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Abstract 14 

Accurate streamflow (Qt) prediction can provide critical information for urban hydrological 15 

management strategies such as flood mitigation, long-term water resources management, land 16 

use planning and agricultural and irrigation operations. Since the mid-20th century, Artificial 17 

Intelligence (AI) models have been used in a wide range of engineering and scientific fields, and 18 

their application has increased in the last few years. In this study, the predictive capabilities of 19 

the reduced error pruning tree (REPT) model, used both as a standalone model and within five 20 

ensemble-approaches, were evaluated to predict streamflow in the Kurkursar basin in Iran. The 21 

ensemble-approaches combined the REPT model with the bootstrap aggregation (BA), random 22 

committee (RC), random subspace (RS), additive regression (AR) and disjoint aggregating (DA) 23 

(i.e. BA-REPT, RC-REPT, RS-REPT, AR-REPT and DA-REPT). The models were developed 24 

using 15 years of daily rainfall and streamflow data for the period 23 September 1997 to 22 25 

September 2012. A set of eight different input scenarios was constructed using different 26 

combinations of the input variables to find the most effective scenario based on the linear 27 

correlation coefficient. A comprehensive suite of graphical (time-variation graph, scatter-plot, 28 

violin plot and Taylor diagram) and quantitative metrics (root mean square error (RMSE), mean 29 
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absolute error (MAE), Nash-Sutcliff efficiency (NSE), Percent of BIAS (PBIAS) and the ratio of 30 

RMSE to the standard deviation of observation (RSR)) was applied to evaluate the prediction 31 

accuracy of the six models developed. The outcomes indicated that all models performed well 32 

but the AR-REPT outperformed all the other models by rendering lower errors and higher 33 

precision across a number of statistical measures. The use of the BA, RC, RS, AR and DA 34 

models enhanced the performance of the standalone REPT model by about 26.82%, 18.91%, 35 

7.69%, 28.99% and 28.05% respectively.  36 

 37 

Keywords: Streamflow prediction, ensemble-based model, AR-REPT algorithm, Iran.  38 

 39 

1. Introduction 40 

Accurate prediction of streamflow and its patterns is vital for water resources planning and 41 

management projects. The major benefit of streamflow prediction is to reduce the impact of 42 

floods on infrastructure, property, and public health by issuing warnings for impending flood 43 

events. Moreover, streamflow prediction can provide hydrologists significant information to 44 

develop the sustainable design of water infrastructure, examine the behavior of rivers for 45 

operational purposes, water quality assessment, the estimation of water prices, and the adoption 46 

of sustainable agricultural practices (Guven, 2009; Yaseen et al., 2015). However, this is not an 47 

easy task due to its complexity, dynamic character, randomness, and non-linearity which results 48 

from the effect of the numerous physical mechanisms and characteristics involved in its 49 

generation, namely interception and stemflow, soil characteristics, catchment characteristics 50 

(topography and shape), land-use and land-cover, evapotranspiration and climate change. 51 
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Methods for streamflow prediction can be classified into short-term and long-term forecasting 52 

categories. Short-term (real-time) flood forecasting (e.g., hourly and daily) is important for the 53 

development of early warning systems (Chiang et al., 2004; Guven, 2009; Yaseen et al., 2015), 54 

while long-term forecasting (e.g., weekly, monthly, and annually) is of vital importance for the 55 

appropriate planning of reservoir management, erosion control, efficient hydro-power 56 

generation, irrigation management decisions, scheduling water releases, and many other 57 

applications.  58 

Generally, there are four main methodologies used for streamflow forecasting, namely empirical 59 

formulas, statistical models, conceptual/physically-based modeling and data-driven techniques. 60 

Empirical formulas (i.e. Creager, Fuller, and Dicken) are simple methods developed based on 61 

specific datasets and for given catchment conditions, thus, they are not accurate for use in other 62 

catchments and therefore not very popular among hydrologists. The coefficients in these 63 

equations are determined for a specific catchment and hence, they are not reliable for other 64 

catchments, particularly those located in different climates. Since the publication of the 65 

pioneering study by Box and Jenkins in 1970, the classical statistical black-box time-series 66 

models, such as Auto Regressive Moving Average (ARMA), Auto Regressive Integrated 67 

Moving Average (ARIMA), Auto Regressive Integrated Moving Average with exogenous input 68 

(ARIMAX), (simple) Linear Regression (LR), and Multiple Linear Regression (MLR) have been 69 

frequently employed for streamflow forecasting (Box and Jenkins, 1970; Salas, 1980; Wu et al., 70 

2009; Valipour et al., 2012a,b; Valipour, 2012, 2015; Valipour et al., 2013;). However, these 71 

models fail to capture the non-stationary and non-linear character of streamflow processes. 72 

Conceptual or physically-based hydrological models can be used for understanding the complex 73 

generation of runoff in a catchment. Physically-based distributed approaches, like MIKE SHE, 74 
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are developed based on pixel-scale catchment characteristics, and therefore require great effort, 75 

the inclusion of numerous hydrological variables, and therefore a large amount of input data 76 

(Costabile et al. 2012).  These models are difficult to implement due to the great volume of data 77 

required for calibration, which is especially challenging to obtain in developing countries like 78 

Iran (Yaseen et al, 2017).  79 

In recent decades, data-driven or soft computing (SC) approaches have received increasing 80 

attention among hydrologists and have been used on a wide range of hydrological applications, 81 

including streamflow forecasting, to formulate the non-linear relationships between the predictor 82 

and predicted variables. They require less input data and fewer parameters to develop the model 83 

(Carlson et al. 1970; Hipel and Mcleod 1994; Ahmed and Sarma 2007; Afan et al. 2014; Singh 84 

and Cui 2015). SC models are very successful and common tools used for prediction and 85 

forecasting due to its ability to extract patterns from historical data, which is used for the 86 

prediction of future events. They also have a non-linear and more flexible structure and the 87 

ability to predict complex phenomena with high accuracy. They generally lead to excellent 88 

results with good level of agreement between predicted and observed data when used for 89 

streamflow forecasting (Chen et al., 2015; Deo and Sahin, 2016; Huang et al., 2014; 90 

Kasiviswanathan et al., 2016; Meshgi et al., 2015; Zhang et al., 2015). Examples of such 91 

methods, that have been used in streamflow prediction, are Artificial Neural Network (ANN), 92 

Support Vector Machine (SVM), Adaptive Neuro Fuzzy Inference System (ANFIS), Genetic 93 

Algorithm (GA), Gene Expression Programming (GEP), Extreme Learning Machine (ELM), and 94 

Neuro-Wavelet Techniques (Nourani et al. 2014; Yaseen et al. 2015; Malik et al. 2020). 95 

Moreover, these are widely adopted to solve hydrological problems including rainfall and 96 
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precipitation forecasting (Nourani et al., 2009), sediment transport (Kisi et al., 2012), and 97 

groundwater modeling (Taormina et al., 2012; Tapoglou et al., 2014; French et al., 1992). 98 

ANNs, which are the approach most widely used model in hydrological applications, can be 99 

classified into two types: (1) supervised (e.g., Feed Forward Back Propagation (FFBP), Radial 100 

Basis Function (RBF), Multi-Layer Perceptron (MLP), and Generalized Regression Neural 101 

Network (GRNN)), and (2) unsupervised (e.g., Self-Organizing Map (SOM)), which has been 102 

employed in numerous studies for streamflow modeling and forecasting (Abrahart and See, 103 

2000; Allawi and El-Shafie, 2016; Bray and Han, 2004; Cigizoglu, 2005; Danandeh Mehr et al., 104 

2014; Deo and Sahin, 2016; Ghorbani et al., 2016; Hsu et al., 2002; Singh et al. 2018; Liu and 105 

Shi. 2019). Recently, the popularity of ANNs has decreased due to their low convergence speed 106 

and low generalization ability, especially when the data record is short for training purposes, 107 

and/or the range of the testing data is out of that used for training (Hooshyaripor et al. 2014), 108 

which leads to local minimum and the random initial determination of weights in each 109 

simulation. Adaptive neuro-fuzzy inference systems (ANFIS) were developed to overcome most 110 

of the limitations of ANNs, through the use of an ensemble approach (i.e. coupling ANNs with 111 

fuzzy logic). Anusree and Varghese (2016) compared the modeling performance of ANN and 112 

ANFIS for daily streamflow prediction in the Karuvannur catchment and they reported an 113 

improvement in accuracy of ANFIS over ANN, but this approach also has weaknesses. 114 

Limitations in ANFIS arise from inefficiencies when defining the weights of membership 115 

functions, which significantly affect the model’s predictive potential (Bui et al. 2016). Support 116 

vector machine (SVM) is a type of neuron based approach which has been reported to be more 117 

powerful than ANFIS and ANNs. Quej et al. (2017) applied ANFIS, ANN and SVM models for 118 

the prediction of solar radiation in the Yucatán Peninsula, México, and found that the SVM 119 
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model outperforms the other two models. The superiority of SVM over ANFIS and ANN 120 

algorithms has also been reported for streamflow prediction (Kakaei Lafdani et al., 2013; He et 121 

al., 2014).  In addition, the lack of transparency in the results is another unfavourable 122 

characteristic of some methods like the SVM, which can be tackled by adopting non-parametric 123 

techniques (Auria and Moro, 2009). SVM is also susceptible to hyper-parameter selection 124 

(Burgess, 1998; Waseem Ahmad et al., 2018). 125 

Though significant progress has been accomplished in the development and application of SC 126 

models to hydrology, researchers are still exploring novel, robust, and more reliable approaches 127 

to overcome the shortcomings of the traditional approaches. New developments in data mining 128 

as well as the recent advances in modeling capabilities of AI techniques promise to offer more 129 

reliable approaches for solving regression problems in a diverse range of scientific realms 130 

(Sharafati et al, 2019; Khosravi et al. 2019). For example,  in the field of hydrology, Random 131 

forest (RF) methods have been recently applied to predict apparent shear stress in channels 132 

(Khozani et al., 2019), random tree (RT) algorithms were used to predict nitrate and strontium in 133 

groundwater (Bui et al., 2020a) and solar radiation (Sharafati et al., 2019), Reduced Error 134 

Pruning Tree (REPTree), random committee (RC), M5P and Instance-Based K-nearest (IBK) 135 

neighbours were applied for the prediction of fluoride concentration in groundwater (Khosravi et 136 

al., 2020a), Cross-Validation Parameter Selection (CVPS) and Randomizable Filtered 137 

Classification (RFC) were used to predict water quality (Bui et al., 2020b), the Bagging 138 

Algorithm (BA) was used to predict bedload transport rates (Khosravi et al., 2020b), and the 139 

Kstar model applied to predict suspended sediment load prediction (Salih et al., 2019). In 140 

addition to the studies mentioned above, additional research have focussed in the comparison of 141 

these new the algorithms over traditional SC ones, demonstrating their superiority in several 142 
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studies across a wide range of hydrology applications. For example, Sihag et al. (2020) reported 143 

a superior performance of the RF model over the SVM and ANN for modeling infiltration 144 

processes. They showed that the RF model has a better prediction potential than the SVM and 145 

MLP models. Granata et al. (2018) found that the performance of the RF and M5P models was 146 

superior to that of the SVM model for the prediction of spring discharges in Italy.  147 

A more recent development to achieve higher prediction performance is based on the use of 148 

ensemble-based approaches, which have attracted the attention of researchers all over the world 149 

due to their flexibility and benefit of combining multiple models with well-known advantages. 150 

For example, Khosravi et al. (2020b) demonstrated an enhanced performance of an ensemble-151 

based approach by combining the RF, M5P, RT and REPT with the BA model. Bui et al. (2020b) 152 

used an ensemble-based approach by combining the BA and CVPS models with RF, M5P, RT 153 

and REPT, and found out that hybridization can improve the models’ prediction potential.  154 

In this study we explore the use of a new set of ensemble-based algorithms to investigate 155 

possible improvements in their prediction potential with respect to standard stand-alone models 156 

frequently used for streamflow prediction in the past studies. This will allow us to overcome not 157 

only the limitations of the more traditional approaches (low convergence speed, low 158 

generalization potential for short input data time series), but also enhance the performance of 159 

more advanced stand-alone models and avoid the problem of overfitting and complex tree 160 

selection. The REPT algorithm has been successfully applied in many different areas of 161 

hydrology, and has therefore been selected in the current study as the base-model for streamflow 162 

prediction in the Kurkursar catchment (Iran). The REPT algorithm integrates Reduced Error 163 

Pruning (REP) with a Decision Tree algorithm. The REP has the advantage of reducing the 164 

complexity of the tree structure without reducing the model performance, and preventing over-165 
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fitting problems. We pursue the main goal of improving prediction potential of the standalone 166 

REPT model by developing and investigating the performance of five ensemble-based 167 

algorithms, generated by combining the REPT model with the BA, random committee (RC), 168 

random subspace (RS), additive regression (AR) and disjoint aggregating (DA) algorithms. 169 

Although the BA-REPT, RC-REPT and RS-REPT have been already employed in hydrological 170 

applications, AR-REPT and DA-REPT models are new ensemble-based models which have not 171 

yet been previously used hydrology or any other geosciences, application. 172 

 173 

2- Study area 174 

The Kurkursar catchment is located in northern Iran between longitudes 51°29' and 51°42' E and 175 

latitudes 36°29' and 36°40' N, has an area of 75.495 km2 (Fig 1). The catchment’s mean altitude 176 

is about 860 m, and the overall mean slope is around 21.80%. The catchment has a skewed shape 177 

and is bounded on the north by the Caspian Sea, on the south by the Mashlak River and a portion 178 

of the Chalus catchment, and on the west by the Chalus catchment. Various geomorphological 179 

forms such as flood plains, alluvial fans, and sedimentary dams have been identified in the 180 

catchment. The region has a Mediterranean climate with average annual rainfall and streamflow 181 

of 900 mm and 1.2 m3/s, respectively. The maximum and minimum discharges are 78 and 0.002 182 

m3/s, respectively. Seventy-nine percent of the heavy precipitation events take place during 183 

November to April. The annual maximum daily rainfall occurs with a frequency of 33% in 184 

autumn, 42% in winter, and 25% in spring seasons (Rashidi et al. 2016). Temperatures during 185 

the year range from below 0°C during winter to 45°C during summer. The Kurkursar catchment 186 

is located upstream of Noshahr city, so accurate prediction of its discharge is imperative for the 187 
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establishment of meaningful flood mitigation plans for this city. Some recent disastrous flood 188 

events have caused irreparable damages to infrastructure in the study area, including bridges, 189 

rural buildings, main roads, water and gas pipelines, and the agricultural sector. 190 

 191 

Fig 1. Location of the Kurkursar River and the Hydrometry station in the catchment (after 192 

Rashidi et al. 2016) 193 

 194 

3-Methodology 195 

3.1-Data collection and preparation 196 

Data for a 15-year period (23 September 1997 to 22 September 2012), including precipitation 197 

and discharge for the Kurkursar river, were collected and compiled from the Mazandaran 198 

Meteorological Organization and regional water authority. The daily rainfall (Rt) time series data 199 

were obtained from four meteorological weather stations equipped with rainfall gauges, and 200 

streamflow (Qt) data was sourced from the Kurkursar hydrometric station situated at outlet of the 201 

Kurkursar catchment. Spatially averaged values of rainfall data for the catchment were obtained 202 

using the Thiessen polygon approach (Melesse et al. 2011) and used as an input to the model.  203 

The entire dataset was divided into two periods, the first portion comprising 70% of the data 204 

(from 23 September 1997 to 22 September 2008) was used as training dataset for model 205 

development, and the second portion including the remaining 30% of the data (from 23 206 

September 2008 to 22 September 2012) was used as validation dataset (Ayele et al. 2017; 207 

Khsoarvi et al. 2018c; Termeh et al. 2019; Nohani et al. 2019) for model evaluation purposes. 208 

Some basic statistical information on the training and validation datasets is presented in Table 1. 209 



10 
 

 210 

Table 1. Basic statistics for the training and testing datasets 211 

 212 

3.2. Different input variables combination scenarios 213 

Auto-correlation and linear correlation coefficients (r) were applied to define effective input 214 

variables for streamflow prediction. Rainfall (Rt) and streamflow (Qt) values, and their values at 215 

lag-times of 1, 2, 3 days (i.e. Rt-1, Rt-2, Rt-3 and Qt-1, Qt-2, Qt-3) were used to identify the best input 216 

variable combination. Based on the r-values, eight different input scenarios were constructed and 217 

examined (Table 2). Each scenario was constructed according to coefficient value between input 218 

and target variables. The first scenario was based on the assumption that the variable with the 219 

highest r-value is able to predict streamflow with high accuracy. Next, the variable with the 220 

second highest r-value was added to the first scenario to build the second scenario. This approach 221 

was continued until the variable with the lowest r-value was added to construct the last input 222 

scenario (Table 2). During this stage, each model was implemented using default operator 223 

values, just to determine the impact of each input scenario on the results. The r criterion was 224 

applied to determine the most effective scenario, with higher r leading to the most effective the 225 

input scenario.  226 

 227 

Table 2. Different input scenarios 228 

 229 

3.3-Determination of optimal operator values  230 
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Optimal values for the various operators were obtained through a trial and error method (Kisi et 231 

al. 2012, 2016; Khosravi et al, 2018a, Sharafati et al, 2019) using the Waikato Environment for 232 

Knowledge Analysis (WEKA 3.9) software developed by University of Waikato, New Zealand. 233 

At first each model was implemented using default values of the operators, and then a wide 234 

range of higher and lower values was examined until the optimum values for each operator was 235 

determined. The Root Mean Square Error (RMSE) metric was applied to obtain optimum 236 

operators, with lowest RMSE leading to optimum values.  237 

3.4- Description of models  238 

As mentioned in the introduction, a standalone and five ensemble-based data-mining algorithms, 239 

namely REPT, BA-REPT, RC-REPT, RS-REPT, AR-REPT and DA-REPT, were employed to 240 

model and predict streamflow at the Kurkursar River outlet using the WEKA software 3.9.  241 

3.4.1-Reduced error pruning tree (REPT) 242 

The REPT model is well known as the fastest tree learner, and it is developed as a combination 243 

of the Reduced Error Pruning (REP) and the Decision Tree (DT) learning algorithm methods. It 244 

is constructed as a decision or regression tree based on information gains or reductions in the 245 

variance (Mohamed et al., 2012). First, the DT algorithm is utilized to simplify the modeling 246 

process using the training dataset for the production of a large number of trees with various sizes. 247 

The best tree, based on the accuracy of data classification and avoids misclassification, is chosen. 248 

Then, the REP is employed to reduce the complexity of the structure of the chosen decision tree 249 

and to prevent overfitting problems (Mohamed et al., 2012). The REP algorithm is one of the 250 

simplest and most popular pruning techniques, and aims at eliminating some branches to obtain 251 
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the most accurate sub-tree through the post-pruning method (Chen et al., 2009; Esposito et al., 252 

1999: Mohamed et al. 2013) 253 

3.4.2-Boostrap aggregating (BA) 254 

The BA is known as one of the most effective ensemble methods in which repeated sampling 255 

builds different data subsets, raising the extent and diversity of component learners by training 256 

the data subsets (Opitz:1999). This model is capable of solving classification and regression 257 

problems by reducing the defects of component learners and recognizing unstable classifiers. In 258 

the algorithm, based on the core idea of BA, the training process is done through in the following 259 

main steps: (i) generating bootstrap samples randomly and independently from the original 260 

training dataset by replacing; (ii) repeating bootstrap samples several times to create a certain 261 

amount of independent datasets; (iii) determining a weak learning algorithm to train various sub-262 

datasets and obtaining the sequence of predictive functions; and (iv) voting for outcomes to 263 

select the outcome with the highest number of votes as the final result (Bauer and Kohavi, 264 

1999). BA has extensively been combined with various weak classifiers to improve many base 265 

learners, such as decision trees (Mert et al., 2014), SVMs (Pham et al., 2018), and naïve Bayes 266 

trees (Pham and Prakash, 2017). In this study, the BA has been used to train the REPT base 267 

learner for rainfall-runoff modeling. 268 

3.4.3-Random committee (RC) 269 

Random committee is a meta-algorithm, which has proven very efficient for the enhancement of 270 

the learning ability of most classifiers. This algorithm is able to construct a hybrid of base 271 

classifiers. In the present study, the final estimation of a random tree was produced through 272 

straight averaging probability prediction (Khosravi, 2018a). Although RCs use different numbers 273 

of seeds, the classifiers are created based on similar data. The algorithm in this study was applied 274 
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in 10 iterations with a number of seeds of 1 using the same parameters as those in the 275 

development of the RT model. 276 

3.4.4-Random subspace (RS) 277 

RS is a combination of a data mining and a parallel learning algorithm introduced by Ho (1998). 278 

This model is similar to the BA, which is known as a classic integrated algorithm, as it builds a 279 

decision tree using the classifier that has the highest level of precision and accuracy based on the 280 

training data (Mielniczuk and Teisseyre 2014). The only difference between RS and BA is that in 281 

the former, the training subset is created based on the original randomly selected training set 282 

(Mielniczuk and Teisseyre, 2014; Xia et al., 2015). The features of the series for each training 283 

sub-classifier in the final prediction results are obtained through a combination of voting 284 

methods (Zhang and Jia, 2007). The operation of the sub-classifiers relies on integrated learning 285 

diversity. The subcategories of RS are employed to specify the differences in the training 286 

performances of sub-classifiers and the adopted ensemble learning method is used to pool 287 

samples with various spatial specifications (Nanni and Lumini, 2008). 288 

3.4.5. Additive regression (AR) 289 

Structured additive regression (Fahrmeir et al., 2004) is a nonparametric regression method 290 

which was proposed first by Breiman and Friedman in 1985. The AR is considered as an 291 

indispensable section of the alternating conditional-expectations algorithm. This algorithm is 292 

able to provide a generalization of the generalized linear and additive models by building a 293 

restricted class of non-parametric regressions. During each iteration of the AR algorithm, the 294 

standalone model (i.e. REPT) is fit to the residuals from the former iteration. Finally during the 295 

last iteration, the final prediction is generated from adding all previous predictions together. It is 296 
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also a more flexible and interpretable predictor than the general regression. In generic notation, a 297 

brief description of the AR predictor is given by: 298 

𝐹(𝑿) = ∑ 𝛽𝑚ℎ(𝑿; 𝑎𝑚)𝑀
𝑚=0                                                                                                                     (1) 299 

where ℎ(𝑿; 𝒂𝑚) are unknown as the basic function and independent model output made by 300 

inputs 𝑿 and model parameters 𝒂𝑚 at iteration 𝑚 (𝑚 = 1, … , 𝑀 and 𝑀 is the number of 301 

iterations), 𝛽𝑚 are a set of basis coefficients at iteration 𝑚, and 𝐹(𝑿) is the AR algorithm output.  302 

The best results are achieved when the standalone and AR algorithms’ parameters (𝑎𝑚 and 𝛽𝑚) 303 

are used in a stepwise method (i.e., each set of parameters is estimated at a particular iteration). 304 

Fig 2 shows the conceptual model of developing the hybrid model by coupling AR with the 305 

standalone algorithms (here as an example, REPT). 306 

 307 

Fig 2. Conceptual model for the development of the AR hybrid algorithms (Mitchell, 1997) 308 

3.4.6. Disjoint aggregating (Dagging) 309 

The Disjoint Aggregating (Dagging) is a resampling integration and group-sampling technique 310 

that was proposed by Ting and Witten (1997). Dagging and Bagging work in a similar way but in 311 

the Dagging method, the training dataset is used for classification of several disjoint subsets by 312 

using separate samples rather than bootstrap samples (Chen et al., 2019b). In the Dagging model, 313 

the majority voting combines several classifiers to build the final prediction and improve the 314 

accuracies of the basic classifiers (Kotsianti and Kanellopoulos 2007). In order to build a robust 315 

model, the weak learners are trained on various subsets of the training set (Onan et al., 2016).  316 

 317 

3. 5.  Model evaluation and comparison 318 
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In order to evaluate the performance of each of the models developed, and to compare their 319 

efficiency, six statistical metrics, namely the coefficient of determination (R2), RMSE, Mean 320 

Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), Percentage of bias (PBIAS), and the 321 

ratio of RMSE to the standard deviation of the observations (RSR) were utilized for validation 322 

period (Table 3). 323 

 324 

Table 3. Different indicators used for streamflow (𝑄𝑡) prediction performance (𝑄𝑡
𝑜𝑏𝑠 and 𝑄𝑡

𝑝𝑟𝑒𝑑
 325 

are the measured and predicted values of 𝑄𝑡, respectively, 𝑄𝑡
𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅

is the mean predicted value of 326 

𝑄𝑡, and N is the sample size number of data) 327 

 328 

In addition to the statistical metrics, three commonly used graphical approaches, namely scatter 329 

plots, Taylor diagrams (Taylor 2001) and Violin plots were used to visually compare the 330 

performances of the models. In the scatter plot, a lower scatter of cloud points around the 1:1 line 331 

indicates higher model accuracy. The Violin plot shows the mean, median, maximum, and 332 

minimum predicted values, and similar shapes of the violin plots for the predicted and observed 333 

values indicate high model performance. This approach allows for a better evaluation of the 334 

models in terms of their accuracy for predicting extreme values. The Taylor diagram 335 

incorporates the linear correlation coefficient (r), standard deviation, and RMSE simultaneously. 336 

The advantages of this comprehensive assessment have made it a popular criterion for 337 

visualizing overall model performance (Choubin et al. 2018). 338 

4- Results and analysis 339 
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4.1- Best Input Combination 340 

Selecting the optimal input variables is the first step in developing a predictive artificial 341 

intelligence model. Also as the effectiveness of each input variable is not equal, and some of 342 

them might have a null or negative effect on the results, it is necessary to determine the 343 

effectiveness of each of the input variables. In the present study the r approach between inputs 344 

and outputs has been applied to determine the effectiveness of each input variable (Fig 3). The 345 

results reveal that rainfall values (Rt) are the most effective variables for Qt prediction (r = 0.56), 346 

followed by Qt-1 (r = 0.46), Qt-2 (r = 0.29), Rt-1 (r = 0.28), Qt-3 (r = 0.25), Rt-2 (r = 0.12) and Rt-3 347 

(r = 0.07). Accordingly, and as expected, it was found that the greater the lag-time, the lower the 348 

r value and the predictive effectiveness of the variable.   349 

 350 

Fig 3. r value between input variables and streamflow 351 

 352 

 Eight different input combinations scenarios were constructed and compared (Table 4), the 353 

effectiveness of each input combination was evaluated in the training and validation phases using 354 

the estimated r. The results of the r value during the validation phase showed that the best input 355 

combination scenario is different for every model developed. Combination No. 7 (i.e. 356 

combination of all input variables) had the highest r values and proved to be the most effective 357 

for the standalone REPT model. For all the ensemble based models, with the exception of RC-358 

REPT, the input scenario No. 8 (i.e. combination of Rt, Rt-1, and Qt-1 variables) was identified as 359 

the most effective scenario. For the RC-REPT model, combination No. 3, which is the 360 

combination of Rt, Qt-1, and Qt-2 variables, is the optimum input scenario. These results are in 361 
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agreement with the findings of variable importance using r, which showed that variables with 362 

low r are not effective for the prediction of complex phenomena like streamflow, which has also 363 

been reported in previous studies (Yaseen et al. 2017). It can be concluded that specifying the 364 

optimal value for each operator and choosing the best input variable play a decisive role in the 365 

predictive potential of each model. The results shown in Table 4 indicate that best input scenario 366 

(i.e. gray shadow) has about 18.18%, 31.86%, 29.54%, 26.19%, 32.6% and 31.18% higher 367 

predictive potential (for REPT, BA-REPT, RC-REPT, RS-REPT, AR-REPT and DA-REPT, 368 

respectively ) than the worst input scenario, and this obviously highlights the importance of the 369 

selection of the best input scenario on the results.  370 

Discrepancy between the models’ performance at this stage, results from the different 371 

computational structure of each algorithm. It shows that for the standalone REPT model to 372 

achieve high prediction potential, the input needs to involve all different variables, and that even 373 

in this case, it still has a lower performance that the ensemble-based models. From a modeling 374 

perspective, the best model should have two characteristics; (1) high performance and (2) require 375 

a lower number of input variables, as sometimes, measuring some input variables is difficult and 376 

time consuming. Thus, our result show that the standalone model (i.e. REPT) is not the best 377 

option as it involves a high number of input variables.  378 

Table 4. Efficiency of different input scenarios for the training and validation phases based on 379 

the r metric 380 

 381 

4.2- Evaluation of the developed models 382 
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After identifying the best input combination scenario and the optimal value for each operator, the 383 

performance of each of the models developed using the training dataset, was assessed using the 384 

validation dataset in the evaluation stage. The results of this evaluation were used to estimate and 385 

compare model performance (Khosravi et al 2016; 2018a.b; 2019; 2020a; Chen et al, 2019a). 386 

Time-variation graphs and scatter plots for the measured and predicted streamflow values are 387 

presented in Figure 4. These results indicate that the AR-REPT model is remarkably more 388 

accurate in capturing peak-flow values than the other models, as indicated by less scatter in the 389 

cloud points. Therefore, it has the best predictive potential for the estimation of streamflow, 390 

while the standalone REPT model, with the highest scatter in cloud points, has the worst 391 

prediction ability. Performance of the other models has an acceptable level of accuracy. 392 

Fig 4. Time-variation graph and scatter plot for the measured vs. predicted values over the 393 

validation period 394 

 395 

Figure 5 presents the results for the violin plots obtained for all models, and shows the 396 

maximum, minimum, median (Q50), first quartile (Q25), and third quartile (Q75) of the predicted 397 

Qt and the measured Qt values. It can be seen that the BA-REPT, DA-REPT and AR-REPT 398 

ensemble based models are able to predict the maximum streamflow values accurately. 399 

Maximum streamflow is the source of flooding and its prediction with high accuracy is very 400 

important for the design of flood mitigation plans. The outcomes indicate that the AR-REPT 401 

model has the higher prediction accuracy for lower streamflow values. Overall, the violin plots 402 

show that the plot corresponding to the AR-REPT ensemble based model has a closer shape to 403 

that of the plot for the measured values.  404 



19 
 

 405 

Fig 5. Violin plots for the measured and predicted streamflow values 406 

 407 

For further analysis of the efficiency of the developed models, a Taylor diagram is presented in 408 

Figure 6. This diagram confirms the superiority of the AR-REPT model compared with the other 409 

data-driven models, and that the REPT model has the lowest prediction potential. It shows that 410 

the r values obtained using measured data and the prediction results obtained using the AR-, DA- 411 

and BA- ensemble-based models vary between 0.90 and 0.95, while the r values for the 412 

remaining models vary between 0.80 and 0.90.  413 

 414 

Fig 6. Taylor diagram to visualize the performance of the models 415 

 416 

Six quantitatively statistical performance criteria to assess the performance of the developed 417 

models over the evaluation period are presented in Table 5. Based on the R2 criteria, all 418 

developed algorithms have a very good performance (Ayele et al., 2017). Since R2 is 419 

standardized for detecting the differences between the mean and variance of the measured and 420 

predicted values, and it is highly sensitive to outliers, it is not capable of evaluating the 421 

performance of the models by itself (Legates and McCabe, 1999; Shiri and Kisi, 2012), so other 422 

metrics (NSE and RSR) are used to further assess model performance. 423 

Based on the NSE and RSR metrics, REPT, RC-REPT and RS-REPT have a good performance, 424 

while the remaining algorithms have a very good prediction capability. Over all, the AR-REPT 425 
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model (R2 = 0.857, RMSE = 0.682 m3/s, MAE = 0.258 m3/s, NSE = 0.845, PBIAS = -3.150 and 426 

RSR = 0.392) outperforms all the other models, followed by DA-REPT (R2 =0.848, RMSE = 427 

0.706 m3/s, MAE = 0.274 m3/s, NSE = 0.834, PBIAS = -3.602 and RSR = 0.406), BA-REPT (R2 428 

= 0.834, RMSE = 0.730 m3/s, MAE = 0.300 m3/s, NSE = 0.820, PBIAS = -2.100 and RSR = 429 

0.420), RS-REPT (R2 = 0.790, RMSE = 0.880 m3/s, MAE = 0.350 m3/s, NSE = 0.740, PBIAS= -430 

2.800 and RSR = 0.500), RC-REPT (R2 = 0.706, RMSE = 1.000 m3/s, MAE=0.450 m3/s, 431 

NSE=0.650, PBIAS= -4.900 and RSR=0.590) and REPT (R2 =0.704, RMSE = 1.200 m3/s, MAE 432 

= 0.420 m3/s, NSE = 0.600, PBIAS = -3.300 and RSR = 0.630) (Table 5 and 6) (In Table 6, the 433 

best model gets a lower rank for each criteria).  434 

 435 

Table 5. Quantitative model evaluation for the validation phase 436 

 437 

Table 6. Model performance ranking 438 

 439 

5. Discussion 440 

Streamflow in the Kurkursar catchment is predicted in the present study through several 441 

standalone and ensemble-based machine learning algorithms. Our results show that the 442 

ensemble-based models developed have a higher performance than the standalone model. Based 443 

on the NSE metric, the BA-, RC-, RS-, AR- and DA- models enhance the performance of the 444 

standalone REPT model by about 26.82%, 18.91%, 7.69%, 28.99% and 28.05% respectively. In 445 

addition, our results show that all the models developed in this study have a reasonably good 446 

capability to predict the streamflow. The main reason is that Kurkursar catchment is located in 447 
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North of Iran, and has a Mediterranean climate and thus rainfall patterns are fairly regular, while 448 

the rainfall patterns in arid and semi-arid regions display larger temporal variable leading to 449 

more complex rainfall-runoff processes and lower predictability of streamflow patterns based on 450 

rainfall. 451 

The fact that the AR model outperforms the other models, is likely to be due to the use of the 1D 452 

smoother approach to construct a restricted class of non-parametric regression. This results in the 453 

model to be less affected by the Curse of dimensionality. The DA algorithm utilizes the majority 454 

voting approach to build the final prediction (Tama and Comuzzi, 2019), and through this, a 455 

robust and reliable prediction can be achieved by the weak learners being trained on a different 456 

subset of the training set (Onan et al., 2016). Using multiple week learners in combination, the 457 

BA has a better performance than the RC and RS ensemble-based models by reducing (1) 458 

variance and (2) over-fitting through the bootstrap procedure. In most cases, hybrid models are 459 

more flexible and can provide better prediction than individual models. Therefore, ensemble-460 

based models are more reliable and accurate, especially for predictions of complex hydrological 461 

processes like the one in the present study (Ghorbani et al., 2017; Yaseen et al., 2017, De’ath and 462 

Fabricius, 2000). 463 

Results from previous studies using SC approaches have also reported excellent model 464 

performance for streamflow prediction. For example, Kisi et al. (2012) used ANN, Gene 465 

Expression Programming (GEP), and ANFIS algorithms for streamflow modeling in Turkey and 466 

observed that GPE performed better than the other two models. The R2 values for obtained for 467 

ANN, GEP, ANFIS, and MLR were 0.97, 0.93, 0.80, and 0.70, respectively. Rajurkar et al. 468 

(2000) modelled daily flows in India using ANN hydrological models. They obtained an R2 of 469 

0.92 and NSE of 0.702 for the best ANN model. Rezaie-Balf et al. (2017) simulated rainfall-470 

javascript:void(0)
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runoff processes in the Tajan catchment in northern Iran using a tree algorithm of model tree 471 

(MT), ANN and multivariate adaptive regression splines (MARS). They concentrated on the 472 

effects of data input size, involving the number of effective input variables for rainfall-runoff 473 

processes and the number of data values in the time series, on the quality of the runoff 474 

simulation. They found that the data mining model (i.e. MT) (R2 = 0.80 and RMSE = 6.70 m3 s-475 

1) was superior to ANN (R2 = 0.78 and RMSE = 7.40 m3/s) and MARS (R2 = 0.79 and RMSE = 476 

7.47 m3/s). It is important to note that the direct comparison of different models and their 477 

prediction potential applied to datasets from different catchments is very difficult. Each 478 

catchment has different characteristics and the main processes driving streamflow generation can 479 

be very different across various catchments, so direct comparison is problematic. For example, 480 

predictions from the effective ensemble-based model used in this study resulted in an R2 of 0.85, 481 

while Kisi et al. (2012) obtained an R2 of 0.97 for streamflow prediction using an ANN model. 482 

However, as mentioned in the introduction, several studies using ANN models have reported 483 

much lower predictive performance. An important factor that affects the results in our study is 484 

that the model is used to predict short-term or real-time flows, while many of the previous 485 

studies have focused on long-term predictions. In addition, differences in algorithm structure 486 

lead to very different model behavior, which are also affected by parameter selection, nature of 487 

the amount data, data quality and length of the dataset (Asim et al. 2018). 488 

There are several sources of uncertainty in the present study such as those stemming from the 489 

analysis of a single study area; the randomized splitting of data into training and testing sets; the 490 

uncertainty in the quality of input data and also from input variable selection. Also the lack of 491 

availability of additional input variables such as evaporation, temperature, soil moisture data, etc. 492 

are the main limitation of the current study, as additional input variables are highly desirable for 493 
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streamflow prediction. As a final note, each model has its own advantages and disadvantages and 494 

they are different in terms of structure and complexity (Khosravi et al., 2018c). Different 495 

artificial intelligence models, empirical equations, and physically based models have been 496 

utilized in various studies for the simulation of hydrological processes. It is important to employ 497 

a variety of physically based models to predict the streamflow (e.g., SWAT, Wetspa, HEC-HMS, 498 

SimHyd), validate their outputs using data mining algorithms, and, ultimately, based on the 499 

characteristics of the models including complexity, data requirements, and accuracy, identify the 500 

best model for future research. Further work is needed to investigate the generalization power of 501 

these algorithms for streamflow prediction, which will include the application of the algorithms 502 

developed in this study for other catchments with similar physical and climatic conditions. Also, 503 

results can be used to generate management strategies for flooding at this particular catchment.  504 

 505 

6. Conclusions 506 

Streamflow prediction is essential for flood impact assessment, and the implementation of useful 507 

flood management plans, however, due to the non-linear and chaotic nature of streamflow 508 

generation processes, it remains a challenging task. To date, no universal guidelines have been 509 

reported for streamflow prediction. In the present study, a standalone REPT model and five 510 

ensemble-based data mining models (BA-REPT, RC-REPT, RS-REPT, DA-REPT and AR-511 

REPT) were employed to predict streamflow in the Kurkursar catchment in Iran. The main 512 

findings of the study can be summarized as follows: 513 

 Rt is the most effective variable for streamflow prediction followed by Qt-1, Qt-2, Rt-1,  514 

Qt-3, Rt-2 and Rt-3 515 
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 The greater the lag-time of each input variable, the lower its correlation coefficient and 516 

effectiveness for prediction purposes.   517 

 Due to the different structures of the models, the best input combination was not the same 518 

for all the models applied. 519 

 The AR-REPT ensemble-based model outperformed all the other models, followed by 520 

DA-REPT, BA-REPT, RC-REPT, RS-REPT and REPT. 521 

 The BA, RC, RS, AR and DA models enhance the performance of the standalone REPT 522 

model by about 26.82%, 18.91%, 7.69%, 28.99% and 28.05% respectively.  523 

  The PBIAS values showed that all the models overestimated streamflow.  524 

 The violin-plots showed that the AR-REPT and DA-REPT ensemble-based models were 525 

the best for predicting extreme streamflow values.  526 

 527 
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Figure caption 823 

Fig 1. Location of the Kurkursar River and the Hydrometry station in the catchment (after 824 

Rashidi et al. 2016) 825 

Fig 2. Conceptual model of working AR hybrid algorithms (Mitchell, 1997) 826 

Fig 3. r value between input variables and streamflow 827 

 828 

Fig 4. Time-variation graph and scatter plot for the measured vs. predicted values over the 829 

validation period 830 

Fig 5. Violin plots for the measured and predicted streamflow values 831 

Fig 6. Taylor diagram to visualize the performance of the models 832 
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Fig 2. Conceptual model of working AR hybrid algorithms (Mitchell, 1997) 840 
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Fig 3. r value between input variables and streamflow 843 
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 851 

Fig 4. Time-variation graph and scatter plot for the measured vs. predicted values over the 852 

validation period 853 

 854 

 855 

 856 

 857 

 858 

 859 

0

10

20

30

40

50

0 500 1000 1500

Measured

DA-REPT

Q
 (

m
3
/s

)

Time (day)

y = 0.9511x + 0.1031

R² = 0.848

0

10

20

30

40

50

0 10 20 30 40 50

p
re

d
ic

te
d

 Q
 (

m
3
/s

)

Measured Q (m3/s)

y = 0.956x + 0.0916

R² = 0.8575

0

10

20

30

40

50

0 10 20 30 40 50

p
re

d
ic

te
d

 Q
 (

m
3
/s

)

Measured Q (m3/s)

0

10

20

30

40

50

0 500 1000 1500

Measured

AR-REPT

Time (day)

Q
(m

3
/s

)



36 
 

 860 

Fig 5. Violin plots for the measured and predicted streamflow values 861 
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 862 

Fig 6. Taylor diagram to visualize the performance of the models 863 
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Table caption 868 

 869 

Table 1. Basic statistics for the training and testing datasets 870 

Table 2. Different input scenarios 871 

 872 

Table 3. Different indicators used for streamflow prediction (𝑄𝑡) (𝑄𝑡
𝑜𝑏𝑠 and 𝑄𝑡

𝑝𝑟𝑒𝑑
 are the 873 

measured and predicted values of 𝑄𝑡, respectively, 𝑄𝑡
𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅

is the mean predicted value of 𝑄𝑡, and N 874 

is the sample size number of data) 875 

 876 

Table 4. Efficiency of different input scenarios for the training and validation phases based on the 877 
correlation coefficient metric 878 

 879 

Table 5. Model evaluation quantitatively during validation phase 880 

 881 

Table 6. Model performance ranking 882 

 883 

 884 

 885 

 886 

Table 1. Basic statistics for the training and testing datasets 887 

 

Variables 

Training dataset  Validation dataset 

Min Max Mean Std. deviation  Min Max Mean Std. deviation 

Rainfall 5.00 149.00 3.47 11.43  0.00 147.00 3.42 10.69 

Streamflow 0.73 73.10 1.28 2.25  0.002 41.40 1.21 1.74 

 888 

 889 
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Table 2. Different input scenarios 890 

No. input combination Output 

1 Rt Qt 

2 Rt, Qt-1 Qt 

3 Rt, Qt-1, Qt-2 Qt 

4 Rt, Qt-1, Qt-2, Rt-1 Qt 

5 Rt, Qt-1, Qt-2, Rt-1, Qt-3 Qt 

6 Rt, Qt-1, Qt-2, Rt-1, Qt-3, Rt-2 Qt 

7 Rt, Qt-1, Qt-2, Rt-1, Qt-3, Rt-2, Rt-3 Qt 

8 Rt, Rt-1, Qt-1 Qt 

 891 

 892 

 893 

Table 3. Different indicators used  for streamflow prediction (𝑄𝑡) (𝑄𝑡
𝑜𝑏𝑠 and 𝑄𝑡

𝑝𝑟𝑒𝑑
 are the measured 

and predicted values of 𝑄𝑡, respectively, 𝑄𝑡
𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅

is the mean predicted value of 𝑄𝑡, and N is the sample 

size number of data) 

Equation Ref. Range Performance 

R2 = 1 − (
∑ (𝑄𝑡

𝑜𝑏𝑠 − 𝑄𝑡
𝑝𝑟𝑒𝑑

)
2

i=N
i=1

∑ (𝑄𝑡
𝑜𝑏𝑠)

2i=N
i=1

) 
Najafi and 

Ardabili (2018) 

0.7≤ R2 ≤ 0.1 

0.6 ≤ R2 ≤0.7  

0.5 ≤ R2 ≤ 0.6 

0 ≤ R2 ≤ 0.5 

 

Very good 

Good 

Satisfactory 

Unsatisfactory 

RMSE = √
1

N
∑(𝑄𝑡

𝑝𝑟𝑒𝑑
− 𝑄𝑡

𝑜𝑏𝑠)
2

i=N

i=1

 
(Najafi and 

Ardabili 2018) 

 The lower the better 

MSE =
1

N
∑(𝑄𝑡𝑖

𝑝𝑟𝑒𝑑
− 𝑄𝑡𝑖

𝑜𝑏𝑠)
2

i=N

i=1

 
(Najafi and 

Ardabili 2018) 

 The lower the better 

NSE = 1 −
∑ (𝑄𝑡

𝑝𝑟𝑒𝑑
− 𝑄𝑡

𝑜𝑏𝑠)
2i=N

i=1

∑ (𝑄𝑡
𝑝𝑟𝑒𝑑

− 𝑄𝑡
𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)

2
N
i=1

 Moriasi et  

al, 2007 

0.75 < NSE ≤ 1.00 
0.65 < NSE ≤ 0.75 

0.50 < NSE ≤ 0.65 

0.4 < NSE ≤ 0.50 
NSE ≤ 0.4 

Very good 

Good 

Satisfactory 

Acceptable 

Unsatisfactory 

PBIAS =
∑ (𝑄𝑡

𝑝𝑟𝑒𝑑
− 𝑄𝑡

𝑜𝑏𝑠)i=N
i=1

∑ 𝑄𝑡
𝑝𝑟𝑒𝑑i=N

i=1

 
Legates et  

al, 1999 

PBIAS < ±10% 

±10% ≤ PBIAS <±15% 

±15%≤ PBIAS < ±25% 

PBIAS ≥ ±25% 

Very good 

Good 

Satisfactory 

Unsatisfactory 



40 
 

RSR = √
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𝑝𝑟𝑒𝑑
− 𝑄𝑡

𝑜𝑏𝑠)
2
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2
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Gupta et al. 

1999 

0 ≤ RSR ≤ 0.50 

0.50 < RSR ≤ 0.60 
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Table 4. Efficiency of different input scenarios for the training and validation phases based on the 897 
correlation coefficient metric 898 

Input 

No. 

REPT BA-REPT RC-REPT RS-REPT AR-REPT DA-REPT 

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing 

1 0.79 0.63 0.65 0.62 0.79 0.63 0.79 0.63 0.66 0.63 0.67 0.64 

2 0.99 0.75 0.96 0.81 0.99 0.75 0.9 0.66 0.96 0.82 0.97 0.83 

3 0.99 0.73 0.95 0.84 0.99 0.88 0.99 0.75 0.95 0.85 0.96 0.85 

4 0.99 0.71 0.81 0.85 0.99 0.82 0.98 0.74 0.83 0.85 0.85 0.86 

5 0.99 0.77 0.95 0.83 0.99 0.79 0.99 0.81 0.96 0.84 0.97 0.85 

6 0.99 0.69 0.96 0.86 0.99 0.82 0.98 0.69 0.97 0.87 0.97 0.88 

7 0.99 0.74 0.96 0.86 0.99 0.8 0.87 0.82 0.97 0.87 0.98 0.88 

8 0.99 0.73 0.93 0.91 0.99 0.81 0.87 0.84 0.97 0.92 0.97 0.93 

 899 

Table 5. Model evaluation quantitatively during validation phase 900 

Models R2 RMSE (m3/s) MAE (m3/s) NSE 
PBIAS 

(%) 
RSR 

REPT 0.704 1.25 0.420 0.600 -3.300 0.630 

BA-REPT 0.834 0.73 0.300 0.820 -2.100 0.420 

RC-REPT 0.706 1.000 0.450 0.650 -4.900 0.590 

RS-REPT 0.790 0.88 0.350 0.740 -2.800 0.500 

AR-REPT 0.857 0.682 0.258 0.845 -3.150 0.392 

DA-REPT 0.848 0.706 0.274 0.834 -3.602 0.406 

 901 

Table 6. Model performance ranking 902 

Models R2 RMSE (m3/s) MAE (m3/s) NSE 
PBIAS 

(%) 
RSR Sum Rank 

REPT 6 6 5 6 4 6 33 6 

BA-REPT 3 3 3 3 1 3 16 3 
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RC-REPT 5 5 6 5 6 5 32 5 

RS-REPT 4 4 4 4 2 4 22 4 

AR-REPT 1 1 1 1 3 1 8 1 

DA-REPT 2 2 2 2 5 2 15 2 

 903 


