proposed equilibrium strategies. All colleges fill 1 − v̄
fraction of their seats with students of quality vs ≥ v̄. TA is defined to fill the remaining

seats of all (colleges of) universities u ∈ {A} ∪ D1, and by the condition that there are q

total measure of seats in the market, there are precisely the measure of students s with

quality vs ∈ [1− q, TA) to fill remaining seats at (colleges of) universities u ∈ D3. Third, for

n ≥ 2(N1 + 1), |D3| ≥ N1 + 1, that is, the constraint on payments in Equation 6 binds for

all universities u ∈ D3 (since there are strictly more than N1 of them) and for universities

u ∈ {A}∪D1 since |{A}∪D1| > N1 and all such universities admit the same set of students.

Fourth, all universities receive utility of exactly 1 − q from each admitted student. This is

clear for all disaggregated universities. It is also true for the aggregated university because

of the fact that TA > vb for sufficiently large n; all students s admitted to the aggregating

university with vs ∈ [TA, v̄) are bribed to study their skill types.

The notes above show, in conjunction with our argument in the text of what actions are

specified on-path in the English equilibrium, that these actions satisfy sequential rationality:

there is not an alternative payment scheme, admitting any subset of students with qualities

vs ≥ 1−q, that can make any university better off. Since each university receives utility 1−q
from each admitted student, there is no unadmitted student with quality vs ≥ 1 − q who

is more attractive than any admitted student. But note that the utility of each university

following this deviation is no higher (it is the same) as the utility of each university on path.

Therefore, there is no incentive to deviate.

US equilibrium

By Lemma 4, on the path of play in the proposed equilibrium, the utility each university

receives from almost every admitted student converges to max{1 − q − b, α(1 − q) + (1 −
α)δ(1 − q)}, where the admitting university bribes the marginal student to study her skill

type by paying b contingent on her studying her skill type if and only if 1 − q − b > α(1 −
q) + (1− α)δ(1− q).

Now suppose university u is the lone disaggregator. To satisfy sequential rationality,

following this history for any n there must be some set Ŝ of students not admitted to any

of the aggregated universities such that |Ŝ| = q
n

and vs ≥ 1 − q − q
n

for all s ∈ S. Suppose
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the lone disaggregator admits all students s ∈ Ŝ under their skill type, and only students s

with vs ≥ δ−1(1− q − q
n
) to both colleges and offers payments

pdn(vs, θs, xm) =

vs − (1− q − q
n
) if xm = θs

δ(vs)− (1− q − q
n
) if xm 6= θs and vs ≥ v̄

All students admitted only to the disaggregated university will enroll. As n → ∞ this

implies that the disaggregated university fills all of its seats (since |Ŝ| = q
n
) and it receives

a limiting utility of at least 1 − q from each student it enrolls. Recall that each university

receives limiting utility max{1− q− b, α(1− q) + (1−α)δ(1− q)} < 1− q from each student

on the path of play in the proposed equilibrium. Therefore, there is a profitable deviation

to disaggregation.

�

We now provide a corollary to Lemma 4, which gives corresponding results when caps

are introduced. The proof is omitted.

Corollary 3.

• Suppose the US equilibrium exists with an unconditional transfer cap. Then the expected

utility from almost every admitted student must either converge to α(1−q)+(1−α)δ(1−
q) or the cap must bind regardless of which major is selected.

• Suppose the English equilibrium exists with unconditional transfer cap Tu. Then

p∗u(vs, θs, xm)→

max {T, vs − (1− q)} if xm = θs

max {T, δ(vs)− (1− q)} if xm 6= θs

• Suppose the US Equilibrium exists with a conditional transfer cap. Then the expected

utility from almost every admitted student must either converge to α(1 − q) + (1 −
α)δ(1− q) or the cap must bind if the student studies her skill type.

• Suppose the English equilibrium exists with conditional transfer cap Tc. Then p∗u(vs, θs, xm =

θs)→ max {T, vs − (1− q)} .

Proof of Theorem 2:

The first claim follows from the first point of Proposition 8. We prove the second claim only

for the US equilibrium, as the corresponding proof for the English equilibrium follows similar
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logic. Let T
′

= ε + max{b, T + 1−α
α
· b} for some small ε > 0. We first show that students

are ex-ante better off under a conditional cap T
′
c than an unconditional cap Tu. Note that

an uncertain student weakly prefers receiving a transfer of T
′

if she studies her skill type

to receiving a transfer of T regardless of the major she studies. By Corollary 3 students

for whom an unconditional cap Tu does not bind will be indifferent in equilibrium between

the two schemes, since the cap of T
′
will also not bind. Those for whom the unconditional

cap does bind (who recieve T regardless of major studied) will prefer the second scheme

since T
′ ≥ max{b, T + 1−α

α
· b}. Therefore, every student is ex-ante better off. To show that

universities are better off, note that since the US equilibrium exists, the average university

utility from each student is weakly greater than 1 − q by Proposition 7. Therefore, the

unconditional cap of Tu must bind for some positive measure of students ST . Therefore, as

b→ 0, T
′ → T + ε. As in Part 1. of this Theorem, the total additional payments under the

second scheme than the first is less that εq for sufficiently small b, while the benefit to the

universities is bounded below by (1 − α)
´
v∈ST vs − δ(vs)dv. Clearly for sufficiently small ε,

(1− α)
´
v∈ST vs − δ(vs)dv > εq which completes the proof.

�
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Appendix: For Online Publication

B Specifics of the university admissions market

B.1 Stylized Facts of Admissions Systems

We now list several key differences in the US and English college admission systems. Al-

though this list is by no means comprehensive, we believe that these are the key facts that

drive the differences we explore in this paper.

Stylized Fact 1. English universities are disaggregated while US universities are aggre-

gated.

That is, as discussed above, students applying to English universities apply directly to a

major and are required to study that major upon matriculation. In contrast, US universities

allow students to wait until their junior year to select a major.

Stylized Fact 2. Entering English university students are more certain about their pref-

erences over majors than US students.

While we have been unable to find a survey getting exactly at this question,55 we offer

the following statistics.

• Every year since 2005, English survey (NSS) results show that over 80% of students in

the final year of university are satisfied with their major. The most recent survey, in

2015, places this number at 85%.56

• US students

– Only 42% of Illinois students who took the ACT reported that they were very

sure about planned major (George-Jackson and Lichtenberger 2012).

– One major US university reports that 80% of its first year students are uncertain

about major.57

55Perhaps because the question of being happy with major choice does not seem relevant to surveyors
in either country - in England, since students must select a major upon application, it would be odd to
ask incoming students how uncertain they are over which major they are going to pursue; likewise, in the
US, since students are often free to switch majors throughout their college careers, it would be odd to ask
graduating students whether they would have liked to switch majors.

56http://www.hefce.ac.uk/lt/nss/results/2016/, 13 March 2017.
57https://dus.psu.edu/enrollment-dus, 13 March 2017.
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– When asked at the beginning of college education, students only place probability

.44 on graduating from the major they eventually receive a degree in (Stinebrick-

ner and Stinebrickner 2011).

– Arcidiancono et al. (2012) find “Over 30% of [Duke students] who switched majors

in their sophomore year did so in part because of their academic background.”

The first statistic illustrates that English students are, by and large, content with the decision

of major they made at application. The second set of statistics highlight that students in

the US have not spent the time and resources to precisely know their exact preferences over

majors.

Stylized Fact 3. English “high school” students specialize in a narrow area of study while

US students do not.

• English students have two years of subject specific study to prepare for A level college

entrance exams, often at a “sixth form college.” Admission is conditioned on the results

of 3 tests that correspond to the proposed program of study. The exams that must be

taken for each major are determined by the university.58

• US students applying to top universities have studied a broad range of subjects. Ad-

vanced Placement (AP) courses offered at high school culminate in national exams.

Students report results to colleges as parts of application, and are often awarded col-

lege credit for good performances on the exams. However, US students take many AP

courses and in many more areas. Nearly 60% of students take 4 or more exams, with

some students taking 9 or more exams (Espenshade et al. 2005).

Stylized Fact 4. English university students rarely switch majors and US students fre-

quently study a major other than their originally intended major.

• 40.5% of US students switch majors from their original intentions (Adelman 2004).

Deferring the selection of majors is of considerable value to students.59

• Only 7% of English students switch majors (Malamud 2010).

58For example, see http://www.ox.ac.uk/admissions/undergraduate/courses/entrance-requirements, ac-
cessed 13 March 2017.

59From Strange (2012): “I estimate that option value accounts for 14 percent of the total value of the
opportunity to attend college for the average high school graduate and is greatest for moderate-aptitude
students.” This claim that the option value of switching majors is highest for moderate-aptitude students is
supported in our theoretical model.
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B.2 Brief historical discussion

What follows is not meant to be a definitive historical account of the development of the

admissions programs in the United States and the England. Rather, it is meant to shed light

on the plausibility of the market structures we model and to provide the reader insight into

our understanding of the historical differences between the two systems.

Prior to the 1800s, the curricula of universities in the US and England were roughly

the same - both countries’ universities stressed a “classical education,” focusing on classical

languages (Latin and Greek) and theology. Over the course of the 19th century, however,

both systems faced shocks to demand and ideology. There was an increased desire for a more

practical education (driven, in part, by the advent of the Industrial Revolution, as discussed

in Moberley (2009)), as well as the new model of the modern research university pioneered

by Wilhelm von Humboldt in the University of Berlin (Ashby 2009). The universities of

the two countries differed in how they responded to these shocks, leading to the systems in

place today - the US system with more of an emphasis on breadth and general knowledge

versus the English system with an emphasis on earlier specialization. There are a multitude

of possible (and non-exclusive) explanations for this difference in response, some of which

we will discuss.

The transformation of US universities to the current major system can be ascribed to

Harvard and University of Virginia, with the president of Harvard, Charles Eliot, playing

a prominent role (much of the following is shaped by the discussion in Rothblatt (2009)

and Kerr (2009)). The conceptualization of the liberal arts in the US as a breadth of

knowledge directed by individual interests can be traced back to Thomas Jefferson, the

Enlightenment, and the Scottish university system.60 The University of Virginia, founded

by Jefferson, experimented with allowing students to choose their courses, the beginnings of

the “elective” system, though ultimately abandoned the system due to a lack of preparation

on the part of the students (Rothblatt 2009). Eliot, as president of Harvard and in light

of the declining importance of the university in American life, drew upon his experiences

with various European university systems, particularly the German system developed by

Wilhelm von Humboldt, and pushed to introduce electives at Harvard, eventually reaching

a point where almost all of a Harvard undergraduate’s courses were electives. As at the

University of Virginia, it eventually became apparent that students were lost in this new

world of complete academic freedom, due in part to the explosion in the number and variety

of classes that were offered once professors were allowed to design their own courses. As a

result, the system was slowly refined to become the major system of today (a mixture of

60A short introduction to the history of the Scottish system can be found in Walker (2009).
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elective and prescribed classes).61

Of course, it is imaginable that the completely free elective system could have been refined

to a more strictly specialized system. However, lack of specialization on the part of students

(Rothblatt (2009) discusses lax and different standards at US high schools) likely prevented

universities from effectively forcing students to focus their studies while remaining in com-

petition for the best students. The governance structure of universities and high schools did

little to change this dynamic. Government direction of universities was minimal following the

Supreme Court case of Dartmouth College v. Woodward (Rothblatt 2009). The leadership

of universities was usually delegated to a president elected by a Board of Trustees (and in

some cases, such as Eliot as Harvard, the president would sometimes then act on his own

judgment against the wishes of the Board). A president given autonomy in the direction of

the university and given the objective of maximizing the overall competitiveness of the school

(that is, to get the highest quality students), might well care less about perfectly satisfying

exact major-by-major quotas and override department concerns about the presence of lower

quality students switching into a major.62 There was no central organization certifying uni-

versities to issue degrees; instead US universities grouped into region associations to handle

such business. High schools were similarly decentralized, and remained relatively broad in

terms of educational content. So, US high school students largely did not closely investigate

potential majors, and universities competed to get the overall best of these students.

Compare this to England. As explained in Anderson (2009), the universities of England

were much more centralized, and the government maintained more control over higher edu-

cation in the 19th century. For example, state grants and royal charters were needed to issue

degrees. There was perceived competition between the England and Germany/Prussia. This

national competition led to the National Efficiency movement, the belief that English society

must organize itself to be as efficient as possible. It is easy to see why early specialization

would appeal to planners in such a mindset. In such a case, the English government would

favor students studying what they were good at rather than what they enjoyed most. Along

with this cultural leaning, the top tier of English high schools focused secondary education

on only a few topics. This system was underpinned by thinking such as that by Matthew

Arnold. As a result of his work and the discussion around it, England was able to culturally

“detach the idea of liberal education from its previous association with the classics: now

it could be embodied by any subject if taught in a ‘liberal’. This fitted in well with the

61For a much more detailed and thorough account of the evolution of the elective and major system in the
United States, interested readers are directed to Rudolph and Thelin (1991).

62Further discussion on the extent of the power of the president in United States universities can be found
in (Cohen and March 1986).
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specialized, single-subject degree and the research ideal...” (Anderson 2009). The internal

governance of English universities placed relatively more power with academic departments

than the US colleges did (Shattock 2002). These academics likely cared more about know-

ing with certainty that they would be receiving the best students in their program, and

ensuring that capacity constraints were respected across programs. Therefore, English uni-

versities had both the desire and an existing narrowly focused student body from which to

fill their seats. In line with our model, it is likely there was little cost to requiring student

specialization, and significant protection from adverse selection issues.

Nevertheless, governmental control over the English education system has since abated,

and universities may have a high degree of autonomy in setting admissions policies. The

Education and Reform Act of 1988 removed direct governmental control over secondary

schools, instead placing control of the curriculum in the hands of the school. The Further

and Higher Education Act of 1992 created the Higher Education Funding Council for Eng-

land (HEFCE), a quasi-autonomous non-governmental organization, to oversee funding for

English universities. The HEFCE provides a similar service as the National Science Foun-

dation and National Institutes of Health in the US, although it is worth noting that the

latter two are governmental organizations. Since 1993, admissions to English universities

have been managed by the Universities and College Admissions Service, a private organi-

zation (although its predecessors have existed since 1961).63 Perhaps the strongest piece

of evidence to support this claim, however, is that three English universities have recently

(or soon will) begin enrolling certain students in flexible degree programs; UCL, Kings, and

Exeter have announced experimental aggregated degree programs.64 Therefore, while the

legal landscape of education has remained generally unchanged in England for more than 20

years, secondary schools are still creating specialized students, and (almost all) universities

are still disaggregated. This suggests that while the English education system may have

been created and enforced through governmental control at its onset, it has remained the

same as the government has given up control because the system is in equilibrium.

63http://www.ucas.com/about-us/inside-ucas, 13 March 2017
64http://www.nytimes.com/2013/05/13/world/europe/in-britain-a-return-to-the-idea-of-the-liberal-

arts.html, 13 March 2017
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C Theoretical Appendix and Extensions of Model

C.1 Example of Market in which US and English Equilibria Exist

The following example gives parameter values for which both the US and English equilibria

exist for n = 2 universities. In light of Theorem 1, the following parameters support both

equilibria for any n ≥ 2.

Example 2. : There are two universities. Let α = 3
4
, b = 1

2
, q = 1

2
, δ(vs) = v2

s , and c = 3
100
.

We need to show that the utility of a university in the US equilibrium is higher than from

disaggregating and that the benefit to students from resolving uncertainty is greater than

the cost in the English equilibrium. From Proposition 1, the former boils down to showing

that

1

2

1̂

1
2

(
3

4
v +

1

4
v2

)
dv ≥ (1− (1− α) b)2

(
1

2

) 1̂

v

tu1

dv +

tu1ˆ

1−q

v dv

where tu1 = 1 −
1
2

2
(

1−
[
(1− 1

4
· 1
2)

2
( 1
2)
]) ≈ .589. Evaluating, the left hand side ≈ .17708 and the

right hand side ≈ .17636. Therefore, these parameters support the equilibrium.

From Proposition 2, the latter is equivalent to showing (1 − v̄)(1 − 3
4
)1

2
≥ 3

100
where

v̄ = δ−1(1
2
) =

√
1
2
≈ .707. Evaluating, the left hand side ≈ .037 so the inequality holds,

meaning that these parameters support the English equilibrium.

�

C.2 Example of Parameters with Mixed Aggregation Equilibrium

for Small n but not Large n

Example 3. : Consider the parameters b = 1/(1− α), q = 0.3, α = 0.5,65 c > 1, and66

65To fully comply with the assumptions in the paper, one can consider α = 0.5 + ε for ε close to 0 with no
lose.

66As in Example 1 one can consider absolutely continuous functions that in the limit approach the step
function given here. Step functions allow for clearer examples.
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δ(v) =


0 v ∈ [0, .7),

0.6 v ∈ [0.7, 0.8),

0.61 v ∈ [0.8, 0.9),

0.76 v ∈ [0.9, 1]

There exists n∗ > 0 such that for all n > n∗, the unique equilibrium implements the

US outcome but there is an n < n∗ for which both the US outcome is implemented as an

equilibrium and a mixed aggregation equilibrium exists.

The “small” n we will focus on is n = 3. For the “large” n, we will consider the limit

case as discussed in the proofs of Corollary 1, Theorem 1, and Proposition 6.

b = 1/(1−α) implies that no student admitted to an aggregated university would rather

attend a disaggregated university. Thus, the aggregated universities use a threshold of 0.8

when 1 university is disaggregated and the aggregated university uses a threshold of 0.9 when

2 universities are disaggregated.

c > 1 ensures students do not learn their preference types.

Using the notation of Proposition 4, we have

Ud
3,1 = 0.75, Ud

3,2 = 0.8, Ud
3,3 = 0.85

and (with slightly more calculations)

Ua
3,0 = 0.753333, Ua

3,1 = 0.7925, Ua
3,2 = 0.855

As Ud
3,1 < Ua

3,0, the US outcome is supported by an equilibrium. As Ud
3,2 > Ua

3,1 but

Ud
3,3 < Ua

3,2, so is the mixed aggregation equilibrium with 2 universities disaggregating.

However, as n→∞, the decision of any one university to aggregate or disaggregate has

a vanishing influence on the threshold used by the aggregated universities, so it suffices to

check that, for all t ∈ [0.7, 1],

1

t− 0.7

ˆ t

0.7

v dv ≥ 1

1− t

ˆ 1

t

αv + (1− α)δ(v) dv

It suffices to check at the jump points of δ, which is verified by the utilities given above along

with the facts that the left hand side limits to 0.7 as t→ 0.7 and the right hand side limits

to 0.88 as t→ 1.
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C.3 Yield management

One area that our model abstracts away from is the question of yield management. Due to

the imposed symmetry the student type distribution and colleges sizes, all universities set

equilibrium admissions cutoffs that do not depend on the field of study and skill type of the

student and are able to fill all seats at both colleges. However, without this symmetry, it

may be more difficult for universities to fill the desired proportion of seats across its colleges.

Here, we consider a minimal modification to our model which illustrates the strategic impacts

of asymmetry, and the effects asymmetry has on equilibrium efficiency and enrollment.

We modify our model to remove the symmetry between majors. That is, we assume

γ ≥ 1
2

measure of students have skill type M and 1− γ measure of students have skill type

L. The case in which γ = 1
2

reduces to our base model. As before, each college has equal

capacity, and there is a prohibitively large cost for over-enrollment.

The other change to our model is that aggregated universities observe the skill types of

students when making admissions decisions. That is, in the third stage of the game, each

aggregated university u also observes θs for each student s and selects an admissions function

au(d, vs, θs) ∈ {∅, {xM(s, u), xL(s, u)}}, which maps (d, vs, θs) to either no contract involving

s and u or both contracts involving s and u. Note that if we did not allow aggregated

universities to alter their admissions decisions according to skill type, the key findings below

would not be meaningfully altered. There are no other changes to the model.

Existence of equilibrium

We first show that γ > 1
2

does not make it easier (or harder) to support either the US or

English equilibria than in our base model. That is, as in the text of the paper, the set of

parameters that supports either equilibria does not shrink (grow) in the presence of this

asymmetry.

We begin with the US equilibrium and hypothesize that there is an outcome in which

each university fills all of its seats on path. We show that depending on parameters, it may

be easier or more difficult to sustain the US equilibrium. We later verify that our condition

for the existence of equilibrium does not conflict with the hypothesis that each university

fills all of its seats on path.

On path, each university u sets thresholds TMu and TLU and admits all students s with

θs = M iff vs ≥ TMu and admits all students s with θs = L iff vs ≥ TLu . Following the logic
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of Lemma 1, it will be the case that for all u, u′ ∈ N , TMu = TMu′ and TLu = TLu′ . Therefore,

we will refer to these values as TM and TL, respectively

As before, each student is consistent with probability α and each admitted student studies

her most-preferred major. The hypothesis that each university fills all of its seats implies

that

γα(1− TM) + (1− γ)(1− α)(1− TL) =
q

2

γ(1− α)(1− TM) + (1− γ)α(1− TL) =
q

2

where the first equation equates the measure of admitted M skill type students who are

consistent and the admitted L skill type students who are inconsistent to the measure of

seats at M colleges, and the second equation equates the measure of admitted M skill type

students who are inconsistent and the admitted L skill type students who are consistent to

the measure of seats at L colleges.

Solving these equations simultaneously yields

TM = 1− q

2γ
, TL = 1− q

2(1− γ)
(35)

From this it can be seen that TM ≥ 1 − q and TL ≤ 1 − q; the admission threshold is

higher for M skill type students than in the model without asymmetry and lower for L skill

type students.

Using these cutoffs, we see that each university receives utility

1

2q

1̂

TM

[αv + (1− α)δ(v)] dv +
1

2q

1̂

TL

[αv + (1− α)δ(v)] dv

on equilibrium path.

Now consider a lone disaggregating university u. Following the logic of Theorem 1, the

deviator fills a vanishing portion of its seats with students who are admitted to aggregated

universities as n → ∞. That is, the average quality of students enrolling in college Mu

converges to TM and the average quality of students enrolling in college Lu converges in n

to TL. Therefore, there exists n∗ such that the US equilibrium (with full enrollment) exists

if and only if

9



1

q

1̂

TM

[αv + (1− α)δ(v)] dv +
1

q

1̂

TL

[αv + (1− α)δ(v)] dv > TM + TL (36)

This condition is analogous to that in our base model, Inequality 28. Noting that TL <

1 − q < TM for γ > 1
2
, by inspection we can see that for the same parameter values it

can either be the case that Inequality 28 is satisfied but Inequality 36 is not, or vice versa.

Therefore, the US equilibrium is not always easier or harder to support in the presence of

asymmetry.

One assumption we have maintained throughout this asymmetry analysis is that all

colleges fill all of their seats on path. We now provide a necessary condition for this to be

true. For γ > 1
2

it must be the case that TM > TL.

To see this, suppose not. Then there is a larger measure of students studying L than M ,

which means either both colleges are underenrolled (which cannot occur in equilibrium, as

each university could admit additional students to improve its utility) or there are exactly q
2

students studying M and strictly fewer studying L. In the latter case, consider the following

deviation: one university u sets TMu = TM + ε and sets TLu = TL − β such that the M

college fills all of its seats. Compared to other universities, university u admits a εγ
n

smaller

measure of M skill type students, and a β(1 − γ) larger measure of L skill type students.

Each admitted student studies her skill type with probability α. Therefore, ε and β must

satisfy

εγ

n
α = β(1− γ)(1− α)

which yields β = ε
n

γ
1−γ

α
1−α . Note that under this deviation, β(1 − γ)α − εγ

n
(1 − α) > 0 L

skill type students are admitted. Because the marginal L skill type student has a weakly

higher expected value than the marginal M skill type student (under the assumption that

TM ≤ TL) for sufficiently small ε, this deviation strictly increases u’s utility. Contradiction.

Having now shown that TM > TL in equilibrium, we consider whether the full-enrollment

cutoffs in Equation 35 are satisfied in equilibrium. It must be the case that the M college is

filling all of its seats, otherwise a university could admit more M skill type students and (if

necessary) reject more L skill type students while increasing its utility, as in the preceding

argument. Therefore, the remaining case is one in which the L colleges are not full. Further,

it must be that TM ≤ 1− q
2γ

and TL ≥ 1− q
2(1−γ)

, the respective admissions full-enrollment

thresholds, because if TM > 1 − q
2γ

, the TL required to fill all seats in the M college will

overfill the L college.
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However, it is the case that TM > TL, so the marginal M skill type student has a higher

expected value than the marginal L skill type student. Consider TM = 1− q
2γ
−ε. Compared

to the full-enrollment thresholds, an extra αγε measure of M preference type students are

enrolled, and an extra (1 − α)γε measure of L preference type students are enrolled. To

balance out capacity in M colleges, it must be that TL = 1 − q
2(1−γ)

+ β where β solves

(1− α)(1− γ)β = αγε, that is

β =
αγ

(1− α)(1− γ)
ε

We claim that the American equilibrium will feature under enrollment if and only if

α(1− q
2γ

) + (1− α)δ(1− q
2γ

)

α(1− q
2(1−γ)

) + (1− α)δ(1− q
2(1−γ)

)
<

α

1− α (37)

To see this, let ε→ 0. Universities gain utility

γε

[
α(1− q

2γ
) + (1− α)δ(1− q

2γ
)

]
from marginally admitted M skill type students, and lose utility

β(1− γ)

[
α(1− q

2(1− γ)
) + (1− α)δ(1− q

2(1− γ)

]
from marginally unadmitted L skill type students. The larger is former than the latter if

Inequality 37 is satisfied, implying a profitable deviation. Note that we have not explicitly

calculated the admission thresholds for a single deviating university. To do so, we would

need to scale β up by a factor of n to account for the fact that students admitted to all

university will select the deviating university with probability 1
n
. As we are considering the

limiting case ε → 0, the arguments made here are unchanged as we are considering the

expected value of the marginal student.

If Inequality 37 is satisfied, it implies that universities maximize their utility with cutoffs

given in Equation 35. Note also that the difference between the expected value of the

marginally admitted M skill type student and the marginally admitted L skill type student

is maximized under the full enrollment thresholds. Therefore, if TM < 1− q
2γ

then universities

would be better off setting cutoffs of TM + ε and TL − β as defined above, for some small ε.

We summarize these findings in the following propositions.

Remark 1. There exists γ > 1
2

and other parameters such that the US outcome is supported

in equilibrium. Let γ > γ′ ≥ 1
2
. The set of other parameters that supports the US outcome
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is neither always larger or always smaller for γ than γ′.

Remark 2. Suppose the American equilibrium exists. Then all colleges fill all seats if and

only if Inequality 37 is satisfied.

We now consider the English equilibrium. On path, the admissions cutoffs for each college

need not be the same as in the US equilibrium; because students all study at their admitting

college, every college fills all of its seats when δ(·) is strictly increasing, as any college that

does not fill all of its seats can slightly decrease its admissions threshold and admit more

students without violating its capacity. In general, we know that TM > TL when γ > 1
2
.

If not then either M colleges do not fill all of their seats (in which case they can profitably

admit more students without violating capacity) or all colleges are overfilled (in which case

they can profitably reject students to remain under the capacity).

Moreover, TM > 1 − q > TL with at least one inequality strict when γ > 1
2
.To see this,

if TL ≥ 1− q then fewer than q measure of students are admitted to colleges, meaning that

either M colleges or L colleges have not filled their seats. If 1 − q ≥ TM then more than q

measure of students are admitted to colleges, meaning that either M colleges or L colleges

overfill their seats.

We show that the English outcome is neither easier nor harder to sustain in equilibrium

for γ > 1
2

compared to γ′ = 1
2

by way of two examples.

First, suppose that δ(v) = (1 − q)v for all v ∈ [0, 1]. Then when γ = 0, δ−1(1 − q) = 1,

that is, a zero measure of students can study against their skill type. For any c > 0 there is

therefore no English equilibrium. For any γ > 1
2

we have already argued that TM > 1− q >
TL. This means that no L skill type student will be able to study against her skill type (since

δ−1(TM) > δ−1(1− q) = 1, where the inequality follows from monotonicity of δ(·)), however,

some M skill type students with qualities sufficiently close to 1 will be admitted to the L

college. Therefore, each student will be willing to resolve her uncertainty over majors before

matching if and only if

γ(1− δ−1(TL))(1− α)b ≥ c

Note that this is analogous to the condition in the base model where γ = 1
2
, where the

multiplicative γ term arises because only M skill type students (of sufficiently high score)

are admitted to the college that does not match their skill type. Send c → 0. This does

not affect TM or TL on path, but for sufficiently low c this condition will hold, implying

existence of the English equilibrium.

Now suppose that q > 1
2
, and c ≤ (1−δ−1(1−q))(1−α)b, that is, the English equilibrium

exists when γ = 1
2
. Furthermore, δ(v) = 1− q for all v > 1− q, that is δ−1(t) = 1− q for all
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t > 1− q.67 When γ = 1
2
, this implies that all students admitted to any college are admitted

to all colleges, and will study their favorite major on equilibrium path.

With γ > 1
2

it must be the case that TM > 1 − q, if not then, TL < TM implies that

more than q students are admitted to colleges, implying at least one college is overenrolled.

Therefore, δ−1(TM) = 1. For sufficiently small γ it must be the case that TL > 1− q. To see

this, note that if TL ≤ 1−q then δ−1(TL) ≤ 1−q implying that all inconsistent M skill type

students admitted to M colleges are admitted to the L colleges. Therefore, γα(1−TM) = q
2
,

i.e.

TM = 1− q

2γα

This implies that TL solves

γ(1− α)(1− TM) + γ(TM − TL) + (1− γ)(1− TL) =
q

2

As γ → 1
2
, TM → 1 − q from above. Therefore, the first term converges to (1 − α) q

2
.

If TL ≤ 1 − q in the limit then the third term converges to q
2
. Therefore, L colleges enroll

strictly greater than q
2

measure of students, since (2 − α) q
2
> q

2
. Contradiction. Therefore,

it must be the case that TL > 1− q for sufficiently small γ.

Therefore, no student can study against her skill type, regardless of her quality. This

implies that for any c > 0, the English equilibrium does not exist (for sufficiently small

γ > 1
2
.

Remark 3. There exists γ > 1
2

and other parameters such that the English outcome is

supported in equilibrium. Let γ > γ′ ≥ 1
2
. The set of other parameters that supports the

English outcome is neither always larger or always smaller for γ than γ′.

We end this section by making a small note. An important finding in the results for the

English equilibrium are that students do not know their skill types before deciding whether

or not to resolve their uncertainty over majors. If students know their skill types before this

decision in our base model where γ = 1
2
, nothing changes as all colleges set a threshold of

1− q on path. However, with γ > 1
2
, students who know their skill type is L before deciding

to resolve their major uncertainty would be less inclined to do so than when γ = 1
2

because

TM ≥ 1− q. Therefore, if skill types are known ex-ante by students, the English equilibrium

67This example serves two purposes. It shows that when δ(·) is not strictly increasing, it need not be
the case that all colleges fill all of their seats in the English equilibrium. Second, it shows that the English
equilibrium may be unsustainable when γ > 1

2 but it is sustainable when γ = 1
2 . A very slight modification

to this example shows that the latter conclusion holds even when δ(·) is strictly increasing.
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becomes strictly harder to support as γ increases. However, this would also potentially create

equilibria in which only M students resolve major uncertainty on equilibrium path.

Welfare

In general, students no longer Pareto prefer the US equilibrium to the English one when

γ > 1
2
. This is because it is no longer the case that the same set of students are enroll at

universities. For example, when the US equilibrium involves the L college having seats open,

some students are better off in the English equilibrium as it results in all seats being filled.

Indeed, if the US equilibrium involves empty seats, then (assuming δ(·) is strictly increas-

ing so that all colleges fill all of their seats in the English equilibrium) students will ex-ante

prefer the English outcome to the US equilibrium for sufficiently small c.

Remark 4. If Inequality 37 is satisfied then there exists C > 0 such that for all c < C,

students ex-ante prefer the English equilibrium outcome to the US equilibrium outcome.

Robustness of symmetric model

This section has highlighted differences caused by asymmetry in the university admissions

game. There are few reasons to believe that the symmetry we assume is an exact depiction

of the strategic environment. Nevertheless, symmetry yields a cleaner model and illuminates

important strategic considerations in this game. We now show that such a modeling choice

may be justified; assuming the level of asymmetry is not large, the (expected) utility each

agent receives in our base model is approximately equal to that in the model with asymmetry.

As in the Proof of Lemma 1, let r be the proportion of students who have resolved

uncertainty, du ∈ {agg, disagg} represent whether university u has disaggregated or not,

and d represent the vector of such decisions for every university.

Remark 5. On equilibrium path given r and d, each agent’s expected utility is continuous

in γ.

This result holds by similar arguments as presented above: each disaggregated college

fills all of its seats, and each aggregated university fills all of its seats at the M college.

As γ → 0, the prohibitively large cost implies that admissions cutoffs for each college and

university converge to that under γ = 1
2
. This implies that given any r and d arising on

equilibrium path when γ = 1
2

such that 1) each prescribed has a strict incentive to follow

its prescribed aggregation action, and 2) each student has a strict incentive to follow her

prescribed resolution action, there exists 1
2
< Γ such that for all γ ∈

(
1
2
,Γ
)

the same outcome

is sustainable by an equilibrium.
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C.4 Additional Results with Monetary Transfers

We next consider the equilibrium effects of holding the cap level fixed, but changing from

a conditional cap to an unconditional one. Students are more likely to be bribed to study

their skill types with a conditional cap. Recalling that the English equilibrium can be

sustained if students are willing to pay the cost to resolve their uncertainty, it thus becomes

more difficult to maintain the English equilibrium with a conditional cap. On the other

hand, with a conditional transfer cap, universities in the US equilibrium are better off as

they no longer provide spillover payments to students who study against their skill types.

Therefore, it becomes easier to maintain the US equilibrium with a conditional cap than an

unconditional one.

Proposition 8.

1. In both the US and English equilibria, more students study their skill types with a

conditional cap of T than an unconditional cap of T.

2. The English equilibrium is easier to sustain with an unconditional cap of T than a

conditional cap of T.

3. The US equilibrium is easier to sustain with a conditional cap of T than an uncondi-

tional cap of T.

Proof of Proposition 8:

1. Inconsistent students will be bribed to study against their skill types when pu(vs, θs, xm =

θs) − pu(vs, θs, xm 6= θs) ≥ b. The fact that more students study their skill types with

a conditional transfer cap in the English equilibrium follows from point 2. In the US

equilibrium, it follows from Corollary 3 that pTcu (vs, θs, xm = θs) ≥ pTuu (vs, θs, xm = θs)

and by non-negativity of transfers 0 = pTcu (vs, θs, xm 6= θs) ≤ pTuu (vs, θs, xm 6= θs).

2. The set of parameters that support the English equilibrium is decreasing in pu(vs, θs, xm =

θs)−puvs, θs, xm 6= θs). Note that pTcu (vs, θs, xm 6= θs) = 0 by definition, and pTuu (vs, θs, xm =

θs) = pTcu (vs, θs, xm = θs) by Corollary 3. Therefore, pTcu (vs, θs, xm = θs)−pTcu (vs, θs, xm 6=
θs) ≥ pTuu (vs, θs, xm = θs)− pTuu (vs, θs, xm 6= θs) for all s with strict inequality for some

positive measure of students.

3. In the US equilibrium, by Corollary 3 universities make lower payments under a con-

ditional cap as they cannot pay students to study against their skill types, meaning
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that the cap binds more often. Therefore, with a conditional cap universities are made

better off. As universities must receive average utility of at least 1 − q from enrolled

students to support equilibrium (Proposition 7), the set of parameters that admits the

US equilibrium is larger under an unconditional cap than a conditional cap.

�

The following proposition discusses the effects of changing the dollar value of a transfer

cap. All of the comparative static results in this section are contingent on the (contin-

ued) existence of equilibria. With unconditional transfers, US university utility is (weakly)

decreasing in the level of the cap, because the transfer spill over effect results in higher equi-

librium payments. Payments increase in the level of the cap in the English equilibrium as

well. However, English universities may be able to profitably bribe more inconsistent stu-

dents to study their skill types making them better off. Switching to conditional transfers,

it is easy to see that a cap of 0 or b is optimal for universities in either equilibrium–a cap of

0 will lead to zero payments, while a cap of b is the cheapest cap that will allow universities

to bribe any sufficiently valuable inconsistent student to study her skill type.

Proposition 9.

1. In the English equilibrium with an unconditional transfer cap, university utility is non-

monotonic in the level of the cap.

2. In the US equilibrium with an unconditional transfer cap, university utility is non-

increasing in the level of the cap.

3. The university optimal conditional transfer cap in either equilibrium is either 0 or b.

4. Student utility is non-decreasing in the level of either type of cap in both the US and

English equilibria.

Proof of Proposition 9:

1. Suppose that δ(vs)−(1−q) < ε for vs ∈ [v̄, v
′
) and vs−(1−q) > b+ε for all vs > 1−q.

Suppose the transfer cap is initially T = b+1−q−ε and it changes to T
′
= b+1−q+ε.

Note that the total additional payments that each university must make is bounded

above by
´ 1

1−q 2εdv = 2εq, which occurs if the university has to pay every student 2ε

more in transfers. But note that with the higher cap universities are able to bribe all

students with vs ∈ [v̄, v
′
) to study their skill types since vs − δ(vs) > b, whereas they
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were not allowed to make sufficiently high payments under the lower cap to bribe these

students. Therefore, each university gains at least utility (1 − α)
´ v′
v̄
vs − δ(vs)dv >

(1−α)(v
′ − v̄)b when the cap increases by bribing inconsistent students to study their

skill types. Choosing ε < (1−α)(v
′−v̄)b

2
means that the benefit of increasing the cap

outweighs the cost, and for sufficiently small c, the English equilibrium will continue

to exist (see Proposition 7). On the other hand, it is easy to see that increasing the

cap can harm universities. Simply let b > 1, meaning that universities will never be

able to bribe students to study against their skill types. As a result, payments weakly

increase to all students as the cap increases, making universities no better off.

2. Again, suppose the unconditional transfer cap increases from T to T
′
. There are three

types of students to consider:

(a) Those for whom the cap of T did not bind, and the cap of T
′
does not bind. Then

the expected payments to these students is unchanged, and their major choice is

unchanged.

(b) Those for whom the cap of T binds, and the cap of T
′
does not bind. Then

expected payments rise. Since cap T binds, each of these students are worth

more than (1 − α)(1 − q) + (1 − α)δ(1 − q) to universities in equilibrium. Since

cap T
′

does not bind, it must be the case that these students are worth exactly

(1 − α)(1 − q) + (1 − α)δ(1 − q) to universities in equilibrium. Therefore, the

universities receive less utility from these students as T rises to T
′
.

(c) Those for whom the cap of T binds, and the cap of T
′
binds. Then clearly, pay-

ments increase. Since the cap binds, these students are paid T regardless of chosen

major under the first cap, and T
′
> T regardless of chosen major under the sec-

ond cap. In both cases, students study the same major, since the payments are

identical across majors, and the universities must pay more, and therefore, receive

less utility from these students.

These three cases are exhaustive, showing that universities cannot be made better off

in the US equilibrium when an unconditional cap increases.

3. Note that when a conditional transfer cap of b binds, students will study their skill

type in equilbrium. Therefore, for any cap T ≥ b if a university wishes to bribe a

student to study her skill type, she is able to do so. Clearly, utility is dropping as the

cap increases over b. Similarly, it is clear that the utility of universities is decreasing

17



over [0, b) as students cannot be bribed, but payments are increasing. Therefore, the

optimal cap for universities is either T = 0 or T = b.

4. Students receive larger transfers as the cap increases, and they are made better off,

including their choice of majors, by revealed preference.

�

English equilibrium with (potentially) negative transfers

We start by considering the universities’ strategies. Bertrand price competition will force

universities to require payments from students precisely equal to their outside option. Sup-

pose that an equilibrium exists where students with v ≥ t for some t ∈ (0, 1) are admitted

to all universities, though potentially only under their skill type major. What is the outside

option for a university considering deviating in this scenario?

One deviation is for the university to not compete for any student with v ≥ t and

instead to fill with students of quality v = t (marginally unadmitted students) who value the

deviating university at 1 and who are consistent. The deviating university can then charge

these students 1 + b. Through the combination of the payment and the direct utility from

the students, the deviating university gets 1 + b+ t.68

This payoff is each universities’ outside option, leading to the payment function:

−pu(vs, θs, xm) =

1 + b+ t− vs xm = θs

1 + b+ t− δ(vs) xm 6= θs

However, under this payment scheme, some students will not find it profitable to attend

university. Consider inconsistent students with v < min{δ−1(t), t+ b} ≡ k(t). If they study

their skill type, they receive utility at most 1 but pay 1+b+t−v > 1 (since v < t+b). If they

study their preference type, they receive utility at most 1 + b but pay 1 + b+ t− δ(v) > 1 + b

(since v < δ−1(t)). Regardless of which major they study, they pay more than the utility

they get from studying and so they will not attend.

But this means that fewer than 1− t students are enrolled at any university, so it cannot

be the case that t = 1− q, since then universities would be under-enrolled and would lower

their admissions threshold to fill. To determine the value of t, note that all students with

v ≥ k(t) enroll, while only consistent students with v ∈ [t, k(t)] enroll, so total enrollment is

68For a finite number of universities, each of strictly positive size, the deviating university would get some
payoff ε > 0 less than this, with ε→ 0 as n→∞.
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α(k(t)− t) + 1− k(t). The university-filling threshold is then the t that sets this value equal

to q. Such a t exists since, as t → 0, k(t) → 0, k(t) − t → 0, and k(t) is continuous (so we

can apply the intermediate value theorem).

To complete the English equilibrium, we need to ensure that students find it worthwhile

to resolve their uncertainty about their preference type. There are now two benefits to

knowing one’s preferences over majors. First, there is a benefit similar to the one in the

non-transfers case of being able to study your preference type when inconsistent. In the

transfers case, students will want to study their preference type when inconsistent whenever

v is such that v−δ(v) < b, though the gain in studying their preference is only b− (v−δ(v)).

Second, there is the benefit of knowing whether to attend university when your v is

sufficiently close to t. Assuming that students are risk neutral, an uninformed student

won’t attend university if she has low enough v since her expected payoff is negative (as her

expected payoff conditional on being consistent goes to 0 as v approaches t from above and

her expected payoff conditional on being inconsistent is strictly negative in the same case).

Moreover, there is a range of v below k(t) such that an uninformed student with quality

in this range receives positive expected utility and so applies, but ex-post realizes she is

inconsistent and regrets her decision. If she had been informed, she would have known not

to apply. Thus, the second benefit to becoming informed is composed of the two parts of

improving her payoff from 0 to 1 + b+ t− v when she is consistent and has v close to t and

of improving her payoff from a negative payoff to 0 when she is inconsistent and has v close

to k(t). Let the threshold at which the benefit switches from the one to the other (the point

at which the expected benefit to an uninformed student is precisely 0) be denoted q(t).

Combining these two types of benefits, one can write down the condition of the expected

increase in a student’s payoff from being informed and compare it to the cost c, to determine

values for which an English style equilibrium exists.

c <

ˆ 1

k(t)

max{0, b−(v−δ(v))} dv+

ˆ q(t)

t

α(v−t) dv+

ˆ k(t)

q(t)

(1−α) min{|v−b−t|, |δ(v)−t|} dv

To summarize, adding transfers changes the English equilibrium in the following ways.

The lower bound on the quality of students admitted decreases. Some students choose not

to attend college even though they could because they view the fees as too high. The extent

of this distortion increases with larger b, smaller α and smaller δ(·). The full description of

the equilibrium is given in the appendix.
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US equilibrium with (potentially) negative transfers

To begin looking for an equilibrium where universities aggregate (at least nominally, as

transfers can lead students to study against their preferences) and students do not learn

their preferences before applying, first note that students, at the point of applying and

accepting offers, cannot have their strategy depend on anything other their quality. So,

there will be no issue with the admission threshold as in the English-with-transfers case, and

the admission threshold will be 1− q.
Let us begin with the university side. Transfers will again be Bertrand competed down to

the universities’ outside option. What is this outside option in this case? As in the English

case, any university can stop competing for the top q students and instead focus on the

marginally unadmitted students. Should the deviating university disaggregate or aggregate

in admitting these students? If the deviating university disaggregates, it can only charge

the students 1 + αβ (for studying their skill type, and some sufficiently large amount to

studying against skill type to dissuade any such study) since the students do not know their

preferences and so assign only an α probability to their being consistent. If the deviating

university stays aggregated, it can then charge the students 1 + b for either major, though

it will suffer a 1− α percentage of the students studying against their skill type.

The deviating university will remain aggregated iff:

1 + b+ α(1− q) + (1− α)δ(1− q) > 1 + αb+ (1− q) ⇐⇒ b > (1− q)− δ(1− q)

Suppose first that this condition holds so that the deviating university will allow (in both

name and consequence69) students to study their preference, so then the outside option for

each university is 1 + b+ α(1− q) + (1− α)δ(1− q). One possible transfer scheme is then:

−pu(vs, θs, xm) =

1 + b+ α(1− q) + (1− α)δ(1− q)− vs xm = θs

1 + b+ α(1− q) + (1− α)δ(1− q)− δ(vs) xm 6= θs

One undesirable aspect of this transfer scheme is that some students will ex post regret

their decision to attend college.70 An alternate transfer scheme that avoids this ex post

regret is:

The transfer that universities will charge enrolling students are slightly more complicated

than in the English equilibrium case. Namely, for students of quality v such that v−δ(v) < b,

69That is, it won’t set a prohibitively high fee to studying against one’s skill type.
70Of course, even in the no transfers case, the English equilibrium features students who ex post regret

paying the cost to learn their preferences.
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the transfers will be:

p(xm, θ, v) =


1 + b+ (1− q)− v xm = θ and v − δ(v) < b

1 + b+ δ(1− q)− δ(v) xm 6= θ and v − δ(v) < b

1 + b+ α(1− q) + (1− α)δ(1− q)− vs xm = θs and v − δ(v) > b

∞ xm 6= θs and v − δ(v) > b

(38)

While not suffering from ex post regret, this transfer scheme can have issues with the

true reporting of vs, as a consistent student with vs such that vs − δ(vs) < b but for a small

ε, vs − ε − δ(vs − ε) > b could want to report her quality as vs − ε so as to pay a smaller

transfer.

However, when v − δ(v) > b, inconsistent students would (once they realized they were

inconsistent) prefer the discount in transfer of studying their skill type than the benefit b of

following their preferences. This would lead all students to choose to study their skill type

and for universities to earn “excess” profits from these students. Thus, it must be that for

these values of v, the payment decreases (discontinuously) so that:

When b < (1 − q) − δ(1 − q), the optimal deviation for a university is to fill with

marginally unadmitted students but to disaggregate and force them to study their skill type.

One transfer scheme that works in this case is:

−pu(vs, θs, xm) =

2 + αb− q − vs xm = θs

2 + αb− q − δ(vs) xm 6= θs

There is no advantage to students to knowing their preferences over majors early, so there

is no requirement on the student side for the US equilibrium with unrestricted transfers.

C.5 Matching Invariance

The model presented in the body of the paper relies on a decentralized matching procedure

to assign students to university-major pairs, and studies the resulting equilibria. This section

shows that replacing a the decentralized matching procedure with any “well-behaved” cen-

tralized matching mechanism, roughly one that matches a student more often to contracts

listed earlier in her preferences, does not change the set of equilibria of the game. This

robustness highlights the central premise of the paper–the strategic interactions before and

after matching can be important to study relative to the way the match itself it conducted.
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Let η be a measure over S induced by the assumed distributions with respect to
∑S, the

Borel σ−algebra of the standard topology over [0,1]. Let ∅ represent the student’s outside

option of being unmatched to any university. Let Y denote the set of ex-interim contracts,

that is Y = S × N × {M,L,A} where each ex-interim contract y is a triplet specifying

a student, a university, and either a major (M or L) or aggregation (A). An ex-interim

matching is a correspondence µ : S ∪N ⇒ Y such that:

1. For all s ∈ S, µ(s) = ∅ or µ(s) = y such that ys = s,

2. if µ(s) = y then y ∈ µ(u) for university yu and if y ∈ µ(u) then y = µ(s) for student

ys, and

3. If u is aggregated then µ(u) ⊆ {y|yu = u}, the set {ys|y ∈ µ(u)} is measurable,

η ({ys|y ∈ µ(u)}) ≤ q
n
, and yt = A for all y ∈ µ(u),

4. If u is disaggregated then µ(u) ⊆ {y|yu = u}, the sets {ys|y ∈ µ(u), yt = M} and

{ys|y ∈ µ(u), yt = L} are measurable, η ({ys|y ∈ µ(u), yt = M}}) ≤ q
2n
, η ({ys|y ∈ µ(u), yt = L}}) ≤

q
2n
.

LetM denote the set of all ex-interim matchings. In words, a matching is a correspondence

that 1. assigns a student to either her outside option or a single contract naming the student,

2. does not assign a contract to a student without assigning the same contract to a university,

and vice versa, 3. assigns an aggregated university to a set of contracts naming itself, the

measure of these contracts does not exceed the university’s capacity constraint, and each

contract comports with the aggregation decision 4. assigns a disaggregated university to a

set of contracts naming itself, the measure of these contracts does not exceed each college’s

capacity constraint. We refer to such contacts comporting with the aggregation decision of

the university as feasible.

The timing of a game with a centralized matching mechanism is similar to the main

model. First, Nature selects student types. Second, each university makes its aggregation

decision (without observing Nature’s selections). Third, each student makes her resolution

decision (without observing Nature’s selections or the aggregation decision of universities).

Fourth, each student submits an ordered list of preferences over contracts to a centralized

mechanism (each student s observes her preferences over universities ws(·), her skill type

θs. s observes her preference type ρs if and only if she has resolved her major preferences).

Fifth, the centralized mechanism uses an ex-interim matching mechanism to output an ex-

interim matching. We formalize this concept immediately after finishing our description of
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the timing. The final matching is given, as before by assigned students matched to aggre-

gated universities their preferred major at that universities, and students at disaggregated

universities study the major corresponding to the contract they are assigned.

Our equilibrium concept is pure-strategy PBE. As in the main paper, we remove equilibria

sustained by unrealistic off-path beliefs by assuming that each student has the same beliefs

at each information set in which she is called upon to report preferences to the centralized

mechanism.

To define an ex-interim matching mechanism, we begin with several preliminaries. Let

�= (�s)s∈S represent a vector of submitted linear orders in which �s represents student s ’s

complete, transitive, antisymmetric, and asymmetric report of preferences over Y (s) ∪ {∅}.
An ex-interim contract y ∈ Y (s) is reported to be acceptable to student s if y �s ∅. Let

Qr,d be a mapping from X × N to [0, 1], specifying the expected value of each contract to

each university, depending on the aggregation profile d, and the share of students resolving

their major uncertainty r.

An ex-interim matching mechanism is a function ϕ :� ∪Qr,d →M.

Definition 2. A mechanism ϕ is said to be well-behaved if it satisfies the following prop-

erties:

1. (Locally respects qualities) Let y1 and y2 be two feasible ex-interim contracts where

u = y1
u = y2

u, and let y1 have (weakly) higher expected value to university (or college)

u. If y1 is ranked no lower than y2 according to the submitted preferences, �y1s and

�y2s , then if ϕ assigns contract y2 in the matching, then student y1
s is matched to a

contract ranked weakly higher according to �y1s than contract y1,

2. (Individually rational) No student s is matched to an ex-interim contract that is not

reported to be acceptable, and

3. (Acceptant) Student s3 is never unmatched if there exists university u3 such that

η ({ys|y ∈ µ(u)}) < q
n

and there exists feasible contract y3 such that y3
u = u3, y3

s = s3

and y3 �s3 ∅.

Proposition 10. Let Qr,d denote expected values in an equilibrium of the university ad-

missions game with a decentralized match phase (as described in the main body). Then the

set of equilibrium outcomes of the university admissions game with a decentralized match

phase is the same as the set of equilibrium outcomes of the university admissions game with

a centralized, well-behaved matching mechanism ϕ and expected values specified by Qr,d.

23



Proof: We show that essentially unique equilibrium outcome (but for a zero measure

set of students who are indifferent between contracts) for the decentralized game is the same

as that with a well-behaved centralized mechanism, holding fixed the pre-match decisions of

universities and students. Since the pre-match actions of agents are not determined by the

matching protocol, this will complete the claim.

We say that student s envies ex-interim contract ȳ ∈ {y|ys = s} if ȳ offers strictly

higher expected utility than µ(s), where the expectation is taken at the time preferences are

submitted to the centralized mechanism (that is, it depends on the aggregation decisions of

universities and the student’s own resolution decision). We say that there is no justified envy

if no student s envies µ(s
′
) for any s

′
if there exists a contract with higher expected value

than µ(s
′
) at university µ(s

′
)u, y

∗ = (s, µ(s
′
)u, µ(s

′
)t),. In the decentralized matching model

there is no justified envy as otherwise student s would have been admitted to contract y∗ by

Lemma 1. In the centralized game, there can similarly be no justified envy because s could

have just submitted preferences �̃s listing y∗ as most preferred and ∅ as second, leading to

y∗ as the ex-interim matching due to the assumption that ϕ is well-behaved.

We now show that any equilibrium outcome of the decentralized game can be supported

by the centralized game. Suppose each matched student s reports �̂s in which she lists the

contract assigned in the decentralized game as her first choice and ∅ as her second choice,

and each unmatched student lists ∅ as her first choice. Since ϕ is well-behaved, ϕ yields the

same ex-interim matching as the decentralized game. Moreover, by the justified envyfreeness

property, no student can do better by deviating to any other preference submission. There-

fore, the equilibrium outcome of the decentralized game can be supported by the centralized

game.

We now show that any equilibrium outcome of the centralized game must also be an

equilibrium outcome of the decentralized game. Let µ be the equilibrium outcome of the

centralized game. It must be that each university and each disaggregated college fills all of

its seats by the acceptant property. In an abuse of notation, let k be an arbitrary aggregated

university or disaggregated college. Let S̄k := {s|x �s µ(s), x ∈ Xk}, that is, s̄ is the set

of students who prefer a contract at k to their assigned matching according to their true

preferences. By the equilibrium hypothesis, no student s ∈ S̄k can submit an alternative

preference list and be matched to k under the more-desired contract. Let v∗k be supremum

expected value for k of any student in S̄k. Our distribution assumptions imply that for any

ε > 0 there is a positive measure students of expected value (to k) v ∈ [v∗k, v ∗k +ε) who

are matched to k under their expected favorite contract. Therefore, the fact that ϕ locally

respects qualities implies that any student s with expected value at k weakly higher than v∗k
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weakly prefers their final matching to x where xs = s and xu = k. For each s let K be the

collection of all u such that s’s expected value at u weakly exceeds v∗k. Then in equilibrium,

each s must be matched to their favorite contract among those offered by K. As noted, each

k must fill all of its seats by the acceptant property. Therefore, each K has an admissions

threshold that fills all of its seats. By Lemma 2 there is a unique such threshold for each k

given Qr,d. Therefore, the centralized outcome must correspond to the decentralized one.

�

C.6 Alternative preference learning model

We study a different model of student preferences for majors and how they learn these

preferences. Whereas in our main model, students get a utility benefit of b from one of the

two majors (and no utility benefit from the other) and are able to pay a cost c to learn which

major this is, here we consider a model of learning that we believe is more realistic but gives

qualitatively similar results to our main model. Specifically, assume that the utility boosts to

a student from the two majors are random variables. The benefit from to the student’s utility

from studying her skill type is bs ∼ F and the benefit to the student’s utility from studying

against her skill type is b−s ∼ G, for some distributions F and G, where we will assume that

F first order stochastically dominates G (to capture the idea that a student is more likely

to like what she is good at). When a student chooses to specialize in a certain subject, she

learns the realization of the utility benefit for that subject (and that subject only). Then,

when making the decision of which major to apply under, she knows the realization of the

utility benefit of her specialized subject and the distribution of the utility benefit from the

other subject.

While this formulation has a nice real-world interpretation (namely, that a student in

England who specializes in math in high school learns whether or not she likes math and

not the degree to which she might or might not like literature), the mathematical analysis

of it becomes significantly messier. To start, it is not even clear that she will choose to

specialize in her skill type in high school.71 To gain some tractability, we will specialize to

the case of G being a uniform [0, 1] variable and F a uniform [0, α] variable, for α > 1 (where

71This raises an interesting question in probability: Under what conditions on the distributions F and
G does E[max{bs, E[b−s]}] > E[max{E[bs], b−s}]? The inequality corresponds to the choice of a student
of high quality who, under the English equilibrium, can choose which major to study, and so will choose
the major associated with the higher of the realized utility benefit and the expectation of the unspecialized
utility benefit, so that when this inequality holds it will be in her interest to specialize in her skill type. This
is related to the multi-armed bandit problem, but we leave further consideration of this connection to later
work.

25



the naming of α is meant to suggest the relationship to the main model greater likelihood

for preferring one’s skill type). With these distributions, if students choose to specialize,

they will specialize in their skill type. We will also only consider the large market case for

simplicity of formulae.

In order to sustain the English equilibrium, students must receive an additive bonus κ

to their utility when they enroll in a disaggregated university. This reflects the additional

necessary year of schooling at aggregated universities due to broad curricula (especially in

the first two years before a major is selected). This is necessary because, unlike in the

standard model, students are never sure of their major preferences, and so they always

value aggregation. Without this assumption, a university could aggregate in the English

equilibrium and fill all of its seats with students arbitrarily close in quality to 1.

The analysis of the US equilibrium is omitted, as it is almost exactly the same as in

the main model, just with the exact formula specifying the likelihood of a student liking the

deviating university most changed slightly. Again, the US equilibrium exists with restrictions

on the parameter space. One can derive an expression similar to Proposition 1, but with “α”

now equal to the ex ante probability that bs > b−s, which is equal to α − 1
2

in our current

context.

Proposition 11. In the large market, the US equilibrium exists when κ ≤ E[max{bs, b−s}]−
E[bs] and

´ 1

1−q δ(v) dv > q − q2
(

5
4
−α

2
3
2
−α

)
.

Now we turn to the analysis of the English equilibrium. For ease of notation, let b̂s = E[bs]

and b̂−s = E[b−s].

Then, for a student with quality above δ−1(1−q) (call these “high quality”), the expected

contribution of her major to her utility is (taking into account that if she has a low draw for

her type major preference, she’ll apply to all universities under the other major):

E[max{bs, b̂−s}|bs] = b̂−s1bs<b̂−s + bs1bs≥b̂−s

and the expected contribution of her major to her utility at a deviating university is:

E[max{bs, b−s}|bs] =
1

2
+
b2

2

so that a high quality student gets a larger contribution from her major to her utility at

the deviating university if :

E[max{bs, b−s}|bs]− E[max{bs, b̂−s}|bs] ≥ κ
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Students will prefer specialization to non-specialization so long as the ex-ante benefits of

specialization outweigh the costs:

E[max{bs, b̂−s}|bs]− b̂s ≥ c

We now consider the perpective of a deviating university. If κ > 1
8
, then no high quality

student will find it beneficial to attend the deviating university, while for κ < 1
8
, students

with bs draws in the interval (
√

2κ, 1−
√

2κ). The utility to the deviating university is then:

ˆ 1−
√

2κ

√
2κ

((1− b)δ(1) + b)
1

1− 2
√
κ
db =

1

1− 2
√

2κ
(δ(1)(1− 2

√
2κ) +

1− δ(1)

2
(1− 2

√
2κ))

This simplifies to:

(δ(1) + 1)
1

2

If κ > 1
8

but κ < 1
2
, the university will fill up on students with quality between 1 − q

and δ−1(1 − q) (call these “low quality” students). These students don’t have the option

of switching to their non-type major at the non-deviating university, so they prefer the

deviating university if:

E[max{bs, b−s}|bs]− bs ≥ κ

Low quality students will switch if bs < 1−
√

2κ. The utility of the deviating university

is then:

ˆ 1−
√

2κ

0

((1− b)(1− q) + bδ−1(1− q)) 1

1−
√

2κ
db

=
1

1−
√

2c
((1− q)(1−

√
2c) +

δ−1(1− q)− (1− q)
2

(1− 2
√

2c+ 2c))

This “simplifies” to:

1

1−
√

2κ
(
1

2
(δ−1(1− q) + 1− q)−

√
2κδ−1(1− q) +

1

2
δ−1(1− q) + κ(δ−1(1− q)− 1 + q))

Under equilibrium, a university gets utility:
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1

4α
δ−1(1− q)2 − 1

2
(1− q)2 +

1

2
(1− 1

2α
) +

1

2α

ˆ 1

δ−1(1−q)
δ(v) dv

The English equilibrium will exist when the utility under equilibrium is higher than the

pertinent utility under deviation (where the pertinent utility is determined by the value

of κ). While these equations are far messier than in the main model, the basic intuition

is the same: the universities have a desire to disaggregate so as to ensure that students

study exactly the major they apply under, but they are tempted to deviate to aggregate and

become more attractive to students. In the main model, they become more attractive only to

students who will switch majors and this adverse selection makes the deviation undesirable.

Under this model, the university becomes more attractive to students who have a higher

likelihood to switch than the average student, but the adverse selection effect is attenuated

by the possibility that the student might discover that she strongly dislikes her non-skill type

major and so stays with her skill type major and by the possibility that very high quality

students (students with v = 1) might prefer the option value of finding out the values of the

benefit from both majors over committing to one of the majors, and so the university fills

up with very high quality students.

For completeness, we state the above as a proposition:

Proposition 12. The English equilibrium exists when the equilibrium utility of the univer-

sities is larger than the utility under deviation to disaggregating and when students find it

profitable to specialize given universities are all disaggregated.

C.7 Non-identical university preferences

Now suppose that universities have correlated, but non-identical preferences over students.

Let each university i receive a student specific shock, that is, each university i values student

s with quality vs as vs + εsi if s applies under her type, and δ(vs) + εsi if s applies against

her type, where εsi ∼ U(−γ, γ). These shocks are independently and identically distributed

across students and universities. Throughout, we will maintain certain interior assumptions,

namely that 1− q − γ > 0 and δ−1(1− q + γ) + 2γ < 1.

We first consider the US framework.

Proposition 13. As n→∞ the equilibrium threshold of each university t(n)→ 1− q+ γ.

Proof of Proposition 13: We first show that as n→∞, the proportion of students with

vs ≥ t(n) − γ who are admitted to at least 1 university converges to 1. Consider students

with vs ∈ (t(n) − γ, t(n) + γ). These are precisely the set of students who have a non-zero
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and non-unity probability of being admitted to any particular university. Break this interval

up into J equal and continuous sub-intervals. Define p(j) and θ(j) (here, θ is not referring to

the student’s type as discussed in the main body) such that every student with vs in the jth

sub-interval has a probability of admission to each university between p(j) and p(j) + θ(j).

The mass of these students who get admitted to even a single university is greater than

θ(j) − θ(j)(1 − p(j))n which converges to θ(j) as n → ∞. Now let J → ∞. Then the 2γ

mass of students with vs ∈ (t(n)− γ, t(n) + γ) who are admitted to at least one university is

no less than lim
J→∞

J∑
j=1

θ(j) = 2γ. Therefore, in the limit as n→∞, almost every student who

has positive probability of being admitted to a university attends a university. Therefore,

since the total mass of students who enroll in universities has to equal 1− q in equilibrium,

the limiting threshold t∗ must solve t∗ − γ = 1− q, which gives the desired result.

�

Proposition 14. As n→∞ the US equilibrium can be sustained under certain parameter

values.

Proof of Proposition 14:

The probability that exactly h other universities have admitted a student of quality u to

university 1 is:(
n− 1

h

)
(
1

2
+

1

2γ
(u− t)− 1

8γ2
(u− t)2)h(

1

2
− 1

2γ
(u− t) +

1

8γ2
(u− t)2)n−1−h

So, the solution to the question of threshold in the equilibrium is the t solving:

ˆ t+2γ

t

n−1∑
h=0

1

h+ 1

(
n− 1

h

)
(
1

2
+

1

2γ
(u−t)− 1

8γ2
(u−t)2)h(

1

2
− 1

2γ
(u−t)+

1

8γ2
(u−t)2)n−1−h du =

q − 1 + t+ 2γ

n

Let the solution be denoted t∗. Then, in equilibrium, university 1 expects to get utility

(normalized by q
n
):

n

q

ˆ t∗+2γ

t∗
αu+ (1− α)

ˆ γ

−γ
δ(u− ε) dε

n−1∑
h=0

1

h+ 1

(
n− 1

h

)
(
1

2
+

1

2γ
(u− t∗)− 1

8γ2
(u− t∗)2)h
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·(1

2
− 1

2γ
(u− t∗) +

1

8γ2
(u− t∗)2)n−1−h du

+
1

q

ˆ 1+γ

1−γ
(− u

2γ
+

1

2
+

1

2γ
)(αu+(1−α)

ˆ γ

−γ
δ(u−ε) dε) du+

1

q

ˆ 1−γ

c∗+2γ

αu+(1−α)

ˆ γ

−γ
δ(u−ε) dε du

where we are using the fact that if u = v + ε, then v = u − ε, so that if the student

switches to the major against his type, the university gets δ(u− ε) + ε, and the expectation

of this over ε is
´ γ
−γ δ(u− ε) dε. Denote this utility by RA.

Now, let’s consider a deviation from the equilibrium. Assume u1 disaggregates. As before,

the probability that s prefers another university ui to u1 is given by 1−
[
(1− (1− α) b)n

(
1
n

)]
.

Since u1is now less desirable to students, it will have to have a lower threshold quality level

than the aggregated universities, who will in turn be able to have a (slightly) higher threshold

than they would have otherwise, so that, letting tu1(n) be u1’s threshold and t′(n) be the

threshold of one of the other (still) aggregating universities. Clearly, t′(n) is bounded above

and below by t(n) and t(n− 1), the thresholds in the proposed equilibrium. Since both t(n)

and t(n − 1) converge to 1 − q + γ as k → ∞,we see that t′(n) → 1 − q + γ. We will now

argue that tu1(n)→ 1− q+γ and u1 will, in the limit, get only students of quality 1− q+γ.

Consider a student of worth uu1 > 1− q + γ to u1. This means that there is an ε < γ such

that uu1 = vs + ε, there vs is this student’s underlying quality. The probability that this

student is admitted to another university ui is no less than the probability that the student

gets a shock at least as great as ε at ui, which is γ−ε
2γ

> 0. The number of other universities

the student can be expected to be admitted to is then γ−ε
2γ

(n− 1) = n′. Taking this n′ as the

n in the probability calculation that u1 would not be this student’s favorite choice gives the

result that the mass of students u1 is enrolling of quality greater than 1− q + γ is going to

0 exponentially fast, while the total mass of students university 1 is enrolling, q
n
, is going to

0 more slowly, so that as n→∞, u1 is admitting an arbitrarily large portion of its seats to

students of quality below 1− q + γ. Thus, u1 gets average utility of 1− q + γ in the limit.

The US equilibrium will exist when RA ≥ 1−q+γ. Note that this is similar to the case of

the no-shocks case, but assuming convexity of δ, then
´ γ
−γ δ(u+ ε) dε < δ(u), so that for the

equilibrium utility to be greater than the deviation utility, we require a stricter requirement

on δ (that it is closer to linear).

�

Next, we consider the English framework.
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Remark 6. Let t∗ be the limiting threshold in equilibrium. Then as n→∞ the probability

that a student with vs > β−1(t∗)− γ studies her favorite major converges to 1.

Proof of Remark 6

Consider an inconsistent student s of quality vs > δ−1(t∗)−γ. Let p(vs) > 0 be the limiting

probability that student s is admitted to a university when applying to her favorite major.

As n → ∞ the expected number of universities she is admitted to goes to p(vs) · n → ∞.
The probability that she likes one of these universities more under her favorite major than

any other university under her type is no greater than 1− bp(vs)·n → 1.

�

Proposition 15. As n → ∞ the English equilibrium can be sustained if and only if (1 −
v̄)(1− α)b > c.

Proof of Proposition 15

Given Proposition 6, we see that the proportion of students with vs > t∗ − γ that

are admitted to a university under their favorite major converges to 1 as n → ∞. As

in Proposition 13, we see that as n → ∞ the equilibrium threshold of each university

t(n) → 1 − q + γ. Define v̄ = δ−1(1 − q + γ). From Lemma 2 we know that as n → ∞
the proportion of students who enroll in a disaggregated university with vs < v̄ who are

inconsistent converges to 1. Since t(n)→ 1− q+ γ, in the limit, each of these students gives

a utility of 1 − q + γ to the aggregating university, which is less than what almost every

student enrolled would give the university under equilibrium, therefore, no university wishes

to deviate. The condition to satisfy equilibrium on the part of students is almost identical

to that found in Proposition 2. The one change is that we now require a strict inequality.

The reason for this is given by Proposition 6; for any n there is a non-zero probability

that a student s with vs > δ−1(t∗) − γ will be unable to obtain admission at a satisfactory

university under her favorite major. Therefore, this student will be worse off than had she

not resolved her uncertainty. However, since this probability is going to zero as n → ∞,
for any γ > 0 there exists Nγ such that for any n > Nγ,as long as (1 − v̄)(1 − α)b + γ ≥ c

every student will resolve her uncertainty at the beginning of the game. Therefore, so long

as (1− v̄)(1− α)b > c, the English equilibrium can be sustained in the limit as n→∞.

�

31



C.8 Interdependent preferences

Now suppose that universities gain more utility from happier students. In particular, we

model a “bonus” to the utility of a university if an enrolled student studies her favorite major.

The assumption here is that students who are more interested in their course of study are

more likely to be better students, are more likely to have significant career achievements, or

more likely to donate money to the university after graduating. Therefore, the universities

are incentivized to allow students to study their favorite major.

In terms of modeling, suppose that a university receives an additive component to their

utility from a student of quality v of β(v) > 0 if the student studies her favorite major (a

boost to the university). Furthermore, assume that β(v) is non-decreasing in v, so that the

university (weakly) prefers making its best students happier than its worst students.

Proposition 16. The US equilibrium is always easier to support with interdependent pref-

erences. As n → ∞ the US equilibrium can be sustained under a wider set of parameter

values.

Proof of Proposition 16 In the US equilibrium, every student enrolled at a university

gives that university the “boost” that comes from studying her favorite major. Therefore

the US equilibrium is easier to support with interdependent preferences as it is costlier for

a university to deviate, as they will necessarily forfeit the interdependency boost from some

mass of its enrolled students. Following Proposition 1, as n→∞ the US equilibrium can be

sustained if 1
q

1́

1−q
[αv + (1− α)δ(v) + β(v)] dv > 1− q + αβ(1− q).

�

Proposition 17. The English equilibrium is always harder to support with interdependent

preferences. As n → ∞ the English equilibrium can be sustained under certain parameter

values.

Proof of Proposition 17 In the English equilibrium, not every student enrolled at a

university gives that university the “boost” that comes from studying her favorite major.

Therefore the English equilibrium is harder to support with interdependent preferences as

it is less costly for a university to deviate, as they will necessarily gain the interdependency

from all of its enrolled students. Following Lemma 2, as n → ∞ the average utility from a

student with vs < v̄ converges to 1− q+ δ(1− q). Therefore, the English equilibrium can be

sustained if 1
q

v́̄

1−q
[v + αβ(v)] dv > 1− q + β(1− q) and (1− v̄)(1− α)b > c.

�
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C.9 Many majors

Thus far, the analysis has proceeded with the assumption that universities can only admit

students to one of two major programs. This section is devoted to enriching the model to

contain any finite number of majors, and show that the US and English equilibria are robust

to this extension in the large market. Suppose there are J majors at each university. Let

α = (α1, α2, . . . , αJ) be a probability distribution over the J majors such that:

• αj > 0 for all j ∈ J,

• αj 6= α` for all j 6= `,and

•
J∑
i=1

αi = 1.

Let each student be equally likely to be one of the J ! permutations of α. We denote a student

of permutation t with the distribution αt. Each student of type t has probability αtj of most

preferring major j. We write αmax = {αj : j is the largest element of αt} , and refer to a

student’s highest major j∗s = argmax
j

αtj. Assume that for each student s with quality vs and

highest major j∗s , a university who enrolls s gets utility vsif s studies j∗sand δ(vs) otherwise.

As before, student s’s preferences over contracts are separable in university and major, so

that for a given contract x ∈ X, the utility of s is given by U s(x) = ws(xu) + bs(xm). bs(·)
can take on two values, b(1) = b > 0 the utility from studying her ex-post desired major and

0 for any other major.72

US equilibrium

In the analysis before, it was straightforward to consider a university’s deviation from equi-

librium. Indeed, the only action that could be considered as a profitable deviation was

whether to aggregate or not. Now, however, even this decision is extremely complicated,

as there are a large number of ways in which a university can partition its J programs into

colleges.73 However, we show that in the limiting market as n → ∞ there is an optimal

72Although we have assumed that both students and universities have an “all or nothing” utility function
when it comes to major preferences, we make these assumptions without loss of generality. Since we are
considering a large market case of many universities, the specific formulation of the b(·) function does not
play into the final results. As for the δ(·) function, we note that this assumption gives us the strongest
restrictions to ensure the US equilibrium compared to other formulations, allowing, for example, a university
to strictly prefer a math student to study engineering over literature.

73The number of ways a university can partition its J majors is given by the J ’th Bell number BJ = 1
e

∞∑
i=0

iJ

i! .

To see how unmanageable this problem is, there are 21,147 ways to sort 10 majors into colleges at a single
university.
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deviation for any deviating university to full disaggregate, i.e. sort its J different programs

into J different colleges. Given this, we see that the condition for sustaining the US equi-

librium in Proposition 1is remarkably similar to the condition required to maintain the US

equilibrium with many majors.

Proposition 18. As n → ∞ with J majors at each university, it is an optimal deviation

from the US equilibrium for a university to sort its J programs into J colleges.

Proof of Proposition 18: We first note that any program at a disaggregated university is

ex-ante less popular to uncertain students than the same program at aggregated universities,

as students are not given the option of switching to any desired major once their uncertainty is

resolved. As before, student s always applies under major j∗s . This means that any university

that disaggregates gets students of quality 1− q in the limit as n→∞, that is, regardless of

the level of disaggregation, a deviating university will fill an arbitrarily large proportion of

its seats with students of quality just below 1− q. Now consider any level of disaggregation

besides full disaggregation. Then there is at least one college C with at least two majors in

it. By the assumption that αj > 0 for all j (each student has a positive probability of most

preferring any other major ex-post) a positive mass of these students who are admitted into

college C will switch majors away from j∗s . Therefore, these students will give a utility of

≈ δ(1 − q) < 1 − q, whereas each of these students would give the university a utility of

≈ 1−q if college C had been completely broken up. Similar logic applies to each non-singleton

college, proving the result.

�

Proposition 19. As n→∞ the US equilibrium can be sustained under certain parameter

values.

Proof of Proposition 19: The logic of Proposition 1 applies here. Indeed, we only need

to replace “α” with “αmax” to get the necessary and sufficient condition for maintaining

equilibrium, that is
1́

1−q
δ(v)dv > q − q2

(
1−αmax

2

1−αmax

)
.

�

English equilibrium

Universities are still able to deviate from equilibrium in many ways. However, since students

are certain of their preferences in the English equilibrium, as n → ∞ every non-singleton
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college will fill all of its seats with liars. Therefore, any non-singleton college will do strictly

better by fully breaking up. Applying this logic to the proof of Lemma 2 yields the following

result.

Proposition 20. As n→∞ the English equilibrium is sustainable if and only if (1− v̄)(1−
αmax)b > c.

C.10 Non-homogeneous sizes and popularities

The analysis thus far has focused on completely homogeneous universities. However, this

is not an entirely accurate view of real world college education–both the sizes and relative

popularities of universities vary. This section is devoted to enriching the model presented to

allow for universities of different sizes and different popularities, and to show that both US

and English equilibria can exist in this setting.

Suppose there are G different selectivity types of universities. Let τg ·q
n

be the mass of

seats at a university of type g, where τg represents the relative size of a type g university.

Let students draw utility for a university of type g uniformly from [0, jg]. To simplify

certain calculations, we assume that jg 6= jm for g 6= m. We rank the types such that

j1 < j2 < . . . < jG.

Letting Ag(n) represent the proportion of type g universities out of a total of n univer-

sities, we require ∀n Ag(n)

Am(n)
< A for all g and m and some finite A, requiring that every

type of university has a significant presence in the market, regardless of the total number of

universities present. We assume that n · ∑
g∈G

Ag(n) · τg ·q
n

= q for all n, so that there are always

q seats available for students in the market. We are again interested in the behavior and

equilibria of the university admission markets as n→∞. We assume Ag(n)→ Ag for some

Ag ∈ (0, 1) as n→∞.

US equilibrium

We show here that under certain conditions, the US equilibrium is sustainable in the large

market. We first show that, in equilibrium, the best students go to the “most selective”

type of university (type G universities), the second tier of students go to the second most

selective type of university, and so on. Let tg represent the limiting equilibrium threshold of

a type g university.

Lemma 5. As n→∞,

1. jm > jg if and only if tm > tg,
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2. A type g university will enroll an arbitrary large proportion of its students from those

of quality v ∈ [tg, tg+1], and

3. tg → 1− ∑
m≥g

Agτg.

Proof of Lemma 5:

1. To prove the first part of the proposition, it is easy to see that as n → ∞ the prob-

ability that a student prefers at least one of the more selective universities to all less

selective universities goes to 1. Therefore, if jm > jg and tm ≤ tg then either the

type g universities are filling an arbitrarily small proportion of their seats, or type m

universities are over filling.

2. This follows from the proof of 1.

3. The requirement that there is always a q mass of seats available for students tells us that

n ·∑
g∈G

Ag(n) · τg ·q
n

= q for all n. Rearranging yields
∑
g∈G

Ag(n) ·τg = 1 for all n. Therefore,

the limiting proportion of seats taken up by type g universities Ag ·τg∑
g∈G

Ag ·τg = Ag · τg. From

1. and 2. we know that type G universities enroll the top AG · τG students, the type

G − 1 students enroll the next AG−1 · τG−1 students and so on. This completes the

proof.

�

We now show that a more selective university’s deviation from equilibrium may force that

university to compete for lower tier students, but will also force students to study their type.

Therefore, equilibrium is sustainable if the difference between a student’s productivity under

different majors is small compared to the quality drop in students. Intuitively, it is easier

to support equilibrium in this environment, as a deviating university loses a competitive

edge against universities in its own class, but it may also be less competitive than lower-tier

universities as well.

Proposition 21. As n → ∞, the US equilibrium is sustainable under certain parameter

values.

Proof of Proposition 21: Suppose all universities aggregate except for u1 of type g.

As before, student s will prefer u1to some other university uj if wu1s ≥ w
uj
s + (1 − α)b.

Therefore, as n → ∞, u1 will not effectively be able to compete with any universities of
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type m with jm > jg − (1 − α)b. In other words, letting t̄g = max
m

tm
s.t. jg−(1−α)b>jm

, u1will fill

up its seats almost entirely with students of quality arbitrarily close to t̄g. Therefore, from

Lemma 5, the equilibrium sustaining condition becomes 1
Ag ·n

tg+1´
tg

[αv + (1− α)δ(v)] dv > t̄g
τg ·q
n

⇔
tg+1´
tg

[αv + (1− α)δ(v)] dv > Ag· t̄g
τg ·q for all g ∈ G.

�

English equilibrium

An initial guess may be that the English equilibrium will allow an aggregated university

to poach students from higher tier universities. However, as this section will prove, while

this university may be able to poach some of the less competitive students at higher tier

universities, it will only poach students who wish to study against their type. We will show

that these inconsistent students are not of sufficiently higher quality, and that by lying, are

worth less to the university than every student it would admit in equilibrium in the limit as

n→∞.
We note that the first part of Lemma 5 carries over to the English market. The second

and third parts, however, do not. To see this, let v̄g = δ−1(tg). Then the set of students that

a university of type g gets depends on how v̄g relates to tg+1. Moreover, it may also depend

on how tg relates to v̄g−1, v̄g−2, . . . , v̄1. However, we are able to make an analogous statement

to the second part of Lemma 5 for the English equilibrium:

Lemma 6. As n → ∞, a type g university in the English scheme will enroll an arbitrary

small proportion of its students from those of quality vs ≤ v̄g+1.

We now state the relevant proposition.

Proposition 22. As n→∞, the English equilibrium is sustainable under certain parameter

values.

Proof of Proposition 22: Consider a type g university u1 which decides to aggregate. Let

t
′
g(n) be the threshold for a university of type g if it is the lone aggregator, where t

′
g is the

limit of t
′
g(n). We first note that students with vs > v̄g find u1 no more attractive than under

equilibrium as they are always able to study their favorite major at u1. Therefore, they are

no more likely to attend under aggregation. Therefore, as in Proposition 2, t
′
g(n) ≤ v̄g for

all n. Now we consider three types of students with vs ∈ (t
′
g, v̄g):
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1. Students with vs ≥ tg+1 who are inconsistent,

2. Students with vs ≥ tg+1 who are consistent, and

3. Students with vs < tg+1.

Since type 1 students are still of sufficiently low quality (vs < v̄g) each of these students,

should they enroll in u1 will switch majors and give utility of less than tg to university u1.

Since almost every enrolling student gives utility strictly greater utility than tg, u1 is strictly

worse off from enrolling these type 1 students. By similar logic as Lemma 5, almost no type

2 students will enroll at u1 regardless of the aggregation decision. From Proposition 2, we see

that u1 is worse off from type 3 students by aggregating than it would had it disaggregated.

Therefore, no university wishes to aggregate.

We now consider the decisions of the students. As before, a student only benefits from

paying cost c to learn her preferred major if she actually prefers the major that is not her

type. However, only a subset of students in [0,1] are able to effectively take advantage of

this information. In the basic model, this was the set of students with vs > v̄. However,

this set is more complicated with heterogeneous universities. In particular, this set is now a

collection of intervals, not a single interval.

Suppose that there are two tiers of universities. A student with sufficiently high vs may

be able to study her favorite major at a top tier university, while a slightly weaker student

may be able to study at a top tier university, but only under his type. However, even if he

is able to study his favorite major at a tier two university, he may instead elect to study his

least favorite major at a top tier university if the top tier universities are sufficiently better

than the second tier universities. There could also be a third even weaker student who is

able to study her favorite major at a second tier university, but is not of sufficient quality to

be admitted to a top tier university under either major.

In this example, students 1 and 3 can benefit from paying the cost to learn their type,

while the student 2 cannot. To state the exact set of students which can benefit from learning

their preferred majors in equilibrium, we require some more notation. Let

fg =

tg+1 if jg < jg+1 − b
v̄g+1 otherwise

and let fG = 1. Define F =
⋃
g∈G

[v̄g, fg] .

We claim that a necessary condition for a student with quality vs to study the major that

is not her type in equilibrium (with probability approaching 1 as n→∞) is that vs ∈ F . To
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see this, recall that as n→∞ every student will find many universities in each tier for which

she draws utilities arbitrarily close to the upper bound of the tier in question. Therefore,

if jg < jg+1 − b then a student would rather (with probability approaching 1) study at her

favorite tier g + 1 university under either major than at any tier g university. Therefore,

students with vs ∈ [v̄g, tg+1] are the only students who enroll in a type g university with

non-vanishing probability and can benefit from paying the cost to discover their favorite

major. On the other hand if jg < jg+1 − b then a student would rather (with probability

approaching 1) study at her favorite tier g university under her favorite major than at any

tier g university under her least favorite major. Therefore from Lemma 6, students with

vs ∈ [v̄g, v̄g+1] are the only students who enroll in a type g university with non-vanishing

probability and can benefit from paying the cost to discover their favorite major. Taking the

union of all such intervals for the different tiers of universities yields the set F.

Let |F | = ∑
g∈G

fg− v̄g. Then the probability of a student being in region F is precisely |F |.
Therefore, analogously to the proof of Proposition 2, students will pay the cost to discover

their favorite major if c < |F |(1− α)b.

�

C.11 Markets without qualities and capacities

In certain markets, “students” do not have a quality that “universities” care about, and

“students” may not have ex-ante preferences about the “university” to which they match. For

example, sellers may not care (ex-ante) which buyers purchase their products, while buyers

are (ex-ante) indifferent about the seller from whom they purchase. We will present this

section using the language of sets of a unit mass of buyers B and n ≥ 2 sellers S = {s1, ..., sn}.
The set of contracts is X = B×S×{K,R} where each contract is a triplet specifying a buyer,

a seller, and whether the item is kept (K) or returned (R). For a given contract x, let xb be

the associated buyer, xs the associated seller, and xt the associated term. Furthermore, there

are no capacity constraints. (Equivalently, there are q > 1 mass of objects, and each seller

can sell as many of the q goods as demanded. The assumption that q > 1 is necessary to

ensure that there is some benefit to sellers for being “more popular” than their competitors.

If q ≤ 1 there would be a unique equilibrium in which all sellers disaggregate and still sell

all their objects.)

Each seller derives utility v > 0 from each non-returned sale, and δ < 0 < v from each

item which is sold and then returned. We normalize the value of an unsold item to 0. Each

seller can aggregate (accept returns) or disaggregate (sales are final).
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Each buyer b has a type ρb of either K or R. K type buyers are consistent and wish to

keep their purchase while R type buyers are inconsistent and only want the item for a short

period of time. For a contract x ∈ X, the utility of buyer xb is given by βb(xt) where βb(·)
can take on two values, βb(xt) = β > 0 if xt = ρb, and βb(xt) = −β otherwise. This means

that buyers are unwilling to purchase the good if they know they will not receive favorable

terms. Buyers resolve indifferences of to whom to match independently and uniformly at

random. Initially, all buyers know that with probability α ∈ (1
2
, 1) they are type K meaning

that they wish to keep the item. A buyer can pay cost c > 0 before matching with a seller

to learn her type ρb.

US equilibrium

As before, the US equilibrium features all sellers aggregating (allowing returns) and none of

the buyers learning their types (whether or not they want to keep the item). Note that since

q > 1 a deviating seller who disaggregates will fail to match with any buyers, and will receive

utility of 0. By remaining aggregated, a seller will receive expected utility of α · v+ (1−α)δ

from each item sold. Therefore, the US equilibrium exists if α · v + (1− α)δ > 0.

English equilibrium

As before, the English equilibrium features all sellers disaggregating (refusing to accept

returns) and all of the buyers learning their types (whether or not they want to keep the

item). Again, no seller wishes to aggregate because doing so would only make it more

attractive to buyers who wish to return their purchases. Since these buyers are worth less

than going unmatched, sellers never want to aggregate. On the other hand, buyers are willing

to pay the cost if doing so helps them avoid bad purchases often enough. Without paying

the cost, a buyer would buy a good since α > 1
2
, and her expected utility would be β(2α−1).

By paying the cost, the buyer will receive expected utility αβ since she will only buy the

good if she wishes to keep it. Therefore, a student will pay the cost to learn her type if and

only if c < b(1− α).

Stochastic stability

We also study stochastic stability in this special case of our model a la Proposition 6, as

we discuss in the main paper the example of return policies after internet retailers became

prevalent. The analysis of the stability of the US equilibrium is nearly unchanged. The

English equilibrium, however, is even less stable in this context. As long as there exists
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a single aggregated seller, buyers will no longer resolve uncertainty, as they are ex-ante

indifferent between vendors, and the single aggregated seller can service the whole market. In

other words, when there is a single aggregated seller of a product without capacity constraints

(an online shoe vendor can sell to the whole market as they can increase their own order

from the producer directly). Therefore, the English equilibrium cannot exist when there is

a high probability of even a single aggregated seller in any sized market.

This leads to an interesting observation. When there is even a single aggregated seller

(with high probability) no buyers will pay the cost to resolve uncertainty in equilibrium. For

non-generic parameters (when there is positive benefit to matching with buyers) there cannot

exist equilibria with some aggregated and some disaggregated buyers, as the disaggregated

buyers would match with none of the buyers. Therefore, the only possible equilibria of this

model is one in which all sellers aggregate or all sellers disaggregate. This implies that, when

the US and English equilibria exist, they are the unique equilibria.

Proposition 23. In markets without qualities and capacities, the US and English equilibria

are generically unique when they exist.

Equilibrium with monetary transfers

One perhaps unexpected result in the paper is that the US equilibrium cannot be sustained

in large markets with unbounded monetary transfers. Of course, in situations with buyers

and sellers, prices are often competitively set, and transfers can be thought of as the amount

of the surplus of sale returned to the buyer. We argue that the the US (and English)

equilibrium can be retained in the current setting of markets without qualities and capacity

constraints. In both the US and English schemes, a (Bertrand) zero profit condition pins

down the transfers that must be made. The English equilibrium can be sustained with

payments of v to each buyer. The US equilibrium can be sustained with a payment of v to

each buyer if she retains the good, and a payment of δ if she returns the good. Realistically,

the US transfer scheme requires a “restocking fee” (difference between transfers if item is

retained rather than returned) to sustain. Since δ < 0, this assumes that negative transfers

are allowed. If not, then the US equilibrium can be sustained with a transfer scheme of

tb =


α · v + (1− α)δ if the item is retained and α · v + (1− α)δ < 2β

v if the item is retained and α · v + (1− α)δ > 2β

0 otherwise

where the second case arises because buyers will be bribed to retain the item regardless
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of their preferences when the “restocking fee” is sufficiently high. Sellers will not deviate to

disaggregation as in the main model as doing so would lead to zero sales.
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