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Abstract 10 

Global food security is strongly determined by crop production. Climate change-induced losses to 11 

production can occur directly, or indirectly, including via the distributions and impacts of plant 12 

pathogens. However, the likely changes in pathogen pressure in relation to global crop production are 13 

poorly understood. Here we show that temperature-dependent infection risk, r(T), for 80 fungal and 14 

oomycete crop pathogens will track projected yield changes in 12 crops over the 21st Century. For 15 

most crops, both yields and r(T) are likely to increase at high latitudes. In contrast, while the tropics 16 

will see little or no productivity gains, r(T) is also likely to decline. In addition, the USA, Europe and 17 

China may experience major changes in pathogen assemblages. The benefits of yield gains may 18 

therefore be tempered by the increased burden of crop protection due to increased and unfamiliar 19 

pathogens. 20 
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Main text 22 

Plant pests and pathogens exert a major burden on crop production around the world 1. The burden 23 

can be measured directly in yield losses or indirectly in the social, environmental and economic costs 24 

of control 1. Like all species, crop pests and pathogens have particular tolerances to, or requirements 25 

for, particular environmental conditions 2. These tolerances define their ecological niche, which 26 

determines the geographical regions and periods of the year that allow pests and pathogens to 27 

proliferate and attack crops 2. As climate changes, suitable conditions for pest outbreaks shift in time 28 

and space, altering the threats that farmers face and the management regimes required for their control 29 
3. Modelling the pattern and process of future changes in pest and pathogen burdens is therefore a key 30 

component in maintaining future food security 4. 31 

Latitudinal range shifts of pests and pathogens are expected as the planet warms and populations track 32 

their preferred temperature zones 3. Spatial movements in geographical distributions and temporal 33 

shifts in phenologies of wild populations are among the clearest signs of anthropogenic global 34 

warming 5. Though distribution data for crop pests and pathogens are noisy and incomplete 4, similar 35 

changes have been detected for hundreds a species of pests and pathogens over recent decades 6. 36 

Increasing burdens of insect pests at high latitudes, and decreasing burdens at low latitudes, have been 37 

projected using ecological niche models (ENM) 7. ENMs attempt to reconstruct the environmental 38 

tolerances of species from contemporary climates within the observed species range using statistical 39 

models 8. Alternatively, species’ responses to microclimate can be directly measured, and these 40 

responses incorporated into physiologically-based models of species performance 9. Such mechanistic 41 

models are commonly used to project future crop yields 10, and models have also been developed for 42 

some plant diseases 11,12. However, we know little about how plant disease pressure is likely to change 43 

in future, nor how these changes will relate to crop yield responses to climate change.  44 

Infection and disease are determined by complex and species-specific interactions between various 45 

biotic and abiotic factors1. Temperature is a major determinant of disease risk 2,13 and global 46 

distributions of plant pathogens have shifted in line with historical global warming 6. Here, we analyse 47 

temperature response functions for host infection for a suite of fungal and oomycete plant pathogens. 48 

We model the likely global shifts in temperature-dependent infection risk for the 21st Century and 49 

compare climate-driven changes in this risk with projected changes in crop yields. 50 

Projected crop yield changes 51 

We compared current (2011-2030 mean) and future (2061-2080 mean) yields projections from three 52 

crop models (LPJmL, GEPIC, PEPIC) employing four GCMs (GFDL-ESM2M, HADGEM2-ES, 53 

IPSL-CM5A-LR, MIROC5) under the RCP6.0 representative concentration pathway. Carbon dioxide 54 
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fertilization effects were included, and we compared projections with and without irrigation. Crop 55 

models do not explicitly consider the impacts of pests, pathogens and weeds on production. The major 56 

commodity crops of maize, wheat, soybean and rice are considered in all three crop models. 57 

Crop models project greater yield increases at higher latitudes, with smaller increases or yield 58 

declines at low latitudes14,15 (Fig. S1-S4). Under the no irrigation scenario, GEPIC/PEPIC project 59 

substantial maize yield declines in Central and Latin America except for Argentina, and across Africa 60 

and northern Australia. LPJmL projects no such yield declines. Wheat yields also increase at high 61 

latitudes in all three crop models, with smaller increases at low latitudes in LPJmL and declines in 62 

GEPIC/PEPIC. North America and parts of Eurasia show the largest wheat yield increases, while 63 

GEPIC projects large declines in yield across the tropics. A similar latitudinal trend is projected for 64 

soybean but with little decline in the tropics. Soybean yield increases are projected across Eurasia in 65 

all models, and also Argentina and South Africa in GEPIC/PEPIC. The latitudinal gradient is less 66 

pronounced for rice, with the MIROC5 climate model suggesting a large increase in yield in the 67 

Southern hemisphere. 68 

Eight further temperate and tropical annual crops are considered in LPJmL. In the unirrigated 69 

scenario, cassava yields increase under all four GCMs within 40 ° of latitude, driven by large 70 

increases in India. However, all four GCMS suggest a smaller increase within 10 °N, caused by a 71 

yield decline in northern Brazil. Peanut, pea, rapeseed, sugarbeet, and sunflower show increases at all 72 

latitudes, with the largest increases at higher latitudes. Millet also shows increases at high latitudes, 73 

but yield declines at low latitudes. There are no consistent differences among the four GCMs for any 74 

of the crops. Results for sugarcane are more variable. Mean yield change projections suggest declines 75 

in Brazil and other Latin American countries, and in Southeast Asia, but an increase in the USA and 76 

in East Africa. Previous analyses based on the more extreme RCP 8.5 scenario similar yield increases 77 

with latitude latitudes, but more severe declines for some crops at low latitudes 15. 78 

Total projected crop production change is difficult to estimate because the spatial distributions of 79 

planted areas are impossible to predict, due to the influence of socioeconomic and cultural factors on 80 

planting choice. However, if production is calculated from projected yield changes on an estimate of 81 

current crop production, increases in production are expected for many crops (Fig. S5). Global wheat, 82 

cassava, rapeseed and sunflower production are predicted to increase by all models. LPJmL, and two 83 

climate models driving GEPIC/PEPIC, predict increases for rice. All models except HADGEM2-ES 84 

predict global soybean production increases (see Methods for analysis of soybean production). None 85 

of the crop models unequivocally project declines in production for any crop. In summary, crop 86 

models project global production increases driven primarily by yield increases at high latitudes, even 87 

without changes in cropping patterns to match shifts in areas likely to be most productive. 88 
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Projected changes in yield for full irrigation are qualitatively and quantitatively similar to those for no 89 

irrigation across latitudes (Fig. S6). PEPIC shows substantially greater yield increases in the southern 90 

hemisphere for several crops. In certain cases, yields decline more at lower latitudes with full 91 

irrigation than with no irrigation. This is because irrigation enables cultivation in otherwise-unsuitable 92 

land for these crops, in these models. In summary, both irrigated and unirrigated crop model 93 

projections suggest positive latitudinal shifts crop yields over the next half century 14,15. 94 

Projected infection risk changes 95 

Could these yield increases be offset by changing crop disease risk? Infection of plants by pathogens 96 

occurs at different rates dependent upon temperature, and each pathogen has a different optimum 97 

temperature at which infection of the host is most rapid 2. Infection rates are commonly estimated by 98 

quantifying the appearance of disease lesions on host plants under controlled conditions 16. We 99 

estimated relative temperature-dependent infection rates, r(T), of 80 fungal and oomycete plant 100 

pathogens, for which minimum (Tmin), optimum (Topt) and maximum (Tmax) infection temperatures 101 

were available in the literature 2 (Fig. 1, Table S1). These rates are relative (bound between zero and 102 

one) to enable comparison among pathogens. The rate is greatest, i.e. r(T) = 1, at Topt, and declines to 103 

zero as temperature decreases to Tmin or increases to Tmax. We chose to model infection temperature 104 

responses rather than the more commonly-measured growth in culture, because in planta responses 105 

differ substantially from in vitro responses 2. Essentially, the temperature range for infection is 106 

narrower, and optimum temperature lower, than for growth in culture. However, for two important 107 

pathogens, Magnaporthe oryzae (causing rice blast) and Zymoseptoria tritici (Septoria tritici blotch of 108 

wheat), infection temperatures were not available therefore we used lesion development and growth in 109 

culture temperatures, respectively. Optimum infection temperatures varied from 10.5 to 34.7 °C 110 

among species (median 21.9, IQR 19.6 - 25.0). As global temperatures rise (Fig. S7), infection risks 111 

(and distributions) of these pathogens should shift latitudinally 3. 112 

Defining pathogen species richness, Rr, as the number of pathogens with r(T) ³ 0.5 for their hosts in a 113 

particular location (Figs. S8, S9) at a particular time, we found that Rr decreases at low latitudes, and 114 

increases at high latitudes, by the end of the 21st Century under RCP 6.0 (Fig. 2a,b). Rr increases 115 

substantially in Europe and China, but declines in Brazil, sub-Saharan Africa, India and Southeast 116 

Asia. Rapid global dissemination by international trade and transport 17 means that pathogens are 117 

likely to reach all suitable areas that are not yet affected (Fig. S10). 118 

In our model Rr was projected to vary through the year, with the largest increases in North America, 119 

Europe and China during northern-Hemisphere autumn (Figs. 3, S11). Decreases in Rr are projected at 120 

low to mid latitudes in northern-Hemisphere winter, shifting northwards into higher latitudes during 121 

summer. India is expected to see large declines in Rr over much of the year, with increases in northern 122 
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parts of India only in winter. Under increasingly strong greenhouse gas emissions scenarios, the 123 

overall latitudinal patterns of Rr and resultant compositional change in both Hemispheres remain the 124 

same, but their amplitudes increase (Fig. 4). Rr declined at low latitudes and increased at high 125 

latitudes, while compositional changes peaks at around 10° and 30-40°. 126 

Future changes in pathogen r(T) follow changes in yield by latitude for the majority of crops (Fig. 5). 127 

The majority of rice pathogens in our sample show increased r(T) across all latitudes, with few 128 

showing a widespread decline in the tropics. While r(T) of several maize pathogens is expected to 129 

increase at low latitudes, the risk from many others will decline. Maize, millet and sugarcane are 130 

expected to undergo yield declines at low latitudes, but these will be accompanied by declines in r(T) 131 

from many of their pathogens. Soybean, sunflower and wheat show little yield gain in the tropics, 132 

while experiencing reduced r(T) from a number of pathogens. Conversely, both yields and r(T) 133 

increase strongly with latitude. Cassava r(T) generally increases near the equator. Overall, high 134 

latitudes will see increasing potential crop yields while simultaneously facing a larger r(T) by fungal 135 

and oomycete pathogens.  136 

We found significant direct spatial matching between future changes in r(T) and crop yields (Fig. 137 

S12). Correlations between future changes in crop yields and r(T) for maize, soybean, sunflower, and 138 

wheat exceeded 0.4. Although a weak negative correlation was calculated for cassava (r = -0.09), our 139 

analysis included far fewer pathogens for this crop, compared to other crops (Table S2). Future crop 140 

production, particularly for three major crops, will likely not only be affected directly by climate 141 

change, but also indirectly via shifts in plant pathogen distributions. 142 

Changing climate will affect not only the number of pathogens able to infect crops, but also the 143 

compositions of pathogen assemblages (Figs. 2cd). Overall, the largest changes in pathogen species 144 

composition will occur at high latitudes in the northern Hemisphere, particularly in Europe, China and 145 

central to eastern USA. Large changes are also expected in the Sahel, but this region, like much of 146 

Brazil, India and southeast Asia, will see declines in overall Rr. Hence, the change in pathogen 147 

assemblage in these areas is unlikely to pose a major threat to production. Europe, China and Peru are 148 

highlighted as regions where both overall burden and species turnover are greatest. These regions will 149 

therefore experience the greatest number of emerging, i.e. novel, pathogen pressure. Through the 150 

year, two pulses of pathogen assemblage change are seen at high latitude in the northern Hemisphere, 151 

first around April, second around September (Fig. 3). The largest changes in species composition are 152 

expected in Spring and Autumn in northern USA and Canada, Europe, and northern China (Figs. 3, 153 

S13). The largest changes in the Sahel are seen during April and May, while the largest changes in 154 

India are seen during May and June. 155 
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We compared our model predictions against current known pathogen distributions (Fig. S10, Table 156 

S3). Restricting predicted distributions by host distributions (EarthStat) improved overall model fit, 157 

reducing false positive rates (predicting pathogen presence in regions where the pathogen is currently 158 

not reported) and increasing true negative rates (predicting pathogen absence in regions where the 159 

pathogen is currently unreported). Like other species distributions models, we predicted areas of 160 

suitability and therefore potential distributions of species, and did not attempt to reconstruct observed 161 

distributions. Pathogens are spreading globally 17, observational records suffer from under-reporting 4 162 

and dispersal limitation prevents species from occupying all possible suitable environments 18. These 163 

factors all likely contributed to the high false positive rates (0.47, IQR 0.37 – 0.57) of our model. 164 

However, high false positives rates were more likely in countries with low per capita GDP (Fig. 165 

S10h), indicating an under-reporting bias in developing countries 4. Importantly, our model did not 166 

erroneously confine potential pathogen distributions, as false negative rates (predicting pathogen 167 

absence in regions where the pathogen is currently reported) were very low (0.01, IQR: 0.01 – 0.03). 168 

Discussion 169 

Our analyses are limited by the availability of infection temperature responses in the published 170 

literature. These are not a random sample of all known fungal and oomycete plant pathogens. Given 171 

that the historical research focus on plant pathogens has been in developed countries at high latitudes 172 
19, our sample is biased towards pathogens which have evolved to infect hosts optimally in cooler 173 

climates (Fig. S14). However, our sample does include pathogens able to infect both tropical and 174 

temperate crops (Figs. S8, S9), hence this bias does not preclude conclusions being drawn for tropical 175 

pathogens. 176 

Infection of a susceptible primary host is central to disease development, but other processes such as 177 

spore dispersal, overwintering and infection of any alternate hosts are also important in pathogen 178 

epidemiology. We have modelled infection only, in common with previous studies on climate change 179 

effects on plant pathogens 11,20, under the assumption that inoculum will be present, either through 180 

long-distance dispersal or overwintering21. 181 

We did not attempt to model intra-specific variation in temperature response functions, though such 182 

variation does exist 22,23. However, analysis of historical pathogen distributions indicates that range 183 

shifts have occurred in line with expectation suggesting that temperature adaptation is slow in 184 

comparison with climate change 6. We employed infection temperatures rather than the more 185 

commonly-measured growth in axenic culture 2, for all but two pathogens which were included 186 

because of their importance in agriculture 1. The distinction is important because growth in culture has 187 

a wider temperature range for most pathogens 2, and models based on growth in culture would suggest 188 

a wider geographical range than models based upon infection dynamics. 189 
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We only considered temperature as a determinant of infection rates. However, infection by many 190 

fungal and oomycete plant pathogens is promoted by wet conditions 24. Multi-model mean projections 191 

to the end of the 21st Century suggest that precipitation will increase significantly in boreal regions 192 

and decrease significantly around the Mediterranean, with smaller and less certain changes elsewhere 193 

even under a high-emissions scenario 25. Thus, there appears to be no major change in hydrology that 194 

would alter our overall conclusions on latitudinal shifts in pathogen burden. In addition, historical 195 

shifts in species populations have largely been driven by global warming 6. Relative humidity (RH) 196 

declines may offset the impact of increased pathogen temperature suitability at higher latitudes, 197 

particularly across Europe (Fig. S15). Increased plant infection across Europe has been predicted 198 

under future climate, where pathogen temperature tolerances and infection wetting period were 199 

considered 11. RH was not considered in our model due to paucity of data concerning pathogen RH 200 

relations, as well as large uncertainties over future global RH projections 26. To investigate the 201 

consequences of omitting humidity effects on infection risk, we compared results of models utilizing 202 

3-hourly temperature and leaf wetness estimates with those utilizing only 3-hourly temperature and 203 

only monthly temperature during the growing season, for two rust pathogens (see Appendix in 204 

Supplementary Information). We found that that the monthly temperature models replicated the 205 

overall spatiotemporal patterns seen in the 3-hourly temperature and leaf wetness models, and that 206 

infection rate estimates were highly correlated among models.  Finally, global observations27 and 207 

field-scale experiments28 suggest that temperature is the most important determinant of fungal 208 

distributions and activity. 209 

We did not include potential future changes in crop phenology. Warming is expected to extend the 210 

growing season of temperate crops by a few days by the end of the 21st Century, while increasing 211 

temperatures may reduce the length of the growing season in tropical crops 29. As our seasonal 212 

modelling was conducted using monthly crop calendars, the influence of altered growing seasons on 213 

our results is likely to be small. We did not include potential future changes in crop distributions. The 214 

socioeconomic factors leading to changes in future crop distributions are challenging to predict 30, and 215 

differing future land use scenarios are beyond the scope of the present analysis. The crop yield 216 

projections we employed are subject to uncertainty, both due to the parameterization of the crop 217 

models themselves and to the future climate change scenarios 31,32. However, the global pattern of 218 

greater yield increases at higher latitudes is conserved across models, and accords with the latitudinal 219 

trends in temperature. 220 

Future crop yields have been modelled using only plant physiological responses to abiotic conditions. 221 

We analysed pathogen temperature physiology to understand how indirect, biotic responses to climate 222 

change could impact production. We have shown that crop disease burdens could track crop 223 

responses, increasing at higher latitudes where climate change is projected to boost yields. 224 
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Furthermore, the suite of crop diseases that farmers face in some of the world’s most productive 225 

regions will change dramatically. Crop yield losses to pathogens depend on many factors beyond 226 

infection, like host resistance and crop protection 1. Agriculture must therefore prepare accordingly if 227 

any potential benefits of climate change on crop yields are to be realized. 228 
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Methods 334 

Model summary 335 

A workflow detailing data preparation, model construction, model validation against known pathogen 336 

distributions, and RH considerations is presented in Fig. S16. 337 

Crop yields 338 

Annual crop yield projections from 2006-2099 were obtained from the Inter-Sectoral Model 339 

Intercomparison Project (ISIMIP, www.isimip.org) in January 2020. The crop models were LPJmL 10, 340 

GEPIC 33 and PEPIC 34. LPJmL simulates changes carbon and water cycles due to land use, 341 

phenology, seasonal CO2 fluxes and crop production. GEPIC and PEPIC are derived from the EPIC 342 

agricultural yield and water quality model 35. In EPIC, potential crop yield is simulated from solar 343 

radiation, crop parameters, leaf area index and harvest index (the economic yield per unit 344 

aboveground biomass). Each of these crop models was driven by four global circulation models: 345 

MIROC5 36, HadGEM2-ES 37, GFDL-ESM2M 38 and IPSL-CM5A-LR 39. Annual crop yield 346 

estimates under RCP 6.0, with CO2 fertilization effects, and both the ‘no irrigation’ and ‘full 347 

irrigation’ scenarios, were obtained for all available crops at 0.5 ° spatial resolution. Fertilizer 348 

application rates are modelled at country scale in each model. Irrigation is modelled using estimates 349 

of the area equipped for irrigation per grid cell. GEPIC/PEPIC modelled maize, rice, soybean and 350 

wheat. LPJmL additionally included cassava, millet, pea, peanut, rapeseed, sugarbeet, sugarcane and 351 

sunflower. Yield differences between the 2060 – 2080 mean and 2010 – 2030 mean were calculated 352 

per grid cell. 353 

Climate data 354 

Global estimates of recent (1970 - 2000 average) and future (2061 - 2080 average) average monthly 355 

temperature at 5 arc minute spatial resolution were obtained from the WorldClim database 356 

(www.worldclim.org) [accessed 5/2019]. For future estimates, all global climate models (GCMs) of 357 

Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5 were obtained (Table S4) 358 

[accessed 5/2019]. For each RCP-GCM combination, average future monthly temperature was 359 

calculated as the mid-point of average maximum and minimum monthly temperature, as no average 360 

estimates were available. For each RCP, average monthly temperature was calculated as the mean of 361 

all GCMs for that RCP. 362 

Pathogen dataset construction 363 
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Estimates of pathogen infection cardinal temperature were extracted from two sources 16,40. 364 

Collectively, only pathogens with at least one minimum (Tmin), optimum (Topt), and maximum (Tmax) 365 

estimate for infection cardinal temperature were included. To aid matching of species between 366 

sources, pathogen species names reported in the latter were updated according to the Species 367 

Fungorum database (SFD) (www.speciesfungorum.org) [accessed 4/2020] (Table S5). If no 368 

information was available on the SFD, Mycobank (www.mycobank.org) was used as an alternative 369 

[accessed 4/2020]. Discovery and sanction author(s) of species were not provided in one source 16, 370 

and are not considered here. Pathogen species names have previously been processed40 and so were 371 

not altered. Mean Tmin, Topt, and Tmax infection cardinal temperature were calculated for each pathogen 372 

(hereafter referred to as the ‘Pathogen dataset’). Pathogens with nonsensical cardinal temperatures 373 

(i.e. mean Topt > mean Tmax) were excluded from the analysis, as it was not possible to calculate 374 

temperature response functions for such pathogens. Magnaporthe oryzae and Zymoseptoria tritici are 375 

two of the most destructive pathogens of rice and wheat 1, respectively, but infection temperature 376 

estimates are unavailable. We therefore included cardinal temperature for lesion development of M. 377 

oryzae 41, and average growth in culture cardinal temperatures for 18 strains of Z. tritici 42. It was 378 

assumed that average cardinal temperature for each pathogen was identical across all hosts, for each 379 

respective pathogen. 380 

The Plantwise database (CABI) [accessed 28/10/2013, by permission] was used to estimate host range 381 

of each pathogen in the Pathogen dataset. To improve matching of pathogen species names, some 382 

names were updated in the Plantwise database, according to the SFD or Mycobank [accessed 4/2020] 383 

(Table S7). We also used included host range information provided by ref.16 . All plant-pathogen 384 

interaction records for hosts recorded in EarthStat (http://www.earthstat.org) and MIRCA2000 43 were 385 

extracted from the Plantwise database. To enable matching of host species, scientific names were 386 

assigned to plant hosts found in EarthStat and MIRCA2000 (Table S6). The FAOSTAT commodity 387 

list (http://www.fao.org) was used to aid this process. Pathogens absent from the extracted plant-388 

pathogen interaction dataset were excluded from the Pathogen dataset. Consequently, 80 pathogens 389 

were included in the Pathogen dataset and hence included in this study (Fig. 1, Table S1). 390 

Estimating global distributions of pathogen hosts 391 

Two approaches were used to estimate global host distributions for each pathogen included in the 392 

Pathogen dataset. First, for 150 crops (including forage crops, Table S6), global estimates of average 393 

fractional proportion grid cell harvested (5 arc minute spatial resolution) were obtained from 394 

EarthStat 44 (http://www.earthstat.org). Crops that could not be clearly identified as species (e.g. 395 

“mixed grain”) or contained a large number of different plant genera (e.g. “vegetables”) were 396 

excluded. Most crops classified as “not elsewhere specified” (nes) were also excluded. For 150 crops, 397 

each crop map was converted to binary presence/absence. If grid cell harvest area fraction was ≥ 398 
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0.00001 (equivalent to 0.1 m2 ha-1), the host was estimated as present in that grid cell. If < 0.00001, 399 

hosts were assumed absent. These values were chosen to ensure that crops were estimated as present 400 

in grid cells, even if average fractional proportion harvested were estimated as very small. This 401 

approach enabled estimation of global distribution for each crop in EarthStat. The Earthstat crop 402 

distribution dataset does not provide crop calendars (i.e. the months during which the crop is 403 

growing). 404 

Second, for 22 crops (Table S6), global estimates of growing season periods (around the year 2000) 405 

were extracted from MIRCA2000 at 30 arc minute spatial resolution 43, and resampled to 5 arc minute 406 

resolution using neighbour joining algorithm in package raster for R 45. For each crop, rainfed and 407 

irrigated growing season estimates were combined. This provided global monthly estimates of global 408 

host presence (within growing season) and absence (outside of growing season), and hence monthly 409 

global distribution estimates, at 5 arc minute spatial resolution for 22 crops. 410 

For each pathogen, global distributions for all recorded hosts were combined, and converted to binary 411 

presence/absence. This provided a single potential geographical distribution of each pathogen, based 412 

on reported pathogen host range (Plantwise) and geographic host distributions (EarthStat or 413 

MIRCA2000) (Fig. S8, S9). For example, if a pathogen was recorded in the Plantwise database to 414 

successfully infect four hosts recorded in EarthStat, any grid cells that were estimated to contain ≥ 1 415 

of these hosts were converted to 1 (present), and grid cells that there were estimated to contain 0 hosts 416 

were converted to 0 (absent). This was done independently for host distributions estimated from 417 

EarthStat and MIRCA2000, resulting in two alternative potential geographical distribution of each 418 

pathogen. Where MIRCA2000 was utilised, fewer pathogens were included, due to fewer crop 419 

species. Further, where host range was estimated from MIRCA2000, the potential geographical range 420 

of a pathogen of estimated each month, due to host growing season (Fig. S9). Host ranges were 421 

assumed independent for each pathogen, i.e. competition between pathogens for particular hosts was 422 

assumed to not occur. 423 

Modelling pathogen temperature-dependent infection risk 424 

Relative temperature-dependent infection rates, r(T), were calculated by a beta function 46 (Equation 425 

S1) for each pathogen (Fig. 1, Table S1), for all climate data detailed above. We defined pathogen 426 

species richness Rr as the number of pathogens with r(T) ³ 0.5, i.e. those pathogens with high 427 

predicted infection rates. Rr acted as a summary metric of pathogen risk per grid cell. 428 

Equation	S1: r.𝑇{",$}0 = 2
𝑇&'( − 𝑇{",$}
𝑇&'( − 𝑇)*+

42
𝑇{",$} − 𝑇&,-
𝑇)*+ − 𝑇&,-

4
./!"#0/$%&1 ./$'(0/!"#12

 429 

where i is the month and j is the grid cell. 430 
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Model validation 431 

Pathogen presence (defined as r(T) ³ 0.5) was calculated for recent average monthly temperature 432 

estimates utilising two alternative approaches. In the ‘temperature-only model’, pathogens were not 433 

restricted by host distributions. In the ‘temperature+host model’, pathogens were additionally 434 

restricted by host distributions estimated from EarthStat. In both model iterations, a summary 435 

potential global distribution of each pathogen was calculated, whereby if a pathogen was modelled as 436 

‘present’ in a grid cell (j) during any month (i), then the pathogen was recorded as ‘present’ in that 437 

grid cell (j). 438 

Outputs from both model iterations were compared to observed records of pathogen presence at 439 

country or state scale (hereafter collectively referred to as ‘region’, 396 regions total), from the CABI 440 

Plantwise database. Pathogen names in this dataset were updated according to the SFD or Mycobank 441 

[accessed 4/2020] to improve matching to the Pathogen dataset (Table S7). Discovery and sanction 442 

author(s) of species were not provided in this dataset, and so were not considered here. Thirteen 443 

pathogens (Alternaria cucumerina, Botrytis cinerea, Cercospora carotae, Didymella arachidicola, 444 

Diplocarpon earlianum, Fusarium oxysporum f.sp. conglutinans, Fusarium roseum, Globisporangium 445 

ultimum, Nothopassalora personata, Puccinia menthae, Septoria glycines, Stigmina carpophila, and 446 

Wilsoniana occidentalis) were excluded from model validation, due to an apparent lack of 447 

observational records. 448 

Models were run at 5 arc minute resolution, whereas observed pathogen records were at regional scale 449 

(Fig. S10a, c). Hence, model outputs were summed to regional scale (Fig. S10b, d). If a pathogen was 450 

modelled as ‘present’ in any grid cell (j) in a region, for any month (i), the pathogen was modelled as 451 

‘present’ at the regional scale. Gross domestic product based on purchasing power parity (GDP 452 

(PPP)) and research output (number of publications) were obtained from the World Bank Data 453 

website for 230 territories (data.worldbank.org) [accessed 11/2018]. For the temperature+host model, 454 

for each pathogen, median GDP (PPP) and median research output were calculated for territories 455 

where (1) both the temperature+host model estimated, and the Plantwise database recorded a 456 

pathogen as present (true positive (Sensitivity)), and where (2) the temperature+host model estimated 457 

a pathogen as present, but the Plantwise database recorded a pathogen as absent (false positive (Type 458 

1 error)). Data were compared by Welch's Two Sample two-tailed t-test. Where GDP (PPP) and 459 

research output were recorded at country scale, but pathogen records were recorded at state scale, 460 

states were assigned country-level GDP (PPP) and research output. 461 

Changes in global temperature-dependent infection risk 462 
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We calculated Rr for recent and future average monthly (i) grid cell (j) temperature (T{i,j}), utilising 463 

two alternative host-restriction approaches. First, pathogens were restricted by host distributions 464 

estimated from EarthStat, for each future climate scenarios (RCP 2.6, 4.5, 6.0, and 8.5). Second, 465 

pathogens were restricted by host distributions estimated from MIRCA2000, and RCP 6.0 was used to 466 

estimate future average monthly temperature. This allowed for comparison between host restriction 467 

method on model outputs of change in spatial patterns of Rr. 468 

For each model, change in Rr was calculated as Rr under future climate conditions, minus Rr under 469 

recent climate, for each grid cell (j), for each month (i). Within a grid cell, increases or decreases in Rr 470 

do not reflect the change of species composition 7. Therefore, for each model, a modified Jaccard (J) 471 

index (1 - J) of community dissimilarity (pathogen turnover, Equation S2) 7,47 was calculated to 472 

characterize the change in community composition in each grid cell (j), for each month (i). High 473 

pathogen turnover indicates high community dissimilarity or a large change in species composition.	474 

Equation	S2: 1 − 𝐽{",$} = 1 − 2
𝑎{",$}

𝑎{",$} + 𝑏{",$} + 𝑐{",$}
4 475 

where a is the number of pathogens common to a grid cell under recent and future climate, b is the 476 

number of pathogens unique to a grid cell under recent climate, c is the number of pathogens unique 477 

to a grid cell under future climate, i is the month and j is the grid cell. Pathogen turnover was defined 478 

as zero for grid cells with no pathogens under both recent and future climates. 479 

Comparison between future changes in crop yields and r(T) by latitude 480 

For each pathogen of each crop included in MIRCA2000, change in r(T) between current and future 481 

climate (RCP 6.0) was calculated for each grid cell (j), for each month (i) (Table S2 provides the 482 

number of pathogens included for each crop). Pathogens were restricted by crop distributions 483 

estimated from MIRCA2000 (see above). For this analysis, we used estimates from MIRCA2000 for 484 

pulses as a proxy for pea crop (Pisum sativum). For each crop-pathogen combination, mean change in 485 

r(T) was calculated for each latitude (5 arc minute resolution), and then aggregated to 5° resolution for 486 

plotting using the aggregate function in package raster for R 45 (Fig. 5). 487 

We tested for evidence of spatial matching between projected changes in crop yield and pathogen 488 

r(T). For each crop, Pearson correlations (r) and spatial cross-correlations (rc) were calculated 489 

between overall mean change in crop yield and pathogen r(T), aggregated to 2° resolution. In this 490 

case, compared overall mean change in r(T) for all months, for all pathogens with overall mean 491 

change in yield from all available models under the no irrigation scenario. Spatial cross-correlations 492 

were calculated using the package spatialEco for R 48. An inverse power law transformation was 493 

performed to derive a spatial weights matrix in the analysis of each crop. 494 
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Pathogen sampling bias 495 

Northern and southern latitudinal ranges for plant pests and pathogens were extracted from the CABI 496 

Plantwise database. As previous, some pathogen names in this dataset were updated according to the 497 

SFD or Mycobank [accessed 4/2020] to improve matching to the Pathogen dataset (Table S7) and 13 498 

pathogens were excluded from the analysis, due to an apparent lack of observational records. 499 

Pathogen names were not updated in this dataset if they were absent from the Pathogen dataset. 500 

Northern and southern latitudinal ranges for pathogens included in the Pathogen dataset were 501 

compared to that of all fungi and oomycetes pathogens for which latitudinal ranges were available. 502 

Relative humidity considerations 503 

Coupled Model Intercomparison Project 5 (CMIP5) single level monthly near surface RH data 504 

(0.125° to 5° spatial resolution depending on model) were extracted from the Climate Data Store 505 

(https://cds.climate.copernicus.eu). Data from all available future (RCP 6.0, 2070) and corresponding 506 

recent (1985) model-ensemble combinations (see Table S8 for further details) were extracted from 507 

NC files and converted to raster objects.  508 

For each model-ensemble-month combination, change in RH was calculated as future RH minus 509 

recent RH. If a model had multiple ensembles, mean change for each month was calculated from all 510 

ensembles. All data were resampled to 5 arc minute resolution using bilinear algorithm in package 511 

raster for R. Mean monthly change in RH was calculated from all model estimates to provide single 512 

monthly estimates. Grid cells that contained no hosts in the EarthStat database were excluded from 513 

the analysis. Hence, only grid cells included in analyses of Rr and pathogen turnover were included. 514 

Grid cells were aggregated to 2° spatial resolution to calculate Pearson correlations (r) between 515 

change in RH and change in Rr (RCP 6.0) for March, June, September, and December. 516 

The Appendix (see Supplementary Information) compares r(T) estimates from models using 3-hourly 517 

temperatures estimates constrained by leaf wetness, with results obtained using only monthly average 518 

temperatures unconstrained by leaf wetness. 519 
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Figure Captions 558 

 559 

Fig 1. Summary infection cardinal temperature for 80 plant pathogens included in this study. (a) 560 

Temperature response curves for r(T) determined by Tmin, Topt, and Tmax, as well as Equation S1. 561 

Arrow indicates temperatures where r(T) = 0.5 for an example pathogen. (b) Points refer to Topt, bars 562 

refer to temperature range (defined by Tmin and Tmax). Pathogens are ordered by Topt. Pathogen ID in 563 

Table S1. 564 
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Fig 2. Average change in (a, b) Rr and (c, d) pathogen turnover under RCP 6.0 across all months. Red 566 

and blue indicate increases and decreases in Rr, respectively. Darker pink indicates larger changes in 567 

pathogen turnover. Pathogens restricted by host distributions extracted from EarthStat. White grid 568 

cells contain no hosts and were excluded from the analysis. (b,d) Data aggregated to 1° resolution for 569 

plotting. 570 

 571 

Fig 3. Impact of RCP and pathogen restriction method on change in Rr and pathogen turnover. Red 572 

and blue indicate increases and decreases in Rr, respectively. Darker pink indicates larger changes in 573 

pathogen turnover. Pathogens restricted by estimates of host distributions extracted from (a) EarthStat 574 
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and (b) MIRCA2000. Crop calendars only considered in MIRCA2000. Fewer pathogens included in 575 

(b) due to fewer host distributions available. Data aggregated to 1° resolution for plotting. 576 

 577 

Fig. 4. Impact of RCP on average change of Rr and pathogen turnover across all months. (a, c, e, g) 578 

Northern hemisphere. (b, d, f, h) Southern Hemisphere. Pathogens restricted by estimates of host 579 

distributions extracted from EarthStat. Land area refers to total land area, not crop area. 580 
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 581 

Fig 5. Changes in crop yield and r(T) under RCP 6.0 by latitude. Crops are (mai) maize, (ric) rice, 582 

(soy) soybean, (whe) wheat, (cas) cassava, (mil) millet, (nut) peanut, (pea) pea, (rap) rapeseed, (sgb) 583 

sugar beet, (sug) sugar cane, and (sun) sunflower. Red and blue indicate increases and decreases in 584 

r(T), respectively. Green and brown indicate increases and decreases in crop yield, respectively, under 585 

no irrigation scenario. Colour saturation indicates numbers of pathogens or number of crop- and 586 

climate models. Pathogens restricted by estimates of host distributions extracted from MIRCA2000. 587 

Data aggregated to 5° for plotting. 588 
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