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ABSTRACT

A fitness landscape describes the interaction of a search domain, a
cost function on designs drawn from the domain, and a neighbour-
hood function defining the adjacency of designs — induced by the
optimisation method used. Fitness landscapes can be represented
in a compact form as Local Optima Networks (LONs). Although re-
search has been conducted on LONs in continuous domains, the ma-
jority of work has focused on combinatorial landscapes. LONs are
often used to understand the landscape encountered by population-
based search heuristics, but are usually constructed via point-based
search. This paper proposes the first construction of LONs by a
population-based algorithm, applied to continuous optimisation
problems. We construct LONSs for three benchmark functions with
well-known global structure using the widely used Nelder-Mead
downbhill simplex algorithm, and contrast these to the LONs from
a point-based approach. We also investigate the sensitivity of the
LON visualisation to the downhill simplex algorithm’s hyperpa-
rameters, by varying the initial step size of the simplex and the step
size for connectivity of optima. Our results suggest that large initial
simplex sizes fragment the landscape structure, and exclude some
local optima from the fitness landscape.
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1 INTRODUCTION

The fitness landscape of a problem represents the search space
structure of an optimisation problem induced by a search algorithm.
It is defined by the candidate solutions of the problem together with
their fitness values and a neighbourhood structure that designates
the connectivity among these candidate solutions. Formally, it is
defined as a triple (X, N, f), where X is a set of potential solutions,
i.e. the search space, N : X — 2% is a neighborhood structure that
assigns to every x € X a set of neighbors N(x), and f : X —» R
is the fitness function [28]. In the evolutionary computation field,
heuristic search methods are commonly used to search for the point
in the search space which, without loss of generality, minimises
the response of the fitness function. The Local Optima Network
(LON) model was proposed in [24] as a weighted and directed
graph visualisation tool that compacts the search landscape by
representing only local optima as network nodes (compressing
other locations in the design space).

While local optima constitute the nodes of this network, graph
edges account for possible transitions between the nodes (search).
This technique facilitates the visualisation of the local optima struc-
ture, making it easy to see their number, distribution and connec-
tivity in the underlying landscape. Traditionally, LON construction
has been derived from a point-based view of search and neighbour-
hoods — however, this potentially limits the insight that can be
gained for landscapes induced by population-based search, which is
an underlying property of evolution-based optimisation heuristics
(e.g. genetic algorithms). Recently, the search trajectory networks
were introduced as a way to visualise and analyse population-based
algorithms [23]. However, this is an approach to representing the
search progress, rather than visualising the global structure and the
distribution of local optima in the search space. As a first step toward
population-based LONSs, we derive and investigate the LONs gener-
ated via the well-known Nelder-Mead downbhill simplex algorithm
[22], which is a population based search, but whose performance
is deterministic. We also investigate the interplay between the al-
gorithm hyperparameters (e.g. the initial simplex hypervolume)
and the optimisation task. To explore the visualisations generated
with our approach, we consider a set of benchmark functions with
well-known landscape connectivity patterns (global structure) that
have been explored in previous studies on constructing LONs for
continuous search domains [1]. We also exploit previous work on
visualising funnel structures through monotonic LONs [12, 25].

Our results suggest that the landscape’s global structure strongly
varies with the perturbation step-size — which determines the
initial simplex (hyper)volume. Additionally, the LONs generated
via the Nelder-Mead optimisation are noticeably different from
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those created using point-based gradient search (the Monotonic
Sequence Basin-Hopping Algorithm [16]), as used in recent work
on LONSs for continuous domains [1].

The paper proceeds as follows. In Section 2 we set out the fun-
damental definitions to understand the standard LON construction.
Section 3 details our approach for population-based LON construc-
tion using the Nelder-Mead downhill simplex algorithm. Section 4
details the configuration of our experiments, with Section 5 provid-
ing analysis and visualisations of the point-based and population-
based search LONs. The work concludes with Section 6, which
outlines some potential future directions of the work, building on
the results presented here.

2 DEFINITIONS & ALGORITHMS

We now present the definitions needed to understand the con-
struction of LONs, and the basic algorithm for population-based
LON construction using the Nelder-Mead downhill simplex method.

2.1 Formal Definitions

Fitness Landscape. A triple (X, N, f) where X is a set of poten-
tial solutions, i.e. the search space, N : X — 2X is a neighborhood
structure that assigns to every x € X a set of neighbors N(x), and
f : X — Ris the fitness function. x has n elements.

Local Optima (L). The set of solutions of an optimisation prob-
lem, whose fitness is superior to all other solutions in their neigh-
borhood. For example, in a minimisation problem, L is a local op-
timum if its fitness value is not worse than all other solutions in
its neighborhood: Vx € N(L) : f(x) = f(L), where N(L) is the
neighbourhood of L.

Edge (E). Search transitions among local optima are represented
by directed and weighted edges. The weight w;; of an edge from
an optimum L; to an optimum L; represents the probability of the
transition.

Basin of attraction. The basin of attraction B; of a local opti-
mum L; in the search space X, is the set B; ={x € X | optimiser(x) =
L; }. The cardinality |B;| of this set gives the size of the basin of
attraction of L;.

Local Optima Network (LON). A directed and weighted graph
LON = (L, E), which compacts a fitness landscape by taking local
optima in the search space as nodes and connecting these nodes
with edges based on their transition as a result of search operators.

Monotonic Edges (ME). Transition from a local optimum into
the basin of a non-deteriorating local optimum after a perturbation
on the search operator.

Monotonic Local Optima Network (M-LON). M-LON = (L, ME)
is the graph comprised only of monotonic edges, i.e. where the
nodes are local optima and and there is an edge e;; € ME, with
weight w;; between two nodes L; and L; if f(L;) > f(L;).

Compressed Local Optima (CL). Optima obtained by merging
sets of local optima with the same fitness value into a single node.

Compressed Edges (CE). The edges between two compressed
local optima, which are generated by summing up the weights of
the corresponding monotonic edges in M-LON for those optima.

Compressed Monotonic Local Optima Network (CM-LON).
The graph CM-LON = (CL, CE) where nodes are compressed local
optima CL and edges are compressed edges CE, as defined above.
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Figure 1: An example search trace, ending at a global op-
timum, on the Six-hump camel back function using the
Nelder-Mead downhill simplex algorithm to minimise fit-
ness. It starts with a simplex on the bottom right of the
plot converging to a global optimum at (0.0898,-0.7126). The
colourbar indicates fitness values, with regions of low fit-
ness (high function values) coloured white and regions of
high fitness (low function values) coloured black. The sim-
plex colours indicate search progress, with increasing time
represented by a shift from purple to red.

Funnels: Sets of local optima for which each element of the set
terminates at the same local optimum (funnel sink). These can be
viewed as basins of attraction at the local optima level.

2.2 Nelder-Mead Downbhill Simplex Search

The Nelder-Mead downbhill simplex algorithm is a widely-used di-
rect search method for multidimensional continuous problems [22].
It uses the value of the objective function only, without requiring
gradient information, and hence its implementation is straight-
forward in practice, especially when the problem function is non-
differentiable or its derivative is difficult to compute. However, the
method is not guaranteed to return the global optimum. We employ
a particular algorithm variant in this paper [10]. Other variants of
the Nelder-Mead downhill simplex method exist in the literature
e.g., Geometric Nelder Mead [21], constrained optimization based
on the simplex [19, 29], as well as hybrids with other evolutionary
algorithms to improve convergence rate, e.g. NVM-PSO [8].

The basic Nelder-Mead algorithm starts with a set of (n + 1)
points taken as vertices of a simplex in R", e.g., it is a triangle in
R?, a tetrahedron in R3, and so on. Figure 1 is an example of how
the simplex converges to a single optimum in the restricted region
of the 2-dimensional six-hump camel benchmark function search
space (see Table 1).

The Nelder-Mead algorithm converges quickly to optimal so-
lutions in a deterministic fashion, given the initial simplex con-
figuration and the hyperparameter settings [29]. Each iteration of
the algorithm starts with a population, P, of size (n + 1). A selec-
tion operator is then applied to eliminate one individual, thereby
effectively choosing the best n individuals after sorting the indi-
viduals based upon their fitness. We refer the reader to [15] for
a tie-breaking rule in sorting process. The discarded individual is
replaced by a new individual added to the population through a
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Table 1: Characteristics of the continuous benchmark problems used in the paper. All are minimisation functions (note that
Six-hump camel is therefore inverted from its usual maximisation formulation).

Benchmark l Six-hump camel l Ackley l Rastrigin ‘
Function (4 - fo + x?i‘) x% +x1xp + (4x§ - 4)x§ —20exp[—0.2(y0.5(x1)? + (x2)?)] 10n + Zi(xiz — 10 cos(2rx;))
—exp [0.5(cos(27x1) + cos(27mx2))] + e + 20
Boundaries X1 € [-3,3], x2 € [-2, 2] Xi € [—32.768,32.768] Xi € [-5.12,5.12]
# local optima 6 several local minima several local minima
# global optima 2 1 1

reflection operator, which is given in (1):
Xreflection = Xcentre + a(Xcentre = Pworst) (1)
This process includes finding the mean, X¢entre, of the best n in-
dividuals and a new individual is then added to the population,
Xreflections DY reflecting the discarded individual, Pyors; through
this mean, with weight given by the reflection parameter a. A com-
mon choice for the value of this parameter is @ = 1 [15]. Other
implementations of the Nelder-Mead method have been proposed
with adaptive parameters depending upon the dimension of the
problem, see e.g. [10]. If X,¢ f1ecrion is @ better solution than the best
individual in the initial population, Py, search is expanded in this
promising direction by the expansion parameter y in equation (2)
(a standard choice is y = 2):
Xexpansion = Xcentre t Y(Xreflection — Xcentre) (2
The resulting new individual Xexpansion is accepted in the popula-
tion if it is a better solution than the current Pp,g;. If Xexpansion is
a worse solution than the second worst solution in the population
Psecond worst» the search operator to be used is contraction, which
contracts the hypervolume by adjusting the parameter § given in

3):
Xcontraction = Xcentre T ,B(Pworst — Xcentre) (3)

This parameter is usually taken to be f = % If Xcontraction 1S
also worse than Pgecond worse» the next attempt is to shrink all the
points in the simplex towards the best solution at hand, Pp,;, by
the shrink coefficient § given in (4):
Xshrinkage = Ppest + §(Xshrinkage = Ppest) (4)
The choice for this parameter is usually § = % The simplex is
gradually reduced while better points are found primarily inside the
simplex. The search stops when the points converge on an optimum,
when a minimum difference between evaluations is observed, or
when a maximum number of function evaluations are performed.
The choice of the initial simplex is a crucial aspect of Nelder-
Mead performance, i.e. if all vertices reside in the same hyperplane,
search will not explore all dimensions of the search domain [32].
We now analyse the landscape induced by the Nelder-Mead algo-
rithm on several well-known benchmark problems and conduct
an experimental sensitivity analysis of the landscape to the initial
simplex size.

3 POPULATION-BASED LON
CONSTRUCTION
Population-based algorithms employ a set of points to search

the design space in parallel. They have an advantage over single
point-based search optimisers, which can be more susceptible to

specific properties of the landscape structure. One of those ad-
vantages is that population-based approaches have the ability to
search different parts of the fitness landscape simultaneously, thus
mitigating search bias in the initial position or sampling process.
They also provide a good balance between exploration and ex-
ploitation on the search landscape [26]. While multiple points can
explore diverse regions, population members tend to densify or
converge to each other in promising regions. Research has also
shown that population-based algorithms are better at handling
high-dimensional optimisation problems compared to single point-
based approaches [4].

Many population-based metaheuristics exist in the literature [11].
These include genetic algorithms [20], ant colony optimization
(ACO) [7], particle swarm optimization (PSO) [14] and artificial
immune systems [9], to name but a few. As an initial step towards
constructing LONSs for these types of heuristic population-based
search, we set out the process by which LONs may be generated
using the widely used Nelder-Mead algorithm. This optimiser sits
usefully on the spectrum between point-based and population-
based approaches, as although it employs a population of designs in
its search, the cardinality of the set is predetermined (as n+1), and it
is deterministic in terms of the operations and population evolution,
which makes reasoning about the neighbourhood tractable. To
the best of the authors’ knowledge, our study presents the first
population-based fitness landscape analysis using LONs.

The pseudocode given in Algorithm 1 presents the steps required
to extract the nodes and basin sizes of LONs when employing the
Nelder-Mead method. After detecting local optima and their corre-
sponding basin sizes, we construct connectivity between optima by
defining a neighbourhood of simplices anchored at the optima. This
is accomplished via pivoting a simplex with step size p* through all
combinations of additive and subtractive axis-aligned steps, whilst
keeping the anchor point unchanged. This mimics the initialisation
of a downhill search, where an initial point is chosen, and n copies
are made, with an additive perturbation on a single design element
in turn, to generate the first simplex. By choosing all additive and
subtractive perturbation combinations possible, and applying them
sequentially one design value at a time (i.e. changing one element
of the anchor vector at a time to create the n other simplex ver-
tices), all neighbouring simplices cover the same hypervolume, and
the number of neighbours (simplex populations) is deterministic,
though scales poorly with n (specifically 2”). Each of the neighbour-
ing simplices are used to initialise downhill searches, with edges
(and corresponding weights) derived from their terminating optima.
Algorithm 2 details this process, perturbing from the previously
found optima in Algorithm 1.
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Data: Dimension number, n, iteration number, m, initial
simplex size parameter, p

Result: Approximated optima, L, basins of attraction, B

L=0;

B:=0;

counter :=0;

while counter < m do

Start with a random initial vector of size (1 X n),
assigned to the first simplex vertex so.

Create the remaining simplex vertices S = {s;}! based
on sg, with the following:

i=1; // Index into next simplex vertex
whilei <n+1do
Si =80 /] Copy base solution

if sp,;—1 # 0 then
\ Sii—1 = 80,i-1 + P X 80,i-1;

else
‘ sii-1 := 0.00025; // As 0 X p =0, an offset used
end
i=i+1; // Move on to next simplex vertex
end
S={si}iys

Xy := Nelder-Mead(S);
if x; ¢ L then

L:=LUxy;
By, :==S;
else
| By =B US;
end

counter := counter + 1;

end
Merge all basins whose optima values are within some
threshold distances in design space, and eliminate
corresponding duplicate from L;
Algorithm 1: Nelder-Mead algorithm for approximating the
local optima and basin size.

This construction has the advantage of having a countable num-
ber of neighbours within a continuous design space, and addition-
ally, since one of the vertices of the initial simplex is on the initial
local optima, search will only terminate at another optima if it
possesses a higher quality. As such, our edge definition for Nelder-
Mead corresponds to the Monotonic Edge definition in Section 2.
Of course, for large n such a neighbourhood of populations could
be sampled to give an approximate edge weight if enumerating
them is infeasible, with the approximation error derived from the
proportion of the 2" neighbouring populations sampled.

4 EXPERIMENTAL SETTINGS

We generate our LONs by initially sampling the continuous
design space. Specifically, here we complete 100 runs of Algorithm
1 to generate the local optima and corresponding basin sizes using
the Nelder-Mead implementation provided in [13].
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Data: Approximated optima, L, basins of attraction, B,
dimension number, n, perturbation step-size from
local optima, p*
Result: Edge weight list, w
perm:= ({=1,1})|2n|,|n 5
foreach x € L do

fork « 0to2" —1do
Create the simplex with a vertex on x following the

// Initialise 2" simplex masks

below process :

Sp =X // Anchor simplex at optima
i=1; // Index into next simplex vertex
whilei < n+1do

Si =80 // Copy anchor solution

for j «— Oton—1do
if s; j # 0 then
Si,j = S0,j +p* X perml[k, j] X 50,55

else
| sij = 0.00025;
end
end
i:=i+1; // Move on to next simplex vertex
end
S={si}i_g;

Xy := Nelder-Mead(S);
if x;. € L then

‘ Wxxp = Wxxe 135 // Increment weight

else
‘ Wxxe =13 // Initialise weight
end
end
end
w=w/2"; // Convert counts to probabilities

Algorithm 2: Edge generation between local optima using the
Nelder-Mead downbhill simplex algorithm.

Initial simplex generation. The initial simplex is constructed by
first choosing a starting point from the space through Latin Hy-
percube Sampling [18] and then adding the step size parameter,
p, to each design dimension individually in turn, generating the
other n vertices of the initial simplex. To prevent the generation of
illegal simplex vertices, the domain sampled by LHS was limited
to [Smin, Smax — P], where spin and s;qx define the lower and
upper bounds of the box constraints for the problem. The budget
of function evaluations was set to 20000 in each run.

Sampling & convergence. Two solutions obtained through differ-
ent algorithm runs in a continuous space are regarded as the same
local optimum if they are close enough in the design space. In this
study, the threshold for local optimum location value was set to
1073 in all dimensions following the same approach in [1].

Benchmark Functions. Our experiments used three well-known
continuous benchmark problems [17]: the Six-hump camel, Ack-
ley and Rastrigin functions [27]. Detailed information about the
benchmarks used is provided in Table 1.
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4.1 Parameters

Initial simplex step size (p). This is the parameter used in the
initial local optima and basin size search (cf. Algorithm 1). Typically
the value of this parameter is fixed at p = 0.05. Here, we conducted
sensitivity analysis to examine the effect of varying this parameter
on the resulting landscapes. Sensitivity studies of the algorithm
parameters have been conducted in previous studies, e.g. [8, 31],
showing that a large initial simplex size allows more flexibility
to move in the design space and hence convergence to the true
optimum, when the value of p is 0.5 or greater.

Perturbation step size for connectivity (p*). This parameter de-
termines the size of the perturbation used to define the simplex
neighbourhood, when defining edges (cf. Algorithm 2). This param-
eter was also varied to quantify its effect on the search landscape
(though p < p* was ensured).

4.2 Metrics

One of the advantages of visualising landscapes through LONS is
that it allows us to use complex network metrics [30]. The metrics
used in this paper are the following:

e The number of optima found, 7

e The mean density of the network, D (which shows the ratio
of actual edges in the network to all possible edges in the
network)

e The mean incoming degree, din (the total number of incom-
ing edges in the graph)

o The mean degree centrality, Ecentrulity’ (a measure for find-
ing the importance of a node in a network)

e The mean degree assortivity coefficient, 7, which is the Pear-
son correlation coefficient of degree between pairs of linked
nodes (which quantifies the tendency of nodes being con-
nected to similar nodes in a complex network)

5 RESULTS

The experiments in this paper have been conducted to under-
stand: (i) the sensitivity of the landscape to the initial perturbation
size, as quantified by the parameter p; (ii) the sensitivity of the con-
nectivity between local optima to the perturbation size, as quanti-
fied by the parameter p*; (iii) the global structure of the benchmark
functions we have extracted in terms of the corresponding funnels;
(iv) the differences between a single point construction, i.e. Basin-
Hopping using L-BFGS-B [1], and our population-based approach
using Nelder-Mead on some well-understood continuous bench-
mark problems. Code is available at http://pop-project.ex.ac.uk/.

5.1 Sensitivity to the initial simplex size

To see the effect on the landscape of varying the initial simplex
size, we have used three different step sizes: p = 0.05, p = 0.5
and p = 1. The visualisations are presented in Figure 2. The Six-
hump camel back benchmark function has six optima, two of which
are global optima. As can be seen in Figure 2(a), with the default
initial simplex step size p = 0.05, all local optima appear in the
corresponding LON. However, increasing p leads to two of the
local optima disappearing from the induced landscape (and the
basins of attraction of the remaining two non-global optima being

GECCO 21 Companion, July 10-14, 2021, Lille, France
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(a) Six-hump camel benchmark function with two variables and ini-
tial simplex sizes p = 0.05,p =0.5and p = 1.
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(b) Ackley benchmark function with two variables and initial sim-
plex sizes p = 0.05, p =0.5and p = 1.
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(c) Rastrigin benchmark function with two variables and initial sim-
plex sizes p = 0.05,p =0.5and p = 1.

Figure 2: Local optima networks for the three benchmark
problems as a function of the initial simplex size p. Red
nodes indicate global optima, while blue nodes show local
optima. The size of each node is proportional to the size of
its basin of attraction. Edges are weighted based on the prob-
abilities of transition among optima.

significantly reduced). Similarly, Figures 2(b) and 2(c) show a similar
pattern for the Ackley and Rastrigin benchmark problems, with
larger p values leading to more local optima being excluded from
the LON. In particular, increasing p from 0.05 to 1 in the Rastrigin
function leads to more than half the local optima being lost.

5.2 Sensitivity to the perturbation step-size

The effect of the connectivity perturbation size p* was assessed
by increasing its value from 0.05 to 1. It can be seen from Figure
3(a) that for the Six-hump camel benchmark function, there is no
connectivity between optima for p* = 0.05. As p* is increased,
however, connections become established between local and global
optima, and when p* = 1, the edges enable the search to jump
from a given local optimum to another with a better fitness value
consistently. In Figure 3(b), it can be seen that for the Ackley bench-
mark function, local optima only have self-directed edges when


http://pop-project.ex.ac.uk/

GECCO 21 Companion, July 10-14, 2021, Lille, France

p* =05

p* =0.05
. ® P

(a) Six-hump camel benchmark function with two variables and con-
nectivity perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.

p* =0.05 p* =05

(b) Ackley benchmark function with two variables and connectivity
perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.

p* =0.05 p* =05
%

(c) Rastrigin benchmark function with two variables and connectiv-
ity perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.

Figure 3: Local optima networks for the three benchmark
problems as a function of the connectivity perturbation size
p*.Red nodes indicate global optima, while blue nodes show
local optima. The size of each node is proportional to the
size of its basin of attraction. Edges are weighted based on
the probabilities of transition among optima.

p* = 0.05. Increasing p* to 0.5 leads to the local optima becoming
clustered, and when p* = 1, jumps from the local optima to the
global optimum (in the centre) become possible. Similarly, Figure
3(c) shows that as p* is increased from 0.05 to 1 for the Rastri-
gin function, whilst some local optima progressively connect to
other local optima, the majority of local optima appear to become
connected to the global optimum.

Figure 4 shows 3-D surfaces of the three benchmark functions
in 2 dimensions, together with the corresponding LONs obtained
for connectivity perturbation sizes of p* = 0.57 (Six-hump camel),
p* = 0.42 (Ackley) and p* = 0.13 (Rastrigin), with the initial
simplex size p fixed at its default value of 0.05 in each case. These
connectivity perturbation sizes were chosen by a sampling process
where 50% of search initialised with simplices anchored at the local
optima could escape the original basin (estimated from the average
of 100 runs), mimicking the procedure in [1] for specifying the
neighbourhood size for perturbed starting locations of L-BGFS-B.
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(a) Fitness landscape and LON for the Six-hump camel benchmark
function with two variables, p* = 0.57 and p = 0.05.
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(b) Fitness landscape and LON for the Ackley benchmark function
with two variables, p* = 0.42 and p = 0.05.

(c) Fitness landscape and LON for the Rastrigin benchmark function
with two variables, p* = 0.13 and p = 0.05.

Figure 4: Fitness landscapes and corresponding local optima
networks for the three benchmark functions. Blue nodes in-
dicate global optima, while purple nodes show local optima.
The size of each node is proportional to the size of its basin
of attraction.

5.3 Funnel Structures

The funnel structures were extracted and are shown in Figure 5.
The number of local optima in Figure 5(a) for the Six-hump camel
benchmark function were combined into 3 local optima, which have
the same fitness. In this case we can see that when the connectivity
perturbation step size is chosen to be 1 the chained search always
reaches the global optimum. For the Ackley function, Figure 5(b)
shows that no edges are obtained with p* = 0.05, although some
edges are occurred when p* is increased to 0.5. Finally, with p* = 1,
all of the edges leaving local optima eventually terminate at the
global optimum. Figure 5(c) demonstrates that for the Rastrigin
benchmark, increasing p* yields a similar smooth progression be-
tween a graph with no edges to a graph in which all local optima
connections end up with the global optimum.
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(a) Six-hump camel back benchmark with two variables and connec-
tivity perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.
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(b) Ackley benchmark function with two variables and connectivity
perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.
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(c) Rastrigin benchmark function with two variables and connectiv-
ity perturbation sizes p* = 0.05, p* = 0.5 and p* = 1.

Figure 5: Funnel structures derived from the local optima
networks of the three benchmarks, as a function of the con-
nectivity perturbation size p*, with a fixed initial simplex
size p = 0.05. Red nodes indicate global optima, while blue
nodes show local optima. Node size is proportional to the
size of its basin of attraction. Edges are weighted based on
the probabilities of transition among optima.

5.4 Comparison with Basin-Hopping using
L-BFGS-B

Network metrics were applied to compare the LONs extracted us-
ing a single point Basin-Hopping [1] algorithm with our population-
based Nelder-Mead downbhill simplex method, for the three bench-
mark problems. Although the sampling procedures used by the
algorithms are different, we started with the same 100 randomly-
selected initial points to extract the nodes in both cases. For the
Basin-Hopping (BH) optimiser, the perturbation step sizes used
were: 0.43 (Six-hump camel), 0.45 (Ackley) and Rastrigin (0.47). For
the Nelder-Mead (NM) algorithm, the initial simplex size p was
fixed at 0.05 for all benchmarks, while the connectivity perturba-
tion sizes were as follows: p* = 0.65 (Six-hump camel), p* = 0.52
(Ackley) and p* = 0.24 (Rastrigin). Basin-Hopping uses an iterative
sampling method to check connectivity, i.e. the run ends when no
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better optima are found after 1000 iterations. Nelder-Mead based
edge generation runs the downhill optimiser from 2" neighbouring
simplices; there is no checking step in this case because the vertices
of a neighbouring simplex is always anchored at the current local
optimum, so the returned solution is never worse in quality. As
summarised in Table 2, the results show that the iterative sampling
procedure used for edge construction in Basin-Hopping generates a
larger number of local optima. By contrast, Nelder-Mead generates
fewer optima; for example, the algorithm generates at most four
different local optima during edge search in the n = 2 design space
case. Futhermore, Nelder-Mead constructs much denser networks
than Basin-Hopping, as evidenced by the larger mean network
densities, D.

Figure 6 compares the qualities of optima obtained using NM and
BH when the algorithms are initialised from the same points, prior
to edge generation. For NM, the initial simplex size was fixed at the
default value p = 0.05. It can be seen from Figure 6(a) that for the
Six-hump camel function, NM found global optima 25% more often
than BH. However, BH has a greater concentration of points below
the diagonal in the correlation plot, indicating that on average it
finds better quality optima than NM in this case. For the Ackley
benchmark, we see that when NM finds the global optimum, BH
tends to find lower quality optima that are clustered (see left-hand
side of Figure 6(b)). By contrast, when BH finds the global optimum,
the distribution of optima quality for NM is spread fairly uniformly
(see lower side of Figure 6(b)). Figure 6(c) shows that BH located
more global optima than NM for the Rastrigin benchmark. This
may be because whilst p = 0.05 is a reasonable perturbation size
for the 6-Hump camel benchmark, which has few local optima, it
is fairly small for the Rastrigin function, and hence does not enable
sufficient exploration of the space. Finally, for the Six-hump camel
function, Figure 7 plots the basin sizes of six optima found after
10000 iterations of the algorithms, initialised from 100 randomly
sampled points in the design space. NM hits the global optima more
often than BH, as indicated by the larger basin sizes, shown in red
on the lower side of the diagonal in the plot. Moreover, BH found
larger basin sizes for lower quality optima, shown in yellow on the
upper side of the diagonal in the plot.

6 CONCLUSIONS & FUTURE WORK

This paper presents a new method for extracting local optima net-
works (LONs) from continuous fitness functions. LON construction
was performed with a widely-used population-based optimisation
algorithm: the Nelder-Mead downhill simplex method. This ap-
proach enabled us to compare the fitness landscapes generated
using our population-based algorithm to those generated using the
more established point-based approach. To facilitate this compari-
son, we applied our algorithm to a set of continuous optimisation
benchmarks used previously in point-based studies [1].

Additionally, to gain insights into how optimisation hyperparam-
eters affect the induced continuous fitness landscapes, we conducted
computational experiments to assess how the LONs generated by
our Nelder-Mead method were modified by changes to the size
of the initial simplex and the size of the simplices used to gener-
ate edges. Our results indicate that the latter crucially effects the
connectivity between local optima, with jumps from lower quality
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Table 2: Network properties. Values are averages over 30 random instances, standard deviations are shown as subscripts. n

represents the mean number of nodes, D is the mean density of the network, Ein is the mean incoming degree, dcc,; is the
mean degree centrality and 7 represent the mean degree assortivity coeflicient.

‘ Benchmark ‘ Ackley (3-D) ‘ Rastrigin (3-D) Ackley (5-D) Rastrigin (5-D) ‘
BH NM BH NM BH NM BH NM
E 265520376 | 42813.873 | 1235.3397.991 | 44418.261 28213.405 | 211630370 | 109623690.374 | 307057.852
D 0.0008¢.000 | 0.1047¢.000 0.001¢.000 0.0039.000 | 0.00019.000 | 0.00049.000 3‘416(;%00 0.0002¢.000
7din 0.5430.001 | 0.689.268 1.7630.008 1.4610.114 | 0.533¢.002 | 1.0019.000 0.4370.011 0.659.486
dcent 0.01280.001 | 0.0199.003 0.0300.002 0.0319,001 | 0.01319.000 | 0.015¢.001 0.0040.001 0.009.001
r 0.1096.205 | 0.1629.090 | —0.2660.029 | —0.1620 063 0O 0.0160.003 | —0.0170.008 | —0.075¢.118
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Figure 6: (a-c) Optima qualities obtained from the same 1000 initial points for the test problems considered.
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Figure 7: Mean basin sizes computed using Nelder-Mead and
Basin Hopping for the Six-hump camel benchmark obtained
after 10000 iterations from the same 100 initial points given
to both algorithms. Horizontal and vertical error bars in-
dicate the standard deviation for NM and BH, respectively.
High and low quality optima represented by red and yellow
points, respectively. There are two red points, representing
two global optima with the same fitness value.

optima to higher quality optima becoming more probable as the
perturbation step size is increased. Our findings also showed that
the initial simplex size affects the convergence of the optimiser,
with larger values increasing the basin of attraction of the global
optima. This was consistent with previous studies [31, 32].

Future research includes using LON metrics to quantify how
well LONs derived from the Nelder-Mead algorithm can predict
the performance of population-based evolutionary optimisers (e.g.
genetic algorithms) compared with point-based methods, such as
iterated local search [5]. In addition, we will aim to extend the
analysis performed here to a broader class of benchmark prob-
lems, including higher-dimensional functions, in order to assess
the generalisability and scalability of our population-based method.
We would also like to investigate the stability of LONs for both
point-based and population-based approaches. In our limited in-
vestigation here, population-based construction tended to produce
fewer basins, implying fewer samples may be needed to generate
stable LONs. Finally, real-world applications will also be investi-
gated, focusing on computational biology models of gene regulatory
networks [2, 3], for which previous work has demonstrated the
potential utility of landscape analysis in understanding optimiser
performance [6].
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