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A CRYSTALLINE INCARNATION OF BERTHELOT’S CONJECTURE
AND KÜNNETH FORMULA FOR ISOCRYSTALS

VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

Abstract. Berthelot’s conjecture predicts that under a proper and smooth morphism of
schemes in characteristic p, the higher direct images of an overconvergent F -isocrystal are
overconvergent F -isocrystals. In this paper we prove that this is true for crystals up to
isogeny. As an application we prove the Künneth formula for the crystalline fundamental
group scheme.

Introduction

One of the expectations for a good cohomology theory for schemes is that there exists a
pushforward functor f˚ associated to a proper and smooth morphism f : X Ñ S such that
R

qf˚ (for q ě 0) sends a coefficient for the cohomology onX to a coefficient for the cohomology
on S. This expectation is reality in various contexts.

Let k be a field of characteristic 0, f : X Ñ S be a proper and smooth morphism between
two k-varieties, and let E be a module with integrable connection on X; then the relative
de Rham cohomology R

qf˚pEq comes endowed with an integrable connection, the Gauss–
Manin connection (see for example [Kat70], [Har75]), so that it is indeed a coefficient for the
cohomology on S.

When k is a field of characteristic p ą 0, f : X Ñ S is a proper and smooth morphism
between two k-varieties, and E an ℓ-adic lisse sheaf (ℓ ‰ p), then R

qf˚pEq is an ℓ-adic lisse
sheaf ([Del77]).

As for the case ℓ “ p, the expectation for an overconvergent F -isocrystal E is known as
Berthelot’s conjecture ([Ber86, (4.3)], [Tsu03]). The conjecture is still open, but several results
have been obtained in the last years ([Tsu03], [Shi08a], [Shi08b], [Shi08c] [Car15], [Ete12], . . . ).
For a survey about this conjecture see [Laz16].

As remarked by Ladza in [Laz16], Berthelot’s conjecture can have many incarnations, de-
pending on what kind of coefficients and pushforward one considers. In this paper we deal
with a crystalline incarnation of Berthelot’s conjecture, working with the category of crystals
up to isogeny on the crystalline site.

Let k be a perfect field of characteristic p ą 0, let W be the ring of Witt vectors of k and
let K be the fraction field of W . Set W – SpecW . For a k-scheme X, Berthelot defined the
crystalline site pX{Wqcrys and the structure sheaf OX{W. He considered also the category
of crystals of finite presentation, denoted by CryspX{Wq, defined as the category of certain
sheaves of OX{W-modules on pX{Wqcrys which verify a rigidity condition. The category of
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2 VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

isocrystals IcryspX{Wq is the category CryspX{Wq up to isogeny, i.e. the category whose
objects are exactly those in CryspX{Wq and whose morphisms are obtained inverting the
multiplication by p. Thus we have a natural functor

CryspX{Wq ÝÑ IcryspX{Wq

which is the identity on objects. To distinguish among objects in CryspX{Wq and in IcryspX{Wq
we denote by K bE the image of E P CryspX{Wq under the above functor, and we say that
E is a lattice for the isocrystal E if K b E – E .

Given a proper and smooth morphism of k-schemes f : X Ñ S and a crystal E on the
crystalline site pX{Wqcrys, there is a morphism of ringed topoi

fcrys˚ : ppX{Wq„
crys,OX{Wq ÝÑ ppS{Wq„

crys,OS{Wq

and its derived version Rfcrys˚. By functoriality the functors fcrys˚ and Rfcrys˚ induce cor-
responding functors in the isogeny categories, so if E is an isocrystal in IcryspX{Wq, then for
all q ě 0, we get an object R

qfcrys˚pEq in the isogeny category of OS{W-modules. The main
result of the paper is that, if S is smooth, Rqfcrys˚pEq has a richer structure, indeed it is an
isocrystal, i.e. an object of IcryspS{Wq.

Theorem I. Let f : X Ñ S be a smooth and proper morphism of smooth quasi-compact k-
schemes and let E be an isocrystal in IcryspX{Wq. Then, for all q ě 0, R

qfcrys˚pEq is an
isocrystal in IcryspS{Wq.

The above theorem generalises a result of Morrow, which proved the above theorem for the
trivial isocrystal ([Mor19]). Our proof follows the lines of his proof: we explain here the main
ideas.

First, using Zariski descent, one reduces to the case in which S “ SpecA is affine; now
A can be lifted to a p-adically complete flat W -algebra A, such that An “ A{pnA is a
smooth Wn – W {pnW algebra for all n ě 1. Set Wn – SpecWn. Since X is smooth
over k, there exists a p-torsion free crystal E on X which is a lattice for E , then one
has a Gauss–Manin crystal at one’s disposal. Indeed, given a p-torsion free crystal E on
CryspX{Wnqcrys, one can construct a natural HPD-stratification on the finitely generated
A-module limÐÝn

pRqfcrys˚pEqqSpecAn over W . Using the fact that An is Wn-smooth for all

n P N
`, the HPD-stratification on limÐÝn

pRqfcrys˚pEqqSpecAn is equivalent to a crystal Eq

X{A

on pS{Wqcrys – the Gauss–Manin crystal. Moreover, there is a natural map

E
q

X{A
ÝÑ R

qfcrys˚pEq

of sheaves on pS{Wqcrys which turns out to be an isomorphism after inverting p. This shows
that R

qfcrys˚pEq bK (see Definition 2.5) is in IcryspS{Wq.
A key ingredient of the above proof is the Berthelot’s base change theorem for crystalline

cohomology [BO78, Theorem 7.8] which only holds for flat crystals. In Morrow’s paper the
trivial isocrystal K b OX{W admits a lattice, e.g. OX{W, which is flat, that is, ´ b OX{W is
exact in the ringed topos ppX{Wq„

crys,OX{Wq. But in general the existence of a flat lattice
is not known (see for example [ES15]). This becomes a central theme of this paper: in §2 we
develop a crystalline base change theory for crystals that may not be flat; instead of requiring
that the base change map is an isomorphism we require that it is an isomorphism after inverting
p. The proof follows closely the original proof of Berthelot’s base change theorem, namely it
uses cohomological descent to reduce the problem to the affine case and then work with the
quasi-nilpotent connections and the corresponding de Rham complex. But the argument from
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there on has to be changed due to the lack of the flatness condition. We have to use a spectral
sequence to find a uniformly large N so that pN kills both the kernel and the cokernel of the
base change map. Shiho also studied in [Shi08a] isocrystals which do not necessarily admit
flat lattices, but his results do not fit our situation.

We prove several variants of base change isomorphisms (see Theorem 2.7, Theorem 2.14
and Theorem 2.21). Here we mention the following.

Theorem II. Consider a cartesian diagram

X 1 X

S1 S

h

f 1 f

v

of quasi-compact k-schemes with f smooth and proper. Let E P CryspX{Wq and assume S is
smooth over k. Then for all n P N the canonical map

v˚
crysR

nfcrys˚pEq ÝÑ R
nf 1

crys˚ph˚
crysEq

is an isomorphism of isocrystals in IcryspS
1{Wq.

A recent result proven by Xu ([Xu19]) deals with a convergent incarnation of Berthelot’s
conjecture: he proves that the derived pushforward functor preserves convergent isocrystals, in
the context of the convergent topos defined by Ogus [Ogu84]. Let f : X Ñ S be a proper and
smooth map as above; Xu considers a convergent isocrystal E P IconvpX{Wq, together with
R

qfconv˚pEq; he uses Shiho’s base change [Shi08a, Theorem 1.19] to show that Rqfconv˚pEq is a
p-adically convergent isocrystal. Then he develops a strong version of Frobenius descent which
allows him to prove that Rqfconv˚pEq is indeed a convergent isocrystal on S using Dwork’s trick.
He then proceeds to remove the smoothness hypothesis for the base S. It would be interesting
to know if even in our setting one can remove the smoothness hypothesis. In any case, when
S is smooth over k, the category of convergent isocrystals is a full subcategory of the category
of isocrystals [Ogu84, Theorem 0.7.2]: there is a fully faithful functor ι : IconvpS{Wq Ñ
IcryspS{Wq (and likewise for X{W). Our result and Xu’s result are independent, in the sense
that none of the two implies the other. On the other hand they are compatible in the sense
that ιpRqfconv˚Eq – R

qfcrys˚pιpEqq (see Remark 3.2 and the discussion at the end of [Xu19,
Section 1.9]).

We remark that if X is a smooth, quasi-compact and connected k-scheme, then the category
IcryspX{Wq is a Tannakian category, hence when X has a k-rational point x, one can define
the crystalline fundamental group π

crys
1 pX{W, xq1. This group scheme has recently been

studied deeply: it has been conjectured by de Jong that for a connected projective variety
over an algebraically closed field in characteristic p ą 0 with trivial étale fundamental group,
there are no non-constant isocrystals. The conjecture is still open but several results have
been obtained ([Kat18], [ES18], [ES19], [Shi14]). Moreover, we also remark that the pro-
unipotent completion of πcrys1 pX{W, xq is considered to be the crystalline realisation of the
motivic fundamental group and it has been studied by Shiho in the more general context of
log geometry ([Shi00], [Shi02]).

As a consequence of our main result we obtain the Künneth formula for the crystalline
fundamental group.

1While the authors were revising this paper, a preprint with a new approach to crystals appeared [Dri18].
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Theorem III. Let k be a perfect field of characteristic p ą 0, let X and Y be smooth connected
k-schemes with Y proper and suppose that x P Xpkq, y P Y pkq are two rational points. Then
the canonical morphism between the crystalline fundamental groups

π
crys
1 pX ˆk Y {W, px, yqq ÝÑ π

crys
1 pX{W, xq ˆK π

crys
1 pY {W, yq

is an isomorphism.

By the Eckman–Hilton argument we also get the following.

Theorem IV. Let A be an abelian variety over a perfect field k of positive characteristic.
Then π

crys
1 pA{W, 0q is an abelian group scheme.

Analogous results for other fundamental groups have been obtained by Battiston [Bat16]
and D’Addezio [DAd21].

The Künneth formula, as in the étale case, is a consequence of the homotopy exact sequence
for the crystalline fundamental group, but our argument does not use the homotopy exact
sequence. It is an open problem to show the existence of a homotopy exact sequence for
the crystalline fundamental group, which has been shown is several other contexts recently
([Zha14], [San15], [LP17], [DS18], . . . ).

The content of each section is as follows. In §1 we define the crystalline fundamental group;
to do so we prove that the category of isocrystals on a smooth, quasi-compact and connected k-
scheme is Tannakian. In §2 we prove several generalisations of the base change for crystalline
cohomology. We consider a PD-scheme S “ pS, I, γq over W, requiring that p P I, we let
S “ V pIq, and we consider an S-scheme X. We denote by g : X ÝÑ S the structure map, and
by gX{S the morphism of topoi g ˝ uX{S : pX{Sq„

crys Ñ S
„
Zar. In §2.1 we prove the generalised

base change theorem for gX{S when p is nilpotent in OS; this includes, as a special case,
the classical Berthelot’s base change theorem for crystalline cohomology. In §2.2 we consider
the case in which S is affine. In this case we consider the functor limÐÝn

Γ ˝ gX{pS{pnq˚; we
prove a base change theorem for this functor. In the last part of section §2 we consider a
proper and smooth morphism of smooth k-schemes f : X Ñ S as above, and we prove a base
change theorem for the functor fcrys˚. In section §3, we get our main result about Berthelot’s
conjecture for isocrystals. In §4 we prove the Künneth formula for the crystalline fundamental
group.
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Notation

An ideal I in a ring A is called nil if all elements of I are nilpotent (this is called a locally
nilpotent ideal in [Sta19]). We will often use that smooth affine maps have the lifting property
for nil ideals (see [Sta19, Tag 07K4]).

1. Tannakian categories of connections and crystalline fundamental group

The goal of this section is to define the crystalline fundamental group. Concretely this
means introducing the category of isocrystals and proving that it is a Tannakian category.
This is done in essentially four steps.

(1) Reduce the problem to the affine case and compare isocrystals with topologically quasi-
nilpotent connections.

(2) Interpret topologically quasi-nilpotent connections as a particular case of connections
with respect to a quotient of the sheaf of algebraic differentials.

(3) Show that those connections correspond to differential modules for an associated dif-
ferential ring.

(4) Study differential rings and differential modules following [Ked12].

This program is done in the reverse order, so that definitions come first.

1.1. Differential rings. We start by introducing some general definitions as in [Ked12].

Definition 1.1. A differential ring is a pair pA,∆Aq where A is a ring and ∆A is a Lie algebra
together with an A-module structure and a Lie algebra homomorphism ι : ∆A ÝÑ DerpA{Zq “
HompΩA{Z, Aq which is A-linear. We moreover ask that the following property holds:

(1.1) rD1, aD2s “ arD1,D2s `D1paqD2 for all a P A, D1,D2 P ∆A.

Notice that the above equation is automatic if ι is injective. If X “ SpecA we sometimes
write pX,∆Aq instead of pA,∆Aq.

If B is a ring, a differential B-algebra is a differential ring pA,∆Aq such that A is a B-algebra
and the map ι : ∆A ÝÑ DerpA{Zq has image in DerpA{Bq “ HompΩA{B, Aq.

A differential pA,∆Aq-module (or simply differential A-module when ∆A is clear from the
context) is a pair pM,∇q where M is an A-module and

∇ : ∆A ÝÑ EndZpMq

is a morphism of Lie algebras which is A-linear and satisfies the Leibniz rule, i.e.

(1.2) Dpamq “ Dpaqm` aDpmq for all D P ∆A, a P A, m P M.

Above and in what follows we write Dpmq instead of ∇pDqpmq.
We denote by DiffpA,∆Aq or simply DiffpAq the category of differential A-modules which

are of finite presentation (as A-modules).

Remark 1.1. Let pA,∆Aq be a differential ring and pE,∇Eq and pF,∇F q be differential A-
modules. Their tensor product is given by the A-module E bA F and the map

∆A EndZpE bA F q

D pe b f ÞÑ Dpeq b f ` ebDpfqq.

∇EbAF

https://stacks.math.columbia.edu/tag/07K4
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Their Hom is instead given by the A-module HomApE,F q and the map

∆A EndZpHomApE,F qq

D pφ ÞÑ ∇F pDq ˝ φ ´ φ ˝ ∇EpDqq.

∇HomApE,F q

See also [Ked12, Def. 1.1.3]. It is easy to see that the category of differential A-modules is
symmetric monoidal with unit pA,∇q where ∇ : ∆A ÝÑ DerpA{Zq Ď EndZpAq is the canonical
map ι. Moreover the Hom just defined is an internal Hom in the category of differential A-
modules, that is if pG,∇Gq is another differential A-module then the canonical isomorphism

HompE b F,Gq ÝÑ HompE,HompF,Gqq

is a map of differential A-modules and preserves the subsets of morphisms of differential A-
modules.

If E
φ

ÝÝÑ F is a map of differential A-modules then kernel and cokernels are naturally
differential A-modules.

From the discussion above we can conclude that

Proposition 1.2. If pA,∆Aq is a differential ring then the category of differential A-modules is
symmetric monoidal, abelian and has internal homomorphisms. The same is true for DiffpAq
if A is Noetherian.

Definition 1.2. Let R be a ring. Let C be an R-linear category and let R1 be an R-algebra.
We denote by C bRR

1 the category whose objects are exactly those of C and whose morphisms
are given by

HomC bRR1 pM,Nq :“ HomC pM,Nq bR R
1

for any M,N P C . There is a natural functor F : C ÝÑ C bR R
1 which is the identity on

objects and which is the natural base extension on morphisms. For any object M P C , in
order to emphasize that F pMq is in C bR R

1, we write M bR R
1 for F pMq.

If C is symmetric monoidal then also C bR R
1 is symmetric monoidal in a natural way.

Lemma 1.3. Let R be a ring. Let C be an R-linear abelian category, and let S be a multiplica-
tive subset of R. Then C bRS

´1R is also abelian and the natural functor F : C ÝÑ C bRS
´1R

is exact. Moreover if C ÝÑ D is an R-linear exact functor to an S´1R-linear category, then
the induced functor C b S´1R ÝÑ D is also exact.

If C is symmetric monoidal (with internal homomorphisms) then F : C ÝÑ C bR S
´1R is

a tensor functor (and preserves internal homomorphisms).

Proof. Set R1 “ S´1R. Since up to isomorphisms every morphism in C bR R
1 comes from C ,

in order to show the exactness of F it is enough to show that F preserves kernel and cokernel.
Let’s look at kernel for example. Let f : A ÝÑ B be a morphism in C . Then Kerpfq is the
object in C which represents the functor that sends any T P C to

KerpHomC pT,Aq ÝÑ HomC pT,Bqq.

By the flatness of R ÝÑ R1 we have the exact sequence

0 HomC pT,Kerpfqq bR1 HomC pT,Aq bR1 HomC pT,Bq bR1

0 HompT bR1,Kerpfq bR1q HompT bR1, AbR1q HompT bR1, B bR1q
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for each T bR R
1 P C bR R

1. Thus Kerpfq bR R
1 represents the kernel of f bR R

1.
Now consider an exact linear functor G : C ÝÑ D as in the statement and call G1 : C b

R1 ÝÑ D the induced functor. Let A1
‚ be a bounded exact complex in C b R1. In order to

show that G1pA1
‚q is exact we can multiply each degree map by elements of S. In particular

we can assume that all those maps are defined in C and, multiplying again by elements of S,
that they define a complex A‚ such that F pA‚q “ A1

‚. Using the exactness of F and G we
have

F pHipA‚qq » HipA1
‚q “ 0 ùñ 0 “ G1F pHipA‚qq “ GpHipA‚qq » HipGpA‚qq » HipG1pA1

‚qq.

The last statement follows from a direct check. �

Remark 1.4. Let pA,∆Aq be a differential ring and S be a multiplicative subset of A. Then
pS´1A,S´1∆Aq has a natural structure of differential ring. Moreover if pM,∇q is a differential
A-module then S´1M is a differential S´1A-module in a natural way.

The condition (1.1) in Definition 1.1 forces the definition of the bracket in S´1∆A as well
as in DerpS´1Aq “ HompS´1ΩA{Z, S

´1Aq.

Also, the Leibniz rule (1.2) in Definition 1.1 forces the definition of the map ∇ : S´1∆A ÝÑ
EndpS´1Mq: this is the unique S´1A-linear map such that

Dpm{sq “ Dpmq{s´Dpsqm{s2.

Indeed everything is well-defined ([Ked12, Rem. 1.1.5]).

Lemma 1.5. Let R be a ring and let pA,∆Aq be a differential R-algebra such that ∆A is
a finitely generated A-module and let S be a multiplicative subset of R. Then DiffpAq is an
R-linear category and the functor

DiffpAq bR S
´1R ÝÑ DiffpS´1Aq

is a fully faithful tensor functor. If A is Noetherian then the above functor is also exact and
preserves internal homomorphisms.

Proof. Set R1 “ S´1R and A1 “ S´1A. The fact that the functor is a tensor functor follows
from construction. For the full faithfulness, given two differential A-modules pM,∇M q and
pN,∇N q we want to show that the natural map

φ : HomDiffpAqpM,Nq bR R
1 ÝÑ HomDiffpA1qpM

1, N 1q

is an isomorphism, where M 1 :“ M bR R
1 and N 1 :“ N bR R

1 are thought of as differential
A1-modules. The canonical map

HomApM,Nq bR R
1 ÝÑ HomA1pM 1, N 1q

is an isomorphism. Thus we have to show that if f P HomA1pM 1, N 1q is a morphism which is
compatible with the ∇˚1 , then it comes from

HomDiffpAqpM,Nq bR R
1 Ď HomApM,Nq bR R

1 “ HomA1pM 1, N 1q.

Replacing f by sf for some s P S we may assume that f comes from HomApM,Nq and we
will still use f to denote the lift of f in HomApM,Nq. We must show that there exists s P S
such that sf preserves the ∇˚. For D P ∆A and m P M set

gpD,mq “ fpDpmqq ´Dpfpmqq P N.

Since ∇N pDq is R-linear we look for an s P S such that sgpD,mq “ 0 for all D and m. By
hypothesis gpD,mq “ 0 in N 1 “ S´1N . Thus it is enough to notice that, by the Leibniz rule,
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gpD,mq is a linear combination of the values of g on generators of ∆A and M , which are
finitely many.

Now assume that A is Noetherian. Then the functor in the statement preserves internal
homomorphisms because of how they are constructed and because all modules considered are
finitely generated. The exactness follows from Lemma 1.3. �

Definition 1.3. [Ked12, Def. 1.2.1] A differential ring pA,∆Aq is called locally simple if for
all prime ideals P the differential local ring AP is simple, i.e. AP contains no proper non zero
ideals stable under the action of p∆AqP .

Proposition 1.6. [Ked12, Prop. 1.2.6] Let A be a locally simple differential ring. If pE,∇q
is a differential A-module of finite presentation then E is locally free as an A-module.

Theorem 1.7. Let pA,∆Aq be a Noetherian locally simple differential ring such that Spec pAq
is connected. Then DiffpAq is a Tannakian category over some subfield L Ď A. Let k be a
field, let A be differential k-algebra and x : Speck ÝÑ SpecA be a rational point, then DiffpAq
with the fiber functor obtained via x˚ is a neutral Tannakian category.

Proof. By Proposition 1.2 we see that DiffpAq is an abelian, monoidal and symmetric category
with internal homomorphisms. By Proposition 1.6 it is easy to see that DiffpAq is also rigid
and that endomorphisms of the unit are either 0 or isomorphisms, that is EndDiffpAqpAq Ď A

is a field. If A is a differential k-algebra and x a k-rational point, then we have that

k Ď EndDiffpAqpAq Ď k.

Therefore DiffpAq, with the fiber functor obtained via x˚, is a neutral Tannakian category.
�

1.2. Connections. We now introduce a natural way of describing differential modules via
connections.

Definition 1.4. Let f : Y ÝÑ S be a map of schemes and consider a surjective map of quasi-
coherent sheaves ΩY {S ։ Ω such that the differential ΩY {S ÝÑ Ω2

Y {S induces d1 : Ω ÝÑ Ω2
–

Ω ^ Ω. An Ω-connection on an OY -module M is an f´1OS-linear map

∇ : M ÝÑ M bOY
Ω

of sheaves satisfying the Leibniz rule, i.e. ∇pamq “ a∇pmq `mb da for all sections a, m on
OY , M respectively over some open.

The connection ∇ induces a map,

∇1 :M bOY
Ω Ñ M bOY

Ω2

defined by ∇1pmb ωq “ ∇pmq ^ ω `mb dω for all sections m, ω on M , Ω respectively over
some open, where ∇pmq ^ ω is the image of ∇pmq b ω under the canonical map

M bOY
Ω bOY

Ω
idb^

ÝÝÝÝÑ M bOY
Ω2.

The map ∇1 is well-defined thanks to [Sta19, Tag 07I0].
The connection ∇ is called integrable if the composition

M
∇
ÝÑ M bOY

Ω
∇1

ÝÝÑ M bOY
Ω2

is zero.
We denote the category of integrable Ω-connections in finitely presented OY -modules by

ConnpY {S,Ωq.

https://stacks.math.columbia.edu/tag/07I0
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Lemma 1.8. Let f : Y ÝÑ S be a map of schemes and let OY
d
ÝÑ Ω1

Y {S
d1
ÝÑ Ω2

Y {S be the
canonical differentials. Suppose that φ1, φ2 P DerpY {Sq, and let ϕ1, ϕ2 be the corresponding
maps in HomOY

pΩY {S ,OY q. We denote ϕ1 ^ ϕ2 the map Ω2
Y {S ÝÑ OY sending dx ^ dy to

φ1pxqφ2pyq ´ φ2pxqφ1pyq. Then rφ1, φ2s corresponds to the homomorphism

ϕ1 ˝ d ˝ ϕ2 ´ ϕ2 ˝ d ˝ ϕ1 ´ pϕ1 ^ ϕ2q ˝ d1 P HomOY
pΩY {S ,OY q.

Proof. If ψ : ΩY {S ÝÑ OY is the map in the statement, it clearly satisfies ψ ˝ d “ rφ1, φ2s.
Thus one has to check that ψ is OY linear. This is a direct computation which we omit. �

Corollary 1.9. Let f : Y ÝÑ S be a map of schemes and ΩY {S ÝÑ Ω a quotient as in
Definition 1.4. Then the subsheaf HomY pΩ,OY q Ď DerpY {Sq is a subsheaf of Lie algebras.

Lemma 1.10. Let f : Y – SpecA ÝÑ S – SpecR be a map of affine schemes and ΩY {S ÝÑ
Ω a quotient as in Definition 1.4. Set ∆A – HomOY

pΩ,OY q. Assume moreover that Ω is
locally free of finite type. Then pA,∆Aq is a differential ring over R. Moreover the functor

F : ConnpY {S,Ωq DiffpAq

pM̃,∇M̃ q pM,∇M q

which sends the OY -module M̃ to the corresponding A-module M and the Ω-connection ∇M̃

to the map ∇M defined on φ P ∆A as H0pM̃
∇

M̃ÝÝÑ M̃ b Ω
idbφ

ÝÝÝÑ M̃q is an equivalence of
categories.

Proof. First we prove that the above functor F : pM̃,∇M̃ q ÞÑ pM,∇M q induces an equivalence
between the category of quasi-coherent Ω-connections (not necessarily integrable) and the
category of pairs pM,∇M q, where M is an A-module and ∇M is an A-linear map ∆A ÝÑ
EndZpMq satisfying the Leibniz rule (1.2) (not necessarily preserving the Lie bracket).

Full Faithfulness. The faithfulness is clear. Now suppose λ : pM,∇M q ÝÑ pN,∇N q is

a morphism in the target category. Then we get directly a map λO : M̃ ÝÑ Ñ between
the corresponding OY -modules, therefore we only have to check that λO is compatible with
∇M̃ and ∇Ñ . We can check the compatibility Zariski locally. We can localize both the Ω-
connections and the "not necessarily Lie-bracket preserving differential modules" (Remark
1.4). The functor F is compatible with the localization, thus we are reduced to the case
when Ω “ O‘n

Y for some n P N. Then the map ∇M̃ (resp. ∇Ñ ) becomes a map of the

form M̃ ÝÑ
śn

i“1 M̃ (resp. Ñ ÝÑ
śn

i“1 Ñ). Let pMi (resp. pNi ) be the i-th projectionśn
i“1 M̃ ÝÑ M̃ (resp.

śn
i“1 Ñ ÝÑ Ñ). Since λ is a map of differential modules, the map λO

is compatible with pMi ˝∇M̃ and pMi ˝∇Ñ . Therefore, λO is compatible with ∇M̃ and ∇Ñ by
the universality of products of modules.

Essential Surjectivity. We cover SpecA by open affines SpecAfi . Suppose Ω is free over
each SpecAfi , and suppose the claim holds when Ω is free. Given pM,∇M q we get the
localizations pMi,∇Mi

q on each SpecAfi and the corresponding quasi-coherent connections

pM̃i,∇M̃i
q. Note that on Uij – SpecAfi

Ş
SpecAfj the sheaf Ω is also free, and by the full

faithfulness there is a unique isomorphism

pM̃i,∇M̃i
q|Uij

»
ÝÝÝÝÝÝÑ pM̃j ,∇M̃j

q|Uij
.

This allows to glue all pM̃i,∇M̃i
q together to get pM̃ ,∇M̃ q which corresponds to pM,∇M q.

We are therefore reduced to the case when Ω is free. In this case, we can define ∇M̃ : M̃ ÝÑ
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M̃ b Ω as follows. Choose a basis s1, ¨ ¨ ¨ , sn of Ω and let f1, . . . , fn be its dual basis. We set
∇M̃ pmq “

řn
i“1 ∇Mpfiqpmq b si for all m P M .

Now we come back to compare ConnpY {S,Ωq and DiffpAq. To show that the above equiv-
alence induces the equivalence of these two categories we just have to notice the formula in
[Kat70, p. 179, last paragraph, 1.0.5] and the fact that ∆A Ď DerpA{Rq is a sub Lie algebra
(Corollary 1.9). �

1.3. Crystalline site and crystals. We recall here the general notion of small crystalline
site and crystals on it. This was defined by Berthelot ([Ber74], [BO78]). We use as our main
reference for this theory [Sta19, Tag 09PD] and [Sta19, Tag 07GI].

Definition 1.5.

- [Sta19, Tag 07GU] A divided power ring, or a PD-ring, is a triple pA, I, γq where A
is a ring, I Ă A is an ideal, and γ “ pγnqně1 is a divided power structure on I. A
homomorphism of divided power rings ϕ : pA, I, γq Ñ pB, J, δq is a ring homomorphism
ϕ : A Ñ B such that ϕpIq Ă J and such that δnpϕpxqq “ ϕpγnpxqq for all x P I and
n ě 1.

- [Sta19, Tag 07GI]. A divided power scheme or a PD-scheme is the natural globalisation
of a PD-ring.

- When we want to consider a homomorphism of PD-rings or PD-schemes, we will write
it as a morphism of triples. On the other hand if R is a ring an R-PD-ring is a PD-ring
pA, I, γq where A is an R-algebra (and the same for PD-schemes over R).

We fix a prime number p.

Definition 1.6. [Sta19, Tag 07IF] Let S “ pS, I, γq be a PD-scheme such that S is a Zppq-
scheme. Let X be an S “ V pIq-scheme, and we assume moreover that p P I, i.e. S is killed
by p. An object of the crystalline site pX{Sqcrys is given by a triple pU,T, δq, where U is a
Zariski open of X, T is an S-scheme, U ãÑ T is a thickening of S-schemes defined by a nil
ideal J and pT, J, δq is a PD-scheme over pS, I, γq. We often denote pU,T, δq simply by T.
Morphisms are defined in a natural way, and coverings are defined using the Zariski topology
on T. We consider the structure sheaf OX{S, defined by OX{SpTq – ΓpT,OTq.

Remark 1.11. Let the notation be as in Definition 1.6 and set Sn – S ˆSpec pZq Spec pZ{pnZq.
Then the crystalline site pX{Sqcrys is the direct limit of the sites pX{Snqcrys.

Remark 1.12. We use [Sta19, Tag 09PD] as the main reference. Here we want to stress the
compatibility of Definition 1.6 with more classical references.

(1) If S is killed by a power of p, then the site defined in Definition 1.6 is the same as the
crystalline site defined in [BO78, p. 5.1], with the hypothesis that p P I.

(2) When S “ SpecR is the spectrum of a Noetherian ring R which is complete for the
I-adic topology, and if p P I, then the crystalline site pX{Sqcrys of Definition 1.6

is equivalent to the site CrispX{Ŝq defined in [BO78, p. 7.17] (with P “ I), where

Ŝ – SpfR for the I-adic topology.
(3) Shiho, in [Shi08a], developed a theory of relative crystalline cohomology for log schemes.

He supposes that I “ p and (here we are in the simplified case where all the log struc-
tures are trivial) he generalised the situation (2) to the case where S is a p-adic formal
scheme separated and topologically of finite type over W .

https://stacks.math.columbia.edu/tag/09PD
https://stacks.math.columbia.edu/tag/07GI
https://stacks.math.columbia.edu/tag/07GU
https://stacks.math.columbia.edu/tag/07GI
https://stacks.math.columbia.edu/tag/07IF
https://stacks.math.columbia.edu/tag/09PD
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Definition 1.7. An OX{S-module E on the site pX{Sqcrys is called a crystal if every morphism
ϕ : T Ñ T

1 in pX{Sqcrys induces an isomorphism ϕ˚pET1q Ñ ET, where we denote with ET1

(resp. ETq the Zariski sheaf on T
1 (resp. on T) induced by E. A crystal is said to be of

finite presentation if for every T P pX{Sqcrys the OT-module ET is of finite presentation. The
category of crystals of finite presentation on pX{Sqcrys is denoted by CryspX{Sq.

For any commutative diagram

X 1 h
//

g1

��

X

g

��

S
1 u

// S

where u is a PD-morphism, we obtain a morphism of ringed topoi hcrys “ ph˚
crys, hcrys˚q

([Sta19, Tag 07KL]). It is known that if E is a crystal in CryspX{Sq, then h˚
cryspEq is a

crystal in CryspX 1{S1q ([Ber74, Corollaire 1.2.4] and Remark 1.11).

Setting 1.8. Let the hypothesis and notation be as in Definition 1.6. Suppose moreover that
we have a commutative diagram

(1.3) X
�

� i
//

��

X

f

��

S // S

in which f is smooth and every scheme is affine: X “ SpecC,X “ SpecP, S “ SpecA{I,S “
SpecA. The map i in the above diagram is a closed immersion defined by an ideal J Ď P (in
particular IP Ă J). Let DP,γ – SpecDP,γ be the PD-envelope of i : X ãÑ X with respect
to pS, I, γq and let D be the p-adic completion of DP,γ . Set D – SpecD, An – A{pn, Sn –

SpecAn, Pn – P bA An and Xn – SpecPn. Let DPn,γ – SpecDPn,γ be the PD-envelope of
X ãÑ Xn with respect to pS, I, γq. Thanks to [Sta19, Tag 07KG] we have D “ limÐÝnPN

DPn,γ

as PD-rings.

1.3.1. Crystals and connections over complete PD-envelopes. We denote by ΩD the p-adic
completion of the module of PD-differentials ΩDP,γ{A,γ̄ (see [Sta19, Tag 07HQ]). Notice that
ΩD is a finite projective D-module: indeed

ΩDP,γ{A,γ̄ » ΩP {A bP DP,γ

(see [Sta19, Tag 07HW]) and, when we take the p-adic completion, the left hand side, by
definition, becomes ΩD, while the right hand side is isomorphic to ΩP {A bP D because ΩP {A

is a finite projective P -module. Therefore

ΩD » ΩP {A bP D

which is a finite projective D-module.We denote by ΩD the sheaf on D associated to ΩD.

Remark 1.13. Thanks to [Sta19, Tag 07KG] we have

ΩD bA An » ΩPn{A bPn DPn,γ » ΩDPn,γ{A,γ̄

for n large. This allows us to construct a map

ΩD{A ÝÑ ΩD

https://stacks.math.columbia.edu/tag/07KL
https://stacks.math.columbia.edu/tag/07KG
https://stacks.math.columbia.edu/tag/07HQ
https://stacks.math.columbia.edu/tag/07HW
https://stacks.math.columbia.edu/tag/07KG
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which is split surjective. Indeed, the section

ΩD » ΩP {A bP D Ñ ΩD{A

is given by the extension of scalars of the natural map ΩP {A ÝÑ ΩD{A along the map P ÝÑ D.

Definition 1.9. In the situation of Setting 1.8, we denote by ConnpX{S, i, fq the full sub-

category of the category ConnpD{S,ΩDq consisting of integrable ΩD-connections (M̃ ,∇M̃ ),
where M is a finitely presented p-adically complete D-module.

Remark 1.14.

(1) If D is Noetherian, then ConnpX{S, i, fq “ ConnpD{S,ΩDq because in this case any
finitely presented D-module is p-adically complete.

(2) If M is a p-adically complete D-module, the module M bD ΩD is p-adically complete
because ΩD is a finite projective D-module. In particular the connections defined
above agree with the pairs considered in [Sta19, Tag 07J7].

(3) If the diagram in (1.3) is Cartesian, then the PD-structure γ extends to X ãÑ X

([Sta19, 07H1]), and DP,γ “ X. Indeed, since the diagram is cartesian, IP “ J and
pP, IP q verifies the universal property of the PD-envelope. With these hypothesis we
get that ΩDP,γ{A,γ̄ “ ΩP {A (see [Sta19, Tag 07HW]). Therefore the p-adic completions
are isomorphic

zΩD{A » zΩP {A » ΩD.

Moreover

HompΩD,Dq “ DerpD{Aq;

indeed a map from ΩD{A to a p-adically complete module factors through ΩD. We
remark that any derivation in DerpD{Aq is Z-linear, hence it is automatically p-adically
continuous.

(4) If we have another commutative diagram

X 1 � � i1
//

��

X
1

f 1

��

S1 // S
1

mapping to the original one, there is an induced map D1 ÝÑ D which yields a
map ΩD bD D1 ÝÑ ΩD1. Via this map we obtain a functor ConnpX{S, i, fq ÝÑ
ConnpX 1{S1, i1, f 1q.

1.3.2. Topologically quasi-nilpotent connections.

Definition 1.10. In the situation of Setting 1.8 where (1.3) is cartesian, a connection

pM̃,∇M̃ q P ConnpX{S, i, fq is called topologically quasi-nilpotent if for all n ě 1 its reduction
modulo pn is quasi-nilpotent in the sense of [BO78, Definition 4.10, Remark 4.11].

We denote by QNCfpX{S, i, fq the full subcategory of ConnpX{S, i, fq consisting of topo-
logically quasi-nilpotent connections.

Theorem 1.15. Let X,X,S be as in Definition 1.10. Then there is a fully faithful additive
tensor functor

CryspX{Sq ÝÑ ConnpX{S, i, fq

https://stacks.math.columbia.edu/tag/07J7
https://stacks.math.columbia.edu/tag/07H1
https://stacks.math.columbia.edu/tag/07HW
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whose essential image is QNCfpX{S, i, fq. Moreover, the above functor is functorial with
respect to the diagram (1.3).

Proof. Given E P CryspX{Sq, we take its restriction En P CryspX{Snq, obtaining pM̃n,∇M̃n
q P

ConnpX{Sn, in, fnq by [BO78, Theorem 6.6]. Here the Pn-module Mn is H0pEXnq. There are
transition maps φn : Mn`1 ÝÑ Mn which are horizontal, that is they preserve the connections.
Since E is a crystal, we have Mn`1{pnMn`1 » Mn.

The limit M – limÐÝnPN` Mn is a D-module since D{pnD “ Pn and M{pnM “ Mn by

[Sta19, 09B8]. Moreover, M also comes with a connection. This association defines the
functor CryspX{Sq ÝÑ ConnpX{S, i, fq, which is easily seen to be linear and to preserve the
tensor product.

The full faithfulness and the claim about the essential image follow from the corresponding
statements in the pn-torsion case (see e.g. [BO78, Corollary 6.8] or [Ber74, Théorème 1.6.5,
p. 247]).

�

Remark 1.16.

(1) The naturality of the functor in Theorem 1.15 indicates that the pullback of a topo-
logically quasi-nilpotent connection is topologically quasi-nilpotent.

(2) Directly from the definition one sees that pM̃,∇M̃ q P ConnpX{S, i, fq belongs to
QNCfpX{S, i, fq if and only if its pullback to X{Sn belongs to QNCfpX{Sn, in, fnq
(see Remark 1.11 for the notation) for some n P N.

Lemma 1.17. Suppose that we are in the situation of Definition 1.10. Then

QNCfpX{S, i, fq Ď ConnpX{S, i, fq

is a full subcategory closed under taking subobjects, quotients, tensor products and internal
homomorphisms.

Proof. Directly from Definition 1.10 it is clear that subojects and quotient objects of topologi-
cally quasi-nilpotent connections are topologically quasi-nilpotent. We still have to show that
if pẼ,∇Ẽq and pF̃ ,∇F̃ q are topologically quasi-nilpotent connections, then their tensor prod-
uct and their Hom are topologically quasi-nilpotent. This follows by checking the following
relations for all D P DerpD{Sq: r∇EbF pDqsnpe b fq is

Dnpe b fq “ Dnpeq b f ` ¨ ¨ ¨ `

ˆ
n

r

˙
Dn´r`1peq bDrpfq ` ¨ ¨ ¨ ` e bDnpfq

and r∇HompE,F qpDqsnpφq is

∇F pDqn ˝ φ ` ¨ ¨ ¨ ` p´1qr
ˆ
n

r

˙
∇F pDqn´r ˝ φ ˝ ∇EpDqr ` ¨ ¨ ¨ ` p´1qnφ ˝ ∇EpDqn. �

1.3.3. The situation when (1.3) is cartesian.

Lemma 1.18. Let pS “ SpecA, I, γq be an affine PD-scheme over Zppq such that p P I. As
above set S “ SpecA{I, An “ A{pn and Sn “ SpecAn for all n P N.

The closed embedding S ãÑ S1 is a locally nilpotent thickening, that is I{pA is a nil ideal in
A{p. In particular, if the ideal I is finitely generated, then the closed embedding S ãÑ S1 is a
nilpotent thickening.

https://stacks.math.columbia.edu/tag/09B8
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Proof. The ideal I has a PD-structure and therefore p!γppxq “ xp for all x P I, so that xp P pA
as required. �

Remark 1.19. Let S “ pS, I, γq be a PD-scheme as in Lemma 1.18. Suppose moreover that
I is finitely generated. Let g : X “ SpecC ÝÑ S “ V pIq be a smooth map. Under the
assumptions of Lemma 1.18, we can build up a diagram (1.3) out of the given map g : X ÝÑ S

and the closed immersion S ãÑ S such that it is a cartesian diagram. Indeed, by [Sta19, 07M8]
we can lift g to a smooth affine map f : X “ SpecP ÝÑ S “ SpecA not necessarily uniquely
along S ãÑ S. Note that by [Ill05, Theorem 8.5.9] the lifts of g along S ãÑ S1 and Sn ãÑ Sn`1

are unique. Thanks to Remark 1.14 (3) and the uniqueness of the lift to Sn for all n, the
spectrum D of the p-adically completed PD-envelope D, which is the p-adic completion of P ,
does not depend on the lift f : X ÝÑ S we chose for g.

Definition 1.11. Let S “ pS, I, γq be a PD-scheme as in Lemma 1.18 and we assume that
I is finitely generated. Let g : X ÝÑ S “ V pIq be a smooth map. We construct a cartesian
diagram as in Remark 1.19. As observed in Remark 1.19, the category ConnpX{S, i, fq does
not depend on the choice of f and i such that (1.3) is cartesian, so, in this case, we will just
write ConnpX{Sq instead of ConnpX{S, i, fq. Thanks to Theorem 1.15 the full subcategory
QNCfpX{S, i, fq does not depend on the choice of such f and i either, thus we will write
QNCfpX{Sq instead of QNCfpX{S, i, fq when the conditions of Lemma 1.18 are met.

Lemma 1.20. Let pS “ SpecA, I, γq be as in in Lemma 1.18, and let g : X ÝÑ S “ V pIq be
a smooth map. If S is Noetherian, then we have

ConnpX{Sq “ ConnpD{S,ΩDq.

Therefore, the category ConnpX{Sq is an abelian, symmetric monoidal category with internal
homomorphisms.

Proof. If S is Noetherian, then D is Noetherian and p-adically complete, so every finitely
presented D-module is p-adically complete. The last claim follows from Lemma 1.10 and
Proposition 1.2. �

Lemma 1.21. Let pS “ SpecA, I, γq be as in in Lemma 1.18, and let g : X “ SpecC ÝÑ
S “ V pIq be a smooth map. Suppose moreover that S “ SpecA, where A is a complete DVR
of mixed characteristic p0, pq with perfect residue field k and fraction field K.

If X is connected, then the rings D (see Setting 1.8) and DbAK are regular domains and
pD bA K,DerpD{Aq bA Kq is a locally simple differential ring.

Proof. We lift, as in Remark 1.19, the smooth map g : X “ SpecC ÝÑ S “ V pIq to a smooth
map f : X “ SpecP ÝÑ S “ SpecA.

We first show that D is a regular domain. Thanks to [Sta19, 07QW] the ring P is excellent,
so it is a G-ring. According to [Sta19, 0AH2] the completion P ÝÑ D is a regular map (i.e.
has geometrically regular fibers). Taking into account [Sta19, 031E] and the fact that A ÝÑ P

is regular by construction, we can conclude that D is a regular ring.
In order to conclude that D is also a domain, it is enough to show that D “ SpecD is

connected. Since the ideal I is finitely generated, by Lemma 1.18 the maps S ãÑ Sn are
nilpotent thickenings as well as the maps X ãÑ Xn “ SpecD{pn because the diagram

X
�

�

//

��

X

��

S // S

https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/07qw
https://stacks.math.columbia.edu/tag/0AH2
https://stacks.math.columbia.edu/tag/031E
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is cartesian. Therefore Xn “ SpecD{pn is connected for all n P N, because X is connected by
hypothesis.

In particular if a P D is an idempotent element, then

an – a mod pnD

is either 0 or 1 in D{pn. As X is non-empty, none of those pD{pnq’s is a zero ring, so an P D{pn

has to be 0 for all n or 1 for all n. Thus a “ 0 or 1 in D, which implies that D is connected.
From the fact that D is a regular domain we deduce that its localization DbAK is a regular

domain as well.
Thus it remains to prove that pD bA K,DerpD{Aq bA Kq is a locally simple differential

ring. By [Ogu84, Lemma 1.19] and its proof we see that for any closed point x P DˆS SpecK

the map

mx{m2
x ÝÑ ΩD b kpxq

is injective, where mx and kpxq are the maximal ideal and the residue field of x respectively.
Applying Homkpxqp´, kpxqq and recalling that ΩD is locally free we obtain a surjective map

HomDpΩD,Dq bD kpxq ÝÑ Homkpxqpmx{m2
x, kpxqq.

Since HompΩD,Dq “ DerpD{Aq the result follows from [Ked12, Proposition 1.2.3]. �

Theorem 1.22. Let pS “ SpecA, I, γq be an affine PD-scheme over Zppq such that p P I and
let g : X “ SpecC ÝÑ S “ Spec pA{Iq be a smooth map. Suppose moreover that S “ SpecA,
where A is a complete DVR of mixed characteristic p0, pq with perfect residue field k and
fraction field K. If X is connected, then we have a diagram of Tannakian categories

QNCfpX{Sq bA K ConnpD{S,ΩDq bA K ConnpD bA K{K,ΩD bA Kq

DiffpD,DerpD{Aqq bA K DiffpD bA K,DerpD{Aq bA Kq

» »

where all the functors are fully faithful tensor exact functors.

Proof. The two vertical equivalences come from Lemma 1.10 since DerpD{Aq “ HomDpΩD,Dq
and that ΩD is locally free. Notice that D “ SpecD is Noetherian because D is a completion
of an affine smooth A-algebra. In particular the horizontal arrows on the right are fully
faithful, exact, tensorial and preserve internal homomorphisms thanks to Lemma 1.5. The
left horizontal arrow is fully faithful, exact, tensorial and preserves internal homomorphisms
by Lemma 1.17.

By Theorem 1.7 and Lemma 1.21 we can conclude that DiffpD bA K,DerpD{Aq b Kq is
a Tannakian category. From this it easily follows that for all other categories there exists
a fiber functor and the endomorphisms of the trivial object form a field. The rigidity of
those categories also follows. Indeed we must check that for all objects M,N in one of those
categories the natural arrow

M_ bN ÝÑ HompM,Nq

where HompM,Nq denotes the internal Hom, is an isomorphism. Because all functors pre-
serves internal homomorphisms and tensor product, this morphism become an isomorphism
in DiffpD bA K,DerpD{Aq b Kq and, because all functors are fully faithful, this morphism
has to be an isomorphism. �
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1.4. Crystalline fundamental group. In this section we consider the following situation.
Let k be a perfect field of characteristic p ą 0, and let W be the ring of Witt vectors of k.
Set W – SpecW . We denote by γ the canonical PD-structure on pW , K the fraction field
of W . Set Wn – W {pnW and Wn – SpecWn. We denote by γn the induced PD-structure
on pWn. The base PD-scheme pS, I, γq is pW, pW, γq, and S “ Speck.

Definition 1.12. Let X be a scheme over k. We denote by IcryspX{Wq the category of finitely
presented isocrystals. This is the category CryspX{Wq up to isogeny, i.e. the category whose
objects are exactly those in CryspX{Wq and whose morphisms are obtained inverting the
multiplication by p. Thus we have a natural functor

CryspX{Wq ÝÑ IcryspX{Wq

which is the identity on objects. To distinguish objects in CryspX{Wq from those in IcryspX{Wq
we denote by K bE the image of E P CryspX{Wq under the above functor, and we say that
E is a lattice for the isocrystal E if K b E – E .

The main result of the section is the following

Theorem 1.23. If X is a smooth, quasi-compact and connected k-scheme, then the category
IcryspX{Wq is a Tannakian category over a field extending K.

If Y is another smooth, quasi-compact and connected k-scheme with a map Y ÝÑ X, then
the pullback IcryspX{Wq ÝÑ IcryspY {Wq is an exact tensor functor. Moreover IcryspSpec k{Wq “
VectpKq and, if x : Spec k ÝÑ X is a rational point, then IcryspX{Wq is a neutral K-
Tannakian category via x˚ : IcryspX{Wq ÝÑ IcryspSpec k{Wq “ VectpKq.

Definition 1.13. Let X be a smooth, quasi-compact and connected k-scheme with a rational
point x P Xpkq. We define πcrys1 pX{W, xq as the Tannaka dual of the neutral Tannakian
category IcryspX{Wq endowed with the fiber functor x˚ (see Theorem 1.23).

Remark 1.24. The prounipotent completion of the group scheme defined in Definition 1.13
has been defined and studied by Shiho in [Shi00] and [Shi02] (in the more general situation of
log schemes).

Lemma 1.25. Let R be a complete Noetherian ring with respect to an ideal I Ď R, and set
Z – SpecR{I, Z – SpecR. Consider also a smooth affine map V ÝÑ Z. We denote by p´qn
the base change to Zn “ Spec pR{Inq. Then:

(1) There exists a smooth affine map rV “ Spec rD ÝÑ Z lifting V ÝÑ Z.
(2) There exists an affine and flat map VZ “ SpecD ÝÑ Z lifting V ÝÑ Z such that

D is an I-adically complete ring. We can choose as D the I-adic completion of an
R-algebra rD as in p1q. Moreover, VZ is a Noetherian scheme and all pVZqn ÝÑ Zn

are smooth.
(3) If VZ ÝÑ Z and V 1

Z
ÝÑ Z are two lifts as in p2q then there exists a (not necessarily

unique) Z-isomorphism VZ ÝÑ V 1
Z

lifting idV : V ÝÑ V .

Proof. p1q This is [Sta19, Tag 07M8].

p2q Let D be the I-adic completion of rD and set VZ – SpecD. By [Sta19, Tag 05GH]

and [Sta19, Tag 0912] the ring D is ID-adically complete, Noetherian, D{ID “ rD{I rD and
rD ÝÑ D is flat, so that VZ ÝÑ Z is flat as well.

https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/05GH
https://stacks.math.columbia.edu/tag/0912
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p3q It is enough to find a system of compatible Zn-maps φn : pVZqn ÝÑ pV 1
Z

qn with φ0 “ idV

(and thus automatically isomorphisms). Consider the diagram

pVZqn U pVZqn`1

pV 1
Z

qn pV 1
Z

qn`1

Zn Zn`1

φn`1

α
β

φn

where α : U ÝÑ pV 1
Z

qn`1 is any flat lift of φn, which exists by p2q because φn is an isomorphism
and thus it is smooth. Since Zn is affine, by [Ill05, Theorem 8.5.9, pp. 213-214] we can find
the dashed Zn`1-isomorphism β : pV 1

Z
qn`1 ÝÑ U making the above diagram commutative.

The choice φn`1 “ α ˝ β yields the desired lifting of φn. �

Lemma 1.26. Let X be a smooth affine scheme over k. Then:

(1) There exists a smooth affine map rX “ Spec rB ÝÑ W lifting X ÝÑ Spec k.
(2) There exists a flat and affine W-scheme XW “ SpecB ÝÑ W lifting X ÝÑ Spec k

and such that B is p-adically complete. We can choose as B the p-adic completion
of a W -algebra rB as in p1q. Moreover, XW is a Noetherian scheme and all maps
pXWqn “ SpecB{pnB ÝÑ Wn are smooth.

(3) If f : Y ÝÑ X is a smooth affine map over k and XW, YW ÝÑ W are the complete
lifts of X,Y as in p2q respectively then there exists a flat map fW : YW ÝÑ XW lifting
f : Y ÝÑ X. Moreover, all pfWqn : pYWqn ÝÑ pXWqn are smooth.

(4) If XW ÝÑ W and X 1
W

ÝÑ W are two lifts as in p2q then there exists a W-
isomorphism XW ÝÑ X 1

W
lifting idX : X ÝÑ X.

(5) If fW, f 1
W

: YW ÝÑ XW are two lifts as in p3q then there exists an automorphism σ

of YW fitting in the diagram

Y Y X Spec k

YW YW XW W

idY

σ fW

f 1
W .

Proof. If we apply Lemma 1.25 with R “ W , I “ pW and V “ X, so that Z “ Spec k and
Z “ W, we obtain p1q, p2q and p4q.

Now consider the situation of p3q and p5q and set XW “ SpecR. We apply Lemma 1.25
with I “ pR and V “ Y , so that Z “ X and Z “ XW. Lemma 1.25 (3) directly implies case
p5q. From Lemma 1.25 p2q we obtain a lift VZ ÝÑ Z “ XW of Y ÝÑ X and, using p4q, we
find a W-isomorphism φ from YW ÝÑ W to VZ ÝÑ XW ÝÑ W which lifts idY : Y ÝÑ Y :

the composition YW
φ

ÝÝÑ VZ ÝÑ XW is the desired map fW in (3). �

Proposition 1.27. If X is a smooth and quasi-compact k-scheme then CryspX{Wq is a
symmetric monoidal, abelian category with internal homomorphisms.
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Proof of Theorem 1.23 and Proposition 1.27. Firstly note that the category CryspX{Wq is
a symmetric monoidal additive W-linear category. It also admits cokernels as the pullback
functor of sheaves of modules is right exact and cokernels of maps of finitely presented modules
are still finitely presented ([Sta19, Tag 0519]).

Now we consider the existence of kernels and the internal homomorphisms. Let tUiuiPI
be a finite Zariski covering of X such that each Ui is an affine non-empty scheme. Taking
into account Lemma 1.26, for each Ui we can choose a smooth lift Ui “ SpecAi ÝÑ W of
Ui ÝÑ Spec k. Set pUiqW for the spectrum of the p-adic completion of Ai. By Lemma 1.17
and Theorem 1.15 we see that each CryspUi{Wq admits kernels and internal homomorphisms.

It is straightforward that Crysp´{Wq is a stack on the small Zariski site of X. If Uij

is a non-empty affine open inside Ui X Uj, then by Lemma 1.26 (3) there is a flat W-lift
pUijqW ÝÑ pUiqW (note that this is not an open immersion!), whose flatness implies that
kernels and internal homomorphisms are preserved at the level of topologically quasi-nilpotent
connections by the pullback. We can glue kernels and internal homomorphisms in CryspX{Wq
using the universal property defining them.

Thus we can conclude that CryspX{Wq and, by Lemma 1.3, IcryspX{Wq are abelian cate-
gories, because the canonical map from the coimage to the image is an isomorphism (as it is
an isomorphism when restricted to each Ui). Moreover by construction and again by Lemma
1.3 restriction to an open is exact, tensorial and preserves internal homomorphisms for both
Crysp´{Wq and Icrysp´{Wq. This ends the proof of Proposition 1.27.

We now deal with the proof of Theorem 1.23. In particular we assume that X is connected.
In particular X and all Ui are integral schemes. Since we are in the situation of Remark 1.19,
the category IcryspUi{Wq is Tannakian by Theorem 1.22.

It is easy to check that Icrysp´{Wq is a prestack in the small Zariski site of X, that is
morphisms between isocrystals form a Zariski sheaf. In particular IcryspX{Wq is rigid because
all IcryspUi{Wq’s are Tannakian.

Next we will show that the ring of endomorphisms of the trivial object OX{W bW K P
IcryspX{Wq is a field. Let φ be a non zero endomorphism of OX{W bW K. We must show
that φ is invertible. Since Icrysp´{Wq is a prestack we must show that its restriction φi
over Ui is invertible. As IcryspUi{Wq is Tannakian, it is enough to show that φi ‰ 0. By
contradiction assume that φi “ 0. The functor IcryspUj{Wq ÝÑ IcryspUij{Wq is exact, K-
linear and tensorial, so it is faithful by [Del90, p. 2.10]. Since pφiq|Uij

“ 0, we have φj “ 0 for
all j by the connectedness of X. But this would imply that φ “ 0.

Hence the endomorphisms of OX{W bW K form a field. Let’s denote it by L. A fiber
functor for IcryspX{Wq is obtained composing a fiber functor of IcryspUi{Wq with the tensor
exact functor IcryspX{Wq ÝÑ IcryspUi{Wq.

In conclusion IcryspX{Wq is a Tannakian category over L (see [Del90, p. 1.9]).
Let now f : Y ÝÑ X be a map as in the statement of Theorem 1.23 and denote by

f˚
crys : IcryspX{Wq ÝÑ IcryspY {Wq the pullback. We know that f˚

crys is a tensor functor
and we must show that it is exact.

Let U Ď X and V Ď Y be non-empty affine open subsets such that fpV q Ď U . Let
f : VW ÝÑ UW be a lift of V ÝÑ U as in Lemma 1.26, (3) and v : SpecK ÝÑ VW ˆW K be

https://stacks.math.columbia.edu/tag/0519
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a geometric point. Using Theorem 1.15 we have a commutative diagram

IcryspX{Wq IcryspY {Wq

IcryspU{Wq IcryspV {Wq

QNCfpU{Wq bK QNCfpV {Wq bK VectpKq

»»

pf˝vq˚

f˚
crys

f˚ v˚

.

Notice that v˚ : QNCfpV {Wq bK ÝÑ VectpKq is the composition

QNCfpV {Wq bK ÝÑ ConnpVW ˆW K{K,ΩVW
bW Kq ÝÑ VectpKq

and it is a fiber functor by construction (or we can check it directly because modules in the
middle category are locally free). The same happens to U and pf ˝ vq˚. In particular those
arrows and therefore also IcryspX{Wq ÝÑ VectpKq, IcryspY {Wq ÝÑ VectpKq are exact and
faithful. From this it follows that IcryspX{Wq ÝÑ IcryspY {Wq is exact.

Let’s conclude computing IcryspX{Wq for X “ Spec k. We have XW “ W and, in partic-
ular, ΩXW

“ ΩW{W “ 0. In particular QNCfpX{Wq “ ConnpX{Wq is just the category of
finitely generated W-modules. Tensoring by K one exactly gets VectpKq. �

2. Base change theorems for crystalline cohomology

In this section we generalise in various ways the classical base change theorem for crystalline
cohomology proven in [Ber74, V, Proposition 3.5.2], [BO78, Theorem 7.8]. Let k be a perfect
field of characteristic p ą 0, and let W be the ring of Witt vectors of k. Set W – SpecW . We
denote by γ the canonical PD-structure on pW , K the fraction field of W . Set Wn – W {pnW
and Wn – SpecWn. We denote by γn the induced PD-structure on pWn

Setting 2.1. Let S “ pS, I, γq be a PD-scheme such that S is a W-scheme and p P I. Denote
by S the zero locus V pIq of I inside S, which is a k-scheme because p P I. Let X be an
S-scheme and denote by g : X ÝÑ S the structure map. Consider a commutative diagram

X 1 h
//

g1
0
��

g

((

X

g0

��

g

vv

S1 h0
//

��

S

��

S
1 u

// S

where S
1 “ pS1, I 1, γ1q is a PD-scheme, S1 “ V pI 1q, X 1 is a scheme, u is a PD-morphism and

the top square is cartesian. We assume moreover that all schemes are quasi-compact and g0
is smooth, quasi-compact and quasi-separated. We consider a crystal of finite presentation
E P CryspX{Sq.
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We define
ΓppX{Sqcrys,´q : ModpOX{Sq ÝÑ ModpH0pOSqq

as the functor of global sections ([BO78, p. 5.5]). It is easy to see that

ΓppX{Sqcrys, Eq “ limÐÝ
n

ΓppX{Snqcrys, E|pX{Snqcrysq P Modp {H0pOSqq

where E is a sheaf of OX{S-modules on pX{Sqcrys, Sn – S ˆW Wn and {H0pOSq is the p-adic

completion of H0pOSq.
There is a canonical projection from the crystalline ringed topos to the Zariski ringed topos

[Sta19, Tag 07IL]

uX{S : ppX{Sq„
crys,OX{Sq Ñ pX„

Zar, g
´1OSq

where g´1OS is the pullback of OS along g. Concretely, we have

(1) For F P pX{Sq„
crys and j : U ãÑ X an open,

puX{S˚
pF qqpUq “ ΓppU{Sqcrys, F q;

(2) For G P X„
Zar and pU, T, δq P pX{Sqcrys,

puX{S
˚pGqqpU, T, δq “ GpUq.

By composition we get a morphism of topoi

gX{S – g ˝ uX{S : ppX{Sq„
crys,OX{Sq Ñ pS„

Zar,OSq.

Notice that
ΓppX{Sqcrys,´q “ Γ ˝ gX{S˚p´q

where Γ: ModpOSq ÝÑ ModpH0pOSqq is the functor of global sections.

Lemma 2.1. Assume that p is nilpotent in OS and S is separated. Let E P CryspX{Sq. Then
RgX{S˚pEq is quasi-isomorphic to a bounded complex of quasi-coherent OS-modules. If S is
affine, then this is quasi-isomorphic to the complex of quasi-coherent OS-modules associated
with any complex of H0pOSq-modules representing RΓppX{Sqcrys, Eq.

Proof. The complex RgX{S˚pEq is cohomologically bounded and has quasi-coherent coho-
mology thanks to [BO78, Theorem 7.6]. By a standard argument it is quasi-isomorphic to
a bounded complex of quasi-coherent sheaves B‚ [BN93, Corollary 5.5]. If S is affine the
degenerate spectral sequence (see [Wei94, p. 5.7.9])

E
pq
2 “ HpppRqΓqpB‚qq ñ R

p`qΓpB‚q

tells us that ΓpB‚q » RΓpB‚q » RΓppX{Sqcrys, Eq as desired. �

Remark 2.2.

(a) If p is nilpotent in OS we define a map

(2.1) Lu˚
RgX{S˚pEq Ñ Rg1

X1{S1˚h
˚
cryspEq

inDpS„
Zarq as follows. Applying adjunction to the canonical map Lh˚

cryspEq Ñ h˚
cryspEq

we obtain a map
E Ñ Rhcrys˚ph˚

cryspEqq.

Applying RgX{S˚ and using gX{S ˝hcrys˚ “ u˚ ˝g1
X1{S1 (see [Sta19, Tag 07MH]) we get

RgX{S˚pEq Ñ Ru˚Rg
1
X1{S1˚ph˚

cryspEqq.

https://stacks.math.columbia.edu/tag/07IL
https://stacks.math.columbia.edu/tag/07MH
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The map (2.1) is obtained applying adjunction again, which can be done because
RgX{S˚pEq is bounded above thanks to Lemma 2.1.

(b) If S and S
1 are affine, but p is not necessarily nilpotent in OS, we can still define a

map

(2.2) Lu˚
RΓppX{Sqcrys, Eq Ñ RΓppX 1{S1qcrys, h

˚
crysEq

inD´pH0pOS1 qq. The construction is the same and it is possible since RΓppX{Sqcrys, Eq
is bounded above as we will prove in Corollary 2.12.

Definition 2.2. Let A be an abelian category, p a given prime and N P N. A map of objects
of A is a pN -isogeny if its kernel and its cokernel are killed by pN , it is an isogeny if it is a
pr-isogeny for some r P N.

Definition 2.3. Let C be a W -linear category and E P C . Given n P N we say that E is
Wn-flat if pn kills E and, for all 0 ď j ď n, the quotient E{pjE exists and the map

E{pjE
pn´j

ÝÝÝÑ E

is injective. We say that E is W -flat or p-torsion free if E
p

ÝÝÑ E is injective in C .

Remark 2.3. If C “ ModpW q then the notion of flatness just introduced and the classical one
agrees. This is an easy consequence of testing flatness on ideals.

Lemma 2.4. In the hypothesis of Setting 2.1, if E P CryspX{Sq is p-torsion free, then
En “ E|pX{Snqcrys P CryspX{Snq is Wn-flat.

Proof. Indeed, since CryspX{Sq satisfies Zariski descent, we can assume that X and S are
affine. We apply Theorem 1.15 twice. The crystal E corresponds to a module M with an
integrable connection over SpecB, where B is a p-adically complete W -algebra and SpecB is
a lift of X. The B-module M is p-torsion free, thus W -flat, so its restriction Mn – M bW Wn

is Wn-flat. Therefore, the crystal En, which corresponds to Mn, is also Wn-flat. �

Remark 2.5. Let E P CryspX{Sq be p-torsion free. It is not true that the map E
p
ÝÑ E

is injective in the ringed topos ppX{Sq„
crys,OX{Sq. For example, we can look at the trivial

crystal OSpec k{W on pSpec k{Wqcrys: the map W1
p
ÝÑ W1 at the thickening Spec k ãÑ W1 is

not injective.

Lemma 2.6. In the hypothesis of Setting 2.1, if S is flat over W, and if E P CryspX{Sq is
a flat crystal [BO78, p. 7.10], then E is p-torsion free in CryspX{Sq.

Proof. Indeed, to see this we may assume X and S are affine. Then by Theorem 1.15, E
corresponds to a flat module M equipped with an integrable connection over the flat S-lift
SpecB of X, where B is a p-adically complete W -algebra. Since S is flat over W, M is W -flat,
hence it is p-torsion free in QNCfpX{Sq. Thus E is p-torsion free in CryspX{Sq as well by
Theorem 1.15. �

2.1. The case of a base killed by a power of p. The next theorem deals with the situation
in Remark 2.2 (a) and the map in (2.1).

Theorem 2.7. In the situation of Setting 2.1, assume moreover that p is nilpotent in OS.
The following hold.
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(a) There exists r P N, which depends only on X
g0
ÝÑ S, such that for all open U of S and

i ą r we have

R
ipg|g´1pUqqg´1pUq{U˚pE|pg´1pUq{Uqcrysq “ 0.

(b) The map (2.1) is an isomorphism if u is flat or E is a flat crystal [BO78, p. 7.10].
(c) The map (2.1) is an isomorphism if E is Wn-flat, S is a flat Wn-scheme and if there

exists a map of schemes u0 : Z ÝÑ Wn such that u is the base change of u0 along
S ÝÑ Wn.

(d) Suppose that S is smooth of finite type over k. Let EW P CryspX{Wq and set E “
pEWq|pX{Sqcrys . Then there exists N : Z ÝÑ N, independent of the closed immersion
S ãÑ S, such that the i-th cohomology of the map (2.1) is a pNi-isogeny in the ringed
topos pS1 „

Zar,OS1 q.

Before giving the proof of this theorem we prove some preliminary results.

Lemma 2.8. Let π : A ÝÑ B be a left exact functor between abelian categories. Assume that
A has enough injectives and that there exists n0 ą 0 such that R

nπ “ 0 for all n ě n0, so
that, by [Sta19, Tag 07K7], there is a functor Rπ : DpA q ÝÑ DpBq. Let also α : C ÝÑ D be
a map in DpA q and N : Z ÝÑ N a function such that HipRπpαqq is a pNi-isogeny and Ni “ 0

for i " 0.
Then there exists N 1 : Z ÝÑ N, which depends only on N and n0, such that HipRπpαqq is

a pN
1
i -isogeny and N 1

i “ 0 for i " 0.

Proof. Applying Rπ to the exact triangle of the cone of α and taking cohomology we get a
long exact sequence

¨ ¨ ¨ Ñ R
iπC Ñ R

iπD Ñ R
iπpConepαqq Ñ R

i`1πC Ñ ¨ ¨ ¨ .

From this we are reduced to show that if G P DpA q satisfies that HipGq is killed by pNi , then

we can find N 1 as in the statement such that R
iπG is killed by pN

1
i and N 1

i “ 0 for all i " 0.
We consider the truncation

τěnpGq :“ ¨ ¨ ¨ Ñ 0 Ñ pGn{ Impdn´1qq
dn
ÝÑ Gn`1 dn`1

ÝÝÝÑ Gn`2 Ñ ¨ ¨ ¨ .

By [Sta19, Tag 08J5], we have an exact triangle

HnpGqr´ns ÝÑ τěnpGq Ñ τěn`1pGq ÝÑ HnpGqr´n ` 1s

hence the exact triangle

RπpHnpGqr´nsq ÝÑ RπpτěnpGqq Ñ Rπpτěn`1pGqq ÝÑ RπpHnpGqr´n ` 1sq.

We show that there exists f : Z ÝÑ N such that the multiplication by pfn induces 0 on all
cohomologies of RπpτěnpGqq and fn “ 0 for n " 0.

For n P N satisfying Nm “ 0 for m ě n we can set fn “ 0. Indeed in this case τěnG (and
therefore also RπpτěnGq) is acyclic by assumption.

Moreover HnpGq and, by linearity, all RπpHnpGqrusq (u P Z) are killed by pNn in the derived
category. We can therefore define f : Z ÝÑ N working by reverse induction on Z.

Next we show that

R
iπpGq ÝÑ R

iπpτěnGq

is an isomorphism for n ă i ´ n0 so that the function N 1
i “ fi´n0´1 satisfies the requests in

the statement.

https://stacks.math.columbia.edu/tag/07K7
https://stacks.math.columbia.edu/tag/08J5
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By [Sta19, Tag 07K7] we can assume that G is made by right acyclic objects for π. For all
n P N we have an exact sequence of complexes

0 ÝÑ σěn`1G ÝÑ τěnG ÝÑ pGn{ Impdn´1qqr´ns ÝÑ 0

where σěn`1G denotes truncation. Since R
qπ “ 0 for q ě n0, we can conclude that

R
iπpσěn`1Gq ÝÑ R

iπpτěnGq is an isomorphism for n ď i ´ n0. Since RπpGq “ πpGq
and Rπpσěn`1Gq “ πpσěn`1Gq we can also conclude that

R
iπpσěn`1Gq ÝÑ R

iπpGq

is an isomorphism for n` 1 ă i. �

Lemma 2.9. Let A be an abelian category, l,N P N and

Euv
2 ñ Hu`v

be a convergent spectral sequence in A .
If Euv

2 “ 0 for v ą 0 or u ă 0 or u ą l, then there is an associated map

ωn : H
n ÝÑ En0

8 ÝÑ En0
2

and, if pN kills all Euv
2 for v ‰ 0, this map is a pNpl`1q-isogeny.

If Euv
2 “ 0 for u ą 0 or v ă 0 or v ą l, then there is an associated map

ωn : E
0n
2 ÝÑ E0n

8 ÝÑ Hn

and, if pN kills all Euv
2 for u ‰ 0, this map is a pNpl`1q-isogeny.

Proof. We consider only the first case because the second one is analogous. By convergence
there is a filtration

0 “ F tHn Ď ¨ ¨ ¨ Ď F u`1Hn Ď F uHn Ď ¨ ¨ ¨ Ď F sHn “ Hn

for some s ă t such that

Eu,n´u
8 » pF uHnq{pF u`1Hnq.

The vanishing in the hypothesis tells us that F uHn “ F u`1Hn if u ă 0 or u ą l or n ą u.
Thus we can choose t “ l ` 1 and s “ maxp0, nq in the above filtration. In particular,
FnHn “ Hn for all n.

Since Euv
2 “ 0 for v ą 0 all differentials landing in pu, 0q are zero in all pages. It follows

that Eu0
8 Ď Eu0

2 . Moreover there is a map

ωn : H
n “ FnHn ÝÑ pFnHnq{pFn`1Hnq » En0

8 ãÑ En0
2 .

Assume now that pN kills all the modules Euv
2 for v ‰ 0. It follows that pN kills all modules

Euv
r for v ‰ 0 and r ě 2. In particular En0

r`1 is the kernel of a map from En0
r to an object

killed by pN . Moreover the differentials at page l ` 1 must be 0, so that Euv
l`1 “ Euv

8 . From
this it follows that

Cokerωn “ En0
2 {En0

8

is killed by pNpl`1q.
It remains to look at Kerpωnq “ Fn`1Hn. But this object has a filtration of lenght l

of subobjects whose partial cokernels are killed by pN . It follows that it must be killed by
pNpl`1q. �

https://stacks.math.columbia.edu/tag/07K7
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Lemma 2.10. Let B be a smooth W -algebra, let B̂ the p-adic completion of B and let Ω
B̂

be the p-adic completion of the module of algebraic differentials Ω
B̂{W (As in Remark 1.13,

Ω
B̂

is a quotient of Ω
B̂{W ). Let pM,∇q P ConnpB̂{W,Ω

B̂
q. Then there exist l, a, b P N and

maps of B̂-modules α : B̂l ÝÑ M , β : M ÝÑ B̂l satisfing papαβ ´ pbidM q “ 0. In particular
if F : ModpB̂q ÝÑ C is any linear functor with values in a linear category and F pB̂q “ 0 then
pa`b kills F pMq.

Proof. The last claim follows by linearity applying the functor F to the given expression and
using that F pB̂q and therefore F pβq are zero.

Applying Proposition 1.6, Lemma 1.10 and Lemma 1.21 we can conclude that M r1{ps is

a finitely generated projective B̂r1{ps-module. In particular there exist maps α : B̂r1{psl ÝÑ

M r1{ps and β : M r1{ps ÝÑ B̂r1{psl such that αβ “ id. Multiplying α and β by a power of

p we can find b P N and α : B̂l ÝÑ M and β : M ÝÑ B̂l such that αβ “ pbid in M r1{ps. In
particular there also exists a P N such that papαβ ´ pbidM q “ 0 as required. �

Proof of Theorem 2.7. We follow the proof of [BO78, Theorem 7.8], in particular the proofs
of (a) and (b) are essentially the same as the one given in the above reference.

We may assume that S
1 and S are affine. We want to reduce to the case where X is also

affine by using cohomological descent as in [Ber74, Proposition 3.5.2] and [BO78, Theorem
7.8]. If U Ď S is any open subset then we have

Rpg|g´1pUqqg´1pUq{U˚
pE|pg´1pUq{Uqcrysq “ RgX{S˚

pEq|U .

Thus in (a) we may assume U “ S.
We take a finite affine covering tUiui“0,¨¨¨ ,n of X. From the covering we obtain the topos

pX‚{Sq„
crys as in [Ber74, p. 335, p. 344], and the morphism of topoi

π : pX‚{Sq„
crys Ñ pX{Sq„

crys.

Similarly, we have the topos pX 1‚{S1q„
crys and the corresponding morphism of topoi π1 :

pX 1‚{S1q„
crys Ñ pX 1{S1q„

crys. Thus we have a diagram of topoi

pX 1‚{S1q„
crys

h‚
crys

//

π1

��

g1
X1‚{S1

##

pX‚{Sq„
crys

π

��

gX‚{S

{{

pX 1{S1q„
crys

hcrys
//

g1
X1{S1

��

pX{Sq„
crys

gX{S

��

S
1„
Zar

u
// S

„
Zar.

Then cohomological descent implies that there are canonical isomorphisms [Ber74, V, Propo-
sition 3.4.8]

E
–
ÝÑ Rπ˚pπ˚Eq and h˚

crysE
–
ÝÑ Rπ1

˚pπ1˚h˚
cryspEqq.
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Applying RgX{S˚ to the first above isomorphism, Rg1
X1{S1˚ to the second, we obtain the

following commutative diagram

(2.3) Lu˚
RgX{S˚pEq

–
//

��

Lu˚
RgX‚{S˚pπ˚pEqq

��

Rg1
X1{S1˚h

˚
cryspEq

–
// Rg1

X1‚{S1˚h
‚˚
cryspπ

˚pEqq.

The vertical map on the right is obtained via adjunctions as in Setting 2.1, using that
RgX‚{Spπ˚pEqq is bounded being isomorphic to RgX{S˚

pRπ˚pπ˚Eqq “ RgX{S˚
pEq which is

bounded by [BO78, Theorem 7.6]. This means that we can work with X‚ and X 1‚, instead of
X and X 1 respectively.

Now let ∆ be the opposite category of the category whose objects are subsets of I :“
t0, 1, 2, . . . , nu and whose morphisms are the inclusions of subsets. As in [Ber74, pp. V, 3.4.3]
we obtain the commutative diagram

pX 1‚{S1q„
crys

h‚
crys

//

g1‚
X1‚{S1

��

g1
X1‚{S1

##

pX‚{Sq„
crys

g‚
X‚{S

��

gX‚{S

{{

pS1„
Zarq

∆ u‚
//

ω1

��

pS„
Zarq

∆

ω

��

S
1„
Zar

u
// S

„
Zar.

We know that Rg‚
X‚{Spπ˚pEqq has bounded cohomologies by [Ber74, pp. 340, 320]. Then by

[Ber74, p. V. 3.4.9], one has the isomorphism

(2.4) Lu˚pRω˚pRg‚
X‚{S˚

pπ˚pEqqqq
–
ÝÑ Rω1

˚pLu‚˚pRg‚
X‚{S˚

pπ˚pEqqqq.

Note that by [Ber74, Prop. V. 3.4.9, i), p. 340] we have R
iω˚p´q “ R

iω1
˚p´q “ 0 for all

i ě n`1 or i ă 0 , so by [Sta19, Tag 07K7] Rω and Rω1 make sense. The right vertical arrow
in (2.3) is the composition of (2.4) with the map obtained by applying Rω1

˚p´q to

(2.5) Lu‚˚
Rg‚

X‚{S˚
pπ˚pEqq Ñ Rg1‚

X1‚{S1
˚

ph‚˚
cryspπ

˚pEqqq.

Therefore, in (a), (b) and (c) we can replace S
„
Zar and S

1„
Zar by pS„

Zarq
∆ and pS1„

Zarq
∆

respectively. When (a) is proved, we can conclude that both Lu‚˚
Rg‚

X‚{S˚
pπ˚pEqq and

Rg1‚
X1‚{S1

˚
ph‚˚

cryspπ
˚pEqqq have cohomologies bounded from above with a bound i0 depending

only on g0. Thus in (d) we can also replace S
„
Zar and S

1„
Zar by pS„

Zarq
∆ and pS1„

Zarq
∆ respectively,

because we can reset the N obtained for pS„
Zarq

∆ and pS1„
Zarq

∆ to

N 1
i –

#
Ni if i ď i0

0 if i ą i0

so that the conditions of Lemma 2.8 are satisfied.
By [Ber74, Prop. V.3.4.4] and [Ber74, Prop. V.3.4.5] we see that Lu‚˚ and Rg‚

X‚{S˚
are

computed componentwise. An intersection of open affine subsets of X may not be affine, but

https://stacks.math.columbia.edu/tag/07K7


26 VALENTINA DI PROIETTO, FABIO TONINI, LEI ZHANG

it is separated. Thus one can first reduce the problem to the case when X is separated and,
after, to the case when X is affine.

Now let S “ SpecA and S
1 “ SpecA1. Since g0 : X ÝÑ S is smooth and X,S are affine,

there is a smooth affine lift g̃0 : SpecB “ X ÝÑ S by [Sta19, Tag 07M8], and by pulling back
along u : S1 ÝÑ S we get a lift of g1

0 to g̃1
0 : SpecB

1 “ X
1 ÝÑ S

1. The comparison theorem
(e.g. [Sta19, Tag 07LG]) tells us that there is a commutative diagram

(2.6) Lu˚
RgX{S˚

pEq //

–

��

RgX1{S1
˚
h˚
cryspEq

–

��

Lu˚g̃0˚ pM bOX
Ω‚
X{Sq

φ
// g̃1

0˚
pM1 bO

X1 Ω
‚
X1{S1q

where MbOX
Ω‚
X{S and M1 bO

X1 Ω
‚
X1{S1 are the de Rham complex associated to the topolog-

ically quasi-nilpotent connections corresponding to the crystal E and h˚
crysE respectively via

the map in Theorem 1.15.

Proof of (a). We see from the comparison theorem [Sta19, Tag 07LG] that RgX{S˚
pEq has

bounded cohomologies whose bound depends only on the relative dimension of g0 : X ÝÑ S,
so the proof of (a) is finished. �

Proof of (b). Replacing the affine schemes X,S,X1,S1 by the rings B,A,B1, A1 and the quasi-
coherent sheaves M,M1 by modules M,M 1 respectively we obtain the map

φ : Lu˚pM bB Ω‚
B{Aq ÝÑ M 1 bB1 Ω‚

B1{A1

which is the ring version of the map φ in (2.6) (which we still call φ). The functoriality in
Theorem 1.15 tells us that M 1 “ M bB B1. Since Ω‚

B1{A1 “ Ω‚
B{A bA A1 we see that the

target of φ is just u˚pM bB Ω‚
B{Aq. If we denote by Q‚ the bounded complex of A-modules

M bB Ω‚
B{A, it follows that the map φ we are considering is the canonical map

(2.7) Lu˚pQ‚q ÝÑ u˚Q‚.

When u is flat the map (2.7) is a quasi-isomorphism. The same holds if E is flat because in
this case Q‚ is a complex of flat A-modules. �

Proof of (c). We proceed as in (b) and get the map (2.7). Assume that E is Wn-flat and that
there is a map of rings Wn ÝÑ R such that A1 “ AbWn R as an A-algebra, then the module
M is Wn-flat in ModpBq and therefore it is flat as Wn-module. Therefore the complex Q‚ is
a complex of flat Wn-modules. Using the flatness of A and Qi over Wn one can easily check
that

Lu˚pQ‚q “ Q‚
L

bA A
1 » Q‚

L

bA pA bWn Rq » Q‚
L

bWn R » Q‚ bWn R.

Thus (2.7) is an isomorphism. �

Proof of (d). We proceed as in (b) and get the map (2.7). We consider the converging coho-
mological spectral sequences [Wei94, Proposition 5.7.6, with the convention on Dual Definition
5.2.3]

E
xy
2 “ HxpLyu˚pQ‚qq ñ L

x`yu˚pQ‚q “ Hx`y

where Lyu˚pQ‚q is the complex obtained by applying L
yu˚ on each terms of Q‚. This sequence

is obtained from the double complex made by the projective resolutions of the modules in Q‚.

https://stacks.math.columbia.edu/tag/07M8
https://stacks.math.columbia.edu/tag/07LG
https://stacks.math.columbia.edu/tag/07LG
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It is a fourth quadrant spectral sequence, i.e. Exy
2 “ 0 when y ą 0 or x ă 0 or x ą m (where

m is the relative dimension of g0).
By Lemma 2.9, from the spectral sequence, we obtain a map

(2.8) H i “ L
iu˚pQ‚q ÝÑ Hipu˚Q‚q “ Ei0

2

which is the i-th cohomology of the map we are considering.
By Lemma 1.26 we have the following diagram

X XW – Spec rB

S SW – Spec rA

Speck W

where rA is the p-adically complete flat lift of the smooth k-algebra A{I to W , and rB is the

p-adically complete flat lift of the smooth A{I-algebra B{I to rA. Since rA is p-adically formally
smooth over W and A ÝÑ A{I is a quotient of p-adically discrete W -algebras defined by a nil

ideal, we can choose a W -map rA ÝÑ A. In the same way, we can choose an rA-map rB ÝÑ B.
If pM̂, ∇̂q P QNCfpX{Wq is the quasi-nilpotent connection corresponding to EW P CryspX{Wq

via Theorem 1.15, then M̂ b rB B » M by the crystalline nature of EW. Applying Lemma

2.10 to M̂ and the functors

Fytp´q – L
yu˚p´ b rB Ωt

B{Aq py P Z‰0, t P Nq

we find N 1 P N such that pN
1

kills FytpM̂q hence also HxpFy‚pM̂qq “ E
xy
2 (y ‰ 0). Notice

that N 1 P N depends only on the rB-module M̂ and the rB-module M̂ depends only on EW P
CryspX{Wq.

Set Ni – pm ` 1qN 1 for all i P Z, where m is the relative dimension of g0. By Lemma 2.9,
the i-th cohomology of (2.1) is a pNi-isogeny. �

The proof of the theorem is done. �

Remark 2.11. Note that in the proof of Theorem 2.7 (a), (d), the bound r and the function
N : Z ÝÑ N depend not only on the relative dimension of g0, but also on the number of opens
in the affine covering tUiui“0,¨¨¨ ,n of X and the affine coverings of the arbitrary intersections
of tUiui“0,¨¨¨ ,n. Indeed this was used during the reduction of X to the affine case (see the two
paragraphs after (2.5)). Since this is a choice on X which is part of the map g0 : X ÝÑ S, we
didn’t specify it.

2.2. The case of an affine base. In this section we treat the case in which the base S

is affine. The first result is a corollary of the base change theorem proven in the previous
subsection (Theorem 2.7).

Corollary 2.12. In the situation of Setting 2.1 assume that S “ SpecA is affine and set
An “ A{pn, Sn “ SpecAn and En “ E|pX{Snqcrys . Then the following hold.

(a) There exists r P N, which depends only on X
g0ÝÑ S such that for all i ě r we have

R
iΓppX{Snqcrys, Enq “ 0. Moreover, we have

(2.9) RΓppX{Sqcrys, Eq » R limÐÝ
n

RΓppX{Snqcrys, Enq
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is quasi-isomorphic to a bounded complex.
(b) If S is flat over W and E is p-torsion free then the system tRΓppX{Snqcrys, Enqu is

quasi-consistent in the sense of [BO78, B.4] and, if moreover S is Noetherian, then

RΓppX{Sqcrys, Eq
L

bA An » RΓppX{Snqcrys, Enq.
(c) If S is flat over W and Noetherian, E is p-torsion free, X{S is proper and S “ S1

pI “ ppqq, then RΓppX{Sqcrys, Eq is quasi-isomorphic to a bounded complex of finitely
generated Â-modules, where Â is the p-adic completion of A, and

HippX{Sqcrys, Eq » limÐÝ
n

HippX{Snqcrys, Enq.

Moreover, the projective system on the right hand side satisfies the Mittag-Leffler con-
dition, and is made by finitely generated Â-modules.

Remark 2.13. The proof of Corollary 2.12 is the same as the proof of [ES19, Proposition 5.3
1)] and [Shi08a, claim in pp. 10–11] .

Proof of Corollary 2.12. Firstly, notice that we can replace A by its p-adic completion thanks
to [Sta19, 05GG].

(a) The isomorphism (2.9) follows from [Sta19, Tag 07MV]. By Theorem 2.7 (a) and
[BO78, Remark B.1.6] we also get the boundness.

(b) The quasi-consistency follows from Lemma 2.4 and Theorem 2.7 (c) because the maps
Sn´1 ÝÑ Sn are base changes of the maps SpecWn´1 ÝÑ SpecWn. From the quasi-
consistency and [BO78, Proposition B.5, 3)] we obtain the last isomorphism.

(c) Assume that S flat over W, E is p-torsion free, X{S is proper and S “ S1 (
I “ ppq). Since RΓppX{S1qcrys, E1q has finitely generated cohomologies and all the
RΓppX{Snqcrys, Enq are uniformly cohomologically bounded thanks to [BO78, p.7.7],
the result follows from [BO78, Lemma B.6 and Proposition B.7]. Here we use that a
bounded complex with finitely generated cohomology is quasi-isomorphic to a bounded
complex of finitely generated modules. �

Always in Setting 2.1, we consider now the situation in Remark 2.2 (b). We analyse under
which condition the map in (2.2) is an isomorphism (or an isogeny).

Theorem 2.14. Let the notation and hypothesis be as in Setting 2.1. Assume moreover that
S is Noetherian and W-flat. Let S

1
– SpecA1, S – SpecA, where A and A1 are p-adically

complete rings. Suppose that one of the following is true: p is nilpotent in OS1 or X{S is
proper and S “ SpecA{p (i.e. I “ ppqq. Then the following hold.

(a) Let EW P CryspX{Wq and set E “ pEWq|pX{Sqcrys . Assume that S is smooth over
k. Then there exists N : Z ÝÑ N, depending only on EW and g0, such that the i-th
cohomology of the map (2.2) is a pNi-isogeny isomorphism.

(b) The map (2.2) is an isomorphism if E P CryspX{Sq is a flat crystal [BO78, p. 7.10].
(c) The map (2.2) is an isomorphism if E P CryspX{Sq is p-torsion free and all un : S1

n ÝÑ
Sn are either flat or the base change of a map to Wn.

Before proving this theorem, we consider two remarks.

Remark 2.15. If M is a flat W -module, that is it is p-torsion free, then so is its p-adic
completion. Indeed letmn P M be a collection of elements such thatmn`1´mn “ pnxn P pnM
and pmn “ pnyn P pnM . Then mn “ pn´1yn and

pnyn`1 ´ pn´1yn “ pnxn ùñ yn P pM ùñ mn P pnM.

https://stacks.math.columbia.edu/tag/05GG
https://stacks.math.columbia.edu/tag/07MV
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Remark 2.16. [ES18, after Remark 2.5] If X is a smooth and quasi-compact k-scheme and
EW P CryspX{Wq, then there exists a p-torsion free E1

W
P CryspX{Wq and an isogeny

EW ÝÑ E1
W

. Indeed one can check locally, using Proposition 1.27 and Theorem 1.15, that
the sequence EWrpns stabilizes to a subobject EWrp8s which is killed by a power of p. Thus
E1

W
“ EW{pEWrp8sq meet the requirements.

Proof of Theorem 2.14. By Remark 2.16 we can assume that E is p-torsion free in (a). If E
is a flat crystal, then E is p-torsion free by Lemma 2.6.

Now, for n P N, let un “ uˆ Wn : S
1
n ÝÑ Sn and consider the base change map

(2.10) Lu˚
nRΓppX{Snqcrys, Enq ÝÑ RΓppX 1{S1

nqcrys, h
˚
crysEnq.

Firstly we would like to prove that the R limÐÝ of (2.10) yields the map (2.2).

If, for some a P N, pa “ 0 in OS1 , the map u : S1 ÝÑ S factors through un for n ě a and
therefore

Lu˚
RΓppX{Sqcrys, Eq » Lu˚

nRΓppX{Snqcrys, Enq.

So what remains is the case where p is not nilpotent in OS1 and X{S is proper and S “
SpecA{p (i.e. I “ ppq). By Corollary 2.12 (c) we have that RΓppX{Sqcrys, Eq is quasi-
isomorphic to a complex P ‚ of A-modules which is bounded above and it is made by finite
free A-modules. In this case, by Corollary 2.12 (b), RΓppX{Snqcrys, Enq » P ‚

n – P ‚ bA An

and
Lu˚

nP
‚
n » P ‚

n bAn A
1
n.

This is a complex of flasque projective systems in the sense of [BO78, Remark B.1.4]. In
particular by [BO78, Remark B.1.6] we have

R limÐÝLu˚
nP

‚
n » limÐÝrpP ‚ bA A

1q bA1 A1
ns » P ‚ bA A

1.

The last isomorphism holds because P ‚ bA1 is a complex of finite free A1-modules which are
therefore complete. Since P ‚ bA A

1 » Lu˚
RΓppX{Sqcrys, Eq we get the result.

(a) Applying Theorem 2.7 (d) we know that there exists N : Z ÝÑ N, which depends only
on EW and g0 (thus not on n), such that the i-th cohomology of (2.10) is a pNi-isogeny.
Letting n vary we can consider (2.10) as a map of complexes in D´pN, A1

˚q whose i-th
cohomology is a pNi-isogeny. By Theorem 2.7 (a) we can suppose Ni “ 0 for i " 0,
and by [BO78, Remark B.1.6] we have that Ri limÐÝ “ 0 for i ě 2. Now applying R

i limÐÝ
to (2.10) we get our result by Lemma 2.8.

(b) We consider, as in (a), the map in (2.10). Applying Theorem 2.7 (b) we get that
the map (2.10) is a quasi-isomorphism. Again applying R

i limÐÝ to (2.10) yields the
quasi-isomorphism (2.2).

(c) The proof is exactly as in (b), using Theorem 2.7 (c). �

Remark 2.17. A result along the same lines is proven in [Shi08a, Theorem 1.19] and [ES19,
Proposition 5.3].

2.3. Pullback in the crystalline site revisited. Suppose that we are in Siuation 2.1. In
what follows we collect some properties of pullback of sheaves in the crystalline topoi, following
the discussion in [Ber74, Chapter III, Section 2.2, p. 196]. We denote by

h´1
crys : pX{Sq„

crys ÝÑ pX 1{S1q„
crys

the pullback in the morphism of topoi hcrys (not ringed topoi) induced by the morphism
h : X 1 Ñ X. We instead denote by h˚

crys the pullback of OX{S-modules.
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Definition 2.4. Given T
1 P pX 1{S1qcrys and T P pX{Sqcrys a h-PD-morphism T

1 ÝÑ T is a
PD-morphism v : T1 ÝÑ T which is compatible with h and u.

For T
1 P pX 1{S1qcrys we define the category

IT
1

h “ th-PD-morphisms T
1 ÝÑ T with T P pX{Sqcrysu.

Given x1 P T
1 we also define the category

I
x1,T1

h “ th-PD-morphisms V ÝÑ T with T P pX{Sqcrys and x1 P V Ď T
1 openu.

Lemma 2.18. Let F be a sheaf on pX{Sqcrys, T1 P pX 1{S1qcrys and x1 P T
1. Then

(1) h´1
cryspF q is the sheafification of the presheaf

T
1 ÞÑ colim

pq : T1ÝÑTqPIT
1

h

F pTq.

(2) for q : V ÝÑ T in I
x1,T1

h there is a canonical map

q´1pFTq ÝÑ h´1
cryspF qV.

(3) the set IT
1,x1

h is filtered; moreover taking stalks at x1 P V Ď T of the maps in p2q and
passing to the limit we obtain an isomorphism

colim
pq : VÝÑTqPIx

1,T1

h

q´1pFTqx1 ÝÑ ph´1
cryspF qT1 qx1 .

Proof. Point p1q is [Ber74, Chapter III, Section 2, eq (2.2.10)], while p2q is an easy consequence

of p1q. The proof that Ix
1,T1

h is filtered is given in the first paragraph of [Ber74, Chapter III,
p. 199]. As in [Ber74, Chapter III, eq (2.2.11), p. 199], taking a double limit in p1q we have

ph´1
cryspF qT1qx1 “ colim

pq : VÝÑTqPIx
1,T1

h

F pTq.

By definition of Ix
1,T1

h it is easy to rewrite the above equation as

ph´1
cryspF qT1qx1 “ colim

pq : VÝÑTqPIx
1,T1

h

pFTqqpx1q “ colim
pq : VÝÑTqPIx

1,T1

h

q´1pFTqx1 .

�

Lemma 2.19. Let F be a sheaf of OX{S-modules on pX{Sqcrys, T1 P pX 1{S1qcrys and x1 P T
1.

Then

(1) for q : V ÝÑ T in I
x1,T1

h there is a canonical map

q˚pFTq ÝÑ h˚
cryspF qV.

(2) taking stalks at x1 P V Ď T of the maps in p2q and passing to the limit we obtain an
isomorphism

colim
pq : VÝÑTqPIx

1,T1

h

q˚pFTqx1 ÝÑ ph˚
cryspF qT1 qx1 .

Proof. By definition we have

h˚
cryspF q “ h´1

cryspF q b
h´1
crysOX{S

OX1{S1 .

Properties p1q and p2q follows from Lemma 2.18, taking into account that tensor products
commute with filtered colimits. �
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Lemma 2.20. Let F ‚ be a complex of sheaves of OX{S-modules on pX{Sqcrys, T1 P pX 1{S1qcrys
and x1 P T

1. Then

(1) for q : V ÝÑ T in I
x1,T1

h there is a canonical map of complexes

q˚pF ‚
Tq ÝÑ h˚

cryspF
‚qV;

(2) for all j ě 0, taking j-th cohomology, stalks at x1 and passing to the limit we obtain
an isomorphism

colim
pq : VÝÑTqPIx

1,T1

h

Hjpq˚pF ‚
Tqqx1 ÝÑ pHjph˚

crysF
‚qT1qx1 ;

(3) if F ‚ is bounded from above then we have a canonical isomorphism

colim
pq : VÝÑTqPIx

1,T1

h

pLjq˚pF ‚
Tqqx1 ÝÑ ppLjh˚

crysF
‚qT1qx1 .

Proof. (1), (2) follows literally from Lemma 2.19 p1q and p2q respectively. If F ‚ is bounded,
then by [BO78, p. 7.7-7.8] we can replace F ‚ by a complex of flat OX{S-modules. By [Ber74,
Chapter III, Cor 3.5.2, p. 211] we have that FT is a complex of flat OT-modules for any
T P pX{Sqcrys. We can therefore replace L

j in (3) by Hj, but this is just (2). �

2.4. Crystalline base change.

Definition 2.5. Let f : X Ñ S be a morphism of k-schemes. There is a morphism of ringed
topoi [Sta19, Tag 07IK]

fcrys : ppX{Wq„
crys,OX{Wq ÝÑ ppS{Wq„

crys,OS{Wq.

For a sheaf of OX{W-modules E on pX{Wqcrys we consider the higher direct images Rnfcrys˚E

and also K b R
nfcrys˚E, which belong to K b ModpOS{Wq.

Theorem 2.21. Consider a cartesian diagram

X 1 X

S1 S

h

f 1 f

v

of quasi-compact k-schemes with f smooth and quasi-compact. Let E P CryspX{Wq and
assume that E is flat (resp. S is smooth over k). Then there is a natural map in DppS1{Wqcrysq

(2.11) Lv˚
crysRfcrys˚

pEq ÝÑ Rf 1
crys˚

h˚
cryspEq

which is an isomorphism (resp. induces isogeny on coholomogy).

Proof. The definition of the map in the statement is also given in the proof of [Ber74, Chapter
V, Theorem 3.5.1, p. 342]. Applying adjunction to the canonical map Lh˚

cryspEq Ñ h˚
cryspEq

we obtain a map

E Ñ Rhcrys˚ph˚
cryspEqq.

Applying Rfcrys˚ we get

Rfcrys˚pEq Ñ Rvcrys˚Rf
1
crys˚ph˚

cryspEqq.

https://stacks.math.columbia.edu/tag/07IK
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The map (2.11) is obtained applying adjunction again, which is possible because Rfcrys˚pEq
is bounded: if pU,T, δq P pS{W qcrys then ([Sta19, Tag 07MJ], [Ber74, Corollaire V, 3.2.3, p.
328])

pRfcrys˚pEqqT » Rpf|f´1pUqqf´1pUq{T˚pE|pf´1pUq{Tqcrysq,

which is bounded uniformly thanks to Theorem 2.7 (a).
The case when E is flat is essentially contained in [Ber74, Chapter V, Theorem 3.5.1, p.

342], but we include the proof for completeness.
Let’s fix pU 1,T1, δq P pS1{Wqcrys and x1 P T

1. It is enough to check that the map

(2.12) pLjv˚
cryspRfcrys˚pEqqT1 qx1 ÝÑ pRjf 1

crys˚ph˚
cryspEqqT1 qx1

is a quasi-isomorphism (resp. pNj -isogeny for some Nj) for all T1 and x1. We follow notation

from §2.3, for instance recall that Ix
1,T1

v is the filtered category of v-PD-morphisms V ÝÑ T

where x P V Ď T
1 is an open and T P pS{Wqcrys.

Let q : V ÝÑ T be an object of Ix
1,T1

v . By Lemma 2.20 we have maps

Lq˚pRfcrys˚pEqTq Rf 1
crys˚ph˚

cryspEqqV.

Lv˚
cryspRfcrys˚pEqqV

cq

bqaq

By [Sta19, Tag 07MJ] the map cq is the map considered in Theorem 2.7 (c) (resp. (d)).
Therefore, cq is a quasi-isomorphism (resp. we find N : Z ÝÑ N depending only on f and E,

such that the map Hjpcqq is an pNj -isogeny).
Now, on the diagram above, we take j-th cohomology and the stalk at x1. The map bq

becomes the map (2.12). This map and, in particular, its source and target do not depend

on q P I
x1,T1

v . Let’s call it B ÝÑ C. Passing to the colimit for q P I
x1,T1

v (at the level of
complexes) we get the diagram of the form

colimq Aq C

B
α γ

colimq βq

with the map α an isomorphism by Lemma 2.20. If cq is a quasi-isomorphism, then so is
colimq βq, hence so is γ. This finishes the proof in the case when E is flat.

Let’s now focus on the “resp.” case. Taking the limit of the exact sequence

0 ÝÑ Kq ÝÑ Aq
βq
ÝÑ C ÝÑ Dq ÝÑ 0

we obtain that

Kerpγq » colim
q

Kq and Cokerpγq » colim
q

Dq.

Because all the βq are pNj -isogenies, pNj kills all Kq, Dq and therefore Kerpγq and Cokerpγq,
as required. �

https://stacks.math.columbia.edu/tag/07MJ
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3. Higher Push-forward of Isocrystals

This section is dedicated to the proof of Theorem I.

Theorem 3.1. Let f : X Ñ S “ SpecA be a smooth and proper morphism between smooth
k-schemes, and let A be a p-adically complete flat lift of A over W and E P CryspX{Wq be
a p-torsion free crystal. Then for each n P N there is a crystal En

X{A in CryspS{Wq with
a morphism of sheaves ηn : En

X{A ÝÑ R
nfcrys˚

pEq on the crystalline site pS{Wqcrys which
induces the isomorphism

limÐÝ
e

pEn
X{AqSpec pA{peq » limÐÝ

e

pRnfcrys˚
pEqqSpec pA{peq.

Moreover,
ηn bK : En

X{A bK ÝÑ R
nfcrys˚

pEq bK

is an isomorphism and En
X{A corresponds, via Theorem 1.15, to the A-module

HnppX{Sqcrys, E|pX{Sqcrysq

equipped with a topologically quasi-nilpotent connection.

Proof of Theorem I as a consequence of Theorem 3.1. By Remark 2.16 we can assume E “
E b K, where E P CryspX{Wq is p-torsion free. By Theorem 3.1 the statement is true
when S is affine. By descent for isocrystals ([Ogu90, Lemma 0.7.5]), we can conclude that an
OX{W-module on pX{Wqcrys in the isogeny category is an isocrystal if and only if it is Zariski
locally so. This finishes the proof. �

Proof of Theorem 3.1. Set Ae “ A{pe, Se “ SpecAe,

ES “ E|pX{Sqcrys and Hn “ HnppX{Sqcrys, E|pX{Sqcrysq.

We construct the crystalEn
X{A in CryspS{W q with the morphism ηn : E

n
X{A ÝÑ R

nfcrys˚
pEq.

Let Dpeq be the p-adic completion of the PD-envelope of S inside SˆW S ¨ ¨ ¨ ˆW S (the fiber
product over W of e copies of S). Since S is smooth, the projections

pi : Dpeq ÝÑ S

are flat ([BO78, p. 3.32], [Sta19, Tag 0912]). By Theorem 2.14 (c) we get canonical isomor-
phisms

p˚
i RΓppX{Sqcrys, ESq ÝÑ RΓppX{Dpeqqcrys, E|pX{Dpeqqcrys q.

Taking cohomology we also get canonical isomorphisms

p˚
iHn ÝÑ HnppX{Dpeqqcrys, E|pX{Dpeqqcrysq.

This defines an HPD-stratification on the A-module Hn, which is finitely generated by Corol-
lary 2.12. Similarly to [BO78, p. 6.6], this HPD-stratification defines a crystal En

X{A P

CryspS{Wq. Let’s recall here its construction.
For each object χ “ pU,T, δq P pS{Wqcrys with T affine we get, thanks to [Sta19, Tag 07K4]

and the smoothness of S, a commutative diagram

U
�

�

//

��

T

αχ

��

S // S.

https://stacks.math.columbia.edu/tag/0912
https://stacks.math.columbia.edu/tag/07K4
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We set pEn
X{AqT to be the quasi-coherent sheaf on T associated to α˚

χHn. The structure of the

HPD-stratification allows us to define the transition morphisms and to prove the functoriality
of the correspondence χ “ pU,T, δq ÞÑ pEn

X{AqT.

By Theorem 2.14 (a) with S1 “ U and S
1 “ T there exists N : Z ÝÑ N, depending only on

E and f , such that the i-th cohomology of

(3.1) γχ : Lα
˚
χRΓppX{Sqcrys, ESq ÝÑ RΓppf´1pUq{Tqcrys, E|pf´1pUq{Tqcrysq

is a pNi-isogeny.
Notice that ([Sta19, Tag 07MJ], [Ber74, Corollaire V.3.2.3, p. 318])

pRfcrys˚pEqqT » Rff´1pUq{T˚pE|pf´1pUq{Tqcrysq

is quasi-isomorphic to the complex of OT-modules associated to any complex of H0pOTq-
modules representing the right hand side of (3.1).

Moreover there is a canonical map

ιχ : α
˚
χHn ÝÑ HnpLα˚

χRΓppX{Sqcrys, ESqq.

Putting everything together we get a canonical morphism

pηnqT : pEn
X{AqT ÝÑ pRnfcrys˚pEqqT.

If χ “ pS,Se, δeq and αχ : Se ÝÑ S is the obvious closed immersion, then, by Theorem 2.14
(c), the map γχ is a quasi-isomorphism and pηnqSe becomes the map of quasi- coherent sheaves
on Se associated to the map

Hn b Ae ÝÑ HnppX{Seqcrys, E|pX{Seqcrysq.

By Corollary 2.12 the projective limit of the above maps is an isomorphism as required. The
limit Hn, which corresponds to En

X{A via Theorem 1.25, is therefore the module with the

topologically quasi-nilpotent connection in the statement.
It remains to show that ηn b K is an isomorphism. It is enough to show that there exists

a N P N such that for all χ “ pU,T, δq P pS{W qcrys the map pηnqT is a pN -isogeny. Since γχ
is a pNn-isogeny, we have to prove the analogous statement for ιχ.

Set M :“ RΓppX{Sqcrys, ESq. By [Wei94, Proposition 5.7.6, with the convention on Dual
Definition 5.2.3] there is a convergent spectral sequence

Euv
2 “ L

uα˚
χpHvpMqq ñ L

u`vα˚
χpMq “ Hu`v.

Since M is bounded there exists l P N such that Euv
2 “ 0 for v ă 0 or v ą l. Moreover Euv

2 “ 0

if u ą 0. By Lemma 2.9 we obtain a map

E0n
2 “ α˚

χpHnpMqq ÝÑ L
nα˚

χpMq “ Hn

which coincides with the map ιχ.
Since HvpMq “ Hv is endowed with a topologically quasi-nilpotent connection on A, by

Lemma 2.10 there exists Nv P N, depending only on Hv, such that L
qα˚

χpHvpMqq is killed

by pNv for any q ‰ 0. Since L
qα˚

χpHvpMqq “ 0 for all v ă 0 or v ą l, we can choose N
large, so that it kills L

qα˚
χpHvpMqq for all q ‰ 0 and v. Thus Lemma 2.9 tells us that ιχ is a

pNpl`1q-isogeny. �

https://stacks.math.columbia.edu/tag/07MJ
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Remark 3.2. We want to compare [Xu19, Theorem 1.9] and Theorem I and, in particular,
show how they are compatible. Assume the common settings for those results, that is, let
f : X ÝÑ S be a smooth and proper morphism of smooth k-schemes and E P IconvpX{Wq,
where IconvpX{Wq denotes the category of convergent isocrystals.

By [Ogu84, Theorem 0.7.2], there is a fully faithful functor ι : IconvpX{Wq ÝÑ IcryspX{Wq
and similarly for S. Moreover, R

ifconv˚pEq P IconvpS{Wq by [Xu19, Theorem 1.9] and
R

ifcrys˚pιpEqq P IcryspS{Wq by Theorem I. We claim that there is a canonical isomorphism

ιpRifconv˚pEqq » R
ifcrys˚pιpEqq in IcryspS{Wq.

By descent for isocrystals ([Ogu90, Lemma 0.7.5]) we can assume that S is affine and, by
2.16, choose a p-torsion free crystal E such that ιpEq » E b K. We use the notations from
Theorem 3.1 and freely refer to its proof. In particular we consider the schemes Dpeq with
projections pi : Dpeq ÝÑ S and the module Hn with stratification defined at the beginning of
the proof.

Since all Dpeq ÝÑ W are flat, the associated formal schemes Ppeq belong to the convergent
site of S{W. We use the description of ι : IconvpS{Wq ÝÑ IcryspS{Wq given in [Xu19, Section
3.20]. Applying [Xu19, Theorem 3.22] (or [Shi08a, Theorem 2.36]) to X{Ppeq (be aware that
the gX{Ppeq,crys˚ in the reference is what we denoted by gX{Dpeq˚) we see that Hn b K is the

module with stratification inducing ιpRifconv˚pEqq (see also the proof of [Xu19, Lemma 4.10]).
This shows the claim.

Proof of Theorem II as a consequence of Theorem 3.1. By Theorem 2.21 there is an isogeny

HnpLv˚
crysRfcrys˚

pEqq ÝÑ R
nf 1

crys˚
h˚
cryspEq.

Set M :“ Rfcrys˚
pEq. There is a canonical map

φ : v˚
crysR

nfcrys˚pEq “ v˚
cryspH

npMqq ÝÑ HnpLv˚
crysMq.

We have to prove that it is a pNn-isogeny with an Nn P N depending only on E and f . We
are going to show that there exists Nn P N, depending only on E and f , such that for all
χ “ pU 1,T1, δ1q P pS1{Wqcrys the OT1-linear map

φχ : v
˚
cryspH

npMqqT1 ÝÑ HnpLv˚
crysMqT1

is a pNn-isogeny. To show this it is enough to show that for each x1 P T
1 the map on stalks

φχ,x1 : pv˚
cryspH

npMqqT1 qx1 ÝÑ HnppLv˚
crysMqT1 qx1

is a pNn-isogeny. Now we use notation from §2.3. Recall that Ix
1,T1

v is the filtered category of

v-PD-morphisms V
u
ÝÑ T where x P V Ď T

1 is an open and T P pS{Wqcrys. Then we have a
commutative diagram

u˚pHnpMqTq //

��

HnpLu˚MTq

��

v˚
cryspH

npMqqV // HnpLv˚
crysMqV.

If we take the stalk at x1 in the above diagram, then the bottom horizontal map is exactly

φχ,x1 . Moreover, if we take the colimit of the vertical arrows over all u P I
x1,T1

v , then the
vertical arrows are isomorphisms by Lemma 2.20. Thus it is enough for us to show that the
top horizontal arrow is a pNn-isogeny with Nn depending only on E and f .
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Now consider pU 1,T1, δ1q P pS1{Wqcrys, pS,T, δq P pS{Wqcrys and a commutative diagram

f 1´1pU 1q X

U 1 S

T
1 T

h

u

v

f 1 f

where v, u form a PD-map. We have to show that the map

u˚ HnpMTq ÝÑ HnpLu˚pMTqq

is a pNn-isogeny for some Nn P N depending only on E and f . Notice that by Theorem 2.7 (a)
the complex MT » RfX{T˚pE|pX{Tqcrysq is bounded with a bound depending only on f . By
[Wei94, Proposition 5.7.6, with the convention on Dual Definition 5.2.3] there is a convergent
spectral sequence

Eab
2 “ L

au˚pHbpMTqq ñ L
a`bu˚pMTq “ Ha`b.

The upper bound of MT provides a number l P N depending only on f (so independent of the
choice of T), such that Eab

2 “ 0 for b ă 0 or b ą l. Moreover Eab
2 “ 0 if a ą 0. By Lemma 2.9

we obtain a map
E0n

2 “ u˚pHnpMTqq ÝÑ L
nu˚pMTq “ Hn

which coincides with the map φχ.
By Lemma 2.9 we must show that there exists Nn, which depends only on E and f , such

that L
au˚pHbpMTqq is killed by pNn for a ‰ 0. We can assume that T and S are affine. By

Remark 2.16 and Theorem 3.1 there exists a crystal H P CryspS{Wq which is isogenous to
HbpMq. Thus it is enough to look at L

au˚HT. By Theorem 1.15 H corresponds to some
pP,∇q P QNCfpS{Wq. Let SW “ SpecA ÝÑ W be a lift of S as in Lemma 1.26 (2), so that
P is an A-module. The smoothness of SWn over Wn for all n P N and [Sta19, Tag 07K4]
imply the existence of a map T ÝÑ SW lifting the identity map of S along S Ď SW. In
particular P b OT » HT. Applying Lemma 2.10 to P and F “ L

au˚p´ b OTq we find the
Nn P N depending only on E and f such that pNn kills F pP q “ L

au˚HT for a ‰ 0. �

4. The Künneth Formula

In this last section we prove Theorems III and IV.

Proof of Theorem III. Consider the following diagram

1 // π
crys
1 pY {W, yq // π

crys
1 pX ˆk Y {W, px, yqq //

��

π
crys
1 pX{W, xq // 1

1 // π
crys
1 pY {W, yq // π

crys
1 pX{W, xq ˆk π

crys
1 pY {W, yq // π

crys
1 pX{W, xq // 1.

It is enough to show that the top sequence is exact. Consider the diagram

(4.1) Y
x

//

g

��

X ˆk Y

p1

��

Spec k
u

// X.

https://stacks.math.columbia.edu/tag/07K4
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Since x is a section of the projection, it gives a closed embedding on fundamental group
schemes, while the projection yields a surjection on fundamental group schemes. We are
going to apply [EHS08, Theorem A.1 (iii)] to prove the exactness in the middle. So we have
to check:

(a) If E P IcryspX ˆk Y {Wq, then x˚
crysE is a trivial object in IcryspY {Wq if and only if

there exists F P IcryspX{Wq such that p˚
1crysF » E .

(b) We have to check that for any isocrystal E P IcryspX ˆk Y {Wq, the maximal trivial
subobject of x˚

crysE comes from a subobject F Ď E , where F is defined over X{W.
(c) If G P IcryspY {Wq, then there exists E P IcryspX ˆk Y {Wq such that G is a subobject

of x˚
crysE .

Condition (c) follows because x is a section of the projection X ˆk Y
p2
ÝÑ Y . Also the "if"

part of (a) is obvious from (4.1), and the "only if" part is a consequence of (b). Thus let’s
focus on (b).

Since p1crys˚
and p˚

1crys are a pair of adjoint functors between the category of sheaves of O-

modules on pX ˆk Y {Wqcrys and that on pX{Wqcrys, and thanks to Theorem I, the induced
pair of functors between the isogeny categories IcryspX ˆ Y {Wq and IcryspX{Wq are also
adjoint to each other. The map p1 induces a map on fundamental group schemes

π
crys
1 pp1q : πcrys1 pX ˆk Y {W, px, yqq ÝÑ π

crys
1 pX{W, xq

which is surjective because p1 has a section. It follows that p1crys˚
on isocrystals corresponds

to taking invariants by the kernel of πcrys1 pp1q. In particular the map

F – p˚
1crysp1crys˚

E ÝÑ E

is injective.
The same argument applied to IcryspY {Wq and IcryspSpec k{Wq shows that

g˚
crysgcrys˚

x˚
crysE ÝÑ x˚

crysE

is injective and g˚
crysgcrys˚

x˚
crysE is the maximal trivial subobject of x˚

crysE .
Using the base change isomorphism in Theorem II in (4.1), we can conclude that applying

x˚
crys to F ÝÑ E we get the map g˚

crysgcrys˚
x˚
crysE ÝÑ x˚

crysE as required. �

Proof of Theorem IV. By the binary operation on π
crys
1 pA{W, 0q induced by the addition of

the abelian variety A, πcrys1 pA{W, 0q becomes group object in the category of affine group
schemes over K. Then, by the calculation given in [EH62, Theorem 5.4.2], πcrys1 pA{W, 0q is
an abelian group scheme. �
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