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Abstract With the development of heterogeneous network structure, dynamic user
requests as well as complex service types and applications scenarios, current net-
works may not accommodate the increasingly stringent requirements. As a result, the
research of the beyond fifth generation (B5G) or the sixth generation (6G) networks
has been put on the agenda. In B5G/6G networks, achieving the automatic, flexible,
and cost-effective orchestration and management of network resources is a signifi-
cant but challenging issue. Network function virtualization (NFV), as a promising
paradigm to address this issue, has received considerable attention from both indus-
try and academia. NFV leverages the virtualization technology to decouple network
functions from dedicated hardware appliances to software middleboxes or called vir-
tual network functions (VNFs) that run on the commodity servers. The demand for
a network service becomes a request for running a set of VNFs deployed on the
substrate network. The requested network service is orchestrated in the form of a
VNF-forwarding graph (VNF-FG). The problem of embedding the VNF-FG into the
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substrate network is known as VNF-FG embedding (VNF-FGE). The efficiency and
the management cost of a network are highly dependent on the optimization of VNF-
FGE. This paper mainly presents a survey on solving the VNF-FGE problem. To
this end, we present a general formulation and several objectives of the VNF-FGE
problem. In the meanwhile, we summarize its different application scenarios from
four perspectives and divide the approaches into four main categories based on the
optimization methods. The main challenges and potential future directions due to the
appearance of B5G/6G are also discussed.

Keywords B5G/6G · NFV · VNF-FGE

1 Introduction

The last few years have witnessed the sky-rocketing growth of mobile data traffic.
According to the report of International Telecommunication Union [1], the overall
mobile traffic per month will reach to 5016 EB in 2030. The fifth generation (5G)
network is gradually being deployed and would provide significant improvements
over the existing fourth generation (4G) network. However, with the development of
heterogeneous network structure, dynamic user requests as well as complex service
types and application scenarios, current networks may not accommodate the increas-
ingly stringent requirements. The researches on the beyond 5G (B5G) or the sixth
generation (6G) networks have been stimulated. You et al. [2] gave a future vision on
6G networks. It is expected to provide wider coverage, enhanced spectral/energy/cost
efficiency, better intelligence level and security, etc.

The traditional network functions (NFs) (e.g., firewall, load balancing, and intru-
sion detection system) produced by the network service suppliers generally run on
the dedicated hardware appliances. It will lead to the following problems: 1) The de-
velopment life cycle is long as the network-enabled applications are required to be
designed with high quality, high stability, and strict protocol support; 2) The flex-
ibility is poor as some specific network functions rely heavily on the specialized
hardware appliances; 3) The mutability of the demand of users makes it hard for the
dedicated hardware appliances to adapt to its frequent changes; 4) There is no uni-
fied standard for virtualization technology, which makes the network functional hard-
ware appliances produced by different manufacturers differ from each other. Network
function virtualization (NFV), as a key enabler for 5G networks, is also playing an
important role in B5G/6G networks. It provides an inspiration for designing, deploy-
ing, and managing network functions through virtualization technology and can be
recognized as a promising paradigm of next-generation network architecture due to
its open, flexible standardization and low management cost. The core technology of
NFV is to decouple network functions from dedicated hardware appliances to soft-
ware middleboxes or called virtual network functions (VNFs) that run on the com-
modity servers. Fig. 1 shows the traditional network functions and virtual network
functions (VNFs), respectively. Generally, for a given user request, more than one
NFs are demanded. These NFs can be implemented and run on virtual machines or
containers on the server by virtualization technology and can be easily acquired for
normal use without having to purchase and lease new hardware appliances.



A Survey of VNF Forwarding Graph Embedding in B5G/6G Networks 3

Message 

router

CDN

server

VoIP session 

border controller

WAN 

accelerate

Deep package 

inspection
Firewall

Carrier 

grade NAT

QoE 

monitor
IDS/IPS

Message 

router

CDN

server

Deep package 

inspection

Carrier 

grade NAT

QoE 

monitor

Firewall

WAN 

accelerate

VoIP session 

border controller

Traditional Network Function Virtual Network Function

IDS/IPS

Fig. 1 Traditional network function and virtual network function

Therefore, NFV facilitates a move towards flexible and scalable service provi-
sions. NFV-based resource allocation is one of the main challenges for the deploy-
ment of NFV for service providers. According to the article [3], NFV-based resource
allocation is carried out in three stages: 1) VNF chain composition (VNF-CC). Ser-
vice providers need to concatenate different VNFs efficiently in order to compose vir-
tual network function forwarding graphs (VNF-FGs) with respect to the customized
requirement of users; 2) VNF forwarding graph embedding (VNF-FGE). Then the
output of VNF-CC (i.e., VNF-FGs) is taken as the input of VNF-FGE process. This
stage aims to assign VNFs into appropriate locations in the underlying substrate net-
work (SN); and 3) VNF scheduling (VNF-SCH). Based on previous stages, VNF-SCH
is to schedule the VNFs to minimize the total execution time while guaranteeing the
service performance and the corresponding constraints. This paper mainly gives a
survey on VNF-FGE.

The requested service is orchestrated in the form of a VNF-FG defined by Eu-
ropean Telecommunications Standards Institute (ETSI) [4], also known as service
function chain (SFC) in Internet Engineering Task Force (IETF) [5]. SFC is simi-
lar to the VNF-FG in the IETF architecture by definition as it can be regarded as a
simplified straight chain of VNF-FG. VNF-FGE is to embed VNF-FGs into SN. Un-
der general circumstances, we transform the requirements of users for NFs into the
form of VNF-FGs or take the resulting graph generated in the stage of VNF-CC as
the beginning of VNF-FGE. VNF-FG is composed of the ordered set of VNFs with
requirements of resources (e.g., memory, bandwidth) and quality of service (QoS)
(e.g., delay, packet loss). When each link and each node of VNF-FGs are mapped to
the SN satisfying the constraints, the embedding process of VNF-FGs is terminated.

There are several existing surveys discussing the problem of VNF-FGE or SFC
deployment. In particular, Herrera et al. [3] mainly elaborated the three stages (in-
cluding VNF-FGE) of resource allocation in NFV environment as mentioned above
and analyzed the relevant pieces of works in these stages. Bhamare et al. [6] mainly
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focused on the work on the SFC deployment problem. They provided a closer look
at the current SFC architecture and gave a survey of the recent developments in SFC.
Xie et al. [7] presented a survey of current researches in SFC deployment algorithms
and several variants of SFC deployment problem. Mirjalily et al. [8] discussed the
SFC from four stages and classified the existing approaches.

However, most of the existing surveys on VNF-FGE focused on the simplified
VNF-FG (i.e., SFC) or discussed all the stages of resource allocation in the NFV
environment. They are confronted with the following limitations: 1) There are no
formulation models on VNF-FGE that have been discussed; 2) With the development
of new network architectures (e.g., B5G/6G), some complex application scenarios are
not included; 3) Some machine learning-based optimization strategies are missing in
the surveys while the artificial intelligence is widely used in the network field in
recent years [9]; 4) The most recent survey on VNF-FGE was published in 2018,
which might result in an information lag.

According to the latest research advance, we give a comprehensive survey of the
VNF-FGE problem. The main contributions of this survey are as follows:
• We mainly discuss the classification of the resources involving in the VNF-

FGE problem. Moreover, we present a general formulation and several objectives of
the VNF-FGE problem;
• We summarize different application scenarios of the VNF-FGE problem from

four perspectives;
• We divide the approaches in existing works into four categories according to

the distinct optimization methods;
•We conclude the emerging research directions on the VNF-FGE problem from

several perspectives.
The remainder of this paper is organized as follows. We formulate the VNF-FGE

problem in Section 2 and then present its different application scenarios in Section
3. We elaborate on the classification of optimization approaches of the VNF-FGE
problem in Section 4. Bringing Section 3 and Section 4 together, we give a compre-
hensive taxonomy in Section 5. Section 6 discusses the promising future directions
in the VNF-FGE field. Finally, we conclude this survey in Section 7. The list of ab-
breviations appeared in this paper is given in Table 1.

2 VNF-FGE PROBLEM FORMULATION

In this section, we firstly introduce the background of VNF-FGE in Section 2.1. Then
we give classifications for resources of VNF-FGE in Section 2.2. Finally, we present
a typical mathematical model to describe the VNF-FGE in Section 2.3.

2.1 Background of VNF-FGE

NFV is a concept of network architecture that uses virtualization technology to divide
the functions of the network node hierarchy into several functional blocks, which are



A Survey of VNF Forwarding Graph Embedding in B5G/6G Networks 5

Table 1 A List of Abbreviations

4G fourth generation
5G fifth generation
5G fifth generation
6G sixth generation
B5G beyond fifth generation
BIP binary integer programming
BSS business support system
CPU central processing unit
DBN deep belief network
DDPG deep deterministic policy gradient
DQN deep Q network
DRL deep reinforcement learning
ETSI European telecommunications standards institute
ETSI ISG NFV The ETSI industry specification group for network functions virtualization
GCN graph convolutional neural network
IETF Internet engineering task force
ILP integer linear programming
InP infrastructure provider
ISP Internet service provider
LP linear programming
MILP mixed integer linear programming
ML machine learning
MIQCP mixed integer quadratically constrained programming
NF network function
NFV NF virtualization
NFVI NFV infrastructure
NFV-MANO NFV management and orchestration
NFVO NFV orchestrator
NFV-RA NFV resource allocation
OSS operations support system
QoS quality of service
RL reinforcement learning
SN substrate network
SFC service function chain
VIM virtualized infrastructure manager
VL virtual link
VNE virtual network embedding
VNF virtual network function
VNF-CC VNF chain composition
VNF-FG VNF forwarding graph
VNF-FGE VNF-FG embedding
VNFM VNF manager
VNF-SCH VNF scheduling
VNO virtual network operator
VNS variable neighborhood search

implemented in software middleboxes and are no longer limited to hardware appli-
ances. NFV is recognized as the primary means of next-generation network architec-
ture due to its open, flexible standardization, and low management cost.

Under the organization of ETSI, some network operators have formally estab-
lished an NFV working group, namely ETSI ISG NFV. This group is dedicated to the
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realization of network virtualization requirements definition and system architecture
formulation and has proposed a general NFV network architecture [4] (shown in Fig.
2).

The NFV architecture mainly consists of three parts: NFV infrastructure (NFVI),
VNFs, and NFV management and orchestration (NFV-MANO). NFVI includes the
virtualization layer (hypervisor or container management system, such as docker and
vswitch) and physical equipment, such as off-the-shelf servers, switches, storage de-
vices, etc. NFVI is a general virtualization layer. All virtual resources should be man-
aged in a unified shared resource pool, and certain VNFs running on it should not be
restricted or treated specially. The VNFs that provide some kinds of network ser-
vices are deployed in virtual machines, containers, or bare-metal physical machines
using the infrastructures provided by NFVI. The NFV-MANO provides the overall
management and orchestration of NFV, with an upward connection to the operations
support system (OSS) or business support system (BSS) landscape. It is composed
of NFV orchestrator (NFVO), VNF manager (VNFM), and virtualized infrastructure
manager (VIM).

The management and orchestration of VNF is still a challenging task in B5G/6G
networks. First, the heterogeneous network structure, dynamic user requests as well
as complex service types and application scenarios in B5G/6G networks make the
complexity of VNF-FGEs further increased. Second, due to the upgrading of wire-
less networks, the NFV architecture and software defined networks are also evolving
[10]. The network is more likely to suffer from unexpected and unforeseen failures,
which may be challenging to handle. Third, massive terminals and personalized ser-
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vices also bring about security issues in B5G/6G networks [11]. All these make the
management and orchestration of VNF in NFVI particularly important but challeng-
ing. Therefore, the study of VNF-FGE, a type of management and orchestration of
VNF, is also a promising research field.

The VNF-FGE is similar to the virtual network embedding (VNE) problem. VNE
is a challenging resource allocation problem in the network virtualization. VNF-FGE
can be regarded as a generalization of VNE. However, the differences between them
are listed as follows:
• In VNF-FGE, the VNFs in VNF-FG may have different network functions,

while virtual nodes in VNE perform the same functions which can be deployed at
any physical nodes.
• There may be a corresponding sequential relationship between some VNFs,

namely a specific order has been predefined in VNF-FGE. Traffic needs to pass
through the corresponding VNFs in this order. However, there is no order specifi-
cations between virtual nodes in VNE.
• Sometimes, several VNFs in a VNF-FG can be host by some virtual machines

within the same server, while virtual nodes in VNE can only be placed on different
physical nodes.

2.2 VNF-FGE Resources

Multiple network service providers request resources in the form of VNF-FGs from
the Internet service provider (ISP) which manages the physical network infrastruc-
tures. There are many kinds of resources requesting by VNF-FGs. We categorize
them collectively according to their respective characteristics.

2.2.1 Node and Link Resources

As both SN and VNF-FGs are composed of nodes and links, we can divide the re-
sources into node resources and link resources. Node resources are attributes that re-
fer to servers and VNFs, such as CPU, memory, storage. The resources on the nodes
may vary depending on the type of hosted functions. For instance, a memory server
may have large storage resources, while a computationally intensive server may have
abundant CPU resources. Link resources are attributes that refer to substrate links and
virtual links (VLs), such as bandwidth, delay, and packet loss.

2.2.2 Primary and Secondary Resources

We divide the resources of nodes and links into primary and secondary resources
regarding their mutability, accessibility, and interdependency with other resources.
Primary resources are the intrinsic properties of the nodes or links themselves. These
resources are independent of the state of other nodes or links but only on their utiliza-
tion, such as central processing unit (CPU) and bandwidth. A VNF-FG can directly
request these primary resources. Secondary resources are derived attributes that refer
to nodes or links. These resources either depend on the states of their nodes or links or
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calculate from other resources, such as processing delay of a node, transmission de-
lay of a link, and packet loss probability of them all. For example, the load of CPU of
a node indicates the queue size at a router, which will influence the packet loss prob-
ability of the node. The transmission and propagation delay of physical links with the
processing and forward delay of physical nodes makes the transmission delay of a
VL.

2.2.3 Consumable and Non-Consumable Resources

Consumable resources refer to the resources that will be consumed during the map-
ping process, such as the CPU of nodes and the bandwidth of links which will be
consumed after the nodes and links have been embedded. Generally speaking, the
bandwidth consumption of links are similar to the CPU consumption of nodes, which
are fixed value. There are some VNF-FGE methods mentioning that the demanded
bandwidth of a mapped VL might change over time. Some works considered it as
a stochastic variable [12] while others appropriately shared it among different flows
[13], [14]. Studying these issues requires separate analysis and is outside the scope
of this work. In contrast with consumable resources, non-consumable resources (e.g.,
loss probability) are inherent properties in the SN, which are irrelevant to the sub-
strate resources consumed by the VNF-FG requests during the mapping process.

2.3 Mathematical Modeling

In general, the mapping process of VNF-FGs is to allocate enough resources on the
SN to each VNF and link. In this case, the resources provided by the SN correspond to
those required by VNF-FGs. For VNFs, we use many-to-one relationships to describe
the mapping between VNFs and substrate nodes. More complex for VLs, the mapping
between VLs and substrate links can be described as many-to-many relationships.

After finding the candidate substrate resources, we have to satisfy the resource
demand represented by VNF-FG. For instance, a substrate link whose bandwidth is
100 Mbit/s cannot host a VL that requests 1000 Mbit/s bandwidth. Similarly, a sub-
strate node can only host some VNF instances whose requested CPU resources are
no more than the CPU resources provided by the substrate node. When it comes to
the reliability issue, it may even need to reserve more resources. However, in the real-
world environment, the substrate resources need to be used with careful calculation
due to the strict budgeting. We need to optimize this process to embed the virtual
resources into the substrate resources in a cost-efficient manner. Therefore, the prob-
lem of VNF-FGE can be described as Fig. 3. The general VNF-FGE mathematical
modeling is shown as follows. The notations and descriptions of network model are
provided in Table 2.

2.3.1 SN

We model an SN (also named physical network) as an edge-weighted undirected
graph Gs = (Ns,Ls), where Ns denotes the set of substrate nodes of Gs and Ls denotes
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Table 2 Notations and Descriptions of Network Model

Notation Description
Gs The substrate network.
Ns The set of substrate nodes of Gs.
Ls The set of substrate links of Gs.
G f The virtual network function forwarding graph.
N f The set of virtual network functions of G f .
L f The set of virtual links of G f .
u,v Two substrate nodes.
ū, v̄ Two virtual network functions.
uv A substrate link.
ūv̄ A virtual link.
Ccpu

u ,Cmem
u ,Csto

u The CPU, memory and storage resource of node u.
Cbw

uv The bandwidth capacity of link uv.
acpu

u , amem
u , asto

u ,abw
uv The available resource ratios of node u and link uv.

Dcpu
f ,ū , Dmem

f ,ū ,Dsto
f ,ū Three main resources requested by VNF ū in VNF-FG G f .

Dbw
f ,ūv̄ The required bandwidth of VL ūv̄ in VNF-FG G f .

the set of substrate links. We denote u,v ∈ Ns as two substrate nodes, and uv ∈ Ls as a
substrate link. For substrate nodes, VNF instances which are running on the substrate
nodes are also need discussing. We denote m as a VNF instance in the set of all VNF
instances M, i.e., m ∈ M. The resources on the VNF instance are as same as node
resources. In this paper, we only discuss three main resources on the substrate nodes,
i.e., CPU, memory, and storage. They are denoted as Ccpu

u ,Cmem
u ,Csto

u of substrate
node u, respectively. For substrate links, Cbw

uv is denoted as the bandwidth of uv. The
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available CPU, memory, storage resource ratios of node u ∈ Ns and link uv ∈ Ls are
symbolized as acpu

u , amem
u , asto

u , and abw
uv respectively.

2.3.2 VNF-FG

We model each VNF-FG as an edge-weighted undirected graph G f = (N f ,L f ), where
N f denotes the set of VNFs and L f denotes the set of VLs. We denote u,v ∈ N f as
two VNFs, and ūv̄ ∈ L f as a VL. For VNFs, they mainly request three network re-
sources (e.g., CPU, memory and storage). The request for CPU, memory, and storage
resources of VNF ū in VNF-FG G f are symbolized as Dcpu

f ,ū , Dmem
f ,ū , and Dsto

f ,ū respec-
tively. We denote Dbw

f ,ūv̄ as the required bandwidth of VL ūv̄ in VNF-FG G f .

2.3.3 VNF-FGE

For the sake of description, we take a common application scenario (more details
can be seen in Section 3) that is offline, single domain for example. In this case, the
process of VNF-FGE is transformed into a mathematical model: given a set of VNF-
FGs GV NF−FG = [G1,G2, · · · ,G f , · · · ,GF ], and an SN Gs, we need to find appropriate
nodes and links in SN to embed the VNF-FGs. In this mapping process, resource
constraints need to be taken into account.

2.3.4 Resource Constraints

To serve the VNF-FG G f , its VNFs and its VLs all need to meet their resource con-
straints. For a VNF ū in the VNF-FG G f , it is successfully embedded when the cor-
responding substrate node has adequate resources. Therefore, we have:

∑
ū∈N f

Φ
u
f ,ūDcpu

f ,ū ≤ acpu
u Ccpu

u , ∀u ∈ Ns, (1)

∑
ū∈N f

Φ
u
f ,ūDmem

f ,ū ≤ amem
u Cmem

u , ∀u ∈ Ns, (2)

∑
ū∈N f

Φ
u
f ,ūDsto

f ,ū ≤ asto
u Csto

u , ∀u ∈ Ns, (3)

where Φu
f ,ū is a binary variable indicating Φ ū

f ,ū = 1 if the VNF ū in VNF-FG G f is
deployed at substrate node u, and 0 otherwise.

As for a VL ūv̄ in the VNF-FG G f , we should guarantee that the two VNF ū
and v̄ which the VL connected are embedded and the resources the VL requested are
satisfied. For these constraints, we have:

∑
ūv̄∈L f

Φ
uv
f ,ūv̄Dbw

f ,ūv̄ ≤ abw
uv Cbw

uv , ∀uv ∈ Ls, (4)

where Φuv
f ,ūv̄ is a binary variable indicating Φuv

f ,ūv̄ = 1 if the VL ūv̄ in the VNF-FG G f
is deployed at the substrate link uv, and 0 otherwise. There are also some mapping
constraints that we do not present, more detailed constraints can be seen in [15].
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2.3.5 Structural Constraints

In addition to the resource constraints, there are also some structural constraints
that need to be satisfied. For each VNF, it should be deployed on one substrate node.
Therefore, we have:

∑
ū∈N f

Φ
u
f ,ū ≤ 1, ∀ū ∈ N f . (5)

There are two constraints for the selected path. Firstly, let I(u) and O(u) denote
the sets of incoming links and outgoing links of node u. A successive substrate path
connecting two VNFs ū, v̄ of virtual link ūv̄ should be satisfied:

∑
uv∈O(u)

Φ
uv
f ,ūv̄− ∑

vu∈I(u)
Φ

vu
f ,ūv̄ = Φ

u
f ,ū−Φ

u
f ,v̄, ∀u ∈ Ns,∀ūv̄ ∈ L f . (6)

Secondly, the path mentioned above should ensure avoiding the loop. Therefore,
we have:

∑
uv∈O(u)

Φ
uv
f ,ūv̄− ∑

vu∈I(u)
Φ

vu
f ,ūv̄ ≤ 1, ∀u ∈ Ns,∀ūv̄ ∈ L f . (7)

2.3.6 Objectives

The problem of VNF-FGE tends to be described as a multi-objective optimization
problem. These objectives are always correlated and constrained. According to the
characteristics of objectives of most existing works, we can divide the objectives into
two categories. Table 3 lists the important notations and descriptions of objectives
used in this paper.

The first category is to improve the overall QoS, including minimizing the end-
to-end delay and balancing the workload.

(1) O11: Minimize the end-to-end delay. As a most commonly discussed objective
in QoS, delay is mainly defined in two ways. Agarwal et al. [16] and Wang et
al. [17] both defined the delay DEtotal

f as the delay of queuing, transmission and
processing. The queuing delay refers to the delay of VNF-FG G f in the service
request queue. The processing delay contains the inherent processing delays of
nodes and the dynamic processing delays of different VNFs (related to the traffic
rate flowing through the VNF). Therefore, the total delay of VNF-FG G f is de-
fined as the sum of queuing delay, transmission delay, inherent delay and dynamic
processing delay:

DEtotal
f = dqd

f + ∑
uv∈Ls

∑
ūv̄∈L f

Φ
uv
f ,ūv̄dtd

uvDbw
f ,ūv̄ + ∑

u∈Ns

∑
ū∈N f

Φ
u
f ,ūdid

u

+ ∑
u∈Ns

∑
ū∈N f

Φ
u
f ,ūDFK f ,ū(R f ,ū),

(8)

where dqd
f denotes the queuing delay of the VNF-FG G f , dtd

uv denotes the trans-
mission delay of the substrate link uv ∈ Ls, did

u is the inherent delay of nodes
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Table 3 Notations and Descriptions of Objectives

Notation Description
DEtotal

f The total delay of the VNF-FG G f .

dqd
f The queuing delay of the VNF-FG G f .

dtd
uv The transmission delay of the substrate link uv.

did
u The inherent delay of nodes u.

K f ,ū The category (e.g., deep package inspection) of node ū in VNF-
FG G f .

DFK f ,ū (R f ,ū) The dynamic processing delay function (related to R f ,ū) of a
VNF whose category is K f ,ū.

dld
uv The link delay of the link uv.

dnd
u The node delay of the node u.

d f d
m The VNF delay of the VNF instance m.

Acpu The average usage of CPU resources.
COtotal

f The total cost of the VNF-FG G f .
ccpu

u ,cmem
u ,csto

u The unit costs of the resource of node u.
cbw

uv The unit cost of the resource of link uv.
cdc

u The cost of deploying the VNF on the node u.
COtotal

s The total cost of the substrate network s.
csc

m The setup cost of the VNF instance m.
coc

m The operation cost of the VNF instance m.
ccc

m The unit communication cost of the VNF instance m.
Rm The traffic rate flowing though the VNF instance m.
Eu

f ,ū The node incremental energy cost of a substrate node u when
mapping a VNF ū in VNF-FG G f .

ebe
u The baseline energy of node u without any CPU load.

ece
u The unit energy cost of CPU utilization of node u.

Euv
f ,ūv̄ The link incremental energy cost of a substrate link uv when

mapping a VL ūv̄ in VNF-FG G f .
elc

uv The unit energy cost of link uv.
Ddis

f ,ūv̄ The distance of uv for mapping VL ūv̄ in VNF-FG G f .
Esc The switching cost.
Etotal

f The total energy cost of the VNF-FG G f .
PR(t) The electricity price at time-slot t.
ta, te The arriving time and expiration time of the request.
Ψr The acceptance ratio of the VNF-FG G f .
mu The amount of VNF instances on substrate node u.

u ∈ Ns, and K f ,ū denotes the category (e.g., deep package inspection) of node ū in
VNF-FG G f . R f ,ū denote the traffic rate flowing through the VNF ū in VNF-FG
G f . DFK f ,ū(R f ,ū) is the dynamic processing delay function (related to R f ,ū) of a
VNF whose category is K f ,ū.

There are also some studies (e.g., [15] and [18]) arguing that the delay on
each entity which in a path can be distinguished separately. In this way, the total
delay of VNF-FG G f is defined as the sum of link delay, node delay, and instance
delay:

DEtotal
f = ∑

uv∈Ls

∑
ūv̄∈L f

Φ
uv
f ,ūv̄dld

uv + ∑
u∈Ns

∑
ū∈N f

Φ
u
f ,ūdnd

u + ∑
m∈M

∑
ū∈N f

Φ
m
f ,ūd f d

m , (9)
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where Φm
f ,ū is a binary variable indicating Φm

f ,ū = 1 if the VNF ū in VNF-FG G f

is deployed at the VNF instance m, and 0 otherwise. dld
uv denotes the delay of the

link uv, dnd
u denotes the delay of the node u, d f d

m denotes the delay of the VNF
instance m.

Therefore, for a VNF-FGE problem, we can take the total delay of VNF-FG
G f into account to optimize the embedding process. In this way, the total delay of
VNF-FG is mainly described as two formulations. This objective is to minimize
the total delay of VNF-FG, which is shown as follows:

O11 : min DEtotal
f . (10)

(2) O12: Balance the workload. Balancing the workload often refers to preventing a
single server in ISPs from carrying too many VNFs to reduce QoS. For instance,
given a mapping decision of an optimal algorithm, a server node in the mapping
decision just meets its resource requirements while most of its adjacent nodes
have a lot of resources left over. If the workload is not considered, the node will
be put into use resulting in an inappropriate situation where the node is running at
full load while most of its adjacent nodes are idle. Therefore, the relative factors
can be weighed to prioritize the deployment of nodes with fewer used resources.
The average usage of the resources is always applied to evaluate the workload.
The resources tend to be CPU resources. Li et al. [19] defined system load bal-
ance as the variance of the physical node resource usage of all servers at a time.
Therefore, we can minimize the variance of the CPU resources to balance the
workload, which is given by:

O12 : min σ
2 = ∑

u∈Ns

((1−acpu
u )Ccpu

u −Acpu)2

|Ns|
, (11)

Acpu = ∑
u∈Ns

(1−acpu
u )Ccpu

u

|Ns|
, (12)

where Acpu denotes the average usage of CPU resources of SN.

The second category is to increase the economic gain, including minimizing the
cost, maximizing the acceptance ratio, and minimizing the number of VNF instances.

(1) O21: Minimize the cost. As the most commonly discussed objective in economic
interests, the cost is mainly defined in two ways. For the first one, they considered
minimizing the cost of each VNF-FG to minimize the total cost. Wang et al. [17]
defined the total cost COtotal

f of VNF-FG G f as deployment cost and resource
utilization cost. The deployment cost is the cost of deploying the VNFs on nodes.
The resource utilization cost includes the CPU, memory, and storage cost of the
nodes, and the bandwidth cost of the links. For the sake of simplicity, we ignore
their proposed setting that node resources are related to the flow through the node
and the category of the node. For more details, please refer to [17]. In this case, the
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total cost is the sum of resource utilization cost, including node and link resources,
and the deployment cost:

COtotal
f = ∑

u∈Ns

∑
ū∈N f

Φ
u
f ,ū(c

cpu
u Dcpu

f ,ū + cmem
u Dmem

f ,ū + csto
u Dsto

f ,ū)

+ ∑
uv∈Ls

∑
ūv̄∈L f

Φ
uv
f ,ūv̄cbw

uv Dbw
f ,ūv̄ + ∑

u∈Ns

∑
ū∈N f

Φ
u
ū cdc

u ,
(13)

where ccpu
u ,cmem

u ,csto
u denote the unit costs of the resource of node u, and cbw

uv
denotes the unit cost of the resource of link uv. cdc

u is the cost of deploying the
VNF on the node u.

For the second one, there are some works to characterize cost in detail by
dividing nodes (servers or VNF instances) into various states. In this case, mini-
mizing the total costs is achieved by minimizing the cost of the whole SN. Gu et
al. [20] argued that a VNF instance has the active state and inactive state. There-
fore, they introduced a binary variable to represent such activation status. In order
to unify the format, we denote the binary variable as following:

φm(t) =

1, if the VNF instance m is activated at time slot t,

0, otherwise.
(14)

They defined the cost COtotal
s as setup, operation and communication cost.

The setup cost is the cost of transiting a VNF instance from the inactive state into
the active state. The operation cost is the cost of running an active VNF instance,
and the communication cost is the cost of transferring the traffic flow from the
servers hosting its parent VNF instance. Therefore, the total cost is defined as the
sum of setup cost, operation cost and communication cost:

COtotal
s = ∑

m∈M
max{φm(t)−φm(t−1),0}csc

m + ∑
m∈M

φm(t)coc
m

+ ∑
m∈M

φm(t)ccc
m Rm,

(15)

where csc
m denotes the setup cost of the VNF instance m. coc

m is the operation cost
of the VNF instance m and ccc

m is the unit communication cost of the VNF instance
m. The traffic rate flowing though the VNF instance m is denoted as Rm.

Node state is also vital in energy models while energy cost is rarely modeled
in detail in the VNF-FGE problem. Here, we draw on a detailed energy modeling
from a virtual network embedding (similar to VNF-FGE) problem. More details
can be seen in [21] [22] and [23]. Su et al. [21] denoted the state of a node as an
inactive state and an active state and gave an energy cost modeling including node
incremental energy cost, link incremental energy cost, and switching cost. They
achieved the goal of minimizing the energy cost by minimizing the incremental
energy cost of mapping a request.

Many works have presented that the full-system average energy cost of a node
is approximately linear with CPU utilization [24] [25]. The energy cost of other
resources (e.g., memory and storage) can be negligible [26]. Therefore, the node
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incremental energy cost Eu
f ,ū of a substrate node u when mapping a VNF ū in

VNF-FG G f can be described as:

Eu
f ,ū =


ebe

u + ece
u Dcpu

f ,ū , if the node u is inactivated,

ece
u Dcpu

f ,ū , otherwise,
(16)

where ebe
u is the baseline energy of node u without any CPU load, and ece

u denotes
the unit energy cost of CPU utilization of node u.

As for the link incremental energy cost Euv
f ,ūv̄ of a substrate link uv when map-

ping a VL ūv̄ in VNF-FG G f , it is set to be linear with the traffic rate and the
distance of the link uv based on [27],

Euv
f ,ūv̄ = elc

uvDdis
f ,ūv̄

Dbw
f ,ūv̄

Cbw
uv

, (17)

where elc
uv is the unit energy cost of link uv, and Ddis

f ,ūv̄ denotes the distance of uv
for mapping VL ūv̄ in VNF-FG G f .

The switching cost is set to be a constant value Esc, which is a one-time energy
cost for transiting the node from the inactive state into the active state. Therefore,
the total energy cost Etotal

f can be described as the sum of node cost, link cost and
the cost of node state change:

ENtotal
f = ∑

u∈Ns

∑
ū∈N f

Φ
u
ū Eu

f ,ū

∫ te

ta
PR(t)dt

+ ∑
uv∈Ls

∑
ūv̄∈L f

Φ
uv
ūv̄ Euv

f ,ūv̄

∫ te

ta
PR(t)dt

+ ∑
u∈Ns

∑
ū∈N f

Φ
u
ū (1−φu)Esc

∫ te

ta
PR(t)dt,

(18)

where PR(t) denotes the electricity price at time-slot t. ta and te denote the ar-
riving time and expiration time of the request respectively. φu is a binary variable
indicating φu = 1 if the node is in an active state, and 0 otherwise.

Therefore, O21 may be minimizing one of the three types of cost, i.e.,

O21 : min COtotal
f or COtotal

s or ENtotal
f . (19)

(2) O22: Maximize the acceptance ratio. Many requests will arrive at the system with
different resource constraints. When a system cannot serve the request, the re-
quest will be rejected. As for an SFC, it is usually regarded as a simplified straight
chain of VNF-FG. Hence, the requesting bandwidth (always described as traffic
rate in SFC) for the VLs in an SFC is all the same while the required bandwidth
of VL in VNF-FG can be different. In this case, the acceptance ratio of SFC is al-
ways the accepted traffic rate or the ratio between the accepted traffic rate and all
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the traffic rate or the amount of SFCs arriving the system. As for VNF-FG, the ac-
ceptance ratio is always the amount of VNF-FGs that could be served. Therefore,
maximizing the acceptance ratio can be described as following:

O22 : max Ψr = ∑
G f∈GV NF−FG

φ f , (20)

where φ f is a binary variable indicating φ f = 1 if the VNF-FG G f is accepted,
and 0 otherwise.

(3) O23: Minimize the number of VNF instances mapped on the infrastructure (i.e.,
M).

O23 : min M = ∑
u∈Ns

mu, (21)

where mu denotes the amount of VNF instances on substrate node u.

3 Application Scenarios

In this section, a categorization of VNF-FGE is given from the perspective of appli-
cation scenarios. Firstly, we briefly introduce online and offline scenarios in Section
3.1, then single-domain and multi-domain scenarios are presented in Section 3.2. In
Section 3.3, centralized and distributed scenarios are discussed. Finally, we elaborate
on the dynamic and static scenarios in Section 3.4.

3.1 Offline/Online

The VNF-FGE problem can be either offline or online. In the offline scenario, VNF-
FGs are supposed to be known in advance [28–31]. For example, Cao et al. [30]
proposed two frameworks based on multi-objective genetic algorithm and improved
non-dominated sorting genetic algorithm. As the VNF-FG requests were assumed
to be known, they encoded all the node mappings in binary and iteratively carried
out selection, crossover, and mutation on the initial population to obtain the solution.
Kuo et al. [31] sorted the demand of all VNF-FGs according to the stress testing, then
each VNF-FG is deployed sequentially based on the relation between link and server
usages.

In the online scenario, VNF-FG requests could arrive and depart in the system at
any time. Particularly in the B5G/6G networks, the service requests of users are more
dynamic. So the requirement for solving VNF-FGE in an online manner is more ur-
gent, and many recent works have focused on this scenario [32–34]. For instance,
Wang et al. [34] formulated an ILP model but cannot be applied to the online sce-
nario of VNF-FGE directly. Therefore, they used a metaheuristic search method by
sacrificing the precision to obtain a near-optimal solution online. In this case, the run
time is crucial for algorithms. In the online scenario, the current VNF-FG requires
to be appropriately embedded into the SN within a reasonable time tolerance before
subsequent requests arrive.
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Fig. 4 Non-cooperative VNF-FG embedding framework under multiple domains

3.2 Single-domain/Multi-domain

In general, VNF-FGs are requested to make use of the resources of SN provided by
one ISP. In this case, the SN is provided and controlled by one operator. So the server
specifications, the virtualization technology of the virtual machine, and the virtual
network functions are of higher uniformity. It enables the embedding process of the
VNF-FG to be more concise. In most existing works [35–37], the VNF-FGE problem
is supposed to be single-domain. Jang et al. For instance, [35] formulated the problem
of embedding multiple VNF-FGs in an NFV-enabled network. They jointly consid-
ered the objective of maximizing the acceptable flow rate and minimizing the energy
cost. To this end, they transformed the multi-objective optimization problem into a
single-objective mixed integer linear programming (MILP) problem and proposed
a linear relaxation and rounding based algorithm to obtain an approximate optimal
solution.

The SNs could also be comprised of multiple domains that are controlled by dif-
ferent ISPs. We call it the multi-domain scenario. Soares et al. [38] tried to balance
the load among different domains within the constraint of the location and proposed a
strategy based on integer linear programming to tackle this problem. However, differ-
ent ISPs involved in VNF-FG would like to keep the information about their resources
confidential. Quang et al. [32] proposed a distributed framework copying the local
view of each domain orchestrator to other orchestrators resulting in a global view of
the multiple domains to obtain the global optimal VNF-FG embedding. In this case,
the information may not be confidential, not to mention the heavily increased com-
plexity. Zhang et al. [39] avoided replicating global information for building a control
channel to cooperation among the multiple domains.

For the sake of security and commercial sensitivity of each domain, Quang et
al. [40] proposed a deep reinforcement learning framework under the multi-domain
non-cooperative environment. As shown in Fig. 4, each domain has no topological
or resource information of the other domains and cannot communicate with others.
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It proposed the prices of resources to the client who demands for the VNF-FG em-
bedding and the client decides where to deploy so as to minimize its deployment
cost.

3.3 Centralized/Distributed

When the application scenario falls into the centralized one, it indicates that there will
be one entity to compute the VNF-FGE. This entity can be a dedicated machine or
a general node server. For instance, Sun et al. [41] applied reinforcement learning to
solve the VNF-FGE problem in dynamic networks. They proposed a reinforcement
learning module to output alternative paths and a load balancing module to pick the
optimal solution from them. This algorithm was always executed on a single com-
puter and could get global information about the embedding process. However, for a
single entity, it would suffer from a single point of failure. Moreover, when it comes
to the scalability issue in heterogeneous and complex B5G/6G networks, a central-
ized entity may be overwhelmed by the massive number of VNF-FGs to handle.
Conversely, under the distributed scenario, multiple entities are utilized to perform
the VNF-FGE. These entities can be some distributed participating entities or maybe
some dedicated distributed machines. Leivadeas et al. [32] split the various functions
of an SFC into a set of partitions to solve the problem. Because of the multiple en-
tities, this approach can share the workload and achieve higher scalability. However,
multiple entities need to cost additional expenses to synchronize the information. So
in this situation, a trade-off between the communication cost and the performance of
the embedding needs to be considered.

3.4 Static/Dynamic

Most existing papers [30,42,43] are based on static VNF-FGs to solve the VNF-FGE
problem. For example, Li et al. [43] proposed a merge-split viterbi algorithm to solve
the static VNF-FGE problem. They found a basic global solution and continuously
optimized this solution through the improvement procedures to approximate the opti-
mum. The VNF-FGs stay static once they arrive at the system and do not readjust the
mapping positions and requesting resources of the VNFs and the VLs in VNF-FGs
after embedding. Without considering the possibility of recomposing and remapping
of VNF-FGs, the VNF-FGE problem may obtain a feasible but non-adaptive strategy.
In the B5G/6G environment, the wider network coverage and lower network latency
render more and more users access their services anytime and anywhere. On the one
hand, the VNF-FG requests from users may be more dynamic. In this case, the dy-
namic characteristic is mainly embodied in the change of accessing positions or the
structure of VNF-FG. Particulary, the varying structure of VNF-FG can be attributed
to the changing service type in which several VNFs need recomposition or the dy-
namic traffic requirement over time [44,45]. For example, Pei et al. [18] considered
the dynamic network load and proposed a VNF placement algorithm based on dou-
ble deep Q network. On the other hand, the deployment of the previously embedded
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Fig. 5 Example on dynamic VNF-FG deployment and readjustment

VNF-FGs may need to make some adjustments for some reasons (e.g., server failure
or efficiency improvement). Therefore, the deployment of VNF-FG may need to be
dynamic and adaptive in the above settings. As shown in Fig. 5, a VNF-FG is sim-
plified as a request of two VNFs connected by one VLs and each server is assumed
to be used as an access point (i.e., wired or wireless) for the users. Fig. 5(a) shows a
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VNF-FG deployment decision at the previous service time, where User1 accesses the
network from Server1. The service provider deploys a VNF-1 on Server1 and VNF-2
on Server5. It then finds that a new User2 joins at Server2 and requests a VNF-FG
as VNF-1 to VNF-3, and User1 changes its access point to Server2. Hence, as shown
in Fig. 5(b), the service provider decides to migrate the VNF-1 to Server2 where it
can be efficiently shared by User1 and User2, and deploys a VNF-3 on Server3 for
User2.

It indicates that solving the VNF-FGE problem dynamically is a noteworthy is-
sue. Liu et al. [46] mainly focused on solving the first type of problem (i.e., the
dynamic requests of users). They proposed a column generation based algorithm to
solve the dynamic VNF-FGs deployment and readjustment problem to seek a trade-
off between the resource consumption and operational overhead. Tajiki et al. [33] had
considered both of these dynamics. They presented a resource allocation architecture
that divided the mapping process into several processes to handle the dynamics sep-
arately.

4 VNF-FGE Optimization Approaches

In this section, we focus on the optimization approaches of VNF-FGE in the exist-
ing works. Firstly, we introduce the exact approaches in Section 4.1, and then the
heuristics-based approaches are presented in Section 4.2. Afterwards, we give the de-
scription of metaheuristics-based approaches in Section 4.3. In the end, due to the
rapid development of machine learning (ML), it is expected that 6G networks will
have much higher intelligence than their predecessors. So we elaborate on the ML-
based approaches in Section 4.4.

4.1 Exact Approaches

There are several works that utilize the exact approaches to obtain the optimal so-
lution for small instances of the problem. We can divide these works into different
categories according to their mathematical model. The commonly used mathematical
models are integer linear programming (ILP) [28,36,47–52], binary integer program-
ming (BIP) [53], mixed integer linear programming (MILP) [54–57] and mixed in-
teger quadratically constrained programming (MIQCP) [58]. These approaches usu-
ally employ open source solvers (lpsolver) or commercial solvers (e.g., IBM ILOG
CPLEX optimization) to calculate the optimal embedding result.

Soualah et. al. [36] formulated the VNF-FGE problem as an ILP model to maxi-
mize resource usage. Mijumbi et. al. [53] modeled the VNF-FGE as a BIP problem
with the objective to minimize the cost. Marotta et. al. [54] modeled the VNF place-
ment and routing problem as a MILP to minimize the power consumption of NFV
infrastructure. Mehraghdam et. al. [58] modeled the VNF-FGE problem as a MIQCP
problem with the objective of maximizing remaining data rate and minimizing total
latency over all paths. More details of these exact approaches can be seen in Table 4.

Although the exact approaches can always obtain the optimal solution, they can
only be solved in a small-scale network scenario. When it comes to a network with
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Table 4 Exact Optimization-Based Approaches

Method Reference Contribution

LP [59] Jang et al. (2016)
Determined the amount of flows assigned to each
link and VNF instance to efficiently utilize the
network resource.

ILP

[28] Li et al. (2015) Considered hardware consumption.
[36] Soualah et al. (2018) Considered multiple criteria.
[47] Bari et al. (2015) Added a pseudo-switch to simplify the constraint.
[48] Luizelli et al. (2015) Pruned the search space to reduce complexity.
[49] Moens et al. (2014) Firstly formalized as an optimization problem.

[50] Riggio et al. (2015)
Firstly formulated the VNF placement problem
for radio access networks.

[51] Sahhaf et al. (2015)
Applied service decompositions to refine abstract
network functions.

[52] Jahromi et al. (2018) Considered the reuses and migrations.

BIP [53] Mijumbi et al. (2016)
Traded solution simplicity and enhanced compu-
tation time for better resource management.

MILP

[54] Addis et al. (2015)
Present an analysis on egacy traffic engineering
(TE) ISP goals and novel combined TE-NFV
goals.

[55] Marotta et al. (2016)
Considered uncertainty on the VNF resource de-
mands.

[56] Lin et al. (2016)

Firstly provided a techno-economic analysis on
a consolidated design and provision scheme for
VNF instance allocation and traffic routing in op-
tical networks.

[57] Ghaznavi et al. (2016)
Deployed the VNF-FG in a distributed and re-
source efficient manner.

MIQCP [58] Mehraghdam et al. (2014)
Formalized with respect to data rate, number of
used network nodes, and latency.

hundreds or even more nodes and links, these approaches are computationally prohib-
ited. Bari et al. [47] applied CPLEX to solve their ILP model in two types of networks
(i.e., Internet2 research network (12 nodes, 15 links), and a university data center net-
work (23 nodes, 42 links).). The average execution time of CPLEX in the data center
is approximately 45 times the average execution time of CPLEX in Internet2.

4.2 Heuristics-Based Approaches

A variety of heuristic-based approaches are proposed in the existing works, which are
usually designed based on the experience or whimsical ideas of the authors. Heuristic-
based algorithms usually leverage some tricks to reduce the search space. These so-
lutions are generally effective and could be implemented in real scenarios.

There are some studies [29,43,47,44,60] employing a multi-stage graph algo-
rithm to solve the VNF-FGE problem. For example, Tastevin et al. [29] modeled
the nodes of the service function chain and their relationships as a multi-level graph.
They implemented the Viterbi algorithm on this multi-stage graph to obtain the op-
timal deployment of the VNF-FG. Li et al. [43] improved the Viterbi algorithm by
merging and splitting the VNF instance which can take full advantage of the substrate
resources. There are also some works [16,31–33,35,61,62] focusing on applying the
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Table 5 Heuristics-Based Approaches

Method Reference Contribution

Multi-stage graph

[29] Tastevin et al. (2017) Aimed at being easily extensible.

[43] Li et al. (2018) Did not take the iterative deploy-
ment strategy.

[44] Pei et al. (2019) Dynamically adjusted the VNF in-
stances.

[60] Khebbache et al. (2017) Added a fictitious arc for VNF-FG
to transform the problem.

Relaxation

[16] Agarwal et al. (2019) Decoupled the problem to reduce
the complexity.

[31] Kuo et al. (2018) Proposed a stress test to find a
proper link and server relation.

[32] Quang et al. (2019) Proposed a centralized and decen-
tralized algorithm.

[33] Tajiki et al. (2019) Defined various scenarios and dif-
ferent heuristic algorithms.

[35] Jang et al. (2017) Applied a weakly pareto-optimal
solutions to the problem.

[61] Tajiki et al. (2018) Introduced an adaptive approach.

[62] Jia et al. (2018) Exploited a software defined time
evolving graph.

Dynamic programming [63] Ishigaki et al. (2019) Introduced joint correlation-aware
VNFs.

Minimum k-cut [64] Yang et al. (2016) Defined a metric to quantize traffic
intensity and dependency.

Graph partitioning [65] Leivadeas et al. (2017) Proposed a graph partitioning algo-
rithm.

relaxation method to solve the VNF-FGE problem. Agarwal et al. [16] converted a
non-convex problem into a convex problem by replacing some variables to get some
feasible solutions for finding an approximate optimal solution. Quang et al. [32] re-
laxed the complex model to get a feasible solution as the approximate optimal solu-
tion to the problem. Other works [63–65] proposed algorithms based on graph theory
or dynamic programming to solve the problem. Ishigaki et al. [63] partitioned the
correlation of VNFs and designed an algorithm based on dynamic programming to
map VNFs into SN. More details of these heuristic-based approaches can be seen in
Table 5.

4.3 Metaheuristics-Based Approaches

Metaheuristic algorithm is an improvement of the heuristic algorithm, which com-
bines the randomized algorithm and local search algorithm. It mainly includes Tabu
search algorithm, simulated annealing algorithm, genetic algorithm, particle swarm
optimization algorithm, artificial fish swarms algorithm, etc.

Genetic algorithm is a widely adopted method to address the VNF-FGE problem
[30,42,66,67]. Kim et al. [66] firstly computed the shortest path and then mapped
VNF-FG applying genetic algorithm with the objective of minimizing energy con-
sumption. Khebbache et al. [67] proposed a non-dominated sorting genetic algorithm-
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Table 6 Metaheuristics-Based Approaches

Method Reference Contribution

Genetic algorithm

[30] Cao et al. (2017)
Proposed a greedy non-dominated sorting
genetic algorithm.

[42] Ruiz et al. (2020)
Jointly solved the problems of VNF place-
ment, VNF chaining and virtual topology de-
sign.

[66] Kim et al. (2017)
Rearranged the locations or reconfigure the
paths.

[67] Khebbache et al. (2018) Coped with problem for large instances.

Tabu Search [34] Wang,et al. (2017)
Considered the total bandwidth consump-
tion.

VNS [68] Luizelli et al. (2017)
Combined mathematical programming and a
meta-heuristic method.

II. It could achieve a Pareto optimal solution. These works demonstrated that the
application of genetic algorithms could be alternatives to the combinatorial optimiza-
tion problem which could provide various high-quality mapping solutions with low-
complexity.

Other literature on metaheuristic-based algorithms is scattered. Wang et al. [34]
sacrificed part of the accuracy to get an approximate optimal solution based on Tabu
search. Li et al. [28] developed a simulated annealing algorithm to solve the prob-
lems. Luizelli et al. [68] combined variable neighborhood search (VNS) with math-
ematical programming to broaden the exploration of the space to obtain decent solu-
tions. Table 6 shows more details of these metaheuristic-based approaches.

The generality of metaheuristic algorithms enables them to perform well when
facing variants of the VNF-FGE problem. Unlike heuristic-based algorithms, even
the constraints and objectives have changed, most of these metaheuristic-based algo-
rithms could adjust to adapt to the variants of the problem.

4.4 Machine Learning-Based Approaches

The application of ML in the VNF-FG placement problem is mainly based on rein-
forcement learning (RL) [69]. For instance, Kim et al. [70] balanced the workload
on the node by rewarding the action of deploying VNFs on nodes with low resource
used. Sun et al. [41] used an RL algorithm called Q-learning to record the rewards
and strategies in a matrix. In RL, a learning agent interacts with its environment to
get some information (i.e., variation in traffic type, network configuration). The agent
performs actions, observes the rewards or penalties, and learns to perform the optimal
action for each state [71]. Thus, a set of state-action-rewards tuples will be generated
by RL for training.

Because of the difficulty in dealing with the large-scale action space of the VNF-
FGE problem, a deep neural network is applied into the RL, forming a deep rein-
forcement learning (DRL) framework to assist in solving the VNF-FGE problem. A
number of works [17,18,20,37,40,72–74] utilized or improved the DRL algorithms
such as deep deterministic policy gradient (DDPG) and deep Q network (DQN) al-
gorithms to solve the VNF-FGE problem. Quang et al. [37] modelled the VNF-FGE
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Table 7 Machine Learning-Based Approaches

Method Reference Contribution

DBN
[15] Pei et al. (2020)

Designed two networks based on DBN to respectively
solve VNF selection and chaining problem.

[75] Pei et al. (2018)
Proposed a deep learning-based strategy based on
DBN.

Q-learning [41] Sun et al. (2018) Proposed optimized Q-learning training algorithm.
[70] Kim et al. (2017) Constructed the entire problem as an RL model.

DRL-DDPG

[17] Wang et al. (2019)
Considered the resource consumption cost and ser-
vice delay.

[20] Gu et al. (2019)
Firstly applied DRL for joint optimization of VNF or-
chestration and flow scheduling.

[37] Quang et al. (2019) Enhanced exploration of the DDPG.

[40] Quang et al. (2019)
Considered VNF-FG deployment over non-
cooperative multiple domains.

[72] Quang et al. (2020) Increased the number of critic networks in DDPG.

[74] Gu et al. (2020)
Model-assisted DRL framework to accelerate the con-
vergence.

DRL-DQN [18] Pei et al. (2020)
Considered VNF placement cost, VNF running cost,
and penalty of SFCs rejection.

[73] Pan et al. (2020) Employed GCN to approximate the value function.

problem as a Markov decision process [71] and formulated the descriptions of VNF-
FGs as the states, the mapping of a VNF-FG and the SN as the actions, and the
acceptance ratio as the reward. They improved the DDPG with a heuristic algorithm
to explore the action space more efficiently and used multiple critic network method
to accelerate the learning process. Pan et al. [73] first utilized a graph convolutional
neural network (GCN) to approximate the value function in DRL framework. Gu et
al. [74] proposed a model-assisted DRL framework for DDPG to solve the VNF-FGE
problem. This framework can be built upon any DRL algorithms to guide more ef-
ficient training by auxiliary information. The evaluation result demonstrated its high
performance in terms of convergence speed, performance, and efficiency. Pei et al.
[18] formulated the problem of VNF-FGE as a BIP model with the objective of mini-
mizing the cost, which took the VNF placement cost, VNFI running cost, and penalty
of SFCs rejection into account. They proposed an algorithm based on double DQN
to intelligently and efficiently solve the problem.

There are also some researches applying other ML methods to address the prob-
lem. Pei et al. [75] applied a deep belief network (DBN) to abstract and learn the
features. Their subsequent work [15] improved the algorithm by designing two types
of DBN networks. More details of the papers can be seen in Table 7.

5 Taxonomy of VNF-FGE Approaches

In this section, combining the classifications in the previous three sections, we give
a comprehensive taxonomy of VNF-FGE approaches in Table 8. The first column
provides the optimization approaches and the second column presents the references
of papers. The third column provides the information about the application scenario
which is described as: [On|Off]/[S|M]/[C|D]/[St|Dy]. On and Off denote the online
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Table 8 Taxonomy of VNF-FGE Approaches

Optimi-
zation Reference Category Objective Execution time

Exact

[59] Jang et al. (2016) On/S/C/St O21 Not mentioned

[49] Moens et al. (2014) On/S/C/St O21
Affordable for
small scale

[52] Jahromi et al. (2018) On/S/C/Dy O21
Affordable for
small scale

[55] Marotta et al. (2016) On/S/C/St O21 Not mentioned

[58] Mehraghdam et al. (2014) On/S/C/St O21 and O22
Affordable for
small scale

Heuristic

[16] Agarwal et al. (2019) On/S/C/St O11 Not mentioned
[31] Kuo et al. (2019) Off/S/C/Dy O22 Affordable

[35] Jang et al. (2017) On/S/C/Dy O21 and O22
In polynomial
time

[43] Li et al. (2018) Off/S/C/St O21 Affordable
[44] Pei et al. (2019) On/S/C/Dy O11andO21 Affordable

[60] Khebbache et al. (2017) On/S/C/St O21
In polynomial
time

[63] Ishigaki et al. (2019) On/S/C/St O22 Not mentioned
[64] Yang et al. (2016) On/S/C/St O21 Not mentioned
[65] Leivadeas et al. (2017) Off/S/D/St O21 Affordable

Exact and
heuristic

[29] Tastevin et al. (2017) Off/S/C/St O21 Affordable

[32] Quang et al. (2019)
On/(S/M)
/(C/D)/Dy O21 and O22

In polynomial
time

[33] Tajiki et al. (2019)
(On/Off)/S
/C/(St/Dy) O21 Affordable

[36] Soualah et al. (2018) On/S/C/Dy O21 Unaffordable
[43] Li et al. (2018) Off/S/C/St O21 Affordable
[47] Bari et al. (2015) On/S/C/St O21 Affordable
[48] Luizelli et al. (2015) On/S/C/St O23 Affordable
[50] Riggio et al. (2015) Off/S/C/St O21 Affordable
[51] Sahhaf et al. (2015) On/S/C/St O21 Affordable
[53] Mijumbi et al. (2016) Off/S/C/St O11 and O21 Affordable
[54] Addis et al. (2015) Off/S/C/St O21 and O23 Affordable
[56] Lin et al. (2016) On/S/C/St O21 Affordable
[57] Ghaznavi et al. (2016) Off/S/C/St O21 Not mentioned

[61] Tajiki et al. (2018) On/S/C/Dy O21
In polynomial
time

[62] Jia et al. (2018) On/S/C/Dy O21
In polynomial
time

Exact
and
meta-
heuristic

[28] Li et al. (2015) Off/S/C/St O21 Affordable

Meta-
heuristic

[30] Cao et al. (2017) Off/S/C/St O21 Not mentioned
[34] Wang,et al. (2017) On/S/C/St O21 and O22 Not mentioned
[42] Ruiz et al. (2020) Off/S/C/St O22 Not mentioned
[66] Kim et al. (2017) On/S/C/Dy O21 Not mentioned
[67] Khebbache et al. (2018) On/S/C/St O21 Not mentioned

[68] Luizelli et al. (2017) On/S/C/St O23

In non-
polynomial
and polynomial
time

ML

[15] Pei et al. (2020) On/S/C/St O11 In short time

[17] Wang et al. (2019) On/S/C/St O11 and O21 Not mentioned
[18] Pei et al. (2020) On/S/C/Dy O21 In short time
[20] Gu et al. (2019) On/S/C/Dy O21 Affordable
[37] Quang et al. (2019) On/S/C/St O22 Affordable
[40] Quang et al. (2019) On/M/D/St O21 Not mentioned

[41] Sun et al. (2018)
On/S/

(C/D)/Dy O22 In short time

[70] Kim et al. (2017) On/S/C/Dy O12 Not mentioned
[72] Quang et al. (2020) On/S/C/St O22 Affordable
[73] Pan et al. (2020) On/S/C/St O21 Not mentioned
[74] Gu et al. (2020) On/S/C/St O21 Affordable
[75] Pei et al. (2018) On/S/C/St O11 In short time
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and offline respectively, S and M denote whether the problem is solved under the
single-domain or the multi-domain environment. C and D denote whether the algo-
rithm is centralized or distributed. St and Dy denote the static and dynamic respec-
tively. The fourth column provides the optimization objectives mentioned in the Sec-
tion 2.3.6. As B5G/6G networks pursue the low-latency service, we add the execution
times of algorithms in the last column.

6 EMERGING RESEARCH CHALLENGES

In order to meet more complex and personalized requirements of users in B5G/6G
networks, VNF-FGE problem is also confronted with some new challenges. In this
section, we summarize some research directions that may be promising in the future.
Firstly, we introduce the coordination of NFV-RA stages in Section 6.1. We offer
several new objectives in Section 6.2. We present a further discussion of distributed
VNF-FGE in Section 6.3. We give a new direction in prediction of VNF-FGs in Sec-
tion 6.4. In the end, due to the rapid development of artificial intelligence, applying
them into the network optimization is also a prospective research direction, which is
elaborated in Section 6.5.

6.1 Coordination of NFV-RA Stages

As described in Section 1, NFV-RA can be carried out in three stages: VNF-CC,
VNF-FGE, and VNF-SCH. In this paper, we mainly focus on VNF-FGE. However,
with the gradual deepening of VNF-FGE research, there is a certain relevance among
these stages, and a better embedding performance can be obtained by considering
them together. At present, there are some works [76–79] have been devoted to solving
the VNF-FGE problem with the VNF-CC or VNF-SCH coordination. These works
can achieve good results. However, few studies have combined all these stages, which
might be an excellent potential for research in this area.

6.2 New Objectives

6.2.1 Energy-aware Embedding

In B5G/6G networks, global coverage will lead to the more widespread utilization of
cloud servers and virtualized radio access networks, which highlights the energy con-
sumption issue. The high energy consumption means that the infrastructure providers
have to pay more for electricity and more taxes on the emitted carbon dioxide. There-
fore, studying an energy-aware VNF-FGE is meaningful. Several works are trying to
solve this problem from different perspectives. For example, Tajiki et al. [33] pro-
vided an energy consumption model considering three different modes of the server:
off, on-idle and on-active. Eramo et al. [80] proposed a strategy to reduce the en-
ergy consumption by reconfiguring some VNF instances and turn off the unoccupied
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servers during idle hours. Therefore, energy-aware VNF-FGE is still a potential re-
search direction in the future.

6.2.2 Security-aware Embedding

Due to the introduction of virtualization layer into the network architecture, secu-
rity issue arise. In B5G/6G networks, diverse service requirements (e.g., online pay-
ment, video conferencing, online gaming) are translated to fine-grained security lev-
els. Security-aware embedding is bidirectional. For a virtual network operator (VNO)
who rents underlying infrastructures from infrastructure providers (InPs) for VNF-
FGs, the VNFs can be deployed on the substrate infrastructures owned by different
InPs. VNO hope to choose the hardware facilities of InPs with high security. Simi-
larly, an InP can also host network service requests from multiple VNOs. The InPs
also intend to select VNOs with high security level to operate the network so that
its infrastructure is not compromised. Therefore, there is a need to avoid the embed-
ding that will increase the risk of security for each of stakeholders (i.e., VNO, InP).
Very few works have focused on this direction. Li et al. [81] proposed an automatic
algorithm based on Q-learning to choose appropriate security SFCs with various re-
quirements when taking security performance, service quality, deployment cost, and
network function diversity into consideration. So how to efficiently solve the VNF-
FGE based on the security demands of VNOs and InPs’ security policies without
sacrificing the QoS and revenue is still an open issue.

6.2.3 Reliability-aware Embedding

In B5G/6G networks, due to the growing complexity of NFV-MANO, the incidence
of unexpected failures in the network increases. VNFs suffer from various types of
failures in different aspects, such as malicious attacks, software, and hardware fail-
ures. Failure of VNFs can result in interruptions of network service. Service relia-
bility refers to the probability that the service has not failed over a specific period
[82]. Therefore, we should pay attention to the reliability problem in the VNF-FGE.
The general way to improve the reliability of the network services is to provide re-
dundant configuration and replace the failed function with the backup VNF. Khezri
et al. [83] introduced an algorithm based on DQN for reliability-aware deployment
of VNFs. They focused on the recovery order of the servers, considering the number
of functions available during the recovery process. Alahmad et al. [84] modeled the
reliability requirements of network services and proposed an optimized deployment
strategy from reliability perspectives of network service. Although several studies
have worked on this issue, reliability-aware embedding is still a crucial direction.

6.3 Distributed VNF-FGE

The problem of VNF-FGE can be tackled in either a centralized or distributed man-
ner. In a centralized approach, there is only one entity to compute the optimal solution
for embedding. Therefore, a centralized entity is too fragile that it will suffer from
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the single point failure and can not deal with the scalability issue in large networks.
With the rise of massive terminals and mobile edge computing paradigm, distributed
computing is also on the rise. The distributed approaches for solving the VNF-FGE
problem can be divided into two branches: 1) There are multiple entities responsible
for the embedding in a single domain. Leivadeas et al. [65] formulated the deploy-
ment of the VNFs of an SFC as a partitioning game, found the Nash equilibrium for
the particular game, and worked out the relationship between the Nash equilibrium
and the optimal partitioning; 2) The second branch is utilizing multiple entities to
implement the embedding in multiple domains. Hang et al. [39] adopted resource
orchestrators to manage the physical nodes and links. Each resource orchestrator is
associated with a network domain-orchestrators communicated by control channels
to compute an SFC request. For the distributed approaches in VNF-FGE, several po-
tential directions such as federated learning [85] and game-theoretical formulation
occur when considering the privacy issue and selfish stakeholders.

6.4 The Prediction of VNF-FGs

Many works have focused on the VNF-FGE from the theoretical perspective and
evaluated the algorithms based on the synthetic data. The research on real-world data
is rarely reported. Particularly, the prediction of VNF-FGs (e.g., topology, resource
requirement, traffic profile) could help the InPs allocate resources in a coarse-grained
manner in advance. Mijumbi et al. [86] proposed a prediction approach with the in-
sight of obtaining the constraints of requests in advance. It will avoid system outages
and QoS degradation effectively. Graphic neural network [87] was employed to pre-
dict the VNFs requirements. VNFs are formulated as two parametric functions which
are implemented by feedforward neural networks. When the VNF-FG is large, this
approach might need a large number of storage resources. So there is still some space
to seek a trade-off between prediction accuracy and resources (i.e., computing, stor-
age) consumption.

6.5 Artificial Intelligence for Optimization

The current research on artificial intelligence for solving problems in the network
field is mainly based on DRL. These DRL algorithms include DQN, DDPG, etc.
DRL means that agents learn to make decisions in a “trial and error” way. Rewards
are obtained through interaction with the environment to guide behaviors. The goal
is to maximize rewards for agents. This learning insight has shown the potential of
solving the VNF-FGE problem. However, how to reduce the scale of action space
and prevent lagging feedback of reward are still urgent issues.

In addition, other ML methods such as Hopfield networks [88], Boltzmann ma-
chines [15], pointer networks [89] and graph neural network [73] have also be ap-
plied to the VNF-FGE problem. These neural networks are capable of capturing the
changes over time or the structural attributes of SN and VNF-FGs. However, figuring
out the optimal parameter setting is a time-consuming task. Therefore, studying the
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method for automatically setting the optimal parameters for ML methods is also an
interesting topic.

7 Conclusion

As the indispensable core technology in B5G/6G networks, NFV will absorb the at-
tention of industry and academic increasingly. By decoupling network functions from
dedicated hardware appliances, NFV could enhance the service flexibility and reduce
the management cost. Resource allocation plays a crucial role in guaranteeing the
performance of NFV-based service. As a pivotal process of resource allocation in
NFV, VNF-FGE has become a noteworthy research direction. We have presented a
comprehensive survey of VNF-FGE in this paper. A general formulation and several
objectives have been firstly discussed. Then we have presented different application
scenarios from four dimensions (online/offline, single-domain/multi-domain, central-
ized/distributed and static/dynamic). We also have divided the approaches into four
main categories (exact, heuristic-based, metaheuristic-based and ML-based) accord-
ing to distinct optimization methods. Finally, we have discussed the challenging and
potential research directions of VNF-FGE in the B5G/6G networks.
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