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Abstract  

Reproductive longevity is critical for fertility and impacts healthy ageing in women
1,2

, yet insights 

into the underlying biological mechanisms and treatments to preserve it are limited. Here, we 

identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at 

natural menopause (ANM) in ~200,000 women of European ancestry. These common alleles 

were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility 

have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 

premutations
3
. Identified loci implicate a broad range of DNA damage response (DDR) 

processes and include loss-of-function variants in key DDR genes. Integration with experimental 

models demonstrates that these DDR processes act across the life-course to shape the ovarian 

reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation 

of DDR pathways highlighted by human genetics increase fertility and extend reproductive life in 

mice. Causal inference analyses using the identified genetic variants indicates that extending 

reproductive life in women improves bone health and reduces risk of type 2 diabetes, but 

increases risks of hormone-sensitive cancers. These findings provide insight into the 

mechanisms governing ovarian ageing, when they act across the life-course, and how they 

might be targeted by therapeutic approaches to extend fertility and prevent disease. 
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Introduction 

Over the last 150 years life expectancy has increased from 45 to 85 years4, but the timing of 
reproductive senescence (age at natural menopause (ANM)) has remained relatively constant 
(50-52 years)5. The genetic integrity of oocytes decreases with advancing age6 and natural 
fertility ceases ~10 years before menopause1. More women are choosing to delay childbearing 
to older ages, resulting in increased use of assisted conception techniques7,8. Oocyte and 
ovarian tissue preservation can prolong fertility but is invasive and there is only a ~6.5% chance 
of achieving pregnancy with each mature oocyte thawed, which decreases with age9. 

ANM is determined by the non-renewable ovarian reserve, which is established during fetal 
development and continuously depleted until reproductive senescence (Extended Data Fig. 1). 
DNA damage response (DDR) is the primary biological pathway that regulates reproductive 
senescence, highlighted by genome-wide association studies (GWAS)10, rare single gene 
disorders that cause Premature Ovarian Insufficiency (POI)11 and animal models12. Better 
understanding of how and when molecular processes influence the establishment and decline of 
ovarian reserve will inform future therapeutic strategies for infertility treatment and fertility 
preservation. To address this, our current study increases the number of ANM-associated 
genetic loci six-fold13 from 56 to 290. We integrate these data with experiments in mice to 
characterize the specific DDR processes that contribute to reproductive ageing, providing 
insights into when they act across the life-course, how they might be modified to preserve 
fertility and the potential consequences for broader health. 

Results 
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Supplementary Table 1). We identified 290 statistically independent signals associated with 
ANM (P<5x10-8), including six on the X-chromosome which was previously untested in large-
scale studies (Figure 1, Supplementary Table 2). Effect estimates for the 290 signals were 
consistent between linear and Cox proportional hazard models and across strata of the meta-
analysis (Extended Data Fig. 3). There was no evidence of test statistic inflation due to 
population structure (LD score intercept=1.02, s.e. 0.03). All previously reported signals13 
retained genome-wide significance (Figure 1). 

Additive, per-allele effect sizes for the 290 signals ranged from ~3.5 weeks to ~74 weeks 
(Figure 1, Extended Data Fig. 2 and Supplementary Table 2). Three of these variants 
exhibited non-additive effects (Extended Data Fig. 4 a-d, Supplementary Table 3 and 
Supplementary Results). We sought to replicate our 290 signals using independent samples 
from 23andMe, Inc (N=294,828 women). We observed high concordance in effect estimates 
between the datasets (Supplementary Table 2 and Extended Data Fig. 3 g), with nearly all 
variants at least nominally associated with ANM in 23andMe. Eight variants fell below genome-
wide significance in a meta-analysis of our discovery with 23andMe (Pmax=2.6x10-5), half the 
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number of expected false-positive associations (290*0.05=14.5). We next evaluated these loci 
in 78,317 women of East Asian ancestry. There was broad replication, consistent with previous 
observations14, but substantial heterogeneity of effect sizes and allele frequencies 
(Supplementary Table 2). This was exemplified at the ENTPD1 locus, where one signal had an 
effect size ~3 times larger in East Asians (rs1889921), whilst a second independent signal 
~20kb away had an effect estimate half the size in East Asians (rs7087644). 

Using additional independent samples from the deCODE study (N=16,556 women), we 
estimated our identified signals cumulatively explained 10.1% of the variance in ANM. This 
compared to an estimate of 12.3% in UK Biobank (UKBB) using weights for the 290 variants 
derived from our non-UKBB samples (Supplementary Table 2). The identified signals therefore 
account for 31-38% of the overall genotype-array estimated heritability in UKBB (h2g=32.4%, 
s.e. 0.8%), compared to 15.7-19.8% for the 56 previously reported signals (Extended Data Fig. 
4 e).  

Common variants act on extremes of ANM 

It is unclear where in the population distribution of ANM the influence of common genetic 
variants begins and ends. Our GWAS was restricted to the 99% of women with ANM between 
40-60 years. ANM before 40 years (POI) is considered a Mendelian disorder, but may have a 
polygenic component. To test which parts of the ANM distribution are influenced by common 
genetic variation, we calculated a polygenic score (PGS) in 108,840 women in UKBB with the 
full range of ANM using genetic weights derived from the independent non-UKBB component of 
the meta-analysis (Supplementary Table 2). This was coded such that a higher PGS indicates 
increased susceptibility to later ANM. ANM from 34 to 61 years had a significant polygenic 
influence (Figure 2 a). For example, women with ANM at 34 years had an average -0.5 SD 
(95% CI 0.26-0.69, P=1.5x10-5) lower PGS than the population mean. We had limited sample 
size to test outside of these age ranges, however there was some evidence for a depletion of a 
polygenic influence at ages younger than 34 years (Figure 2 a). These data suggest that 
common genetic variants act on clinically relevant extremes of ANM, although it remains unclear 
what fraction of POI cases may be polygenic vs monogenic. 

Secondly, we evaluated the predictive ability of the PGS. Genetic risk alone proved to be a 
weak predictor (ROC-AUC 0.65 and 0.64 for early menopause (age <45 years) and POI 
respectively) (Figure 2 b and c), however the PGS performed significantly better than smoking 
status which is the most robust epidemiologically associated risk factor (ROC-AUC 0.58). 
Adding smoking status to the PGS did not appreciably improve prediction of early menopause 
(ROC-AUC 0.66). Despite low overall discriminative ability, the PGS was able to identify 
individuals at high risk of POI (Figure 2 c). Women at the top 1% of the PGS (rescaled such 
that high PGS indicates increased susceptibility to earlier menopause) had equivalent POI risk 
(PGS OR 4.71 [3.15-7.04] vs 50th centile, P=4.4x10-14) to that reported for women with FMR1 
premutations, the leading tested monogenic cause of POI (OR~5)3. It is however notable that 
the top 1% of genetic risk is more prevalent than the FMR1 premutation carrier rate (1:250). 

Functional genes and pathways implicated 
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We used a combination of in silico fine-mapping and expression quantitative trait (eQTL) data to 
identify putatively functional genes implicated by our genetic association signals 
(Supplementary Table 2). Firstly, 81 of the 290 independent ANM signals were highly 
correlated (minimum r2=0.8) with one or more variants predicted deleterious for gene function, 
implicating 91 genes (Supplementary Table 4). Twelve of these genes harboured predicted 
loss-of-function variants and seven genes (MCM8, EXO1, HELB, C1orf112, C19orf57, FANCM 
and FANCA) contained multiple statistically independent predicted-deleterious variants 
(Supplementary Table 4). We extended this analysis using exome sequence data from 45,351 
women in UKBB. Loss-of-function variants near two highlighted genes were associated with 
ANM (Supplementary Table 5). In aggregate, women carrying loss-of-function variants in 
BRCA2 (N=143) and CHEK2 (N=68) reported ANM 1.54 years earlier (95%CI 0.73-2.34, 
P=6.8x10-5) and 3.49 years later (95%CI 2.36-4.63, P=1x10-13) respectively. BRCA1 loss-of-
function was the next most significantly associated GWAS-highlighted gene in these analyses 
(N=32 LOF carriers, 2.63 years earlier ANM, 95%CI 1.00-4.26, p=1.1x10-4). Homozygous loss 
of function variants in BRCA2 were recently described as a rare cause of POI15, but we did not 
identify any such homozygotes for either BRCA2, CHEK2 or BRCA1. Notably, identified GWAS 
signals mapped within 300kb of 20/74 genes that when disrupted cause primary amenorrhea 
and/or POI (Supplementary Table 6), highlighting the common biological processes shared 
between normal variation in reproductive ageing and clinical extremes. 

Next, we integrated publicly available gene expression data across 44 tissue types with our 
GWAS results (Supplementary Table 5). This highlighted expression-linked genes at 116 of 
the 290 loci (Supplementary Tables 2 and 5). Using three computational approaches we 
observed enrichment in hematopoietic stem cells and their progenitors (Supplementary Tables 
7–12). Biological pathway enrichment analyses using a range of approaches, highlighted the 
importance of DDR processes as the key regulator of ANM (Supplementary Tables 13–16). 
We hypothesise that the shared expression profile in both haematopoietic stem cells and 
oocytes reflects the relative importance of DDR in both cell types16. In contrast to puberty 
timing17, which represents the beginning of reproductive life, we observed no enrichment of 
hypothalamic and pituitary expressed genes, but enrichment of genes expressed in the ovary 
and other reproductive tissues (Supplementary Table 9). 

Finally, we attempted to leverage data from multi-tissue co-expression networks to identify 
genes which sit in the centre of these networks and interact with many other genes near ANM-
associated variants. Such genes are analogous to the “core” genes proposed in the omnigenic 
model of genetic architecture18. This approach identified 250 genes, 47 of which were within 
300kb of one of the identified 290 loci (Supplementary Tables 17 and 18). A notable example 
is MCM8, implicated directly by two missense variants and co-expressed with many genes 
highlighted by our GWAS (Extended Data Fig. 5). 

ANM genes act across the life-course 

Previous analyses highlighted the involvement of DNA repair in the regulation of ovarian ageing. 
This study supports a much broader DDR involvement as well as metabolic signaling networks 
such as PI3K19 with increased resolution of these pathways and when in the life-course they 
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might act (Extended Data Fig. 1, Supplementary Results). We identify DDR pathways 
associated with replication stress, Fanconi Anemia pathway, DNA-protein crosslink repair, R 
loops (Extended Data Fig. 6), meiotic recombination and 58 genes implicated in regulation of 
apoptosis (Supplementary Table 19) providing evidence that variation in cell death following 
DDR is an important mechanism for ANM. This includes components and interactors of the 
central, conserved DDR checkpoint kinases ATR-CHEK1 (single stranded DNA) and ATM-
CHEK2 (double strand breaks) that integrate and determine repair and cellular response from a 
broad variety of DNA repair pathways (Extended Data Fig. 6). The expression patterns across 
developmental stages in human follicles further supports distinct activities across fetal and 
follicular stages (Extended Data Fig. 7, Supplementary Table 20), including TP63, which was 
predominantly expressed during follicular stages, consistent with apoptotic inducing activity in 
response to DNA damage observed in growing oocytes in mouse20–23. These observations are 
consistent with the DDR regulating both the establishment of the ovarian reserve during fetal life 
and its depletion until ANM. 

In utero effects and maternal diet  

Previous work in mice demonstrated that a maternal obesogenic diet during pregnancy 
decreased ovarian reserve in offspring24. We extend this observation by demonstrating that two 
of our highlighted genes (Dmc1 and Brsk1) are differentially expressed in the offspring ovary 
due to maternal obesity (Supplementary Table 5, Extended Data Fig. 8). Dmc1 is a meiosis-
specific DNA recombinase that assembles at the site of DSBs and is essential for meiotic 
recombination and gamete formation25. Expression levels of Brsk1 were decreased in ovarian 
tissue of the offspring of obese mice, an effect which appeared to be enhanced further when the 
offspring were additionally exposed to an obesogenic diet from weaning (Extended Data Fig. 
8). Brsk1 acts as a DNA damage sensor and targets Wee1 and Mapt1 for phosphorylation, both 
of which were also up-regulated in our model. Wee1 is highly expressed in fetal germ cells, 
inhibits mitosis and is specifically down-regulated late in oogenesis26. The mechanisms linking 
maternal diet-induced altered expression of these genes to reduced ovarian reserve in the 
offspring remain unclear. However, our findings, in addition to observations that low birthweight 
is associated with menopause27, support the hypothesis that DDR mechanisms acting in utero 
to influence reproductive lifespan may be modifiable by maternal exposures. 

Extending reproductive life in animals 

Our GWAS highlighted loss of function alleles in CHEK2 associated with later ANM. Whilst 
previous work has shown genetic manipulation of DDR genes in animal models limits 
reproductive lifespan, it remains to be tested whether it can also extend it. CHEK2 plays a 
crucial role in culling oocytes in mouse mutants defective in meiotic recombination or after 
artificial induction of double-strand breaks22,28,29. In young females, Chek2 inactivation can 
partially rescue oocyte loss and in some mutants, fertility, with high levels of non-physiologically 
induced endogenous and exogenous DNA damage23,28,30,31. To better understand the function of 
the checkpoint kinase pathways in physiological reproductive ageing, we used genetically 
modified Chek1 and Chek2 mice (Figure 3, Extended Data Fig. 9-11). Follicular atresia was 
reduced in Chek2-/- females around reproductive senescence (13.5 months). This occurred 
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without a concomitant increase in the ovarian reserve in young mice (1.5 months) (Figure 3 a, 
Extended Data Fig. 9 a-e)28. The aged Chek2-/- females showed elevated anti-Müllerian 
hormone levels (Extended Data Fig. 9 f) and an increased follicular response to gonadotrophin 
stimulation (Figure 3 c, Extended Data Fig. 9 g) consistent with a larger ovarian reserve at 
13.5 months. Fertilization, blastocyst formation and litter sizes in naturally-mated aged Chek2-/- 

females were similar to littermate controls (Extended Data Fig. 9 h-j), suggesting that the 
endogenous damage that Chek2 responds to does not compromise the health of offspring or 
mothers in later reproductive life (Extended Data Fig. 9 j, k). Thus, depletion of the ovarian 
reserve is slowed in Chek2-/- females, resulting in improved ovarian function around the time of 
reproductive senescence and suggests a potential therapeutic target for enhancing IVF 
stimulation through short-term apoptotic inhibition. 

In contrast to Chek2-/-, Chek1-/- mice are embryonic lethal due to its essential function when 
DNA replication is perturbed as well as during mitosis32. We found that two different maternal, 
germline-specific conditional knockouts of Chek1 (Chek1 cko), one of which also leads to 
defects in prospermatogonia in males33, results in infertility in females due to failure during 
preimplantation embryo development (Extended Data Fig. 10). Chek1 is required for prophase 
I arrest and functions in G2/M checkpoint regulation in murine oocytes23,34 and its activator, 
ATR, is important for meiotic recombination as well as follicle formation35,36. An extra copy, ie. 
three alleles of murine Chek1 (SuperChek1 or sChek1), is reported to partially rescue lifespan in 
ATRSeckel mice, suggesting that CHEK1 becomes rate-limiting when cells are under replication 
stress37. We found that sChek1 on its own increased the ovarian reserve from birth as well as 
later in life (Figure 3 b, Extended Data Fig. 11 b-f). Large antral follicle counts were also 
elevated in the aged sChek1 females, compared to litter-mate controls, indicating that follicular 
activity was also increased. Immediately prior to the typical age at reproductive senescence, 
sChek1 females ovulated an increased number of mature MII oocytes (11-13 months) (Figure 3 
c, Extended Data Fig. 11 g). These exhibited increased mRNA expression of Chek1 
(Extended Data Fig. 11 a) and had similar capacity for forming blastocyst embryos as wild type 
(Extended Data Fig. 11  i, j). When transferred, these embryos gave rise to healthy, fertile pups 
over two generations (Extended Data Fig. 11 k-n). Thus, sChek1 causes a larger ovarian 
reserve to be established at birth and the oocytes appear to maintain their genomic integrity, as 
confirmed by aneuploidy analysis and efficiency of embryogenesis and fertility of pups 
(Extended Data Fig. 11 g-n), resulting in enhanced follicular activity and delayed reproductive 
senescence. We speculate that this is due to upregulation of replication-associated DNA repair 
processes during mitosis and meiosis and that repair might be limiting for establishing and 
maintaining the ovarian reserve. Taken together, our data show that modulating key DDR genes 
can extend reproductive lifespan in vivo, generating healthy pups that are fertile over several 
generations. This can occur either by abolishing DDR checkpoints (Chek2 deletion) or by 
upregulating repair processes (sChek1). 
 
Health consequences of later ANM 

We used our identified genetic variants to infer causal relationships, using a Mendelian 
Randomization (MR) framework, between ANM and several health outcomes (Supplementary 
Tables 21–23). Consistent with previous studies2,13, each 1-year genetically-mediated later 
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ANM increased the relative risks of several hormone-sensitive cancers by up to 5% 
(Supplementary Table 21). In contrast, we observed beneficial effects of genetically-mediated 
later ANM on bone mineral density, fracture risk and type 2 diabetes. Our findings are 
consistent with evidence from randomised controlled trials that oestrogen therapy maintains 
bone health and protects from type 2 diabetes38,39. Furthermore, recent MR studies demonstrate 
causal associations between sex hormone levels and type 2 diabetes40. Trial data in younger 
women taking HRT suggested no increased risk of cardiovascular disease, stroke or all-cause 
mortality39. In agreement with this we found no evidence to support causal associations for ANM 
with cardiovascular disease, lipid levels, Alzheimer’s disease, body mass or longevity 
(Supplementary Table 21), all of which have been reported in observational studies41–47. 
Finally, we evaluated putative modifiable determinants of ANM reported by observational 
studies27. We found that genetically instrumented increased alcohol consumption and tobacco 
smoking were associated with earlier ANM (Supplementary Tables 24 and 25). Each 
additional cigarette smoked per day decreased ANM by ~2.5 weeks, whilst women who drank 
alcohol at the maximum recommended limit experienced ~1 year earlier menopause compared 
to those who drank little. Furthermore, genetically instrumented age at menarche was 
associated with ~8 weeks earlier ANM per-year earlier menarche. 

Collectively our analyses have provided novel insights into the biological processes 
underpinning reproductive ageing in women, how they can be manipulated to extend 
reproductive life, and what the consequence of this might be at a population level. We anticipate 
these findings will greatly inform experimental studies seeking to identify new therapies for 
enhancement of reproductive function and fertility preservation in women.  
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Figure legends 

Figure 1. Manhattan plot representing GWAS discovery analysis. Previously identified loci 
in purple, novel loci in blue. Plotted variants have P<0.01 with P<1x10-300 truncated. Insert: 
Effect sizes and minor allele frequencies of the loci. LOF, loss of function 

Figure 2. Polygenic prediction of age at menopause. a, Mean polygenic score (PGS; scaled 
to have mean=0, SD=1) for a given age at natural menopause (ANM). Higher PGS indicates 
later ANM. b, c, Association of each centile of PGS vs the 50th with, b, early menopause and, 
c, premature ovarian insufficiency. Higher PGS indicates earlier ANM. 

Figure 3. Genetic manipulation of Chek1 or Chek2 extends reproductive lifespan in 
mouse models. Numbers of follicles in young and aged, a, Chek2-/- or, b, sChek1 females. 
Numbers of ovaries analysed in parentheses. c, Response to gonadotrophin stimulation of 13.5-
month-old Chek2-/- and sChek1 females assessed by the number of MII oocytes retrieved. 
Numbers of stimulated females in parentheses. Box-and-whisker plots show interquartile range 
and median. Two-sample t and Fisher’s exact tests used for comparisons: *, P<0.05; **, 
P<0.025; ***, P<0.001. 
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ONLINE METHODS 

Information on ethical regulations and approvals for all animal experiments are detailed in the 
corresponding sections below. Within each of the human population studies included in the 
genome-wide analyses (all of which have been previously published), each participant provided 
informed consent and the study protocol was approved by the institutional review board at the 
parent institution. 

Phenotype definition 

We included women with age at natural menopause (ANM) from age 40 to 60 inclusive. ANM 
was derived from self-reported questionnaire data by each study (Supplementary Table 1) and 
was the age at last naturally occurring menstrual period followed by at least 12 consecutive 
months of amenorrhea. Exclusions were women with menopause caused by hysterectomy, 
bilateral ovariectomy, radiation or chemotherapy, and those using HRT before menopause. 
Within each of the studies, each participant provided written informed consent and the study 
protocol was approved by the institutional review board at the parent institution. 

Genome-wide association study meta-analysis 

A genome-wide meta-analysis of autosomal and chromosome X variants in women of European 
ancestry was carried out on summary statistics from analyses in three strata, allowing for the 
identification of heterogeneity due to different methodology. The three strata were (Extended 
Data Fig. 2): (i) meta-analysis of 1000 Genomes imputed studies; (ii) meta-analysis of samples 
from the Breast Cancer Association Consortium (BCAC: http://bcac.ccge.medschl.cam.ac.uk); 
(iii) UK Biobank GWAS. The overall meta-analysis included variants present in at least two of 
the three strata. All meta-analyses were inverse-variance weighted without GC correction and 
were carried out in METAL (https://genome.sph.umich.edu/wiki/METAL_Documentation). 
Analysis was conducted by analysts and two geographically distinct sites independently and the 
resulting summary statistics were compared for consistency. 

The meta-analysis of 1000 Genomes imputed studies included 40 datasets imputed to 1000 
Genomes Phase I version 3 for the autosomes and 29 for chromosome X (Supplementary 
Table 1, Supplementary Notes). Each individual study applied quality control to directly 
genotyped variants and samples prior to imputation (suggested exclusion thresholds for variants 
were Hardy-Weinberg equilibrium P<1×10-5, call rate <95% and minor allele frequency (MAF) 
<1%; suggested exclusions for samples were >5% missing genotypes, population outliers, high 
inbreeding coefficient, heterozygosity outliers, sex mismatches and related samples). Each 
individual study carried out GWAS using a two-tailed additive linear regression model adjusted 
for genetic principal components/relationship matrix depending on the software used 
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GWAS summary statistics for the BCAC data were provided as four datasets, containing breast 
cancer cases and controls, with each genotyped on the iCOGs and OncoArray genotyping 

arrays (Supplementary Table 1E5*Z1+6(.-*8$#.,$6*'+:*+006(")*.$*)(,"8.6-*7"#$.-0")*9+,(+#.:*
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UK Biobank genotyped 488,377 participants on two arrays, 49,950 on the UK BiLEVE Axiom 
array (807,411 markers) and 438,427 on the UK Biobank Axiom array (825,927 markers), which 
were then imputed using a combined 1000 Genomes Phase 3 and HRC reference panel. 
Details of central genotyping, quality control and imputation are described elsewhere48. We 
included 451,454 individuals identified as European in our analysis. Briefly, principal 
components analyses were used to cluster individuals of White European descent (described 
more fully elsewhere49). We further removed participants who had subsequently withdrawn from 
the study (n=7) and those where their self-reported sex did not match their genetic sex (n=348) 
resulting in 451,099 individuals. GWAS was carried out in 106,048 women with ANM by 

applying a linear mixed model in BOLT-LMM50*.$*+)`1:.*<$,*0$016+.($#*:.,18.1,"*+#)*
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Genome-wide significance was set at P<5x10-8. Statistical independence was determined using 
a combination of two approaches. Firstly, we used distance-based clumping to select the most 
significantly associated SNP within a 1Mb window. Secondly, we augmented this list with 
secondary signals within these 1Mb windows that were identified through approximate 
conditional analysis implemented in GCTA51. We only considered secondary signals that were 
uncorrelated with other selected signals (r2<0.05) and genome-wide significant in both 
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univariate and joint models. 10,000 ancestry matched samples from UK Biobank were used in 
GCTA as an LD reference panel.  

Assessing the impact of time to event models on the signals identified 

We performed Cox proportional hazards regression for the 290 genome-wide significant ANM 
signals, allowing inclusion in our analyses of women excluded from the definition of natural 
menopause. We used UK Biobank imputed genotype data and performed analyses in 379,768 
unrelated individuals of European descent (as described previously), of whom 185,293 were 
included in our Cox analyses (phenotype definition as described previously27). Briefly, Cox 
proportional hazards regression was run using stset and stcox (Breslow method for ties) in Stata 
v16.0 using age as the time variable, starting at birth (0 years) and ending at last age at risk of 
natural menopause. Natural menopause was set as the event, with individuals censored at 
bilateral oophorectomy and/or hysterectomy, or start of HRT use (if ongoing at time of 
menopause, hysterectomy or oophorectomy). We included the covariates genotyping chip and 
release of genotype data, recruitment centre and the first five genetic principal components, 
which were considered to be constant throughout the time at risk. We calculated -1 × natural 
log(hazard ratio) to allow comparison with effect estimates from linear regression from the full 
meta-analysis and meta-analysis excluding UK Biobank. 

Confirmation of identified signals and variance explained estimates 

We sought to confirm our findings by testing the 290 identified loci in an independent sample of 
294,828 women from 23andMe. Participants provided informed consent and participated in the 
research online, under a protocol approved by the external AAHRPP-accredited IRB, Ethical & 
Independent Review Services (E&I Review). Participants were included in the analysis on the 
basis of consent status as checked at the time data analyses were initiated.The variant-level 
data for the 23andMe replication dataset are fully disclosed in the manuscript. Individual-level 
data are not publicly available due participant confidentiality, and in accordance with the IRB-
approved protocol under which the study was conducted. Women's age at menopause was 
ascertained across multiple surveys using two questions: "About how old were you when you 
had your last menstrual period? 
(under_30/30_34/45_49/40_44/55+/50_54/35_39/declined/not_sure)" and "How old were you 
when you had your last menstrual period?”. As menopause age was ascertained in 4-year bins 
we rescaled the effect estimates appropriately to be on the same 1-year scale as our discovery 
analyses. Analyses were performed using a linear model (gaussian family), controlling for age 
(in years), the top 5 genetic principal components and genotyping platform.  

To assess the relevance of these loci in women of East Asian ancestry, we meta-analysed data 
(total N=78,317 women)  from the China Kadoorie Biobank study and Biobank Japan (BBJ). A 
total of 47,140 female participants in BBJ whose age at menopause was available were 
included in the current study. If different ages at menopause were reported in multiple visits, we 
took mean of ages at menopause. We excluded individuals 1) with maximum difference more 
than five years in the reported ages at menopause on multiple visits; 2) whose age at 
recruitment was younger than reported age at menopause; 3) whose age at menopause was 
younger than 40 or older than 60 years, or 4) with medical history of hysterectomy, ovariectomy, 
radiation, chemotherapy and hormone replacement treatment before age at menopause. 
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Subjects 1) whose DNA microarray data was not available, 2) with low call rate (<0.98), 3) 
whose genetic data suggested as male, 4) who were genetically identical to other subjects or 5) 
who were outliers from EAS cluster in PCA plot were excluded from the analyses. We applied 
the same quality control for variants as the previous literature52. After quality control, remaining 
variants were phased and subsequently imputed onto the reference panel containing the 1000 
Genomes Project Phase 3 and around 3,000 Japanese whole-genome sequence data52. We 
restricted subsequent analyses to variants with rsq >0.3. For an association study of age at 
menopause, we applied a linear mixed model using BOLT-LMMv2.3.4 software correcting for 
age in years and the top ten genetically determined principal components as covariates. 

The China Kadoorie Biobank baseline survey was conducted during 2004-2008 in 10 
geographically diverse regions of China (5 rural, 5 urban), with resurveys of approximately 5% 
of the cohort at 5-yearly intervals. 302632 women aged 35-74 years were enrolled with a mean 
age at baseline of 51.4 (SD 10.5), of whom 162,929 provided at least one reported age at 
menopause, in response to the questions “Have you had your menopause? If so, age of 
completion of menopause?”, with mean (SD) of 48.2 (4.4) years. Genotyping data was available 
for 31,177 women with values for age at menopause in the range 35-60 years and who had not 
had prior hysterectomy, oophorectomy, or cancer. Genotyping used custom Affymetrix Axiom® 
arrays with imputation into the 1000 Genomes Phase 3 reference using SHAPEIT3 and 
IMPUTE4 (IMPUTE2 for chrX). Age at menopause was adjusted for year-of-birth and year-of-
birth-squared, and analyses were carried out separately for each of the 10 recruitment regions 
using BOLT-LMM v2.3.2 followed by inverse-variance-weighted fixed effect meta-analysis in 
METAL. Analyses used CKB data release 15. 

The variance explained by our identified signals were estimated in a further independent sample 
of 16,556 women from the Icelandic deCODE study. Of those women, 14,771 were chip-typed 
and 1,785 are imputed 1st and 2nd degree relatives of chip-typed individuals. We assessed the 
aggregate significance of the identified loci by testing how many alleles had the same direction 
of effect using a binomial sign test (null expectation 50%). The proportion of variance explained 
using replication summary statistics provided by deCODE (n=16,556). We calculated the 
variance explained by each variant in deCODE (using the formula 2×β2×MAF×(1-MAF)), 
dividing the sum of the variance explained in total for the 290 variants by the SE2 of menopause 
age in deCODE. 

We additionally estimated the proportion of variance in ANM explained by the 290 genome-wide 
significant signals in UK Biobank by calculating linear regression R2 in 88,829 unrelated women 
of European descent (as described previously49) who had menopause age recorded. We 
generated estimates by combining the 290 variants as a genetic risk score with the allelic 
dosage weighted by the effect size from meta-analysis of the 1KG and BCAC strata only 
(Supplementary Table 2). Genotypes were extracted from imputed data and we included the 
covariates genotyping chip and release of genotype data, recruitment centre, age and the first 
five genetic principal components. Genotype-array heritability estimates were calculated using 
REML implemented in BOLT-LMM to provide a denominator for proportion of heritability 
explained. 

Assessing deviation from an additive genetic model 



24 

A dominance deviation test53 was run for the 290 genome-wide significant ANM signals. Briefly, 
in this test a dominance deviation term representing the heterozygous group (coded 0, 1 and 0) 
is fitted jointly with an additive genotype term in the regression model. This test determines 
whether the average trait value carried by the heterozygous group lies halfway between the two 
homozygote groups as expected under an additive model. We used best guess genotypes 
converted from UK Biobank imputed genotype data and performed linear regression analysis in 
Stata v16.0 in 379,768 unrelated individuals of European descent (identified as described 
previously49. We regressed ANM on genotype including the covariates genotyping chip and 
release of genotype data, recruitment centre and the first five genetic principal components. We 
also tested a dominant model, comparing the effect allele heterozygotes/homozygote group with 
other allele homozygotes, and a recessive model, comparing effect allele homozygotes with 
heterozygotes and other allele homozygotes. Genetic variants with a P-value for the dominance 
deviation term that was smaller than Bonferonni corrected P=0.05 (P=0.05/290=0.000172 ) 
were considered to show evidence of non-additive effects.  

Gene burden analyses of UK Biobank exome sequencing data 

We carried out gene burden association testing of rare variants in women identified from ~200K 
people with exome sequencing data available in the UK Biobank study. We included 45,351 
women with ANM between 18–65 years in our analyses to maximise the sample size and 
ensure inclusion of women with POI who might be expected to be more likely to be carriers of 
rare variants. 

Detailed sequencing methodology is provided by Szustakowski et al54. Briefly, exomes were 
captured with the IDT xGen Exome Research Panel v1.0 which targeted 39Mbp of the human 
genome with coverage exceeding on average 20x on 95.6% of sites. The OQFE protocol was 
used for mapping and variant calling to the GRCh38 reference. Variants included in our 
analyses had individual and variant missingness <10%, Hardy Weinberg Equilibrium p-value 
>10-15, minimum read depth of 7 for SNPs and 10 for indels, and at least one sample per site 
passed the allele balance threshold > 15% for SNPs and 20% for indels.  

Variants in CCDS transcripts were annotated using Variant Effect Predictor55. We identified 
loss-of-function (LoF) variants (stop-gain, frameshift, or abolishing a canonical splice site (-2 or 
+2 bp from exon, excluding the ones in the last exon)) deemed to be high confidence by 
LOFTEE (https://github.com/konradjk/loftee). We conducted gene-burden analyses using a 
SKAT-O test implemented in SAIGE-GENE56 based on variants with MAF<0.001. SAIGE-
GENE implements a generalized mixed-model region-based association test that can account 
for population stratification and sample relatedness in large-scale analyses. We applied an 
inverse normal rank transformation to ANM prior to analyses and included recruitment centre as 
a covariate. For each gene, we present results for the transcript with the smallest SKAT-O p-
value. Since the magnitude of effect sizes from SAIGE-GENE are not easily interpretable, we 
calculated the sum of LoF alleles in BRCA1, BRCA2 and CHEK2 for each person. We tested 
each score's association with ANM by performing linear regression in Stata v16.0 in unrelated 
samples of European descent (identified as described previously [PMID: 30423117]) including 
recruitment centre and the first five genetic principal components as covariates. 

Identifying putatively functional genes  
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We used two in silico approaches to prioritise putatively functional genes across our highlighted 
loci. Firstly, To identify variants with functional consequences, we looked up variants in r2>0.8 
with the signals in Variant Effect Predictor (build 38). We identified missense, frameshift, 
insertion/deletions and stop-gained and splice site disrupting variants, which we then classified 
according to their VEP, PolyPhen and SIFT impact. We considered ‘high impact’ variants as 
those classified as high impact by VEP (stop-gained, frameshift and splice site disrupting). 
‘Medium impact’ variants were missense variants classed as moderate impact by VEP, which 
were either deleterious in SIFT and were at least possibly damaging in PolyPhen. ‘Low impact’ 
variants were missense or inframe insertions/deletions classed as moderate impact by VEP and 
were tolerated and/or benign in PolyPhen. LD was calculated using PLINK v1.9 from best guess 
genotypes for 1000 Genomes Phase 3/HRC imputed variants in ~340,000 unrelated UK 
Biobank participants of white British ancestry. Genetic variant locations were converted from 
b37 to b38 using UCSC Liftover. 

Secondly, we integrated our ANM genome-wide summary statistics with eQTL data using 
Summary Mendelian Randomization (SMR)57. Publicly available expression datasets for 48 
tissues in GTEx v7 and 10 brain regions were downloaded from the SMR website 
(https://cnsgenomics.com/software/smr/#eQTLsummarydata). Whole-blood data in an eQTL 
meta-analysis of 31,684 samples was available from the eQTLGen consortium 
[https://www.biorxiv.org/content/10.1101/447367v1]  A Bonferroni corrected p-value threshold 
was used in each expression dataset individually and only associations with HEIDI P > 0.01 
were considered to avoid coincidental overlap due to extended patterns of LD. This resulted in a 
total of 44 (SMR P<7x10-6) significant transcriptions in the brain, 96 in whole blood (P<3x10-6) 
and 732 across all GTEx tissues (SMR P<3.6x10-7). We excluded brain and whole blood 
tissues from the collection of 48 tissues in GTEx as they were better represented by the other 
expression datasets. 

Identifying enriched cell and tissue types 

We used three approaches to identify cell and tissue types enriched for ANM associated 
variants. DEPICT was run using default settings as described previously58 using GWAS 
summary statistics including all autosomal variants with P-value <1x10-5. The cell-type specific 
expression matrices used as input to DEPICT were generated from individual single-cell gene 
expression datasets (see below). Briefly, each data set was processed by first normalizing 
cells’s gene expression to a common transcript count (10,000 transcript per cell) before 
calculating the average expression of each gene for each cell-type annotation. Averaged data 
was log-transformed (natural log). We computed cell-type specific gene expression following 
using a two-step z-score approach - first we calculated gene-wise z-scores (each gene; 
mean=0, sd=1) to remove the effect of ubiquitous expressed genes, then we calculated cell-
type-wise z-scores (each cell-type; mean=0, sd=1) on gene-wise z-scores. For mouse 
expression datasets we mapped mouse genes to human orthologs using Ensembl (v. 91) 
keeping only genes with a 1-1 ortholog mapping. 

DEPICT analyses were run on two datasets: 1) Tabula Muris (https://tabula-
muris.ds.czbiohub.org/)59, restricted to the fluorescence-activated cell sorting samples. To keep 
the tissue level information in the dataset, we defined cell-type annotations as ‘tissue cell-types’ 
by combining the cell-type label (‘cell_ontology_class’ column) with the origin tissue of the cell-
type (‘tissue’ column). This allowed us to e.g. distinguish B-cells originating from fat, spleen and 
marrow tissue. In total we analyzed 115 cell-type annotations from 44,949 cells; 2) Nestorowa et 
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al. human hematopoietic stem and progenitor cell differentiation dataset
60

 was not normalized to 

a common transcript count because the data was pre-normalized by the authors. We defined 

cell-type annotations as the 12 distinct hematopoietic stem and progenitor cell (HSPC) 

phenotypes reported by the authors (shown in their manuscript Figure 3A). The annotations 

covered 1,483 cells. 

Secondly, we additionally performed tissue enrichment analysis using linkage-disequilibrium 

(LD) score regression to specifically expressed genes (LDSC-SEG)
61

. We used three datasets 

available  on the LDSC-SEG resource page (https://github.com/bulik/ldsc/wiki/Cell-type-specific-

analyses), relating to cell and tissue-specific annotations from GTEx
62

, Epigenome Roadmap
63

 

and the “Franke lab”
58,64

. 

Finally, tissue enrichment analyses were performed using ‘Downstreamer’, which is described in 

a separate section below.  

Pathway analysis 

MAGENTA was used to explore pathway-based associations in the full GWAS data set. 

MAGENTA implements a gene set enrichment analysis (GSEA)-based approach
65

. We used 

upstream and downstream limits of 110Kb and 40Kb to assign variants to genes, excluded the 

HLA region from the analysis and set the number of permutations to 10,000 for GSEA testing, 

with analysis using 75% and 95% cut-offs. Significance was determined when an individual 

pathway reached FDR<0.05 in either analysis. In total, 3,222 pathways from Gene Ontology, 

PANTHER, KEGG and Ingenuity were tested for enrichment of multiple modest associations 

with ANM. 

We additionally performed pathway analyses in ‘Downstreamer’ (described in section below) 

and MAGMA
66

 v1.08. MAGMA analyses were performed using the full genome-wide summary 

statistics, but restricted to variants that were predicted deleterious (i.e non-synonymous and 

loss of function). Gene-sets included in the analyses were obtained from MsigDB v7.2, which 

included 12,358 curated gene sets from KEGG, Reactome, BioCarta and GO terms consisting 

of biological processes, cellular components and molecular functions. 

Downstreamer methodology 

In short, Downstreamer identifies genes connected to genes at GWAS loci (core genes) through 

expression and identifies enriched pathways. Downstreamer implements a strategy that 

accounts for LD structure and chromosomal organization, operating in two steps. In the first 

step, gene-level prioritization scores are calculated for the GWAS trait and a null distribution. In 

the second step, the gene-level prioritization scores are associated with the co-regulation matrix 

and pathway annotations. Further details are outlined below. 

Downstreamer step 1 

Calculation of gene-level prioritization scores (GWAS gene Z-scores) 

The primary step is to convert GWAS summary statistics from p-values per variant to an 

aggregate p-value per gene (gene p-value) while accounting for local LD structure. This 

aggregate gene level p-value represents the GWAS signal potentially attributable to that gene. 
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First, we applied genomic control to correct for inflation in the GWAS signal. We then integrated 
the procedure from the PASCAL67 method into Downstreamer to aggregate variant p-values into 
a gene p-value while accounting for the LD structure. We aggregated all variants within a 25kb 
window around the start and end of a gene using the non-Finnish European samples of the 
1000 Genomes (1000G) project, Phase 3 to calculate LD [26432245]. We calculated these 
GWAS gene p-values for all 20,327 protein-coding genes (Ensembl release v75). The gene p-
values were then converted to Z-scores for use in subsequent analysis. These are referred to as 
GWAS gene Z-scores. 

Calculation of gene Z-scores for null GWASs to account for chromosomal organization of genes 
and to calculate empirical p-values. 

To account for long range effects of haplotype structure which results in genes getting a similar 
GWAS gene Z-score, we use a generalized least squares (GLS) regression model for all 
regressions done in Downstreamer. The GLS model takes a correlation matrix that models this 
gene-gene correlation. 

To calculate this correlation matrix we first simulated 10,000 random phenotypes by drawing 
phenotypes from a normal distribution and then associating them to the genotypes of the 1000G 
Phase 3 non-Finnish European samples. We used only overlapping variants between the real 
traits and the permuted GWASs to avoid biases introduced by genotyping platforms or 
imputation. We then calculated the GWAS gene Z-scores for each of the 10,000 simulated 
GWAS signals as described above. Next, we calculated the Pearson correlations between the 
GWAS gene Z-scores. As simulated GWAS signals are random and independent of each other, 
any remaining correlation between GWAS gene Z-scores reflects the underlying LD patterns 
and chromosomal organization of genes. 

We simulated an additional 10,000 GWASs as described above to empirically determine 
enrichment p-values and, finally, we used an additional 100 simulations to estimate the false 
discovery rate (FDR) of Downstreamer associations. 

Downstreamer step 2 

Calculation of Z-scores for co-regulation matrix 

To calculate core scores, we used a previously generated co-regulation matrix that is based on 
a large multi-tissue gene network68. In short, publicly available RNA-seq samples were 
downloaded from the European Nucleotide Archive (https://www.ebi.ac.uk/ena). After QC, 
56,435 genes and 31,499 samples covering a wide range of human cell-types and tissues 
remained. We performed a PCA on this dataset and selected 165 components representing 
50% of the variation that offered the best prediction of gene function. We then selected the 
protein coding genes and centred and scaled the eigenvectors for these 165 components (mean 
= 0, standard deviation = 1) such that each component was given equal weight. The first 
components mostly describe tissue differences68, so this normalization ensures that tissue-
specific-patterns do not disproportionately drive the co-regulation matrix. The co-regulation 
matrix is defined as the Pearson correlation between the genes from the scaled eigenvector 
matrix. The diagonal of the co-regulation matrix was set to zero to avoid the correlation with 
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itself having a disproportionate effect on the association to the GWAS gene Z-scores. Finally, 
we converted the Pearson r to Z-scores. 

Calculation of Z-scores for pathways and gene sets 

To identify pathway and disease enrichments, we used the following databases: Human 
Phenotype Ontology (HPO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), Reactome 
and Gene Ontology (GO) Biological Process, Cellular Component and Molecular Function. We 
have previously predicted how much each gene contributes to these gene sets, resulting in a Z-
score per pathway or term per gene68. We collapsed genes into meta-genes in parallel with the 
GWAS step, to ensure compatibility with the GWAS gene Z-scores following the same 
procedure as in the GWAS pre-processing. Meta-gene Z-scores were calculated as the Z-score 
sum divided by the square root of the number of genes. Finally, all pathway Z-scores were 
scaled (mean = 0, standard deviation = 1). 

Pre-processing of GWAS gene Z-scores and pruning of highly correlated genes 

For each GWAS, both real and simulated, we carried out rank-based inverse normal 
transformation of GWAS Z-scores to ensure that outliers would not have disproportionate 
weights. Due to limitations in the PASCAL methodology that result in ties at a minimum 
significance level of 1x10-12 for highly significant genes, we used the minimum SNP P-value 
from the GWAS to identify the most significant gene and resolve the tie. We then used a linear 
model to correct for gene length, as longer genes will typically harbour more SNPs. 
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GLS model to calculate pathway enrichment and core gene scores 

We used a GLS regression to associate the GWAS gene Z-scores to the pathway Z-scores and 
co-regulation Z-scores (described below). These two analyses result in the pathway 
enrichments and core gene prioritisations, respectively. We used the gene-gene correlation 
matrix derived from the 10,000 permutations as a measure of conditional covariance of the error 
term (!) in the GLS to account for the relationships between genes due to LD and proximity. 
The pseudo-inverse of ! is used as a substitute for !-1 

The formula of the GLS is as follows: 

β=(XTΩ-1X)-1XTΩ-1y 

Where β is the estimated effect size of pathway, term or gene from the co-regulation matrix, Ω 
is the gene-gene correlation matrix, X is the design matrix of real GWAS Z-scores and y is the 
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vector of gene Z-scores per pathway, term or gene from the co-regulation matrix. As we 
standardized the predictors, we did not include an intercept in the design matrix and X only 
contains one column with the real GWAS gene Z-scores. We estimated the beta’s for the 
10,000 random GWASs in the same way and subsequently used them to estimate the empirical 
p-value for β. 

Definition of POI and DDR genes 

We combined genes implicated in the DDR from a number of sources yielding a total of 778 
genes (Supplementary Table 19)69–71. To identify genes associated with premature ovarian 
insufficiency/primary ovarian insufficiency (ICD-11 GA30.6), we carried out a search in PubMed 
for premature ovarian insufficiency, primary ovarian insufficiency, premature ovarian failure and 
ovarian dysfunction in humans and reviewed all primary studies published in English until 22nd 
of July, 2020. We included syndromic, non-syndromic, sporadic as well as familial single 
nucleotide variants, insertion/deletions and copy number variants (CNVs) and included 114 
genetic variants from 139 studies. We did not attempt to review the clinical significance of the 
variants, which ranged from classical POI genes to newly identified CNVs in whole-exome 
sequencing studies. We expanded our search to review articles and ClinVar. We uncovered 
another four genes implicated in Perrault Syndrome for which our search terms were not 
included in the original articles. This gave a total of 118 genes. Our search detected all genetic 
variants entered in ClinVar as pathogenic, likely pathogenic or with conflicting interpretations of 
pathogenicity. We excluded genes with variants when no assertion criteria were provided and 
no published data were available for assessment in ClinVar. Two studies of large chromosomal 
rearrangements as well as quantitative trait loci consisting of more than a single genetic variant 
from GWAS in POI populations were excluded resulting in 74 genes (Supplementary Table 6). 
Gene lists were curated independently of the current meta-analysis and genes were only 
included if there was convincing evidence independent of any GWAS study. 

Polygenic prediction of early menopause 

To evaluate the impact of common variants on clinical extremes of ANM, we first performed a 
GWAS meta-analysis excluding the UK Biobank study (N=95,275). Effect estimates from this 
analysis (Supplementary Table 2) were then used for subsequent polygenic score (PGS) 
construction of ~6.97 million autosomal variants across the genome using LDPRED72. The PGS 
was calculated using PLINK73 v1.90b4.4 in an independent sample of 108,840 women with the 
full phenotypic range of ANM ages from the UK Biobank study, rescaled to have a mean of 0 
and standard deviation of 1. We then estimated the centile distribution of the genetic risk score 
for all women with a valid ANM (with no lower or upper phenotype boundary). Two outcomes 
were defined: early menopause (EM) defined as ANM < 45 (N=11,268) vs all other women 
(N=97,572); and premature ovarian insufficiency (POI), defined as ANM < 40 years (N=2,407) 
vs all other women (N=106,433). Logistic regression analyses, adjusting for age, genotype array 
and 10 genetic principal components, were then performed with either EM or POI as the 
outcome. This was performed 99 times for each centile of genetic risk (coded 1) vs the 50th 
centile of genetic risk (coded 0). To assess the relevance of this score to each ANM age group, 
we estimated the average PGS value by year of ANM. For example, we grouped all women with 
ANM = 47 and estimated the mean and standard error of the PGS in this group of women. Our 
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intuition was that any ANM range not influenced by common genetic variants would have the 
population mean PGS (i.e mean = 0 and SD = 1). Receiver operating characteristics (ROC) 
models were performed in Stata v14 using the roctab, rocgold and rocreg commands. 

Mendelian Randomization analyses 

In order to infer causal relationships between ANM and other health related outcomes, we 
performed Mendelian Randomization (MR). The 290 independent ANM signals were used as a 
genetic instrument for later ANM. Where a signal was not present in the outcome GWAS, we 
identified the best HapMap2 proxy with r2>0.5 within 250 kb either side of the signal and its 
relevant weight was included in our genetic instrument (Supplementary Table 23). The genetic 
variants were identified in publicly available GWAS datasets for a range of outcomes of interest 
(Supplementary Table 22). These were used in three methods of MR - inverse variance 
weighted74, MR-EGGER75 and weighted median76. As a sensitivity analysis we additionally 
removed signals that appeared to be outliers. This was achieved using the Radial method 
considering the IVW model77. We also performed MR considering the effect of a range of 
putative modifiable risk factors on ANM as the outcome using the same MR models. Genetic 
instruments were created for the risk factors using independent genetic variants with effects 
estimated in published GWAS (Supplementary Table 25). For the risk factors of cigarette 
exposure and alcohol consumption, the MR was performed with a single genetic variant by 
calculating a Wald ratio for the effect of the variants on ANM divided by the effect on the risk 
factor using mrrobust in Stata v16.0. The effect of the genetic variant for alcohol consumption 
was measured in log(drinks per week) (note that drink is a US measure of alcohol consumption 
equal to 14g pure alcohol, equivalent to 1.75 UK units). Hence a change from 1 drink to 7 drinks 
(US maximum recommended per week) would be the equivalent of a 1.95 increase in log(drinks 
per week), which when applied to the Wald estimate, gives the respective change in age at 
menopause.  

Expression of candidate genes identified by human GWAS in a mouse model of 
environmentally-induced low ovarian reserve 

Generation of mouse model 

All animal experiments underwent ethical review by the University of Cambridge Animal Welfare 
and Ethical Review Board and were carried out under the UK Home Office Animals (Scientific 
Procedures) Act (1986, United Kingdom). Female C57BL/6J mice were randomized to be fed ad 
libitum either a standard laboratory chow diet (7% simple sugars/3% fat; Special Dietary 
Services, Witham, UK) or an obesogenic diet (10% simple sugars/20% animal lard; Special 
Diets Services, Witham, UK). The obesogenic diet was supplemented with a separate pot of 
sweetened condensed milk (55% simple sugars/8% fat; Nestle UK, Gatwick, UK) available to 
the animals within the cage. A detailed description of the dietary regimen has been published 
previously78. Female mice were placed on the allocated diet six weeks prior to first mating with 
wild-type males on standard chow diet. The first litter was discarded after weaning, and only 
proven-breeder females were used for the experimental protocols. Second matings occurred 
once females on the obesogenic diet had reached at least 10g absolute fat mass, as assessed 
by time domain nuclear resonance imaging (TDNMR) (Minispec Time Domain Nuclear 
Resonance, Bruker Optics). The female mice remained on their allocated diets throughout the 
breeding, pregnancy, and lactation phases. After delivery, each litter was culled to six pups at 
random to standardize their plane of nutrition from postnatal day 3 in all litters. There was no 
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significant difference in the pre-culling litter size between obesogenic and control litters. Equal 
sex ratios within the litters were maintained as far as possible. After weaning at day 21, female 
offspring were randomly allocated to either the control or the obesogenic diets (identical to those 
used for the dams) and remained on these diets for the duration of the study. Bodyweight and 
food intake were measured weekly. At 12 weeks of age, offspring total and fat mass were 
assessed by weighing and by TDNMR (Minispec Time Domain Nuclear Resonance, Bruker 
Optics) respectively. Following an overnight fast, the female offspring were weighed and then 
culled by CO2 asphyxiation and cervical dislocation. Ovaries were dissected and weighed 
immediately. One ovary from each animal was snap-frozen in liquid nitrogen or dry ice, and 
stored at -80oC, the other was fixed in formalin/paraldehyde. The fixed ovary was sectioned and 
subjected to haematoxylin and eosin (H&E) staining to ensure equal distribution of estrous 
stages in each experimental group (data not shown). Detailed reproductive and metabolic 
phenotyping of the female pups has previously been published24. 

Gene expression analysis 

A screen of 35 DNA damage response genes highlighted by our previous GWAS on ANM were 
selected for investigation13 - Brca1, Bre, Brsk1, Chd7, Chek2, Dido1, Fbxo18, Helb, Helq, 
Mcm8, Mlf1ip, Msh5, Msh6, Mycbp, Polg, Prim1, Rad51, Rad54l, Rev3l, Uimc1, Apex, Aptx1, 
Cdk2ap1, Dmc1, Exo1, Fam175a, Fanci, Ino80, Kntc1, Papd7, Parl, Parp2, Polr2e, Polr2h and 
Tlk1. Expression levels were measured in whole snap-frozen ovaries. RNA was extracted using 
a miRNeasy mini Kit (Qiagen, Hilden, Germany). The kit was used according to the 
manufacturer’s instructions, with the addition of DNaseI digestion to ensure that the samples 
were free from genomic DNA contamination. The extracted RNA was quantified using a 
Nanodrop spectrophotometer (Nanodrop Technologies, Wilmington, DE, US). cDNA was 
synthesized from 1μg RNA using oligo-dT primers and M-MLV reverse transcriptase. Gene 
expression was quantified via RT-PCR (StepOne Plus machine; Applied Biosystems, 
Warrington, UK) using custom-designed primers (Sigma, Poole, UK) and SYBR green reagents 
(Applied Biosystems, Warrington, UK). Equal efficiency of reverse transcription between all 
groups was confirmed using the housekeeper gene ppia, and absence of gDNA contamination 
was confirmed by quantifying myh6, which was absent in all samples. 

Statistical analysis 

All data were initially analyzed using a 2-way ANOVA with maternal diet and offspring diet as 
the independent variables. In order to correct for multiple hypothesis testing of gene expression 
levels, p values were transformed to q values to take account of the false discovery rates using 
the p.adjust function in R stats package (R Foundation for Statistical Computing, Vienna, 
Austria). Data are represented as means ± SEM. Where p values are reported, an alpha level 
<0.05 was considered statistically significant. All data analysis was conducted using the R 
statistical software package version 2.14.1 (R Foundation for Statistical Computing, Vienna, 
Austria). In all cases, n refers to the number of litters, and n=8 for all groups. Study power was 
determined based on effect sizes for gene expression differences observed in our previous 
studies of this model24. 

Human oocytes mRNA screen 
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Research on RNA expression in human eggs was carried out according to the Helsinki II 
declaration and was conducted in accordance with national regulation on research on human 
subjects and material. The research was approved by the Scientific Ethical Committee of the 
Capital Region of Denmark (Videnskabsetisk Komite) in accordance with Danish National 
regulation (H-2-2011-044; extension license amm. Nr. 51307; license holder: Claus Yding 
Andersen and H-1604473; license holder: Eva R. Hoffmann; H-16027088 granted to Marie 
Louise Grøndahl). The full protocols contained permission to conduct mRNA sequencing on 
human eggs. GDPR approval was obtained from the national data agency (SUND-2016-60, Eva 
R Hoffmann and HGH-2016_086  to Marie Louise Grøndahl). All participants provided informed 
consent according to Danish ethical regulation after receiving written information and oral 
clarification about participation. Participants could withdraw from the study at any time. 
Participants did not receive monetary compensation and their participation was fully voluntary 
and did not affect their fertility treatment. 

Single human MII oocytes were collected as described previously79, lysed in-tube and the cDNA 
was amplified according to the manufacturer’s instructions (Takara Bio; mRNA-Seq, SMART-
Seq v4 ultra low input RNA kit, cat. no. 634894). The quality of individual cDNA libraries was 
verified on an Agilent 2100 Bioanalyzer instrument using a high sensitivity DNA kit (Agilent, 
5067-4626). The libraries were prepared with 100 pg input using the Nextera XT DNA library 
preparation kit (Illumina, FC-131-1024) and the Nextera XT index kit v2 (FC-131-2002) and 
quantified on a Qubit 3.0 fluorimeter (Thermo Fisher Scientific, Q32854). The quality of the final 
library was verified on the Agilent 2100 Bioanalyzer high sensitivity DNA chip and pooled to 
4 nM. The 4 nM library pools were denatured and loaded according to the recommended 
NextSeq500 guidelines (Illumina Inc.). 

Expression analysis of GWAS genes in human oocytes and granulosa cells at various stages of 
development 

We used processed RNA-seq data of Fetal Primordial Germ Cells  from Li et al (2017, 
Accession code: GSE86146)80 from 17 human female embryos ranging from 5-26 weeks post-
fertilisation, and from Zhang et al (2018, Accession code GSE107746)81 studies, follicles at 5 
different stages of development from fresh ovarian tissue from 7 adult donors, separated into 
oocytes and granulosa cell fractions; in addition to our MII Oocytes single-cell RNA-seq dataset 
(described below). 

We transformed the per-cycle base call (BCL) file output from the sequencing run of 11 human 
MII oocytes into per-read FASTQ files using the bcl2fastq2 Conversion Software v2.19 from 
Illumina. The samples libraries were multiplexed across four sequencing lanes and the FastQ 
files from each of the four lanes were concatenated to generate one set of paired fastq files per 
sample. We performed sample QC and filtering of reads to remove low quality reads,  adaptor 
sequences and low quality bases with trimmomatic82 version 0.36 in two steps using 
ILLUMINACLIP:/ /Trimmomatic-0.36/adapters/NexteraPE-PE.fa:2:30:10 ( 
SLIDINGWINDOW:4:20 CROP:72 HEADCROP:10 MINLEN:40 followed by and extra trim of 
headbases with HEADCROP:10.) Subsequent to filtering, we used the remaining paired reads 
for alignment by hisat283 to the human genome GeneCode v.27 release with the paired  
GenCode v.27 gtf file containing gene annotations using: ($HISAT2 -p 22 --dta -x .gencode.v27   
-1 R1.fastq -2 R2.fastq   -S sample.sam) (Pertea et al. 2016). The resulting sam files were 
sorted, indexed and transformed to bam files using samtools84. QC measures of aligned reads 
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was generated using picard metrics (https://slowkow.github.io/picardmetrics) and the 
CollectRnaSeqMetrics tool from picard tools (http://broadinstitute.github.io/picard). We filtered 
the bam files for mitochondrial reads and Stringtie was applied to merge and assemble 
reference guided transcripts for gene level quantifications of raw counts, and transcripts per 
million (TPM)85. Of the 283 consensus genes highlighted by the GWAS (Supplementary Table 
5), 258 passed QC and were available in the expression dataset. Gene expression levels in 
TPM were used for further analyses as this unit allows efficient comparison of gene expression 
levels between samples from different studies. A pseudo-count of 1 was added to all TPM 
values and converted to log2 scale before the heatmaps were plotted. Hierarchical clustering by 
euclidean distance, z-score calculation and plotting the heatmap was done using the R package 
‘pheatmap’ (Kolde R, 2019, v1.0.12).  Z-scores are calculated by subtracting the mean of TPM 
values in all samples  for a gene and dividing by the standard deviation. Samples with only 
TPM>5 were considered for heatmap showing the GWAS genes. 

sChek1, Chek1 cKO, and Chek2 mice 

Mouse work at the University of Copenhagen (sChek1) was licensed under 2016-15-0202-

00043 by the Danish Animal Experiments Inspectorate (Dyreforsøgstilsynet, Denmark).  Mouse 

work at UAB (Chek2) was approved by the UAB and the Catalan Ethics Committee for Animal 

Experimentation (CEEAAH 1091; DAAM6395). Mouse work at CCHMC (Chek1 cKO, Ddx4-Cre) 

was performed according to the guidelines of the Institutional Animal Care and Use Committee 

(protocol no. IACUC2018-0040) approved by CCHMC. The Chek1 cKO, Zp3-Cre embryology 

was conducted at the Institute of Animal Physiology and Genetics CAS in Libechov (Czech 

Republic), abiding by the policies of the Expert Committee for the Approval of Projects of 

Experiments on Animals of the Academy of Sciences of the Czech Republic (# 43-2015). 

Chek1 cKO (Ddx4-Cre), sChek1, and Chek2 mutant mice were generated previously33,37,86. The 

lines were maintained in C57BL/6-129Sv and inbred C57BL/6-129Sv (sChek1 and Chek2) 
backgrounds respectively. The chek2 mouse is available under accession number BRC03481 at 

the RIKEN Bioresource Centre. The Chek1 cKO Zp3-Cre embryos were generated by crossing 

mice with Zp3-Cre transgene87 to mice with Chek1 allele containing LoxP sites88 resulting in 

mice expressing Cre-recombinase under the control of the oocyte specific zona pellucida 3 

promotor (Zp3::Cre) to produce Chek1 cKO (Zp3-Cre). All experiments were carried out using 

litter mate controls or with animals of closely related parents as controls. The four mutant strains 

were kept at the University of Copenhagen (sChek1), Autonomous University of Barcelona 

(Chek2), Cincinnati Children’s Hospital Medical Center (Chek1 cKO - Ddx4-Cre) and Institute of 

Animal Physiology and Genetics CAS in Libechov, Czech Republic (Chek1 cKO Zp3-Cre). 

Breeding cages were set in a conventional way with strict specific pathogen-free barrier and 

mice used for experiments were kept in individual ventilated cages (IVC). 12h light exposure 

was provided. Temperature, relative humidity and air changes per hour were 22 °C (+/-2 °C), 

55% +/-10 %, and 17 respectively. Food and water were provided ad libitum. Animals were 

genotyped two times, initially upon weaning and again before experimental procedures were 

carried out. Mouse genotyping was performed by PCR analysis using the following primers for 

the Chek1 cKO (Ddx4): F1 (5′-ACC TGC CCG CAA CTC CCT TTC-3′) and R2 (5′-TGC AAC 

AGC TTC AGT TAT TC-3′); for the cKO Chek1(Zp3-Cre): Cre_low (5'-TAT TCG GAT CAT CAG 

CTA-3'), Cre_up (5'-GGT GGG AGA ATG TTA ATC-3'), CHK1F1 (5'-ACC TGC CCG CAA CTC 
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CCT TTC-3'), CHK1R1(5'-CCA TGA CTC CAA GCA CAG CGA-3'). The sizes of products were 

318 bp for wild type and 380 bp for loxP/loxP transgene. The size of the Zp3-Cre transgene was 

139 bp. For sChek1 the primers were: gsChek1_left “TGT CTT CCC TTC CCT GCT TA”, 

gsChek1_right1 “TCC CAA GGG TCA GAG ATC AT” and gsChek1_5’PCR2 “GTA AGC CAG 

TAT ACA CTC CGC TA”. The wild type gene yields a size of 400 bp whereas the transgene is 

270 bp. For Chek2, the primers WT1F (5’–GTGTGCGCCACCACTATCCTG–3’), WT2R (5’–

CCCTTGGCCATGTTTCATCTG–3’) and NeoMutR (5’–TCCTCGTGCTTTACGGTATC–3’) were 

used to detect the wild type (450 bp) and the mutant (625 bp) alleles in one PCR reaction. The 

Qiagen Taq polymerase PCR kit was used for genotyping (Cat No 201203 / 201205).  

Mouse ovarian histology and follicle count 

Ovaries were dissected and placed in 4% formaldehyde (Chek1 cKO (Ddx4)) & Bouin´s fixative 

solution (70% saturated picric acid solution (Applichem, A2520, 1000), 25% formaldehyde, 5% 

glacial acetic acid (Merck, 1.00063.2500)) or 4% formaldehyde for Chek1 cKO (Ddx4-Cre) 
overnight at 4 °C.  The ovaries were washed two times with cold PBS for 30 minutes followed by 

dehydration with an increasing concentration of ethanol. Subsequently, the samples were 

submerged in Histo-Clear II (Cat. # HS-202, National Diagnostics) for 30 min. at room 

temperature. This was repeated another two times (three times in total) with fresh Histo-Clear II. 

Ovaries were embedded in paraffin blocks and cut to a thickness of 7 µm (sCHEK1 and Chek2) 
and 6 µm (Chek1 cKO (Ddx4-Cre)) and mounted on poly-L-lysine coated slides. After de-

paraffinization and rehydration, the slides were stained with PAS-hematoxylin. The tissue was 

imaged using a Zeiss Axio scanner Z.1 and follicles with a visible nucleus were counted using 

the Zen Blue lite software from Zeiss. Primordial follicles contain one layer of flat granulosa cells 

surrounding the oocytes, primary follicles have one layer of cuboid granulosa cells. Secondary 

follicles contain two or more layers of granulosa cells and antral follicles are those with one or 

several cavities (the antrum). 

Mouse ovulation induction and oocyte collection 

Ovulation was induced by injection of 5 IU of PMSG (Prospec; ref HOR-272) followed by 5 IU of 

hCG (Chorulon Vet; ref 422741) after 47 hours. For 11-13, 16 and 24 months old mice, 7.5 IU of 

each hormones were used. 12 hours post-hCG injection, the mice were sacrificed and oviducts 

were dissected under a stereo-microscope to release the cumulus masses into 90 µl drop of 

fertilization medium covered with mineral oil (NordilCell; ref 90142). Oocytes were recovered 

from oviducts by gently tearing swollen ampulla of oviducts to release cumulus masses into 

medium. Recipe of fertilization medium was previously published elsewhere
89

. 

RT-qPCR on mice oocytes 

Total RNA from oocytes was isolated with the Arcturus PicoPure RNA Isolation Kit from Applied 
Biosystems following the manufacturer’s instructions. Reverse transcription reactions were done 

with twenty eight nanograms of RNA using the Maxima First Strand cDNA Synthesis Kit for RT-
qPCR with dsDNase (Thermo Fisher Scientific). cDNA was quantified by qPCR with the Applied 
Biosystems 7500 FAST Real-Time PCR System using Power SYBR green PCR Master Mix 

from Thermo Fisher Scientific. The sequences of the primers used are the following: Chek1-For: 

5’- AAGCCACGAGAATGTAGTGAAA-3’, Chek1-Rev: 5’- AGCATCTTGTTCAGGCATCC-3’, 
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Actb-For: 5’-CCAACCGTGAAAAGATGACC-3’, Actb-Rev: 5’-ACCAGAGGCATACAGGGACA-
3’. Values were normalized to the expression of Actb housekeeping gene. 

Mouse embryo development in vitro 

Fresh pre-thawed frozen sperm from a proven fertile C57BL/6 wild-type male was used for in 
vitro fertilization and poured into a dish containing mature MII eggs in fertilization medium. 
Disappearance of germinal vesicle (GV) and polar body extrusion confirmed fertilization. 
Zygotes were incubated at 5% CO2 and 37 °C. After incubating zygotes in fertilisation medium 
for overnight, We transferred zygotes to a 60 mm petri dish containing 50 µl KSOM (Chemicon, 
cat MR-106-D) covered by mineral oil(NordilCell; ref 90142). Two separate dishes were 
prepared for embryos from each genotype. The embryos were again incubated at 5% CO2 and 
37 °C. The developmental stage of embryos was assessed using a stereomicroscope at the 
equivalent of 0.5, 1.5, 2.5, 3.5, 4.4 and 5.5 days post-coitum (dpc). For chek2, where the wild 
type frequency of fertilization was lower than in the the Chek1-cko and sChek1 strains, we used 
young C57BL/6J.Ola.Hsd females to control for the efficiency of IVF (85%).   

Mouse ovulation and embryo development (Chek1 cKO, Zp3-Cre) 

Chek1 ctrl and cKO females were stimulated with 5 IU of PMSG (HOR-272, Prospec) followed 
by 5 IU of hCG (Ovitrelle, Merck) after 44 hours. After 18 hours, the females were sacrificed 
using cervical dislocation according to the protocols authorized by the ethics committee, and 
ovulated MII oocytes and zygotes were collected in M2 media (M7167-50ML, Sigma-Aldrich) by 
tearing ampulla from oviduct. The oocytes and zygotes in cumulus mass were placed into a 
drop of M2 media supplied with 300 μg/ml hyaluronidase (H4272, Sigma-Aldrich) to release the 
cumulus cells. The MII oocytes and zygotes were cultured at 5% CO2 and 37°C in EmbryoMax® 
KSOM media (MR-106-D, Sigma-Aldrich) and after  10 hours were scored using Leica DMI 
6000 microscope. Only zygotes with visible pronuclei were left for subsequent culture. 

Immunofluorescence analysis of mouse preimplantation embryos (Chek1 cKO, Zp3-Cre) 

The embryos were 3x briefly washed in PBS supplied with 1mg/ml poly(vinyl alcohol) and fixed 
in 3.7% formaldehyde for 45 min. They were permeabilized thereafter by 0.5% Triton X-100 in 
PBS for 45 min. To block unspecific antibody binding, the embryos were incubated in 2% 
normal donkey serum (NDS) for 2 hours.  The embryos were incubated overnight at 4°C at a 
dilution 1:200 in primary antibody against gH2AX (9718, Cell Signaling Technology). The next 
day, they were incubated for 90 min at a dilution 1:100 in  Rhodamine (TRITC)-AffiniPure 
Donkey Anti-Rabbit IgG (711-025-152, Jackson Immuno Research). Then they were mounted in 
ProLong™ Gold Antifade Mountant with DAPI (P36941, Invitrogen) with a spacer to uphold the 
embryonic 3D structure. The embryos were washed 5x for 8 min in PBS supplied with 1mg/ml 
bovine serum albumin or 0.2% NDS between each steps. The embryos were scanned using a 
confocal microscope (Leica TCS SP5) and Fiii software90 was employed for image analysis.  

Mouse embryo transfer 
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Wild-type female recipient mice (surrogate) were prepared to receive embryos by mating them 
with an infertile male one night before the transfer of embryos. Successful preparation of 
recipient mice for embryo transfer was confirmed by checking for the presence of a plug. Two 
cell-stage (1.5dpc) embryos were transferred into a single horn of recipient mice and 
anaesthesia were maintained during this procedure. Pups were born after 19 days of embryo 
transfer. 

Natural breeding, assessment of health of offspring and fertility in mouse 

To test the natural breeding efficiency, we set cages with one or two adult (2-months or 12-
month-old) control or females with a male of proven fertility. We registered litter sizes and dates 
of delivery for all litters obtained during a period for up to one year. 

Mice Serum AMH analysis  

Mice of various ages were anesthetized. Blood was collected in a plain tube, allowed to clot for 
one hour at room temperature and then centrifuged at 3000 rpm (1500g) for 15 minutes at 4 °C.  
After centrifugation, supernatant (serum) was collected in a 1.5 ml tube and stored at -80 °C.  
Serum AMH levels were determined by using AMH ELISA kit (cat. # AL-113) from Ansh Labs, 
Webster, TX.  

Assessment of the health of the offspring from control and mutant breeding was performed on a 
weekly basis by the personnel of the respective animal facilities following the standard health 
monitoring protocols approved by the Copenhagen or Catalan Ethics Committee for Animal 
Experimentation. 

 

Data availability 

Full genome-wide association summary statistics for the discovery meta-analysis are available 
from the ReproGen website (www.reprogen.org). 

MII Oocyte dataset EGAS00001004947. Access to EGAS00001004947 is granted in 
accordance with the ethics permission under which the data were collected from participants 
and under appropriate GDPR compliant data processor agreements.  

SMR https://cnsgenomics.com/software/smr/#eQTLsummarydata 

Tabula Muris https://tabula-muris.ds.czbiohub.org/  

LDSC-SEG https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses 

RNA-seq samples https://www.ebi.ac.uk/ena 

Human oocyte expression analyses: GSE107746, GSE107746  
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Extended Data Figures  

Extended Data Figure 1. Overview of ovarian reserve and follicular activity across 
reproductive life. a, Key processes involved in follicular activity from fetal development to 
menopause showing the numbers of oocytes at each stage; b, Summary of key biological 
pathways involved in follicular activity and their relationship to stage of reproductive life. 
Follicles, consisting of oocytes and surrounding granulosa cells are formed in utero and 
maintained as resting primordial follicles in the cortex constituting the ovarian reserve. 
Follicles are sequentially recruited from the ovarian reserve at a rate of several hundred per 
month in childhood, peaking at around 900 per month at ~15 years of age. Following 
recruitment, follicles grow by mitotic division of granulosa cells and expansion of oocyte 
volume for almost 6 months until meiosis is reinitiated at ovulation and the mature oocyte is 
released into the oviduct. Waves of atresia (follicle death) accompany developmental 
transitions and growing follicles are continuously induced to undergo cell death such that, 
typically, only a single follicle matures to ovulate each month. As ovarian reserve declines 
the rate of follicle recruitment decreases, but the preovulatory follicles continue to produce 
substantial amounts of oestrogen, while other important hormones such as anti-Müllerian 
hormone and inhibin-B decline, leading to upregulation of the hypothalamus-pituitary 
gonadal axis. 

  



Extended Data Figure 2. Overview of performed analyses.  

  



Extended Data Figure 3. Consistency of effect estimates across analyses methods 
and strata. Comparison of effect estimates from: a, Cox proportional hazards regression in 
UK Biobank with linear regression effect estimates from the overall meta-analysis (“Effect full 
meta-analysis”); b, Cox proportional hazards regression in UK Biobank with linear 
regression effect estimates from the meta-analysis excluding UK Biobank (“Effect 
1KG+BCAC”); c, linear regression in UK Biobank with linear regression effect estimates from 
the meta-analysis excluding UK Biobank (“Effect 1KG+BCAC”). Comparison of linear 
regression effect estimates from: d, UK Biobank GWAS vs. the meta-analysis of 1000 
Genomes imputed studies; e, UK Biobank GWAS vs. meta-analysis of samples from the 
Breast Cancer Association Consortium (BCAC); f, meta-analysis of BCAC samples vs. the 
meta-analysis of 1000 Genomes imputed studies; g, 23andMe replication analysis 
(rescaled) vs. overall meta-analysis. HR, hazard ratio from Cox proportional hazards model; 
r, Pearson correlation coefficient; blue line is y=x for reference. Note: P values < 1×10-300 are 
shown as 1×10-300.  

  



Extended Data Figure 4. Deviation from additive effects and distribution of estimated 
heritability across chromosomes. a-d, Genome-wide significant signals showing 
departure from an additive model. We tested the identified signals for departure from an 
additive allelic model. a, rs11668344 shows no deviation from an additive allelic model; b, 
rs11670032 and c, rs28416520 show deviation from the additive allelic model and a 
recessive effect; and d, rs75770066 shows a heterozygote effect. The mean and 95% 
confidence interval around the mean estimate are shown for each genotype. The expected 
mean ANM for the heterozygotes is the average of the mean ANM in the homozygote 
groups. The dashed orange line shows the effect estimate by genotype from linear 
regression based on an additive allelic model. Estimated ANM for each genotype was 
calculated as constant from regression model + number alleles × effect estimate from 
regression model. The dashed grey line indicates the additive effect estimate by genotype 
from a model adjusting for the dominance deviation effect of the heterozygote group (solid 
grey line). All regression models were adjusted for centre, genotyping chip and genetic 
principal components. ANM, age at natural menopause; dom dev, dominance deviation. e, 
The percentage of the total heritability explained that was attributable to each chromosome 
(observed heritability) is compared with the expected proportion calculated on the basis of 
chromosome size. The heritability of ANM was not uniformly distributed across 
chromosomes in proportion to their size. The X-chromosome did not explain more heritability 
than expected given its size, however chromosome 19 explained 2.36% [1.98-2.75] of the 
trait variance – greater than the individual contributions of nearly all larger chromosomes 
(weighted average for chromosomes 1-18: 1.7%, s.e 0.2%) and ~2.5x more than expected 
given its size. This was partially attributable to a single locus at 19q13 which explained 
~0.75% trait variance and where we mapped 6 independent signals (Supplementary Table 
2). The dashed line shows the mean ratio of expected to observed heritability across all 
chromosomes. Chromosome size was estimated based on the number of genetic variants.  

  



Extended Data Figure 5.  Gene co-regulation networks for age at menopause genes 
with those co-regulated with MCM8 highlighted. a, Gene co-regulation network for genes 
relating to age at menopause. Nodes indicate genes that either in a cis region from the 
GWAS or have been prioritized by Downstreamer, edges indicate a co-regulation 
relationship with a Z-score >4. Co-regulation is defined as the Pearson correlation between 
genes in a scaled eigenvector matrix derived from a multi-tissue gene network68. Cis genes 
are defined as genes that are within +/-300kb of a GWAS top hit for age at menopause. 
Trans genes are defined as having been prioritized by Downstreamer's co-regulation 
analysis and are not within +/-300kb of a GWAS top hit. Downstreamer prioritizes genes by 
associating the gene p-value profile of the GWAS (calculated using PASCAL67) to the co-
regulation profile of each protein coding gene. Only genes where this association passes 
Bonferroni significance are shown as trans genes. Colours of nodes indicate the following: 
Teal indicates Cis genes, Dark Teal indicates Trans genes and Yellow indicates genes with 
a 1st degree relation to MCM8. b, Gene co-regulation network showing the genes that have 
a first degree relationship with MCM8 with a Z-score >4. Width of the edge indicates the Z-
score of the co-regulation relationship. Colours indicate the same as in a, with the exception 
of Yellow, as all genes indicated have a 1st degree relation to MCM8. 

  



Extended Data Figure 6. DNA damage response and repair pathways implicated in 
reproductive ageing in humans. a, Consequences of replication stress annotated with 
genes involved that were within 300kb of the age at natural menopause (ANM) signals; b, 
Genes involved in downstream DNA damage response and repair pathways with those 
within 300kb of an ANM signal shown in blue. A full list of genes involved in DNA damage 
response and apoptosis annotated with genome-wide signals for ANM is provided in 
Supplementary Table 19. MRN, MRN- MRE11-RAD50-NBS1 complex; RPA, Replication 
Protein A including a subunit encoded by RPA1; RFC, Replication Factor C including a 
subunit encoded by RFC1; 9-1-1, RAD9-HUS1-RAD1 complex.   

  



Extended Data Figure 7. Cluster plot of expression of consensus genes identified 
from the genome-wide analyses in germ cells across different developmental stages. 
Genes were selected from the GWAS signals, based on in silico prioritisation 
(Supplementary Table 5). Of the 283 consensus genes highlighted by the GWAS, 258 
passed QC and were available in the expression dataset. Gene expression was measured in 
human fetal primordial germ cells80,81, and oocytes and granulosa cells in adult follicles 
(dataset generated in this study). Plot shows Z-scores, calculated by subtracting the mean 
transcripts per million (TPM) in all samples for a gene and dividing by the standard deviation. 
GC, granulosa cell; MII, meiosis II; PGC, primordial germ cell; Wks, weeks. 

  



Extended Data Figure 8. Relationship between decreased ovarian reserve and gene 
expression. Open bar/dot groups – control maternal diet, normal ovarian reserve. Grey 
bar/dot groups: obesogenic maternal diet, reduced ovarian reserve. a, Ovarian follicular 
reserve in young adulthood in wild-type mice. Total follicles/mm3 ovarian tissue at 12 weeks. 
Dots: individual observations. Bar heights and error bars: mean± SEM. n= 8 biologically 
independent animals from different litters in each group. P=0.0091 derived from 2-way 
ANOVA after correction for multiple hypothesis testing. b, Brsk1 expression in the same 
animals, measured using qrtPCR and expressed as average copy number. Dots: individual 
observations. Bar heights and error bars: mean± SEM. n= 8 biologically independent 
animals from different litters in each group. P=0.0001 derived from 2-way ANOVA after 
correction for multiple hypothesis testing. c, Wee1 expression in the same animals, 
measured using qrtPCR and expressed as average copy number. Dots: individual 
observations. Bar heights and error bars: mean± SEM. n= 8 biologically independent 
animals from different litters in each group. P=0.0256 derived from 2-way ANOVA after 
correction for multiple hypothesis testing. d, Dmc1 expression in the same animals, 
measured using qrtPCR and expressed as average copy number. Dots: individual 
observations. Bar heights and error bars: mean± SEM. n= 8 biologically independent 
animals from different litters in each group. P=0.00001 derived from 2-way ANOVA after 
correction for multiple hypothesis testing. e, Mapt expression in the same animals, 
measured using qrtPCR and expressed as average copy number. Dots: individual 
observations. Bar heights and error bars: mean± SEM. n= 8 biologically independent 
animals from different litters in each group. P=0.0378 derived from 2-way ANOVA after 
correction for multiple hypothesis testing. qrtPCR, quantitative reverse transcription 
polymerase chain reaction; SEM, standard error of mean. *, P<0.05; **, P<0.01; ***, 
P<0.001. 



  



Extended Data Figure 9. Chek2 deletion increases reproductive lifespan in mouse. a, 
Representative images of ovarian sections of 1.5-and 13.5-month-old wild type (WT) and 
Chek2-/- mice stained with PAS-Hematoxylin. Primordial follicles (inset (i)), primary follicles 
(inset (ii)), secondary follicle (white arrow) and antral follicle (black arrow) are shown. Scale 
bar represents 200 µm. b-e, Quantification of the number of follicles (by class and total) 
present in WT and Chek2-/- mice ovaries: b, c, 1.5-month-old; d, e, 13.5-month-old. The 
numbers in parentheses correspond to the total number of ovaries analysed. f, Serum AMH 
(ng/ml) in 16-17 months old Chek2-/- mice. The numbers in parentheses correspond to the 
number of mice assessed. g-i, Diagram illustrates the gonadotrophin stimulation of 13.5-
month old females. Numbers in parentheses show: g, the number of MII oocytes retrieved 
per female; h, the number of MII oocytes fertilized; and i, the number of fertilized oocytes 
assessed for blastocyst formation. j, Litter size of WT and Chek2-/- females throughout the 
reproductive life span. Litter sizes from 9  WT and 5 Chek2-/- females are shown. Breeding 
cages contained one male and one female. Generalized linear model analysis showed 
maternal age effect, but no effect on genotype on litter sizes. k, Image of healthy pups born 
to 13 month-old Chek2-/- females. b-i, Two sample t and Fisher’s exact tests were used to 
compare WT and Chek2-/- for statistical significance: *, P<0.05; **, P<0.025; ***, P<0.001. All 
P-values are two sided. Error bars indicate standard error of mean. Box-and-whisker plots 
show interquartile range and median (b-g). an, antral follicle; hCG, human chorionic 
gonadotrophin; pMSG, pregnant mare serum gonadotrophin; pri, primary follicle; P0, 
primordial follicle; sec, secondary follicle; WT=wildtype. Mouse strain: maintained on a mixed 
background, C57BL/6 129Sv, accession number BRC03481 at the RIKEN Bioresource 
Centre. 



  



Extended Data Figure 10. Conditional knockout Chek1 females are infertile due to 
requirement for Chek1 during preimplantation embryo development.  a, Schematic of 
the conditional-knockout mouse model of Chek1 (Chek1 cKO) in the female germline using 
the Ddx4-Cre. A similar approach was used for Zp3-Cre. b, In the ovarian sections stained 
with haematoxylin and eosin, we found follicles, corpora lutea (CL) and oocytes which 
contain nuclear structures (indicated with arrowheads in the magnified right hand panel). 
These findings suggest that estrus cycles and ovulation followed by corpus luteum formation 
are independent from Chek1 disruption in oocytes in vivo. c, Litter size of Chek1 cKO 
females. Three females older than 5 weeks age were mated with C57BL/6J males. Five 
independent littermate females (F/+, Tg-/Tg-; F/F, Tg-/Tg-; or F/+, Tg+/Tg-) were used as 
Chek1 controls (ctrl). While Chek1 ctrl females delivered normally, Chek1 cKO females 
delivered no litters (**, Mann Whitney test, P=0.0179). Thus, these results indicate that 
CHEK1 is essential in the female germline. d, Litter size of Chek1-cKO and controls using 
the Zp3-Cre during follicular growth. 3 months old control (Chek1 F/F; Chek1 ctrl, n=4) and 
conditional knockout (Chek1 F/F; Chek1 cKO with Zp3-Cre, n=4) were three-times 
consecutively mated with wild-type (Chek1+/+) males, and the number of live (left) and dead 
(right) pups was monitored. While Chek1 ctrl delivered a normal amount of live pups, Chek1 
cKO had only a reduced amount of perinatally dead pups (Mann-Whitney U Test: ***, 
P<0.001; **, P <0.01). Numbers in parentheses show the number of litters. e, The mean 
number of all ovulated eggs (the sum of MII oocytes and fertilized MII oocytes) per mouse 
with SEM (Mann Whitney U Test, P =0.126). Each data point presents the no. of eggs per 
mouse. 3-5 months old Chek1 ctrl (n=3) and Chek1 cKO (n=5) females were mated with 
wild-type (Chek1+/+) males after pMSG + hCG stimulation. The number of ovulated eggs 
isolated 18 h post hCG stimulation and additional 10 h cultured in vitro was scored. The 
number of mice is shown in brackets. f, The proportion of fertilized MII oocytes to all 
ovulated eggs with a binomial confidence interval (*, Fisher's Exact Test, P =0.012; 95% CI 
1.9–6.0; OR: 2.62). Numbers in parentheses show the total number of analysed eggs. g, 
The proportion of embryos that developed to blastocysts with binomial confidence interval 
(***, Fisher's Exact Test, P<0.0001). Fertilized MII oocytes (zygotes) were isolated from 
pMSG + hCG stimulated females 18h post hCG administration and cultured in vitro for 96 
hours (~ E3.5) when development to blastocyst was scored. Data are pooled from four 
independent experiments. The number of embryos is shown in brackets. h, Fertilized eggs 
from Chek1 ctrl (n=18) and Chek1 cKO (n=13) females were fixed and stained for DNA 
(DAPI). All fertilized eggs from both genotypes showed normal pronuclei formation. The data 
were pooled from two independent experiments. Asterisks mark polar bodies. i, The majority 
of Chek1 ctrl embryos formed blastocyst (g), but Chek1 cKO embryos were arrested mainly 
in 3-8 cell stages. Representative bright-field images are shown. j, Proportion of 
developmental stages 2 cell, 3-4 cell and 5-8 cell (**, Cochran-Armitage Trend Test,  
P=0.0073). Chek1 ctrl and Chek1 cKO zygotes were isolated from 13 Chek1 ctrl and 6 
Chek1 cKO pMSG + hCG stimulated females 18h post hCG administration and cultured in 
vitro for 49 hours. Embryos were fixed and stained for ɣH2AX by immunofluorescence. DNA 
was visualized by DAPI (l). k, Proportion of embryos with genome fragmentation with 
binomial confidence interval (***, Fisher's Exact Test, P<0.0001). Data are pooled from two 
independent experiments. The number of embryos is shown in brackets. l, Chek1 ctrl and 
Chek1 cKO zygotes (j,k) were fixed and stained for ɣH2AX (magenta) by 
immunofluorescence. DNA (gray) was visualized by DAPI. Arrows indicate genome 
fragments. Asterisks indicate polar bodies. These findings suggest that maternally 
expressed Chek1 is critical for genome integrity protection during first divisions of 
preimplantation embryos in mice. All P-values are two sided. Box-and-whisker plots show 
interquartile range and median. Strains: C57BL/6-FVB mixed background for a-c (Chek1 
cKO, Ddx4-Cre); C57BL6-CD1 mixed background (Chek1 cKO, Zp3-Cre) for panels d-l.  



 

  



Extended Data Figure 11. Extended reproductive lifespan in females carrying an extra 
copy of Chek1 (sChek1). a, mRNA expression levels of Chek1 in oocytes, numbers in 
parentheses show the number of mice stimulated for retrieving the oocytes. b, 
Representative images of ovarian sections of 1.5 and 13.5-month-old wild type (WT) and 
sChek1 mice stained with PAS-hematoxylin. Primordial follicles (inset (i)), primary follicles 
(inset (ii)), secondary follicle (white arrow) and antral follicle (black arrow) are shown. Scale 
bar: 200 µm. c-f, Quantification of the number of follicles (by class and total) present in WT 
and sChek1 littermates: c, d, 1.5-month-old; e, f, 13.5-month-old. The numbers in 
parentheses correspond to the total number of ovaries analysed. g-j, MII oocytes retrieved in 
response to pMSG and hCG, proportion of euploid oocytes, proportion fertilized and 
proportion developed to blastocysts at different ages of WT and sChek1 mice. Numbers in 
parentheses show: g, the number of MII oocytes retrieved per female; h, the number of 
oocytes assessed for aneuploidy; i, the number of MII oocytes fertilized; and j, the number of 
fertilized oocytes assessed for blastocyst development. k, Proportion of live births relative to 
transferred embryos from in vitro fertilized oocytes from aged mice (16 months), the 
numbers in parenthesis show the embryos transferred. l, Photo of healthy pups born to 16-
month old sChek1 females after IVF. m, Litter sizes from F2 females or males from aged 
sChek1 females after IVF treatment in k, compared to females of equivalent ages that were 
naturally breeding. Note that for natural breeding there were two females and one male per 
breeding cage, whereas F2 cages contained a single male and one female. Therefore, litter 
sizes are an underestimate for the IVF-conceived pups. n, Litter sizes of WT and sChek1 
females throughout their reproductive life span. Data are from six breeding cages, three for 
each genotype. Each breeding cage contained one WT male and two females that were 
either WT or sChek1. Generalized linear model analysis showed maternal age effect, but no 
effect on genotype on litter sizes. a-k, Two sample t and Fisher’s exact tests were used to 
compare WT and sChek1 for statistical significance: *, P<0.05; **, P<0.025; ***, P<0.001. All 
P-values are two sided. Error bars indicate standard error of mean. Box-and-whisker plots 
show interquartile range and median (c-g, m). an=antral follicle; hCG= human chorionic 
gonadotrophin; IVF=in vitro fertilization; NB=natural breeding; F2-f= F2 female; F2-m= F2 
male; pMSG=pregnant mare serum gonadotrophin; pri=primary follicle; P0=primordial 
follicle; sec=secondary follicle; WT=wild type. Mouse strain: inbred from mixed background 
C57BL/6 129Sv.  
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Supplementary Results 

Non-additive effects 

Given that additive models can identify variants that exhibit stronger dominant or recessive effects
1
, 

we tested all the identified signals for departure from an additive model. We identified three 

variants exhibiting non-additive effects (Supplementary Table 3 and Extended Data Fig. 4 a-d). For a 

common variant in PIWIL1 (rs28416520, MAF=46%, P=2×10
-14

) a recessive model was the best fit 

(Extended Data Fig. 4 c). Deletion of Piwil1 in mice results in sterility in males, but not females, and 

its role in human oogenesis is uncertain. It is however expressed as a dense paranuclear granule in 

human primordial follicle oocytes
2
. A low-frequency missense variant in HELB (rs75770066, 

MAF=3%, P=7×10
-16

) appeared to exhibit a heterozygous advantage effect (Extended Data Fig. 4 d), 

with higher mean ANM in the heterozygous group (95% CI 51.37-51.58 years) than the common 

(50.24-50.30) and rare homozygote (48.58-50.16) groups. Further fine-mapping and experimental 

work will be required to understand the complex biological mechanism(s) at this locus. 

	

Menopause associated genes act across the life-course 

Previous large-scale genetic analyses highlighted a clear involvement of homologous recombination 

and the BRCA1-A complex in the regulation of ovarian ageing. Our current study supports much 

broader DDR involvement, providing increased resolution of these pathways and informing when in 

the life-course they might act. 

Our identified genes and pathway analyses strongly implicate repair pathways associated with 

replication stress, in particular removal of interstrand crosslinks, which covalently join both strands 

of the DNA helix, as well as DNA-protein crosslinks and R loops (DNA:RNA hybrids). All of these 

lesions stall DNA replication and prevent transcription (Extended Data Fig. 6). This observation is 

supported by recent work demonstrating the role of the interstrand crosslink pathway in utero for 

resolving DNA damage in pre-meiotic, primordial germ cells
3
. This process begins with replication 

fork remodelling at interstrand crosslinks by FANCM4–6
, where we identify two independent ANM-

associated missense variants (Supplementary Table 4). This subsequently leads to recruitment of 

the core Fanconi Anaemia (FA) complex to signal DNA damage, where we map missense variants in 

two of the eight genes – FANCA and FANCB. Furthermore we identify variants mapping key genes in 

the downstream repair systems coordinated by the FA pathway, including homologous 

recombination (e.g RAD51, BRCA1, BRCA2) as well as translesion synthesis (e.g REV1, REV3L and 

RAD18)
7
. 

Several DDR genes highlighted by our study have critical meiotic functions in fetal oocytes where at 

least 500 programmed double-strand breaks (DSBs) initiate recombination
8
. We implicate key 

recombination and synaptonemal complex genes with functions in meiotic prophase (STAG3, 

SMC1β, EXO1, RAD51, DMC1, HELQ, RAD52, MSH5). Mouse models of these genes show defective 

repair of meiotic recombination and subsequent apoptosis of fetal oocytes resulting in decreased 

primordial follicles from birth and infertility
9–17

. We note that several of our ANM-associated variants 

overlap those recently reported for recombination rate
18

, however, despite more nominally 

significant associations than expected by chance, there was no clear relationship between the 

direction of effect on menopause and recombination rate across the 290 ANM loci (Supplementary 
Table 26). 

A range of factors likely contribute to the rate at which follicles are recruited and the follicular 

reserve depleted. Our data implicate key genes in the  mTOR complex 1 (mTORC1) in ANM, including 

STK11 and DEPTOR. The mTOR protein kinase that controls cell growth by regulating protein and 



nucleotide synthesis and is activated by the PI3K pathway. Oocyte-specific deletion of Pten in mice 

removes the inhibiting effect of the PI3K pathway on primordial follicle activation, leading to 

premature recruitment and exhaustion of the entire primordial follicle pool
19

. Other ANM-implicated 

genes include FSHB, NOBOX, INHBB, INHBC, LHCGR, IGF1, IGFBP1, PPARG and BMPR1B, highlighting 

broader endocrine and metabolic mechanisms governing ANM. We also identified common variants 

in FTO associated with ANM (Supplementary Table 2) which are distinct from the well-established 

body weight association in this region (r
2
 with lead BMI variant rs1558902 = 0.0002). 

Finally, the majority of known genes causing POI implicate aberrant DNA damage or the inability to 

repair it, with limited evidence in humans that defects in the downstream cell-death signaling 

pathways impact variation in reproductive ageing. In contrast, our study identifies more than 58 

genes implicated in regulation of apoptosis associated with ANM (Supplementary Table 19), 

providing evidence that variation in cell death following DDR is an important mechanism. This 

includes components and interactors of the central, conserved DDR checkpoint kinases ATR-CHEK1 

(single stranded DNA) and ATM-CHEK2 (double strand breaks), that integrate and determine repair 

and cellular response from a broad variety of DNA repair pathways (Extended Data Fig. 6). 

Whilst the breadth of DDR pathways identified suggests our identified loci may exert their effect at 

different stages across the life-course, we sought to evaluate this by assessing patterns of germ cell 

gene expression across different developmental stages. The individual expression profiles of our 283 

consensus genes (Supplementary Table 2) were assessed in human fetal primordial germ cells from 

5 to 26 weeks gestation, in addition to oocyte and granulosa expression in adult follicles at different 

stages of growth (Extended Data Fig. 7 and Supplementary Table 20). Collectively these data 

identified distinct clusters of genes that were active at different stages of life and follicle growth. The 

majority of our identified genes appeared most active in fetal primordial germ cells and fetal 

oocytes, however distinct expression profiles were evident across all developmental stages and 

between oocytes and granulosa cells (Extended Data Fig. 7). In many cases the pattern of expression 

was consistent with the known biological roles of those genes, for example Fanconi anemia genes 

were predominantly expressed in the fetal germ cells as well as the oocytes of the growing follicles, 

with less pronounced expression in granulosa cells (Supplementary Table 20). In contrast, genes 

such as POLG and TP63 were predominantly expressed during follicular stages, consistent with 

apoptotic inducing activity in response to DNA damage observed in growing oocytes in mouse
20–23

. 

Further studies will be required to build on our observations and confirm the mechanism underlying 

the genetic associations. 
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NHGRI (HG004399, HG004728), NHLBI (HL35464), NIAMS (R01 AR056291)]. We 

would like to thank the participants and staff of the NHS and NHSII for their 

valuable contributions as well as the following state cancer registries for their help: 

AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, 

NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full 
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The Netherland Twin Register: would like to thank all study participants for their 

contributions to our scientific efforts, the SURF SARA institute for computational 

resources and the Avera institute of Human Genetics for genotyping of samples. 

 

Funding was obtained from the Netherlands Organization for Scientific Research 

(NWO) and The Netherlands Organization for Health Research and Development 
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Biology (CSMB, NWO Genomics), NBIC/BioAssist/RK(2008.024), Biobanking and 

Biomolecular Resources Research Infrastructure (BBMRI –NL, 184.021.007 and 

184.033.111), X-Omics 184-034-019;  Spinozapremie (NWO- 56-464-14192),  KNAW 

Academy Professor Award (PAH/6635) and University Research Fellow grant (URF) 

to DIB; Amsterdam Public Health research institute (former EMGO+) , Neuroscience 

Amsterdam research institute (former NCA); Amsterdam Research & Development 

(AR&D) research institute;  the European Community's Fifth and Seventh 

Framework Program (FP5- LIFE QUALITY-CT-2002-2006, FP7- HEALTH-F4-2007-2013, 

grant 01254: GenomEUtwin, grant 01413: ENGAGE and grant 602768: ACTION);  the 

European Research Council (ERC Starting 284167, ERC Consolidator 771057, ERC 

Advanced 230374), Rutgers University Cell and DNA Repository (NIMH U24 

MH068457-06),  the National Institutes of Health (NIH, R01D0042157-01A1, 

R01MH58799-03, MH081802,  DA018673, R01 DK092127-04, Grand Opportunity 

grants 1RC2 MH089951, and 1RC2 MH089995);  the Avera Institute for Human 

Genetics, Sioux Falls, South Dakota (USA). Part of the genotyping and analyses were 

funded by the Genetic Association Information Network (GAIN) of the Foundation 

for the National Institutes of Health. Computing was supported by NWO through 

grant 2018/EW/00408559, BiG Grid, the Dutch e-Science Grid and SURFSARA. 
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DNA extractions were performed at the Genetics Core Laboratory at the Edinburgh 

Clinical Research Facility, University of Edinburgh, Scotland. We would like to 

acknowledge the invaluable contributions of the research nurses in Orkney, the 

administrative team in Edinburgh and the people of Orkney. 

 

ORCADES was supported by the Chief Scientist Office of the Scottish Government 
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also thank A Henders, B Usher, E Souzeau, A Kuot, A McMellon, MJ Wright, MJ 

Campbell, A Caracella, L Bowdler, S Smith, B Haddon, A Conciatore, D Smyth, H 
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Schemes. 
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The Rotterdam Study (PMID: 32367290) is funded by Erasmus Medical Center and 

Erasmus University, Rotterdam, Netherlands Organization for the Health Research 

and Development (ZonMw), the Research Institute for Diseases in the Elderly 

(RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, 

Welfare and Sports, the European Commission (DG XII), and the Municipality of 

Rotterdam. The authors are grateful to the study participants, the staff from the 

Rotterdam Study and the participating general practitioners and pharmacists. The 

generation and management of GWAS genotype data for the Rotterdam Study (RS I, 

RS II, RS III) was executed by the Human Genotyping Facility of the Genetic 

Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The 

Netherlands. The GWAS datasets are supported by the Netherlands Organisation of 

Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the 

Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the 

Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands 

Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) 

Netherlands Consortium for Healthy Aging (NCHA), project nr. 050-060-810. We 

thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein 

Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS 

database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-

Gomez, MSc, for the creation and analysis of imputed data. 

 

The Rotterdam Study has been approved by the Medical Ethics Committee of the 

Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of 

Health, Welfare and Sport (Population Screening Act WBO, license number 

1071272-159521-PG). The Rotterdam Study Personal Registration Data collection is 

filed with the Erasmus MC Data Protection Officer under registration number 

EMC1712001. The Rotterdam Study has been entered into the Netherlands 
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 This work was supported by grants from NIH (RO1-CA58427) and the Agency for 

Science, Technology and Research (A *STAR; Singapore). 
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SHIP is part of the Community Medicine Research net of the University of 

Greifswald, Germany, which is funded by the Federal Ministry of Education and 

Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural 

Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West 

Pomerania. Genome-wide data have been supported by the Federal Ministry of 

Education and Research (grant no. 03ZIK012) and a joint grant from Siemens 
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SHIP is part of the Community Medicine Research net of the University of 
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Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural 

Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West 
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Institutet and receives funding through the Swedish Research Council under the 

grant no 2017-00641. 
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TWINSUK TwinsUK TwinsUK is funded by the Wellcome Trust, Medical Research Council, European 

Union, Chronic Disease Research Foundation (CDRF), Zoe Global Ltd and the 
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UK Biobank UK Biobank This research has been conducted using the UK Biobank resource under application 

numbers 871 (Exeter) and 9797 (Cambridge). 
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Women's Health 
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National Institutes of Health, U.S. Department of Health and Human Services 

through contracts HHSN268201600018C, HHSN268201600001C, 

HHSN268201600002C, HHSN268201600003C, and HHSN268201600004C. The 

authors thank the WHI investigators and staff for their dedication, and the study 

participants for making the program possible. A full listing of WHI investigators can 
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The chief acknowledgment is to the participants, the project staff, and the China 

National Centre for Disease Control and Prevention (CDC) and its regional offices for 

assisting with the fieldwork. China’s National Health Insurance provides electronic 

linkage to all hospital treatments. We thank Judith Mackay in Hong Kong; Yu Wang, 

Gonghuan Yang, Zhengfu Qiang, Lin Feng, Maigeng Zhou, Wenhua Zhao, Yan Zhang 

and Zheng Bian in China CDC; Lingzhi Kong, Xiucheng Yu, and Kun Li in the Chinese 

Ministry of Health; and Garry Lancaster, Sarah Clark, Martin Radley, Mike Hill, 

Hongchao Pan, and Jill Boreham in the CTSU, Oxford, for assisting with the design, 



planning, organisation, and conduct of the study. 
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Charitable Foundation, Hong Kong. Long-term follow-up was supported by UK 

Wellcome Trust( 212946/Z/18/Z, 202922/Z/16/Z, 104085/Z/14/Z, 088158/Z/09/Z), 

National Key Research and Development Program of China (2016YFC0900500, 

2016YFC0900501, 2016YFC0900504, 2016YFC1303904) and National Natural 

Science Foundation of China (91843302). DNA extraction and genotyping was 

funded by GlaxoSmithKline, and the UK Medical Research Council (MC-PC-13049, 

MC-PC-14135). The project is supported by core funding from UK Medical Research 

Council (MC_UU_00017/1,MC_UU_12026/2 MC_U137686851), Cancer Research UK 

(C16077/A29186; C500/A16896), and British Heart Foundation (CH/1996001/9454) 

to the Clinical Trial Service Unit and Epidemiological Studies Unit at Oxford 

University. 
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Association 

Consortium 

We thank all the individuals who took part in these studies and all the researchers, 

clinicians, technicians and administrative staff who have enabled this work to be 

carried out. 

 BCAC is funded by the European Union's Horizon 2020 Research and Innovation 

Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST 

respectively), and PERSPECTIVE I&I, funded by the Government of Canada through 

Genome Canada and the Canadian Institutes of Health Research, the Ministère de 

l’Économie et de l'Innovation du Québec through Genome Québec, the Quebec 

Breast Cancer Foundation. The EU Horizon 2020 Research and Innovation 

Programme funding source had no role in study design, data collection, data 

analysis, data interpretation or writing of the report. Additional funding for BCAC is 

provided via the Confluence project which is funded with intramural funds from the 

National Cancer Institute Intramural Research Program, National Institutes of 

Health. The breast cancer genome-wide association analyses were supported by the 

Government of Canada through Genome Canada and the Canadian Institutes of 

Health Research, the ‘Ministère de l’Économie, de la Science et de l’Innovation du 

Québec’ through Genome Québec and grant PSR-SIIRI-701, The National Institutes of 

Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, 

C1287/A16563, C1287/A10710) and the European Union (HEALTH-F2-2009-223175 

and H2020 633784 and 634935). All studies and funders are listed in Michailidou et 

al (2017). 

ABCFS Australian Breast 

Cancer Family Study 

ABCFS thank Maggie Angelakos, Judi Maskiell, Gillian Dite. 

 

The Australian Breast Cancer Family Study (ABCFS) was supported by grant UM1 

CA164920 from the National Cancer Institute (USA). The content of this manuscript 

does not necessarily reflect the views or policies of the National Cancer Institute or 

any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor 

does mention of trade names, commercial products, or organizations imply 

endorsement by the USA Government or the BCFR. The ABCFS was also supported 

by the National Health and Medical Research Council of Australia, the New South 

Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and 

the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and 

Medical Research Council (NHMRC) Senior Principal Research Fellow. M.C.S. is a 

NHMRC Senior Research Fellow. 

ABCS  ABCS thanks the Blood bank Sanquin, The Netherlands. 

 

The ABCS study was supported by the Dutch Cancer Society [grants NKI 2007-3839; 

2009 4363].  



BBCC  The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of 

Erlangen. 

 

BCINIS  The BCINIS study would not have been possible without the contributions of Dr. K. 

Landsman, Dr. N. Gronich, Dr. A. Flugelman, Dr. W. Saliba, Dr. E. Liani, Dr. I. Cohen, 

Dr. S. Kalet, Dr. V. Friedman, Dr. O. Barnet of the NICCC in Haifa, and all the 
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institutes in Northern Israel. BIGGS thanks Niall McInerney, Gabrielle Colleran, 

Andrew Rowan, Angela Jones. 

 

BREOGAN BREast Oncology 

GAlician Network 

The BREOGAN study would not have been possible without the contributions of the 

following: Manuela Gago-Dominguez, Jose Esteban Castelao, Angel Carracedo, 

Victor Muñoz Garzón, Alejandro Novo Domínguez, Maria Elena Martinez, Sara 

Miranda Ponte, Carmen Redondo Marey, Maite Peña Fernández, Manuel Enguix 

Castelo, Maria Torres, Manuel Calaza (BREOGAN), José Antúnez, Máximo Fraga and 

the staff of the Department of Pathology and Biobank of the University Hospital 

Complex of Santiago-CHUS, Instituto de Investigación Sanitaria de Santiago, IDIS, 

Xerencia de Xestion Integrada de Santiago-SERGAS; Joaquín González-Carreró and 

the staff of the Department of Pathology and Biobank of University Hospital 

Complex of Vigo, Instituto de Investigacion Biomedica Galicia Sur, SERGAS, Vigo, 

Spain. 

 

The BREast Oncology GAlician Network (BREOGAN) is funded by Acción Estratégica 

de Salud del Instituto de Salud Carlos III FIS PI12/02125/Cofinanciado FEDER; Acción 

Estratégica de Salud del Instituto de Salud Carlos III FIS Intrasalud (PI13/01136); 

Programa Grupos Emergentes, Cancer Genetics Unit, Instituto de Investigacion 

Biomedica Galicia Sur. Xerencia de Xestion Integrada de Vigo-SERGAS, Instituto de 

Salud Carlos III, Spain; Grant 10CSA012E, Consellería de Industria Programa Sectorial 

de Investigación Aplicada, PEME I + D e I + D Suma del Plan Gallego de Investigación, 

Desarrollo e Innovación Tecnológica de la Consellería de Industria de la Xunta de 

Galicia, Spain; Grant EC11-192. Fomento de la Investigación Clínica Independiente, 

Ministerio de Sanidad, Servicios Sociales e Igualdad, Spain; and Grant FEDER-

Innterconecta. Ministerio de Economia y Competitividad, Xunta de Galicia, Spain. 

CBCS Canadian Breast 

Cancer Study 

CBCS thanks study participants, co-investigators, collaborators and staff of the 

Canadian Breast Cancer Study, and project coordinators Agnes Lai and Celine 

Morissette. 

 

CBCS is funded by the Canadian Cancer Society (grant # 313404) and the Canadian 

Institutes of Health Research. 

CCGP  CCGP thanks Styliani Apostolaki, Anna Margiolaki, Georgios Nintos, Maria Perraki, 

Georgia Saloustrou, Georgia Sevastaki, Konstantinos Pompodakis. 

 

CCGP is supported by funding from the University of Crete.  

CECILE  The CECILE study was supported by Fondation de France, Institut National du Cancer 

(INCa), Ligue Nationale contre le Cancer, Agence Nationale de Sécurité Sanitaire, de 

l'Alimentation, de l'Environnement et du Travail (ANSES), Agence Nationale de la 

Recherche (ANR). 
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the excellent technical assistance: Dorthe Uldall Andersen, Maria Birna Arnadottir, 

Anne Bank, Dorthe Kjeldgård Hansen. The Danish Cancer Biobank is acknowledged 

for providing infrastructure for the collection of blood samples for the cases. 

 

The CGPS was supported by the Chief Physician Johan Boserup and Lise Boserup 

Fund, the Danish Medical Research Council, and Herlev and Gentofte Hospital. 

CPSII  Investigators from the CPS-II cohort thank the participants and Study Management 

Group for their invaluable contributions to this research. They also acknowledge the 

contribution to this study from central cancer registries supported through the 

Centers for Disease Control and Prevention National Program of Cancer Registries, 

as well as cancer registries supported by the National Cancer Institute Surveillance 

Epidemiology and End Results program. 

 



The American Cancer Society funds the creation, maintenance, and updating of the 

CPS-II cohort. 

DIETCOMPLYF  The DietCompLyf study was funded by the charity Against Breast Cancer (Registered 

Charity Number 1121258) and the NCRN. 

 

The University of Westminster curates the DietCompLyf database funded by Against 

Breast Cancer Registered Charity No. 1121258 and the NCRN. 

ICICLE  ICICLE thanks Kelly Kohut, Michele Caneppele, Maria Troy. 

 

ICICLE was supported by Breast Cancer Now, CRUK and Biomedical Research Centre 

at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. 

KARBAC  Financial support for KARBAC was provided through the regional agreement on 

medical training and clinical research (ALF) between Stockholm County Council and 

Karolinska Institutet, the Swedish Cancer Society, The Gustav V Jubilee foundation 

and Bert von Kantzows foundation. 

KARMA  KARMA and SASBAC thank the Swedish Medical Research Counsel. 

 

The KARMA study was supported by Märit and Hans Rausings Initiative Against 
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KBCP  KBCP thanks Eija Myöhänen, Helena Kemiläinen. 

 

The KBCP was financially supported by the special Government Funding (EVO) of 

Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer 

Organizations, and by the strategic funding of the University of Eastern Finland. 

KCONFAB/ 
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 kConFab/AOCS wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab 

research nurses and staff, the heads and staff of the Family Cancer Clinics, and the 

Clinical Follow Up Study (which has received funding from the NHMRC, the National 

Breast Cancer Foundation, Cancer Australia, and the National Institute of Health 

(USA)) for their contributions to this resource, and the many families who contribute 

to kConFab. 

 

kConFab is supported by a grant from the National Breast Cancer Foundation, and 

previously by the National Health and Medical Research Council (NHMRC), the 

Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, 

Tasmania and South Australia, and the Cancer Foundation of Western Australia. 

Financial support for the AOCS was provided by the United States Army Medical 

Research and Materiel Command [DAMD17-01-1-0729],  Cancer Council Victoria, 

Queensland Cancer Fund,  Cancer Council New South Wales,  Cancer Council South 

Australia, The Cancer Foundation of Western Australia,  Cancer Council Tasmania 

and the National Health and Medical Research Council of Australia (NHMRC; 400413, 

400281, 199600). G.C.T. and P.W. are supported by the NHMRC. RB was a Cancer 

Institute NSW Clinical Research Fellow. 

MARIE  MARIE thanks Petra Seibold, Dieter Flesch-Janys, Judith Heinz, Nadia Obi, Alina 

Vrieling, Sabine Behrens, Ursula Eilber, Muhabbet Celik, Til Olchers and Stefan 

Nickels. 

 

The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I, 

106332, 108253, 108419, 110826, 110828], the Hamburg Cancer Society, the 

German Cancer Research Center (DKFZ) and the Federal Ministry of Education and 

Research (BMBF) Germany [01KH0402]. 

MCBCS  The MCBCS was supported by the NIH grants CA192393, CA116167, CA176785 an 

NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer 

[CA116201], and the Breast Cancer Research Foundation and a generous gift from 

the David F. and Margaret T. Grohne Family Foundation. 
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Collaborative Cohort 

Study 

The MCCS was made possible by the contribution of many people, including the 

original investigators, the teams that recruited the participants and continue 

working on follow-up, and the many thousands of Melbourne residents who 

continue to participate in the study. 

 

The Melbourne Collaborative Cohort Study (MCCS) cohort recruitment was funded 

by VicHealth and Cancer Council Victoria. The MCCS was further augmented by 

Australian National Health and Medical Research Council grants 209057, 396414 and 



1074383 and by infrastructure provided by Cancer Council Victoria. Cases and their 

vital status were ascertained through the Victorian Cancer Registry and the 

Australian Institute of Health and Welfare, including the National Death Index and 

the Australian Cancer Database. 

MEC  The MEC was supported by NIH grants CA63464, CA54281, CA098758, CA132839 

and CA164973. 

MISS  The MISS study is supported by funding from ERC-2011-294576 Advanced grant, 

Swedish Cancer Society, Swedish Research Council, Local hospital funds, Berta 

Kamprad Foundation, Gunnar Nilsson. 

MMHS  We thank the coordinators, the research staff and especially the MMHS participants 
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The MMHS study was supported by NIH grants CA97396, CA128931, CA116201, 
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Breast Cancer Family 
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The Northern California Breast Cancer Family Registry (NC-BCFR) and Ontario 

Familial Breast Cancer Registry (OFBCR) were supported by grants U01CA164920 

and U01CA167551 from the USA National Cancer Institute of the National Institutes 

of Health. The content of this manuscript does not necessarily reflect the views or 

policies of the National Cancer Institute or any of the collaborating centers in the 

Breast Cancer Family Registry (BCFR) or the Colon Cancer Family Registry (CCFR), nor 

does mention of trade names, commercial products, or organizations imply 
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NIH, National Institute of Environmental Health Sciences (Z01-ES044005 and Z01-
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UKBGS  UKBGS thanks Breast Cancer Now and the Institute of Cancer Research for support 

and funding of the Breakthrough Generations Study, and the study participants, 

study staff, and the doctors, nurses and other health care providers and health 

information sources who have contributed to the study. We acknowledge NHS 
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