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A CRYSTALLINE INCARNATION OF BERTHELOT’S CONJECTURE
AND KUNNETH FORMULA FOR ISOCRYSTALS

VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

ABSTRACT. Berthelot’s conjecture predicts that under a proper and smooth morphism of
schemes in characteristic p, the higher direct images of an overconvergent F-isocrystal are
overconvergent F-isocrystals. In this paper we prove that this is true for crystals up to
isogeny. As an application we prove the Kiinneth formula for the crystalline fundamental
group scheme.

INTRODUCTION

One of the expectations for a good cohomology theory for schemes is that there exists a
pushforward functor f, associated to a proper and smooth morphism f: X — S such that
RIf, (for ¢ = 0) sends a coefficient for the cohomology on X to a coefficient for the cohomology
on S. This expectation is reality in various contexts.

Let k be a field of characteristic 0, f: X — S be a proper and smooth morphism between
two k-varieties, and let £ be a module with integrable connection on X; then the relative
de Rham cohomology RYf.(£) comes endowed with an integrable connection, the Gauss—
Manin connection (see for example | I, [ ]), so that it is indeed a coefficient for the
cohomology on S.

When k is a field of characteristic p > 0, f: X — S is a proper and smooth morphism
between two k-varieties, and £ an f-adic lisse sheaf (¢ # p), then R7f,(€) is an f-adic lisse

sheaf (| D).

As for the case ¢ = p, the expectation for an overconvergent F-isocrystal £ is known as
Berthelot’s conjecture (| , (4.3)], [ |). The conjecture is still open, but several results
have been obtained in the last years (| N I, | I, | | I, [ l,...).
For a survey about this conjecture see | |.

As remarked by Ladza in | |, Berthelot’s conjecture can have many incarnations, de-

pending on what kind of coefficients and pushforward one considers. In this paper we deal
with a crystalline incarnation of Berthelot’s conjecture, working with the category of crystals
up to isogeny on the crystalline site.

Let k be a perfect field of characteristic p > 0, let W be the ring of Witt vectors of k and
let K be the fraction field of W. Set W := Spec W. For a k-scheme X, Berthelot defined the
crystalline site (X/W)erys and the structure sheaf Ox yw. He considered also the category
of crystals of finite presentation, denoted by Crys(X /W), defined as the category of certain
sheaves of Oy w-modules on (X/W)cys which verify a rigidity condition. The category of
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isocrystals Ierys(X/W) is the category Crys(X/W) up to isogeny, i.e. the category whose
objects are exactly those in Crys(X/W) and whose morphisms are obtained inverting the
multiplication by p. Thus we have a natural functor

Crys(X/W) — Loy (X /W)

which is the identity on objects. To distinguish among objects in Crys(X /W) and in Ie;ys(X /W)
we denote by K ® E the image of E € Crys(X /W) under the above functor, and we say that
F is a lattice for the isocrystal £ if K Q E =~ £.

Given a proper and smooth morphism of k-schemes f: X — S and a crystal £ on the
crystalline site (X /W )crys, there is a morphism of ringed topoi

fcryS* : ((X/W)(:Nryy OX/W) - ((S/W)(:Nryy OS/W)
and its derived version R feysx. By functoriality the functors ferys« and R feryss induce cor-
responding functors in the isogeny categories, so if £ is an isocrystal in Ie,ys(X/W), then for
all ¢ = 0, we get an object RY ferys«(€) in the isogeny category of Og/w-modules. The main
result of the paper is that, if S is smooth, RY fo;ys«(€) has a richer structure, indeed it is an
isocrystal, i.e. an object of Irys(S/W).

Theorem I. Let f: X — S be a smooth and proper morphism of smooth quasi-compact k-
schemes and let £ be an isocrystal in Ieys(X/W). Then, for all ¢ = 0, R ferysx(E) is an
isocrystal in Iorys(S/W).

The above theorem generalises a result of Morrow, which proved the above theorem for the
trivial isocrystal (| |). Our proof follows the lines of his proof: we explain here the main
ideas.

First, using Zariski descent, one reduces to the case in which S = Spec A is affine; now
A can be lifted to a p-adically complete flat W-algebra A, such that A4, = A/p"A is a
smooth W, == W /p"W algebra for all n > 1. Set W,, := SpecW,,. Since X is smooth
over k, there exists a p-torsion free crystal E on X which is a lattice for £, then one
has a Gauss—Manin crystal at one’s disposal. Indeed, given a p-torsion free crystal £ on
Crys(X/Wy,)erys, one can construct a natural HPD-stratification on the finitely generated
A-module liﬂln(Rq ferys«(E))spec 4, over W. Using the fact that A, is W,-smooth for all
n € N*t, the HPD-stratification on liﬁlna:{q ferys«(E))spec 4, 18 equivalent to a crystal Eg< /A

on (S/W)ays — the Gauss—Manin crystal. Moreover, there is a natural map
E()](/A - qucrys* (E)

of sheaves on (S/W)gys which turns out to be an isomorphism after inverting p. This shows
that R forys«(E) ® K (see Definition 2.5) is in Ieys(S/W).

A key ingredient of the above proof is the Berthelot’s base change theorem for crystalline
cohomology | , Theorem 7.8] which only holds for flat crystals. In Morrow’s paper the
trivial isocrystal K ® Ox w admits a lattice, e.g. Ox w, which is flat, that is, —® Oy w is
exact in the ringed topos ((X/W)gys Ox/w). But in general the existence of a flat lattice
is not known (see for example | |). This becomes a central theme of this paper: in §2 we
develop a crystalline base change theory for crystals that may not be flat; instead of requiring
that the base change map is an isomorphism we require that it is an isomorphism after inverting
p. The proof follows closely the original proof of Berthelot’s base change theorem, namely it
uses cohomological descent to reduce the problem to the affine case and then work with the
quasi-nilpotent connections and the corresponding de Rham complex. But the argument from
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there on has to be changed due to the lack of the flatness condition. We have to use a spectral
sequence to find a uniformly large N so that pV kills both the kernel and the cokernel of the
base change map. Shiho also studied in | | isocrystals which do not necessarily admit
flat lattices, but his results do not fit our situation.

We prove several variants of base change isomorphisms (see Theorem 2.7, Theorem 2.14
and Theorem 2.21). Here we mention the following.

Theorem II. Consider a cartesian diagram

X/LX

N

S — 85

of quasi-compact k-schemes with f smooth and proper. Let E € Crys(X /W) and assume S is
smooth over k. Then for all n € N the canonical map

U:rysRnfCryS* (E) - Rnférys* (h*

crys

E)
is an isomorphism of isocrystals in Ieys(S'/W).

A recent result proven by Xu (| |) deals with a convergent incarnation of Berthelot’s
conjecture: he proves that the derived pushforward functor preserves convergent isocrystals, in
the context of the convergent topos defined by Ogus | |. Let f: X — S be a proper and
smooth map as above; Xu considers a convergent isocrystal £ € Ieony (X /W), together with
RY feonv«(E); he uses Shiho’s base change | , Theorem 1.19] to show that R? foony«(€) is a
p-adically convergent isocrystal. Then he develops a strong version of Frobenius descent which
allows him to prove that RY feony« (€) is indeed a convergent isocrystal on S using Dwork’s trick.
He then proceeds to remove the smoothness hypothesis for the base S. It would be interesting
to know if even in our setting one can remove the smoothness hypothesis. In any case, when
S is smooth over k, the category of convergent isocrystals is a full subcategory of the category
of isocrystals | , Theorem 0.7.2]: there is a fully faithful functor ¢ : Icony(S/W) —
Irys(S/W) (and likewise for X /W). Our result and Xu’s result are independent, in the sense
that none of the two implies the other. On the other hand they are compatible in the sense
that t(R? feonvs€) = R ferysx (L(E)) (see Remark 3.2 and the discussion at the end of | ,
Section 1.9]).

We remark that if X is a smooth, quasi-compact and connected k-scheme, then the category
Irys(X /W) is a Tannakian category, hence when X has a k-rational point x, one can define
the crystalline fundamental group m7™"(X /W,x)l. This group scheme has recently been
studied deeply: it has been conjectured by de Jong that for a connected projective variety
over an algebraically closed field in characteristic p > 0 with trivial étale fundamental group,
there are no non-constant isocrystals. The conjecture is still open but several results have
been obtained (| I, | I, | I, | |). Moreover, we also remark that the pro-
unipotent completion of 7{"7*(X/W,x) is considered to be the crystalline realisation of the
motivic fundamental group and it has been studied by Shiho in the more general context of
log geometry ([Shi00], [Shi02]).

As a consequence of our main result we obtain the Kiinneth formula for the crystalline
fundamental group.

lWhile the authors were revising this paper, a preprint with a new approach to crystals appeared | |
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Theorem II1. Let k be a perfect field of characteristic p > 0, let X andY be smooth connected
k-schemes with' Y proper and suppose that x € X (k), y € Y (k) are two rational points. Then
the canonical morphism between the crystalline fundamental groups

(X % Y/W, (2,y) — ) (X /W, z) xg m(V/W,y)
s an isomorphism.
By the Eckman—Hilton argument we also get the following.

Theorem IV. Let A be an abelian variety over a perfect field k of positive characteristic.
Then 75 (A/W,0) is an abelian group scheme.

Analogous results for other fundamental groups have been obtained by Battiston | |
and D’Addezio | |.

The Kiinneth formula, as in the étale case, is a consequence of the homotopy exact sequence
for the crystalline fundamental group, but our argument does not use the homotopy exact
sequence. It is an open problem to show the existence of a homotopy exact sequence for
the crystalline fundamental group, which has been shown is several other contexts recently
([Zbai1], [San15], [LP17], [DSIS], ... ).

The content of each section is as follows. In §1 we define the crystalline fundamental group;
to do so we prove that the category of isocrystals on a smooth, quasi-compact and connected k-
scheme is Tannakian. In §2 we prove several generalisations of the base change for crystalline
cohomology. We consider a PD-scheme S = (S,I,~) over W, requiring that p € I, we let
S = V(I), and we consider an S-scheme X. We denote by g: X — S the structure map, and
by gx/s the morphism of topoi g o ux/s: (X/S)5ys — Sz, In §2.1 we prove the generalised
base change theorem for gy /g when p is nilpotent in Og; this includes, as a special case,
the classical Berthelot’s base change theorem for crystalline cohomology. In §2.2 we consider
the case in which S is affine. In this case we consider the functor @nf O gx/(S/pr)x; We
prove a base change theorem for this functor. In the last part of section §2 we consider a
proper and smooth morphism of smooth k-schemes f: X — S as above, and we prove a base
change theorem for the functor f. yex. In section §3, we get our main result about Berthelot’s
conjecture for isocrystals. In §4 we prove the Kiinneth formula for the crystalline fundamental

group.
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NOTATION
An ideal I in a ring A is called nil if all elements of I are nilpotent (this is called a locally
nilpotent ideal in | |). We will often use that smooth affine maps have the lifting property
for nil ideals (see | , Tag 07K4]).

1. TANNAKIAN CATEGORIES OF CONNECTIONS AND CRYSTALLINE FUNDAMENTAL GROUP

The goal of this section is to define the crystalline fundamental group. Concretely this
means introducing the category of isocrystals and proving that it is a Tannakian category.
This is done in essentially four steps.

(1) Reduce the problem to the affine case and compare isocrystals with topologically quasi-
nilpotent connections.

(2) Interpret topologically quasi-nilpotent connections as a particular case of connections
with respect to a quotient of the sheaf of algebraic differentials.

(3) Show that those connections correspond to differential modules for an associated dif-
ferential ring.

(4) Study differential rings and differential modules following | |.

This program is done in the reverse order, so that definitions come first.

1.1. Differential rings. We start by introducing some general definitions as in | |.

Definition 1.1. A differential ring is a pair (4, A 4) where A is a ring and A 4 is a Lie algebra
together with an A-module structure and a Lie algebra homomorphism ¢: Ay — Der(A/Z) =
Hom(£2,4,7, A) which is A-linear. We moreover ask that the following property holds:

(1.1) [D1,aDs] = a[D1, D3] + D1(a)Ds for all a € A, Dy, Dy € Ay.

Notice that the above equation is automatic if ¢ is injective. If X = Spec A we sometimes
write (X, A4) instead of (A,Ay).

If B is aring, a differential B-algebra is a differential ring (A, A 4) such that A is a B-algebra
and the map ¢: Ag — Der(A4/Z) has image in Der(A/B) = Hom(Q4,p, 4).

A differential (A, A 4)-module (or simply differential A-module when A 4 is clear from the
context) is a pair (M, V) where M is an A-module and

V: Ay — Endz(M)
is a morphism of Lie algebras which is A-linear and satisfies the Leibniz rule, i.e.
(1.2) D(am) = D(a)m + aD(m) for all De Ay, a€ A, me M.

Above and in what follows we write D(m) instead of V(D)(m).
We denote by Diff (A4, A4) or simply Diff(A) the category of differential A-modules which
are of finite presentation (as A-modules).

Remark 1.1. Let (A,A4) be a differential ring and (E,Vg) and (F, V) be differential A-
modules. Their tensor product is given by the A-module £ ®4 F and the map

VEQuF
Ay Endz(F ®a F)

D (e®f = D(e)®f +e®D(f)).
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Their Hom is instead given by the A-module Hom 4 (FE, F) and the map

ViHom 4 (E,F)

Ay Endz(Hom4(FE, F))
D (¢—Vr(D)ogp—¢oVgr(D)).

See also | , Def. 1.1.3]. It is easy to see that the category of differential A-modules is
symmetric monoidal with unit (A, V) where V: A4 — Der(A/Z) < Endz(A) is the canonical
map ¢. Moreover the Hom just defined is an internal Hom in the category of differential A-
modules, that is if (G, V) is another differential A-module then the canonical isomorphism

Hom(E ® F,G) — Hom(E, Hom(F,G))
is a map of differential A-modules and preserves the subsets of morphisms of differential A-

modules.

fE -2 Fisa map of differential A-modules then kernel and cokernels are naturally
differential A-modules.

From the discussion above we can conclude that

Proposition 1.2. If (A, A4) is a differential ring then the category of differential A-modules is
symmetric monoidal, abelian and has internal homomorphisms. The same is true for Diff (A)
if A is Noetherian.

Definition 1.2. Let R be a ring. Let 4 be an R-linear category and let R’ be an R-algebra.
We denote by €¥®pr R’ the category whose objects are exactly those of ¢ and whose morphisms
are given by
Homyg,r (M, N) := Homg (M, N) ®r R
for any M, N € €. There is a natural functor F: ¥ — % ®g R’ which is the identity on
objects and which is the natural base extension on morphisms. For any object M € €, in
order to emphasize that F(M) is in € ®g R, we write M ®g R’ for F(M).
If ¢ is symmetric monoidal then also ¥ ®g R’ is symmetric monoidal in a natural way.

Lemma 1.3. Let R be a ring. Let € be an R-linear abelian category, and let S be a multiplica-
tive subset of R. Then ERrSTIR is also abelian and the natural functor F: € — CRrS™'R
is evact. Moreover if € — P is an R-linear evact functor to an S™'R-linear category, then
the induced functor € ® SR — 9 is also exact.

If € is symmetric monoidal (with internal homomorphisms) then F: € — € Qg S™'R is
a tensor functor (and preserves internal homomorphisms).

Proof. Set R' = S'R. Since up to isomorphisms every morphism in 4 @z R’ comes from €,
in order to show the exactness of F' it is enough to show that F' preserves kernel and cokernel.
Let’s look at kernel for example. Let f: A — B be a morphism in %. Then Ker(f) is the
object in € which represents the functor that sends any 7' € € to

Ker(Homy (T, A) — Homy (T, B)).
By the flatness of R — R’ we have the exact sequence
0 — Homy (T, Ker(f)) ® R ——— Homy (T, A) ® RF —— Homy (T, B) ® R’

| | |
0 —— Hom(T ® R, Ker(f)® R') ——— Hom(T® R, AQ R') —— Hom(T ® R', B® R')
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for each T®g R’ € C ®g R'. Thus Ker(f) ®g R’ represents the kernel of f ®p R’

Now consider an exact linear functor G: € — 2 as in the statement and call G': € ®
R’ — 2 the induced functor. Let A, be a bounded exact complex in ¥ ® R’. In order to
show that G'(A}) is exact we can multiply each degree map by elements of S. In particular
we can assume that all those maps are defined in ¥ and, multiplying again by elements of S,
that they define a complex A, such that F(A,) = A,. Using the exactness of F' and G we
have

F(H'(A.) ~H(A,) =0 = 0=G'F(H'(A.)) = GH'(A.)) ~ H(G(A.)) ~ H(G'(A))).

The last statement follows from a direct check. O

Remark 1.4. Let (A, A4) be a differential ring and S be a multiplicative subset of A. Then
(S7'A, S71A4) has a natural structure of differential ring. Moreover if (M, V) is a differential
A-module then S~'M is a differential S~!A-module in a natural way.

The condition (1.1) in Definition 1.1 forces the definition of the bracket in S™1A 4 as well
as in Der(S™1A) = Hom(S 1y 7, S A).

Also, the Leibniz rule (1.2) in Definition 1.1 forces the definition of the map V: ST1A4 —
End(S~!M): this is the unique S~!A-linear map such that

D(m/s) = D(m)/s — D(s)m/s>.
Indeed everything is well-defined (| , Rem. 1.1.5]).

Lemma 1.5. Let R be a ring and let (A, Ay) be a differential R-algebra such that A4 is
a finitely generated A-module and let S be a multiplicative subset of R. Then Diff(A) is an
R-linear category and the functor

Diff(A) ®z S™'R — Diff(S7'A)

18 a fully faithful tensor functor. If A is Noetherian then the above functor is also exact and
preserves internal homomorphisms.

Proof. Set R’ = S™'R and A’ = S~'A. The fact that the functor is a tensor functor follows
from construction. For the full faithfulness, given two differential A-modules (M, V) and
(N,Vy) we want to show that the natural map

¢: Hompg(a) (M, N) ®p R’ — Hompgan(M', N')
is an isomorphism, where M’ := M ®r R’ and N’ := N ®r R’ are thought of as differential
A’-modules. The canonical map
Homy (M, N) ®g R' — Hom 4/ (M', N")

is an isomorphism. Thus we have to show that if f € Hom4/(M’, N') is a morphism which is
compatible with the V., then it comes from

Homp;g(4)(M, N) ®r R’ < Homa (M, N) ®g R’ = Hom 4 (M', N').

Replacing f by sf for some s € S we may assume that f comes from Hom 4 (M, N) and we
will still use f to denote the lift of f in Hom 4 (M, N). We must show that there exists s € S
such that sf preserves the V.. For D e Ay and m € M set

9(D,m) = f(D(m)) — D(f(m)) € N.

Since V(D) is R-linear we look for an s € S such that sg(D,m) = 0 for all D and m. By
hypothesis g(D,m) = 0 in N’ = S™'N. Thus it is enough to notice that, by the Leibniz rule,
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g(D,m) is a linear combination of the values of g on generators of Ay and M, which are
finitely many.

Now assume that A is Noetherian. Then the functor in the statement preserves internal
homomorphisms because of how they are constructed and because all modules considered are
finitely generated. The exactness follows from Lemma 1.3. O

Definition 1.3. | , Def. 1.2.1] A differential ring (A, Ay4) is called locally simple if for
all prime ideals P the differential local ring Ap is simple, i.e. Ap contains no proper non zero
ideals stable under the action of (A4)p.

Proposition 1.6. | , Prop. 1.2.6] Let A be a locally simple differential ring. If (E,V)
18 a differential A-module of finite presentation then E is locally free as an A-module.

Theorem 1.7. Let (A, A4) be a Noetherian locally simple differential ring such that Spec (A)
is connected. Then Diff (A) is a Tannakian category over some subfield L < A. Let k be a
field, let A be differential k-algebra and x: Speck — Spec A be a rational point, then Diff (A)
with the fiber functor obtained via x* is a neutral Tannakian category.

Proof. By Proposition 1.2 we see that Diff (A) is an abelian, monoidal and symmetric category
with internal homomorphisms. By Proposition 1.6 it is easy to see that Diff(A) is also rigid
and that endomorphisms of the unit are either 0 or isomorphisms, that is Endpig4)(4) < A
is a field. If A is a differential k-algebra and x a k-rational point, then we have that

k< EndDhcf(A) (A) c k.
Therefore Diff (A), with the fiber functor obtained via x*, is a neutral Tannakian category.

0

1.2. Connections. We now introduce a natural way of describing differential modules via
connections.

Definition 1.4. Let f: Y — S be a map of schemes and consider a surjective map of quasi-
coherent sheaves {2y /g — (2 such that the differential 2y /g —> Q%, /8 induces d': Q — Q2 =
Q A Q. An Q-connection on an Oy-module M is an f~!Og-linear map

Vi M — M®o, 2

of sheaves satisfying the Leibniz rule, i.e. V(am) = aV(m) + m ® da for all sections a, m on
Oy, M respectively over some open.
The connection V induces a map,

VM ®o, Q - M ®e, O

defined by V' (m ®@w) = V(m) A w +m ® dw for all sections m, w on M, Q respectively over
some open, where V(m) A w is the image of V(m) ® w under the canonical map

M ®o, Q®0, 2 _den M ®o, Q2.
The map V! is well-defined thanks to | , Tag 0710].

The connection V is called integrable if the composition

1
MlM@OyQV_’M®OYQ2

is zero.
We denote the category of integrable 2-connections in finitely presented Oy-modules by
Conn(Y/S,Q).
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Lemma 1.8. Let f: Y — S be a map of schemes and let Oy 4, Q%,/S , Q%,/S be the
canonical differentials. Suppose that ¢1,¢pa € Der(Y'/S), and let ¢1,p2 be the corresponding
maps in Home,, (Qy/g, Oy). We denote p1 A @o the map Q%//S — Oy sending dx A dy to
d1(x)P2(y) — p2(x)Pp1(y). Then [p1, d2] corresponds to the homomorphism

prodogy —pyodopr — (g1 A py)od" € Homo, (Qy /g, Oy).

Proof. 1t 4: Qy )¢ —> Oy is the map in the statement, it clearly satisfies i) o d = [¢1, P2].
Thus one has to check that v is Oy linear. This is a direct computation which we omit. [

Corollary 1.9. Let f: Y —> S be a map of schemes and Qy ;s —> Q a quotient as in
Definition 1.4. Then the subsheaf Homy (2, Oy) < Der(Y/S) is a subsheaf of Lie algebras.

Lemma 1.10. Let f: Y = Spec A —> S = Spec R be a map of affine schemes and Qy ;5 —>
Q a quotient as in Definition 1.4. Set Ay = Homoe, (Q,Oy). Assume moreover that Q is
locally free of finite type. Then (A, A4) is a differential ring over R. Moreover the functor

F: Conn(Y/S,Q) —— Diff(A)
(M,VM) e 4 (M,VM)

which sends the Oy -module M to the corresponding A-module M and the Q-connection Vi

I v : -
to the map YV defined on ¢ € Ay as H (M —5 M ®@ Q RN M) is an equivalence of
categories.

Proof. First we prove that the above functor F': (M, V i7) = (M, V) induces an equivalence
between the category of quasi-coherent -connections (not necessarily integrable) and the
category of pairs (M, V), where M is an A-module and V,; is an A-linear map Ay —
Endyz (M) satisfying the Leibniz rule (1.2) (not necessarily preserving the Lie bracket).

Full Faithfulness. The faithfulness is clear. Now suppose A: (M,Vy) — (N,Vy) is
a morphism in the target category. Then we get directly a map Ap: M — N between
the corresponding Oy-modules, therefore we only have to check that A\p is compatible with
V7 and V5. We can check the compatibility Zariski locally. We can localize both the Q-
connections and the "not necessarily Lie-bracket preserving differential modules" (Remark
1.4). The functor F' is compatible with the localization, thus we are reduced to the case
when Q) = O)@n for some n € N. Then the map V,; (resp. V) becomes a map of the
form M — [[/_; M (resp. N — [[/_; N). Let pM (resp. pl) be the i-th projection
[T, M— M (resp. [, N — ]\7) Since A is a map of differential modules, the map Ap
is compatible with pf\/[ oV,; and le o V. Therefore, Ao is compatible with V i and V 3 by
the universality of products of modules.

Essential Surjectivity. We cover Spec A by open affines Spec Ay,. Suppose () is free over
each Spec Ay, and suppose the claim holds when  is free. Given (M, V) we get the
localizations (M;, V) on each Spec Ay, and the corresponding quasi-coherent connections
(Mi, VJ\;Ii)‘ Note that on U;; == Spec Ay, () Spec Ay, the sheaf (2 is also free, and by the full
faithfulness there is a unique isomorphism

(M, V)|, (M}, V ;-
This allows to glue all (Mivvz\?[i) together to get (M,VM) which corresponds to (M, V).

We are therefore reduced to the case when (2 is free. In this case, we can define V ;: M —>

~
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M @ as follows. Choose a basis sq,--- , s, of Q and let f1,..., f, be its dual basis. We set
Vi(m) =371 Va(fi)(m) ®s; for all me M.

Now we come back to compare Conn(Y /S, ) and Diff (A). To show that the above equiv-
alence induces the equivalence of these two categories we just have to notice the formula in
[ , p- 179, last paragraph, 1.0.5] and the fact that A4 < Der(A/R) is a sub Lie algebra

(Corollary 1.9). O
1.3. Crystalline site and crystals. We recall here the general notion of small crystalline
site and crystals on it. This was defined by Berthelot (| I, [ ). We use as our main
reference for this theory | , Tag 09PD] and | , Tag 07GI].

Definition 1.5.

- | , Tag 07GU] A divided power ring, or a PD-ring, is a triple (A4, I,v) where A
is a ring, I < A is an ideal, and v = (7,)n>1 is a divided power structure on I. A
homomorphism of divided power rings ¢ : (4,1,v) — (B, J, ) is a ring homomorphism
¢ : A — B such that ¢(I) < J and such that §,(¢(x)) = ¢(yn(x)) for all z € I and
n = 1.

- | , Tag 07GI|. A divided power scheme or a PD-scheme is the natural globalisation
of a PD-ring.

- When we want to consider a homomorphism of PD-rings or PD-schemes, we will write
it as a morphism of triples. On the other hand if R is a ring an R-PD-ring is a PD-ring
(A,I,v) where A is an R-algebra (and the same for PD-schemes over R).

We fix a prime number p.

Definition 1.6. | , Tag OTIF] Let S = (S,I,7) be a PD-scheme such that S is a Z)-
scheme. Let X be an S = V(I)-scheme, and we assume moreover that p € I, i.e. S is killed
by p. An object of the crystalline site (X/S)qys is given by a triple (U, T,¢), where U is a
Zariski open of X, T is an S-scheme, U — T is a thickening of S-schemes defined by a nil
ideal J and (T, J,d) is a PD-scheme over (S,I,v). We often denote (U, T,¢) simply by T.
Morphisms are defined in a natural way, and coverings are defined using the Zariski topology
on T. We consider the structure sheaf Oy g, defined by Ox/s(T) == I'(T, Or).

Remark 1.11. Let the notation be as in Definition 1.6 and set Sy, == S Xgpec (z) Spec (Z/p"Z).
Then the crystalline site (X/S)crys is the direct limit of the sites (X /Sy )crys-

Remark 1.12. We use | , Tag 09PD] as the main reference. Here we want to stress the
compatibility of Definition 1.6 with more classical references.

(1) If S is killed by a power of p, then the site defined in Definition 1.6 is the same as the
crystalline site defined in | , p- 5.1], with the hypothesis that p € I.

(2) When S = Spec R is the spectrum of a Noetherian ring R which is complete for the
I-adic topology, and if p € I, then the crystalline site (X/S)crys of Definition 1.6

is equivalent to the site Cris(X/S) defined in | , p. 7.17] (with P = I), where
S = Spf R for the I-adic topology.
(3) Shiho, in | |, developed a theory of relative crystalline cohomology for log schemes.

He supposes that I = p and (here we are in the simplified case where all the log struc-
tures are trivial) he generalised the situation (2) to the case where S is a p-adic formal
scheme separated and topologically of finite type over W.


https://stacks.math.columbia.edu/tag/09PD
https://stacks.math.columbia.edu/tag/07GI
https://stacks.math.columbia.edu/tag/07GU
https://stacks.math.columbia.edu/tag/07GI
https://stacks.math.columbia.edu/tag/07IF
https://stacks.math.columbia.edu/tag/09PD

A CRYSTALLINE INCARNATION OF BERTHELOT’S CONJECTURE 11

Definition 1.7. An Oxs-module E on the site (X /S)cys is called a crystal if every morphism
¢ : T — T in (X/S)erys induces an isomorphism ¢*(Eq) — E, where we denote with Eqv
(resp. Et) the Zariski sheaf on T’ (resp. on T) induced by E. A crystal is said to be of
finite presentation if for every T € (X/S)qrys the Op-module Ex is of finite presentation. The
category of crystals of finite presentation on (X /S)crys is denoted by Crys(X/S).

For any commutative diagram

x s x

"

S —-8
where v is a PD-morphism, we obtain a morphism of ringed topoi herys = (h;"rys,hcrys*)
( , Tag 07KL]). It is known that if F is a crystal in Crys(X/S), then h% (FE) is a
crystal in Crys(X'/S") (| , Corollaire 1.2.4] and Remark 1.11).

Setting 1.8. Let the hypothesis and notation be as in Definition 1.6. Suppose moreover that
we have a commutative diagram

(1.3) Xe—* X

| |

§S—S
in which f is smooth and every scheme is affine: X = SpecC,X = Spec P, S = Spec A/I,S =
Spec A. The map i in the above diagram is a closed immersion defined by an ideal J € P (in
particular IP < J). Let Dp, = Spec Dp., be the PD-envelope of i : X — X with respect
to (S,1,7v) and let D be the p-adic completion of Dp.. Set D = Spec D, A,, = A/p", S,, =
Spec Ay, P, = P®a A, and X,, .= Spec P,. Let Dp, - :== Spec Dp, , be the PD-envelope of
X — X,, with respect to (S, I,~). Thanks to | , Tag 0TKG| we have D = lim _ Dp, ,
as PD-rings.

1.3.1. Crystals and connections over complete PD-envelopes. We denote by €2p the p-adic
completion of the module of PD-differentials Qp, /45 (see | , Tag 07THQ)]). Notice that
Qp is a finite projective D-module: indeed

Qa5 > Lp/a®p Dpy

(see | , Tag 0OTHW]) and, when we take the p-adic completion, the left hand side, by
definition, becomes p, while the right hand side is isomorphic to Q2p,4 ®p D because {1p, 4
is a finite projective P-module. Therefore

Qp ~Qpa®p D
which is a finite projective D-module.We denote by 2p the sheaf on D associated to Qp.
Remark 1.13. Thanks to | , Tag 07TKG] we have
Qp ®a An ~Qp,a®p, Dp,y ~Qpp /a5
for n large. This allows us to construct a map

Qpa — Qp


https://stacks.math.columbia.edu/tag/07KL
https://stacks.math.columbia.edu/tag/07KG
https://stacks.math.columbia.edu/tag/07HQ
https://stacks.math.columbia.edu/tag/07HW
https://stacks.math.columbia.edu/tag/07KG
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which is split surjective. Indeed, the section
Qp ~Qpa®p D — Qp/a
is given by the extension of scalars of the natural map Qp,4 — Qp,/4 along the map P — D.

Definition 1.9. In the situation of Setting 1.8, we denote by Conn(X /8,1, f) the full sub-
category of the category Conn(D/S,{lp) consisting of integrable {p-connections (M,V ),
where M is a finitely presented p-adically complete D-module.

Remark 1.14.

(1) If D is Noetherian, then Conn(X/S, i, f) = Conn(D/S,Qp) because in this case any
finitely presented D-module is p-adically complete.

(2) If M is a p-adically complete D-module, the module M ®p Qp is p-adically complete
because 2p is a finite projective D-module. In particular the connections defined
above agree with the pairs considered in | , Tag 07J7].

(3) If the diagram in (1.3) is Cartesian, then the PD-structure 7 extends to X — X
([ , 07H1]), and Dp, = X. Indeed, since the diagram is cartesian, /P = J and
(P, IP) verifies the universal property of the PD-envelope. With these hypothesis we
get that Qp, 145 =Qp/a (see | , Tag 07THW]). Therefore the p-adic completions
are isomorphic

Qp/a ~Qp/a =~ Qp.
Moreover
Hom(Qp, D) = Der(D/A);
indeed a map from {2p 4 to a p-adically complete module factors through Qp. We
remark that any derivation in Der(D/A) is Z-linear, hence it is automatically p-adically

continuous.
(4) If we have another commutative diagram

X’(;) X’

| I

S
mapping to the original one, there is an induced map D’ — D which yields a

map Qp ®p D' — Qps. Via this map we obtain a functor Conn(X/S,i, f) —
Conn(X'/S", 7, f).

1.3.2. Topologically quasi-nilpotent connections.

Definition 1.10. In the situation of Setting 1.8 where (1.3) is cartesian, a connection
(M, V,7) € Conn(X/S, 1, f) is called topologically quasi-nilpotent if for all n > 1 its reduction
modulo p" is quasi-nilpotent in the sense of | , Definition 4.10, Remark 4.11].

We denote by QNCI(X/S, i, f) the full subcategory of Conn(X /S, i, f) consisting of topo-
logically quasi-nilpotent connections.

Theorem 1.15. Let X, X, S be as in Definition 1.10. Then there is a fully faithful additive
tensor functor
Crys(X/S) — Conn(X/S,1, f)


https://stacks.math.columbia.edu/tag/07J7
https://stacks.math.columbia.edu/tag/07H1
https://stacks.math.columbia.edu/tag/07HW

A CRYSTALLINE INCARNATION OF BERTHELOT’S CONJECTURE 13

whose essential image is QNCE(X/S, i, f). Moreover, the above functor is functorial with
respect to the diagram (1.3).

Proof. Given E € Crys(X/S), we take its restriction E, € Crys(X /S, ), obtaining (M,, Vi) €
Conn(X /Sy, in, fn) by | , Theorem 6.6]. Here the P,-module M,, is H*(Fx,). There are
transition maps ¢, : M, .1 —> M, which are horizontal, that is they preserve the connections.
Since F is a crystal, we have M, 1/p" Mp+1 ~ M,.

The limit M = lil—nnel\ﬁ M, is a D-module since D/p"D = P, and M/p"M = M, by
[ , 09B8|. Moreover, M also comes with a connection. This association defines the
functor Crys(X/S) — Conn(X/S,1, f), which is easily seen to be linear and to preserve the
tensor product.

The full faithfulness and the claim about the essential image follow from the corresponding

statements in the p"-torsion case (see e.g. | , Corollary 6.8] or | , Théoréme 1.6.5,
p. 247]).

O
Remark 1.16.

(1) The naturality of the functor in Theorem 1.15 indicates that the pullback of a topo-
logically quasi-nilpotent connection is topologically quasi-nilpotent.

(2) Directly from the definition one sees that (M,V ;) € Conn(X/S,i, f) belongs to
QNCE(X/S,i, f) if and only if its pullback to X/S,, belongs to QNCE(X /S, in, fn)
(see Remark 1.11 for the notation) for some n € N.

Lemma 1.17. Suppose that we are in the situation of Definition 1.10. Then
QNCf(X/S, i, f) < Conn(X/S, i, f)

s a full subcategory closed under taking subobjects, quotients, temsor products and internal
homomorphisms.

Proof. Directly from Definition 1.10 it is clear that subojects and quotient objects of topologi-
cally quasi-nilpotent connections are topologically quasi-nilpotent. We still have to show that
if (E,V ;) and (F,V 7) are topologically quasi-nilpotent connections, then their tensor prod-
uct and their Hom are topologically quasi-nilpotent. This follows by checking the following
relations for all D € Der(D/S): [Vegr(D)]|"(e® f) is

D'e®f) = D) ®f +- -+ (Z)D”"”“(e)®l?’“<f) L te®D()
and [vHom(E,F)(D)]n<¢) is

VeD)"op+---+(=1)" (:)VF(D)"_’" 0opoVg(D) +---+(=1)"¢poVg(D)". O

1.3.3. The situation when (1.3) is cartesian.

Lemma 1.18. Let (S = Spec 4, I,7) be an affine PD-scheme over Zpy such that p € I. As
above set S = Spec A/I, A, = A/p™ and S,, = Spec A,, for all n € N.

The closed embedding S — S1 is a locally nilpotent thickening, that is I/pA is a nil ideal in
A/p. In particular, if the ideal I is finitely generated, then the closed embedding S — S1 is a
nilpotent thickening.


https://stacks.math.columbia.edu/tag/09B8
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Proof. The ideal I has a PD-structure and therefore p!v,(z) = 2 for all z € I, so that a2 € pA
as required. O

Remark 1.19. Let S = (S,I,v) be a PD-scheme as in Lemma 1.18. Suppose moreover that
I is finitely generated. Let g: X = SpecC — S = V(I) be a smooth map. Under the
assumptions of Lemma 1.18, we can build up a diagram (1.3) out of the given map g: X — S
and the closed immersion S < S such that it is a cartesian diagram. Indeed, by | , 07TMS|
we can lift g to a smooth affine map f: X = Spec P — S = Spec A not necessarily uniquely
along S — S. Note that by | , Theorem 8.5.9] the lifts of g along S — S; and S,, — S, 41
are unique. Thanks to Remark 1.14 (3) and the uniqueness of the lift to S,, for all n, the
spectrum D of the p-adically completed PD-envelope D, which is the p-adic completion of P,
does not depend on the lift f: X — S we chose for g.

Definition 1.11. Let S = (S, I,7) be a PD-scheme as in Lemma 1.18 and we assume that
I is finitely generated. Let g: X — S = V(I) be a smooth map. We construct a cartesian
diagram as in Remark 1.19. As observed in Remark 1.19, the category Conn(X /S, i, f) does
not depend on the choice of f and ¢ such that (1.3) is cartesian, so, in this case, we will just
write Conn(X/S) instead of Conn(X/S,i, f). Thanks to Theorem 1.15 the full subcategory
QNCI(X/S,i, f) does not depend on the choice of such f and i either, thus we will write
QNCf(X/S) instead of QNCf(X/S, i, f) when the conditions of Lemma 1.18 are met.

Lemma 1.20. Let (S = Spec A, I,7) be as in in Lemma 1.18, and let g: X — S = V(I) be
a smooth map. If S is Noetherian, then we have

Conn(X/S) = Conn(D/S, Op).

Therefore, the category Conn(X/S) is an abelian, symmetric monoidal category with internal
homomorphisms.

Proof. If S is Noetherian, then D is Noetherian and p-adically complete, so every finitely
presented D-module is p-adically complete. The last claim follows from Lemma 1.10 and
Proposition 1.2. O

Lemma 1.21. Let (S = Spec A, 1,7) be as in in Lemma 1.18, and let g: X = SpecC —>
S =V(I) be a smooth map. Suppose moreover that S = Spec A, where A is a complete DVR
of mized characteristic (0,p) with perfect residue field k and fraction field K.

If X is connected, then the rings D (see Setting 1.8) and D®4 K are regular domains and
(D®a K,Der(D/A)®4 K) is a locally simple differential ring.

Proof. We lift, as in Remark 1.19, the smooth map ¢g: X = SpecC — S = V(I) to a smooth
map f: X = Spec P — S = Spec A.

We first show that D is a regular domain. Thanks to | , 07QW] the ring P is excellent,
so it is a G-ring. According to | , 0AH2] the completion P — D is a regular map (i.e.
has geometrically regular fibers). Taking into account | , 031E] and the fact that A — P

is regular by construction, we can conclude that D is a regular ring.

In order to conclude that D is also a domain, it is enough to show that D = SpecD is
connected. Since the ideal I is finitely generated, by Lemma 1.18 the maps § — S,, are
nilpotent thickenings as well as the maps X «— X,, = Spec D/p" because the diagram

X——X

| |

S—S


https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/07qw
https://stacks.math.columbia.edu/tag/0AH2
https://stacks.math.columbia.edu/tag/031E
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is cartesian. Therefore X,, = Spec D/p™ is connected for all n € N, because X is connected by
hypothesis.
In particular if @ € D is an idempotent element, then

a, =a mod p"D

is either 0 or 1 in D/p™. As X is non-empty, none of those (D/p™)’s is a zero ring, so a,, € D/p"
has to be 0 for all n or 1 for all n. Thus a = 0 or 1 in D, which implies that D is connected.
From the fact that D is a regular domain we deduce that its localization D® 4 K is a regular
domain as well.
Thus it remains to prove that (D ®4 K, Der(D/A) ®4 K) is a locally simple differential
ring. By | , Lemma 1.19] and its proof we see that for any closed point x € D xg Spec K
the map

mg/m2 — Qp ® k()

is injective, where m, and k(z) are the maximal ideal and the residue field of = respectively.
Applying Homy,(,)(—, k(z)) and recalling that Qp is locally free we obtain a surjective map

HOIHD(QD, D) ®D k‘(l‘) I Homk(x) (mm/mi, k‘(l‘))
Since Hom(Q2p, D) = Der(D/A) the result follows from | , Proposition 1.2.3]. O

Theorem 1.22. Let (S = Spec A, I,7) be an affine PD-scheme over Zy) such that p € I and
let g: X = SpecC — S = Spec (A/I) be a smooth map. Suppose moreover that S = Spec A,
where A is a complete DVR of mized characteristic (0,p) with perfect residue field k and
fraction field K. If X is connected, then we have a diagram of Tannakian categories

QNCf(X/S) Qp K —— COHH(D/S,QD) RQp K —— COHH(D XA K/K,QD Xa K)

l\? ll?

Diff (D, Der(D/A)) @4 K — Diff(D @4 K, Der(D/A) ®4 K)

where all the functors are fully faithful tensor exact functors.

Proof. The two vertical equivalences come from Lemma 1.10 since Der(D/A) = Homp(Qp, D)
and that Qp is locally free. Notice that D = Spec D is Noetherian because D is a completion
of an affine smooth A-algebra. In particular the horizontal arrows on the right are fully
faithful, exact, tensorial and preserve internal homomorphisms thanks to Lemma 1.5. The
left horizontal arrow is fully faithful, exact, tensorial and preserves internal homomorphisms
by Lemma 1.17.

By Theorem 1.7 and Lemma 1.21 we can conclude that Diff(D ®4 K, Der(D/A) ® K) is
a Tannakian category. From this it easily follows that for all other categories there exists
a fiber functor and the endomorphisms of the trivial object form a field. The rigidity of
those categories also follows. Indeed we must check that for all objects M, N in one of those
categories the natural arrow

MY ® N — Hom(M, N)
where Hom (M, N) denotes the internal Hom, is an isomorphism. Because all functors pre-
serves internal homomorphisms and tensor product, this morphism become an isomorphism

in Diff(D ®4 K,Der(D/A) ® K) and, because all functors are fully faithful, this morphism
has to be an isomorphism. O
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1.4. Crystalline fundamental group. In this section we consider the following situation.
Let k be a perfect field of characteristic p > 0, and let W be the ring of Witt vectors of k.
Set W := Spec W. We denote by ~ the canonical PD-structure on pW, K the fraction field
of W. Set W,, .= W /p"W and W,, := Spec W,,. We denote by =, the induced PD-structure
on pW,,. The base PD-scheme (S, 1,v) is (W, pW,~), and S = Speck.

Definition 1.12. Let X be a scheme over k. We denote by I..ys(X /W) the category of finitely
presented isocrystals. This is the category Crys(X /W) up to isogeny, i.e. the category whose
objects are exactly those in Crys(X/W) and whose morphisms are obtained inverting the
multiplication by p. Thus we have a natural functor

Crys(X/W) — Iy (X /W)

which is the identity on objects. To distinguish objects in Crys(X /W) from those in Io;ys(X /W)
we denote by K ® E the image of E € Crys(X /W) under the above functor, and we say that
F is a lattice for the isocrystal £ if K Q F =~ &.

The main result of the section is the following

Theorem 1.23. If X is a smooth, quasi-compact and connected k-scheme, then the category
Iorys(X/W) is a Tannakian category over a field extending K.

If Y is another smooth, quasi-compact and connected k-scheme with a map Y — X, then
the pullback Iorys(X /W) — Ierys(Y /W) is an exact tensor functor. Moreover Iys(Speck/W) =
Vect(K) and, if x: Speck — X s a rational point, then I.ys(X/W) is a neutral K-
Tannakian category via x*: Iopys(X /W) — Ipys(Speck/W) = Vect(K).

Definition 1.13. Let X be a smooth, quasi-compact and connected k-scheme with a rational
point x € X (k). We define 7""*(X/W,z) as the Tannaka dual of the neutral Tannakian
category Ieys(X /W) endowed with the fiber functor 2* (see Theorem 1.23).

Remark 1.24. The prounipotent completion of the group scheme defined in Definition 1.13
has been defined and studied by Shiho in | | and | | (in the more general situation of
log schemes).

Lemma 1.25. Let R be a complete Noetherian ring with respect to an ideal I < R, and set
7Z = Spec R/I, Z = Spec R. Consider also a smooth affine map V.— Z. We denote by (—),
the base change to Z, = Spec (R/I"™). Then:

(1) There exists a smooth affine map V= SpeclN? —> Z lifting V — Z.

(2) There exists an affine and flat map Vg = Spec D — Z lifting V. —> Z such that
D is an I-adically complete ring. We can choose as D the I-adic completion of an
R-algebra D as in (1). Moreover, Vg is a Noetherian scheme and all (Vg)n —> Zn
are smooth.

(3) If Vg — Z and V — Z are two lifts as in (2) then there exists a (not necessarily
unique) Z-isomorphism Vg — Vy lifting idy : V — V.

Proof. (1) This is | , Tag 07TMS].
(2) Let D be the I-adic completion of D and set Vz := SpecD. By | , Tag 05GH]
and | , Tag 0912] the ring D is I D-adically complete, Noetherian, D/ID = D/ID and

D — D is flat, so that Vz — Z is flat as well.


https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/05GH
https://stacks.math.columbia.edu/tag/0912
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(3) It is enough to find a system of compatible Z,-maps ¢, : (Vz)n —> (V)n with ¢g = idy
(and thus automatically isomorphisms). Consider the diagram

(Vz)n ———— U <

Lén

(Vz)n — (

|

where a: U — (V)41 is any flat lift of ¢,,, which exists by (2) because ¢y, is an isomorphism
and thus it is smooth. Since Z,, is affine, by | , Theorem 8.5.9, pp. 213-214] we can find
the dashed Z,,4i-isomorphism §: (V)n41 — U making the above diagram commutative.
The choice ¢ 11 = a0 8 yields the desired lifting of ¢,,. g

Lemma 1.26. Let X be a smooth affine scheme over k. Then:

(1) There exists a smooth affine map X = Specé —> W lifting X — Speck.

(2) There ezists a flat and affine W-scheme Xw = Spec B — W lifting X — Speck
and such that B is p-adically complete. We can choose as B the p-adic completion
of a W-algebra B as in (1). Moreover, Xw is a Noetherian scheme and all maps
(Xw)n = Spec B/p"B —> W, are smooth.

(3) If f: Y — X is a smooth affine map over k and Xw,Yw — W are the complete
lifts of X, Y as in (2) respectively then there exists a flat map fw: Yw — Xw lifting
f:Y — X. Moreover, all (fw)n: Yw)n — (Xw)n are smooth.

(4) If Xw — W and Xy — W are two lifts as in (2) then there exists a W-
isomorphism Xw — Xgy lifting idy: X — X.

(5) If fw, fww: Yw — Xw are two lifts as in (3) then there exists an automorphism o
of Yw fitting in the diagram

id
Y*Y>Y*>X*>Speck

L1

YW*g%YW;)Xw—)W
\_/
Ry

Proof. If we apply Lemma 1.25 with R = W, I = pW and V = X, so that Z = Speck and
Z = W, we obtain (1), (2) and (4).

Now consider the situation of (3) and (5) and set Xw = Spec R. We apply Lemma 1.25
with I = pR and V =Y, so that Z = X and Z = Xw. Lemma 1.25 (3) directly implies case
(5). From Lemma 1.25 (2) we obtain a lift Vz — Z = Xw of Y — X and, using (4), we
find a W-isomorphism ¢ from Yyww — W to Vz — Xw — W which lifts idy: Y — Y.

the composition Yw 2, Vz — Xw is the desired map fw in (3). O

Proposition 1.27. If X is a smooth and quasi-compact k-scheme then Crys(X/W) is a
symmetric monoidal, abelian category with internal homomorphisms.
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Proof of Theorem 1.28 and Proposition 1.27. Firstly note that the category Crys(X/W) is
a symmetric monoidal additive W-linear category. It also admits cokernels as the pullback
functor of sheaves of modules is right exact and cokernels of maps of finitely presented modules
are still finitely presented ([ , Tag 0519]).

Now we consider the existence of kernels and the internal homomorphisms. Let {U;}ier
be a finite Zariski covering of X such that each U; is an affine non-empty scheme. Taking
into account Lemma 1.26, for each U; we can choose a smooth lift U; = Spec A; — W of
U; — Speck. Set (U;)w for the spectrum of the p-adic completion of A;. By Lemma 1.17
and Theorem 1.15 we see that each Crys(U;/W) admits kernels and internal homomorphisms.

It is straightforward that Crys(—/W) is a stack on the small Zariski site of X. If Uj;
is a non-empty affine open inside U; n Uj, then by Lemma 1.26 (3) there is a flat W-lift
(Uij)w — (U;)w (note that this is not an open immersion!), whose flatness implies that
kernels and internal homomorphisms are preserved at the level of topologically quasi-nilpotent
connections by the pullback. We can glue kernels and internal homomorphisms in Crys(X /W)
using the universal property defining them.

Thus we can conclude that Crys(X /W) and, by Lemma 1.3, I¢;ys(X /W) are abelian cate-
gories, because the canonical map from the coimage to the image is an isomorphism (as it is
an isomorphism when restricted to each U;). Moreover by construction and again by Lemma
1.3 restriction to an open is exact, tensorial and preserves internal homomorphisms for both
Crys(—/W) and Ieys(—/W). This ends the proof of Proposition 1.27.

We now deal with the proof of Theorem 1.23. In particular we assume that X is connected.
In particular X and all U; are integral schemes. Since we are in the situation of Remark 1.19,
the category Ieys(U;/W) is Tannakian by Theorem 1.22.

It is easy to check that I..ys(—/W) is a prestack in the small Zariski site of X, that is
morphisms between isocrystals form a Zariski sheaf. In particular Io,ys(X /W) is rigid because
all Ierys(U;/W)’s are Tannakian.

Next we will show that the ring of endomorphisms of the trivial object Ox w Qw K €
Ierys(X/W) is a field. Let ¢ be a non zero endomorphism of Ox w @w K. We must show
that ¢ is invertible. Since Iys(—/W) is a prestack we must show that its restriction ¢;
over U; is invertible. As Iowys(U;/W) is Tannakian, it is enough to show that ¢; # 0. By
contradiction assume that ¢; = 0. The functor Ioys(U;/W) — Ioys(Uij /W) is exact, K-
linear and tensorial, so it is faithful by | , p- 2.10]. Since (¢i)|Uij = 0, we have ¢; = 0 for
all j by the connectedness of X. But this would imply that ¢ = 0.

Hence the endomorphisms of Ox/w ®w K form a field. Let’s denote it by L. A fiber
functor for I..ys(X /W) is obtained composing a fiber functor of I.rys(U;/W) with the tensor
exact functor Iorys(X /W) — Ierys(Us/W).

In conclusion Ie,ys(X/W) is a Tannakian category over L (see | , p- 1.9]).

Let now f: Y — X be a map as in the statement of Theorem 1.23 and denote by
fovyst Lerys(X/W) — Ierys(Y /W) the pullback. We know that fZ . is a tensor functor
and we must show that it is exact.

Let U € X and V < Y be non-empty affine open subsets such that f(V) € U. Let
f: Viw — Uw be a lift of V. — U as in Lemma 1.26, (3) and v: SpecK — Viy xw K be
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a geometric point. Using Theorem 1.15 we have a commutative diagram

fcﬂ;ys

Lorys(X /W) Terys(Y/W)
Lrys(U/W) Terys(V/W)
i\g ll?
QNCEU/W)® K — s QNCE(V/W) @ K —— s Vect(K)

(Fov)*

Notice that v*: QNCf(V /W) ® K — Vect(K) is the composition
QNCf(V/W) QK — COHD(VW XW K/K, QVW Qw K) — Vect(]K)

and it is a fiber functor by construction (or we can check it directly because modules in the
middle category are locally free). The same happens to U and (f o v)*. In particular those
arrows and therefore also Ieys(X/W) — Vect(K), lerys (Y /W) — Vect(K) are exact and
faithful. From this it follows that Iorys(X /W) — Iys(Y /W) is exact.

Let’s conclude computing Ieys(X /W) for X = Speck. We have Xy = W and, in partic-
ular, Qxy, = Qw/w = 0. In particular QNCf(X/W) = Conn(X /W) is just the category of
finitely generated W-modules. Tensoring by K one exactly gets Vect(K). O

2. BASE CHANGE THEOREMS FOR CRYSTALLINE COHOMOLOGY

In this section we generalise in various ways the classical base change theorem for crystalline
cohomology proven in | , 'V, Proposition 3.5.2|, | , Theorem 7.8]. Let k be a perfect
field of characteristic p > 0, and let W be the ring of Witt vectors of k. Set W := Spec W. We
denote by « the canonical PD-structure on pW, K the fraction field of W. Set W, == W /p"W
and W,, := Spec W,,. We denote by =, the induced PD-structure on pW,

Setting 2.1. Let S = (S, I,v) be a PD-scheme such that S is a W-scheme and p € I. Denote
by S the zero locus V(I) of I inside S, which is a k-scheme because p € I. Let X be an
S-scheme and denote by g: X — S the structure map. Consider a commutative diagram

x rix

T

h
g S .S g

]

S —*+8S

where S" = (S/,I’,v/) is a PD-scheme, S’ = V(I’), X’ is a scheme, u is a PD-morphism and
the top square is cartesian. We assume moreover that all schemes are quasi-compact and gg
is smooth, quasi-compact and quasi-separated. We consider a crystal of finite presentation

E e Crys(X/S).
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We define
F((X/S)Cry57 -): MOd(OX/S) - MOd(HO(OS))

as the functor of global sections (| , p- 5.5]). It is easy to see that

JE————

L((X/S)erys, E) = @P«X/Sn)cry&E|(X/Sn)crys) € MOd(HO(OS))
where E is a sheaf of Oy /g-modules on (X/S)crys, Sp =S xw W, and HEEO\S) is the p-adic
completion of HY(Osg).
There is a canonical projection from the crystalline ringed topos to the Zariski ringed topos
[ , Tag 07IL]
Ux/s: ((X/S)grysv OX/S) - (XZNarhg_lOS)

where g~1Og is the pullback of Og along g. Concretely, we have

(1) For F'e (X/S)5ys and j: U — X an open,

(UX/S*(F))(U) = P((U/S)cryS7F)§
(2) For Ge X7 and (U,T,0) € (X/S)crys,
(ux/s™(G)(U,T,6) = G(U).

By composition we get a morphism of topoi

gx/s = gouxs: ((X/S)eys Ox/s) — (Szar, Os).
Notice that
I((X/S)erys, =) =T o gx/s4(—)
where T': Mod(Og) — Mod(H%(Og)) is the functor of global sections.
Lemma 2.1. Assume that p is nilpotent in Og and S is separated. Let E € Crys(X/S). Then
RgX/s*(E) s quasi-isomorphic to a bounded complex of quasi-coherent Og-modules. If S is

affine, then this is quasi-isomorphic to the complex of quasi-coherent Og-modules associated
with any complex of H*(Og)-modules representing RT'((X/S)crys, E)-

Proof. The complex Rgx/g«(E) is cohomologically bounded and has quasi-coherent coho-

mology thanks to [ , Theorem 7.6]. By a standard argument it is quasi-isomorphic to
a bounded complex of quasi-coherent sheaves B® | , Corollary 5.5]. If S is affine the
degenerate spectral sequence (see | , p- 5.7.9])

EP = HP((RT)(B®)) = R (B*)
tells us that I'(B*) ~ RI'(B®) ~ RI'((X/S)crys, ) as desired. O
Remark 2.2.

(a) If p is nilpotent in Og we define a map

(21) L’LL*RQX/S* (E) - Rg;(//sl*hjrys(E)

in D(S7,,) as follows. Applying adjunction to the canonical map Lhg (E) — h . (E)
we obtain a map
E — Rheryss (Rl (E)).

crys

Applying Rgx /g and using gx /s © heryss = s 0 g’y /s (see | , Tag 07TMH]) we get
RgX/S* (E) - Ru*Rng//S’* (h:rys (E))
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The map (2.1) is obtained applying adjunction again, which can be done because
Rgx/s«(E) is bounded above thanks to Lemma 2.1.

(b) If S and S’ are affine, but p is not necessarily nilpotent in Og, we can still define a
map

(2.2) Lu*RI((X/S)erys, E) — RP((X//S/)cryS7 hZ}ysE)

in D~(H°(Og')). The construction is the same and it is possible since RT'((X/S)crys, F)
is bounded above as we will prove in Corollary 2.12.

Definition 2.2. Let o/ be an abelian category, p a given prime and N € N. A map of objects
of o/ is a p’V-isogeny if its kernel and its cokernel are killed by p", it is an isogeny if it is a
p"-isogeny for some r € N.

Definition 2.3. Let ¢ be a W-linear category and E € €. Given n € N we say that E is
W,,-flat if p™ kills E and, for all 0 < j < n, the quotient E/p’ E exists and the map

. n—j
E/fEL S E
is injective. We say that E is W-flat or p-torsion free if E - E is injective in €.

Remark 2.3. If € = Mod(W) then the notion of flatness just introduced and the classical one
agrees. This is an easy consequence of testing flatness on ideals.

Lemma 2.4. In the hypothesis of Setting 2.1, if E € Crys(X/S) is p-torsion free, then
En = E‘(X/Sn)crys € CryS(X/STL) 7;8 Wn'ﬂat-

Proof. Indeed, since Crys(X/S) satisfies Zariski descent, we can assume that X and S are
affine. We apply Theorem 1.15 twice. The crystal E corresponds to a module M with an
integrable connection over Spec B, where B is a p-adically complete W-algebra and Spec B is
a lift of X. The B-module M is p-torsion free, thus W-flat, so its restriction M, = M ®@w W,
is Wy,-flat. Therefore, the crystal F,,, which corresponds to M,, is also W,,-flat. O

Remark 2.5. Let E € Crys(X/S) be p-torsion free. It is not true that the map E 5 E
is injective in the ringed topos ((X/S)ays; Ox/s). For example, we can look at the trivial

crystal Ogpeckyw on (Speck/W)erys: the map Wy L, W, at the thickening Speck — Wi is
not injective.

Lemma 2.6. In the hypothesis of Setting 2.1, if S is flat over W, and if E € Crys(X/S) is
a flat crystal | , p- 7.10], then E is p-torsion free in Crys(X/S).

Proof. Indeed, to see this we may assume X and S are affine. Then by Theorem 1.15, F
corresponds to a flat module M equipped with an integrable connection over the flat S-lift
Spec B of X, where B is a p-adically complete W-algebra. Since S is flat over W, M is W-flat,
hence it is p-torsion free in QNCf(X/S). Thus E is p-torsion free in Crys(X/S) as well by
Theorem 1.15. ]

2.1. The case of a base killed by a power of p. The next theorem deals with the situation
in Remark 2.2 (a) and the map in (2.1).

Theorem 2.7. In the situation of Setting 2.1, assume moreover that p is nilpotent in Os.
The following hold.
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(a) There exists r € N, which depends only on X 9, S, such that for all open U of S and
1> 1 we have

R (991 0)g= )0+ Bl(g=1 ) 0)erss) = O-

(b) The map (2.1) is an isomorphism if u is flat or E is a flat crystal | , p. 7.10].

(¢) The map (2.1) is an isomorphism if E is Wy-flat, S is a flat Wy,-scheme and if there
exists a map of schemes ug: Z —> W, such that u is the base change of ug along
S— W,.

(d) Suppose that S is smooth of finite type over k. Let Ewy € Crys(X/W) and set E =
(EW)\(X/S)crys- Then there exists N: Z — N, independent of the closed immersion
S < S, such that the i-th cohomology of the map (2.1) is a p™Ni-isogeny in the ringed
topos (St , Og).

Zar’

Before giving the proof of this theorem we prove some preliminary results.

Lemma 2.8. Let w: of — P be a left exact functor between abelian categories. Assume that
o/ has enough injectives and that there exists ng > 0 such that R"w = 0 for all n = ng, so
that, by | , Tag 0TKT7|, there is a functor Rm: D(&/) — D(2). Let also a: C — D be
a map in D(<7) and N: Z — N a function such that H (R (a)) is a pNi-isogeny and N; = 0
fori> 0.

Then there exists N': Z —> N, which depends only on N and ng, such that H(Rx(a)) is
a pNi-isogeny and N! = 0 fori » 0.

Proof. Applying Rm to the exact triangle of the cone of v and taking cohomology we get a
long exact sequence

.- Ri7C - RirD — Rin(Cone(a)) - R nC — - - - .

From this we are reduced to show that if G € D() satisfies that H(G) is killed by p™¢, then
we can find N’ as in the statement such that Ri7w@ is killed by p™i and N! =0 for all i » 0.
We consider the truncation

Ton(G) = - — 0 — (G"/Tm(d" 1)) & gn+t 20, gni2
By | , Tag 08J5], we have an exact triangle
H*(G)[-n] — 72n(G) = T2n11(G) — H'(G)[—n + 1]
hence the exact triangle
Rr(H"(G)[-n]) — Ra(72n(G)) = R7(72p41(G)) — Ra(H*(G)[—n + 1]).

We show that there exists f: Z — N such that the multiplication by p/* induces 0 on all
cohomologies of R7(7=,,(G)) and f, = 0 for n » 0.

For n € N satisfying N,,, = 0 for m > n we can set f, = 0. Indeed in this case 7=,G (and
therefore also R7(7=,G)) is acyclic by assumption.

Moreover H"(G) and, by linearity, all R (H"(G)[u]) (u € Z) are killed by p™¥» in the derived
category. We can therefore define f: Z — N working by reverse induction on Z.

Next we show that

Ri7(G) — Rinm(12,G)

is an isomorphism for n < i — ng so that the function N/ = f;_,,—1 satisfies the requests in
the statement.
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By | , Tag 07TK7| we can assume that G is made by right acyclic objects for 7. For all
n € N we have an exact sequence of complexes

0— U>n+1G — T;nG — (Gn/ Im(dn,l))[—n] — 0

where 0>,41G denotes truncation. Since RiIr = 0 for ¢ > mng, we can conclude that
R'7m(05n41G) — R'm(75,G) is an isomorphism for n < i — ng. Since R7(G) = 7(G)
and Rm(05,11G) = m(0>,4+1G) we can also conclude that

Ri7m(02n41G) — Rin(G)
is an isomorphism for n + 1 < 7. O

Lemma 2.9. Let &/ be an abelian category, I, N € N and
Eéw :>Hu+v

be a convergent spectral sequence in of .
If EY =0 forv >0 oru <0 oru>1l, then there is an associated map

. 0 0
wp: H" — B — EY

and, if pN kills all E3Y for v # 0, this map is a pNUHD isogeny.
If ESY =0 foru >0 orv <0 orv>l, then there is an associated map

wn: BY" — EJ' — H"
and, if p kills all E3Y for w # 0, this map is a pNU+D) sogeny.

Proof. We consider only the first case because the second one is analogous. By convergence
there is a filtration

0=F'H'c...c F*"'H" c F*H" < ... < F*H" = H"

for some s < t such that
Ego,n—u ~ (Fan)/(Fu+lHn)
The vanishing in the hypothesis tells us that F*H" = FUT'H" if w < 0 or u > [ or n > u.
Thus we can choose t = [ + 1 and s = max(0,n) in the above filtration. In particular,
FP"H"™ = H™ for all n.
Since EYY = 0 for v > 0 all differentials landing in (u,0) are zero in all pages. It follows
that EY < EY°. Moreover there is a map

wp: H" = F"H" — (F"H™)/(F" ™ H") ~ E° — E3°,

Assume now that p® kills all the modules E3" for v # 0. It follows that pV kills all modules
E" for v # 0 and r > 2. In particular E™; is the kernel of a map from ET to an object
killed by pY. Moreover the differentials at page [ + 1 must be 0, so that = By From
this it follows that

Coker w,, = E3°0/E™0
is killed by pV(+1),
It remains to look at Ker(w,) = F""'H". But this object has a filtration of lenght I

of subobjects whose partial cokernels are killed by pv. It follows that it must be killed by
N(+1) ]
P :
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Lemma 2.10. Let B be a smooth W -algebra, let B the p-adic completion of B and let )4
be the p-adic completion of the module of algebraic differentials QB/W (As in Remark 1.13,

Qp is a quotient of Qp ). Let (M, V) € Conn(B/W, Qp). Then there exist l,a,b € N and
maps of B-modules a: B! —> M, 5: M — B! satisfing p*(af — ptidys) = 0. In particular
if F: Mod(B) — € is any linear functor with values in a linear category and F(B) = 0 then
Pt kills F(M).

Proof. The last claim follows by linearity applying the functor F' to the given expression and
using that F(B) and therefore F(8) are zero.

Applying Proposition 1.6, Lemma 1.10 and Lemma 1.21 we can conclude that M[1/p] is
a finitely generated projective B [1/p]-module. In particular there exist maps «a: E[l/p]l —
M][1/p] and B: M[1/p] — B[1/p]* such that o8 = id. Multiplying o and § by a power of
p we can find b € N and a: B! —> M and 8: M —> B! such that o8 = pbid in M[1/p]. In
particular there also exists a € N such that p®(af — plidys) = 0 as required. O

Proof of Theorem 2.7. We follow the proof of | , Theorem 7.8], in particular the proofs
of (a) and (b) are essentially the same as the one given in the above reference.

We may assume that S’ and S are affine. We want to reduce to the case where X is also
affine by using cohomological descent as in | , Proposition 3.5.2] and | , Theorem
7.8]. If U < S is any open subset then we have

R(9lg-1@)) g1 )10 (Elig=1(0)/0)erys) = ROx/3, (E)|U-

Thus in (a) we may assume U = S.
We take a finite affine covering {U;}i—o,... , of X. From the covering we obtain the topos
(X°*/S)os as in | , p- 335, p. 344], and the morphism of topoi

crys

T (X/S)ays = (X/S)

crys®

Similarly, we have the topos (X"/S/)C“rys and the corresponding morphism of topoi 7 :

(X" /S )ows — (X'/S") 5. Thus we have a diagram of topoi

crys crys”

(X7 /8 ) e 2% (X*/S)

crys crys

J/Tr/ lﬂ-
crys

h
Smssr | (X8 )ty s (X /Sy |98

crys crys

lng’/S’ ng/S

I~ u ~
%
SZar SZar.

Then cohomological descent implies that there are canonical isomorphisms | , V, Propo-
sition 3.4.8]

>~

E = Rry(7*E) and 5 DN

crys

Rrl (n"*h: (E)).

crys
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Applying Rgyx g to the first above isomorphism, Ry, /S to the second, we obtain the
following commutative diagram

(2.3) Lu*Rgx s« (E) — Lu*Rgx. . (7(E))

l l

Rgf)(//s/*hzrys(E) — Rgf)(/-/sl*h;:ys (ﬂ-* (E))
The vertical map on the right is obtained via adjunctions as in Setting 2.1, using that
Rgxe/s(m*(E)) is bounded being isomorphic to Rgx/s, (Rm«(7*E)) = Rgx/s, (£) which is
bounded by | , Theorem 7.6]. This means that we can work with X* and X'*, instead of
X and X' respectively.

Now let A be the opposite category of the category whose objects are subsets of I :=
{0,1,2,...,n} and whose morphisms are the inclusions of subsets. As in | , pp. V, 3.4.3]
we obtain the commutative diagram

(X7 /8ty 2% (X*/S)

crys crys

J/gl);/- /s’ lg;(o/s

ng/o/S/ (S/Z;r)A u—'> (SZar)A gX'/S
S/Zwar — SZar‘

We know that Rg%. /S(T*(E)) has bounded cohomologies by | , pp- 340, 320]. Then by
[ , p- V. 3.4.9], one has the isomorphism
(2.4) Lu*(Rwx (R s, (T*(E)))) = R, (Lu*™(Rg. s, (7*(E)))).
Note that by | , Prop. V. 3.4.9, i), p. 340] we have Rlw,(—) = R'w,(—) = 0 for all
i=zn+lori<0,soby| , Tag 07TK7] Rw and Rw’ make sense. The right vertical arrow
in (2.3) is the composition of (2.4) with the map obtained by applying Rw/(—) to
(2.5) Lu**Rg%. s, (7°(E)) = Rg%u g (hfys(m*(E))).

Therefore, in (a), (b) and (c) we can replace Sy, and S4 by (S;,.)> and (Si;

Zar

respectively. When (a) is proved, we can conclude that both Lu®**Rg%. /S*(W*(E)) and

)A

Rg'%.. /s (h&rys(m*(E))) have cohomologies bounded from above with a bound 4y depending
*
only on gg. Thus in (d) we can also replace S35, and S5 by (S )* and (Si; )2

Zar
because we can reset the N obtained for (S35, ) and (S5 )2 to

N; if i < g
0 1f’L>’L0

respectively,

N! =

)

so that the conditions of Lemma 2.8 are satisfied.
By | , Prop. V.3.4.4] and | , Prop. V.3.4.5] we see that Lu** and Rg%. s, are
computed componentwise. An intersection of open affine subsets of X may not be affine, but
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it is separated. Thus one can first reduce the problem to the case when X is separated and,
after, to the case when X is affine.
Now let S = Spec A and S’ = Spec A’. Since gg: X —> S is smooth and X, S are affine,

there is a smooth affine lift go: Spec B =X — S by | , Tag 07M8], and by pulling back
along u: 8" — S we get a lift of g to g;: Spec B’ = X’ — S§’. The comparison theorem
(e.g. | , Tag 07LG]) tells us that there is a commutative diagram
(2.6) Lu*Ryx s, (E) ——— Rgxr/s;, hivys (E)

% l;

- . ¢ . .
Lu*g()* (M ®OX QX/S) —_— 96* (M/ ®OX’ QX’/S')

where M ®ox Q% /s and M’ ®o,, 0%, /g are the de Rham complex associated to the topolog-

*

ically quasi-nilpotent connections corresponding to the crystal £ and hgq

the map in Theorem 1.15.

FE respectively via

Proof of (a). We see from the comparison theorem | , Tag 07LG]| that Rgx/s, (F) has
bounded cohomologies whose bound depends only on the relative dimension of gg: X — S,
so the proof of (a) is finished. O

Proof of (b). Replacing the affine schemes X, S, X', S’ by the rings B, A, B, A’ and the quasi-
coherent sheaves M, M’ by modules M, M’ respectively we obtain the map

(;5: LU*(M®B Q.B/A) E— M/ ®B/ Q.B//A/

which is the ring version of the map ¢ in (2.6) (which we still call ¢). The functoriality in
Theorem 1.15 tells us that M’ = M ®p B’. Since QJ.B’/A’ = QJ.B/A ®a A’ we see that the

target of ¢ is just u* (M ®p 2%, ,). If we denote by Q* the bounded complex of A-modules

B/A

M ®p QY A it follows that the map ¢ we are considering is the canonical map

(2.7) Lu*(Q°®) — u*Q°.

When wu is flat the map (2.7) is a quasi-isomorphism. The same holds if F is flat because in
this case Q° is a complex of flat A-modules. O

Proof of (¢). We proceed as in (b) and get the map (2.7). Assume that F is W,-flat and that
there is a map of rings W,, — R such that A’ = A®y, R as an A-algebra, then the module
M is Wp-flat in Mod(B) and therefore it is flat as W,,-module. Therefore the complex Q°* is
a complex of flat W,,-modules. Using the flatness of A and Q° over W,, one can easily check
that

L L L
Lu*(Q*)=Q*®@4 A ~Q°*®4 (A®w, R) ~ Q° ®w, R~ Q°*Qw, R.

Thus (2.7) is an isomorphism. O
Proof of (d). We proceed as in (b) and get the map (2.7). We consider the converging coho-
mological spectral sequences | , Proposition 5.7.6, with the convention on Dual Definition
5.2.3]

E;Cy — H:(:<Lyu* (Qo)) - Lx+yu* (Qo) _ H:c+y
where LYu*(Q*) is the complex obtained by applying LYu* on each terms of Q°. This sequence
is obtained from the double complex made by the projective resolutions of the modules in Q°.
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It is a fourth quadrant spectral sequence, i.e. E3Y =0 when y > 0 or z < 0 or x > m (where
m is the relative dimension of go).
By Lemma 2.9, from the spectral sequence, we obtain a map
(2.8) H = L (Q*) — Hi(u*Q*) = B
which is the i-th cohomology of the map we are considering.
By Lemma 1.26 we have the following diagram

X —Xw = Specé

| !
S— Sw = Specg

| |

Speck ——— W

where A is the p-adically complete flat lift of the smooth k-algebra A/I to W, and B is the

p-adically complete flat lift of the smooth A/I-algebra B/I to A. Since A is p-adically formally
smooth over W and A — A/I is a quotient of p-adically discrete - algebras defined by a nil
ideal, we can choose a W-map A —> A. In the same way, we can choose an A—map B —> B.

If (M, V) € QNCf(X /W) is the quasi-nilpotent connection corresponding to Eyy € Crys(X /W)
via Theorem 1.15, then M ®p B ~ M by the crystalline nature of Ew. Applying Lemma
2.10 to M and the functors

Fy(—) = L™ (- @3 QB/A) (y € Zpo,t €N)

we find N’ € N such that p™' kills F,;(M) hence also H*(F,.(M)) = E5¥ (y # 0). Notice
that N/ € N depends only on the B-module M and the B-module M depends only on Evw €

Crys(X/W).
Set N; := (m + 1)N’ for all i € Z, where m is the relative dimension of gg. By Lemma 2.9,
the i-th cohomology of (2.1) is a p'Vi-isogeny. O
The proof of the theorem is done. O

Remark 2.11. Note that in the proof of Theorem 2.7 (a), (d), the bound r and the function
N: Z —> N depend not only on the relative dimension of gy, but also on the number of opens
in the affine covering {U;}i—o.... » of X and the affine coverings of the arbitrary intersections
of {Ui}i=o,... n. Indeed this was used during the reduction of X to the affine case (see the two
paragraphs after (2.5)). Since this is a choice on X which is part of the map gy : X — S, we
didn’t specify it.

2.2. The case of an affine base. In this section we treat the case in which the base S
is affine. The first result is a corollary of the base change theorem proven in the previous
subsection (Theorem 2.7).

Corollary 2.12. In the situation of Setting 2.1 assume that S = Spec A is affine and set
n=A/p", S, =SpecA, and E,, = E\(x/s,) Then the following hold.

crys *
(a) There exists r € N, which depends only on X B8 such that for all i = r we have
R'T((X/Sn)erys, En) = 0. Moreover, we have

(2.9) RI'((X/S)erys, E) ~ R1Im RI((X /Sy )erys, En)

n
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18 quasi-isomorphic to a bounded complex.
(b) If S is flat over W and E is p-torsion free then the system {RI'((X/Sp)crys, En)} is
quasi-consistent in the sense of | , B.4| and, if moreover S is Noetherian, then

L
RF((X/S)Cry57 E) ®a Ay ~ RF((X/Sn)cry57 En)
(¢) If S is flat over W and Noetherian, E is p-torsion free, X /S is proper and S = S;
(I =(p)), then RI'((X/S)erys, E) is quasi-isomorphic to a bounded complex of finitely
generated fl—modules, where A is the p-adic completion of A, and

Hi(<X/S)CryS= E) ~ liﬁlHi«X/Sn)crym Ep).

Moreover, the projective system on the right hand side satisfies the Mittag-Leffler con-
dition, and is made by finitely generated A-modules.

Remark 2.13. The proof of Corollary 2.12 is the same as the proof of | , Proposition 5.3
1)] and | , claim in pp. 10-11] .

Proof of Corollary 2.12. Firstly, notice that we can replace A by its p-adic completion thanks
to | , 05GG].

(a) The isomorphism (2.9) follows from | , Tag 0TMV]. By Theorem 2.7 (a) and
[ , Remark B.1.6] we also get the boundness.

(b) The quasi-consistency follows from Lemma 2.4 and Theorem 2.7 (c) because the maps
S,_1 — S, are base changes of the maps Spec W,,_1 — Spec W,,. From the quasi-
consistency and | , Proposition B.5, 3)| we obtain the last isomorphism.

(c) Assume that S flat over W, FE is p-torsion free, X/S is proper and S = S5 (
I = (p)). Since RI'((X/S1)crys, £1) has finitely generated cohomologies and all the
RI'((X/Sy)erys, En) are uniformly cohomologically bounded thanks to | , p.7.7],
the result follows from | , Lemma B.6 and Proposition B.7|. Here we use that a
bounded complex with finitely generated cohomology is quasi-isomorphic to a bounded
complex of finitely generated modules. O

Always in Setting 2.1, we consider now the situation in Remark 2.2 (b). We analyse under
which condition the map in (2.2) is an isomorphism (or an isogeny).

Theorem 2.14. Let the notation and hypothesis be as in Setting 2.1. Assume moreover that
S is Noetherian and W-flat. Let S’ :== Spec A’, S := Spec A, where A and A’ are p-adically
complete rings. Suppose that one of the following is true: p is nilpotent in Ogr or X /S is
proper and S = Spec A/p (i.e. I = (p)). Then the following hold.

(a) Let Ew € Crys(X/W) and set E = (Ew)|(x/S)ery.- Assume that S is smooth over
k. Then there exists N: Z — N, depending only on Exy and go, such that the i-th
cohomology of the map (2.2) is a p™Vi-isogeny isomorphism.

(b) The map (2.2) is an isomorphism if E € Crys(X/S) is a flat crystal | , p- 7.10].

(¢) The map (2.2) is an isomorphism if E € Crys(X/S) is p-torsion free and allu,: S|, —>
S,, are either flat or the base change of a map to W,.

Before proving this theorem, we consider two remarks.

Remark 2.15. If M is a flat W-module, that is it is p-torsion free, then so is its p-adic
completion. Indeed let m,, € M be a collection of elements such that m, 1 —m, = p"z, € p"M
and pm,, = p"y, € p"M. Then m,, = p" 'y, and

-1

P"Ynt1 =P Yn ="y = YypepM = m, ep"M.
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Remark 2.16. | , after Remark 2.5] If X is a smooth and quasi-compact k-scheme and
Ew € Crys(X/W), then there exists a p-torsion free Eyy € Crys(X/W) and an isogeny
Ew — E5. Indeed one can check locally, using Proposition 1.27 and Theorem 1.15, that
the sequence Ew [p"] stabilizes to a subobject Ew [p®] which is killed by a power of p. Thus
Ew = Ew/(Ew[p*]) meet the requirements.

Proof of Theorem 2.14. By Remark 2.16 we can assume that F is p-torsion free in (a). If E
is a flat crystal, then E is p-torsion free by Lemma 2.6.
Now, for n € N, let u, = u x W,,: S/ — S,, and consider the base change map

(2.10) Lu; R ((X/Sp)erys, Bn) — RL((X'/S],)crys» herys En)-

Firstly we would like to prove that the R lim of (2.10) yields the map (2.2).

If, for some a € N, p® = 0 in Og/, the map u: S’ — S factors through u, for n > a and

therefore
Lu*RI((X/S)crys, E) ~ Lus RI((X/Sy)eryss En)-

So what remains is the case where p is not nilpotent in Ogr and X /S is proper and S =
Spec A/p (i.e. I = (p)). By Corollary 2.12 (c) we have that RI'((X/S)crys, £) is quasi-
isomorphic to a complex P* of A-modules which is bounded above and it is made by finite
free A-modules. In this case, by Corollary 2.12 (b), RI'((X/Sy)erys, En) =~ Py = P* ®a A,
and

LuiPr ~ Py ®a, A.,.
This is a complex of flasque projective systems in the sense of | , Remark B.1.4]. In
particular by | , Remark B.1.6] we have

Rlim Luj Py ~ lim[(P* @4 A) @4 A7l ~ P* @4 A'.

The last isomorphism holds because P* ® A’ is a complex of finite free A’-modules which are
therefore complete. Since P* ®4 A’ ~ Lu*RI'((X/S)crys, E) we get the result.

(a) Applying Theorem 2.7 (d) we know that there exists N: Z — N, which depends only
on Ew and g (thus not on n), such that the i-th cohomology of (2.10) is a p™i-isogeny.
Letting n vary we can consider (2.10) as a map of complexes in D~ (N, A’,) whose i-th
cohomology is a pNi-isogeny. By Theorem 2.7 (a) we can suppose N; = 0 for i » 0,
and by | , Remark B.1.6] we have that R’ lim = 0 for i > 2. Now applying R’ lim
to (2.10) we get our result by Lemma 2.8.

(b) We consider, as in (a), the map in (2.10). Applying Theorem 2.7 (b) we get that
the map (2.10) is a quasi-isomorphism. Again applying Riliﬁl to (2.10) yields the
quasi-isomorphism (2.2).

(¢) The proof is exactly as in (b), using Theorem 2.7 (c). O

Remark 2.17. A result along the same lines is proven in | , Theorem 1.19] and | ,
Proposition 5.3|.

2.3. Pullback in the crystalline site revisited. Suppose that we are in Siuation 2.1. In
what follows we collect some properties of pullback of sheaves in the crystalline topoi, following

the discussion in | , Chapter III, Section 2.2, p. 196]. We denote by
herys: (X/S)ays — (X'/8")arys

the pullback in the morphism of topoi heys (not ringed topoi) induced by the morphism
h: X" — X. We instead denote by h’. . the pullback of Oy ss-modules.

crys
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Definition 2.4. Given T € (X'/S')crys and T € (X/S)erys a h-PD-morphism T — T is a
PD-morphism v: T/ — T which is compatible with i and u.
For T” € (X'/S')crys we define the category

IF" = {h-PD-morphisms T/ — T with T € (X/S)erys}-
Given z' € T/ we also define the category
I,fI’T’ = {h-PD-morphisms V — T with T € (X/S)cys and 2’ € V < T’ open}.
Lemma 2.18. Let F be a sheaf on (X/S)crys, T' € (X'/S)erys and 2’ € T'. Then
(1) hol (F) is the sheafification of the presheaf

crys
T — colim  F(T).
(¢: T’—»T)e[,’f’

(2) forq: V— T in IZ”T, there is a canonical map

¢ (Fr) — hgys(F)v.

crys

(3) the set I}’{",x’ is filtered; moreover taking stalks at ¥’ € V. T of the maps in (2) and
passing to the limit we obtain an isomorphism

colim , qul(FT)x/ — (h&;S(F)T’)x/.
(q; V—»T)EI;: T

Proof. Point (1) is | , Chapter III, Section 2, eq (2.2.10)], while (2) is an easy consequence

of (1). The proof that I} T is filtered is given in the first paragraph of | , Chapter III,

p. 199]. Asin | , Chapter III, eq (2.2.11), p. 199], taking a double limit in (1) we have
(harys(F) 1) = colim F(T).

(¢: V—»T)EI;C"T’

By definition of IZ/’T/ it is easy to rewrite the above equation as
(hc_ri,s(F)T/)m/ = colim  (Fr)y@a) = colim /q_l(FT)w,.
(¢: V—»T)e[,ﬂf T (¢: V—»T)e[; T
0

Lemma 2.19. Let I be a sheaf of Ox g-modules on (X /S)crys, T' € (X'/8)erys and 2’ € T,
Then

(1) forq: V— T in IZ/’TI there is a canonical map
¢*(Fr) — héys(F)v.

crys
(2) taking stalks at ' € V. T of the maps in (2) and passing to the limit we obtain an
isomorphism

colim  q*(Pr)y — (hgys(F)1)ar-
(¢: V—T)erT

Proof. By definition we have
h o (F) = hoys(F) ®,

crys crys

OX’/SI.

—1
crysz/S

Properties (1) and (2) follows from Lemma 2.18, taking into account that tensor products
commute with filtered colimits. O
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Lemma 2.20. Let F* be a complex of sheaves of Ox jg-modules on (X /S)crys, T' € (X' /S )erys
and 2’ € T'. Then

(1) forq: V— T in IZ/’TI there is a canonical map of complexes
q*<F’i‘) - h?rys(*F.)V;

(2) for all j = 0, taking j-th cohomology, stalks at x' and passing to the limit we obtain
an isomorphism

colim W (q*(Fp))ar — (B (RiysF*) 1)
(q: V—T)el} T

(8) if F* is bounded from above then we have a canonical isomorphism

colim (Lig*(Fp))w — ((Ljh:rysF.)T’)x“
(¢: V—»T)EI;S"T’

Proof. (1), (2) follows literally from Lemma 2.19 (1) and (2) respectively. If F'* is bounded,

then by | , p- 7.7-7.8] we can replace F'* by a complex of flat Ox g-modules. By | ,
Chapter III, Cor 3.5.2, p. 211] we have that Fr is a complex of flat Or-modules for any
T € (X/S)erys. We can therefore replace LY in (3) by H, but this is just (2). O

2.4. Crystalline base change.

Definition 2.5. Let f: X — S be a morphism of k-schemes. There is a morphism of ringed
topoi | , Tag O07IK]

Jergs: (X/W)arys: Oxpw) — ((9/W)gys, Os/w)-

For a sheaf of O x jyw-modules E on (X /W )cys we consider the higher direct images R” ferys« ¥
and also K ® R" ferys« E, which belong to K ® Mod(Og/w ).

Theorem 2.21. Consider a cartesian diagram

X/LX

7| ) |s

S — 8

of quasi-compact k-schemes with f smooth and quasi-compact. Let E € Crys(X/W) and
assume that E is flat (resp. S is smooth over k). Then there is a natural map in D((S"/W )erys)

(211) LU:rystCryS* (E) - Rférys* h:rys (E)
which is an isomorphism (resp. induces isogeny on coholomogy).

Proof. The definition of the map in the statement is also given in the proof of | , Chapter
V, Theorem 3.5.1, p. 342]. Applying adjunction to the canonical map Lh% . (E) — hi s (E)
we obtain a map

E— RhCFyS*(h:rys(E))'

Applying Rfcrys* we get
Rfcrys* (E) - RUCryS* Rférys* (hzrys (E) ) .
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The map (2.11) is obtained applying adjunction again, which is possible because R feryss (E)
is bounded: if (U, T,0) € (S/W)erys then (] , Tag 07TMJ], | , Corollaire V, 3.2.3, p.
328])

(Rferyss (E))T =~ R(f|7-10)) s )15 (Bl (41 (0)/T)exys )

which is bounded uniformly thanks to Theorem 2.7 (a).

The case when E is flat is essentially contained in | , Chapter V, Theorem 3.5.1, p.
342], but we include the proof for completeness.

Let’s fix (U', T’,6) € (S'/W)ays and 2’ € T'. It is enough to check that the map

(212) (Ljvjrys (RfcryS* (E))T')E' - (R] férys* (hzrys(E))T')I'

is a quasi-isomorphism (resp. pVi-isogeny for some N;) for all T and z’. We follow notation

from §2.3, for instance recall that I T’ is the filtered category of v-PD-morphisms V — T
where z € V. < T’ is an open and T € (S/W)¢pys.

Let ¢: V— T be an object of Iff”TI. By Lemma 2.20 we have maps

Cq

Lq*(RfcryS* (E)T) Rférys*(hzrys(E))V'

xq b/

Loty (Rfoyse(E))v

By | , Tag 07MJ] the map ¢, is the map considered in Theorem 2.7 (c) (resp. (d)).
Therefore, ¢, is a quasi-isomorphism (resp. we find N: Z — N depending only on f and E,
such that the map H’(c,) is an p™i-isogeny).

Now, on the diagram above, we take j-th cohomology and the stalk at z’. The map b,
becomes the map (2.12). This map and, in particular, its source and target do not depend
on q € Iff/’Tl. Let’s call it B — C. Passing to the colimit for ¢ € I{fI’T’ (at the level of
complexes) we get the diagram of the form

y
colimy A, colime fe C
\) /
B

with the map o an isomorphism by Lemma 2.20. If ¢, is a quasi-isomorphism, then so is
colim, 34, hence so is . This finishes the proof in the case when F is flat.
Let’s now focus on the “resp.” case. Taking the limit of the exact sequence

0—>Kq—>Aqﬁ>C—>Dq—>0

we obtain that

Ker(y) ~ colim K, and Coker(y) ~ colim Dj,.
q q

Because all the 3, are pMi-isogenies, p™s kills all K, D, and therefore Ker(vy) and Coker(y),
as required. O
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3. HIGHER PUSH-FORWARD OF ISOCRYSTALS
This section is dedicated to the proof of Theorem I.

Theorem 3.1. Let f: X — S = Spec A be a smooth and proper morphism between smooth
k-schemes, and let A be a p-adically complete flat lift of A over W and E € Crys(X/W) be
a p-torsion free crystal. Then for each n € N there is a crystal E?(/A in Crys(S/W) with

a morphism of sheaves ny, : E}/A —> R" forys, (E) on the crystalline site (S/W)erys which
induces the isomorphism
@(E;L(/_A)Spoc (A/pe) = @(Rnfcrys* (E))Spec (A/pe)-
Moreover,
M ® K : E;L(/A®K - Rnfcrys*(E) ® K

s an tsomorphism and E?(/A corresponds, via Theorem 1.15, to the A-module
Hn((X/S)Crys’ El(X/S)C,yS)
equipped with a topologically quasi-nilpotent connection.

Proof of Theorem I as a consequence of Theorem 3.1. By Remark 2.16 we can assume & =
E ® K, where E € Crys(X/W) is p-torsion free. By Theorem 3.1 the statement is true

when S is affine. By descent for isocrystals (| , Lemma 0.7.5]), we can conclude that an
Ox w-module on (X /W )erys in the isogeny category is an isocrystal if and only if it is Zariski
locally so. This finishes the proof. O

Proof of Theorem 3.1. Set A, = A/p°, S. = Spec A,
Es = E|(X/S)crys and Hn = Hn((X/S)CryS, E\(X/S)crys)'
We construct the crystal By /A in Crys(S/W) with the morphism 7, : E% 7 S R” forys, (E).

Let D(e) be the p-adic completion of the PD-envelope of S inside S xw S+ -+ xw S (the fiber
product over W of e copies of S). Since S is smooth, the projections

pi : D(e) — S

are flat (| , p.- 3.32], | , Tag 0912]). By Theorem 2.14 (c) we get canonical isomor-
phisms

PiRT((X/S)erys, Bs) — RI'((X/D(€))erys, E|(X/D(e))erys)-
Taking cohomology we also get canonical isomorphisms
p; Hy — Hn((X/D(e))cryS7 E|(X/D(e))crys)'
This defines an HPD-stratification on the A-module H,,, which is finitely generated by Corol-

lary 2.12. Similarly to | , - 6.6], this HPD-stratification defines a crystal ESL(/A €
Crys(S/W). Let’s recall here its construction.
For each object x = (U, T, 9) € (S/W)erys with T affine we get, thanks to | , Tag 07TK4]
and the smoothness of S, a commutative diagram
U——T

4

S ——S.
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We set (B / )T to be the quasi-coherent sheaf on T associated to oy Hy. The structure of the
HPD-stratification allows us to define the transition morphisms and to prove the functoriality
of the correspondence x = (U, T,6) — (E’;(/A)T.

By Theorem 2.14 (a) with S” = U and S’ = T there exists N: Z — N, depending only on
FE and f, such that the i-th cohomology of

(3.1) Yt LafRE((X/S)ays: Es) — RE((f 7' (U)/TDerys: Ei(1-1(0)/T)erys )

is a pNi-isogeny.
Notice that (| , Tag OTMJ], | , Corollaire V.3.2.3, p. 318|)

(Rferyss (B))m = RS =100 (B (1 (0) /T ery)

is quasi-isomorphic to the complex of Op-modules associated to any complex of HO(OT)—
modules representing the right hand side of (3.1).
Moreover there is a canonical map

by @y Hy — H* (LA RI((X/S)erys, Es))-
Putting everything together we get a canonical morphism
()T (E%) )T — (R ferys«(E))T-

If x = (S5,S¢,dc) and a, : S — S is the obvious closed immersion, then, by Theorem 2.14
(c), the map =, is a quasi-isomorphism and (7,,)s, becomes the map of quasi- coherent sheaves
on S, associated to the map

H,® A, — Hn((X/Se)cry57 E|(X/Se)

crys ) °

By Corollary 2.12 the projective limit of the above maps is an isomorphism as required. The
limit H,, which corresponds to E' /A via Theorem 1.25, is therefore the module with the
topologically quasi-nilpotent connection in the statement.

It remains to show that 7, ® K is an isomorphism. It is enough to show that there exists
a N € N such that for all y = (U, T,0) € (S/W)eys the map (n,)r is a p™-isogeny. Since 7,
is a pVn-isogeny, we have to prove the analogous statement for Ly-

Set M := RI'((X/S)erys, Es). By | , Proposition 5.7.6, with the convention on Dual
Definition 5.2.3] there is a convergent spectral sequence

By = LU (H'(M)) = L"*'a (M) = H"*",

Since M is bounded there exists [ € N such that F5” = 0 for v < 0 or v > [. Moreover F5" = 0
if u> 0. By Lemma 2.9 we obtain a map

EY" = o (H"(M)) — L o (M) = H"

which coincides with the map ¢, .

Since HY(M) = H, is endowed with a topologically quasi-nilpotent connection on A, by
Lemma 2.10 there exists N, € N, depending only on H,, such that Lia}(H"(M)) is killed
by pNv for any ¢ # 0. Since Loy (H"(M)) = 0 for all v < 0 or v > I, we can choose N
large, so that it kills Lo} (H”(M)) for all ¢ # 0 and v. Thus Lemma 2.9 tells us that ¢, is a

pN 1Y) isogeny. O
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Remark 3.2. We want to compare | , Theorem 1.9] and Theorem I and, in particular,
show how they are compatible. Assume the common settings for those results, that is, let
f: X — S be a smooth and proper morphism of smooth k-schemes and € € I.ony (X/W),
where Ieony (X /W) denotes the category of convergent isocrystals.

By | , Theorem 0.7.2|, there is a fully faithful functor ¢: Icony (X/W) — Iopys(X /W)
and similarly for S. Moreover, R’ feonvs(E) € Ieony(S/W) by | , Theorem 1.9] and
R foryss (t(E)) € Ierys(S/W) by Theorem I. We claim that there is a canonical isomorphism

L(Rifconv* (8)) = Rifcrys*(L(g)) in Icrys(S/W)-

By descent for isocrystals (| , Lemma 0.7.5]) we can assume that S is affine and, by
2.16, choose a p-torsion free crystal E such that «(£) ~ E ® K. We use the notations from
Theorem 3.1 and freely refer to its proof. In particular we consider the schemes D(e) with
projections p;: D(e) — S and the module H,, with stratification defined at the beginning of
the proof.

Since all D(e) — W are flat, the associated formal schemes P(e) belong to the convergent
site of S/W. We use the description of ¢: Ieony(S/W) — Ierys(S/W) given in | , Section
3.20]. Applying | , Theorem 3.22] (or | , Theorem 2.36]) to X/P(e) (be aware that
the gx/p(e)crys+ In the reference is what we denoted by gx/p(e)«) We see that H, ® K is the
module with stratification inducing ¢(R' feonv« (€)) (see also the proof of | , Lemma 4.10]).
This shows the claim.

Proof of Theorem II as a consequence of Theorem 3.1. By Theorem 2.21 there is an isogeny

H™ (LR forys, () — R floye Wiya (E).

crys
Set M := R ferys, (). There is a canonical map
¢: U:rysRnfCryS* (E) = U:rys(Hn(M)) - Hn(LU* M)

crys

We have to prove that it is a pN»-isogeny with an N,, € N depending only on E and f. We
are going to show that there exists N, € N, depending only on F and f, such that for all
x = (U, T,8) e (5/W)erys the Opr-linear map

(bX: U:rys<Hn<M))T’ - Hn(L'U* M)T’

crys
is a pNn-isogeny. To show this it is enough to show that for each 2’ € T/ the map on stalks
¢X7$/ : (U:rys (Hn (M))T')w' - Hn((LU:rysM)T')IE'

is a p/Vn-isogeny. Now we use notation from §2.3. Recall that I, "T"is the filtered category of
v-PD-morphisms V > T where € V € T is an open and T € (S/W)eys. Then we have a
commutative diagram

Nn

w* (H" (M) ) —— H*(Lu* M)

| |

Vipys(H"(M))v —— H" (Lo M)v.

crys

If we take the stalk at 2’ in the above diagram, then the bottom horizontal map is exactly
¢y, Moreover, if we take the colimit of the vertical arrows over all u € I{f”TI, then the
vertical arrows are isomorphisms by Lemma 2.20. Thus it is enough for us to show that the
top horizontal arrow is a p™"-isogeny with N,, depending only on E and f.



36 VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG
Now consider (U', T',d") € (5"/W)erys, (S, T,0) € (S/W)arys and a commutative diagram

R

| |1

U8

| |

T ———T
where v, u form a PD-map. We have to show that the map
u* H"(Mt) — H"(Lu*(MT))

is a p’Vr-isogeny for some N,, € N depending only on E and f. Notice that by Theorem 2.7 (a)
the complex Mt ~ Rfx 1+(F|(x/T)ay.) 13 bounded with a bound depending only on f. By
[ , Proposition 5.7.6, with the convention on Dual Definition 5.2.3] there is a convergent
spectral sequence
E$® = Lu*(H"(Mrt)) = L* Pu* (M) = H*.
The upper bound of Mt provides a number [ € N depending only on f (so independent of the
choice of T), such that F$® = 0 for b < 0 or b > I. Moreover E$* = 0 if a > 0. By Lemma 2.9
we obtain a map
EY" = w*(H"(M7)) — L"u*(My) = H"

which coincides with the map ¢, .

By Lemma 2.9 we must show that there exists IV,,, which depends only on E and f, such
that Lou*(H*(Mr)) is killed by p’\ for a # 0. We can assume that T and S are affine. By
Remark 2.16 and Theorem 3.1 there exists a crystal H € Crys(S/W) which is isogenous to
H®(M). Thus it is enough to look at Lu*Hyp. By Theorem 1.15 H corresponds to some
(P,V) e QNCE(S/W). Let Sw = Spec. A — W be a lift of S as in Lemma 1.26 (2), so that
P is an A-module. The smoothness of Sw, over W, for all n € N and | , Tag 07KA4]
imply the existence of a map T — Sw lifting the identity map of S along S € Sw. In
particular P ® Or ~ Hy. Applying Lemma 2.10 to P and F' = L*u*(— ® Or) we find the
N,, € N depending only on E and f such that p™» kills F(P) = L%*Hry for a # 0. O

4. THE KUONNETH FORMULA
In this last section we prove Theorems III and IV.

Proof of Theorem III. Consider the following diagram

1 — Y/ W,y) ——— 71 (X xx Y/W, (z,y)) ———r 7 (X /W, z2) —— 1

| | |

1 — P (Y/W,y) — m (X /W, z) xp 7] (YV/W,y) —— 7 (X /W, 2) —— 1.
It is enough to show that the top sequence is exact. Consider the diagram
(4.1) Y —5 = X x, Y

gl |»

Speck ——— X.
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Since x is a section of the projection, it gives a closed embedding on fundamental group
schemes, while the projection yields a surjection on fundamental group schemes. We are

going to apply | , Theorem A.1 (iii)] to prove the exactness in the middle. So we have
to check:
(a) If € € Ierys(X X Y/W), then x3 € is a trivial object in Ieys(Y /W) if and only if

there exists F € Ierys(X/W) such that pi, F ~ £.
(b) We have to check that for any isocrystal £ € Iorys(X x5 Y /W), the maximal trivial
subobject of z¥. £ comes from a subobject F < &, where F is defined over X/W.

crys
(c) If G € Ierys(Y /W), then there exists £ € Irys(X X3 Y /W) such that G is a subobject
of Zgys€.

Condition (c) follows because z is a section of the projection X x5V £ V. Also the "if"
part of (a) is obvious from (4.1), and the "only if" part is a consequence of (b). Thus let’s
focus on (b).

Since picrys, and pfcrys are a pair of adjoint functors between the category of sheaves of O-
modules on (X x5 Y /W)eys and that on (X/W)eys, and thanks to Theorem I, the induced
pair of functors between the isogeny categories Ierys(X x Y/W) and Ieys(X/W) are also
adjoint to each other. The map p; induces a map on fundamental group schemes

T (p1)s T (X YW (@) — w0 (X /W)

which is surjective because p; has a section. It follows that Plerys, On isocrystals corresponds

to taking invariants by the kernel of 77”"(p;). In particular the map

‘F = pTcrysplcryS*g - 5
is injective.
The same argument applied to Ierys(Y /W) and Iepys(Speck/W) shows that

* * *
gcrys gcrys* xcrysg xcrysg

s 18 the maximal trivial subobject of z}. £

is injective and gky<Gerys, 2

% CIys crys®™
Using the base change isomorphism in Theorem II in (4.1), we can conclude that applying
Tgpys 10 F —> & we get the map gg,yserys, Terys€ — Tarys€ as required. O

Proof of Theorem IV. By the binary operation on 7" (A/W,0) induced by the addition of
the abelian variety A, 7]"°(A4/W,0) becomes group object in the category of affine group
schemes over K. Then, by the calculation given in | , Theorem 5.4.2], 7""*(A/W,0) is
an abelian group scheme. (]
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