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Abstract 

 

The aim of this project is to identify new drug treatments for tuberous sclerosis 

complex (TSC). TSC is an autosomal dominant genetic disorder effecting 1 in 6000 

births, it is characterised by the formation of hamartomas (benign tumours) throughout 

the body causing disfigurement, learning difficulties and organ failure. The 

development of new treatments is important because the current treatment, 

rapamycin, is severely limited, only showing a cytostatic effect on hamartoma 

development. 

 

Several drug candidates have been identified as potential TSC treatments using a 

network of SS/L interactions between Drosophila and preapproved drugs (Housden et 

al., 2017; Valvezan et al., 2017). I assessed these candidates in Drosophila mutant 

cells to identify which would be most promising as the basis for a combinatorial 

treatment. Lithium chloride proved to be the most effective of the candidates tested, 

exhibiting a selective cytotoxic effect in Drosophila TSC cells. Lithium chloride was 

then screened against a library of one hundred and fifty-four FDA targets identified by 

Housden et al (2017) to identify possible synergistic combinations. 

 

Fifteen possible candidates were identified in this screen. Three of the genes identified 

were related to purine synthesis, which has been identified as a potential candidate 

for TSC treatment before. Of these genes ras (analogous to IMPDH) has two approved 

drugs, Ribavirin and Mycophenolic acid (MPA), and one experimental drug, 

mizoribine. These drugs were tested in combination with lithium chloride in murine and 

human cells in order to identify possible synergistic interactions. 

 

The preliminary results in both human and murine cells suggest that the synergy 

identified in the screen is conserved. However, preliminary results in human cells were 

inconclusive. Further testing is needed to properly validate these results and to 

develop new treatments for TSC. 
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Background 

 

Tuberous Sclerosis Complex: 

Tuberous sclerosis complex (TSC) is an autosomal dominant, multisystem disorder 

affecting approximately 1 in 6,000 births (Gómez, 1995). It is highly inheritable, with a 

50% chance of being inherited if one parent has the condition. In approximately two 

thirds of cases no parent exhibits signs of TSC (Sancak et al., 2005). The condition is 

characterised by the formation of hamartomas (benign tumours) throughout the body. 

These hamartomas cause a wide range of symptoms; - skin markings such as ash-

leaf spots (hypomelanotic macules), angiofibromas, ungual fibromas, shagreen 

patches, growths within the eyes (multiple retinal hamartomas), indications within the 

brain, for example, cortical dysplasias, subependymal nodules, subependymal giant 

cell astrocytoma and symptoms effecting other organs such as the heart (cardiac 

rhabdomyoma), lungs (Lymphangioleiomyomatosis (LAM)) and kidneys 

(Angiomyolipomas). Symptoms occur randomly in patients and are unpredictable.  

 

TSC is caused by loss-of-function mutation of either the TSC1 or TSC2 genes 

(Osborne, Fryer and Webb, 1991). These genes form a protein complex (the tuberous 

sclerosis complex complex), which integrates signals from multiple upstream 

pathways and inhibits the mammalian target of rapamycin (mTOR), a master 

regulator of cell growth (Tee, 2018). Mutations of the TSC complex affect the cellular 

growth mechanism, leading to uncontrolled cell growth and tumour formation in 

diseases such as TSC and a variety of sporadic cancers (Menon and Manning, 2008). 

TSC1 and TSC2 code for hamartin and tuberin respectively. Tuberin is a chaperone 

protein for hamartin; together they form a complex that activates the GTPases activity 

of ras homolog enriched in brain (RHEB), preventing RHEB-GTP-dependent cell 

growth through mTOR (Garami et al., 2003). Therefore, TSC1 and TSC2 are upstream 

regulators of RHEB (Inoki et al., 2003) and the interruption of this pathway leads to 

unrestricted cell growth. 

 

Mutations of the individual genes lead to one of two forms of the disease; TSC1 is the 

less common and generally less severe form, whilst TSC2 is more prevalent and 

severe (Gupta and Henske, 2018). Either form causes the formation of hamartomas; 
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these hamartomas are responsible for the damaging mechanisms of the disease. Due 

to the random nature of the hamartomas, any organ can be affected; there is, however, 

a prevalence for hamartomas forming in the brain, kidneys, heart and lungs (Rabito 

and Kaye, 2014). The issues caused depend on the location and size of the 

hamartomas. Most commonly the growth of the hamartomas leads to renal failure, 

epilepsy, learning difficulties, autism, pulmonary failure, kidney dysfunction and 

disfigurement (Gómez, 1995). 

 

Treatment options for TSC currently include surgery, radiotherapy and chemical 

intervention with immunosuppressants, such as rapamycin, which inhibit the ability of 

mTOR to phosphorylate downstream substrates (Sarbassov et al., 2006). Rapamycin 

binds to intracellular protein FKB12 to generate a drug receptor complex which then 

binds to and inhibits the kinase activity of mTOR (Sarbassov et al., 2006). This causes 

dephosphorylation and inactivation of p70S6 kinase which stimulates the production 

of ribosomal components for protein synthesis and cell cycle progression.  

 

None of the existing treatments are curative and those suffering with TSC require 

continuous monitoring and regular interventions to manage symptoms. In addition, 

treatment with rapamycin and its derivatives (rapalogs) only provide temporary 

benefits due to its cytostatic effect and when treatment is stopped, tumours rapidly 

grow back (Gómez, 1995). There is therefore a great need to identify new therapeutic 

drugs to effectively treat TSC. 

 

Drug discovery 

Drug discovery is a long process; the length of time to develop a new therapeutic agent 

is often 12 years or more from conception to implementation (Dimasi et al., 2010). 

With scientific advances it is possible to screen drugs utilising ex vivo techniques to 

determine the mechanism of action and evaluate its therapeutic value. Even with these 

advances it is still a long process and candidates can fail at any point (Mohs and Greig, 

2017).  

 

Drug discovery often starts with identification of a viable target; - a gene, a protein, an 

enzyme etc. these can be found using phenotypic screening or by datamining current 

biomedical data to identify candidate molecules (Kurosawa et al., 2008). Molecules 
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are then assessed against a variety of criteria, such as specificity, kinetics and 

potency. In order to treat tumorigenic diseases, drugs are developed which target 

specific gene products (targets). These targets will usually reduce cell viability in some 

way; - stopping growth or cell division by inhibiting genes required for growth or 

division or by activating cellular mechanisms such as apoptosis or autophagy. Most 

drugs will affect several genes that are not the target of that particular therapy (off-

target effects) These can lead to unintended side effects (Berger and Iyengar, 2011). 

After the identification and testing of a drug its effectiveness in animal models is 

assessed and its potential for use in humans. The final stage of testing is clinical trials, 

significant numbers fail at the clinical stage due to the inherent differences between 

testing in a laboratory setting and clinical use. Only 15% of candidate drugs will 

eventually be approved for use in humans (Mohs and Greig, 2017).There is also a 

high chance of a drug being rejected due to toxicity or unintended side effects (Xue et 

al., 2018). To be an effective therapeutic candidate; drugs must exhibit a degree of 

cytotoxicity towards target tumour cells whilst having as little impact on healthy cells 

as possible. 

 

An orphan disease, is classified as a disease affecting ≤1 in 2000 people (Aronson, 

2006). Due to the relative cost and investment required, drugs used to treat orphan 

conditions, like TSC, are usually considered financially inviable (McCabe, Claxton and 

Tsuchiya, 2005). In order to combat this, it is possible to repurpose pre-approved 

therapeutic candidates used to treat other conditions, which can increase clinical 

success and reduce development time and costs (Sertkaya, Aylin; Birkenbach, 2011). 

Benefits to using pre-approved drugs include - reduced development time, reduced 

costs, a greater understanding of clinically viable dosages and possible side effects. 

Many older drugs have wide ranging target effects and can be used to treat a multitude 

of conditions.  

 

To identify possible therapeutic targets, a variety of tools are employed. The most 

common of those used is high-throughput screening (HTS). 

 

High-throughput screening  

High-throughput screens (HTS) are experiments  in which a test library is developed. 

in this case, the functions of many individual genes are systematically disrupted one 
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at a time and the resulting phenotypes measured. Screens are generally performed 

by treating cells in culture with genetic or pharmacological reagents targeting 

individual gene functions and measuring the effects of these treatments on a 

phenotype of interest (Mohr et al., 2014). Using this approach, it is possible to identify 

genes and pathways that function in a specific biological process. Alternatively, 

screens can be performed in both healthy and disease model cell lines to study the 

mechanism of a disease or identify candidate targets (Zhan and Boutros, 2016).  With 

this knowledge it is possible to identify treatments for diseases that are caused by 

genetic mutations e.g., cancer, TSC and amyotrophic lateral sclerosis (ALS). 

 

In addition to ‘single gene’ screens, it is possible to perform Genetic interaction (GI 

Screens) in which pairs of genes are simultaneously disrupted. By analysing the 

resulting phenotype, it is possible to identify the functional relationships of those 

genes, what genes make up specific pathways and how these pathways function 

(Mani et al., 2008). By mapping these genetic interactions and gaining insights into 

the structure and function of biological pathways and networks it is possible to take 

advantage of a type of genetic interaction called a synthetic sick/lethal interaction 

(SS/L), whereby simultaneous disruption of two genes is lethal or results in a 

negative outcome for the target cell, but individual disruption of either has no effect 

(Hartwell et al., 1997). PARP inhibitors are one such SS/L. When combined with a 

BRCA2 mutation, PARP inhibitors resulted in significantly higher rates of toxicity 

(Chen, 2011). Cells with a BRCA2 mutation are 90 times more susceptible to PARP 

inhibition compared to wild type cells; introduction of PARP inhibitors to patients 

undergoing chemotherapy for BRCA mutant cancers, significantly increased toxicity in 

mutant cells (Chen, 2011). 

 

Silencing an essential gene, within either wild-type or mutant cells, will result in cell 

death, however, if only the double mutant is lethal this shows synthetic lethality and 

indicates a promising therapeutic candidate (Nijman, 2011). When one of these two 

genes are a tumour suppressor (such as TSC1 or TSC2), treatment to target the 

second gene is expected to selectively kill cells that carry the tumour suppressor 

mutation but leave healthy cells unaffected. Inhibiting specific genes that interact with 

the mutation, cellular processes can be disrupted Leading to a SS/L.  This usage of 

multiple targets can also be applied to therapeutics themselves, by utilising 
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combinations of drugs more effective treatments can be created in the form of a 

combinatorial treatment. 

 

Combinatorial treatments are often more effective than single treatments 

Whilst single drugs alone can be therapeutically useful, there are limitations in using 

a single agent. There are multiple ways in which cells can become resistant to 

treatment: - adaption allows cells to reset themselves to counter the effects of a 

therapeutic, this is seen in BRAF-mutant melanoma resistance to RAF kinase 

inhibitors (Lito, Rosen and Solit, 2013). However, the addition of MAPK inhibitors 

counteracted the adaption, resulting in a more effective treatment (Chen and Lahav, 

2016). The toxicity and dosage of a drug also presents challenges for example the 

bioaccumulation of lithium in the treatment of Bi-polar disorder. The addition of a 

second drug can reduce the dosage of the primary treatment whilst maintaining its 

effect (Chen and Lahav, 2016). The main aim of combinatorial treatments is to inhibit 

multiple pathways and create a synergistic effect that cytotoxically effects mutant 

cells (Lord, Tutt and Ashworth, 2015). 

 

Identification of combinatorial treatments has its own challenges; there are over 200 

million pairwise gene combinations in humans, each of which could be a possible 

candidate. The variables within a combinatorial screen introduce high noise levels; 

the more factors being screened for, the higher the signal to noise ratio. In this case, 

the target gene is screened with candidate 1 and candidate 2, introducing a higher 

level of noise and therefore a higher rate of false positives and off target effects. By 

using different methods some of  these limitations are reduced. For example, utilising 

CRISPR/Cas9 to modify cells into TSC mutants reduces the variability inherent in 

natural cell lines. Testing drugs in cells is closer to clinical usage, a lot of drugs have 

multiple unknown targets so testing with a drug is more effective at demonstrating 

action than simply inhibiting a gene. Each individual method for inhibiting drug targets 

also has limitations and using the same methods multiple times compounds the effect.  

 

In order to reduce the number of variables some GI screens make use of model 

organisms such as nematodes (C. elegans), flies (D. Melanogaster) or mice (Mus 

Musculus).  
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Use of Drosophila as an ortholog 

Drosophila melanogaster has been used as a model organism for over 100 years 

(Beckingham et al., 2005). Drosophila share approximately 60% of its genes with 

humans and 75% of known human disease-associated genes are conserved (Reiter 

et al., 2001). The benefits of using the fly model are numerous; a short breeding time, 

a fully mapped genome and many genetic interactions are conserved from flies to 

humans (Pandey and Nichols, 2011). Using CRISPR/Cas9, it is possible to create a 

desired phenotype which can be used as a model for human diseases (Millburn et al., 

2016).  

 

CRISPR/Cas9 is a system for gene editing adapted from a bacterial antiviral 

mechanism. This mechanism uses an enzyme, Cas9 and guide RNA (gRNA) to target 

viral DNA, once the gRNA identifies a complementary viral sequence it binds to the 

sequence and the Cas9 cuts the DNA, rendering the virus useless (Redman et al., 

2016). By creating synthetic gRNA complementary to a specific section of the genome, 

this method can be used for gene editing in ex vivo and in vivo environments and in 

multiple cell types, including embryonic stem cells.  In gene editing, a gRNA is coded 

to a specific gene and incorporated into the cell, once the complex reaches the section 

the Cas9 cuts the DNA creating a double stranded break (DS break) this activates the 

DNA repair mechanism, which is largely error prone and can possibly lead to a loss of 

function mutation of that gene. Alternatively a target sequence of DNA can also be co-

transfected, this DNA can then be incorporated into the genome using the cells own 

DNA repair pathway (Redman et al., 2016).  

 

CRISPR/Cas9 is a useful tool for silencing genes, however the GAL4/UAS system is 

also a valuable tool in Drosophila research, allowing a more targeted approach. 

 

The GAL4/UAS system is used in Drosophila lines in order to highlight a specific area 

of interest (Brand and Perrimon, 1993). GAL4 is a transcription activator inserted 

downstream of a gene promoter and is transcribed when the gene activates. An 

upstream activating sequence (UAS) is attached to the target short-hairpin RNA 

(shRNA), GAL4 binds to the UAS activating expression of the target gene and 

fluorescent reporter. Only with the combination of GAL4 and the UAS will expression 

of the target gene and the fluorescent reporter take place (Brand and Perrimon, 1993). 
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In whole organism experiments, this can highlight functions within specific tissues, in 

cell lines, it allows the fluorescent reporter to act as an indirect measure of shRNA 

production. In many ways the approach is more nuanced than CRISPR/Cas9 and 

creates variability depending on the amount of shRNA production, rather than just 

completely silencing a gene. 

 

In the case of in vitro testing the above methods also work for Drosophila cells. 

Housden et al (2017) previously created TSC mutant cells that provided results that 

were analogous to experiments performed in human cells. Drosophila cells are also 

easier to work with than mammalian cell lines, requiring 25°C as a growth temperature, 

they do not require a CO2 incubator and do not harbour human pathogens (Cherbas 

and Gong, 2014). In mammalian cells many genes have paralogs, genes that share 

the same function. Inhibition of one of these targets will not create the desired effect 

as the other gene will compensate for the Inhibition. Fly cells do not have these 

parallels and so it is easier to identify interactions between target genes.  

 

Drosophila have been used successfully in a variety of translational applications, 

including for TSC. Over 890 studies using Drosophila to investigate human diseases 

have been published from 2012-2020. These range from identifying the mechanism of 

action of specific diseases e.g. Charcot-Marie-tooth (Suda et al., 2019) to possible 

therapeutics (Cunningham et al., 2018). Drosophila has also been used to study TSC 

and its role in regulating synapse growth (Rajalaxmi Natarajan, Deepti Trivedi-Vyas, 

2013). Work has previously been done in Drosophila to establish mechanistic factors 

of TSC (Tapon et al., 2001). 

 

Drosophila cells have also proven to be an effective model for human diseases and 

there are many benefits to screening in fly cells and then filtering into human cells. 

These benefits include reduced time until confluency, less stringent growing conditions 

and a reduction in human pathogen contamination. 

 

There has been demonstrable success translating results from Drosophila to mice 

then to human cell models (Housden et al., 2017). Nicholson et al (2019) used 

Drosophila as a model to demonstrate an SS/L interaction between CDK4 and CDK6 

which could be exploited as a treatment for Von-Hippel-Lindau (VHL) linked kidney 
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cancer. Valvezan et al., (2017) identified that inhibition of guanine nucleotide synthesis 

resulted in a cytotoxic effect on TSC mutant cells in Drosophila that was conserved to 

murine cells. More recently they further demonstrated that mizoribine has a significant 

anti-tumour affect in murine cell lines (Valvezan et al., 2020) 

 

RNAi for genetic interaction screens 

RNA interference (RNAi) is a powerful method in molecular biology that allows for 

the manipulation of an organism’s genes using RNAi molecules such as short hairpin 

RNA (shRNA), short interfering RNA (siRNA) or double stranded RNA (dsRNA) 

(Agrawal et al., 2003). RNAi is a useful tool that allows us to inhibit specific genes by 

degrading specific gene products. In Drosophila RNAi can be triggered experimentally 

by exogenous introduction of dsRNA or constructs which express shRNA (Lehner, 

2004). An enzyme called DICER digests dsRNA or shRNA into siRNA. These siRNA 

then attach to the target messenger RNA (mRNA) and cleave it preventing it from 

being replicated and thus silencing the gene (Agrawal et al., 2003). The high degrees 

of efficiency and specificity are the main advantages of RNAi in Drosophila cells 

(Aagaard and Rossi, 2007), In mammalian cell lines CRISPR/Cas9 is commonly used 

as a gene editing tool.  

 

By utilising RNAi, phenotypes are created that are analogous to the disease being 

investigated, drug targets  are then tested against these phenotypes to identify SS/L 

interactions, which can be exploited to explore novel treatment options for diseases 

with a genetic component (Nijman, 2011). In summary, these high-throughput GI 

screens utilise knockdown of multiple genes to determine SS/L interactions that can 

be exploited as therapeutic targets.  

 

There are significant limits to GI screens; - RNAi results in 70–90% inhibition of gene 

expression(Nijman, 2011), therefore, partial knockdown or differential transfection 

efficiency within cells can result in false positives and negatives (Horn et al., 2011). 

False negatives can be caused by high knockdown efficiency, an overly efficient 

knockdown can lead to a high proportion of cells dying, this gives a much smaller 

number of measurable cells, which are then assumed to be not significant (Nijman, 

2010). Off target effects may also lead to incorrect conclusions regarding the 
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effectiveness of a particular target and produce unwanted side effects in the patient 

(Nijman, 2010).   

 

Housden et al (2015) used a novel approach to overcome these issues to identify 

potential drug targets for TSC related diseases. By combining multiple techniques: 

Housden et al (2015) and Housden et al. (2017) used combinatorial screening to 

identify SS/L interactions between candidate genes and TSC1 or TSC2. Drosophila 

wild-type cells were mutated using CRISPR/Cas9-assisted genome editing to 

knockout the TSC1 or TSC2 genes. DsRNA screens targeting all phosphates and 

kinases in the Drosophila genome were then performed on wild-type cells, TSC1 and 

TSC2 mutant cells. By combining Drosophila cells, and RNAi genetic interaction 

screens Housden et al. (2017) developed a novel combinatorial screen called 

Variable dose analysis (VDA) to identify potential synergistic treatments. 

 

Variable dose analysis is an optimised assay for GI screens: 

Variable Dose Analysis (VDA) is a novel GI screening method, developed by Housden 

et al, (2017) using shRNA to silence a target gene. VDA increases the sensitivity and 

reproducibility of screen results compared to previous methods, making this an ideal 

tool for this application (Housden et al., 2017). Cells are transfected with a complex 

made up of equal parts fluorescent protein (GFP), Gal4 and shRNA; the fluorescent 

protein is then measured and used as an indirect indicator of shRNA effectiveness. 

The cells are read on a flow cytometer and the fluorescence is used to calculate the 

relative knockdown efficiency of the target gene. Cells receiving a higher dose of 

shRNA will also receive a higher dose of GFP. Therefore, a higher level of GFP 

indicates a lower level of RNAi effectiveness, where effectiveness is considered a 

higher negative effect on cell viability. By measuring this over a population of cells 

rather than a single cell, we can extrapolate both the effectiveness of the RNAi and 

the possible mechanism of action. A high proportion of higher GFP positive cells 

indicates a lower effect, a low proportion of cells with a low GFP reading show a 

greater effect, a low proportion of cells with a higher GFP reading show an arresting 

rather than cytotoxic effect. VDA provides many benefits over traditional GI screens, 

by screening cells over a varied dosage of shRNA, phenotypes can be analysed at a 

sub-lethal level of knockdown efficiency. This method also reduces signal-to-noise 

ratio by 2.5-fold (Sierzputowska, Baxter and Housden, 2018). Two hundred potential 
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genes were identified that reduced viability of TSC1 and TSC2 cells, but not wild-type 

cells. These genes represent promising new therapeutic targets to treat TSC. 

 

 

Using VDA for the second candidate diminishes the characteristic noise in GI screens 

to present viable candidates for synergistic interactions. By combining these 

techniques issues of noise, false positives and variation will be reduced. 

 

Project Summary 

Building upon the original TSC screen (Housden et al., 2017), which identified multiple 

possible targets for treatment, the aim of this project is to identify and characterise 

new combinations of drugs with the potential to effectively treat TSC. I achieved this 

by performing VDA screens in TSC1 mutant Drosophila cells in the presence of drugs 

that were previously identified by the Housden group as having a potential therapeutic 

benefit to TSC patients (Housden et al., 2015, Housden et al., 2017). By comparing 

screens performed in TSC mutant and wild-type cells with screens performed with and 

Figure 1: The VDA process. GFP, Gal4 and an RNAi are co-transfected into cells. These cells are 
measured on a flow cytometer and the data plotted on a graph. The area under the curve is 

measured and used to create a numerical value (adapted from Sierzputowska, Baxter and Housden, 

(2018). White and thread are used as negative and positive controls respectively. 
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without the candidate therapeutic drugs, I identified genes that synergise with the 

candidate drugs to produce powerful and specific killing of TSC cells.  

 

I focused the screens on genes for which clinically approved drugs already exist. 

Therefore, any synergistic effects that I identified can be immediately tested using drug 

combinations. In addition, these drugs are already known to be safe for use in humans 

and so the resulting combinations can be rapidly translated into clinical use and patient 

gains. 

 

Hypothesis 

My hypothesis is that the application of newly developed combinatorial screening 

methods, developed in the Housden lab, will identify combinations of drugs that 

effectively and specifically kill TSC tumours, without significantly affecting healthy 

cells. There are three main parts to this project: - 

 

Part 1: 

First, I characterised seven candidate therapeutic drugs identified in previous studies 

and identified the most promising for development of combinatorial treatments. I tested 

the candidate drugs; - lithium chloride, chloroquine, mizoribine, rapamycin, SAHA, 

Vorinostat and Regorafenib in wild-type, TSC1 cells. I used these results to determine 

which drugs, and at what doses, negatively affect the mutant TSC1 cell lines, without 

affecting the wild-type cells. This determined which dose had the greatest potential 

benefit with minimal effect on healthy cells. In addition, the characterisation of the dose 

response for each of these drugs determined the optimal concentration for the screens 

to be performed in the second part of the project. Finally, I tested each of the seven 

drugs to determine which have cytotoxic versus cytostatic effects in TSC mutant cells 

by using cytometry assays to assess markers of cell viability and cell death. Drugs that 

have selective cytotoxic effects on TSC mutant cells at therapeutically viable 

concentrations were prioritised for screening using VDA. I determined lithium chloride 

was the most effective of the drugs. 

 

Part 2: 

In this aim, I used VDA to screen for candidate genes that synergistically interact with 

lithium chloride. I performed VDA screens targeting 154 genes, which are the 
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Drosophila orthologs of human genes that can be targeted with existing clinically 

approved drugs. By focusing on these genes, I identified candidates that can be 

immediately validated using existing drugs, thereby accelerating their translation into 

clinical use. Screens were performed in wild-type and TSC1 cells in the presence and 

absence of Lithium chloride. Synergistic candidates were identified as genes that kill 

TSC1 cells only in the presence of the drug. Hits from these screens were ranked 

based on the strength of their lethal effect on TSC cells in the presence of the relevant 

drug and combinations were further studied in part three. Fifteen genes were identified 

as possible targets and of these fifteen I focused on the purine synthesis pathway. It 

has been identified previously as a possible therapeutic target for TSC and research 

has been conducted on three purine synthesis targeting drugs. 

 

Part 3: 

Finally, I characterised drug combinations identified in part 2 that may be further 

developed for therapeutic use to treat TSC. To validate candidate synergistic effects 

identified in the screens, I tested the interactions pharmacologically by combining 

lithium chloride with IMPDH inhibitors and tested their effect in mammalian (murine 

and human) cells, compared to either drug alone. Previous studies have shown a high 

rate of validation between Drosophila and mammalian models of TSC (Valvezan et 

al., 2017, 2020).  
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Chapter 1 

 

Identifying promising drugs for the treatment of TSC tumours 

 

Chapter summary: 

The first objective of the project was to assess drugs already identified as candidate 

therapies for TSC to find the optimal candidate for further development as a 

combinatorial treatment. To identify candidate treatments for TSC, Housden et al 

(2017) performed a genome wide screen using Drosophila cells to determine SS/L 

interactions with TSC1 and TSC2. Utilising dsRNA and VDA methods they found 

approximately 200 possible therapeutic targets (Housden et al., 2017). Of the 

identified targets, five could be inhibited with existing clinically approved drugs 

(mizoribine, SAHA, orlistat, lithium and regorafenib), all of which showed selective 

viability effects on TSC mutant cells. A search of the literature also presented a further 

two possible candidates (chloroquine and rapamycin). These seven drugs were 

therefore used as a basis for the initial stages of the project. 

 

Utilising Drosophila cells as a model system, candidate drugs were tested in wild-type 

and TSC1 mutant cell lines to determine their effects. Cell viability and cell death 

assays were used to determine whether the drugs showed selective effects on TSC 

mutant cells. An ideal candidate would be cytotoxic in TSC mutant cells and non-toxic 

in wild-type cells. Murine cells were also used to determine whether the effects were 

conserved across model systems and to ensure candidates that were ineffective in 

Drosophila cells were not missed. The results of these experiments were collated and 

the most successful of the drug, lithium chloride, progressed to VDA screening for 

combinatorial candidates. 
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Background 

 

A successful treatment needs to be effective, safe and clinically viable; it must also 

meet a need that is not currently being met (Hughes et al., 2011). Any prospective 

candidate therapeutic must meet all of these conditions. With this in mind, to identify 

the most promising candidate for further investigation for the treatment of TSC the 

following requirements were set: 

1 – The drug must have selective viability effects in TSC mutant cells. 

2 – The drug must be cytotoxic in TSC mutant cells. 

3 – The drug must not be cytotoxic in wildtype cells 

4 – The drug must be clinically viable for long term use in humans. 

 

To evaluate these criteria for each of the seven candidates, three different experiments 

were performed: - 

  

Viability dose curves  

Firstly, to establish the most selective dose of each drug, viability dose curves were 

performed. Each drug was tested with between 4 and 8 concentrations to determine 

which exhibited the highest level of selectivity between wild-type and TSC cells. The 

aim was to find a strong viability effect on mutant cells and a minimal negative effect 

on wild-type cells. These experiments utilised CellTiter-glo (CTG) assays, which 

measure total adenosine triphosphate (ATP) in a cell population as an indicator of cell 

viability. ATP is able to store and transfer energy within cells and can be used as a 

measure of the cell viability; low levels of ATP indicate either lower numbers of cells, 

reduced cell size or lower metabolic activity of cells (Bonora et al., 2012). The nature 

of the assay means it is not possible to differentiate between these effects. 

 

Selectivity assays  

During the project, I found that the viability dose curves were very noisy, and it was 

challenging to identify selective effects between cell types. To overcome this, I used 

selectivity assays, which are similar to the dose curve assays described above, except 

that only a single drug dose is assessed. These assays again use CTG as a measure 

of cell viability.  Using fewer dosages allows additional replicate experiments to be 

performed and therefore enables more sensitive detection of selective viability effects. 
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Dosages for these experiments were determined from the viability dose curves and 

provided an enhanced view of the separation between the viability of wild-type and 

mutant cell lines. 

 

Cell death assays  

Neither the dose curve nor the selectivity assay is able to distinguish between cytotoxic 

and cytostatic effects. Therefore, cell death assays were performed using propidium 

iodide (PI) as a measure of cell viability. PI is a fluorescent intercalating agent that 

binds to exposed DNA within cells (Zhao et al., 2010). PI is excluded from healthy cells 

but dead or dying cells have a more porous membrane and PI can pass through to 

bind to DNA (Rosenberg, Azevedo and Ivask, 2019). Therefore, a PI stain allows us 

to determine if the drug is having the desired cytotoxic effect. 

 

Drugs 

The original drugs to be tested were identified by Housden et al. (2017) as targeted 

therapies for TSC. These drugs were tested in CRISPR/Cas9 mutated Drosophila 

cells. The drugs identified were - 

 

Lithium 

Lithium has been used as a therapy for over 100 years. Primarily it is used to treat 

bipolar disorder and persistent depressive episodes that don’t respond to other 

treatments. Despite its age, the mechanism of action is poorly understood (Wishart et 

al., 2018) it has many different targets. Lithium inhibits GSK-3β, which activates 

mTOR. Lithium can bio-accumulate within the body, leading to lithium poisoning, 

however careful management of dosage can reduce the dangers (Wishart et al., 

2018). Current dosages of lithium range from 900 to 1200 mg/day for long term 

treatment of mania. 

 

Orlistat 

Orlistat, marketed as the diet drug Alli™ in the United Kingdom, is used primarily as a 

pancreatic lipase inhibitor. This enzyme breaks down triglycerides in the intestine for 

uptake. Inhibition of pancreatic lipase prevent hydrolysation of triglycerides into 

absorbable fatty acids. There is some research indicating that orlistat can be used in 

the treatment of pancreatic tumours by targeting fatty acid synthases (FASN) 
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(Sokolowska et al., 2017). However, the poor bioavailability of orlistat, which is 

designed to work within the intestines rather than enter the bloodstream, creates 

issues around using it as a long-term treatment. 

 

Regorafenib 

Regorafenib, commercially referred to as stirvaga, is a multiple kinase inhibitor used 

in the treatment of colorectal cancer and advanced gastrointestinal stromal tumours 

(Wishart et al., 2018). Regorafenib inhibits 18 different proteins making it more likely 

to exhibit cytotoxicity in humans. However, despite approval, it exhibits significant 

toxicity (Goel, 2018). It has caused fatal levels of liver toxicity in some patients 

(Béchade et al., 2017). Due to its significant side effects and high cytotoxicity, there 

are  significant questions over its suitability for the long-term usage required by TSC 

patients. 

 

Vorinostat/SAHA 

Vorinostat, or suberanilohydroxamic acid (SAHA), is a histone deacetylase inhibitor 

used in the treatment of cutaneous T cell lymphoma and currently in trials for persistent 

glioblastoma. In cancer treatments it disrupts cell differentiation, arrests growth and 

induces apoptosis (Bubna, 2015). By inhibiting histone deacetylase, SAHA causes the 

accumulation of acetylated histones and induces cell cycle arrest and/or apoptosis of 

some transformed cells (Richon, 2006). Vorinostat targets HDAC1, HDAC2, HDAC3 

and HDAC6 (Lee and R, 2013) and the current dosage is 400mg daily. 

 

Rapamycin  

Rapamycin is the current treatment for TSC, as the drug Sirolimus (marketed as 

Rapamune by Pfizer) (Tee, 2018). As a treatment, it exhibits limitations; it arrests cell 

development rather than exhibiting a cytotoxic effect (Zheng, X. F. et al., 1995) Due to 

significant side effects caused by the usage of rapamycin and the regrowth of tumours 

once treatment is stopped, other interventions are required for TSC management 

(Cancer, 2016). In addition to TSC treatment, it is currently used as an 

immunosuppressant in cases of organ transplantation. It inhibits T and B cell activation 

through mTOR inhibition (Ye, 2017). Due to the importance of mTOR in cell growth 

and proliferation, rapamycin is currently being investigated as a possible treatment for 

a variety of immune conditions and cancers (Oaks, 2016 and Chan, 2004) 
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Chloroquine 

Chloroquine has been used as an antimalarial agent for 70 years and is also used to 

treat lupus and rheumatoid arteritis (Verbaanderd et al., 2017). It was briefly 

considered as a possible treatment for SARS-Cov-19 (Moore, 2020). Chloroquine is 

an autophagy inhibitor and has been identified as a possible therapeutic target for 

cancers where Hyperactivity of mTor leads to dysregulation of cell signalling (Johnson 

and Tee, 2017). Chloroquine is also theorised to reduce tumour growth by activating 

the P-53 pathway, responsible for growth suppression and apoptosis (Kim et al., 

2010). 
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Results 

 

Drugs were first tested in viability dose curves; results were normalised to wells without 

a drug; Figure 1 shows the normalised results of these assays. Each graph is the result 

of twenty biological replicates. These are intended to show the optimal concentration 

for selectivity between loss if function mutated TSC1 and wild-type Drosophila cells, 

whilst also establishing no significant negative effect on wild-type cells. However, we 

found that these experiments resulted in high noise and selective effects were difficult 

to detect even for drugs with previously well-established selective effects (e.g. 

mizoribine (Valvezan et al., 2017).  

 

In the dose curves, the ideal result would show a strong separation between the wild-

type and the TSC mutant cells. Lithium chloride shows a significant separation 

between wild-type and TSC cells at 2 mM and 4 mM. At higher concentrations, the 

separation was less apparent. Similarly, Regorafenib showed selectivity at very low 

concentrations (0.006 nM and 0.0006 nM). Mizoribine, SAHA and orlistat showed no 

significant selectivity at any dosage. Chloroquine showed a significant selective effect 

on the wild-type cells. 

 

Dose curves are frequently noisy due to the high number of variables being tested and 

the difficulty associated with manually pipetting many different drug dilutions. In order 

to more accurately determine the selective effects of the drugs, we used selectivity 

assays using the lowest most selective concentration of the drug, for example, 2 mM 

lithium chloride.  For drugs that showed no significant separation, the concentration 

with the smallest detectable effect on wild-type was chosen. 
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Figure 1; Viability dose curves for each drug. 

Wild type and TSC cells tested with multiple 

concentrations drug using a CellTitre-Glo 

Assay Each is an average of 5 replicates, 

error bars represent standard deviation, and 

the vertical access shows the fold change to 

no drug control. Two-tailed T-tests were 

performed between TSC and wild type cells 

to find the P-values, which are represented by 

**0.01-0.05, ***<0.01. All other values were 

insignificant. 

 

Viability Dose Curves (Drosophila) 
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Using the lowest effective concentrations from the dose curves, cells were screened 

for selectivity using CellTitre-Glo. Figure 2 shows the results of 16 biological replicates 

performed over two occasions. The selectivity assay showed a selective effect with 

lithium chloride, rapamycin and chloroquine. Regorafenib and mizoribine showed high 

levels of variability and no selective effect. Orlistat and SAHA showed no significant 

selective effect. 

 

To determine whether the selective effects identified above are due to cytotoxic 

effects, cell death assays were performed. Two dosages were tested, the same 

dosage as that used for the selectivity assay and a lower dosage. Except in the case 

of lithium chloride, where 4 mM was used, as there was no lower dosage within the 

range initially tested.  

 

 

 

Figure 2; Selectivity assay in Drosophila cells. Cells were tested with one concentration of the drug using a 
CellTitre-Glo assay; results were normalised to no drug to measure the effect. 16 biological replicates were 

performed over 2 occasions and the results averaged. Error bars represent standard deviations. Two-tailed T-

tests were performed  between wild type and TSC cells and show significant effects in lithium chloride, 
chloroquine and rapamycin. 
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Figure 3 shows the results from cell death assays, error bars represent standard error 

of the mean Lithium chloride was the only drug that showed a significant selectivity in 

TSC cells in the cell death assay. Mizoribine, 

chloroquine showed a trend towards greater 

cytotoxicity in TSC cells however they were not 

significant. SAHA and orlistat showed no 

significant selective cytotoxic effect in TSC cells 

at any concentration. Regorafenib showed a 

significant selective effect at 0.006 nM but was 

cytotoxic in wild-type cells. Rapamycin showed 

no selective effect, however as rapamycin is 

known to be cytostatic this is not unexpected.  

 

Figure 4 shows the results of the murine 

selectivity assay for lithium chloride. There is no 

significant effect on TSC mutant cells, but a 

trend is evident. Housden et al., (2017) found 

that lithium was not as effective in murine cells. 

Figure 3: Cell death assays for Drosophila. 2 dosages of each drug were tested using a propidium iodide stain 

and results read on a flow cytometer 12 biological replicates, results were normalised to cells with no drug. 

Error bars show the variation in the means of each replicate. Two-Tailed T tests were performed to find the p-
values. Rapamycin and lithium showed significant selective effects 

Figure 4: Lithium chloride murine selectivity 

results. A single dose of the drug tested 
using a CellTitre-Glo assay. Showing the 

average of 24 replicate, error bars represent 

the standard deviation of the mean. P-values 

were found using a two-tailed t-test. The 
murine cells show a trend to lower cell 

viability. Lithium chloride has been shown to 

be ineffective in murine cell lines. 
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Discussion 

 

The intention is to find a drug that only selectively targets the mutant cell lines whilst 

leaving the wild-type healthy. Some cytotoxicity towards wild-type is acceptable but a 

larger amount is detrimental. Each of the drugs were scored against the criteria 

mentioned above to identify the most promising candidate for further analysis. Table 

1 shows the collated results of the various assays. Selectivity is based on the 

selectivity assays, Non-toxic and toxic are based on the results from the cell death 

assays and clinical viability is based on a search of the literature. The dose curves 

showed significantly selective effects in three of the drugs, however due to the number 

of variables and the difficulty in pipetting small quantities (1 µl) the results cannot be 

considered conclusive. Because of this, results from the viability dose curves were not 

taken into account for the final characterisation of the drugs.  

 

A major difficulty in testing candidate drugs is lack of reproducibility this has been 

shown repeatedly (Hunter, 2017). All the drugs tested in this chapter showed selective 

effects in other studies. Mizoribine especially has a well-documented effect on TSC 

cells (Valvezan et al., 2017). This difference can be caused by a vast number of 

variables, for example, Environmental variability such as culture conditions,  

differences in the methodology, such as difference in supplier, as was seen with SAHA 

and vorinostat, culture conditions or variations in the health of the cell lines can all 

contribute to poor reproducibility in testing.  

Table 1: Summary of the results of the drug tests. Green indicates it passed; red indicates a failure in that 

category. Regorafenib and orlistat failed on clinical viability, regorafenib due to its toxicity and orlistat due to 

poor bioavailability. 
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Rapamycin slows the growth of tumours until such time as they can be surgically 

removed, however, it requires further medical intervention rather than treating the 

condition at its source. It is an immuno-suppressant with several limitations. The most 

significant being it is not curative, only arresting cell proliferation of TSC positive cells 

(Cancer, 2016). This is shown in the results of the cell death assay, which showed no 

significant cytotoxic effect in TSC cells, however, the selectivity assay showed a drop 

in ATP levels in TSC cells which is most likely a cytostatic effect targeting the TSC 

cells. 

 

Orlistat did not display selective cytotoxicity in Drosophila cells. Orlistat also presented 

clinical issues. It is not absorbed into the blood stream orally; it instead moves to the 

gut (Sokolowska et al., 2017). So, for these reasons reason, it was not moved forward. 

 

Regorafenib showed a significant selective effect in the dose curve. However, in the 

cell death assay it showed a significant cytotoxic effect in wild type cells. Regorafenib 

is known to be highly toxic, even at dramatically lower doses. It is used as a ‘nuclear 

option’ (an extreme option taken as a last resort due to its many side effects) in cases 

of extremely aggressive colorectal cancer where other treatments have failed (Goel, 

2018),  but shows significant side effects due to its many off-target affects (Béchade 

et al., 2017).  So, in addition to being nonselective, its clinical viability as a long-term 

treatment option is questionable.  

 

Mizoribine was cytotoxic in all Drosophila, although at a much lower level than 

regorafenib. It also showed a selective effect between wild-type and mutant. 

Mizoribine is currently approved in Japan for use in treating renal transplant, however, 

is currently not approved by the FDA. Work previously done by (Valvezan, 2017) has 

shown that murine TSC cells are affected by treatment with mizoribine. My research 

however does not show the same results. Mizoribine is also not clinically approved 

worldwide and little is known regarding its long-term effects. Mizoribine showed little 

selectivity in either the dose curve or selectivity assay, however it has been shown to 

be selective by Valvezan et al,. (2017).  
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Vorinostat showed no selectivity between the wild-types and the mutant cells and 

exhibited a strong cytotoxic effect on both. However, vorinostat was not the same 

name or supplier as that tested previously, being an alternate name for SAHA. In order 

to maintain consistency, all experiments were performed again using SAHA. 

Preliminary results for SAHA showed very little selectivity between TSC and wild-type 

cells, however, in the cell death assays, SAHA showed a negative effect on wild-type 

cells rather than on TSC cells. SAHA has been shown previously to have some anti-

tumour properties (Yang, 2015). 

 

Chloroquine showed no selectivity in the viability dose curve, however, did show a 

significant effect in the selectivity assay. However, it failed to demonstrate a selective 

cytotoxic effect on TSC cells in the cell death assay. Despite showing significant 

selective effects in the selectivity assay chloroquine was rejected in favour of lithium 

chloride which showed a significant cytotoxic effect. 

 

Lithium chloride was the only drug that met all criteria within the framework for these 

experiments. For this reason, it was determined Lithium chloride would be the most 

successful when moved onto combinatorial treatments.  

 

Lithium chloride had a significantly selective effect in TSC1 in Drosophila cells, 

however the reaction was not conserved to murine cells (Figure 4). It is known that 

mice metabolise lithium chloride differently to humans and is less effective within 

murine cells (O’Donnell, 2007). Housden et al., (2017) also demonstrated that lithium 

was effective in human cells but not in murine cells. So, I will proceed with lithium 

despite its lack of effect in murine cells  Lithium chloride also exhibited strong levels 

of cytotoxicity in mutant Drosophila cells, whilst showing a very low negative effect in 

wild-type cells. For these reasons, lithium chloride was chosen as the most effective 

drug to test with combinations. There was a significant selective effect between wild-

type TSC1 mutant cells and there is a clear increase in cell death with the addition of 

lithium chloride (Figure 3).  

 

Although lithium chloride is currently used as a therapeutic, there are several 

challenges to determine its viability as a treatment for TSC. I identified a selective 

effect at 2 mM. The current therapeutic range is between 0.6-1.2 mM, without toxicity.  
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The identified concentration is slightly above this range, so whether the lower 

concentration could be achieved while maintaining a selective cytotoxic effect will 

require further investigation. Lithium chloride is currently taken daily to manage bipolar 

and unipolar disorders, therefore, taking lithium at a higher dose rate over the long 

term could cause side effects. Lithium chloride is bio-accumulative, so regular blood 

tests are currently used to monitor lithium levels to maintain a non-toxic therapeutic 

level. However, using lithium as part of a combinatorial treatment may allow it to be 

used at a lower dose. 

 

Lithium chloride was overall the most effective of the drugs. It’s selectivity towards 

TSC1 in the Drosophila cells was clear and reproduceable and it showed a very low 

cytotoxic effect in wild-type cells. For these reasons, lithium chloride was selected for 

the next stages of the project.  
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Materials 

 

Chemicals 

Lithium Chloride in media – (Sigma-Aldrich 62476) 

Mizoribine in media – (Sigma-Aldrich M3047) 

Orlistat in ethanol – (Sigma-Aldrich O4139) 

Vorinostat in DMSO – (LC Laboratories V8477) 

SAHA in DMSO – (Sigma Aldrich SML006) 

Chloroquine in media – (Sigma Aldrich C6628) 

Rapamycin in ethanol – (LC Laboratories E4040) 

Regorafenib in DMSO (LC Laboratories RS024) 

 

Cells 

Drosophila S2R+ (wild-type) – Schneider (1972) 

Drosophila TSC1 - Housden et al (2015)  

Drosophila TSC2 - Housden et al (2015) 

 

Murine MEF BE2 TSC2 +/+ (wild-type) – Manning et al (2002) 

Murine MEF BE2 TSC2 -/- Manning et al (2002) 

 

Reagents 

CellTitre-Glo – (Promega G7573) 

Propidium Iodide – (Fisher scientific 11599296)  

Schneider’s Drosophila media – (Fisher Scientific 11520406) 

One ShotTM Foetal Bovine Serum (Gibco  A3382001) 

Penicillin/Streptomycin – (Fisher Scientific 15140122) 

Phosphate Buffered Saline (PBS) (Gibco, 20012019)  
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Methods 

 

 
 

 

Dose curves 

A serial dilution of the drug being tested was added to cells and incubated over a five-

day period. The total ATP level of the cells was measured to determine the viability of 

living cells. 

• Cells were grown in Schneider’s Drosophila media with 10% FBS and 1% 

penicillium/streptomycin until they reached 80% confluency. 

• A 96-well plate was seeded with 5000 cells per well of the 2 cell types and 

inoculated with the drugs at the concentrations outlined in Table 1.  

• Plates were incubated at 25°C for 5 days.  

• After incubation, 50µl of CellTitre-Glo was added to each well and read on a 

Tecan plate reader.  

• Results were normalised to controls (no drugs).  

• External wells were ignored to avoid edge effect from differential temperatures 

and evaporation on the outside of the plates. 

 

Selectivity assays 

Each plate only used a single concentration of each drug and results are normalised 

to a well with no drug. 96 well plates were seeded with 5000 cells per well and 

inoculated with one concentration of the drug. This provided 16 biological replicates 

per plate and each plate was repeated twice. Similar to the dose curve experiments, 

selectivity assays were performed by testing total ATP levels after a five-day 

incubation with the relevant drug.  

• A 96 well plate was seeded with 5000 cells per well and inoculated with one 

concentration of the drug.  

• Plates were incubated at 25°C for 5 days.  

Table 2 – Showing the dosages used for the viability dose curves, blue indicates the dosages were 

used for cell death assays 
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• After incubation, 50µl of CellTitre-Glo was added to each well and read on a 

Tecan plate reader.  

• Results were normalised to controls (no drugs).  

• External wells were ignored to avoid edge effect from differential temperatures 

and evaporation on the outside of the plates. 

 

Cell death assays 

The PI assays used two dosages to determine if the drug was cytotoxic in wild-type or 

mutant cells. Dead or dying cells are stained with PI and analysed on a flow cytometer; 

this gives a readout of the percentage of dead or dying cells. Arrested cells are not 

stained because the PI cannot cross intact cell membranes. PI positive cells are 

measured as a percentage of the total cell population. Testing two concentrations in 

both mutant and wild-type cells gives a readout on whether an increased dosage 

causes a more cytotoxic effect in TSC cells compared to wild-type cells.  

• 96-well plates were seeded with 5000 cells per well and inoculated with the 

drug dilutions outlined in Table 1.  

• Plates were incubated at 25°C for 5 days.  

• 100µl of 4% propidium iodide (in PBS) was added to each well and incubated 

for 1 min at room temperature.  

• Plates were read on a flow cytometer.  

• Results were normalised to wells with a positive and negative controls. 
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Chapter 2 

 

Identification of synergistic drug combinations for TSC using VDA screens 

 

Chapter summary: 

Combinatorial treatments are often more efficacious than single drugs alone. Utilising 

combinations of drugs to treat a disease supresses multiple pathways within the cell 

and can result in a synergistic effect that leads to a better outcome for patients (Chen, 

2016). Using multiple drugs also reduces the chance of resistance developing. 

additionally, each drug can be used at lower dose, thereby alleviating the potential for 

deleterious side-effects (Hartwell et al., 1997). 

 

In Chapter 1, I identified lithium chloride as the most promising of seven candidate 

drugs for the treatment of TSC. The next step was to identify candidate drugs that 

would synergise with lithium chloride, in order to find a possible combinatorial 

treatment to more effectively kill TSC tumour cells. To achieve this, I performed VDA 

screens in TSC1 mutant Drosophila cells, with and without lithium chloride. From these 

screens I identified fifteen genes that synergised with lithium chloride, identified their 

human orthologs and FDA-approved drugs that target the gene products.  
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Background 

 

In order to identify genes that show a SS/L in the presence of lithium chloride I used a 

VDA RNAi screen. Using RNAi screens is a common way to identify drugs that target 

specific genes, however, finding strong synergistic interactions using traditional 

screening methods presents challenges, VDA nullifies some of these issues. It can 

also identify synergistic effects between lithium chloride and essential genes, which 

makes it more appropriate to identify strong SS/L interactions. 

 

VDA – A novel high-throughput screening assay  

In traditional screens, viability is measured using a cell count. This may be by directly 

counting cells using imaging or cytometry, or an indirect, relative counting method 

such as CellTiter-glo assays. However, these methods have several limitations; 

variation in target gene expression over a population of cells results in noise. 

Knockdown efficiency is only measurable over a limited range, weak knockdowns are 

ineffective, whilst strong knockdowns are lethal to both the wild-type and mutant cells 

(Housden et al., 2017). This can lead to false positives and negatives, which in turn, 

can lead to highly effective therapeutic candidates being rejected (Nijman, 2011).  
 

VDA tests over a range of knockdown efficiencies which mitigates this problem of 

noise (Sierzputowska, Baxter and Housden, 2018). The VDA method considers 

viability as a function of target gene knockdown efficiency. Because of this, VDA allows 

the detection of phenotypes and genetic interactions involving essential genes at sub-

lethal knockdown efficiency (Sierzputowska, Baxter and Housden, 2018). 
 

Figure 1 shows how the VDA method works. Plasmids encoding GFP, Gal4 and 

shRNA are formed together into transfection complexes. The shRNA will silence the 

target gene, the GFP provides a measurable reporter and the Gal4/UAS system 

ensures the expression of the shRNA. These are then transfected into cultured cells. 

Due to the inherent variability in transfections, the dose of plasmids received by each 

cell in the population will be different. However, each cell will receive the same ratio of 

GFP to shRNA. Therefore, the GFP levels can be used as an indirect indicator of 

shRNA levels and therefore, gene knockdown efficiency. shRNAs targeting essential 

genes will kill cells more effectively when expressed at high levels (high GFP cells) 



 

37 

and will have less effect when expressed at low levels (low GFP cells), leading to a 

change in GFP distribution over the population. Therefore, by analysing the GFP 

distribution of the cell population, shRNAs that affect cell viability can be identified.  

 

I undertook a VDA screen to ascertain any synergistic interactions between lithium 

chloride and the target genes from the FDA library. All shRNAs in the FDA library 

correspond to a target for an FDA-approved drug; this would identify possible 

therapeutic candidates that would synergise with lithium chloride, to create a possible 

combinatorial treatment for TSC. An ideal candidate would show lower cell viability in 

TSC mutants with the addition of lithium chloride, whilst having no effect on wild-type 

cells. 
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Results 

 

Preparation and normalisation of the RNAi library  

To allow the proposed synergy screen, the RNAi library first needed to be amplified. 

The FDA library is an RNAi library consisting of 600 shRNA reagents targeting 154 

genes whose functions can be inhibited with FDA-approved drugs. Using a library 

consisting of pre-approved drugs increases the likelihood of finding a suitable 

treatment.  

 

The library is divided into ten 96-well plates. Each plate in the screen contained a 

random assortment of reagents as seen in Figure 2; furthermore, each plate had 5 

negative (White) and 5 positive controls (Thread). White is a mutation that affects eye 

development in crossed flies and therefore in cells has no effect. Thread is a mutation 

that exhibits a significant increase in cell death leading to its use as a positive control. 

The majority of genes had three replicates over the 10 plates of the library; each 

reagent may have off-target effects, so by testing with multiple reagents, we can 

increase confidence that it is an on-target effect. Additionally, some reagents may not 

work, so we increase the chance of finding hits by testing each gene with 3 

independent reagents. Cells from the edge wells were checked prior to reading to 

ensure correct cell growth, but were left empty to avoid ‘edge effects’, whereby the 

temperature differential affects the results.  

 

Figure 1: The typical set up of a plate. Green indicates a positive control well, purple a negative. The other 

wells contain a random assortment of shRNA. The edge wells contain cells but no shRNA in order to avoid 

edge effects. 
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Library amplification 

In order to amplify the library, each 96 well plate was transformed into chemically 

competent E. coli cells, cultured and then miniprepped. The resulting shRNA plasmids 

were then measured using a nanodrop to ensure the concentration was within 

acceptable parameters (over 45 ng/µl). If the concentration was below the threshold, 

the mini prep was repeated. The reagents were then normalised to 45 ng/µl using an 

EPI-motion robot with the addition of sterile water to each well. Five random wells from 

each plate, along with all control wells, were tested to check successful normalisation 

of concentrations. Finally, to ensure each shRNA was correct, five randomly chosen 

wells per plate were sequenced. Plates were then stored at -80°C until needed. 

 

Plate set up 

The plates were screened in pairs; 

one with (lithium chloride plate) 

and one without lithium chloride 

(no drug plate). These plates were 

screened using the same cells and 

reagents. To reduce variability as 

much as possible, each pair was 

treated as a single entity.  

 

5000 cells in 100 µl of media were 

seeded into each well of two 96-

well culture plates. They were then 

incubated at 25°C for 24 hours. 

After 24 hours, plates were 

transfected with a prepared mix of 

shRNA, Gal4 and GFP plasmid 

reagents. Plates were incubated for a further 5 hours before the addition of 10 µl 20 

mM lithium chloride, for a final concentration of 2 mM; no drug plates had 10 µl of 

media added instead. As shown in Chapter 1, 2 mM lithium chloride showed a 

significant but small cytotoxic effect in TSC cells, while having little effect on wild-type 

Figure 2: Schematic showing the steps taken to prepare the 

VDA plates. Blue arrows represent incubation times. 
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cells. Finally, plates were incubated for 120 hours at 25°C, before a being read on the 

flow cytometer. 

 

Each library plate was screened as three biological replicates, both with and without 

lithium chloride, to allow identification of reproducible results. In addition, each plate 

contained five positive (targeting thread) controls and five negative (targeting white) 

controls, which were used for normalisation and to assess the quality of results from 

each individual plate.  

 

Flow cytometry 

After incubation, 50 µl of PBS was added to each well and the plates were read on a 

flow cytometer (Beckman Coulter - CytoFlex S). Cells were first measured using side 

scatter area (SSC-A) and forward scatter area (FSC-A) to remove cell debris from the 

results. Then, cells were gated using FSC-A and forward scatter height (FSC-H) to 

remove doublet cells. Finally, the remaining population was gated with the optimal 

filter for GFP; fluorescein isothiocyanate (Fit-C) and allophycocyanin (APC-A)  which 

accounts for autofluorescence in the cells (Figure 4). 

Figure 3: Example of the gating for flow cytometry. From Sierzputowska, Baxter and Housden, (2018). Gate 

A is gated by cell size to remove debris, Gate B for cell height to remove doubles and finally Gate C for 
flourescence. 



 

41 

Analysis of screen data 

To convert the flow cytometry data to VDA data, the flow cytometry data is run through 

a MATLAB script. The MATLAB script divides GFP signal by FSC in order to normalise 

to variation in cell size. Cells are then divided over the distribution of GFP intensity 

and finally, the area under the distribution curve is normalised to remove variability of 

cell numbers across samples. Finally, the cumulative distribution is calculated and 

then the area under it measured. This gives a numerical readout (arb) which can then 

be normalised and compared (Sierzputowska, Baxter and Housden, 2018). 

 

In order to process the screen results, the negative and positive controls (white and 

thread) were checked to determine if the plate worked. White wells needed a result 

higher than 200 arbitrary units (arb); thread wells needed to be lower than 180 arb as 

determined by Housden et al. (2017). Any results not meeting these thresholds were 

removed prior to normalisation so as to not skew the results. Any plate with three or 

more control failures was considered unusable and repeated.  

 

Normalisation of the results 

Firstly, to neutralize position effects within the plate, each well was normalised to the 

median values from each column the results of which, were then normalised to the 

median of each row. Samples were then normalised to white and thread samples. The 

median thread (MTh) was subtracted from the plate normalised result (Equation 1). 

TNR denotes the Thread Normalised Result.  

 

!"# = %"# −'!ℎ                                             (1) 

 

Median thread was subtracted from median white (MWh) and the thread normalised 

results were normalised to white minus thread to give the final normalised result 

(Equation 2). NR denotes the Normalised Result - 

 

"# = !"#
(%&'(%!')                                               (2) 
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Finally, after normalisation of the results, a correlation analysis was performed to 

compare each replicate of the plates. This showed whether the results were consistent 

across the screens. 

 

Correlation coefficients 

To determine whether plates were accurate replicates, a correlation analysis was 

performed between the three no drug and three lithium chloride plates to ensure the 

results were within acceptable parameters. The results of these co-efficient are shown 

in Table 1. The overall quality of the results was high. 

Identifying hits 

In order to establish a synergistic interaction with lithium chloride, normalised lithium 

chloride results were subtracted from the normalised no drug results; if the no drug 

plate showed a difference greater than 0.1 arb than the lithium chloride plate, it was 

considered a hit.   

 

Originally, over 30 hits were found. To make the list more manageable, I focused on 

the strongest hits (difference between lithium and no drug result > 0.2 arb). This 

increase in threshold gave a total of 15 hits (Figure 2).  

 

Two of these hits, GSKT and CG9192, are both gene targets of lithium chloride 

(Wishart et al., 2018). These genes are essentially secondary positive controls. It is 

expected that lithium chloride treatment would inhibit lithium chloride targets, and 

Table 1: The correlation coefficients of the plates, a higher correlation indicates a stronger relationship 

between the two variables. Correlations above 0.5 were considered to show a strong enough 

relationship between the two plates. XXXXXXX indicates a plate that repeatedly failed and were 

discounted. The correlation is shown on a scale. Green indicates a high level of correlation shading 

to red for a lower correlation between replicates. 
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therefore, make them more sensitive to further inhibition by shRNA. These genes 

interact in such a way that it is similar to a higher dosage of lithium chloride and in this 

case, we would expect a higher rate of cell death. This indicates the high quality of the 

screen results. 

 

To further narrow down the hit list, I compared the screen results to a database of 

known gene-gene interactions (String-DB.org, (2019)) (Figure 5). Any known or 

predicted protein-protein interactions were mapped, these are shown in Figure 5. Any 

genes showing known interactions 

with other hits were considered to be 

more viable as targets; a connection 

between two hits could signal a 

pathway is being affected rather than 

an individual gene. This indicates a 

stronger likelihood the result is not a 

false positive. The hits were found 

over multiple functions within the cell, 

for example, DNA repair (POLA and 

Pole2), purine synthesis (CG11089 

and ras) and ATP binding (VHA55 

and Vha68-2).  

 

In order to find therapeutic 

candidates, the hits were converted 

to their human orthologs (Table 2). 

Figure 4: The 15 hits found with VDA (string-db.org, 2019). 
The connections show known or theorised interactions 

between each gene. The connections represent Green, 

gene neighbourhood, Red, gene fusion, Dark blue, co-
occurrence, Yellow, text mining, Black, co-expression, 

Blue, Protein homology, Light blue, from curated database, 

or  Purple, experimentally determined. 
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Table 2 shows the original Drosophila genes, the human orthologs and drugs that 

target those genes. These drugs were reviewed for availability, effectiveness and 

possible side-effects. CG9192 and GSKT as lithium chloride targets would not show 

any benefit and consequently were disallowed. It was decided the best possible 

targets were those that showed a known connection in the interaction map (Figure 5). 

Six of the drugs had no connections in the interaction map and were consequently not 

followed through as possible therapeutic targets. ras showed both a synergistic 

interaction with lithium chloride and interacted with two other genes, ade3 and 

CG11089. These genes are part of the purine synthesis pathway. IMPDH is the human 

ortholog of ras. Purine synthesis that has both been indicated as a possible target for 

TSC treatment previously (Housden, et al. (2017) and Valvezan, et al. (2017)). 

  

Table 2: The fifteen hits found in Drosophila along with their human orthologs. Orthologs were found using 
Millburn et al., (2016) and drugs using (Wishart et al., 2018). The yellow highlighted genes show the genes 

targeted by lithium chloride. 
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Discussion 

 

In summation, first the shRNA library was amplified, then transfected into cells. Plates 

were screened with and without lithium chloride and the results analysed in MATLAB.  

A larger difference between the plates inoculated with the drug and plates with no drug 

indicated a stronger interaction between the target gene and lithium chloride, likely 

indicative of a synergistic interaction and a higher rate of cytotoxicity. Results were 

compared across the library and from this data, synergistic interactions targeting the 

purine synthesis pathway were identified. 

 

CG9391. CG11089, Ade3, Ssadh and sh were found across multiple reagents. The 

rest were identified from a single reagent that scored particularly highly in a single 

plate. The correlation coefficient of the plates was also taken into account when 

choosing the hits. A higher coefficient indicated a reproducible result, so in some 

cases, genes were particularly strong in one plate. 

 

The fifteen genes that showed a synergistic interaction with lithium chloride were within 

the same biological pathways. Due to the stronger likelihood of finding a therapeutic 

target using those genes that show a connection, it was decided to focus on those. 

Vha55 and Vha68-2 mediate acidification in organelles to allow for ATP binding. POLA 

and Pole2 are part of the DNA repair pathway. CG11089, Ade3 and ras are part of the 

purine synthesis pathway. dnc is also related in its role in adenine and guanine 

catalysis. Because of the number of genes found in the purine synthesis pathway and 

because Valvezan (2017) had previously identified the purine synthesis pathway as a 

possible therapeutic target for TSC, it was decided to focus on that particular pathway. 

 

Purine synthesis 

Purines can be synthesised either by de novo purine synthesis or harvested from free 

nucleotides. Inosine monophosphate dehydrogenase (IMPDH) controls the process 

by which guanine nucleotides, required for DNA and RNA synthesis, are formed. De 

novo purine nucleotide synthesis creates IMP, the precursor to guanine and adenine 

nucleotides. By disrupting the production of IMP, cell growth can also be disrupted 

(Yin et al., 2018). IMPDH, analogous to ras in Drosophila, is conserved across many 

different species, however, most organisms have multiple genes which encode for 
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IMPDH (Hedstrom, 2009). It’s relative importance within cancer and viral infection, and 

alternate pathways for nucleotide acquisition, make it an excellent candidate target for 

treatment. Reduction of available 

nucleotides decreases DNA 

synthesis and limits cellular 

replication. 

 

IMPDH catalysis the conversion of 

IMP to XMP which is subsequently 

converted into GMP by GMP 

synthetase. Inhibition of IMPDH also 

creates an increase in adenine 

availability the mis-regulation of 

metabolic pathways may be more 

significant than the simple lack of 

guanine nucleotides (Hedstrom, 

2009). Purine synthesis blockers block a cells access to the main pathway for 

nucleotides, specifically guanine. This forces the cells to use an alternative method of 

guanine acquisition, many cancers can’t maintain cellular growth with the salvage 

pathways and thus reduces the viability of the cells. In some cancers, inhibition of 

purine synthesis induces apoptosis (Hedstrom (2009). The rapid growth of cells leads 

to a high demand for nucleotides, more than can be sustained by alternative salvage 

pathways. 

 

Both adenine and guanine production are regulated by purine synthesis and these 

then form DNA and RNA. Valvezan, et al. (2017), showed that blocking purine 

synthesis forces cells to undergo autophagy, and as the mTor pathway is de-regulated 

in TSC mutant cells, cells continue to grow until they die. Wild-type cells still have 

access to mTor, so their growth can be regulated, leading to a lower rate of cell death. 

The purine synthesis pathway has previously been implicated in regulation of mTor 

(Hoxhaj et al., 2017). 

 

Valvezan, et al. (2017) also identified mizoribine as a possible therapeutic candidate, 

and a variety of other pre-approved drugs also exist that target purine synthesis. For 

Purine 

synthesis 

Figure 5:- The 15 genes from the VDA screen with the 
purine synthesis pathway highlighted (string-db.org, 

(2019). 
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these reasons it was decided to target purine synthesis as the second stage of 

combinatorial treatment. 

 

Of the drugs that target IMPDH, Ribavirin, mycophenolic acid (MPA) and 

Mycophenolate mofetil are the only approved drugs (Wishart et al., 2018). 

Mycophenolate mofetil is a prodrug of MPA. Therefore, it was decided to focus on 

MPA, ribavirin and mizoribine; - 

 

Mizoribine 

Mizoribine is an experimental immunosuppressant used in renal transplants. It was 

identified by Housden et al., (2017) as a possible therapeutic for TSC. It was also 

tested by Valvezan et al., (2017) and shown to be cytotoxic in TSC cells. Mizoribine is 

primarily used as an immunosuppressant in renal transplants and steroid-resistant 

nephrotic syndrome, but also as a therapeutic for rheumatoid arthritis, lupus nephritis 

and other rheumatic disease. Mizoribine inhibits guanine synthesis without being 

incorporated into nucleotides (Yokota, 2002). It selectively inhibits inosine 

monophosphate synthetase and guanosine monophosphate synthetase, resulting in 

the complete inhibition of guanine nucleotide synthesis without incorporation into 

nucleotides (Yokota, 2002). There is very little metabolization of mizoribine in the body 

and its maintenance dosage is set at 50 mg (Nakamura et al., 2013). 

 

Mycophenolic acid 

Mycophenolic acid (MPA) is an IMPDH inhibitor. It is primarily used as an 

immunosuppressant in cases of organ transplantation to stop rejection. It is also 

currently used in the treatment of autoimmune conditions such as lupus nephritis 

and  Behçet's disease (Shugaiv et al., 2011). MPA blocks de novo purine synthesis. 

By inhibiting IMPDH, DNA synthesis is decreased, which in turn limits cellular 

replication (Allison and Eugui, 2000). MPA indirectly impacts the immune system by 

reducing leukocyte adhesion to endothelial cells (Allison and Eugui, 2000). Current 

dosages are up to 1,440 mg a day. 

  

Ribavirin 

Ribavirin is a broad-spectrum antiviral drug used to treat hepatitis C and viral 

haemorrhagic fevers. It is also under investigation for use in acute myeloid leukaemia 
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(Borden and Culjkovic-Kraljacic, 2010). It is a guanine analog and can be incorporated 

into RNA in place of either guanine or adenine (Te, Randall and Jensen, 2007). 

Ribavirin targets IMPDH, a rate limiting step in de novo purine synthesis (Borden and 

Culjkovic-Kraljacic, 2010). Current dosages of ribavirin are between 600-800 mg daily. 
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Materials 

 

Cells 

Drosophila S2R+ (wild-type) (DGRC: 150) – Schneider (1972) 

Drosophila TSC1 - Housden et al (2015)  

 

General 

NuncTM Cell Culture Treated flasks with filter caps (Thermo Scientific 136196)  

Propidium Iodide – (Fisher scientific 11599296)  

Schneider’s Drosophila Medium (Gibco N21720024) 

One ShotTM Fetal Bovine Serum (Gibco  A3382001) 

Penicillin-Streptomycin (Gibco 15070063)  

Lithium Chloride– (Sigma-Aldrich 62476) 

Phosphate Buffered Saline (PBS) (Gibco, 20012019)  

96-well tissue culture plate (JET Biofil, TCP011096) 

96-well PCR plate (Sigma-Aldrich 781375) 

 

Mini prep 

Mini prep kit (Promega) (Qiagen 27106) 

Lennox broth 5g NaCl (Melford L24060) 

96 deep well plates (Fisher scientific 278743) 

Competent cells 

 

Transformation 

FuGENE® HD transfection reagent (Promega, E2311)  

pActin-GFP  

pActin-GAl4  

shRNA library  
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Methods 

 

Mini prep and normalisation 

• Inoculate 1.5mL of Luria broth with 2µl of shRNA 

• Incubate for 18hrs at 37°C  

• Centrifuge plates at 400rpm for 5 mins  

• resuspend in 250µl buffer.  

• Add 250μl lysis Buffer and mix  

• Add 350μl neutralisation buffer and mix 

• Centrifuge for 10 min at 13,000 rpm (~17,900 x g)  

• Add 800μl of the supernatant and Centrifuge for 30–60 s  

• adding 0.75 ml Buffer PE and centrifuging for 30–60 s.  

• Discard the flow-through, and centrifuge for 1 minute 

• Place the column in a clean 1.5 ml microcentrifuge tube., add 50μl H2O 

• let stand for 1 min and centrifuge for 1 min.  

 

 

Plate set up (Library) 

An EPImotion liquid handling Robot was used to normalise the library to a final 

concentration of  45ng/µl 

 

Plate set up (transfection) 

• Seed a 96 well plate with 5000 cells per well 

• Incubate at 25°C for 24hrs 

 

Transfection 

90ng shRNA 

90ng GAL4 

5ng GFP 

0.6µl fugene 

1.4µl PBS 

 

• Prep the transfection reagent and incubate at 25°C for 15 mins,  
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• Add 2µl of the transfection reagent to each well in the 96 well plate.  

• Incubate for 5 hrs at 25°C. 

• Add 10µl of 20mM Lithium chloride suspended in media for a final concentration 

of 2mM. 

• Incubate for 120hrs at 25°C. 

• Add 50µl of PBS  

• Read on a flow cytometer. 

 

Flow cytometry 

For settings and gating see Sierzputowska, Baxter and Housden, (2018). 

 

Data analysis 

For data analysis see Sierzputowska, Baxter and Housden, (2018). 
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Preliminary results 

 

Fifteen candidate targets were identified using the variable dose analysis in Chapter 

2. One of these targets, ras (human ortholog IMPDH), can be targeted using three 

clinically approved drugs: mizoribine, mycophenolic acid (MPA) and ribavirin. These 

drugs have been validated by Valvezan et al. (2020). Preliminary tests were performed 

in murine and human cells to attempt to reproduce those results and establish a 

synergistic effect with lithium chloride.  

 

Selectivity assays and dose curves were performed in murine and human cell lines 

using the same methodologies as chapter one. In addition, they were also performed 

with the addition of 2 mM lithium chloride , as determined in chapter one to half the 

wells in order to test for synergistic effects. 

 

Figure 1. shows the results of the murine selectivity assay. Lithium chloride and 

mizoribine were not selective, this reflects the results from chapter one that showed 

mizoribine not being selective and also further supports the findings from Housden et 

al. (2017) that lithium is not selective in murine cells. 

Figure 1. Selectivity assay in murine cells. A single dosage of each drug was tested using a CellTitre-Glo assay, 

plates were read using a plate reader. The results show average of 8 biological replicates. Error bars represent 
the standard deviation of the mean. P-values were obtained using a two-tailed t-test between wild type and 

TSC cells. Both MPA and ribavirin showed significant statistical differences lithium and mizoribine showed no 

selectivity between wild type and TSC. 
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Both ribavirin and MPA showed a significant selective effect in the murine cells, 

consistent with previously published results (Valvezan et al., 2020). Ribavirin showed 

the greatest selective effect on TSC cells. I therefore focused on Ribavirin for further 

experiments. 

 

To assess whether ribavirin 

exhibited any synergistic effect 

with lithium it was tested in TSC 

cells with the addition of 2 mM 

lithium chloride which is shown in 

Figure 2. There is a clear 

selective effect in TSC with the 

addition of lithium chloride, which 

matches that seen in the screen 

results (Chapter 2). The results 

do not pass the threshold to be 

considered significant, however, 

there is a trend towards greater 

selectivity and the weak affect 

could be caused by lithium 

chlorides weak effect in murine 

cells or the dosage of ribavirin 

being too high; if the ribavirin dosage is too high it could have a stronger cytotoxic 

effect on the wild type cells reducing the perceived effect of lithium as lithium is known 

to be selective towards TSC.  

 

To test whether the ribavirin dose was too high I performed a dose curve in wild type 

and TSC cells, with and without lithium chloride, Figure 3. shows this dose curve. Like 

the selectivity assay it shows a clear selective effect between wild type and TSC.  

 

 

 

 

 

Figure 2. Selectivity assay showing the synergistic interaction 

between lithium chloride and ribavirin. A single dosage of 
ribavirin was tested with and without the prescence of 2 mM 

lithium using a CellTitre-Glo assay, plates were read using a 

plate reader. A two-tailed t-test was used between lithium and 
no lithium to demonstrate significance Each bar is an average 

of 8 biological replicates, error bars represent the standard 

deviation of the mean. 
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As seen in the selectivity assay there is a significant selective effect between wild type 

and TSC with ribavirin.  There is no significant synergy between lithium chloride and 

ribavirin in either wild type or TSC1 cells at any single concentration. However, the 

selective effect in TSC shows as significant across the entire curve. 

 

Finally, Figure 4. Shows the same dose curve repeated in human cells. The selective 

effect of ribavirin is also shown again in human cells. However, the synergistic effect 

shows a rescue effect in TSC cells. 

Figure 3 - Ribavirin dose curve. Murine cells were tested with varying doses of ribavirin, with and without the 

addition of 2 mM lithium, using a CellTitre-Glo assay, plates were read using a plate reader. Each point is the 

average of 8 replicates. Results were normalised to cells with no drug. Error bars show the standard deviation 
in the means of each replicate. The P value is gained using a two-tailed t-test between all TSC averages and 

wild type averages. 

 

P=<0.001 
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These are preliminary results and more replicates would need to be performed. 

Further testing would establish both the true validity of the results and also the effect 

(cytostatic or cytotoxic) of the drugs and to establish a synergistic interaction between 

lithium chloride and the IMPDH targeting drugs. 

 

Depletion of cellular purines inhibits mTor which would explain why IMPDH targeting 

drugs are effective in regard to treating TSC, Rheb responds to guanine availability so 

a reduction in available nucleotides would lead to a reduction in cell viability. It is 

possible that the increase in guanine nucleotides activates Rheb leading to enhanced 

cellular growth. In healthy cells this results in increased growth while the cell is still 

regulated by mTOR which reacts to adenine, however in cells with a TSC mutation 

there is no inhibition of Rheb leading to increased cellular growth with a reduction of  

available nucleotides, leading to cell death, while healthy cells maintain their growth.  

 

 

 

Figure 4 – Human selectivity dose curve comparing wild type and TSC cells, cells were tested with 

varying doses of ribavirin, with and without the addition of 2 mM lithium, using a CellTitre-Glo assay, plates 

were read using a plate reader.. Each point is an average of 12 biological replicates. Error bars show the 

standard deviation in the means of each replicate. The P value is gained using a two-tailed t-test between all 
TSC averages and wild type averages. 

P=<0.001 
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Conclusions and future work 

 

 

Summary 

TSC is an autosomal genetic disorder effecting 1 in 6000 births. Current treatment is 

Rapamycin, an immunosuppressant that induces a cytostatic effect on TSC mutant 

cells. The aim of this project was to identify and characterise possible alternative 

synergistic therapeutic candidates. Using a variety of cell viability and cell death 

assays in Drosophila cells, lithium chloride was identified as the most promising of the 

original seven candidates when used alone. It showed a significant selective cytotoxic 

effect in TSC mutant cells and no significant effect in wild type cells (Chapter 1).  

 

A VDA genetic interaction screen was performed in TSC mutant Drosophila cells to 

identify genes that synergised with lithium chloride to kill TSC cells. 154 genes were 

tested and fifteen were determined to have a synergistic effect with lithium. One of 

these, ras analogous to IMPDH, had also been identified by Valvezan et al., (2020) as 

a possible therapeutic target for TSC. Three drugs targeting IMPDH were found, MPA, 

ribavirin and mizoribine (Chapter 2). 

 

Finally, preliminary tests were performed in murine and human cells to assess the 

validity of the VDA screens. Two of the drugs, MPA and ribavirin exhibited a significant 

selective effect in murine cells and preliminary data shows a trend towards a  

promising synergistic interaction between ribavirin and lithium chloride.  

 

Lack of reproducibility in screens is a challenge. 

Identification and characterisation of candidate drugs is a difficult process. Poor 

reproducibility of drug test results is a well-documented limitation in studies of this kind. 

The advent of HTS has led to an increase in testable combinations however many 

reviews have found inconsistencies between studies and poor correlation of results 

despite similar criteria for testing (Haibe-Kains et al., 2013), a reproducibility rate of 

50% is considered successful, but many have even lower levels of reproducibility 

(Haibe-Kains et al., 2013). This is especially evident here, with mizoribine, which has 

a shown a significant selective effect on TSC cells within the literature (Valvezan et 
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al., 2020). However, in my experiments no selective effect has been shown even 

though the GI screen showed a strong result for mizoribine. 

 

There are many possible reasons for lack of reproducibility; Variation in cell lines, drug 

characteristics, environmental issues and Human error can all lead to radically 

different results across studies.  

 

Incorrect Identification of the mechanism of action of drugs can severely impact the 

identification of therapeutic candidates, in some cases, such as lithium the sheer 

number of targets make identification difficult. However other research has shown that 

many cancer drugs do not target the gene products originally identified, but instead 

work via off-target effects (Lin et al., 2019).  

 

Cell lines can significantly affect the outcome of experiments, number of cells added 

to wells and growth rate of cells may affect cell metabolism and response to the drugs 

(Hatzis et al., 2014). Cells cultured for extended periods of time may become 

contaminated or otherwise change their genetic profile. The genetic background of the 

cells and the genes expressed can differ also between cell lines, the heterogeneity 

present in most tumorigenic diseases mean that the genetic profile of cells can vary 

significantly (Wang et al., 2017). Differences in growth medium and conditions can 

also impact the health and viability of the cells. 

 

The characteristics of the drugs added can lead to variations; storage conditions, 

evaporation and solubility can lead to a change in the dosage being added (Hatzis et 

al., 2014). The supplier of the drug can also impact on results. In this study we found 

widely different results between vorinostat from two different suppliers for unknown 

reasons. Characterisation of drug targets is also important, many older drugs have 

multiple targets that may not be completely characterised, for example lithium chloride 

which has over 300 targets, but the mechanism of action is poorly understood. In this 

case drugs may hit a different target to that which was originally thought or may hit 

multiple targets (Lin et al., 2019). 

 

Human error can be responsible for variation, pipetting accuracy and calibration can 

lead to variations in drug dosages, many of the quantities used are very small leading 
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to a greater variation between individuals testing. Even the use of standard techniques 

and robots where possible will still lead to variation.  

 

Environment 

Storage conditions of drugs and growth conditions of cells can have a significant 

impact on the outcome of experiments, as can ambient temperature and laboratory 

environment. The tissue culture tools (plates, flasks and media) can have substantial 

effects on both the cells health and their reaction to compounds added to the cells.  

 

There are ways to mitigate some of these issues; Scientific journals have been created 

purely to attempt to solve this issue (i.e. bio-protocol). suggestions have been made 

for greater information on laboratory conditions to be included in methodologies. Using 

the same equipment and reagents as those specified by previous research, 

Maintaining the health of cell lines and preforming regular testing to check the integrity. 

Ensuring timings are consistent across experiments, the interactions between drugs 

and cells may vary dependent on incubation time and at what stage a drug is added. 

 

Drug testing is noisy, the number of variables present in any given experiment can 

lead to huge differences in results, in order to mitigate these problems, I used multiple 

methods and tests (selectivity assays, cell death assays and VDA) to reduce some of 

this noise. By discounting edge wells due to levels of evaporation and normalising all 

wells to the plates to remove variations in temperature. Using machines to reduce 

human variability in pipetting was also used to increase the replicability.  
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Conclusions 

 

The main conclusion from my work is that lithium and purine synthesis inhibitors 

synergise to selectively kill TSC deficient cells, and that this combination of drugs has 

potential as a new clinical therapy. The results from my experiments are generally 

consistent with those shown by others in the field (Housden et al., 2017; Valvezan et 

al., 2020). The high noise levels in testing a drug’s efficacy are a significant and well 

documented issue and show the need for new approaches to target identification that 

provide more consistent results. VDA is a novel method that mitigates some of these 

problems; it reduces noise level within the screens, and greatly reduces the incidence 

of false positives and negatives caused by overly efficient knockdowns or differential 

transfection efficiencies. 

 

My results show that lithium synergises with purine synthesis inhibitors to kill TSC 

cells, but the mechanism of this inhibition is unknown. I theorise that lithium may act 

though a mechanism whereby ATP hydrolysis is inhibited. ATP is required to provide 

chemical energy to most cellular processes, the interruption of this supply causes 

interruptions in critical metabolic and signalling pathways and eventually can lead to 

cell death. ATP releases energy from the second and third Phosphate groups (Dunn 

and Grider, 2020). Magnesium is a vital part of this process and is required for 

phosphorylation. It has also been shown that a reduction in available ATP slows cell 

growth (Gout et al., 2014).  Lithium binds to magnesium, forming an ATP-magnesium-

lithium complex (Briggs et al., 2016), which prevents the release of energy from the 

ATP molecule. Because mTOR responds to environmental factors (Choo et al., 2010), 

healthy cells will respond to a reduction in ATP by regulating growth. However, cells 

which exhibit the TSC mutation cannot regulate cell growth due to the dysregulation 

of RHEB; this, coupled with the lack of energy provided by ATP, leads the TSC mutant 

cells to undergo apoptosis. In this manner, lithium exhibits a selective effect on TSC 

mutant cells (Figure 1). In support of this hypothesis, unpublished data from the 

Housden lab has shown a five-fold enrichment in ATP dependent enzymes among 

genes that have pharmacogenetic interactions with lithium (Wang et al., unpublished). 
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Ribavirin’s use as an antiviral medication is predicated on its ability to disrupt RNA 

synthesis by replicating guanine nucleotides (Te, Randall and Jensen, 2007). In the 

TSC mutant cells we hypothesis that it has a similar effect. Replacing guanine purines 

disrupts a cell’s ability to synthesize DNA and RNA which then disrupts a cells growth. 

Wild type cells are capable of utilising the salvage pathway to acquire purines through 

autophagy. However, the TSC mutation inhibits autophagy, limiting the availability of 

purines, including ATP.  Along with the mutant cells inability to adapt to a reduction in 

available purines or regulate its growth, this leads to apoptosis.     

 

Figure 1a – Showing the theorised action of lithium, 

Lithium binds to the magnesium required for ATP 

creating an ATP-magnesium-lithium complex leading 
to a reduction in available ATP. Wild type cells 
respond to the change by slowing growth, whereas 

TSC cells, unable to regulate growth, die. Created 

with Biorender.com 

Figure 1b – Showing the theorised action of ribavirin, 

ribavirin inhibits de novo purine synthesis  leading to 

a reduction in available purines. Wild type cells can 

use the salvage pathway, however, the TSC mutation 
inhibits autophagy. This coupled with the reduction in 

available ATP from lithium causes the cells to die. 

Created with Biorender.com 
 

ATP 

ATP 
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In summary the increased growth in TSC positive cells leads to a requirement for 

greater amounts of purines, including adenine, which is a key component of  ATP, 

however lithium and ribavirin block the availability of these to cells through different 

mechanisms. Ribavirin reduces the ability of the cell to generate purines, presumably 

leading to a reduction in ATP levels. Lithium reduces the ability of the cell to use ATP. 

I hypothesise that these effects synergise to kill cells due to a lack of available ATP. 

Healthy cells are able to regulate their growth based on the amount of available 

energy. In addition, healthy cells can downregulate Tor activity (which TSC cells 

cannot), leading to increased autophagy and therefore purine salvage to maintain 

purine supply. This likely explains the selective effect of the drug combination in TSC 

deficient cells. Further work will be required in order to prove or disprove this 

hypothesis. 

 

These results show that both lithium and ribavirin are drugs worth further investigation 

in the treatment of TSC. Both have shown significant selective effects on TSC cells 

and limited negative effects on wild type cells. Both have also shown synergistic 

interactions across several types of cells. They have also shown cytotoxic effects in 

the mutant cells, a more effective treatment than the arrest effect exhibited by ribavirin.  

 

In clinical terms their short and long-term effects on humans are well understood due 

to their long usage as treatments as are the usable dosages and general safety 

profiles. This makes them excellent candidates for further investigation. It should be 

noted, however, that there are still some hurdles to overcome. For example, lithium 

has a narrow therapeutic window, a small difference between effective concentrations 

and minimum toxic concentration, which will require further investigation to determine 

if a safe, effective dose is possible.    
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Future work 

 

Preliminary testing in human cells showed a selective effect with ribavirin but no 

synergistic effect between lithium chloride and ribavirin. This could be due to many 

factors; the health of the cells and the combined dosages of both ribavirin and lithium 

may not have been optimal. In order to establish a cytotoxic effect with combined 

lithium and ribavirin, cell death assays should be performed. Despite both showing 

individual cytotoxic effects the combined effect is not yet established. The combination 

should also be tested in other cell lines as there is often variation between models. 

 

Further work is also needed to characterise the correct dosages of lithium chloride and 

ribavirin in human cells for TSC. Dosages used in this study were equivalent to 

clinically viable dosages, however, no clinical data exists on combined dosages. 

Further work should be undertaken to establish a minimum effective dosage of lithium 

when used in conjunction with TSC. Subsequent work is also needed to truly validate 

the selective effect within human cells and further establish a synergistic interaction 

between lithium chloride and IMPDH inhibiting drugs, however preliminary results are 

promising that a combination of lithium chloride and ribavirin could be repurposed in 

order to treat TSC. 

 

In order to determine if the reduction in ATP is relevant to the cytotoxic effect shown 

by lithium, ATP levels in lithium treated cells should be measured to confirm the 

proposed mechanism. Also, experiments using alternative methods that reduce 

available ATP, should be undertaken in both wild type and TSC cells in order to 

confirm the hypothesis that lithium reduces ATP availability for TSC cells.  

 

As previously mentioned off-target effects are common during drug discovery and 

testing. To conclusively determine whether the cytotoxic effect seen in TSC cells is 

caused by a reduction in purine availability as hypothesised, alternative purine 

synthesis inhibitors such as MPA or mizoribine should be tested. Trialling purine 

synthesis inhibitors that inhibit different nucleotides would show whether the inhibition 

of purine synthesis or the inhibition of guanine and adenine synthesis specifically, is 

responsible for the cytotoxic effect on TSC cells, or whether it is caused by an 

undetermined off target effect.  
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Finally, lithium and ribavirin should be tested in other cell lines with similar tumour 

suppressant mutations i.e., PTEN, NF1 or LKB1 mutant cell lines. In order to 

determine if the drugs are TSC specific or if they have applications in a wider range of 

diseases.  

 

Once these investigations have been performed, the potential new therapy would be 

poised to enter pre-clinical development using in vivo mouse models before continuing 

to clinical trials. 
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Glossary of terms 

 

Adenosine triphosphate (ATP) – a molecule which provides energy for most 

cellular processes. 

Combinatorial screen – a screen using multiple simultaneous perturbations.  

Combinatorial treatment – Using two or more therapeutics to treat a disease. 

Disruption – Replacement of a functional gene with an inactivated one. 

Genetic interaction – Where the effects of one gene are modified by the disruption 

of another. 

Genetic interaction screen (GI screen) – A high-throughput screen using genetic 

interactions. 

Guide RNA (gRNA) – A short RNA sequence which binds to a target DNA sequence 

Hamartin – a protein produced by TSC1. 

Hamartomas – Benign tumours. 

High-throughput screening (HTS) – a method of rapidly testing biochemical or 

cellular events. 

IMPDH – A human gene, the ortholog of ras. 

Knockdown – Replacement of a functional gene with an inactivated one. 

Mammalian target of rapamycin (mTOR) -  

Noise – measured level of variance in a population of cells. 

Off-target effect – When a gene that is not the target is affected. 

Orphan disease – A disease affecting less than 1 in 6000 people (EU). 

Pre-approved drug – Drug approved by the FDA for use in humans. 

ras – A Drosophila gene, the ortholog of IMPDH. 
RNA interference (RNAi) – using RNA molecules to inhibit gene expression or 

translation there are four main types: - Double stranded (dsRNA), Short hairpin 

(shRNA) and Short interfering (siRNA).  

Synergistic – An increased effect greater than that seen from either compound 

alone 

Synthetic sick/ lethal interaction (SS/L) – Simultaneous disruption of multiple 

genes leading to a reduction in viability.  

Target – The gene of interest that is inhibited by a drug. 

Thread – A drosophila gene, used as a positive control. 
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Tuberous sclerosis complex (TSC) – A mendelian disorder characterised by the 

formation of benign tumours. 

Tuberin – a protein produced by TSC2 

Variable dose analysis (VDA) – A novel high-throughput screen using RNAi 

White - A drosophila gene, used as a negative control 
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