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A dead zone in the interaction between two dynamical systems is a region of their joint phase space where one system
is insensitive to the changes in the other. These can arise in a number of contexts, and their presence in phase interaction
functions has interesting dynamical consequences for the emergent dynamics. In this paper, we consider dead zones in
the interaction of general coupled dynamical systems. For weakly coupled limit cycle oscillators, we investigate criteria
that give rise to dead zones in the phase interaction functions. We give applications to coupled multiscale oscillators
where coupling on only one branch of a relaxation oscillation can lead to the appearance of dead zones in a phase
description of their interaction.

The collective dynamics of networks of coupled units de-
pends not only on which units are connected but also on
how they are connected. In certain physical systems one
can observe that network connections may be state depen-
dent in the sense that links can be temporarily disabled.
For example, in networks of neural oscillators, a unit may
have a refractory period and be insensitive to input after
sending an action potential. This can be mathematically
captured by the concept of a “dead zone” in the coupling
function. Building on recent work1, we generalize the no-
tion of a dead zone to general network dynamical systems.
We focus on the case of coupled oscillator networks. Even
if the coupled nonlinear oscillatory processes do not pos-
sess dead zones, the effective phase dynamics for weak
coupling may possess a dead zone. On the other hand,
dead zones of interaction for limit cycle oscillators may or
may not become dead zones for a phase reduced system.
We make this explicit for networks of coupled relaxation
oscillators where the oscillators are shaped by the separa-
tion of time scales and the geometry of critical manifolds.

I. INTRODUCTION

The collective dynamics of a network of N coupled dy-
namical units depends not only on the network structure (i.e.,
which unit is coupled to which other unit) but also on the func-
tional form of the interactions2. It is well known that various
types of dynamical effects such as chaos and synchronization
can be understood using such models even for relatively small
numbers of oscillators3.

However, many biological oscillators are insensitive to in-
puts in a particular state4 and this may lead to effects that are
not typical for “generic” coupling. Neural oscillators with a
refractory period behave similarly: After emitting an action
potential, there is a “refractory” period in which the neuron
does not react to further input5.

Even if the network connections themselves remain fixed,
the functional form of the network interactions can lead to ef-
fective decoupling of nodes for certain states of the network

dynamical system. In this case, the interaction function has
dead zones, which gives rise to an effective interaction graph
as a subgraph of the underlying structural network. In a re-
cent paper1, we explored the dynamical consequences of dead
zones for a class of network dynamical systems. Specifically,
we formalized the notion of a dead zone and the effective
interaction graph for averaged phase oscillator networks in
terms of their phase interaction functions. Such phase os-
cillator networks can be derived from networks of nonlinear
oscillators through a phase reduction to describe their dynam-
ics. Here we consider dead zones in more general networks of
nonlinear oscillators. Moreover, we elucidate the question of
how dead zones may emerge in the effective phase dynamics
in a phase reduction. We note this may emerge in the phase
description, whether or not the nonlinear oscillators have dead
zones in their coupling.

For a general network dynamical system, we assume that
the phase space of each node is a smooth manifold M with
tangent bundle TM, and denote by TxM the tangent space
at x ∈ M: Generally, this will be either Rd or the torus
T := R/2πZ. Consider an additively coupled network dy-
namical system with N similar nodes, where the state of
node k is determined by xk ∈ M and by selective interac-
tions. Specifically, the network dynamics on MN is deter-
mined by the ordinary differential equation (ODE)

ẋk :=
dxk
dt

= fk(xk) + ε

N∑
j=1,j 6=k

Ajkgjk(xj , xk), (1)

where the functions fk : M → TM determine the intrinsic
node dynamics, gjk :M2 → TM for j 6= k are the coupling
functions, Ajk ∈ {0, 1} are the coefficients of the adjacency
matrix that determine the network structure, and the param-
eter ε > 0 is a coupling strength. For all-to-all coupling of
identical units, the node dynamics as well as the coupling are
assumed to be identical andAjk = 1 for j 6= k. In this special
case, Equation (1) reads

ẋk = f(xk) + ε

N∑
j=1,j 6=k

g(xj , xk), (2)
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where f : M → TM and g : M2 → TM. We will con-
centrate on systems of the form (2) for the remainder of this
paper. It is straightforward to generalize some of these result
to networks (1) but the notation becomes more cumbersome1.

Dead zones for (2) are characterized by a vanishing interac-
tion function g. An open subset ofM2 is a dead zone for (2)
if g is identically zero on this subset. We make this notion
precise below. On the one hand, the coupled phase oscillator
networks considered in Reference 1 of the form

θ̇k = ω + ε

N∑
j=1

h(θj − θk) (3)

for θk ∈ T are a special case of (2) withM = T and xk = θk.
In this context, the interaction between oscillators j and k is
determined by the coupling function h: A dead zone is an
open connected set of phase differences where h = 0. On
the other hand, under suitable assumptions, system (3) can be
derived from a nonlinear oscillator (2) with xk ∈ Rd and serve
as a description of the effective dynamics. Then the coupling
function h can be derived from (2) in terms of the oscillator
properties f and the interactions g.

In this paper we focus on the latter case and tackle the re-
lationship between dead zones in the nonlinear oscillator sys-
tem (2) with xk ∈ Rd and dead zones in the phase oscillator
network (3). For example, does the existence of a dead zone
for (2) imply the existence of a dead zone for (3)? Are there
ways that the effective phase dynamics (3) have a dead zone
while (2) does not?

For the remainder of this introduction we generalize some
concepts about dead zones to the setting (2). We focus on
the case of separable coupling functions where the coupling
interaction can be written as a product of response and in-
put functions. Section II considers questions related to when
dead zones for the interactions of weakly coupled oscillators
result in dead zones for the averaged phase equations1. Sec-
tion III examines weakly coupled multiscale oscillators and
states some explicit conditions that result in dead zones for
interaction. This continues with discussion of an example of
coupled FitzHugh–Nagumo oscillators with coupling through
the fast variable. These mechanisms are also relevant in con-
texts beyond oscillators, for example, for the synchronization
of chaotic systems where phase information can be extracted6.
We finish with a brief discussion in Section IV.

A. Dead zones of interaction for coupled dynamical
systems

The notions of dead zones and effective coupling graphs
considered in Reference 1 generalize naturally to network dy-
namical systems (2). Suppose that A is a set and X a vector
space. Given a function f : A→ X write

N(f) = {x ∈ A | f(x) = 0}

for the zero set of f .

Definition 1. A dead zone of the coupling function g is a max-
imal connected open set U ⊂M2 such that g(U) = 0.

For a given coupling function g let DZ(g) denote the union
of all dead zones. The coupling function g has simple dead
zones if DZ(g) is connected, that is, there is exactly one dead
zone. Effective coupling can now be encoded by a graph as in
Reference 1; for completeness, we generalize the notion of an
effective coupling graph to (2).

Definition 2. The effective coupling graph Gg(x) at x ∈MN

is a directed graph on N vertices with edges

E(Gg(x)) = { j → k | (xj , xk) 6∈ DZ(g)} .

B. Separable coupling functions

For many systems of interest, the coupling function g has
additional properties. If X is a vector space, we denote by
v�w the Hadamard (element-wise) product of v, w ∈ X , i.e.,
the vector in X with components [v � w]j = vjwj . We say a
coupling function g for (2) is separable if it can be written as

g(xj , xk) = gin(xj)� gres(xk)

where gin : M → TM the input function and gres : M →
TM is the response function. Many commonly studied net-
work dynamical systems have separable coupling functions.
These include:

a. Phase oscillator networks. The state of a phase oscil-
lator is given by xj ∈ M = T for each j. If fk = ω ∈ R
and separable g(xj , xk) = Z(xk)I(xj) with Z : T → R and
I : T→ R then the dynamics are determined by

ẋk = ω +
∑
j 6=k

Z(xk)I(xj),

i.e., with gres = Z, gin = I . Such networks arise from phase
reductions; we will explore these further in Section II.

b. State-independent coupling. The master stability ap-
proach7 is a classical tool to determine the stability of syn-
chrony in networks of the form

ẋk = f(xk) + ε

N∑
j=1

Akjg(xj),

with all the xk in Rd. The coupling function is separable with
gin = g and gres = 1.

c. Diffusive coupling. For network dynamical systems
with “diffusive coupling” the dynamics of a given node is de-
pends on the difference between its state and the states of the
nodes it receives input from. Specifically, the state of node k
is determined by xk ∈ Rd and evolves according to

ẋk = f(xk) + σ

N∑
j=1

Akjg(xj − xk). (4)

In general, diffusive coupling through a nonlinear g(xj − xk)
is not separable. However, if the coupling is linear, that is,
g(xj − xk) = σ(xj − xk) for σ ∈ R, or we consider the
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linearized dynamics of (4) around the synchronization mani-
fold {x1 = · · · = xd}, we have a separable coupling function
with gin(x) = x and gres = 1 since we can rewrite the global
dynamics as

ẋk = f(xk)−Nσxk + εσ

N∑
j=1

Akjxj .

Note that if either N(gres) or N(gin) contains an open set U
inM this naturally induces a dead zone. More precisely, sup-
pose that U is a maximal open set such that U ⊂ N(gres)
and gin does not vanish on any open set. Then U ×M ⊂M2

is a dead zone for g = gres � gin (an input dead zone). Con-
versely, if U ⊂ N(gin) and gres does not vanish on any open
set thenM× U ⊂M2 is a dead zone for g = gres � gin (an
output dead zone).

II. DEAD ZONES IN WEAKLY COUPLED
OSCILLATOR NETWORKS

We now assume that the intrinsic dynamics of each node is
oscillatory. Specifically, suppose that M = Rd with d > 1
and the uncoupled node dynamics ẋ = f(x), x ∈ Rd, gives
rise to an asymptotically stable limit cycle solution γ(t) in Rd
of minimal period τ > 0 so that γ(t+ τ) = γ(t) for all t > 0.
In other words, the uncoupled network contains a normally
hyperbolic invariant torus TN that persists for weak coupling
|ε| � 1. The main idea of a phase reduction is to approximate
the dynamics of the coupled system (2) by the evolution of
phases θ = (θ1, . . . , θN ) ∈ TN . This reduces the dimension
of the phase space from RdN to TN . Here we are interested
how dead zones of the full system (2) on RdN with oscilla-
tory intrinsic dynamics given by f induce dead zones for the
dynamics of the phase variables.

A. Weak coupling and dead zones in phase oscillator
networks

Before we consider dead zones, we briefly review the main
ingredients of a (first-order) phase reduction; for reviews of
this well-established technique see References 5, 8, and 9.

1. Phase response curves and phase reduction

Consider a single uncoupled oscillator

ẋ = f(x) (5)

whose dynamics includes an asymptotically stable limit cy-
cle γ(t) of minimal period τ ; here we suppress the oscillator
index. The set Γ = { γ(t) | t ∈ R} is a flow-invariant circle
that we can parametrize using a phase variable ν : Γ → T
such that ν̇ = ω with ω = 2π/τ ; this function is invert-
ible on the limit cycle. Indeed, for any point y0 with trajec-

tory y(t) in the basin of attraction of Γ, we define its asymp-
totic phase ν(y0) := ψ ∈ T such that

‖γ(ψ/ω + t)− y(t)‖ → 0

as t → ∞. More precisely, the isochron for ϑ ∈ T is the
(d− 1)-dimensional level set

Θϑ =
{
x ∈ Rd | ν(x) = ϑ

}
of the phase function and these are defined in the basin of at-
traction of the limit cycle. Sometimes, with abuse of notation,
we write ν−1(ψ) for the point on Γ with phase ψ.

Definition 3. The (infinitesimal) phase response curve of the
oscillator is the function

Z : T→ Rd, ϑ 7→ grad(ν)|ν−1(ϑ)

where grad denotes the gradient.

The phase response curve encodes how the phase of an os-
cillator changes with respect to an infinitesimal perturbation.
Now suppose that the oscillator is subject to a weak forcing
given by an input I(t), i.e., consider

ẋ = f(x) + εI(t) +O(ε2)

with I bounded and |ε| � 1. Expanding in the small parame-
ter ε, the dynamics of the phase variable ϑ = ν(x) close to Γ
up to first order is

ϑ̇ = ω + ε〈Z(ϑ), I(t)〉+O(ε2), (6)

where 〈 · , · 〉 denotes the usual scalar product on Rd. In other
words, the effect of the forcing on the phase—up to first
order—is given by the projection of the forcing g on the phase
response curve Z.

For a network that consists of N coupled oscillatory
units (2), that is, oscillator k is forced by the other oscillators
according to

Ik(t) =

N∑
j=1,j 6=k

g(xj , xk),

if all xk = ν−1(θk) are close to Γ then we can define a func-
tion ĝ : T2 → Rd by ĝ(θj , θk) := g(ν−1(θj), ν

−1(θk)). This
yields the induced phase interaction function gPR : T2 → R
by

gPR(θj , θk) := 〈Z(θk), g(ν−1(θj), ν
−1(θk))〉

= 〈Z(θk), ĝ(θj , θk)〉
(7)

such that, with (6), we can truncate at first order and the phase
of oscillator k evolves approximately according to

θ̇k = ω + ε

N∑
j=1

gPR(θj , θk). (8)

Note that this system is a network dynamical system of the
form (2) in its own right on M = T with constant f =
ω + gPR(0, 0). Consequently, and in slight abuse of nota-
tion, we will write gPR just as g if it is typically clear from the
context whether g is a function on R2d and, if not, whether it
is induced by a phase reduction.
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2. Dead zones in weakly coupled phase oscillator
networks

The phase reduction yields conditions for the phase reduced
network (8) to have dead zones. The first result follows di-
rectly from the definition of gPR:

Lemma 1. Suppose that ε > 0 is sufficiently small and that
the coupling function g(xj , xk) of the coupled oscillator net-
work (2) with limit cycle Γ has a dead zone U such that
Γ2∩U 6= ∅. Then gPR(θj , θk) for the phase dynamics (8) has
a dead zone for the set of phases in T2 that has a nonempty
intersection with Γ2 ∩ U .

Proof. Note that gPR(θj , θk) = 〈Z(θk), ĝ(θj , θk)〉 and
so if (ν−1(θj), ν

−1(θk)) ∈ Γ2 ∩ U then ĝ(θj , θk) =
g(ν−1(θj), ν

−1(θk)) = 0 and hence gPR(θj , θk) = 0.

The phase dynamics (6) also gives a further geometric
condition for the emergence of a dead zone. Let Tϑ :=
Tν−1(ϑ)Θϑ denote the tangent space of the isochron at
phase ϑ. Since the phase response curve is the normal vec-
tor for the isochron, we have 〈v, Z(ν)〉 = 0 for any v ∈ Tϑ.

The next result for oscillator networks (2) applies where
the input acts in a fixed direction. This assumption is valid in
many applications where the input acts on a particular com-
ponent. It is straightforward to give a similar condition for
arbitrary network coupling.

Proposition 1. Consider the oscillator network (2) for a cou-
pling function g(xj , xk) = g̃(xj , xk)v with a scalar function
g̃ : Rd × Rd → R and v ∈ Rd fixed. If there is an inter-
val A ⊂ T such that v ∈ Tϑ for all ϑ ∈ A then the phase
reduced system (8) with phase interaction function g(θj , θk)
has a dead zone U ∈ T2 with T×A ⊂ U .

Proof. For the assumed coupling we have g(θj , θk) =
g̃(ν−1(θj), ν

−1(θk))〈Z(θk), v〉 for the reduced system (8).
Thus, 〈Z(θk), v〉 = 0 for θk ∈ A implies g(θj , θk) = 0.

Remark 1. Note that this proposition gives sufficient condi-
tions for a dead zones in the phase dynamics without having a
dead zone in the original system, i.e., g 6= 0. In other words,
Proposition 1 says that if the network input is parallel to the
isochrons at the limit cycle for an interval of phases, then this
induces a dead zone. This is a geometry induced dead zone
for the phase dynamics.

B. Dead zones for averaged identical phase oscillators

If the oscillator forcing I in (6) is periodic with approxi-
mately the same period as the oscillation itself, one can sim-
plify the dynamics further through an averaging approxima-
tion; cf. Reference 10 for general theory. This is particularly
applicable in the case that the oscillator is weakly coupled to
other identical oscillators through some network11. The aver-
aged system does not describe the oscillation in itself but slow
variations of the oscillations relative to one another. Averag-
ing leads to a diffusively coupled phase oscillator system (3)

as we explain below. We give a brief overview of the aver-
aging approximation before outlining sufficient conditions for
dead zones to arise in the averaged system; the latter are the
dead zones analyzed in Ref 1.

Averaging the system (8) over one period yields a phase
oscillator network (3) with coupling through phase differ-
ences5,12. More precisely, the averaged phase evolution, valid
for small ε and timescales t = O(1/ε), is given by

θ̇k = ω + ε

N∑
j=1

h(θj − θk) (9)

with coupling function

h(ϑ) =
1

2π

∫ 2π

0

gPR(s, ϑ+ s) ds

=
1

2π

∫ 2π

0

〈Z(ϑ+ s), ĝ(s, ϑ+ s)〉 ds

(10)

Using linearity, we can also write

h(ϑ) =
1

2π

d∑
`=1

∫ 2π

0

ĥ`(ϑ, ϑ+ s) ds

with ĥ`(ψ, φ) = Z`(φ)ĝ`(ψ, φ),

(11)

where the maps ĝ` are the components of the interaction func-
tion ĝ(θj , θk).

In general we cannot expect a result analogous to Lemma 1
to hold for the averaged dynamics (9): Even if there is an
open interval on which either factor of the integrand in (10)
vanishes, the integral—and thus the resulting averaged cou-
pling function—does not necessarily vanish. The following
proposition gives a sufficient condition for there to be a dead
zone for h and follows directly from consideration of (11).

Proposition 2. Consider the oscillator network (9) and sup-
pose that A ⊂ T is an interval. If the set of phases in T2

where the components differ by elements in A is contained in
the zero set of all ĥ`, that is, if

{
(s, s− ϑ) ∈ T2 | ϑ ∈ A

}
⊂

d⋂
`=1

N
(
ĥ`
)

then A ⊂ DZ(h).

Remark 2. In many models of relevance to applications, the
network interactions act not only in a constant direction—as
in Proposition 1—but also this direction is perpendicular to
one of the coordinate axes. For example, for interacting neu-
ral oscillators the coupling is often through a single variable,
namely the membrane voltage; we will discuss further explicit
examples below. In this case, the condition in Proposition 2
simplifies as N(ĥ`) = T2 for all but one `.
Remark 3. The decomposition of h in (11) implies that
both Z` and g` have a role in determining N(ĥ`) and
thus DZ(h). If we define

πj : T2 → T

to be projection onto the jth component, j ∈ {1, 2}, note that
N(ĥ`) = N(Z` ◦ π2) ∪N(ĝ`).
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C. Overlapping arcs and dead zones for separable
coupling functions

Now assume that the interaction function g of the sys-
tem (2) is separable in the sense of Section I B, i.e.,
ĝ(θj , θk) = ĝin(θj) � ĝres(θk). For ease of notation, as-
sume first that the oscillator coupling only acts in one vari-
able. Omitting the relevant index, the coupling function (10)
can be written as

h(ϑ) =
1

2π

∫ 2π

0

Z(ϑ+ s)ĝres(ϑ+ s)ĝin(s) ds

=
1

2π

∫ 2π

0

Ẑ(ϑ+ s)ĝin(s) ds

(12)

where the scalar function gin describes the input and

Ẑ(ϑ) := Z(ϑ)gres(ϑ)

is the combined phase response. Our next result is a geomet-
ric condition that guarantees a nontrivial dead zone of h. We
define ρϑ : T→ T to be the translation ρϑ(s) = (s+ ϑ).

Proposition 3. Consider system (9) with coupling func-
tion (12). Suppose that N(Ẑ) and N(ĝin) contain intervals
of length L1 > 0 and L2 > 0 respectively. If L1 + L2 > 2π
then there is a nontrivial dead zone for h with length at least
L1 + L2 − 2π > 0.

Proof. If (α, β) ∈ N(Ẑ) then (α−ϑ, β−ϑ) ⊂ N(Ẑ ◦ ρϑ) by
definition. This, together with the assumption on L1 and L2,
implies that there is an interval C ⊂ T of length L1 + L2 −
2π > 0 such that N(Ẑ ◦ ρϑ) ∪ N(ĝin) = T for any ϑ ∈ C.
Now for any ϑ ∈ C the integrand in (12) vanishes. Thus,
ϑ ∈ DZ(h), which proves the assertion.

To state a more general result of this nature we first intro-
duce some notation for overlapping arcs in T = R/2πZ. We
write Π : R→ T for Π(x) = x (mod 2π), the covering map.
Given any α 6= β in T, we say (α, β) ⊂ T is an arc13 with
first extremity α and last extremity β if for any α′ ∈ Π−1(α),
we can choose β′ ∈ Π−1(β) with α′ < β′ < α′ + 2π and
such that

(α, β) = Π
(
(α′, β′)

)
.

We say that arc C1 overlaps with arc C2 if there exists an arc
C = (α, β) with α < β such that C ⊂ C1 ∩ C2. We say C1

overlaps with C2 at first (respectively last) extremity of C1

if the arc C ⊂ C1 ∩ C2 contains the first (respectively last)
extremity of C1. Suppose S ⊂ T. We say (α, β) ⊂ S is a
maximal arc of S if (α − χ, β + χ) 6⊂ S for all χ > 0. As a
generalization of Proposition 3 we have the following result.

Proposition 4. Consider the system (9) and assume that the
phase interaction function is separable as above so that

ĥ`(φ, ψ) = Ẑ`(φ)ĝin
` (ψ) (13)

for all ` ∈ {1, . . . , d}. Suppose there exists an α > 0 such
that for all ` ∈ {1, . . . , d} there are arcs C`,1 ⊂ N(Ẑ` ◦ ρα)

and C`,2 ⊂ N(ĝin
` ) such that C`,1 and C`,2 overlap at last

extremity of C`,1. Then the dead zone DZ(h) for system (9)
contains an arc [α, β] for some β > α.

Proof. Using (13) in (11) we can write h(ϑ) as

h(ϑ) =
1

2π

d∑
`=1

∫ 2π

0

(Ẑ` ◦ ρϑ)(s)ĝin
` (s) ds. (14)

By assumption, for ϑ = α and all 1 < ` < d we have N(Ẑ` ◦
ρϑ) ∪ N(ĝin

` ) = T. Moreover, as these intervals overlap on a
non-empty interval there must be a non-empty arc (α, β) such
that N(Ẑ`◦ρϑ)∪N(ĝin

` ) = T for all ϑ ∈ (α, β) and 1 ≤ ` ≤ d.
Hence we have (α, β) ⊂ DZ(h).

There are other possible reasons why a dead zone may ap-
pear in h even if not present in g (or gPR), in the case where
the integral in (14) cancels out for a range of ϑ. Effectively
this can be thought of as the translates of Z` being orthogonal
functions to g`. We expect this is less likely to arise in appli-
cations in that it requires stipulations on global properties of
these functions.

III. MULTISCALE OSCILLATORS AND DEAD
ZONES

In various applications—especially neuroscience5—one is
concerned with the behavior of coupled oscillators whose in-
trinsic dynamics (5) have multiple timescales. In the follow-
ing we consider the emergence of dead zones for such cou-
pled multiscale oscillator networks; for the sake of clarity we
consider two slow-fast oscillators, but note that there are obvi-
ous generalizations to N ≥ 2 oscillators with more than two
timescales.

We consider the following specific example of (2):

µv̇k = f(vk, wk) + εI(vk, wk, vj , wj),

ẇk = g(vk, wk)
(15)

for k = 1, 2, j = 3 − k such that the state of oscillator k is
given by xk = (vk, wk) ∈ R2 with fast variable vk and slow
variable wk. We assume the intrinsic dynamics are governed
by sufficiently smooth f = (f, g) and the ratio of intrinsic
timescales µ � 1, and g = (I, 0) determines the interactions
between the oscillators.

We recall some standard notions for such oscillators (see
Reference 14 for more details); since we deal with a single
oscillator, we omit the oscillator index k. For the uncoupled
oscillator ε = 0 the singularly perturbed system

µv̇ = f(v, w)

ẇ = g(v, w)
(16)

has slow-fast dynamics with critical manifold which is a one
dimensional manifold

N(f) =
{

(v, w) ∈ R2 | f(v, w) = 0
}
.
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The reduced system is defined in the singular limit µ = 0 as
the differential algebraic equation

0 = f(v, w)

ẇ = g(v, w).
(17)

In general, N(f) need not be a graph over w: There may be
a number of branches of solutions to f(ξ(w), w) = 0, each
parametrized continuously by w. We assign them a stability
according to the stability of ξ(w) as an equilibrium of the fast
(layer) equation

v′ = f(v, w)

w′ = 0,
(18)

where v′ := d
dsv denotes the derivative with respect to slow

time s = µt.
A singular solution of the reduced system (17) is a piece-

wise continuous solution that is continuous on any stable
branch of solutions of (18)15. If the solution arrives at a
saddle-node (fold) at the end of such a branch, the layer equa-
tion defines a unique drop point to a new stable branch.

We say a singular solution is a simple relaxation oscilla-
tion with Q slow branches (see, e.g., Reference 15, Defini-
tion 5.2.4) if it is a periodic solution γ0(t) with period τ0 that
consists of q alternating fast and slow segments, the jumps
occur at generic fold points and drop points are normally hy-
perbolic. This implies we can partition 0 = s0 < s1 <
· · · < sQ = τ0 and there are solutions uq(t) of (17) such that
γ0(t) = uq(t) if t ∈ (sq−1, sq), q ∈ {2, . . . , Q}. Standard
results on relaxation oscillations (see Reference 14 or Refer-
ence 15, Theorem 5.5.3) mean that for µ close enough to zero
there is a stable limit cycle γµ(t) of (16) whose trajectory lim-
its to γ0(t) and such that the period τµ limits to τ0 as µ → 0.
Moreover, the durations τµ,q spent close to the slow segment
uq(t) tend to τ0,q := sq − sq−1 as µ→ 0.

Hence, in such a case there exists a stable limit cycle close
to the simple relaxation oscillation for each oscillator in (16)
in the uncoupled limit ε = 0. In the case of scale separation
and weak coupling (i.e., where |ε| � µ � 1), Izhikevich14

gives a reduction to phase equations of the form (8), hence to
the averaged system (9).

A. Phase response of coupled slow-fast oscillators and
dead zones of interaction

Proposition 4 can be applied to show that System (9) ad-
mits a dead zone in certain circumstances. We focus on an
illustrative case of this for relaxation oscillation with two
slow branches, where the coupling is localized to one of the
slow branches. The example we consider is a pair of coupled
Fitzhugh–Nagumo oscillators

v̇1 = v1 −
1

3
v31 − w1 + i+ εI(v1, w1, v2, w2)

ẇ1 = µ(v1 + a− bw1)

v̇2 = v2 −
1

3
v32 − w2 + i+ εI(v2, w2, v1, w1)

ẇ2 = µ(v2 + a− bw2)

(19)

Figure 1. Panel (a) show a single period of the limit cycle γµ(t) for
a FitzHugh–Nagumo oscillator (21) with parameters (20). The fast
variable v is shown as a black line, the slow variablew as a gray line.
The phase θ is chosen proportional to t, such that after period τµ, θ
advances by 2π. We relate this to the geometric angle ψ modulo 2π
from (22). Panel (b) shows the resulting function ψ(θ). Observe
the rapid changes in the fast variable as it switches between the two
stable branches of the critical manifold.

where we choose parameters

a = 0.7, b = 0.8, i = 0.33, and µ = 0.05, (20)

and the coupling is mediated via some function I with cou-
pling strength ε. For ε = 0 the oscillators decouple into two
systems of the form

v̇ = v − 1

3
v3 − w + i

ẇ = µ(v + a− bw).
(21)

For the chosen parameters with µ = 0 the singular system
has a simple relaxation oscillation which continues for small
enough µ > 0 to give a stable limit cycle. We write this limit
cycle as (v, w) =: (Vµ(t),Wµ(t)) =: γµ(t) and the period
as τµ. Without loss of generality we assume Vµ(0) = 0 and
Wµ(0) < 0. We define the phase on this limit cycle using
θ(t) = t/τµ mod 1, so that θ̇ = ω = 2π/τµ is constant and
(v, w) = (Vµ(θτµ),Wµ(θτµ)). Figure 1(a) gives a numerical
approximation of this limit cycle γµ. All numerical computa-
tions are performed using the MATLAB ode45 integrator.

We can also define a geometric phase ψ mod 2π of the
limit cycle γµ in the (v, w)-plane by recording the angle γµ(t)
makes to the line v = v•, w < w• from a point (v•, w•)
within the limit cycle. This angle increases monotonically on
the limit cycle. For small enough coupling the mapping be-
tween θ and ψ is invertible and orientation preserving. More
precisely, we compute

ψ = tan−1
(
Vµ(θτµ)− v•

w• −Wµ(θτµ)

)
. (22)

The relationship between θ and ψ for (21) is shown Fig-
ure 1(b) on choosing (v•, w•) = (0, 0.5). Observe the rapid
change in ψ during the fast transitions, while θ evolves at a
constant speed.

B. Sufficient conditions for dead zones in coupled
slow-fast oscillators with separable coupling

We start with a proposition that gives sufficient conditions
for a dead zone in the phase reduced equations for cou-
pled slow-fast oscillators of the form (15) consisting of two
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Figure 2. Top panels (a) and (b) show the bounded solution Z(t) =
(Zv(t), Zw(t)) of the adjoint variational equation (23) for single
FitzHugh–Nagumo oscillator (21) with parameters (20) and ε = 0,
for t over one period of τµ ≈ 3.36. Bottom panels (c) and (d)
show the averaged phase interaction function h(θ) and hodd(θ) for
two weakly coupled oscillators (19).

branches where there is coupling only on one of the branches,
and illustrate this for a specific example of coupled FitzHugh–
Nagumo oscillators (19).

Proposition 5. Suppose the uncoupled oscillators (ε = 0)
of system (15) have simple relaxation oscillations with two
branches of period τ0 > 0 for given by (V0(t),W0(t)) and
suppose the durations this limit cycle spends on first and sec-
ond branch of the oscillation is ατ0 and (1 − α)τ0. Suppose
that the input is separable, i.e.,

I(v1, w1, v2, w2) = gres(v1, w1)gin(v2, w2)

and gres and gin vanish on a neighborhood of the second
branch; we refer to this as the dead branch. Suppose that
0 < α < 1

2 . Then there exist µ0 > 0 such that for any
0 < µ < µ0 there is an ε0 > 0 (depending, in general, on
µ) such that for any 0 < ε < ε0, the reduced coupled phase
oscillator network (9) has a dead zone.

Proof. If 0 < α < 1
2 then the assumption of a simple re-

laxation oscillation in the singular limit means that for small
enough µ there is a limit cycle γµ(t) with period τµ close
to γ0(t) such that the durations spent in a neighborhood of the
second branch is greater than τµ/2. If ε is small enough the
phase reduction and averaging means we reduce to (9) where

Ẑ(ψ1)ĝ(ψ2) = Z(ψ1)gres(γµ(ψ1))gin(γµ(ψ2))

is zero if either ψ1 or ψ2 are on the dead branch. Hence, for
small enough µ and ε, the proportion of time spent on the
dead branch, Proposition 3 can be applied with L1 and L2

bigger than some χ for some 2π(1 − α) ≥ χ > π. Hence
L1 + L2 ≥ χ > 2π for small enough µ and ε, meaning there
is a dead zone of length at least L1 +L2−2π = 2χ−2π > 0
for h.

To apply this we calculate the averaged phase equations
using Malkin’s method14: this gives the infinitesimal phase

response by computing the unique normalized bounded solu-
tion Z(t) = (Zv(t), Zw(t)) of the adjoint variational equation
of (21), namely the periodic solution of

Ż = −dfT(γµ(t))Z. (23)

(where dfT represents the transposed Jacobian for (21)) that
satisfies the condition

〈Z(t), γ̇µ(t)〉 = 1

for all t; Izhikevich14 gives expressions for this in the limit
µ → 0. Since the coupling is in the first component only, we
write Z = Zv for simplicity. A numerical approximation of
the solution Z(t) of the adjoint variational equation is illus-
trated in Figure 2(a,b).

We consider a specific case of Proposition 5 where the sys-
tem (19) is coupled via

I(v1, w1, v2, w2) =

{
v1v2 if v1 and v2 > 0,
0 otherwise.

(24)

This coupling acts in the first components only and is sepa-
rable with identical input and response function. This choice
of coupling clearly has a dead zone for the system (19); we
demonstrate that this can lead to a dead zone for the phase
reduced and averaged systems.

The averaged phase interaction for two coupled oscilla-
tors (19) with coupling mediated by (24) can now be com-
puted from (10) as shown in Figure 2(c). This yields phase
dynamics

θ̇1 = ω + εh(θ2 − θ1)

θ̇2 = ω + εh(θ1 − θ2)
(25)

where ω = 2π/τµ. Note the presence of constant zones
in h(θ): These become dead zones on choice of appropriate ω.
Finally, Figure 2(d) shows the averaged phase difference for
Φ = θ1 − θ2: Its evolution is governed by

Φ̇ = −εhodd(Φ) (26)

where

hodd(Φ) = h(Φ)− h(−Φ)

is twice the odd part of h.
For the chosen parameters, hodd has an dead zone for phases

in a neighborhood of the antiphase solution. Figure 3 confirms
the presence of this dead zone in simulations of the original
equations (19) with coupling (24) for coupling with ε = 0.04
and −0.04. The top panels (a) show v1 − v2 for an ensemble
of 100 initial conditions starting at evenly spaced phase differ-
ences. The bottom panels (b) show the evolution of the differ-
ence Φ = θ1− θ2 of the phases θ1 and θ2 from computing the
geometric angles ψk(t) according to (22). Observe that for
either sign of ε (in both cases 1 and 2) there is a band of ini-
tial conditions where the relative phases do not change. Note
that the time series in panels (a) do not show the dead zone
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Figure 3. An ensemble of 100 evenly spaced phase differences θ1 − θ2 on the uncoupled limit cycle are taken as initial conditions for two
coupled FitzHugh–Nagumo systems (19) with coupling (24) and parameters (20) on a periodic colorscale. The panels show the cases ε = 0.04
(case 1; left) and ε = −0.04 (case 2; right). The top panels (a) shows the difference v1 − v2 for solutions starting in the ensemble of initial
conditions. The bottom panels (b) shows the evolution of the extracted phase differences θ1 − θ2 = Φ obtained by computing the geometric
phase for each oscillator and inferring the phase θk for the corresponding uncoupled oscillator. Both cases show the dead zone for the phase
difference: Initial conditions with phase difference starting in an interval containing the antiphase solution Φ = π remain fixed while those
outside this interval evolve towards the in-phase oscillation θ1 = θ2 in case 1 and the boundary of the dead zone in case 2.

as obvious: This is only clear after extraction of the phase an-
gle. On examining the phase differences it becomes clear that
case 1 has an attracting in-phase solution and is repelling on
the boundary of the dead zone, while in case 2 the stabilities
are reversed. The location of the dead zone agrees well with
the averaged phase difference dynamics shown in the bottom
right panel of Figure 2.

Keeping all parameters the same except for going to larger
values of the parameter i, the induced dead zone disappears
(not shown) once the residence time on the dead branch be-
comes less than 1/2 of the cycle: This is because in this case
the condition L1 +L2 > 2π in Proposition 5 no longer holds.

C. Approximate Dead Zones for Additive Coupling

In the previous section, separable coupling with identical
input and response functions localized on one branch led to
emergence of dead zones where the phase interaction function
is exactly zero. For coupled neural oscillators, the interaction
is often in a pulsatile way when the neuron “fires”. We will
now show that relaxation oscillators with pulsatile coupling
give rise to approximate dead zones in the averaged phase dy-
namics.

Definition 4. Consider the network dynamical system (2) and
let η > 0. An η-approximate dead zone of the coupling func-
tion g is a maximal connected open set U ⊂ M2 such that
‖g‖U ≤ η where ‖ · ‖U is the uniform norm on U .

Note that the notion of an η-approximate dead zone depend
on the choice of norm on the tangent space.

We now consider a variation of the FitzHugh–Nagumo
equations (19) with pulsatile coupling. More specifically, the

dynamics evolve according to

v̇1 = v1 −
1

3
v31 − w1 + i+ εP (v2)

ẇ1 = µ(v1 + a− bw1)

v̇2 = v2 −
1

3
v32 − w2 + i+ εP (v1)

ẇ2 = µ(v2 + a− bw2)

(27)

with parameters as above andP > 0 a pulse-like function, that
is, its support is contained in some interval [α, β] of phases on
the limit cycle and 1

2π

∫
T P (ν−1(ϑ)) dϑ = 1. Note that the

coupling is still separable, but the response function is con-
stant and nonzero on the entire limit cycle. That means that
the phase response is solely determined by the phase response
curve Z of the individual unit.

The phase response curve Z in the fast variable has a spe-
cific form as shown in Reference 14: In the singular limit of
µ → 0 the Z converges pointwise to zero under the assump-
tion that |ε| � µ � 1; this is illustrated in Figure 4. That is,
on the slow branch, the phase response is only nonzero close
to the fast transitions along the orbit since by assumption the
attraction to the slow branch is stronger than the coupling in
the fast direction. Together with the pulsatile coupling, this
now leads to the emergence of approximate dead zones.

This observation holds more generally and leads to the fol-
lowing result:

Proposition 6. Suppose the uncoupled (ε = 0) oscillators of
system (15) have simple relaxation oscillations with Q slow
branches. Let η > 0 and suppose that the support [α, β] of
the pulse function P is sufficiently narrow in the sense that
β − α ≤ maxq 2π(τ0,q/τ0). Then for sufficiently small µ the
coupling function h has an η-approximate dead zone for the
averaged phase oscillator network (9).

Proof. Define the arcs Cφq := (tq(2π/τ0)−φ, tq+1(2π/τ0)−

8



Figure 4. Approximate dead zones arise for coupled relaxation os-
cillators with pulsatile coupling (27). Panel (a) shows the limit cycle
oscillation for varying µ. Panel (b) shows the pulse function in terms
of the phase on the limit cycle. Panel (c) shows the (first compo-
nent of the) phase response curve as it converges to zero on the slow
branches as µ → 0. The emergence of approximate dead zones can
be seen in the resulting coupling function in Panel (d) as µ is de-
creased.

φ) ⊂ T of phases on different segments of the critical mani-
fold in the singular limit offset by φ. By assumption, there is
a q′ ∈ {1, . . . , Q} and an open interval of phases A ⊂ T such
that for ψ ∈ A we have [α, β] ⊂ Cψq′ in terms of arcs on T. In
other words, the support of the pulse function is sufficiently
narrow to be fully contained in one of the segments of slow
evolution in the singular limit.

We may now take µ small enough such that |Z(φ)| < η
for φ ∈ Cq′ . With the definition of the averaged interaction
function (10) we have for any ϑ ∈ A that

|h(ϑ)| ≤ 1

2π

∫ 2π

0

|Z(ϑ+ s)|
∣∣P (ν−1(s))

∣∣ ds

≤ η

2π

∫
[α,β]

∣∣P (ν−1(s))
∣∣ ds ≤ η,

which proves the assertion that A is an η-approximate dead
zone for (9).

We illustrate the emergence of η-approximate dead zones
for coupled FitzHugh–Nagumo oscillators (27) with pulsatile
coupling. More explicitly, define the bump like function

P̃ (x) :=

{
exp

(
− 1

1−x2

)
if− 1 < x < 1,

0 otherwise

with support [−1, 1]. With suitable normalization constant a,
scaling b = 1

2 , and shift c = 1 the function P (φ) = aP̃
(
φ
b−c

)
with argument taken modulo 2π is a pulse function with sup-
port

[
1
2 ,

3
2

]
; see Figure 4(b). As the timescale parameter µ is

varied, the phase response function for the first component is
converging pointwise to zero on the slow branches. This re-
sults in η-approximate dead zones according to Proposition 6
for the pulse function P , show in Figure 4(d). Since the pulse
is sufficiently narrow, there are actually two regions where the
resulting coupling function h is small: First, for values θ ≈ 0

where the pulse aligns with the first slow branch, and around
θ ≈ 4 when the shifted pulse aligns with the second branch.

IV. DISCUSSION

We give some results that relate the presence of dead zones
in the interaction of limit cycle oscillators (2) with dead zones
for reduced phase models (8), valid in the weak coupling limit.
In doing so we have highlighted that the connection may be
subtle: There are cases where a dead zone for the former may
or may not be inherited by the latter. Moreover, there are cases
where a dead zone for the latter may not be associated with a
dead zone of the former, although we suggest this is atypi-
cal. We give in Propositions 1, 2, 3 and 4 some sufficient
conditions for dead zones of averaged or non-averaged phase
equations to result from dead zones of (2). We do not attempt
to give necessary conditions and are not convinced this will
be very easy or instructive. Although one could object to dead
zones on the grounds of such constant sets are highly non-
generic in smooth models, they can and do arise as a result of
modelling assumptions. Moreover, approximate dead zones
(regions where there is very little response) will be robust to
small enough perturbations.

Given the periodicity of the phase coupling function h(ϑ)
in ϑ, an obvious approach16 is to consider a Fourier expansion
of h. However, analyticity of any finite truncated Fourier ex-
pansion means that the only dead zones that will persist under
truncation will be trivial. In general, the truncated Fourier rep-
resentation of an h with nontrivial dead zones will only have
approximate dead zones.

We illustrate these mechanisms explicitly in Proposi-
tions 5 and 6 for an example of weakly coupled relaxation
oscillators14, a dynamical system with two small parame-
ters17. The geometry that shapes the limit cycle oscillators
yields an explicit calculation of phase response curves and
thus allows for a concrete analysis of emergent dead zones.
One ingredient for the emergence of dead zones is that there
are regions where the phase response is trivial; this is not the
case if the phase response is sinusoidal, for example, close to
a Hopf bifurcation. On the other hand, dead zones could arise
naturally in coupled piecewise continuous models of coupled
oscillators5 (such as the McKean model) where the coupling
is also defined piecewise. It would be interesting to elucidate
the emergence of dead zones for other weakly coupled but
strongly nonlinear oscillations, such as limit cycles close to or
emerging from homoclinic or heteroclinic structures18.

Turning to forced rather than coupled oscillators, phase
response of impulsively forced oscillator is another context
where dead zones may be useful to understand circumstances
where the forcing may or may not have an effect. For example,
the model of temporally forced circadian transcriptional oscil-
lators is shown in Reference 4 to have a region along the oscil-
lation where the phase response (almost) vanishes; we argue
that this would lead to dead zones if such oscillators are cou-
pled, for example, as shown in Proposition 3. Their model of
a Drosophia circadian clock is an interaction of three species,
such that a coefficient multiplying the input is effectively zero
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for part of the oscillation. This lack of phase sensitivity at cer-
tain phases may be of biological utility if it allows interaction
with the environment only for part of the cycle.

In this paper we consider only pairwise interaction of sys-
tems. It will be interesting to understand the role of dead
zones in coupled dynamical systems with multi-way interac-
tions (see Remark 1). Similarly, dead zones for approxima-
tions of the phase dynamics beyond first order (e.g., Refer-
ence 19) will have higher order features of the geometry of
the isochrons (curvature, etc) that will play a role.

Finally, it may be interesting to examine the effects of dead
zones on coupled chaotic oscillators where no phase reduction
is possible but nonetheless synchronization can occur6. Sim-
ilarly, forced coupled oscillator systems20 have the potential
for dead zones in the coupling and/or forcing.
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